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SUMMARY

The report is the first part of the work devoted to the
investigation of the feasibility of the aistant acoustio
determination of bubble concentrations in the subsurface layer
of Lake Ontario. :

In this part the physical mechanisms on base of which the
distant sounding of the air bubbles in water is possible are
shortly discussed. Here the prinoiples of the determination of
bubble oonoentration in the subsurface layer measuring the
attenuation of the aocoustical s8ignal are presented, the
hydrological parametrs of the path of propagation between the
western tip of Toronto Island and the mouth of Welland Canal
‘are given. The aocoustic properties of the bottom are discussed
as well.

The ocomparison of different methods for the mathematical
modelling of sound propagation in the inhomogeneous
range-dependent.waveguide are presented and the ocaloulations
of acoustic fields along the above-mentioned path are ocarried
out for the depths from 10 m to 40 m within the frequency band
from 100 Hz to 10 kHz . It is shown that in winter season,
when the sound speed is o¢lose to oonstant, the average
intensity in the end of the path slightly depends both on the
receiver depth and on the source frequenoy. At the same time,
in summer, when the upper layer of Lake is heated, the
subsurface waveguide exists. Because of it the field is
localized near the bottom and the signal level decreases both
with the increase of source frequenoy and with the deorease of
reoiever depth. It is shown that the 8ignal 1level depends
rather strongly ( especially in summer season ) on the
acoustio properties of the bottom. '



Chapter 1.
INTRODUCTION

1.1 INPLUENCE OF AIR BUBBLES ON PROPAGATION,
ABSORPTION AND SCATTERING OF SOUND.

Air bubbles in water significantly affect the sound
propagation. It ocan be explained that in a wide frequenoy band
the scattering and absorption are of resonant nature. Thus,
at the resonant frequenoy soattering oross seotion of an air
bubble ocould be more than 1000 times larger than its
geometrical cross seotion. If the bubble ooncentration is
rather high water oompressibility ohanges oonsiderably and
sound velocity ohanges respectively. Moreover, among the all
possible sound scatterers bubbles have the most oclearly
expressed nonlinear properties. All these <facts allows to
consider aocoustic methods as the most adequate ones for the
distant diagnostios of air bubbles.

A bubble as a resonance system can be desoribed by its
quality factor Q and natural ( resonance ) frequency fo, which
in adiabatic approximation [1,2] is given by expression

1 [3']' po ]1/2’
, P

where @ 18 a bubble radius, 7 = cp./ ¢, - 1index of adiabat
( in the air 7 = 1.4 ), p, - pressure in a bubble in the
absence of sound wave, p - water density. The resonant
frequenocy j; of the air bubble located at the depth Z oan be
estimated as

r, = (1.1)

- 2xa

Fo=321/a (1+0.42)V2, - (1.2)

where f_ 1s in Hz , depth 2z - in metres , bubble radius a - in



centimetres.

When a plane acoustic wave of the frequency S is <falling
on an air bubble, its wvolume -changes. harmonically so it
radiates the spherical sound _ﬁave; Moreover, a part of
acoustio energy is absorbed due to the viscosity and heat
conductivity . The efficienoy of absorption and scattering is
desoribed by the absorption oross section o, and scattering
cross section g, defined as

°s="a/lt‘°a=wa,/1t' - (1.3)
where It is the intensity of an incident wave, W; — aooustioc
power socattered in all directions, W; - acoustic power

absorbed by an air bubble. For the scattering oross section o,
and absorption cross section 0, of a single bubble one oan
write '

4®d®

g = . W (1.4)
S WL, /PR -1P Q7

4xdf(QVra-1) (1.5 )
O= " 1 e
S I, /R -1P Q0

where R = 2mf/co. c, is sound speed in the 1liquid free of
bubbles. It ocan be easily seen from  (1.4), (1.5) that the
soattering and absorption increase if the frequency of an
acoustic waves coincides with the resonant. frequency .of  a
bubble.

When wave propagates in the bubbly medium, both ooherent
and inooherent components appear in the scattered field. The
‘intensity of the inocoherent component is proportional to the
number of bubbles in the scattering volume. If bubbles are = of
different sizes, their size distribution can be desoribed by
function n( @ ). Then n( a ) da is the number of bubbles with
sizes froma to @ + da in an unit volume ( m3)..

Scattering on the bubbles of different sizes might be
characterized by the volume scattering coefficient m,



n(a) o® da
[(w /w)?- 112+ Q ~2

m o=4x s w=2%f, 0=28f_, (1.6)

e
O e 8

whioch is equal to the ratio of the acoustic power soattered by
a unit volume in a unit angle to the intensity of the inoident
wave. Since the scattering is of resonance nature, the
measurements made at different frequencies give us the
possibility to determine the size distribution.

For the ooherent component of an acoustic field the water
with air bubbles often ocan be treated as a oontinuous medium
with the effective sound speed céff and with the greater
‘absorption, whioh is desoribed by the absorption ooefficient
in a bubble media a{w). As a rule, the density of the water
with suspended air is only slightly different from the density
of the water free of bubbles. So the dispersion equation
K = E(w) for a monoohromatic wave might be written as [3]

4T n(a) a da

P = 5
(mb/w) -1+ {/Q

s £ =w/ (1.7)

ceff'

OONI E;\)
4+
O t—m 8

For a relatively small bubble concentration, when the sound
“absorption on the wavelength is small, (1.7) may be reduced to
w

KF=——+ {a, (1.8)

CO—AC _ .
where AC is the addition to the sound speed which appears due
to a presence of bubbles. When o/K, Ac/c_ « 1, the following

expression 1s valid

00 .
I n(a)l '(wo/w)a -1 lada

Ac=2xc . (1.9)
°J K[ (W /0)?-1)2 + q2] (
o)
00
5 J~ n(a) a da (1.10 )
a = n . .
E[ ((w/w)?- 1)2 + Q2]
o o



Analysis of these expressions shows that if we may neglect the
variability of the distribution fumotion n(a) at the width of
the resonant ocurve, then ACc =~ O. So- in this oase the
absorption is determined only by the oconcentration of resonant
bubbles of the oorrespondent frequenoy and does not depend on
their quality factor. The numerioal expression for the
-absorption coeffioient a ( 1/m ) is

= a@) » 725 n(a.) a2 , (1.11)

where @ is the radius of resonant bubbles ( om ). ( their
resonant frequency is w = 2%Kf - see (1.1) ).

Thus, since the bubbles . have such strongly pronounced
resonant and nonlinear properties, methods based on the

following effeots might be used for the measurements of the
bubble concentration:

- measurement of the sound attenuation, -

- measurement of volume soattering coeffioient,

- measurement of volume nonlinear socattering coefficient.

The detailed investigation of this problem can be found

in [ 4 - 20 ]J. It must be noticed that some methods of
acoustic diagnostics was developed and experimentally approved
in IAP and in the University of Nizhny Novgorod [ .21 - 25 ).

Our purpose is to investigate the possibility of the

 distant determination of bubble = concentration in the

subsurface water layer of Lake Ontario. That 1s why we pay -
some attention to the review of [3,26]. The results presented .

in these papers let us hope that this problem can be solved in
general.
In [26] the bubble induced attenuation of acoustioc signal

of frequenocies 1 kHz, 3kiHz and 8kHz has been measured at  the

fixed acoustic shallow water range (. path - lenght 10.5 . km
depth - H=30122m ). The experiments showed, that.  the
attenuation due to suspended air inorease by the m'th power of
wind speed U ( m between 3.5 and 4.5 ). The inorease of
transmission loss was explained by the growth of bubble
concentration in the subsurface layer due to inorease of the




wind speed. Hence, the signal attenuation can carry the useful -

information about the bubble concentration in the subsurface
layer.

In the same time, in paper [3], basing on the results of
(18,27], it was shown that the concentration of bubbles n(a)
which appears due to the 8ea surface - agitation may be
parameterized and written as

n(a) = N G(a,z) X(U) Y(z,U), S (1442)
where U is the wind speed in m/s ( 1ts basic value was
U=13m/s ), z - depth (m ),

Y (z,U) = exp [ -2z/L(U)1, (1.13)

04 ,U T.5ws

L) =
0.4 + 0.115(U -7.5), U > 7.5 s,

N, =1.6x10"m*, 2(U)=(U0n3)3,

(a/cz,)‘2 , ac<a,

G(a,z) = 1 » a,Sa<a, (1.14)
a(z)
( aa/a ) » @G> a,

and the limit bubble sizes a, and a, are expressed as

a, =(34+1.242z)x10%m),

aa=1.6a1‘. ( 1.15 )

d(z) = 4.37T + ( z 7 2.55 )2.

Thus, using (1.12) and measuring the transmission loss at

differsnt frequencies it might be possible in some ocases to .-

solve ‘the inverse problem - to reconstruct. the size
distribution. Then, one of the questions appearing is the
feasibility of parameterization for the size distribution n(a) :
of subsurface bubbles in inner lakes and Lake Ontario as well.



1.2 PHYSICAL FOUNDATION OF DETERMINING THE BUBBLE
CONCENTRATION IN SUBSURFACE BUBBLE LAYERS.

As it follows from the results obtained in ' previous
chapter, the attenuation of a signal of rather high frequency
J mainly depends on the ooncentration of resonant bubbles
( see 1.1 ). If a plane wave propagates in the medium with
homogeneously distributed bubbles, its amplitude decreases as

p=p,ep(-ar)

Thus, measuring the transmission loss ( TL ) on the path of
range I ‘

I
TL=2013&=1OIgI—°=arZOde=8.64ar (1.16 )
p

we ocan find out the attenuation ooefficient a = TL / 8,64 r,
and then - the ooncentration of resonant bubbles ( see 1.11 ).

However, the problem becomes more compliocated in natural
waveguides. It is concerned with the finity of a bubble layer.
Here the sound field has a very oomplex structure so the
simple dependence of TL on attenuation ocoefficient a fails.
Because of it the diagnostios of subsurface bubble layer
requires the more detailed analysis.

In this chapter we will try to show clearly the physical
base of sound field attenuation in a waveguide with subsurface
bubble layer and will discuss both the principal <feasibility
of determining the bubbles concentration and the difficulties
whioch appear when solving the problem.

To oaloulate the acoustic fields of high frequency one
can use the ray approach [ 28 ]. Por the ocase of layered
waveguide, when the sound speed ¢ depends only on depth z ( ¢
= c(2) ), the trajectories of rays might be oaloculated from
Snell's law:

cos x(z) / c(z) = const,

where % (2) - the grazing angle at any ‘horizon z. In the
framework of ray approximation the energy flows within the ray
tube. It allows to find out the <field amplitude using the



conservation law for power flux dF through the oross seotion
area of the tube dS :. .
daf =IdS=const, I=rp"

where I is the intensity of sound field.
Let the source.to be positioned at the depth z, and . the
receiver - at the point with coordinates r-and z -( Pig.1.1 ).

Pig.1.1

Considering the ray bundle dx1 (the tube width), which 1leaves
the source at the angle Xy;» and taking into account the
Zz-symmetry it is easy to obtain for the point with coordinates
r,z:

ds =2 , - at dy
=2 {——] 8in ¥ y -
o ax, |

d!7=(l7/2)coa)(1 ay,

- and, therefore

: W cos
I=— i} E( %) . ( 1.17 )

atn y

4mr

1




Here E = E( X1) - an attenuation factor introduced to account
for dissipation and reflection 1losses. In a general oase,
there are some rays whioch might oome dinto the point of
receiver. Because of it one has to sum their amplitudes and
rhases to calculate the field. Due to- that at the 1long
distances ‘the field struoture becomes very ocomplex and
“unsteady ( small changes of sound speed profile could strongly
influence on the rays phases ). Thus, it is more expediently
to use the averaged desoription.

For the plane layered waveguide the .ray trajeotory
Z =2 (r )has a range. periodicity ocalled ray oycle. The
ocycle length D('x1) ( see Pig.1.2 ) depends also on the source
depth.

B\

Pig.1.2

At long distances, where r>> D to obtain the averaged
on the oyole length intensity of the field the ocontribution of
a ray bundle dx1 (I in 1.17 ) is to be weighted by the
probability that it irradiates a receiver at depth 2z in the
course of complete oycle near range r. This probability might
be writtenas (2 | 0r76x1| ax,)/ .D(.x,). Paotor 2 appears
because a ray ocuts the 2z horizon twice per oycle. If we
oonsider the power of source W = 4%, then | p'12-= I = /2,
Using (1.17) and taking into acoount the angle symmetry we can
write the expression for averaged intensity [ 29 ]:



n/2

- E " ) CO8
= (4 (X1 ) 008 X,

D( x,) atn x( x,)

dy, » (1.18)

where X = X( X,) is the inoclination ( grazing angle ) of ray
at the receiver horizon.

: Within one oyocle a ray onoce touohes the bottom, being
attenuated in | V( X)) | times in it. Here Xn is the ray.
inoclination at the bottom and LAS is the reflection
coeffiocient of the bottom. ' '

If we oonsider attenuation ooefficient a( z ) to bde
depending on depth, then the factor oconocerned with dissipation
within one oyole is

IO
=ezp(-2fa(z)zdz), (1.19 )
o)

where l is the lenght of ray trajectory.
Por the path of length r the number of oyoles N = r/D(x1)
and, thus, the attenuation factor in 1.18 might be written as
r/D( %,)
E(x1)=lV2Eu| 1, ( 1.20 )
Expressions ( 1.18 ) - ( 1.20 ) allows to obtain the
range dependence of averaged sound transmission loss in a
range - independent waveguide. The generalization for a range-

dependent ducts is given in [ 30 ] and is used in this work
for oalculation of sound field intensity in Lake Ontario.

Let's oonsider some partiocular cases of sound propagation
“in the isovelosity waveguide.-ln a homogeneous water layer
with ¢ = c,= ch='con8t ( such profile of sound speed is close
to the winter conditions of propagation in Lake Ontario ) the

oyole length is:

D=2H/ tg Xy o ( 1.21 )
where H is a thickness of water layer - the depth of a
waveguide ( see Fig.1.2 ). Ifa=0and | V| =1, then from

- I0



(1.18) we have
I=-"[a - — . . (1.22 )

This formula shows the well known c¢ylindrical law of field
- decrease. Returning to a general ocase we  oan rewrite  the
expression for average intensity in the following form ¢

/2
1-2_"(4 ) (1.23 )
- Jaor e '

A(x)_ZHE(x1,r.)cosx1 (.24 )
VooDb(yx) etnx(xy

Here factor 4 is a factor whioch accounts both the effects of
attenuation and the effects, ooncerned with variability of
sound speed, i.e. with stratification. It might be seen, that
for the isovelosity homogeneous waveguide with a = 0 and
| V| =1 tactor 4 =

If we suppose isovelosity water layer to be settled down
on a liquid bottom without absorption ( Cy> 01). then one ocan
introduce the critical angle X,» Wwhich might be caloulated
from Snell's law:

c " 2AC

: 2
cos x‘=_1 : A= [—] - (1.25)
b "

Q

Here Cp — is the sound speed in the bottom and Ac = = C,— C,. If
the angle of ray inoclination at the bottom Xn = Xy <X,» then
Y = 1, otherwise V becomes less. Taking into account the faot
that for r/D » 1 the number of ray refleotions is great,
obviously, the rays which leave the Bource at the angles
Xy > X, are being attenuated almost completely ( see 1.20 ).
It allows to change the upper limit of.. integration in ( 1.23 )

from n/2 to X, .

Now 1let's oconsider the homogeneous bubble layer of

IT



thickness h and oonstant absorption ooeffioient a near the
surfaoe of oonsidered waveguide. Prom Fig.1.3 it is seen that
within one cycle attenuation factor is

=erp (-2aS )=ep (-4ah/s8lny, ), (1.26)

// \

Pm.1 .3

where S‘ =2ah/ s8sin y Pl the length of the ray oycle part
within the bubble layer. Then Eq.1.24 might be rewritten as
follows ( for the isovelosity waveguide ):

4=

[ 2ahr ] | [ 2ahr ahr G
a NPT Ty H

] (127)
H cos ¥,

~ Here we took into acocount that the main contribution is being
made by the rays of angles X< X, -

From ( 1.27 ) we ocan make the important conclusion, that
at small angles of inclination 4 does not depend on Xy- The
reason is that for the rays with X, « 1 S is rahter great,
butthe number of oycles is small. And these effects ocompensate
each other.

There are two main effeoct concerned the attenuation in a
thin bubble layer. The first is the deorease of amplitudes

I2



of all the rays : they decreases as erp( —-2ahr/H ). And the
second one is the narrowing of angle spectrum up to
Xppy = ( H/anr )y'/e, It xbbl » ), we can neglect this effect,
and then from ( 1.22 ),( 1.27 ) one ocan obtain the following
expressions for averaged intensity and transmission loss:

I=—y ezp( -2ahr/H ) . (1.28 )
rH

TL =10 1In I/1

TL + 8.64 arh / H = TL + ATL ( 1.29 )

Here TL = 10ln( rH/2)_ ) transmission loss in the waveguide
Iree of bubbles and the second item desoribes the additional
losses due to the bubble layer. From the ocomparison of this
expression with TL for the homogeneous bubbly media ( 1.16 )
it is seen that for such a layer TL is less in h/H times. The
reason is that only the part of a ray trajectory goes through
a bubble layer. It-must be mentioned, that the the additional
loss ATL is proportional to the quantity of bubbles along all
the path ( ATL ~ arh ~n S, where S = rh ).

It might be shown that the small  absorption in  bottom.
does not make the situation oconsiderably worse for isovelosity
guide. The difficulties arise in a ocase  of stratified
waveguide, especially for “summer" kind of stratification,
when sound speed at the bottom is less than at the surface. In
such a waveguide some do not reach the bubble layer, so it

makes the transmission 1loss to be a oomplex function of .-

absorption. :

In an arbitrary ocase to ocaloulate averaged intensity
(1.18 ),analytioally:seems;to be impossible, 80 we have to do
it numerioally. Some results are presented below. The
caloculation has been made for the following 'model of
waveguide :. : '

' The path length is 20 km, sound speed in bottom
c,= 1580 m/s8, sound spped in water at .the “bottom
C,= 1420 m/s( oritical angle X,® 0.47 rad ~ 28 deg,
depth of the waveguide H = 100 m.
Two models of bottom has been used : half-space without and

I3



with losses ( the imaginary part of the refraction index
T=0.008 ). Model of the bubble layer : thiockness h = 6 m,
absorption coefficient a = 0.0025. (. Por the oase of the
waveguide with homogeneously distributed bubbles, i.e. h = H,
the bubble induced loss would be ATL = 432 dB - see 1.29 ).
Typical ray trajeotories are depicted for the path of 2 km
length. | :

At Pig.1.4(a) the isovelosity waveguide - *"winter*
profile is shown. FPor this profile of sound speed the ray
trajectories are presented in Pig.1.4(b). At PFig.1.5 angle
distribution of faotor 4 is shown for bottom without (a) and
with (b) absorption. As it might be seen from these figures,
for this case the effect is olear : all the rays radiated
" reach the subsurface bubble layer and are attenuated in it, so
it leads to the decrease of signal level. At Pig.1.6 (a),(b)
the range dependence of integral averaged intensity of field
is depioted for both models of bottom respectively. ( Here and
below, s0lid line - with bubble layer, dashed 1ine - out of
bubble layer ). It is remarkable, that in an isovelosity
waveguide the introducing of the bottom absorption 1leads to
general deorease of signal level approximately on 5 dB, but
almost does not affeot the dbubble 1layer induced attenuation
value ( at the Pig.1.6 ATL »~ 26dB ). This result is in a good
agreement with ( 1.29 ). Caloulating ATL from ( 1.29 ) one ocan
find that the bubble induced attenuation in the case of 1layer
thickness 6 m is 1less than for homogeneously distributed
bubbles in h/H = 0.06 times.

In a ocase of "summer" profile of sound speed the piocture
seems to be more oomplicated ( Pig.1.7(a) ). As it 1is seen
from FPig.1.7(b) there are three groups of rays ( 4 factor for
these rays presented on Pig.1.8(a),(b) for both models of
bottom ): A - the rays of small grazing angles, which do not
reach the bubble layer; B - the rays, which reach the layer
but don't touch the surface -~ their inolination at the bound
of bubble layer is small and because of it the attenuation of
these rays is great; C - the rays refleoted by the surface.
The averaged field range distribution for this stratifiocation
is presented at Fig.1.9(a),(b). It is seen,  that here the

14
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influence of bottom absorptivity is significant and at rather
great values makes the the bubble induced attenuation to be
hardly distinguished. Obviously, this effeot is conocerned with
the fact that all the rays which reach. the bubble layer have a
great inclination at the bottom and due to it are stmngly
~attenuated there. So their oontribution to the averaged field
intensity is less than for the bottom without absorption.
As it is seen from the Pig.1.9 (a) the additional loss due to
the bubble layer ATL ~ 6 dB, and for the bottom with
absorption ( Pig.1.9(b)) ATL » 2dB. s

It is seen that for oconsidered models the  effect of
signal level decrease due to the bubble 1layer is rather
visible. But in general ocase the -bubble induced attenuation
depends both on stratification and bottom .ocharacteristics.
Nevertheless, under some partiocular conditions of propagation
one can hope that the determining of bubbles conocentration by
measuring transmission loss is possible.
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Chapter 2.
Acoustic properties of Lake Ontario

2.1 HYDROLOGY AND SEASONAL EVOLUTION OF
TERMPERATURE PROFILES

In order to solve the main problem — the study of the
feasibility of determining bubble oconcentration aoross Lake
Ontario using underderwater acoustic transmission loss it 1is
necessary to introduce the acoustic model of the proposed
path, on whioch experiments will be ocarried out. This path
oconnects the western tip of Toronto Island (point A) and the
mouth of Welland Canal (point B) (Pig 2.1) and it is about 42
km long with the maximm depth along the path 110 m. Path
relief (FPig 2.2) is characterized by the inclination angles =
3° near Toronto Island and ~ 1° near Welland Canal with a

rather plane bottom along the path ( from 8 km to 32 km).

The waveguide oharacter of the propagation of aooustio
waves is determined mainly by the stratification of the sound
speed. The seasonal dependence of the sound speed on the depth
¢ = ¢(2) for various months was calculated using the vertical
seoctions ot the Lake Ontario given by the Soientific Authority
Dr.B.Kerman in acocordance with the expression [31] :

¢ = 1449.2 + 4.6T - 0.0557°+ 0.00029T°- |
- 35( 1.34 - 0.01T) + 0.0162, ' (2.1)

where ¢ is the sound speed in m/s, T - temperature, z - depth
( m ). Considering the Fig.2.3, one oan see that during the
winter months the formation of the isovelocity waveguide oanal
takes place ( ¢ = con3t ). With the heating of upper water
layers during the warm months the sound s8peed reaches its
maximum value on the lake surface and deoreases with the
depth. It leads to the formation of the subsurface waveguide.
The deocrease of temperature of the upper water layers during
the fall leads to the deorease of the sound speed gradient in
upper layers and to the diffusion of the waveguide . Henoe,
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two kinds of stratifiocation can be used for the modelling of
the sound propagation:
a) *winter" profile (c(z) = const ) during the oold
season ( isovelocity waveguide )
b) "summer" profile ¢ = ¢(z) with the maximum value at
the surface deoreasing with the depth till 2 = 50 m,
for z > 50 m ¢ = const (subbottom waveguide)

2.2 MATN MECHANISMS OF SOUND  ABSORPTION
AND ACOUSTIC MODEL OF BOTTOM

The absorption of the acoustio energy in the water Ilayer
and in the lake's bottom should be taken into account for the
estimation of the level of an acoustio signal at the path of
propagation. The following expression [1] can be used for the
absorption coefficient f,[dB/m] in fresh water

B, = 1-64x107%12/ ¢ [ aB/m 3 (2.2)

where ¢ is the sound speed ( m/s ), f - frequenocy ( Hz ). It
follows from (2.2) that the absorption determined by the shear
viscosity in the fresh water at the frequenocies less than 10
Hz ocan be neglected. Thus, the absorption coefficient ﬁ at 10
kHz is equal to 5.73 x10~3dB/km ( C = 1420 m/s ), whioh leads
to the signal decay 0.23dB at the path 40km.

The main mechanism restrioting the far sound propagation
( side by side with the oylindrical divergence ) 1is the
absorption of the acoustioc energy in bottom. The information
on the structure of the bottom 1layers in different 1lake's
areas oan be obtained from data conocerning the upper sediments
of Lake Ontario given by the Soientifio Authority, whioch are
not, unfortunately, related exaotly to the proposed path. The
capacity of layers varies oconsiderably and depends on the
area. In the generalized geological model four main layers oan
be singled out: |

-Laocustrine A,B ( thin layer of the water-satiated olay),
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-Glaciolacustrine ( thickness up to 10 m ),

-Drirtt,

-Bedrook.-

Only the three upper 1layers infiuences the sound
propagation at the frequenoy band from 100 Hz to 10 kHz, and,
as it can be seen from Pig 2.4., the massive Lacustrine layers
A,B lays outside the chosen path. Using the data concerning
the acoustic properties of sediments [32] the model,
comprising the Glaciolaocustrine layer 6 m thick laying on the
homogeneous half-space ( Drift ) was chosen (Tab.2.1)

Name Thickness | Density | Sound speed |A4bsorption
3 , - |coeffictent
(m) (Rg/m>) |( m/8 ) M
Glacio-
lacustrine 6 1.5x10% 1470 0.00
Drift 1.8x10% 1580 0.02
Table 2.1.

where 17 is the absorption .ocoefficient equal to the ratio
between the imaginary and the real part of the wave number.
The dependence of the coefficient of reflection V = V(y) from
this bottom is shown at the Fig 2.5. (a,b) for the frequenoies
J =100 Hz and f = 10 kHz. It ocan be B8seen that with the
increase of the frequency the oritical angle X deoreases from
23° to 13°, i.e. for the low frequencies ( f < 200 Hz ) the
sound propagation is determined mainly by the half-space and
for the frequenoies more than 400 Hz the main factor is the
upper layer. _

But, as it follows from. the expression for the average
intensity (1.18), the main part of the -acoustic energy is
oconcentrated during the propagation on long distances within
the angle band X « X_. But for - these angles the refleotion
coefficient is determined by the sound speed difference at the
- bound. At Pig.2.6(a) the dependence of reflection ocoefficient
on the angle ( from 0° to 90° ) for the different frequenoies
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from 100 Hz to 10000 Hz is shown. As it follows from the
figure the refleotion ocoefficient does not depend on the
frequency at small angles %.

"It must be noticed that the presence of the
upper water-satiated layer of sediments ( Lacustrine A, B )
might significantly change the bottom reflection coefficient
and, hence, the transmission loss at high frequencies. At
FPig.2.6(b) the dependence of refleotion ooefficient for the
same angle and frequenoy ranges is presented for the oase of
the presence of thin layer of Lacustrine A, B . The thickness
of layer is 1 m, sound speed in it c, = 1425 m/s8, its density
p=1.4x10% kg/m> and M = 2x10~3. It 4is Been, that the
reflection coefficient strongly varies at the frequencies
J > 800 Hz and almost does not changes at f = 100 Hz. Thus, to
determine the transmission loss along the path one needs more
exact information about bottom properties.

2.3 ESTIMATES OF NOISE LEVELS
WITHIN DIFFERENT FREQUENCY BANDS

The distant acoustic diagnostics of subsurface bubble
layers requires to solve the problem of detection of 8ignal
from noise and reverberation. Por the frequency range from 100
Hz to 10kHz the ambient noise is the prominent one. Noise,
generated by the aotion of wind on the water surface has been
extensively studied and has usually been parametrized as a
funotion of wind speed [ 35 ], although the air - sea
temperature difference also clearly plays a role [ 34 ]. The
reassuring faoctor is the good agreement of noise levels in
- shallow water with each other and with levels in deep sea in
the absence of biological and traffioc noise sources, when the
only source is a wind [ 35-38 ].

The averaged oharacteristios shown at Pig.2.7 are
obtained as the result of selection and averaging of the
spectra over the conditions which are presented in Pable 2.2.
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Pig.2.7
N Wind speed Wave height
O.
' m/s mn
1 1.8 - 3.3 0.25 - 0.5
2 304 - 5-2 0-5 - 1
3 5.3 - 7.4 0.75 - 1.5
4 7.5 - 9.8 1.25 - 2.5
Table 2.2
Each characteristic is given by the averaging over 80 - 100
frequenocy spectra. Such figure is convenient for ocaloculation - .

of the threshold level of signals. The general dynamic band of -
noises ( for the frequenoy range 100 - 10000 Hz ) is 60 dB,

and for each freguenoy - about 25 dB, depending on the wind .

speed. (- The noise 1level (dB) 1is taken relatively to
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2x10~° pasH2'/2 ).

Below the formulae for caloculation of noise level in the
deep region of an ocean at the constant wind speed up to 20
m/s are represented. These formulae are valid for the
frequenoy range 100 - 10000 Hz and depth of receiver up to
100 m and are obtained by the approximation of spectra shown
at Pig.2.7: '

p, = 0.18 U1.sf(-o.84
1 1 ]"2 - (2.3)

J.o.ss - fo.ss ’
1 2

P = 0.22 U1-5[

where p ‘ is ‘the sound pressure within the frequenocy band 1 Hz
at the frequency J", P (bar) - the sound pressure in the given
frequency band from f1 to fa' U - the average wind speed.

In conclusion it must be mentioned, that the noise 1level
at Lake Ontario within the used frequenoy range might inorease
because of traffic noises ( at the low frequencies up to 400
Hz ) and due to biological noises ( at the all frequenocies ),
but we have no any information about the sources of such
noises in Lake Ontario.
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Chapter 3. 3
SOUND FIELD AND TRANSMISSTON I0SS IN LAKE ONTARIO: - A

3.1 METHODS OF MATHEMATICAL MODELLING OF SOUND . .
" PROPAGATION 1IN WAVEGUIDES (BRIEP REVIEW)

The most of papers about numerical simulation of sound
propagation are ooncerned the ocean acoustics. Because of it
in this chapter we use the term "ocean" whioh means a natural
water body, where sound speed varies with depth and range and -
the structure and characteristios of bottom are real. Here we
consider the time-independent model without fluctuations of
sound speed, of boundaries and any random effeots.

When modelling the sound propégation- we suppose ocean to
be a layer of liquid, settled down on an elastic medium. The
liquid is being ocompletely desoribed by fimotions .of its
density po(?) and sound speed in it c(R). The elastioc medium
is described by density P, () and by Lame parameters A(F),
K(*), which allows to oaloulate the velooities of longitudinal
C, and transverse C, waves using the well known equations [39]

A- + zp' 1/2 . 1/2
c,(F) = » C,(F) = (1 /p))
Py

T

The equations which desoribe the acoustic oscillations
and ocorrespondent  boundary oonditions -are presented in
[28,39]. It must be noticed that there are some diffioculties
in solving the general problem. However, in the most of
partioular ocases one oan suppose density to be oonstant
( po(?) = const ) and desoribe the oocean as a'oylindrioally
symmetric medium with vertical axis z through the source ,
negleoting the azimuthal socattering. Moreover, because the
depth of wave penetrating into the bottom 1is proportional to
the wavelength, at the frequencies f > 100 Hz one oan negleot.
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the influence of shear waves, due to their low velooity in
upper layer of sediments. _ ,

Then, taking into account all these assumptions the
problem is reduced to the solving of following wave equation
for the acoustioc pressure p = p(z,r) [ 28 ]:

8(r)d( z-z_)
- - — | +—+ ¥ Ny = o
rorl or dz° + Bz P onr

with the ocondition of radiation

O
10[0p] D 3.1 )

p(z.r)' — 0 ( 3.2)
Z

1T ®

and the boundary conditions

p@r) =0, [p] =[v] =0. (3.3)
Zz=H(r) Z2=H(r)
Here z, is a depth of souroce ,U is the velooity of particle
osoillations in liquid, [ ] means the oontinuity of variables.
The absorption is introduced as the imaginary part of the
sound speed C. Below we some basic methods to solve the
problem ( 3.1 - 3.3 ).

The wave theory.

The wave theory gives the exaot solution of the problem
for the ocase of range - independent waveguide. The solution
of wave equation ( 3.1 ) might be found using the separation
of variables. The sound field can be represented as {40]:

- ! (1)
per) = — [Glz 2, ) BVG@r b, (3.4)
. |

where G is the funotion, whioh satisfies the one-dimensional
Helmholtz equation, !Hc()”(gr) - the zeroth - order Hankel
funotion of first kind and € - the integration ocontour on the
complex §-plane, which includes all the singularities of G.
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In this case the sound field might be obtained as a sum
of residues, whioch correspond to."the disorete eigenvalues and
the integral taken on the ocontinuous part of the spectrum
{ 40, 41 1.

Negleocting the oontribution of continuous spectrum at the
long distances and using the asymptotic representation of
m“ ), we obtain field as the following superposition of normal
waves [ 28 ):

Z Z - it
p(z,r) =¥ 2x 2 ‘p"(..?;w"(,) ezp (L r-—) (3.5)

where { and ¢ - eigenvalue and eigenfunction which might be -
found from the following equations : -

e,

2t (F@) -g)¢=0, (3.6)

‘P(O) = O’ ( 3.7 )

[@“-;mc;)«p] -0. (3.8)
2=H

Here, Q is the input admittance of the bottom, which might be.
find out for the partioular models of bottom using recurrent
sequences. ’

Different methods for numerical solving of the problem
( 3.6 ) - (3.8 ) are reviewed in [ 41,42 ]. Moreover, in [41]
the method of the ocaloculation of sound field in a layered
ocean, based on the direoct numerical estimation of integral
field representation ( 3.4 ) is introduced ( FFP - Past Field

Program ).

. As it was mentioned above, the method of normal waves
fails in of range-dependent waveguide. Purthermore, it is not
the very erreotive one -at high rrequenoies, when the number of -
propagating waves is- great.

To desoribe the field within a framework of wave theory
in the case of weakly range - dependent waveguide one ocan use
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the adiabatioc approach [ 29 }:

o 5 n(Zer 00, (20)

There the range dependence of - the oocean's acoustioc
properties and 1ts boundaries is taken into account by
dividing this waveguide into range-independent segments. Then,
eigenvalue E and eigenfunotion 4) are determined for each
segment and mi@t be approximated for an arbitrary range
( method of oross seotions ). '

p {
T :
p(z,r) = eap(fe,(mar - — ). (3.9)

o

The parabolic equation method.

The parabolic equation ( PE ) method was introduced in
underwater aocoustios commnity by Pappert [ 43 ]. One of the
advantages of the PE models is theirs ability to handle range
- dependent environments. Moreover, because these
approximation yield equations that have only first derivatives
in range, they offer significant computational advantages over
other ( albeit more exact ) solutions of full wave equation
( 3.1 ). The transition from this elliptic wave equation
( 3.1 ) ( boundary value problem ) to the one - way wave
equation ( initial value problem ) oould be made using the
following substitution [ 44 ]:

p(z,r) = U(z,r) BV (B 1), ( 3.10 )

where U(z,r) is the slowly varying funotion (. the envelope ).

Making this substitution and using the farfield
asymptotio representation of Mc(,” one can split the resultant
equation into two terms, whioch yield inocoming and outgoing
waves. Then negleoting incoming waves we obtain :

)

, [6_+ e [1- (1+£)1/2 1] ll(r'z) =0, (3.11)
r‘

where £=E2 (%p2 + Blzr) - 2.
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Different approximations to the square root operator (1+£)1/2‘u~

produce different PEs. The standard PE is obtained by
approximation of the square root operator by a two-term Taylor
series expansion:
4 ¢ A2
Han ¢ ( ° . ¥ (z,r) - K2 } U.(3.12)
or  2r_| 6z° °J
MoDaniel [45] analyzed the standard PE within the framework of
- normal mode theory and found that this approximation
introduced phase errors for individual ‘modes, but that the
mode amplitudes were ocorrect. The standart PR is valid for
angles of propagation up to about 10 deg. =
The use of more exact approximations to the square root
(1+£)1/2'allows to extend the area of PE's applioability as it
is shown in the Pable 3.1 : o '

(1+£)1/2
1+ £/2 | .10° ‘Pappert [43;
1+ L£/2 - (2/8 20°] Mary  [46]
(143 £/74 )/( 1 + L/4 ) 23°} Claerbout[47]
(la°+ a,b (1 +dL) - 40°) Green  [48]
(a+al+a,l’)/(1+bC+ batz) ] 67°::| Knightly [49]]
.( G +a, £+a,C54a,L%)/ ( 14D, £+blalcz+b3@,_.) | 89°) Vetring [44]

Table 3.1
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However, the rising of precision of the approximation leads to
" the increase of numerical algorithm's complicity and requires
much time for the oalculation. So when solving particular
problems, one has to make a compromise between precision ‘and
these two factors. '
.  Among all numerical methods of solving PEs: three main
-~ direotion must be distinguished [ 41 ]:
1. Split - step Pourier algorithm. . .-

2. Ordinary - Differential - Equation ( ODE ) method.

3. Impliocit Pinite - Difference ( IFD ) method.
Each method has both advantages and shortcomings. Split - step
algorithm gives a unoonditionally stable numerical solution,
but is the effeotive one only when using FFPT proocessor. The
IFD method is stable as well, but at the every range step

requires 4o inverse the high-—order oomplex matrix. ODE methods -

are of high performance, but are unstable in some ocases.

As it was notioced, the main advantage of the PE method
is that it might be used in a ocase of range - dependent duct.
This method automatioally takes into aoccount the interaction
between normal waves and desoribes exactly the diffraction
effecots.

However, because the amount -of calculations increases
like fa the use of this method at high frequencies is rather
unexpedient.

The ray theory.

‘The ray approach is the high-frequency sapproximation for
the solving of ( 3.1 ). Equations of the ray theory might be
obtained from Helmholtz equation by means of the following
substitution :

“p(P) = A@®)ezp( tR W) ), . (3.13)

where 4 and k W are the amplitude and the phase of the wave
respeotively, and k ‘i{8 the reference wave number. k w/c . In
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this oase we have the following equations [ 28 ]:
(w2 = (c/e®)?, (3.14)
VAW + AW =0. S ( 3.15 )

Equation ( 3.14 ) determines the geometry of rays, i.e. of
lines which are perpendicular to phase surfaces W = const. And
equation ( 3.15 ) gives the amplitude of wave.

The process of sound field ocaloulation within the
Iramework of ray approach might be. divided into the rollowing
parts :

1. The determination of the ray trajectories which reach

the receiver { two - point ray tracing ). To solve
this problem the algorithms based on the special
methods of approximation of the sound profile are the
most effective ones. In such methods the shape of the
finite parts of rays might be found analytically. It
makes the computations more fast {42].

2. The calculation of the optical ray lengths..wﬂ.

3. The calculation of the field amplitude An on the rays
at the point of receiver, taking into account the
energy flow oonservation within ray tubes, the
reflection coefficient of bottom, the change of phase
at the caustios, eto. : '

4. The summing of ocontributions of &ll the rays which
reach the point of receiver - 4 ezp( itk W_ ).

The main difficulties of the ray method are concerned with the
two - point ray tracing problem. Moreover, it fails on the
singular regions ( the viocinity of caustios, oritical regionms,
the transition regions between: the illuminated and shadow
zones, eto. ).

To caloculate the averaged intensity of sound field in the
range dependent waveguide one can use the method of adiabatic
invariant [ 29,30 ].
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Averaging the equation ( 3.9 ) over the range and using
the WKB approximation for eigenvalue and eigenrunotion [ 50 ]
one can obtain -the following expression- T

<I> =< pp*> = — o V.(3.17)
(z,r) pp r II tg XO'D(xo,O) . ax

where
- ) n |V(y,r)
B(r) = I‘ A1) |
D(x,r)

Xo is the departure grazing angle of ray at the source, % is
the inclination ( grazing angle ) at the point of receiver,
D()x,r) - the oycle length of a ray, V(%,r) = the reflection
coefficient of the bottom. The angles xo and ¥ are connected
by phase integral of WKB approximation [ 50 ].

The oconclusions about the expedience of the use of these
methods for range - dependent and -independent waveguides are
presented in the Table 3.2 for 1low (ILF) and high (HF)
frequencies. '

- { 14 - t
‘ - LP HF - LF HF
Normal Nodes 7
Ray | '
~ inappliocable o - applicable
| % - applicable, but requires a lot of calculations

Table 3.2
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3.2 SOUND FIELD DISTRIBUTION
ATONG THE RANGE - INDEPENDENT WAVEGUIDES.

The comparison of different mumerical methods for the
calculation of acoustic fields has been carried out for two
layered models ("winter" and “summer* models) of the plane
waveguide ( parameters of both models are shown at Pig.3.1,
3.2 ). The first model corresponds to the <typical winter
conditions of sound propagation in the region of proposed
path, the second one - to the summer oconditions ( see Chapter
2.2 ). Three programs of sound field ocaloulation are used.
These programs are based on (1) method of normal waves [51],
(2) method of high - angle PE ([52] and  (3) method of ray
adiabatic invariant ( see Appendix A ).

At Pig. 3.3 and 3.4 the range dependencies of
transmission loss ( TL ) oomputed by these programs for both
models of waveguide are presented. Source frequency f = 200
Hz, depth of source z_= 75 m, depth of receiver 2 = 50 m . At
this frequency 12 modes with phase velocity v, < c, ( sound
speed in the bottom half-space ) propagates in the waveguide.
However, the modes of high order are being attenuated greatly,
so at the long distances the field structure becomes rather
simple. As it is seen from the figures, the normal waves
.method ( ocoherent model ) and the method of high-angle PE
show approximately the same results.

Because the ray invariant method allows to determine only
the average ( over Zz and r ) field we oompare it with
incoherent model of normal waves method. Within the framework
of inooherent model the amplitudes of particular modes are
summed without taking into acocount the interference items, so
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Fig. 3.2 "Summer"” waveguide model.
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this model gives the field averaged over r. As it might be
seen from the Fig.3.3, 3.4, in the first case the method of
adiabatic invariant describes the integral field decay rather
exactly, but in the second one gives the lowered value.
Obviously, the precision of ray method depends both on the
frequenoy f and on the depths of source and receiver.

At Fig.3.5 - 3.8 the dependencies of average frield level
on the depth of receiver z are depioted for two frequencies.
It is seen that the ray method of adiabatic invariant is
applicable except the cases when 2z —» . 2 -~ { the divergence
region of ( 3.17 ) ), when the ray a.pproaoh fails. Also it
might be seen, that in the "winter" waveguide the sound field
almost does not depend on the depth, except the small region
near the surface of about wavelength thiockness.As it follows
from the boundary oonditions the sound field at the surface is
exactly equal to O . Por the summer oconditions, owing to the
formation of deep sound channel the field level is low within
the region of higher sound speeds.-

As it follows from mentioned above, the ohange of the
frequenoy ochanges the scale of interference field struoture
both at 2z and r axes. Moreover, the time variability of
hydrological oconditions leads to the strong fluctuations of
field generated by a harmonio souroce. Due to that it seems to
be expediently to use the averaging of quazimonochromatic
noises over time. And because the averaging over frequency is
equivalent to the averaging over space, 'the adiabatio
invariant method gives, in faot, the field averaged over time.
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3.3 TRANSMISSION 1OSS IN LAKE ONTARIO ON THE PATH BETWEEN
THE WESTERN TIP OF TORONTO ISLAND AND PHE MOUTH OF
WELLAND CANAL

Here the following problems are oonsidered :

- the estimation of the applicability of the adiabatic
invariant method for the range-dependent waveguide with
respect to Lake Ontario ; |

- the estimation of the field intensity distribution
along the chosen path and the analysis of the field
struoture at different depths ~ for  different
frequencies.

This chapter might be split into two parts. The first one
ocontains the analysis of the results for typical winter
conditions, and the second - for typical summer ones. Sound
speed profiles for both seasons and the aocoustic model of
bottom are presented at figures 3.1.and 3.2. The depth
variability ( the bottom relief ) along the path is shown at
Fig.2.2. The thiokness and aocoustic properties of sediment
layers and are supposed to be range - independent. '

Winter Hydrology

At figures 3.9 and 3.10 one can see the oomparison of
range dependencies of transmission loss computed by using the
high-angle parabolic equation and the method of adiabatic
invariant respectively for the frequencies 100 Hz and 500 Hz.
As it could be predicted the precision of the adiabatic
invariant method grows up with the inorease of signal
frequency. But the faot that the field levels in the end of
the waveguide at the loocal maximum ocaloulated by these two
different methods are almost equal is the rather surprising
one. Because in this section of the waveguide ' there is only
one propagating mode and the adiabatic invariant methods is
formally inapplioable!

Let us oonsider the field changes along the path more
detailed. At the first two kilometres there is a rapid field
decrease induced by oylindrical divergence and strong
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attenuation of the rays with angles { > X, in the Dbottom. At
the main part of the path the field deoreases rather slowly.
Then with the deorease of waveguide depth, the field intensity
increases. But, rays of great inclination cannot reach the
narrow waveguide oross-sections, since the grazing angle
increases with each reflection from the rising bottom and
eventually, the rays are reflected back. As far as normal
waves are concerned it means that the propagating mode becomes
the nonpropagating one.

The computations of transmission loss in the winter
waveguide have been carried out for the frequency band from
100 Hz to 10.000 Hz for the depth range from 10 m to 40 m. The
results of these ocomputations shown at Pig.3.11 (shaded area)
mean that the ochanges of f and 2z do not affect the
transmission loss. Such a weak dependence of the transmission
loss on the frequency and depth might be explained by the fact
that the main ocontribution into the field energy is made by
rays with the small inclination at the bottom. As it follows
from Fig.2.6., the retfleotion ocoefficient does not almost
depend on the frequenoy. |

Thus, the winter oonditions seems to be favorable to the
aocoustic wave propagation. The typical values of transmission
loss is limited by 65 dB and weakly depend on the source
frequency and the reoceiver depth.

Summer Hydrology

In summer the oonditions of propagation oconsiderably
change : the subsurface water layer is heated on and, as a
result, the sound speed greatly deoreases in the layer about
50 m thick. In the medium with such a hydrology rays bend to
the bottom (Fig.1.7.(b)) and reach the bottom at steeper
angles, so they are attenuated more strongly than in a plane
layered waveguide. The second reason is that if the source is
located below the level of receiver, then not all the rays
reach the receiver. Obviously,that such hydrology "wrings out"
the field from the surface and, as the result, the field level
Inoreases with the inorease of waveguide depth.
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In order to check out the efficiency of the adiabatio
invariant method in the medium with the range-dependent
hydrology the ocomparison with the high-angle PE method was
made. ( Pig.3.12, 3.13). As it is seen from the figures the
adiabatio invariant method satisfactory desoribes the averaged
field distribution at the frequencies f > 500 Hz.

At Pig.3.14 the range dependencies of transmission 1loss
for different horizons of the receiver are shown. One can see
that the field strongly deoreases at the small depths of
receiver in the medium part of the path, where the waveguide
depth is great. However, when the depth of the waveguide is
small, the difference between field levels at different
receiver horizons becomes less. It is connected with the faot
that at long distances the field in the narrow part of the
waveguide is determined by the rays  of relatively small
inclination at the bottom. It might be olearly seen from the
Pig.3.15, where the frequency dependencies of the transmission
loss at r = 38 km for different horizons at the sole of the
main slope is depicted. Por the depths z > 15 m no frequency
dependence is visible, sinoe the field formation is determined
by the rays of small inclination at the bottom ¥ < 13°. For
these angles the reflection coefficient does not depend on the
frequency. In the surface vioinity z < 15 m the field 1is
determined by the rays, the inolination of which at the bottom
is above this oritical value. Por the 1low frequencies the
oritical angle is determined by the lower half-space and is
equal to X = 23°. With the inorease of the frequenocy the
oritiocal angle X, deoreases and becomes equal to 13°. It leads
to the appearance of the strong frequenoy dependence of the
transmission loss at small receiver depth in the intermediate
frequency region from 200 Hz to 600 Hz. ,

The data ooncerning the frequency dependence of the
transmission loss are shown at Pig.3.16. It was assumed that
the receiver is located at the bottom. The point L = 0
oorresponds to the horizon z = 10 m in the end of the path
shown at Pig.2.2. The increase of L corresponds to the shift
of the receiver in the direotion of the source. It follows
from the oconsideration of these graphiocs that there exists
some optimal distance where the signal level is maximal, which
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corresponds to the depth of receiver z »~ 30 - 40 m. But since

the purpose of the work is 1lthe diagnostios.of bubbles in the
subsurface layer, the question of the optimal loocation of the

receiver is still open for the discussion. The problem is that

we should find the 1location of best sensitivity to the

subsurface bubble layer and this location might happen is not

within the area of maximal intensity of signal.

In oonclusion it is worth noting that summer hydrology is
sensitive to even small changes of bottom parameters. Thus,
the adding of the thin water-satiated layer with parametres
desoribed in Chapter 2.2 to the bottom model 1leads to the
abrupt deorease of the signal level with the inorease of the
frequency. The variability of transmission 1loss is rather
small for two-layered bottom ( Pig.3.17, region O ), but for
the model with such a thin layer the transmission loss lies in
this region only for the lower frequencies ( f ~ 100 Hz ). For
the frequencies f > 2 kHz the signal 1level ' decreases very
quickly. The winter hydrology with the weaker frequency
dependence of transmission loss is more oconvenient for the .
conduction of experiments on the site ( Pig. 3.18 ).

Henoe, in the natural conditions of chose path the'signal
level (at high frequencies f > 1 kHz) is sensitive to the
presence of even thin water- satiated layers. That is why the
detailed analysis of bottom properties from the acoustioc point
of view is necessary. The main problem is connected with the
estimation of the absorption coefficient in Lake's sediments.

' Naturally, the choosing of source power level depends not
only on the losses in a bubble layer, but also on the method
of received signal processing. Here we estimate approximately
the required power ‘ievel, supposing the bubble induced
attenuation to be about 40 dB ( see [26] ). The oalculations
are made for the narrow-band ( Af = 1 Hz ) and wide-band
( Af = 100 Hz ) signals of frequency f = 1 kHz. As it follows
from Fig.3.18, the maximal noise level is about 40 dB. The
typical value of transmission loss for such conditions is 70
dB, i.e. for the narrow-band signal one needs the source power
level to be about 150 dB ( it ocorresponds to the acoustio
power 102 w ) and for the wide-band signal - about 170 dB
( acoustic power 1 W ).
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Appendix A.

CALCULATION OF AVERAGE SOUND FIELD INTENSITY
IN RANGE — DEPENDENT WAVEGUIDES USING ADIABATIC
INVARTANT METHOD

. General 1’o_r;nu1at ion B

In [ 29 ] the expressions for average intensity of sound
field in plane layered waveguide are introduced within the
- framework of ray approach. The generalization of this approach
for the range - dependent duots might be found in [ 30 ].
There the agreement of the results obtained from ray and wave
theories is discussed as well. Below we follow these two works
in general, though some details might be slightly different.

Let us oonsider the oylindrically symmetric waveguide
with the sound speed profile ¢ = c¢(z,r). The sound field
generated in such waveguide by point harmonic source in the
adiabatic approach of normal waves method is given by [29] :

172 g $ZerON (Zor)

(z,r)=(2n/r :
P n (E (r)'/2

P in
.zp[tI £, (r)ar - — ].(An

where (zo,O) — the coordinates of source,
(z, r) - the ocoordinates of reoceiver,
gn(r) - the eigenvalues,

4) (z,r) — the eigenfunctions.
The intensity of sound field, averaged over range " in
this case is desoribed as follows : :

r
T _ 19 (2,005 (z,r)}2
<I> = <pp*>= — 3 —n_0° n expl-21Im r)dr]. (A2
e zp[f g,,()_] )

If the number of propagating modes is great and the depth
dependence of wave number R(Z,r) = w/c(z,r) at any fixed range
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r has the only one maximum, then to find out the
eigenfunctions one can use the WKB approximation [ 50 ]:

a2 [ Pt 1 (z,r)dz + ()}, (43)
Z,r) = co9 & (z,r + r)ts
b | aen(Z.r)Dﬂ(r)] I " "
Zn'or Z“'
z ~
D (r) = 2Reg(r)f—-—— | (A4)
& (Z r') )
Z

n
| 1/2
2_(z,r) = [( K (z,r) - ( Re £ () )2.] " (A5)

where zﬂ' (r) and zn' (r) - the depths, within which the normal
wave is oconocentrated,
l Q)n(r') l < T - the additional phase, depending on
the kind of normal wave.
Substituting (A3) into Eq.(A2) and averaging over depths z and
zZ_ we obtain

8% _ Re E_(r)
<I> = — 3 2 e.zp[—ZIIm En(r)dr]. (A6)
rn aﬂ(zo.o)an(z,r')Dn(O)Dn(r) .

The real part of eigenvalues might be found from the
expression for the phase integral in WKB approximation :

z " | z "
1/2 :
7 j 2 (z,r)dz = j[(kz(z r)-(Re g ) )dz "L+ B_(r), (AT)

’ v
zﬂ Zﬂ

where ' 'Gn(r') I < ¥ - the additional phase, depending on
the kind of normal wave.
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Within the WEB approximation each normal wave might be
considered as the system of rays :

Re £,(") = R(2,r) cos x(z r) . (A8)

If the paramsters of waveguide slowly varies within the
ray cycle, i.e. each cyocle does not étrongly differs from the
previous one, then for the partiocular ray one can suppose J to
constant. ( In faot, it is the ocondition of adiabaticity and
J/w is an ray adiabatic invariant ). The assumption made
allows to obtain two important conclusions. At first, usi.ng J
one ocan link the departure angle of ray Xo with its angle at
the horizon of receiver X. Second, in Eq. (A6) one ocan ochange
the summation over n to the integration over angle x_( or ).
Using (A7) and taking into account (A3)-(A5) and (A8) the
following expression might be obtained

a7 =x,0) Dy ,0) 2(x,7) D(Y,r)
R s A UL L AP
. 2% 2% :
A8 a result we find :
/2
4 -1
> = - I( tg x D(x.r) ) {-2[ B(x, r)dr]dx (A10)
0
or .
/2 r
4 -1
D =~ I( tg x, D(x,,0) ) ezp[-af p(x,r)dr']dx . (A1)
' 0
n | Vx',r )|
Here Blx,r) = (A12)
D(x,r) |

is the loss funoction for bottom interacting rays,
V(X',r) is the bottom reflection coeffiocient,
and angles ¥ and %' are oconnected by Snell's law :

k(z,r) cos x = kR(H,r) cos %' , , (A13)
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where r is introduced as a parameter.( The generalization of
(A12) for the ocase of bubble layer induced attenuation might
be made easily ). Thus, the formulae (A10)-(A13) allows to
oalculate the average sound field intensity in a range -
dependent waveguide. -

Numeriocal algorithm

The desoription of numerical algorithm presented below
requires to oconsider the medium of propagation. The values of
sound speed c( z, J,rt ) at the fixed distances r, supposed to
be given on the upper ( 2=0 ) and lower ( z=H (r‘) ) boundaries
- and at some depths ZU between ( see Pig. A.1 ). To make the
following computation more convenient the waveguide is divided
into the space segments, using the linear interpolation both
of wave number square ke(z,r") and of lower waveguide boundary
H(r) as it is shown at Fig.A.2. A segment is triangle-shaped,
if one of its boundaries is the inclined bottom, and is of
reotangle shape otherwise. In segments of the first kind the
wave number approximation is kz(z,r) =a,+a,z + a,r, the wave
number in the second kind of segments 1is approximated as
ka(z,r') =a+t+ e,z + ar+ Q@,2zr. Thus, for a fixed range r
the depth dependence of wave number square is line - broken,
8o it allows to use the implioit expressions for computation
of the integrals (A4) and (A7).

The bottom 1s represented as a structure which consists
of some liquid layers upon the 1iquid or solid half-space. The
reflection coefficient of such bottom is caloculated using the
reourrent relations [28].

Taking into account all the above one oan caloulate the
transmission loss using adiabatio approach in aoccordance to
the following algorithm.

Pirst, the invariant values J (xo.l,O), the oyole lengths
D(xo.l,o) and the loss funotions ﬁ(x‘;.l,O) for the rays which
leave source at the angles Xo, 71 = Ax 1 are to be calculated.
( Here 1 = 0,1,...N, Ay = x‘/N » N+ 1 - is the number of
rays )
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Then, for the distances ry = Ar k ( K =1,2,... ) the
charaoteristiocs of rays and the sound field intensity at the
receiver horizon are to be caloculated. These computations are
conducted as follows. _

First of all, the invariants J(xm,r‘b) of rays of
inclination angles at the minimal sound speed horizon = Ax m
( m=0,1,...,0 ; N =1nt (x / 20y ) ) are caloculated. If
T OgsTy) € Ty 150) € J(X,,4s7y)» O € m € H-1, then the ray
of departure angle Xo,; Teaches the horizon of the minimal
sound speed at the angle )X,, which might be ocaloulated using

the linear interpolation :
T, 1:0) = T 1)
TWppqsTy) = T oTy)

and for this ray the oycle length D(x,,r,) and loss funotion
ﬁ(xl,rb) are to be ocomputed. The rays for which ](xo.I,O) 2
J(xm,r‘b) do not reach the range r, so they are not considered
- in the following ocomputations. Thus, the ocharacteristios of
all the rays which reach the horizon of the minimum sound
speed at range r, are determined. Integral of losses in the
expression (A10) is to be computed for each ray using the
trapezoid rule:

X =X + Ay (A14)

r+Ar r B(r) 8 (reAr)

r) + B(r+
I B(ryar = I B(r)dr + (A15)
(o) (o)

2

Then from found angles X, the angles at the reoceiver horizon
might be caloulated using the Snell’'s law (A13). If the ray of
depariure angle xo.o = 0O reaches the receiver, then the
integration is made over this departure angles (A410).
Otherwise, the integration is to be made over the angles at
the receiver horizon (A11). It allows to escape the divergence
of integrand. The integration of (A410) or (A11) are made using
the trapezoid rule.
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