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SUMMARY - 

'The report is the first part of the work devoted to the 
investigation of the feasibility of. the distant acoustic 
determination of bubble.conoentrations in the subsurface layer 
of Lake Ontario. .

g 

In this part the physical mechanisms on base Of which the 
distant sounding of the air bubbles in water is possible are 
shortly discussed. Here the principles of the determination of 
bubble concentration in the subsurface layer measuring the 
attenuation of the acoustical signal are presented, the 
hydrological parametrs of the path of propagation between the 
western tip of Toronto Island and the mouth of Welland Canal 
‘are given. The acoustic properties of the bottom are discussed 
as well. 

The comparison of different methods for the mathematical 
modelling of sound propagation in the inhomogeneous 
range-dependent waveguide are presented and the calculations 
of acoustic fields along the above-mentioned path are carried 
out for the depths from 10 m to 40 m within the frequency band 
from 100 Hz to 10 kHz . It is shown that in winter season. 
when the sound speed is close to constant, the average 
intensity in the end of the path slightly depends both on the 
receiver depth and on the source frequency. At the same time. 
in summer, when the upper layer of Lake .is heated, the 
subsurface waveguide exists. Because of it the field is 
localized near the bottom and the signal level decreases both 
with the increase of source frequency and with the decrease of 
reciever depth. It is shown that the signal level depends 
rather strongly ( especially in summer season ) on the 
acoustic properties of the bottom. '



Chapter 1. 
INTRODUCTION 

1.1 INFLUENCE OF AIR BUBBLES 0N PROPAGATION, 
ABSORPTION AND SCATTERING OF SOUND. 

Air bubbles '1n water significantly 'affect' the sound 
propagation. It can be explained that in a wide frequency band 
the scattering and absorption are of resonant nature. Thus, 
at the resonant frequency scattering cross section of an air 
bubble could be more than 1000 times larger than its 
geometrical cross section. If the bubble concentration is 
rather high water compressibility changes considerably» and 
sound velocity changes respectively. loreover. among the eall 
possible sound scatterers bubbles have the most clearly 
expressed nonlinear properties. All these facts allows to 
consider acoustic methods as the most adequate ones for the 
distant diagnostics of air bubbles. 

A bubble as a resonance system can be described by .its 
quality factor Q and natural ( resonance ) frequency f0, which 
in adiabatic approximation [1,2] is given by expression~ ~ 1 p0 11/2, 

, P 
where a is a bubble radius, 1 = cp./ cu — index of adiabat 
( in the air 1 = 1.4 ). p5 - pressure' in a: bubble in the 
absence of sound wave, p — water density. The resonant 
frequency f; of the air bubble located.at the depth 2 can be 
estimated as 

11,- (1.1) _ 
2 I a 

f°=327/a(1+0.1z)‘/2, - (1.2) 

where f; is in Hz , depth 2 - in metres . bubble radius a — in



centimetres.. 
When a plane acoustic wave of the frequency f is falling. 

on an air. bubble, its ivolume fichangesz'hanmonically so it 
radiates 'the spherical sound .wave; Ibreover, a 'part‘ of 
acoustic enengy is absorbed due to ~the viscosity and heat 
conductivity . The efficiency of absorption and scattering is 
described by the absorption.cross section on and scattering 
cross section 03 defined as 

08=W8/I‘;ca=Wa/Ii., -. (1.3) 

where It is the intensity of an incident wave, I; ‘— acoustic 
power scattered in all directions, I; - acoustic power 
absorbed by an air bubble. For the scattering cross section as 
and absorption cross section on of a single bubble one can 
write_ ' 

41:02 0: . ., .(1.4) 
‘3 [(fo/f)2—112+Q-2 

4na2(Q“/1aa-1) (15) a: g' .0 “ [(fo/f)2—1]2+Q‘2 .- 

where R = afif/co. Co is sound speed in the -liquid free of. 
bubbles. It can be easily seen: from. (1g4), '(1.5) that the 
scattering and absorption increase if the frequency of an 
acoustic waves coincides with the resonant. frequency .of‘ a 
bubble. 

When wave propagates in the bubbly medium,.both coherent 
and incoherent components appear‘in the scattered field. The 
'intensity of the incoherent component is proportional to the 
number of bubbles in the scattering volume. If bubbles.are .of 
different sizes, their size distribution can be described by 
function.n( a ). Then n( a ) do is the number of bubbles with 
sizes from a to a + db in an unit volume ( m3).. 

Scattering on the bubbles of different sizes might be 
characterized by the volume scattering coefficient mu



n(a) 0‘2 do 
[(wO/w)2— 112+ 42 

'2 m=4w ;.w=21qf,w°=2wfo,(1.6)c 09-38 

which is equal to the ratio of the acoustic power scattered by 
a unit volume in a unit angle to the intensity of the incident 
wave. Since the scattering is' of resonance nature. the 
measurements made -at different- frequencies give us the 
possibility to determine the size distribution. 

For the coherent component of an acoustic field the water 
with air bubbles often can be treated as a ccntinuous medium 
with the effective sound speed‘ Cerf and with the greater 
_absorption, which.is described by the absorption coefficient 
in a bubble media a(m). As a rule, the density of the water 
with suspended air is only slightly different from the density 
of the water free of bubbles. So the dispersion equation 
K = K(w) for a monochromatic wave might be written as [3] 

41: n(a) a da 112: 2 (mg/m) — 1 + i/Q 
;K=w/c (1.7) eff‘ OONI 

em 
4. 

05—3

8 

For a relatively small bubble concentration, when the sound‘ 
'absorption on the wavelength is small, (1.7) may be reduced to 

DJ K=——+ta, (1.8) CO—AC 
_

, 

where Ac is the addition to the sound speed which appears due 
to a presence of bubbles. When a/K. Ac/co « 1, the following 
expression is valid 

m
. 

I 
n(a)[ (mo/ma — 1 ]a do 

Ac = 2 1: c , v1.9) ° Ko[ ((wO/w)a— H2 + 0-2 1 (

0 
co 

2 I 
n(a) ado 

(‘ 10) a: 'l.‘ . . 

K°[ ((mo/w)2— 1)2 + 0-2 ]o '



Analysis of these expressions shows that if.we may neglect the 
variability of the distribution function n(a) at the width of 
the resonant curve, then Ac .9 0.- SO“ in this» case the 
absorption is determined only by the concentration of resonant 
bubbles of the correspondent frequency and does not depend on 
their -qualityu.faotor; The numerical expression for the 
-absorption coefficient a ( 1/m ) is 

a = am) ~ 725 Map) of, , -( 1.11 ) 

where Or is the radius of resonant bubbles ( .cm )H ( their 
resonant frequency is w = 211 — see (1.1) ). 

Thus, since the bubbles .have such strongly pronounced. 
resonant and nonlinear .properties, methods based' on the. 
following effects might be used for thew measurements of the 
bubble concentration: ' ' " 

— measurement of the sound attenuation,-~ 
— measurement.of volume scattering coefficient, 
- measurement of volume nonlinear scattering coefficient. 
The detailed investigation of this problem can ‘be found r- 

in I 4 - 20 ]. It must be noticed that some methods of 
acoustic diagnostics was developed and experimentally approved 
in IAP and in the university of Nizhny Novgorod [.21 - 25 1. 

Our purpose is to investigate the possibility of the 
' 

distant determination of bubble ’ concentration in the 
subsurface water layer of Lake-Ontario. That is why we pay a 

some attention to the review of [3.26]. The results presented .' 
in these papers let us hope that this problem can be solved in 
general. ‘ 

In [26] the bubble induced attenuation of acoustic signal 
of frequencies 1 kHz, 3kHz and Bkflz has been measured at' the' 
fixed acoustic shallow water range. in path> lenght 710.5 ,km, 
depth — H = 30 1 2 m' ). The experiments ishbwed, that .the 
attenuation due to suspended air increase by the m'th power of 
wind speed U ( m between 3.5 and' 4.5 ). The increase of 
transmission loss was explained by the growth of bubble 
concentration in the subsurface layer due to increase of the



wind speed. Hence, the signal attenuation can carry the useful H
; 

infomation about the bubble concentration in the subsurface 
layer. 

In the same time, in paper [3].. the results of» 
[18.27]. it was shown that the concentration of bubbles n(a) 
which appears due to the sea surface agitation may be 
parameterized and written as 

71(0) = No (“0.2”) 35W) 3’(Z.U). - ( 1-12 ) 

where U is the wind speed in m/s ( its basic value was 
U=13m/B ).z—depth(m),.. 

y (2.0) = exp I —Z/L(U)], (1.13) 

0.4 ,U 7.5 m/s 
L(U) = 

0.4 + 0.115( U — 7.5 ), U > 7.5 m/s, 

N0 = 1.6 1:1(3‘O m“, x( U ) = (U/13 )3. 

(Cl/a1)2 ,-a<a1 
G(a,z) = 1 , 01$ 0 < 02 ( 1.14‘) 

d(z) (ca/a ) . a > a2 

and the limit bubble sizes (11 and 0:, are expressed as 

a1=(34+1.24z)x1076(m7),. 
02:1.601‘, (1.15) 
d(z) = 4.37 + ( z / 2.55 )2. 

Thus, using (1.12) and measuring the transmission loss at 
different frequencies it might be possible in some cases to 
solve "the inverse problem - to reconstruct. the size 
distribution. Then. .one of the questions appearing is the 
feasibility of parameterization for the size distribution ma). 2 

of subsurface bubbles in inner lakes and Lake Ontario as well.



1.2 PHYSICAL FOUNDATION OF DETERIINING THE BUBBLE 
CONCENTRATION IN SUBSURFACE BUBBLE LAYERS. 

As it follows from the results obtained‘ in 'previous 
chapter, the attenuation of a signal of rather high‘ frequency 
I mainly depends on the concentration of resonant bubbles 
( see 1.1 ). If a plane wave propagates in the medium with 
homogeneously distributed bubbles, its amplitude decreases as 

p = po exp( —a r ) 

Thus. measuring the transmission loss ( TL ) on the path of 
range r '

I TL=2013&=1018f=ar2013e=8.64ar (1.16)
P 

we can find out the attenuation coefficient a = TL / 8.64 r, 
and then - the concentration of resonant bubbles ( see 1.11 ). 

However, the problem becomes more complicated in natural 
waveguides. It is concerned with the finity of a bubble layer. 
Here the sound field has a very complex structure so 'the 

simple dependence of TL on attenuation coefficient 0 fails. 
Because of it the diagnostics of subsurface bubble layer 
requires the more detailed analysis. 

In this chapter we will try to show clearly the physical 
base of sound field attenuation in a waveguide with subsurface 
bubble layer and will discuss both the principal feasibility 
of determining the bubbles concentration and the difficulties 
which appear when solving the problem. 

To calculate the acoustic fields of high frequency one 
can use the ray approach I 28 ]. . For the case of layered 
waveguide. when the sound speed 0 depends only on depth 2 ( c 
= 0(2) ), the trajectories of rays might be calculated from 
Snell's law: 

cos x(z) / c(z) = const. 

where x(z) - the grazing angle at any lhorizon 2. In the 
framework of ray approximation the energy flows within the ray 
tube. It allows to find out the field amplitude using the



conservation law for power flux dW through the‘ cross section 
area or the tube dS :, A. 

'cm=1ds=const, I=p2,p. 
where I is the intensity of sound.field. 

Let the source.to be positioned at the depth 21 and .the 
receiver - at the point with coordinates r and Z“=( Fig.1.1 ). 

Fig.1.1 

Considering the ray bundle dx1 (the tube width), which leaves 
the source at the angle x1, and taking into account the 
z-symmetry it is easy to obtain for the point with coordinates 
r.z:

~ 

as 2 
' 

’ 

t dx = 1r _.___ 3. n x .. 

-- 
- 

, dx1 ‘ 

dW=(lV/2)coax1d')(1 
- and, therefore 

- 17 cos x1 I = . 

' E( x1) . ( 1.17 ) 
‘ dr . 

sin x «r
1~ ~



Here E = E( x1) - an attenuation factor introduced to account 
for dissipation and reflection losses. In a general case, 
there are some rays which might come into. the point of 
receiver. Because of it one has to sum ‘their amplitudes and 
phases to calculate the field; Due to ‘that “at‘ the ’long‘ 
distances 'the field structure, becomes 'very ,complexr 'and 

' unsteady ( small changes or.sound speed profile could strongly 
influence on the rays phases ). Thus. it is more expediently 
to use the averaged description. 

For the plane layered waveguide .the .ray trajectory 
z ='z ( r ) has a range. periodicity‘ called pray cycle.' The 
cycle length D( x1) ( see Fig.1.2 ) depends also on the source 
depth.

A 
Fig.1.2 

At long distances, where r >>'D to. obtain the averaged 
on the cycle length intensity or the field the contribution of 
a ray bundle dx1 ( I in 1.17 ). is to be weighted by the 
probability that it irradiates a receiver at depth 2 in the 
course or complete cycle near range r. This probability might 
be written as (-2 [ 0r76x1| du1)/ND(;x1);“ Factor 2 appears 
because a ray cuts the z horizon twice rper cycle. If we 
consider the power of source W = 4%, then I p 12-: I = 1/r2. 
Using (1.17) and taking into account the angle symmetry we can 
write the expression for averaged intensity [ 29 l:



15/2 
.. ,r ‘003 
I = ( 4/r )j‘ (x‘ ) x‘ 

'o D( x.) sin x( x.) 
dx1. (51.18) 

where x = X( x1) is the inclination ( grazing angle ) of, ray. 
at the receiver horizon. 

- Within one cycle a ray once touches the bottom. being 
attenuated in | V( xh) la times in it. Here xh — is the ray. 
inclination at the bottom and V( xh) is the reflection 
coefficient of the bottom. " ' 

If we consider attenuation coefficient a(. z ) to be 
depending on depth, then the factor concerned with dissipation 
within one cycle is

lO 
Eu=ezp(—2Ia(z)zd1), (1.19)

0 

where 10 is the lenght of ray trajectory. 
For the path of length r the number of cycles N = r/D(x1) 

and, thus. the attenuation factor in 1.18 might be written as 

E(x1)=lV2Eu' 7“. (1.20) 

Expressions ( 1.18 ) - ( 1.20 )‘ allows to obtain the 
range dependence of averaged sound transmission loss in a 
range - independent waveguide. The generalization for a range- 
dependent ducts is given in .[ 30 ] and is used in this work 
for calculation of sound field intensity in Lake Ontario. 

Let's consider some particular cases of sound propagation 
_in the isovelosity waveguide. In a homogeneous water layer 
with c = c1= ch: const ( such profile of sound speed is close 
to the winter conditions of propagation in Lake Ontario ) Vthe 
cycle length is: 

D = 2 H / tg x1 , ( 1.21 ) 

where H is a thickness of water layer —. the depth of a 
waveguide ( see Fig.1.2 ). If a = O and |.V l 

= 1, then from 

'IO



(1.18) we have 

f=”—— dx =—-., at (1.22) 

This formula shows the well known cylindrical law of field 
,deorease. Returning to a. general 'oase we' can, rewrite' the 
expression for average intensity in the following form : 

13/2 
f—2 ‘A 

) (123) ‘EI “1%- '

0 

A<X)_2HE(x1,r.)cosx1 .(124) 
‘ D(x,)atnx(x,)

" 
Here-factor A is a factor which accounts both the effects of 
attenuation and the effects, concerned with..variability of 
sound speed, i.e. with stratification. It mdght be seen, that 
for the isovelosity homogeneous waveguide with a = 0 and lVi=1mflwA=1. 

If we suppose isovelosity water layer to be settled down 
on a liquid bottom without absorption ( c5) 01). then one can 
introduce the critical angle x.. which might. be calculated - 

from Snell!s law: 
.3 ZAC 1/2 

x.=[—} . 

(1.25) 
Cb 

cos 7“: 0'
c 

on... 

Here Cb - is the sound-speed in the bottom-and Ac.; cb— of. If 
the angle of ray inclination at the bottom t= x‘ < x‘, then 
V = 1, otherwise V becomes less. Taking into account the. fact 
'that for r/D » 1 the number of ray reflections is great, 
obviously, the rays which leave .the 'source lat the 'angles 
x1 > x‘ are being attenuated almost completely ( see 1.20 .).H 
It allows to change the upper limit of integration in ( 1.23 ) 

from $72 to x*.
‘ 

w let's consider the homogeneous bubble layer .of

II



thickness h and constant absorption coefficient a near the 
surface .of considered waveguide. Prom Fig.1.3 it is seen that 
within one cycle attenuation factor is 

Eu=e.1:p(—2cxsm)=e.zp(a'4ah/stnx1 )’, (1.26) 

..

‘ 8./2 8.!2 

‘~ 

rm0103

v 

where S. = 2 a h / sin x1 — the length of the my cycle part 
within the bubble layer. Then Bq.1.24 might be rewritten as 
follows ( for the isovelosity waveguide ): 

A 
Zahr . 2ahr ahr 

1 (1:27) :9 —— Ne " 
- 

— ’ ' 1p 
1100:t1 

1p 
H ' H

. 

_ 

Here we took into account that the main contribution is being 
made by the rays of angles x1< L. 

From ( 1.27 ) we can make the important conclusion.‘ that 
at small angles of inclination A does not depend on x1. The 
reason is that for the rays with x1 c: ‘1 S. is rahter great, 
butthe mimber of cycles is small. And these effects compensate 
each other. 

There are two main effect concerned the attenuation in a 
thin bubble layer. The first is the decrease of amplitudes

I2



of all the rays : they decreases as emp( eaahr/H ). And the 
second one is the narrowing of angle spectrum up, to 
Xbb1.= ( HYGhP )‘/2. If Xbbl » X. we.can.neglect this; effect, 
and then from ( 1.22 ),( 1.27 ) one can obtain the following 
expressions for averaged intensity and transmission loss: 

I=—x ezp(-,20hr/H) - (1.28 ). 

. rH " 

TL.= 10 In I/Io TLO + 8.64 arh / H = TL°+ ATL ( 1.29 ) 

Here'TLo = 101n( rfl72xi) transmission loss in‘ the waveguide 
free of bubbles and the second item describes “the additional 
losses due to the bubble layer. From-the comparison of this 
expression with TL for the homogeneous.bubbly media ( '1.16 ) 

it is seen that for such a layer TL is less in h/H times. The 
reason is that only the part of.a ray trajectory goes through 
a bubble layer.-It«must be mentioned, that.the the additional 
loss ATL is proportional to the quantity of bubbles along all 
the path ( ATL ~ arh ~ n S, where S = rh ). 

It might be shown that the small“ absorption in -bottom. 
does not make the situation cOnsiderably worse for isovelosity 
guide. The difficulties arise in a case .of ‘ stratified 
waveguide, especially for "summer" .kind .of stratification,‘ 
when sound speed at the bottom is less than at the surface. In 
such a waveguide some do not reach the bubble 'layer, so 'it 

makes the.transmission loss to. be a 'complex function of-.r 
absorption. . - 

In an arbitrary case to calculate 'averaged intensity 
( 1.18 ) analytically seems to be impossible, so we have to do 
it numerically. :Some :results are upresented below. The. 
calculation 'has been made for -the following, 'model of 
waveguide :. - 

' The path length is 20 km, sound speed in bottom 
06: 1580 m/s, sound spped in water at ,the “bottom 
ch; 1420 m/s( critical angle xtw 0.47 rad w 28 deg, 
depth of the waveguide H = 100 m. 

Two models of bottom has been used : half-space without and

I3



with losses ( the imaginary part of the refraction index 
n=0.008 ). lbdel of the bubble layer : thickness h = -6 m, 
absorption coefficient a = 0.0025. (; For -the case of the 
waveguide with homogeneously distributed bubbles, 1.9. h = H, 
the bubble induced loss would be ATL = 432 dB - see 1.29 ). 
Typical ray trajectories are depicted for the path of 2 km 
length. 

i

- 

At Pig.1.4(a) the isovelosity waveguide —‘ "winter" 
profile is shown. For this profile of. sound speed the. ray 
trajectories are presented in PLg.1.4(b). At PLg.1.5 angle 
distribution of factor A is shown for bottom without (a) and 
with (b) absorption. As it might be seen.from these figures. 
for this case the effect is clear : all xthe rays radiated 

' reach the subsurface bubble layer and are attenuated in it. so 
it leads to the decrease of signal level. At Fig.1.6 (a),(b) 
the range dependence of integral averaged intensity of field 
is depicted for both models of bottom respectively. ( Here and 
below, solid line - with bubble layer, dashed line — out of 
bubble layer ). It is remarkable, that in an isovelosity 
waveguide the introducing of the bottom absorption leads to 
general decrease of signal level approximately on 5 dB. but 
almost does not affect the bubble layer induced attenuation 
value ( at the Fig.1.6 ATL ~ 26dB ). This result is in a good 
agreement with ( 1.29 ). Calculating ATL from ( 1.29 ) one can 
find that the bubble induced attenuation in the case of layer 
thickness 6 m is less than for homogeneously distributed 
bubbles in h/H = 0.06 times. ' 

In a case of "summer" profile of sound speed the picture 
seems to be more complicated ( Pig.1.7(a) ). “As it is seen 
from Pig.1.7(b) there are three groups of rays ( A factor for 
these rays presented on Pig.1.8(a),(b) vfor aboth models of 
bottom ): A — the rays of small grazing angles, which do not 
reach the bubble layer; B - the rays, which reach the layer 
but don't touch the surface — their inclination at the bound. 
of bubble layer is small and because of it the attenuation of 
these rays is great; c - the rays reflected by the surface. 
The averaged field range distribution for this stratification 
is presented at Fig.1.9(a),(b). It is seen,. that here the

I4
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influence of bottom absorptivity is significant and at rather 
great values makes the the bubble induced attenuation to be 
hardly distinguished. Obviously, this effect is concerned with 
the fact that all the rays which reach. the "bubble layer'have a 
great inclination :at the bottom and due ' to it are strongly 
‘attenuated there. So their contribution to the averaged field 
intensity is less than for the bottom without absorption. 
As it is seen from the Pig.1.9 (a) the additional loss due to 
the bubble layer ATL ~ 6 dB, and for the bottom with 
absorption ( Pig.1.9(b)) ATL..~ 2dB. '

f 

It is seen that for considered models .the..- effect of 
signal level decrease due to the bubble layer is rather 
visible. But in general case the bubble induced attenuation 
depends both on stratification and bottom characteristics. 
Nevertheless, under some particular conditions of propagation 
o. e can hope that the determining of bubbles concentration by 
measuring transmission loss is possible.

2I



Chapter 2. 
Acoustic properties of Lake emu-10 r 

2.1 HYDROLOGY AND SEASONAL EVOLUTION OF 
TEMPERATURE PROFILES ' 

In order to solve the main problem - the study of the 
feasibility of determining bubble concentration across Lake 
‘Ontario using underderwater acoustic transmission loss it is 
necessary to introduce the acoustic model of the proposed 
path, on which experiments will be carried out. This path 
connects the western tip of Toronto Island (point A) and the 
mouth of Welland Canal (point B) (Fig 2.1) and it is about 42 
km long with the maximum depth along the path 110 m. Path 
relief (Fig 2.2) is characterized by the inclination angles ~ 
3° near Toronto Island and w 1° near welland Canal with a 
rather plane bottom along the path ( from 8 km to 32 km). 

The waveguide character of the propagation of acoustic 
waves is determined mainly by the stratification of the sound 
speed. The seasonal dependence of the sound speed on the depth 
c = 0(2) for various months was calculated using the vertical 
sections ot the Lake Ontario given by the Scientific Authority 
Dr.B.Kerman in accordance with the expression [31] : 

c = 1449.2 + 4.6T. — 0.05512+ 0.000291'3— . 

- 35( 1.34 - 0.0m + 0.0162, * 
( 2.1 ) 

where c is the sound speed in m/s, T - temperature, 2 — depth 
( m ). Considering the Fig.2.3, one can see that during the 
winter months the formation of the isovelocity waveguide canal 
takes place ( c = const ). With the heating of upper water 
layers during the warm months the sound :speed reaches its 
maximum_value on the lake surface and decreases with the 
depth. It leads to the formation of the subsurface waveguide. 
The decrease of temperature of the upper water layers during 
the fall leads to the decrease of the sound speed gradient in 
upper layers and to the diffusion of the waveguide .‘ Hence,
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two kinds of stratification can be used for the modelling of 
the sound propagation: 

a) "winter" profile (C(z) I= canst ) during- the cold 
season ( iscvelocity waveguide ) 

b) "summer" profile 0 = 0(2) with the maximum value at 
the surface decreasing with the depth till 2 = 50 m, 
for z > 50 m c = const (subttcm waveguide) 

2.2 IAIN MECHANISMS OF SOUND;ABSORPTION 
AND ACOUSTIC IODEL OF BUTTON 

The absorption of the acoustic energy in the water layer 
and in the lake's bottom should be taken into account for the 
estimation of the level of an acoustic signal at the path ‘of 

propagation. The following expression [1] can be used for .the 
absOrption coefficient flwldB/m] in fresh water 

em = 1.64:10"f2/ c3 [ dB/m 1 ( 2.2 ) 

where c is the sound speed ( m/s ), f - frequency ( Hz ). It 
follows from (2.2) that the absorption determined by the shear 
viscosity in the fresh water at the frequencies less than 10 
Hz can be neglected. Thus, the absorption coefficient pwat 10 
kHz is equal to 5.73 x10‘3dB/km --( c = 1420 m/s ), which leads 
to the signal decay 0.23dB at the path.40km. 

The main mechanism restricting the far sound propagation 
( side by side with the cylindrical divergence ) is the 
absorption of the acoustic energy in bottom. The information 
on the structure of the bottom layers in different lake's 
areas can be obtained from data concerning the upper sediments 
of Lake Ontario given by the Scientific Authority, which are 
not, unfortunately, related exactly to the proposed path. The 
capacity of layers varies considerably and depends on the 
area. In the generalized geological model four main layers can 
be singled out:

V 

~Lacustrine A,B ( thin layer of the waterbsatiated clay),
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-Glaciolacustrine ( thickness up to 10 m ), 
—Drift, 
—Bedrock.- 
Only the three upper layers influences the sound 

propagation at the frequency band from 100 Hz to 10 kHz, and, 
as it can be seen from Fig 2.4.. the massive Lacustrine layers 
A,B lays outside the chosen path. using .the data concerning 
the acoustic properties of. sediments [32] the model, 
comprising the Glaciolacustrine layer 6 m thick laying on the 
homogeneous half—space ( Drift ) was chosen (Tab.2.1) 

Name Thickness Density Sound speed Abs tton 
3 , ‘ coef ictent 

(m) (Re/m ) ( m/8 ) 'n 

Glacio— 
lacustrine 6 15.51103 1.4. 0 0.003 

Drift 1.8x103' 1580 0.02 

Table 2.1 . 

where n»is the absorption “coefficient' equal to the ratio 
between the imaginary and the real part of the wave number. 
The dependence of the coefficient of reflection V = V(x) from 
this bottom is shown at the Fig 2.5. (a,b) for the frequencies 
f = 100 Hz and f = 10 kHz. It can be seen that with the 
increase of the frequency the critical-angle x; decreases from 
23° to 13°,_i-e. for the low frequencies (.f < 200 Hz ) the 
sound propagation is determined mainly by the half-space: and 
for the frequencies more than 400 Hz the main factor is the 
upper layer.

_ 

But, as it follows from the.expression for the average 
intensity (1.18), the main part of the racoustic' energy is. 
concentrated during the propagation-on long distances .within 
the angle band x'«.x.. But for "these. angles 'the reflection 
coefficient is determined by the sound speed_difference at the 

- bound. At Pig.2.6(a) the dependence of reflection coefficient 
on the angle ( from 0° to 90° ) for the.different frequencies
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from 100 Hz to 10000 Hz is shown. As it follows from the 
figure the reflection coefficient does not depend on the 
frequency at small angles x. 

'It must be noticed that the. presence of the 
upper water—satiated layer of sediments ( Lacustrine A, B ) 

might significantly change the bottom reflection coefficient 
and, hence, the transmission loss at high frequencies. At. 
Pig.2.6(b) the dependence of reflection coefficient for the 
same angle and frequency ranges is presented for the case of 
the presence of thin layer of Lacustrine A. B . The thickness 
of layer is 1 m, sound speed in it ch = 1425 m/s, its density 
p = 1.4x103 13/11? and n = 2x1o‘3. It. is seen, that the 
reflection coefficient strongly varies at the frequencies 
f > 800 Hz and almost does not changes at f = 100 Hz. Thus, to 
determine the transmission loss along the path one needs more 
exact information about bottom properties. 

2.3 ESTIMATES OF NOISE LEVEES 
WITHIN DIFFERENT FREQUENCY BANDS 

The distant acoustic diagnostics of subsurface bubble 
layers requires to solve the problem of detection of signal 
from noise and reverberation. For the frequency range from 100 
Hz to 10kHz the ambient noise is the prominent one. Neise, 
generated by the action of wind on the water surface has been 
‘extensively studied and has usually been parametrized as a 
function of wind speed I '35 J.‘ although the air - sea

' 

temperature difference also clearly plays a role I 34 l. The 
reassuring factor is the good agreement of noise levels in 

' 

shallow water with each other and with levels in deep sea in 
the absence of biological and traffic noise sources, when the 
only source is a wind [ 35-38 ]. 

The averaged characteristics shown at Fig.2.? pare 
obtained as the result of selection and averaging of the 
spectra over the conditions which are presented in Table 2.2.
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N 
Wind speed Wave height 

0. 
' m/s m 

1 1.8 — 3.3 0.25 e 0.5 
2 304 — 5-2 0-5 — 1 

3 5.3 - 7.4 0.75 — 1.5
4 

4 7.5 - 9.8" >1.25 —-2.5 

Table 2.2 

Each characteristic is given by the averaging over 80 e- 100. 
frequency spectra. Such figure is convenient for calculation ~1 

of the threshold level of signals; The general dynamic band of-“ 
noises ( for the frequency range 100 — 10000q ) is 60 dB, 
and for each frequency — about 25 dB;.depending on the wind . 

speed. (' The noise ‘level (dB) is taken relatively to
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21:10‘5 Pa/nz‘ ’2 ). 

Below the formulae for calculation of noise level in the 
deep region of an ocean at the constant wind speed up to .20 
We are represented. These formulae are Valid for the 
frequency range 100 ,—'10000Hz and depth of receiver up to 
_100 m and are obtained by the approximation of spectra shown 
at Fig.2.7: .-- ' 

pi = 0.18 U1.Sf‘-O.84 
: 

( 2-3 ) 

P = 0.22 ul-5[
" 1 1 11/2 

.66 
' 

.66 ' 

I? I? - 

where p i is the sound pressure within the frequency band 1 Hz 
at the frequency J", P (bar) — the sound pressure in the given 
frequency band from f1 to f2, U — the average wind speed. 

In conclusion it must be mentioned, that the noise level 
at Lake Ontario within the used frequency range might increase 
because of traffic noises ( at the low frequencies up to 400 
Hz ) and due to biological noises ( at the all frequencies ), 
but we have no any infomat-ion about the sources of such 
noises in Lake Ontario.
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Chapter 3. -_ 

1055 III mama. ,. 

3.1 IIETHODS OF..'IATEMATICAL.IODMING OF SOUND .

, 

PROPAGATION IN WAVEUIDE '(BRIEP’RRYI‘EI) 

The most of papers 'about numerical simulation of sound 
propagation are concerned the ocean acoustics- Because of it 
in this chapter we use the term "ocean?! which means a natural 
water boc. where sound speed varies with depth and 
the structure and characteristics of bottom are real. Here we 
consider the time—independent model without fluctuations of 
sound speed, of boundaries and any effects. 

When modelling the sound propagation we suppose ocean to 
be a layer of liquid, settled down .on an elastic medium. The 
liquid is being completely described by. functions .of its 
density pofi‘) and sound speed in it 0(3). The elastic medium 
is described by density p1(?") and by Lame parameters AG"), 
MF), which allows to calculate-the velocities" of longitudinal 
cl and transverse ct waves using the well known equations (39} 

A + 2P. 1/2 
I 

1/2 

p 
. etc"): (W431)

1 
1' 

.5 or): ~ l( 

The equations which describe the. acoustic oscillations 
and correspondent boundary conditions presented in 
[28,39]. It must be noticed that :‘there some difficulties 
in solving the general problem. However, in the most of ‘- 

particular cases one can suppose density to be constant 
( pOG‘) = conet ) and describe the ocean‘as a'cylindrically 
symmetric medium with vertical axis 2 through the source . 

"neglecting the azimuthal scattering. Moreover, because the 
depth of wave penetrating into the bottom-"is proportional to 
the wavelength, at the frequencies f; > .100 Hz one can neglect.
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the influence of shear waves, due to their low velocity in 
upper layer of sediments. 

.

V 

Then, taking into account all these assumptions the 
problem is reduced to the solving of following wave equation 
for the acoustic pressure p = p(z.r') [ 28 l: 

1 o 
' 02 or o 2—2) ——[@]+—p+k2(z.r)p=w-—° ("3.1) r 0r Or 022 ' 2m 

with the condition of radiation 

p(z.r)' "-~ 0 ( 3.2 ) 
z,r * w 

and the boundary conditions 

p(0.r')=0. [p1] =[vn] =0. (3.3) 
z=H(r) z=H(r) 

Here so is a depth of source ,3 is the velocity of particle 
oscillations in liquid, [ ] means the continuity of variables. 
The absorption is introduced as .the imaginary part of the. 
sound speed 0. Below we some basic methods to solve the 
problem ( 3.1 — 3.3 )- 

The wave theory. 

The wave theory gives the exact solution of the problem 
for the case of range — independent waveguide. The solution 
of wave equation ( 3.1 ) might be found using the separation 
of variables. The sound field can be represented as [40]: 

_ 1 (1) p<z.r) - n I m z. 20. a )mo (tr). e d: . (3.4 ) 

c _ 

where G is the function. which satisfies the: one—dimensional 
Helmholtz equation, 81:1)(gr) 4 the zeroth _- order Hankel 
function of first kind and d3 — the integration contour on the 
complex 5-plane, which includes all the singularities of G.
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In this case the' sound field might be obtained as a sum 
of residues, which correspond to.-"the discrete eigenvalues and 
the integral taken on the continuous part" of the spectrum 
[ 40. 41 ]. 

Neglecting the contribution of continmus-aspectrmn .at the 
long distances and using the. asymptotic representation: of 
my ’. we obtain field as the following superposition of normal 
waves I 28 ]: 

p(z.r.) 2: exp ( tgflr ) . ( 3.5 ) n 
g“ r 

v 

-_ 4 -. 

where fin and Q)" — eigenvalue and eigenfunction which migit' be - 

found from the following. equations * 

de‘ _ 

——d‘:g+(zz2<z)-§i)¢=0. <3-6> 

¢(O)=0, (3.7) 

[g-wunw] =0. (3.8) 
z=H 

Here, 0 is the input admittance of the. bottom. which might the. 
find out for the particular models of bottom using recurrent 
sequences. ’ 

- ‘ 

Different methods for numerical solving of the problem 
( 3.6 ) 

- (3.8 ) are reviewed in..{ 41,42 ]. Moreover. in [41} 
the method of' the calculation of sound field in a layered 
ocean, based on the direct numerical estimation of integral, 
field representation ( 3-.4 ) is introduced ( PEP — Past Field 
Program ). ' 

7 As it was mentioned above, the method of normal waves 
fails in of range-dependent waveguide. Furthermore, it is not 
the very effective one at high frequencies, the number of - 

propagating waves is‘gréat. ' ' 

To describe the field within a framework of wave theory: 
in the case of weakly range — dependent waveguide one can use
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the adiabatic approach I 29 ]:
' 

,. 
z .0 z,r it . 

P(z-.r)=-1/21c z maul-gnaw — —. ). (3.9 ) “‘ 1’ §n(r) r ’ 

. 

4 ' 

There the range dependence or - the ocean's acoustic 
properties and its, boundaries-sis taken into account by 
dividing this waveguide into range-independent segnents. Then, 
eigenvalue fin and eigenfunction q)“ are determined for each 
segment and migit be approximated for an arbitrary range 7' 

( method or cross sections ). ' '

O 

The parabolic equation method. 

The parabolic equation ( PE ) method was introduced in 
underwater acoustics ccnmunity by Tappert I 43 1. One of the 
advantages or the PE models is theirs ability to handle range 
— dependent environments . lomover , because these 
approximation yield equations that have only first derivatives 
in range, they offer significant computational advantages over 
other ( albeit more exact ) solutions or full wave equation 
( 3.1 ). The transition from this elliptic wave equation 
( 3.1 ) ( boundary value problem ) to the one — way wave _ 

equation ( initial value problem -) could be made using the 
following substitution I 44 1: 

p(z,r) = ll(z,r') syn k0 r ). ( 3.10 -) 

where ll(z,r) is the slowly varying function (the envelope ). 
flaking this substitution and using "the rarfield 

asymptotic representation or 91;” one can split the resultant 
equation into two terms, which yield incoming and outgoing 
waves. Then neglecting incoming waves we obtain : 

0 1/2
' 

' + 11201: 1 — (1+1?) ]] ll(r-,z) =0. (3.11 ) r.
. 1 _ 

where c = ref ( 0/022 + k2(z,r) .12: ).
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Different approximations to the square root operator (1+£)1/2‘u‘ 
produce different- PEs;- The“ standard PE is obtained by 
approximation of the square root operator by a two—term Taylor 
series expansion: 

‘.. " 2 WW" = t 

{ 

0 
+ k2(z,n) — k2 

I 
u . (3.12 ) 0r, 21:0 022 ° * 

McDaniel [45} analyzed the standard PE within the framework of 
‘ normal mode theory and round that this approximation 
introduced phase errors for individual modes,tbut that the 
mode amplitudes were correct. The standart PR is valid for 
angles or propagation.up to about 10 deg... ' 

The use or more exact approximations to the square root (1+£)1/2 allows to extend the area or PE's applicability as it 
is shown in the Table 3.1-: ~ 

“
' 

(1+£)1/2 

1 + £/2 
I 

I10° .Tappert [43i 

1 + 5/2 — 52/8 20°. nary _, [46] 

( 1+3. 5/4 )/( 1 + C/4 ) 23° Olaerboutl47] 

(Ia°+ 0,: )/( 1 + D11: ) Green 
. [48] 

- (00+ 015 + 021:2)“1 + D11: + beta) 
I 

675:] Knightly [49.], 

-( 

a°+a1c+a2L2+a3L§.)/( 1+bjc+bérz+b3c3 
; e9?» Vefring [44] 

Table 3.1
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However, the rising of precision of the approximation leads to 
' the increase of mmerical. algorithm's..complicity and requires 
much time for the calculation. ,So when solving particular 
problems, one has to make a compromise between precision and 
these two factors.

‘ 

. 

‘ Among all numerical methods of solving. .PEs -» three main 
' direction must be distinguished I 41 l: ' 

1.78plit — step Fourier-algorithm. -, -. 

2. Ordinary —. Differential - Equation ( one") method- 
3. Implicit Finite — Differenc‘e'( IPD ) method. 

Each method has both advantages and shortcomings; Split - step 
algorithm gives a unconditionally stablenumerical-solution,

‘ 

but is the effective one onlywhen processor. The 
IFD method is stable as well. but at. the every range step 
requires to inverse the high—order complex matrix. .GDE methods“ -

. 

are of high performance, but are unstable in some :cases. 
As it was noticed. the main advantage of the PE method 

is that it might be used in a case of range"- dependent duct. 
This method automatically takes into account the interaction 
between normal waves and describes exactly the diffraction 
effects. 

However, because the amount "of "calculations increases 
like f2, thefuse of this method at high frequencies is rather 
unexpedient. ' 

The my theory. 
The ray approach is the high—frequency approximtion for 

the solving of (3.1%). Equations .of theraytheory' might be 
obtained from Helmholtz equation by means of. the following 
substitution ‘ *:V 

‘ ‘ ' 

" 100*) = A<F>ezm mow?) )._ . 

‘ 

( 3.13 > 

where A and R61” are the amplitude and the phase, of the wave 
respectively, and Rois the reference wave number 120: 10/00. In

39



this case we have the following equations "[ 28 I: 

( vw )2 = ( comm)a ', 
( 3.14-) 

ZVAVW+AVW=O. ~ 
. (3.15) 

Equation ( 3.14 ) determines the geometry of rays,“i.e. of. 
lines which are perpendicular to-phasesurfaces w ; const. And 
equation ( 3.15 ) gives the amplitude of wave. 

The process of ' sound field calculation within the 
framework of ray approach might be- divided” into the following 
parts : ' 

1. The determination of the ray trajectories which reach 
the receiver ( two — point tracing ). To solve 
this problem the algorithms based on the special 
methods of approximation of the sound profile are the 
most effective ones. In such methods the shape of the 
finite parts of rays might be found analytically. It 
makes the computations more fast [.42]. 

2. The calculation of the optical ray lengthen)”. 
3. The calculationof. the field amplitude A“ .on the rays 

at the point of receiver, taking into account the 
energy flow conservation within ray tubes, the 
reflection coefficient of bottom,“the change of phase 
at the caustics, etc. . 

'

g 

4. The sunning of contributions of all the rays which 
reach the point of receiver -. A“ ezpt mow" ). 

The main difficulties of the ray method are concerned with the 
two - point ray tracing problem. Ioreover, it fails on the 
singular regions ( the vicinity of caustics, critical regions, 
the transition regions between: the illuminated and shadow 
zones, etc. ). " 

To calculate the averaged intensity of sound field in the 
range dependent waveguide one can use the method of adiabatic 
invariant [ 29.30 1- 
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Averaging the equation ( 3.9 ) over the range and using 
the WKB approximation for eigenvalue and eigenfunction [. 50 ] 
one can obtain the following expression 1:?" ' 

"/2 ez‘p(: -2 } pmdr -) 
~ 

,-

O 
. ( 3-17 ) I t8 xo'mxo-O) . 

d" ~31$ 

, _ t _ <I>(z.r)—<pp>— 

where 
- 

. Zn V( .r) 

VD(x,r) 

x0 is the departure grazing angle of ray at the source, .x is. 
the inclination (‘ grazing angle .)_ at the point of receiver, 
D(x,r) - the cycle length-of a ray, V_(x.,r)‘= the reflection 
coefficient of the bottom. The angles x0 andx are connected 
by phase integral of WKB approximation I 50 l. 

The conclusions about. the expedience- .of' the use of these 
methods for range - dependent and eindependent waveguides are 
presented. in the Table 3.2 “for low (LP) and high (HF) 
frequencies. '

~~~~ 

— t t - t 
‘ 

- LP HF' 
-_ 

'- LP HF 
Normal Hades 

‘
7 

Ray '

' 

— inapplicable ' "— applicable 

l 

-. applicable, but requires a lot of calculations.
~ 

Table 3 .2
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3.2 SOUND FIELD DISTRIBUTION 
ALONG THE RANGE - INDEPENDENT WAVEGUIDES. 

The comparison of different numerical methods for the 
calculation. of acoustic fields has been .carried out for two 
layered models ("winter" and "summer" models) of the plane 
waveguide ( parameters of both models are shown at Fig.3.1. 
3.2 ). The first model corresponds to the typical winter 
conditions of sound propagation in the region of proposed 
path, the second one — to the sumner conditions ( see Chapter 
2.2 ). Three programs of sound field calculation are used. 
These programs are based on '(1) method of normal waves [51], 
(2) method of high - angle PE [52] and a (3) method of ray 
adiabatic invariant ( see Appendix A ). 

At Fig. 3.3 and 3.4 the range dependencies 
I 

of 
transmission loss ( TL ) computed by these programs for both 
models of waveguide are presented. Source frequency f = 200 
Hz. depth of source 20: 75 m, depth of receiver 2 = 50 m . At 
this frequency 12 modes with phase velocity vn < c2 ( sound 
speed in the bottom half—space ) propagates in the waveguide. 
However, the modes of high order are being attenuated greatly, 
so at the long distances the field structure becomes rather 
simple. As it is seen from the figures, the normal waves 
.method ( coherent model ) and the method of high-angle PE 
show approximately the same results. 

Because the rav invariant method allows to. determine only 
the average ( over 2 and r ) field we compare it with 
incoherent model of normal waves method. Within the framework 
of incoherent model the amplitudes of particular modes are

_ 

sumed without taking into account the interference items, so
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this model gives the field averaged over 7‘. As it might be 
seen from the Fig.3.3, 3.4;"in-the'firstgtxcase the method of . 

adiabatic invariant describes the integral field decay rather ~ 

exactly, but in the second one gives the lowered value. '

V 

Obviously, the precision of ray method depends both on the 
frequency f and on the depths of source and receiver. 

At Fig.3.5' - 3.8 the dependencies of average field level 
on the depth of receiver 2 are depicted for two frequencies. 
It is seen that the ray method of adiabatic invariant is 
applicable except the cases when 2 9:26 ‘( the divergence 
region of (' 3.17 ) ). when the ray approach fails. Also it 
might be seen. that in the "winter" waveguide the sound field 
almost does not depend on the depth, except the small region 
near the surface of about wavelength thickness it follows 
fr“ ’t .e boundary conditions the sound field at the surface is 
exactly equal to 0 . For the susmer conditions. owing to the 
formation of deep sound channel the field level is low within 
the region of higher sound speeds. "

. 

As it follows from mentioned above, the change of the 
frequency changes the scale of interference field structure 
both at z and 'f‘ axes. Moreover, the time variability of 
hydrological conditions leads to the strong fluctuations of 
field generated by a harmonic source. Due to that it seems to 
be expediently to use the averaging of quazimoncchromatic 
noises over time. And because the averaging over frequency is 
equivalent to the averaging over space, ’the adiabatic 
invariant method gives. in fact, the field averaged over time.
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3.3 TRANSMISSION LOSS IN LAKE ONTARIO ON THE PATH BETWEEN 
THE WESTERN TIP OF TORONTO ISLAND AND THE.IOUTH OP 
WELLAND CANAL ' 

Here the following problems are considered : 

- the estimation of the applicability of the adiabatic 
invariant method for the range—dependent waveguide with 
respect to Lake Ontario ;

i 

- the estimation of the field intensity distribution 
along the chosen path and the analysis of the field 
structure at different depths" for 'different 
frequencies. ‘ 

.

. 

This chapter might be split into two parts. The first one 
contains the analysis‘ of the results for typical winter 
conditions, and the second - for typical summer ones. Sound 
speed profiles for both seasons and the acoustic model of 
bottom are presented at figures 3.1.and 3.2. The depth 
variability ( the bottom relief ) along the path is shown at 
Fig.2.2. The thickness and acoustic properties of sediment 
layers and are supposed to be range — independent. ' 

Winter Hydrology 

At figures 3-9 and 3.10 one can see the comparison of 
range dependencies of transmission loss computed by using the 
high-angle parabolic equation and the method of adiabatic 
invariant respectively for the frequencies 100 Hz and 500 Hz. 
As it could be predicted the precision of the adiabatic 
invariant method grows up with *the increase of signal 
frequency. But the fact that the field levels in the end of 
the waveguide at the local maximum calculated ‘by these two 
different methods are almost equal is the rather surprising 
one. Because in this section of the waveguide -there is only 
one propagating mode and the adiabatic invariant methods is 
formally inapplicable! 

Let us consider the field changes along the path more 
detailed. At the first two kilometres there is_a rapid field 
decrease induced by cylindrical divergence and strong
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attenuation of the rays with angles x >.x* in the bottom. At 
the main part of the path the field decreases rather slowly. 
Then with the decrease of waveguide depth, the field intensity 
increases. But, rays of great 'inclination cannot reach the 
narrow waveguide cross-sections. since -the grazing angle 
increases with each reflection from. the -rising bottom and 
eventually, the rays are reflected back. As far as normal 
waves are concerned it means that the propagating mode becomes 
the nonpropagating one. 

.

' 

The computations of transmission loss in the winter 
waveguide have been carried out for the frequency band from 
100 Hz to 10.000 Hz for the depth range from 10 m to 40 m. The 
results of these computations shown at Fig.3.11 (shaded area) 
mean that the changes of f and 2 do not affect the 
transmission loss. Such a weak dependence of the transmission 
loss on the frequency and depth might be explained by the fact 
that the main contribution into the field energy is made by 
rays with the small inclination at the bottom. As it follows 
from Pig.2.6., the reflection coefficient does not almost 
depend on the frequency.

1 

Thus, the winter conditions seems to be favorable to the 
acoustic wave propagation. The typical values of transmission 
loss is limited by 65 dB and weakly depend on the source 
frequency and the receiver depth. 

Summer_Hydrology 

In summer the conditions of propagation considerably 
change : the subsurface water.1ayer.is heated on and, as a 
result, the sound speed greatly decreases in the layer ‘about 
50 m thick. In the medium with such a hydrology rays bend to 
the bottom (Fig.1.7.(b)) and reach the bottom at steeper 
angles, so they are attenuated more strongly than in a plane 
layered waveguide. The second reason is that if the source is 
located below the level of receiver, then not all the rays 
reach the receiver. 0bviously,that such hydrology "wrings out" 
the field from the surface and, as the result. the field level 
increases with the increase of waveguide depth.
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In order to check out the efficiency of the adiabatic 
invariant method in the medium with the range-dependent 
hydrology the comparison with the high-angle PE method was 
made.( Fig.3.12, 3.13). As it is seen from the figures the 
adiabatic invariant method satisfactory describes the averaged 
field distribution at the frequencies f > 500 Hz. 

At Fig.3.14 the range dependencies of transmission loss 
for different horizons of the receiver are shown. One can see 
that the field strongly decreases at the small depths of 
receiver in the medium part of the path. where the waveguide 
depth is great. However, when the depth of the waveguide is 
small, the difference between_ field levels at different 
receiver horizons becomes less. It is connected with the fact 
that at long distances the field in the narrow part of the 
waveguide is determined by the rays- of relatively small 
inclination at the bottom. It might be clearly seen from the 
Fig.3.15. where the frequency dependencies of the transmission 
loss at r = 38 km for different horizons at the sole of the 
main slope is depicted. For the depths z > 15 m no frequency 
dependence is visible, since the field formation is determined 
by the rays of small inclination at the bottom x < 13°. For 
these angles the reflection coefficient does not depend on the 
frequency. In the surface vicinity z < ‘15 m the field is 
determined by the rays, the inclination of which at the bottom 
is above this critical value. For the low frequencies the 
critical angle is determined by the lower half-space and is 
equal to x.= 23°. With the increase of the frequency the 
critical angle x* decreases and becomes equal to 13°. It leads 
to the appearance of the strong frequency dependence of the 
transmission loss at small receiver depth in the intermediate 
frequency region from 200 Hz to 600 Hz. a 

The data concerning the frequency dependence of the 
transmission loss are shown at Fig.3.16. It was assumed that 
the receiver is located at the bottom. The point L = 0 
corresponds to the horizon z = 10 m in the end of the path 
shown at Fig.2.2. The increase of L corresponds to the shift 
of the receiver in the direction of the source. It follows 
from the consideration of these graphics that there exists 
some optimal distance where the signal level is maximal, which
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corresponds to the depth of receiver 2 ~ 30 - 40 m. But since 
the purpose of the work is lthe diagnostics of bubbles in the 
subsurface layer, the question of the optimal location of the 
receiver is still open for the discussion..The problem is that 
we should find the location of best “sensitivity. to the 
subsurface bubble layer and this location might happen is no 
within the area of maximal intensity of signal. ' 

In conclusion it is worth noting that summer hydrology is 
sensitive to even.sma11 changes of‘ bottom .parameters. Thus. 
the adding of the thin water—satiated layer with parametres 
described in Chapter 2.2 to the bottom model leads to the 
abrupt decrease of the signal level with the increase of the 
frequency. The variability of transmission loss is rather 
small for two—layered bottom ( Fig.3.17. region 0 ). but for 
the model with such a thin layer the transmission loss lies in 
this region only for the lower frequencies ( I ~ 100 Hz ). For 
the frequencies f > 2 kHz the signal level ‘decreases very 
quickly. The ,winter hydrology with the weaker frequency 
dependence of transmission loss is more convenient for the : 

conduction of experiments on the site ( Fig. 3.18 ). 
Hence. in the natural conditions of chose path the signal 

level (at high frequencies f > 1 kHz) is sensitive to the 
presence of even thin water— satiated layers. That is why the 
detailed analysis of bottom properties from the acoustic point 
of view is necessary. The main problem is connected with the 
estimation of the absorption coefficient in Lake's sediments. 

I 

'Naturally, the choosing of source power level depends not 
only on the losses in a bubble layer, but also on the method 
of received signal processing. Here we estimate approximately 
the required power ‘level, supposing the bubble induced 
attenuation to be about 40 dB ( see [26] ). The calculations 
are made for the narrow-band (.Af =‘.1 s ') and wide—band 
( Af = 100 Hz ) signals of frequency f = 1 kHz. As it follows 
from Fig.3.18, the maximal noise level is about 40 dB. The 
typical value of transmission loss for.such conditions is 70 
dB, 1.9. for the narrowhband.signal one needs the source power 
level to be about 150 dB ( it corresponds to the acoustic 
power 10-2 W ) and for the wideeband signal - about 170 dB 
( acoustic power 1 W ).
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Appendix A. 

CALCULATION OF AVERAGE SOUND FIELD IMMITY 
IN RANGE - DEPENDENT WAVEGUIDE USING ADIABATIC 
INVARIAM METHOD 

,. General formulation 
I. j 

In I 29 ] the expressions for average intensity of sound 
field in plane layered waveguide are introduced within the 
framework of ray approach. The generalization of this approach 
for the range - dependent ducts migit be. found in I 30 1. 
There the agreement of the results obtained from ra;r and wave 
theories is discussed as well. Below we follow these two works 
in general, though some details might be slightly different. 

Let us consider the cylindrically symetric waveguide 
with the sound speed profile 0 = c(z,r). The sound field 
generated in such waveguide by point harmonic source in the 
adiabatic approach of nonnal waves method is given by [293 : 

)1/2 2 ¢fl(zo’0)¢fl(z'r) p(z,r)=(21/r ——————————————— 
n (gnu-n"? 

r 
i'l: 

ezp{iI gun-)dr — 7 ].(A1)
0 

where (20,0) — the coordinates of source, 
(2, r‘) — the coordinates of receiver, 
§n(r) — the eigenvalues, 
¢n(z,r) - the eigenfunctions. 

The intensity of sound field, averaged overrange r in 
this case is described as follows : : 

21: 
2 

|¢n(z°.0)|2|¢n(z.r)la 
<I> = < *>= pp 

r- n , Re gum 

,. 

ezp[—2IIm §n(rn)-dr] . (A2) 
- 0 

If the number of propagating modes is great and the depth 
dependence of wave number R(.z,r) =.w/c(z,r) at any’fixed range
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7' has the only one maximum, then to find out the 
eigenfunctions one can use the WEB approximation [ 50 J: 

( ) 2 R955“) Ava 
( )dz 4H) (A3) ZJ‘ = ————— 003 a Z,” + 7' , q," 

. 

aen(2.r)Dn(r)‘ I“ " 
Zn'or Zn' 

Zn. 

D ( ) 2 Re ( ) 

dz 
(A4) r = r ' —— , "‘ 6" I .aen(z,r) 

Zn’ 

1/2 
aen(z.r») = [( 

k2(z.r) - ( Re gnu.) )2] (A5) 

where zn’ (r) and zn'(r) - the depths, within which the normal 
wave is concentrated, 

l 
¢n(r) 

I 

< E — the additional phase, depending on 
the kind or normal wave. 

Substituting (A3) into Eq.(A2) and averagirg over depths z and 
20 we obtain 

81: . Re 5 (7') 
<I> = — z: “ 

r n an(zo.o)an(z,r‘)Dn(0)Dn(T') 

,. 

ezp[—2IIm §n(r)dr] . (A6)

0 

The real part of eigenvalues might be round from the 
expression for the phase integral in WKB approximation : 

2': 
I 

2". 
1/2 

J(r)=j an(z,r)dz = j{(k2(z,r)—(Re §n(r))2)dz = n1: + 'on(r),(A7) 
I I Zn 2“ 

where 
' 

'On(r) 
I 

< 1!: 
-‘- the additional phase, depending on 
the kind or normal wave.
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Within the WEB approximation each normal wave might be 
considered as the system of rays ':" 

Re §n(r) ; k(z,r) cos x(z,r) . 
' (A8) 

If the parameters of waveguide slowly varies within the 
ray cycle, i,.e. each cycle does not strongly differs from the 
previous one, then for the particular ray one can suppose J to 
constant. ( In fact',‘ 'it..is the condition of adiabaticity and 
J/m is an ray adiabatic invariant ). The assumption made 
allows to obtain two important conclusions. At first. using J i 

one can link the departure angle of ray x0 with its angle at the horizon of receiverx. Second, in Bq.(A6) one can change 
the summation over n to the integration over angle xo(' or x, ). 
Using (A7) and taking into account '(A3)-(A5) and (AS) the 
following expression might be obtained": ‘ 

u ~dJ I ae< .0) 1x .0) ae( .r) m .r.) dn=_=_L;dxo=_.x__xdx_ (49) x 2x 21 ‘ 

As a result we find : 

15/2 1' 
4 _1 _ <I> = 
F I( tg x D(x,r) ) ezp[—ZI p(x.r)dr]dxo (A10) 

0 O or
. I/Z r 4 -1 <I> = 

; I( tg x0 D(x°,0) ) 5.1452! p(x,r)dr']dx . (A11) 
0 - o 

In I V(x',r' )| Here mm) = — (A12) 
D(X.T') ‘ 

is the loss function for bottom interacting rays. ‘ 

V(x',r') is the bottom reflection coefficient, 
and angles x and x" are connected by Snell's law : 

R(z,r) cos x = R(H,r) cos x' , , (A13)
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where r‘ is introduced as a parameter.( The generalization of 
(A12) for the case of bubble layer induced attenuation might 
be made easily ). Thus, the formulae (A10)—(A13) allows to 
calculate the average sound field intensity in a range — 
dependent waveguide. " 

. Numerical. algorithm 

The description of numerical algorithm presented below 
requires to consider the medium of propagation. The values of 
sound speed c( zum‘ ) at the fixed distances r" supposed to 
be given on the upper ( z=0 ) and lower ( z=H(r¢) ) boundaries 

° and at some depths z” betvyeen ( see Fig. A.1 ). To make the 
following computation more convenient the waveguide is divided 
into thespace segnents, using the linear interpolation both 
of wave number square k2(z,r') and of lower waveguide boundary 
H(r) as it is shown at Fig.A.2. A sealant is triangle—shaped, 
if one of its boundaries is the inclined bottom. and is of 
rectangle shape otherwise. In segnents of the first kind the 
wave number approximation is k2(z,r) = a°+a1z + (121‘, the wave 
number in the second kind of segments is approximated as 
k2(z,r) = 00+ 012 + car + 0327‘. Thus, for a fixed range 7‘ 

the depth dependence of wave number square is line — broken, 
so it allows to use the implicit expressions for computation 
of the integrals (A4) and (A7). 

The bottom is represented as a structure which consists 
of some liquid layers upon the liquid or solid half-space. The 
reflection coefficient of such bottom is calculated using the 
recurrent relations [28]. . 

Taking into account all the above one can calculate the 
transmission loss using adiabatic approach in accordance to 
the following algorithm. 

First, the invariant values J(xo'1,0), the cycle lengths 
D(x°.l,0) and the loss functions fl(x‘;.l,0) for the rays which 
leave source at the angles XOJ = Ax l are to be calculated. 
(Here I = 0,1,...N, Ax = x/N . N +1 — is the number of 
rays )
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Then, for the distances r‘h = Ar 1: ( K =.1,2,... ) the 
characteristics of rays and the sound field intensity. at the 
receiver horizon are to be calculated. These computations are 
conducted as follows.

_ 

First of all, the invariants J(xm,r‘k) of rays of 
inclination angles at the minimal sound speed horizon x”: Ax m 
( m = 0,1,...J ; I = int (1: / 2Ax ) ) are calculated. II 
Jammie) < .7(xo.z.0) é J(xm,.rh).. 0 s m g 1-1, then the raw 
of departure angle x0. 2 reaches the horizon of the minimal 
sound speed at the angle x1. which might be calculated using 
the linear‘interpolation : 

1%“.0) — mum) 
J(xm+,.rh) - Jammy ’ 

and for this ray the cycle length D(x1,rh) and loss function 
fi(xl,rh) are to be computed. The rays for which J(xo.1,0) ; 
Jammie) do not reach the range r‘k so they are not considered 

, in the following computations. Thus, the characteristics or 
all the rays which reach the horizon of the minimum sound 
speed at range r'k are determined. Integral 01 losses in the 
expression (A10) is to be computed for each ray using the 
trapezoid rule: 

x1 = xm + Ax (A14) 

r+Ar r 
p(r) + p(r+Ar) 

dr = CD” —— A15 [am [mm + 
2 

< ) 

O 0 

Then from round angles act the angles at the receiver horizon 
might be calculated using the Snell's law (A13). If the ray of 
departure angle xmo = 0 reaches the receiver, then the 
integration is made over this departure. angles (A10). 
Otherwise, the integration is to be made over the angles at 
the receiver horizon (A11 ). It allows to escape the divergence 
of integrand. The integration 01 (A10) or (A11) are made using 
the trapezoid rule.
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