Interdepartmental Task Force
on Transborder Data Flows

: background papers

WORKING COPY ONLY

)

QA
76 .9
e

B33
Vo3

k
i
U
AQUT) D &an
; Auc U D 1998
b
i

/ Z__/’,)’L,ﬂr(,/l té-rn ol /uﬂ /.CLV’E
) /

REPORT ON SOFTWARE RELATED ISSUES

Interdepartmental Task Force
on

Transborder Data Flow

Economics Working Group

M. Harrop
Supply and Services Canada

December 1981

e

yu-uyyuym
00NN W AW N —

Objective - 1

Software: Its Nature and Availability 2

Introduction
What is Software?
Subdivisions of Software

Personnel Factors
Sources of Software
Software Support

2.1
2.2
2.3
2.4 Development and Programming Aspects
2.5
2.6
2.7

The Economics of Software - 13

Introduction
‘The Valuation of Software
Software Maintenante Estimation
Software Longevity '
- Factors Related to the Growth of Software Act1v1t1es
Estimates of Software Activity.
" Personal/Desktop Computers
. Software Development Initiatives

Analysis 43

4.1 Potential Ifnplicatmns of TBDF on Software Activities

4.2 The Need for a Canadian Software Industry

4,3 Factors Influencing the Development of a Software Industry ‘

R __.7;_.,.,:{'?5&%3_,;’,,"4.;_

L. OBJECTIVE

As a result of technological developments, there is a strong possibility that
fundamental changes will occur in the methods of software production, distribution
and use. In order to attempt to put this into perspective and also into the context of
TBDF activities, the Economic Working Group of the Task ‘Force on TBDF created a

subgroup to address these specific software issues.
The objective of this report is to provide:
(i) a profile of software activities in Canada;

(i1) an examination of the major trends and causative factors

(technology, economic environment etc.); and

(iii) an analysis of the potential for the development of Canadian

software activities.

Recommendations for action to address the problems identified in the body of this

~report will be issued separately.

2. SOFTWARE: ITS NATURE AND AVAILABILITY

2.1 Introduction

In the course of the study which led to this report, it became apparent. that, h
while people engaged in computer software activities often assume that the
fundamental nature of those activities is widely understood, this.is frequently not the
- case. Even people employed in activities dependent upon software sometimes have

only a vague idea of what is involved in its productlon.

It was, therefore, felt appropriate to begin thxs report Wlth a very baslc
1ntroductxon to the nature of software - what it is and where it comes from. Th1s, itis
hoped, will help to promote a wider understanding of these activities and w1ll also -

serve as a background for the sections which follow.

2.2 What is sof t_ware?

A computer program s a series of coded instructions which define, ideally in a
clear, logical, and unambiguous manner, the specific functions to be performed by a

computer.

In order for a program to be executed by the cornputer, the instructions must .
be in the machine language of the computer's processing unit, i.e. the instruction
representation must correspond to a form (normally binary) which can be directly
converted by the processor to a series of lOglC steps. Although it is pOSSlble to write
programs drrectly in machine language, the process of codlng 1nstructlons as a series
of ones and .zeros is- tedious, error prone, and makes trouble-shooting difficult. As
computers have evolved, numerous programming languages have been developed which
allow the user to communicate instructions ro the comp"uter in languages based on
alpha-numeric forms rather than binary. An early step in this e_volution'was ‘the
development of assembler languages whlch.consis'ted of mnemonic opération codes for
wh1ch there was a one-to-one correspondence with the machme 1nstructlons. (As an
example the programmer could use the mnemonic ADD rather than the blnary form of .
011010 to direct the processor to perform an addition.) Programs known as 'assemblers'
were developed to convert these assembler language forms into the basic machine

instructions which could then be submitted to the computer for execution.

2.

As computers developed further, greater emphasis Was placed on ease of
communication with the computer and on improving programmer productivity. Greater
functionality was added to assem.i)ler languages, e.g. by allowing a single mnemonic to
be assembled into a series of machine instructions, and more complex (usually special
purpose) languages were developed which allowed the programmers to write programs
in a form more closely resembling English than the assembler languages. These more
complex languages, of which COBOL (Common Business Oriented Language) and
' FORTRAN (Formula Translation Language) are common examples, became known as
high level languages. The programs which are necessary to translate the high level

language programs to machine instructions became known as cmmilers:.1 .

~ Problem Oriented Languages (POLs) represent a further stage in. the
development of programming languages. POLs allow the user (who is usually a research
professional - economist, engineer, statistician, etc.) to define complex algorithms
- directly using an English language-type syntax. POLs themselves are Usually written in

a high level language such as FORTRAN, often with supporting assembler routines.

The progression from basic machine language through assemblers and high
level languages to Problem Oriented Languages is a logical one. It reflects the
increasing emphasis 'pleced on improving programmer productivity and ease of man-

machine communication.

Until the mid-sixties, the division between the programming effort associated
with computers and the actual computing machinery was fairly rigid: the computer
was equipped with a fairly limited set of instructions and any additional functionality
was developed externally by programming. Programs were stored on media such as
punched cards, paper tape, magnetic tape or disc, and loaded into the computer's

‘memory for execution.

During the mid to late sixties, microcode was introduced. Microcode is a series
of machine instructions stored in the logic circuitry of the processor and forming a
permanent program within the computer. It cannot normally be changed without
replacing or modifying part of the electronic circuitry. In this sense, microcode acts to
extend the functionality of the hardware. Microcode made it possible for users to have
computer manufacturers ih_cluc_ie special function instructions (which were sometimes

unique) or mini-programs in the instruction set of a particular machine. A further

development was the capability wh1ch enabled users to write and mcorporate their own
microcode as an extensmn of the basic instruction 'set of the machine. In some
instances where the computer mrcu1try is dedicated to a smgle appllcatlon, e.g. in the
micro electronic chips used in calculators or electronic.games, the mxcrocode may be’

the only program which is ever executed.

Programs written ‘and ‘stored in microcode are usually referred to -as
'Firmware'. Programs which are normally stored on external storage media (magnetic
- tape, disks, punched cards, etc.) and which are loaded from the external media into the

computer for execution, are usually referred to as 'Software'.

" In general, firmware pfograms are usually small and very specific. Software
\ programs tend to be more general in nature and m‘ay-,'in’some’ instanéés, be very large.
Because of the fixed nature of fu-mware, errors must be: detected and eliminated
before the program is mcorporated into the hardware circuitry, whereas software 'is -
. . not faced: with this constraint. However, the processes of producing software and
fxrmware are similar. These may include desxgmng, codmg, testmg and documentmg of
the program. Whether a program is 1ncorpo|ated into m1crocode or is retained on a -

_ deck of cards, the programmer is drawn from the same pool of programming expertlse. :

One further point to note is that, since a program must be error free before
being incorporated into microcode as firmware, it must go througha' development and
test sté.ge during which time it is effectively software, i.e. a program which can be

" easily changed. Thus, firmware begins life as software and references to software

throughout this report may, in general, be considered to apply to nascent firmware.

" Note -

L, For languages such as FORTRAN and COBO‘L; in which the program source
code is converted to machine code (i.e. compiled) and then held in machine code for
. C repeated execution, the program which does the translation to méchlné_lén_guage is
called a compiler. With some other high level languages, of which- APL is a common
example, the‘vprograms are not compiled. Instead, the program is held in source form
until it is to be executed at which time it is interbreted line by line. In these cases, theA

translation program is cail~1 an interpreter.

B VAR e s N, it e e S e R e e S S e el Lt T S et e

2.3 Subdivisions of Software

Software is usually subdivided into system software and application software.

System software comprises those programs which enable the basic computer to be used’

more easily. Included in this category would be operating systems, translation ..

programs (assemblers, compilers, etc.), input/output control programs, testing and
- debugging aids," programmer utility programs -and machine resource accountin.g
routines. Much system software requires that the programmer have an intimate
knowledge of the basic machine architecture and operation, together with access to
privileged instructions.! In addition, certain portions of system code must often be
executed with optimum speed and efficiency to avoid adverse timing effects. For
these reasons, most system software has traditionally been written in assembler -

language.

Application software is ge‘nerally considered :to comprise those programs, or
packages, which perform specific user-oriented data processing tasks. Examples of
functions which may be handled by specific application programs or packages are
payroll, inventory-control, statistical analysis, linear pro'gramming; and reservation
systems. Although some application programs are written in assembler language, the
bulk of application programs are written in one of the high level languages. As the
different high level languages have data structures and operations orient_ed towards
the intended use of the language, e.g. COBOL is structured for business use,
FORTRAN or PL/l more for scientific use, the particular choice of language depends
fo a large extent on the type of application. '

Between system software and application software,vthere is a further type of
software package which, whilst operating at a higher level than the basic system
software mentioned above, can pérhaps be considered an extension of system software
in that it is likely to provide facilities which are used by application programs.
Included in this category would be Data Base Management Systems and Teleprocessing
Monitors. ' '

The above classifications of software relate to general purpose data
processing. A further category of software not included in the above is the software
written for a special 'purpose (often single purpose) computer or processor. This is

usually known as embedded software, examples of which might be programs for the

control of artillery computers, spacecraft, electronic games or electronic telephone

switches. With these systems, neither the computer nor the software is general

purpose, the total package (hardware and software) often being produced as a turrkey
system. The software is usually unique and written in the language best suited to the
application and processor.

(Turnkey systems are total .packages consisting of hardware and software,
usually designed to perform a specific function. They are usually supplied by a
software house or by a hardware manufacturer, with the supplier takmg responslblllty

for the performance of the complete system.)

System and application software, being produced for a general data processing
market, tend to be designed with those features likely to be of most use to the largest
number of potential users. This can cause certain problems. Firstly, the user of a

general purpose program will be offered a number of features for which he may have

no wuse but - for which he will have to pay both as part of the.

purchase/rental/maintenance costs and in running costs, e.g. in extra memory and

longer execution times. (This situation may be acceptable'except wlien memory is

limited and/or execution time critical.) Secondly, the general purpose program offered -

may not have all the features needed. Thirdly, a partlcular application may be so
individual that no packages are available. Where these problems exist, they are usually
addressed by. developing-a new program (or package of programs) or by modifying the

available general purpose programs. In either case, the result is what is known as

custom or customized software. One problem with modifying packaged software is
that the supplier of the package ceases to take responslblllty for ‘any problems which
develop in the mod1f1ed package and the installation thus effectlvely looses vendor
support, :) '

The bulk of the programming efpfort in User installations, as opposed to

hardware or software suppller' installations, is devoted to developing and malntalning g

custom software.
NOTES

1. Privileged instructions are instructions designed to protect the_lntegrlty of the
system by controlling access to potentially disruptive operations. Access to such

instructions is normally strictly controlled by the operating system. Examples of
privileged instructions are those instructions governing input/output, interrupts, and

memory access and allocation.

2.4 Development and Programming Aspects

The choice of a language for the development of a program depénds on many
factors. It is nédessary to consider, first of all, what languages are available on the
particular machine (or timesharing service) on which the program is to be developed.
Almost all machines offer an assembler language, and most offer a seleétion‘of higher
level languages. Choice of a language will also depend on the nature of the abplication,
the data structures required, portability requirements, the availability of suitably
qualified programming staff and the specific applicability of available languages to the

~ particular application.

Certain specialized requirements make the use of assembler language almost

mandatory. These include the case where memory is extremely limited; where direct

access to privileged and systems-type instructions is required; where complex

interrupt handling code is needed; or where no higher level languages are available (as

is the case with some mini-computers and microprocessors). However, the use of

assembler language can have significant personnel and productivity implications, both

during development and during the subsequent maintenance phase. Assembler programs

» traditionally involve si'gniﬁc:'antly greater effort for development and testing than do

higher level language programs to acco'mplish the same task. Personnel require a much
greater .amount of tfair_ning to become proficient assembler programmers than to
become proficient ‘higher level language programmers. (Some of the high level
languages are designed to be used by people with minimal computer knowledge.)
Productivity of programmers working in high level languages is, overall, higher than

the productivity of programmers working in assembler language.

Another factor to be considered is portability. Programs written in assembler
language will usually be machine (or at least architecture) dependent. Higher level
languages ' usually have some degree of standardization, although individual
manufacturers may, in their implementation of a particular language, go beyond the

recommendations of the standard for the language and thus introduce some machine or

installation dependent features. In spite of this, programs written in higher level
- languages tend to be somewhat more portable than assembler language programs.

. Commercially available broductivity alds tend to fall into two categories -
procedural type laﬁguages and dev.elopmer'\t methodologies. Procedural fype languages
‘may be either subsets of an existing high level language or they may be almost a
speciél purpose high level language themselves. In either case, the objective is-to allow
a user to specify a problem to-the computer as simply as possible by means of a series
of procedural statements. Development methodologies, such . as §fructured
programming and proprietary design methods, concentrate on ”making"'the design,
coding, testing and documenfatlon (and, of course, subsequent mainténance) of
programs a more 6rderly prbcess. On fhe system side, productivity lmproverhents are
being made by improving user accessibility and availability (e.g. byl. time sharing

access) and by general improvements which make systems easier to use.

2.5 Personnel Factors

Without going into too much detail at this stage, it is pérh‘aps‘ appropﬂate to
discuss briefly some of the personnel factors peculiar to software production and

maintenance.
The proBIems of shértage of skilled software manpower have been well
publicized as have some of the productivity problems associated with producing

software.

The activities related to the production of software, e.g. feas_ibility Stud.i‘es,

systems analysis, design, programming and docu’-ment‘ation, are all intellect-intensive " a

activities and; ‘as such, are generally unsuited to .pfodUCtibn line techniques. Specific

educational requirements for programmers are generally less important than aptitude

- for the work. In addition to aptitude, certain other attributes may be desirable but,

with the exception of a relatively small number of jobs Eequiring specific technical
skills, most programming positions can' be filled (and-have been filled historically) by
people coming from a wide range of educational and industrial backgrounds.

Ty B e e

Programmers have traditionally been a very mobile workforce. This is pfobably'

due mainly to staff shortages and the resulting opportunities, particularly for the more
junior levels, to change jobs and increase salary substantially after only a short time in

a position.

Management of software production has been a historically difficult area,

programming often being viewed as a task performed by brilliant but undisciplined,

unconventional technicians practicing a craft. This view is changing and software

production is becoming easier to manage, but the impression of the programmer as an
unrestrained individualist who produces arcane algorithms is still common and

sometimes valid.

_Géographically, the greatest shortages of software staff have tended to be in
the most heavily developed and industralized areas - in Canada, in the
Montreal/Toronte/Ottawa triangle. With the increasingly h'eavy emphasis on remote
computer access a,nd with data communications and terminal facilities being plentiful,
there is no longer a real requirement for the programmer to be physically close to the

computer (except for certain Systems programming tasks.) |

2.6 Soug'ces of Software

The most common sources of software are: in-house development; computer

manufacturers; sof tware houses; user exchanges; and turnkey systems vendors.

In-house Development

In-house dévelopme'nt, either by on-strength staff or by contracted
programming, has long been the main source of application programs and of custom
modifications to existing software. Constantly increasing costs of both development

and maintenance have encouraged data processing management to look for packaged

* solutions where possible. However, custom software retains a high level of popularity

and in-house development remains the largest single source of software supply. This

may be due, at least in part, to the "Not Invented Here" attitudes which exist and

“which are discussed in Section 4.

Computer Manufacturers

In order to do any useful work on a.computer, Av‘arious__‘systems so’ftwar‘e‘
functions must be available: Traditionally, the initial source of this software has been
the manufacturer of the computer. The U.S., being the world's largest‘_suppl‘ier of
- computer hardware, dominates this sector of the software mnarket. In addition to
operating system Software and util~ities, the manufacturers have been a traditional -
source of assemblers, compilers and interpreters. In ad_dition, many manufacturers now
offer a range of application programs. Although, until the ‘early 1970s, most
manufacturers' software was included in the price of the hardware, more 'recent
'unbundling' policies have resulted in software and hardware being separately priced.
The net result of this 'unbundling' policy is that some software is supplied at no _‘charge,
sorne software is full.'y charged, and other software appears to be'partially charged.
Where the software is not~fuﬂy charged, it may be assumed that such costs as
distribution and maintenance are still included with the hardware charges. '

Deficiencies in manufacturer-supplied software have, - in ‘the past, created
opportunities. for indépendent suppliers to produce alternative ‘packages. Unbundling of
software has encouraged buyers to shop around also creating opportunities for

1ndependent suppllers.

Software Houses

Software houses which rnain_tain a pool of expertise, usually ‘Withfabroad range'
of experience of different rnac.hines and programming languages, customarily pro‘duce
software packages, supply supplementary staff for in—house program development, or A
develop turnke).' systems. In addition, they may act as sales agents for proprietary‘
software packages produced in the company or elsewhere. In some cases software)

houses have expanded into the service bureau or custom hardware area.

" The initial ‘cost of developing a software package can be \)ery high, many man-
- years being required for.a complex package. Without outside funding', rnan'y software
houses ‘must rely on their consulting and -turnkey activities to fund development
projects. The U.S. has enjoyed traditional success in software house/activities. The

U.K. has also been particularly successful in this area, but with the emphasis being on

turnkey systems and consulting rather than packaged software. Canadian companies
are also enjoying considerable success in the turnkey and consulting areas, particularly
in the U.S. /

User Groups

Most manufacturers of computers sponsor user groups for théir customers.
Software exchange schemes are a useful aspect of the usef' group activities. In
addition, software exchanges are often arranged formally or informally between
members of other common interest groups. Under such exchanges, it is usual for both
the manufacturer of the hardware and the source of the software to disclaim all
responsibility for the package supplied, i.e. the person acquiring the software accepts
all risks associated with the package and also agrees to do his own maintenance, as

necessary. : _ ’ -

' Other Sources

In addition to the above sources, software may also be supplied by third party
software brokers or by computer stores. Software brokers are often used by software
producers who do not have their own marketing force. Computer stores concentrate
mainly on the hoBby, small business and educational market. Programs for these

markets are also widely available direct from the programmer through mail order.

2.7 Software Support

Maintenance for standard packaged software is nofmally provided by the
vendor and included in the rental price. Where a package is sold outright, maintenance
may be included in the price for a specific period of time, or may be obtained from the

vendor as part of a separate agreement.

Software purchased or leased from a manufacturer is usuall'y maintained by

'~ the manufacturer at no extra cost on condition that:

-

C e T e

(a) that the software is listed as "currently supported” and;
(b) that the user has not made any modification to the software.

Manufacturer support is also wusually available ‘for‘ no-charge software.
However, experience tends to indicate that, when corrective action is needed, fully

charged software receives a swifter response than does no-charge software. .

Maintenance of in-house software is, of course, the responsibility of the _

-installation.

Maintenance of turnkey and contracted software is dependent upon individual
contractual arrangements. '

3, THE ECONOMICS OF SOFTWARE
3.1 Introduction

The objective of this section is to provide a quantitative review of software
production and use. Included in this section are estimates of overall software activity

in Canada.

During the preparation of these estimates, it was -necessary to make
assumptions concerning software value, software longevity, and maintenance effort.
There were found to be no uniform standards for estimating these items. As there are
several valid ways of looking at each, a discussion of the issues involved in each of

these topics is included in this section.

Early in the study, it was recognized that quantitative information on the
software industry was incomplete and that it would therefore not be possible to attach
-precise numbers to products or activities. Instead, it was decided to develop order-of- .
magnitude estimates and projections. The basis used f‘or ‘these estimates Is the
Computer/Communications Secretariat. growth model (Ref. #4). Before deciding to
accept the Growth Model as a basis, estimates were developed outside the model and
the results compared with those of the model. The results obtained were found to be of
the same order of magnitude and the model, which had been used for previous

estimates and projections, was judged to be still valid.

Because of the lack of consistent and comprehensive statistics on data
processing in general and on software in particular, it was necessary to draw on data
from several sources each of which uses different techniques and categories for data
collection and analysis. In some cases where a singl.e‘ source presents data covering a
number of years, the techniques and 'categories‘ used may have been refined or changed
over the years. It must be emphasized that extreme caution is necessary in the use and
comparison of data obtained from ,d_iversé sources. It is stressed that the figures
presented m this report are intended to give order-of-magnitude estimates only and
should not be regarded as definitive. ' |

Because of the great diversity, both of the software being produced and of the

companies producing it, it was decided that it would not be appropriate, in the time

availabte; to attempt any form of survey, there being a high .risk that any such survey
would have been unrepresentative of the ,industry'as a- whole. .Instead, informal
contacts were Aestabli‘she'd with members of the software commun‘ity in order to
establish an exchange of views durmg the penod of . ‘the study and durmg the.
preparanon of thlS report. - ‘

3.2 The Valuation of Software

Some of the confusion over software valuation is illustrated by the following

examples:

- Software is. regarded as an intangible asset by bankers, ‘financial
institutions and-auditors when analyzing a company's assets or compilingsa

- balance sheet;

. - Revenue Canada/Taxation treats software as a tangible asset and requires‘
that softare development costs be capxtahzed. Depreaatlon of up to
lOO% is allowed; '

- . Revenue Canada/Customs & Excise con51ders that systems software should
be charged duty at the same rate as the hardware if, as often happens, the
software is included in the price of the hardware. Application software, or ,
system software which is sold separately from the hardware, is not

dutiable, -although duty is charged on the*med'ia on which the software
_enters the.‘country. -Thus, for software carried oxt a magneti.c tape, the -
importer will pay 'duty‘only on the tape.\For' a ptog’ram‘ carried into the
country on punched cards or received via’ telecommuhicati'ons, no duty will

be imposed;

- = The Federal Government requxres that software be treated as tanglble‘
property when licencing and exportmg high technology products to eastern
- block countries; ' '

- Software is not regarded as patentable subject matter in Canada but may
_be granted a copyright. Some software has been patented in the U.S. In the

U.K. some software produced by a government agency is distributed with a
.crown copyright.

- The U.S. government contends that software is intangible and therefore not

eligible for investment tax credits.

- There is no doubt. that the confusion over whether software is tangible or
intangible is a‘problem, pérticularly for small companies wishing to obtain financing
for software development. This section discusses some of the factors involved in
software valuation. During the discussion, it will be useful to bear in mind the

difference between cost and value.

Market Valuation

Unless a software package is to be sold, it is difficult to attach a market
‘valuation to it. When a software package is sold, its value to the vendor and/or

producer is related to the revenue generated.

In arriving at a price for a software package,, it may be assumed that.

development costs, marketing costs, projected sales volume and projected
maintenance costs (for those packages sold inclusive of maintenance agreement) would
be the primary determining factors. However, indications are that a frequent
overriding factor is simple market economics, i.e. "what the market will bear". This
helps to account for some of the erratic price movements, particularly for sof'tware

which is sold rather than leased.

- In some cases, particularly where software has been "unbundled", software
packages which were previously included in the hardware price are now distributed
"free". In addition, some new, basic software is also distributed and maintained at no
charge. It is, however, generally assumed that costs of the "free" softWére are
included in the hardware - a view supported by the RC/CE positién on system software
valuation. It is estimated that approximately 25% of the cost of the hardware can be
attributed to this "free" software. (It should be noted that, in the case of IBM, the
amount of useful "free" software is being progressively redhc_ed. The process of

achieving this includes making only very basic packages available at no cost and

L5.

charging for any performance related enhancement. The charges for these
enhancements and the benefits resulting from them are such as to make it no longer

cost effective to run an enhancement-free system.)

'Afurther factor which influences the value of software to a vendor is the
"silent salesman" factor, i.e. software distributed by a vendor is often designed in-such-
a way as to encourage the user to add more equipment in order to optimize the use of

the package.

Clearly the revenue generated by the software package alone may not give an
accurate indication of the value of the package, even to the producer. :

Development Cost Valuation

For an installation contractlng out a software development pro;ect or even
developing software in-house, the initial cost .can be assessed fairly easﬂy. However,
the cost of ongomg maintenance and enhancements to the package tends to get
absorbed into ‘the general EDP budget and the total ongolng cost of the inhouse oL

- package is frequently underestimated or unknown. -

Replacement Cost Valuation

Another way of valuing software is to consider the potential cost of »
replacement. In most cases (owing to lnflatton) this will- be 31gn1f1cantly hlgher than
the original cost of developmg the software. In some cases, however, replacement cost
may be lower than the original cost, e.g. if an off-the-shelf package is now available
to do the job, but was not available originally. Conversely, if a user were faced with
replacing a package produet‘ with custom software, the increase in c':ostvcoul_d be
e'xtreme'ly high,. particuiarly if the product replaced was a no-charge item. A

6.

Value in Use

This is possibly the most difficult way to assess software value but that does
not make its consideration invalid. The concept here is that a program is valued
according to the function which it performs, i.e. according to its operational’
effectiveness or the extent of its usefulness. Efficient programs which are used "
extensi\}ely, which generate signiﬁcant revenue, either directly or indirectly, which
result in significant savings or which- perform sorne critical control or processing
function, are clearly more valuable than programs which perform some trivial or non-
essential task. For such programs, the initial purchase or development cost may bear
no relationship to the importance or value of the function performed. In such cases, an
assessment of the cost and consequences of not having the program may provide an

indication of its value to the installation.

Although the foregomg does not claxm to be a complete examination of the
ways of valumg software, it serves to illustrate some of the difficulties faced in trying
to determine the value, either of an individual program or of a national software
inventory. It also serves to acknowledge that the method chosen for estimating the
value of software aetivitiea in Canada (Section 3.6) is not the only method available
although, given the circumstances and complexity of the issue, it is one which is

believed to be realistic. .

‘3.3 Software Maintenance Estimation

It is evident that a large portion of software activity is devoted to software
maintenance. As there is no general agreement as to exacily what constitutes

mamtenance, the following discussion has been prepared.

There appear to be two principal ways of estimating software maintenance
effort - one based on development costs, the other based on annual operation costs.
Each of these methods can be subdivided into at least two ways of estimating.
maintenance costs, e.g. the former may estimate annual maintenance costs as a _
percentage of the cost of developing the software package or as a percentage of total
life cycle cost (which includes the initial cost of 'development)§ the latter may express
maintenance costs as a percentage of the annual EDP budget or as a percentage of the

annual personnel costs.

17.

Some development cost/life cvele estimates suggest that 30% of the total life
cycle cost is usually assigned to systems development and 70% to m_alntenance (ref. 1)
There ‘are, however, seve;al problems. with the development percentage method of
estimating maintenance effort. Development costs are usually given in actual cost
dollars rather than current dollar flgures. In t1mes of high inflation, the actual cost of
maintaining a software. package may be con51derably higher (1n real dollars) than the

development cost. Further, since inflation is not constant and _f_uture mflatlon rates

" cannot'be accurately predicted, .unless the development costs are revalued to current -

dollars each vyear, it will not be possxble to obtaln a rellable and consistent
develOpment/mamtenance cost ratlo. A further problem is that the development cost
may be unknown, e.g. with a vendor-supplied operatlng system which may be a no-cost
item but which may require regular and extensive maintenance activities. Other

problems with this method of maintenance estimation are~-

I, the maintenance activity tends not to be _level' over the life of a piece of
software, but rather to be concentrated in the first year or two ‘and then
diminish, i.e. software should become more reliable with age. (This will
tend to reduce but not ellmlnate ‘the effects of a. varymg rate of

inflation.);

2. well written packages reduire mueh less malntenance than peorly written
‘packages: In theory, the ‘more effort put into the development, the less
maintenance should be needed, i.e. there should be some relationship of
mverse proportlonallty between development effort and maintenance’
effort. This also makes it difficult to arrive at flgures which indicate an

average maintenance cost related to development costs; and

3. althoi.lgh some 'maint‘enancelfunct&ions, e, g. routine debngging, may relate’
directly to the sxze and complexxty of the onglnal development package,
-other maintenance functlons, e.g. parametnc type changes such as may be
part of the system generation function, bear very little relationship to the

 magnitude or-cost of the original development. .
Before examinlng.the topic ,of'_ maintenance as a percentage of ‘cur_rent

operating costs, it is appropriate to consider what exactly is meant by maintenance. -

Reference 3 suggests that of total, person hours spent by programmers and systems

18.

analysts, just under 50% is currently spent on application system maintenance, just
over 4#0% on new application development. Other rough estimates have indicated a-
50/50 split between development and maintenance, however this is in conflict with
figures obtained from actual installations, some of which indicate that a much smaller
or_‘larger percentage of programmer/analyst expenditure is on maintenance. This
discrepancy appearé to be the result _6f differing interpretations of the’ term
"maintenance". The functions listed under mgintenance in Reference 3 and the

percentage of man-hours expended on each function, are as follows:

emergency fixes : : 12%
routine debugging , ' 9%
changes to data & input files - 17%
changes to hardware & system software 6%
enhancements for users - o S42%
improvement of documentation related to gnhancements 6% .
re-coding to improve efficiency =~ 4%

other ' : A 3%

From this it may be seen that the largest smgle actmty 15 system
enhancement. ‘This leads to the question "What constitutes an ‘enhancement?" An
enhancement which adds new features without replacing any of the existing functions
could be regarded as a development activity. In many cases, however, an enhancement
may constitute the replacement or improvement of existing code. It would appear, .
therefore, that at least s'om.e enhancement activities should be included under
developiment rather than maintenance. This would take into account the increased

value added to the existing software base as a result of enhancements.

In considering maintenance as a pércentage of current expenditures, perhaps
we should cqnsider what happens when expenditures change. In the normal course of
events, total maintenance expenditures would increase each year to take account of
any expansion in the software inventory. Distortions would arise when the total
expenditures increased or decreased diSpropbrtionately. If expenditures were reduced,
emergency.tfouble-shooting, rout-i,ne debugging and generation of new systems would
likely continue but enhancements and overall development activity would probably be
‘reduced. In such a case, the percentage of maintenance activity, excluding

enhancements, would be higher than average. (In certain circumstances the

19.

enhancement effort may, however, be increased in an effort to prolong the life of the
software.) With a disproportionate increase in expenditures, the converse would happen
and maintenance activity, excluding enhancements, could be proportionately less.

Such distortions would tend to average out over two or three years.

Since it is, in general easier to reduce (or defer) hardware expend1tures than

. people costs, it may be more: approprlate to express mamtenance actmty (or

expenditure) as a percentage of total software activity (or expendlturc) rather than as
a percentage of total EDP budget. For purposes of the TBDF. study, this method is used -

as the basis of measurement of maintenance activity. If. maintenance is considered. to

" include all enhancements then maintenance activity probably absorbs about 66% of

software resources in 1981, development only about 34%. If enhancements . are-

.excluded from maintenance then, according to the table from Reference 3, these

percentages are - reversed; development takes - 66% ~ of the software budget,

maintenance only 34%.

3.4 Software Longevity

The Estimates of Software Activity (Sectxon 3.6) make reference to a software
life of 5 years and 10 years. Little quantitative data has been found on the subject of'_ "
software longevrty It can be assumed that a software package which requlred a large

development effort to produce it, will normally have a reasonably long life. It does not-

~ follow, however, that a program or package which requrred few resources to produce it

- will have a short life.

One factor influencing the life of a program is- the indu\stry sector for which

the program is developed - Certain sectors, e.g. scientific and the oil industry, ‘often

having requirements for one-shot or short term’ programs. System software, by

contrast, tends to have a long life in most cases.

Another very important factor influencing soft‘ware'longevity is machine.
architecture. Fifteen or twenty years ago, a change in ‘hardware usually necessitated
large scale replacement of the software. With the more stabilized machine

architectures of the last ten years and the efforts of hardware manufacturers to

provide upward compatible ranges of processory the potentlal life of a program is
greatly extended ‘ '

20.-

A third factor is the trend to the use of standardized high level languages
which also potentially prolongs the life of application software.

A complicatih’g factor in trying to determine the longevity of a program is -
that, where programs have been in existence for several years, the current version
may bear little resemblance to the original because of progressive changes and

enhancements over the years.

A 1977 survey into software life expectations (Ref. 2) indicated that users
“expected the life of packaged software to be between 5 and 10 Years (depending on.the
package and excepting operating systems which were estima‘ced“to, last only 2-1/2
years). The suppliers of software packages estimated a life of 6 to' 3 years-for the

packages and 4 years for the operating systems.

Reference 3 reports that in response to a 1978 survey of DPMA members, the
mean age of application systems reported was 4 years, 9 months with the most
frequently represented age category being | to 3 years. However, among the 487
responses, a significant number of old systems Were reported, with .20 systems

reported to be over 12 years old.

While accurate and meaningful quantitative information on software longevity
is scarce, it would appear that, with the stabilizing influences of standard languages
and machine architectures, the average life of a software application system or

package (which was intended to be reusable, i.e. not one-shot) is likely to increase.

3.5 Factors Related to the Growth of Software Activities

The rapid growth of software activities in the last ten to fifteen years is a
~ direct result of increased worldwide demand for computerized processing covering a
wide variety of applications. This trend began in the mid 1950's, accelerated in the mid -
1960's, as medium and large scale machines grew in popularity, and after sla'ckenin’g in
the early 1970%, acéelerated again in the late 1970's as the development of so-called
minicomputers and microcomputers brought lower costs ‘and made computing

economically available to much wider markets.

.The growth of‘ the Canadian comp_uter population is. indicated in ‘Fig. 3.5.0.
The growth in value of computers installed in Canada is indicated by Fig. 3.5.2.

" Accurate figures for the world computer population are not available, however, some -

indication of world growth in computing equipment sales can be gathered from Fig.
3.5.3 which shows worldwide revenues of U.S. compames (U.S. _companies are

- estimated to supply 70% to 80% of the world's COmputmg equxpment)

Throughout this high growth'period,‘computing power has become significantly

. cheaper, mainly die to improved semiconductor technology (Figs. 3.5.5 and 3.5.6). As

an example, $20, which will buy a 65,536 (64K) bit memory (R_AM)_ chip today, could

_ buy the equivalent of only a 1,024 (1K) bit memory in 1973. In addition, the relative

computer power of the installed base was dou'blingv(and continues to do so) every two
to four years. In 1981 the relative power of the 'mstalled U.S. computer‘ base was
approximately 32 times that of the 1966 U.S. computer base (Fig. 3.5.7) and 10 to 12
times that of the 1971 base. As Fig. 3.5.4 _indicates,i'Canadian‘ expenditures -on

hardware have kept pace with the U.S. growth as indicated in Fig. 3.5.3. It may be -

assumed, therefore, with a reasonable confidence that the Canadian installed
computer base has also increased in power at least 10 times over the last ten years. .

During this period, however, it is evident that growth of computer personnel has not

‘kept pace with the increase in power of the installed computer base (Fig. 3.5.8). Figure s

3.5.9 compares the growth rates of relative -power, hardware expenditures -and
software staff and illustrates the main reason for the current shortage of software |
staff. An indication of the U.S. personnel situation is'giVen by an estimate from -
SHARE, the IBM user group which claims that m 1975 there were 175 000 computers
(minis, mainframes and small business machmes, but excludmg desktOp machines) in
the U.S., and about 220,000 programmers - a ratio of 1.3 programmers per machme By
1980; this ratlo had dechned to. 0.5 programmers per machme ‘

Throughout the last fifteen years, regular predietions "have appeared to"the‘
effect that software" packages would, within a very short time, account for a very ;‘
large portion of software expenditures. In spite of some quite forceful arguments as to
why this should happen, it has not happened. -Packaged software still represents a - '
relatively small (though growing) part of total EDP expenditu’rés (Figs 3'5 10 and
3.5.11). The bulk of software expendxture is still concentrated on custom software

developm ent and mamtenance.

22,

o

Total EDP expenditures are growing but the capital cost of the hardware is

taking a decreasing part of those expenditures.

This decrease in hardware ' capital cost is offset to a ‘certain extent by
increases in the cost of maintenance. (The cost of maintaining computing equipment
which needs frequent or prolonged human attention, e.g. electromechanical devices,
can be expected to rise at a faster rate than its capital cost will fall. For electronic
equjipment which can be maintained by exchanging printed circuit boards which are
then returned to a factory or workshop for maintenance, ’main-tenance costs may be

expected to rise less rapidly.)

23.

Figure 3.5.1 - Estimated _Numbers of Computeré Installed in Canada 1970-1980

Monthly Rental = 1970 1971 1972 1973 1974 1975 1976 - 1977 1978 1979
Under $1,000 ° 1300 2000 3200 4500 7100 9900 13400 17800 23200 29600
Over $1,000 3160 3760 4340 5100 6500 8100 9700 11700 13600 15200

. Source: DOC estimate based on CIPS Computer Census and Other Sources

Figure 3.5.2 ~ Estimated Annual Rental Value of Computérs in“Canada ~
o R 1970-1980 S

($C Millions)

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

Total annual
revenue from

(a) Monthly rental

under $1,000° 13 .20 30 40 55 75 100 120 150 180

(b) Monthly rental , o S ,
over $1,000 : 387 - 435 490 565 665 755 860 . 990 1150 1300

Source: DOC estimate

- 1930

37000

16800

1980

- 220

1430

Figure 3.5.3 - Estimated Computer Hardware Revenues

$u.S. Millions
1971 - 1976
U.S. (Dornestic) 6000 14000
~US (Worldwide including Domestic) 11000 25000

Source: AFIPS & IDC

1981

123000

48000

Figure 3.5.4 - Growth of Canadian Hardware Expenditures (Annual Rental Values)

SCDN Millions

1971 1976

Annual Rental Value (ARV) 455 960

Source: 'DOC Estimate

1981

1880

——n -

Figure 3.5.5 - Drop in Average Comgdt_er System Cost

Per 100,000 Calculations 1952 to 1980

10.00

Year

Cost per
100.G00

calculations?

i aws2 st
95 1,00 e 1958 N6
d =1 1) a9
. R G4 (VRN
o S0 b Y 201
o e 9008
B ERRLE aorrs

[}

e

Ty
GO St
003 o . $0 0025 |
’
TR e
Gy) ‘ l -
1950 1960 BERETY) t9g.

Year

V"’Jn-.l core 30 00N Caitutations 13 based on data tor the feilowang T oot
nyntry (wilth year (1 paranthasas) G (19521 7030 {(1958) =50:%) o a
MRS L1920 J03111976). 4300 (198N) .

Source: Office of ‘Technology Assessrﬁentf- Ref. 19

:‘r”-‘inglre

3.5.6 - Increase in Capability of Semicondtictor Chips 1956 to 1930

107

AV

1t
a.0

y
Bty

G

S'-If' W2eJUCion LN Ccagsat
tunclinns par Zup (!

R I
1960 1970
Year

Source: IEEE - Ref. 20.

ey

~ Figure 3.5.7 - Relative Power of Installed U.S. Computer Base

Units of
Relative.
Power -

Source: IDC - see refs. 12 & 13

Figure 3.5.8 - Growth' of Computer Personnel in Canada
(Estimated Number Employed) °
1971 1975 1981

All Computer Staff 70,000 110,000 135,000
Systems Analysts/Programmers 20,000 33,000 41,000

Source: DOC Estimate : A _

27.

o

Figure 3.5.9 - Comparison of Growth Factors

stems Analysts ’ - '
Frogrameers L :)
. .

Janad.an Ar\

UraWe ‘e
R4 at
N N Y T
200 400 . HG0o 800 Lena
A % Increase 1971 to 1981 ’

Figure 3.5.10 - Distribution of EDP Costs in Federal Government

Direct EDP Costs

Salaries & Consultants
Equipment Rental & Maintenance
Data Transmission

Service Bureaux

Software Acquisition

Production Supplies

(by %)

1975-76 1977-78
43,4 44,7
21.9 19.8
2.7 3.1
9.3 9.9

0.2 0.5
2.8 24

Source: TBC-Ref. 7

Figure 3.5.11 - Computing Services Revenues in Canada

Processing
Inpuf Preparation

Systems Development

* Software Packages

Other Services

(by %)

65.7

7.8
13.6
5.5

7.5

1979-80 1980-81
42.3 2.7
21.4 21.4
3.8 3.9
- 10.3 10.1
- 0.6 0.6
2.4 2.4
1977 1978 1979
63.3 64.1 64.1
8.4 8.1 7.4
15.0 14.3 15.8
6.0 6.9 6.9
6.6 6.5 6.0

Source: Evans Research Corp. - Ref. 14

29.

3.6 Estimates of Software Activity

These estimates were made within the framework of the Computer
Communications Se’cretariatp'.'Growth" model (Ref. 4). This tvas done partly to make
‘their context and limitations clear; and "partlyA to facilitate compari'so'ns ‘with other
'-estlmates made on the same basis. It should be kept in mmd that this is an activity
model not an industry model (Ref. 4, pp 8- ll), 1e.,1t lncludes both in- house and

market act1v1ty.

Software Development

At present, most computer software 15 written for the- contmumg use of a
particular customer or firm (included in this category is the prov1sxon of. customized
- ‘packages for- partlcular apphcatrons). The value of this software can most readily be
- estimated on the basis of the full cost of the resources used in Aits preparation (for
in-house) or the revenues received from its sale (for contract work, etc.). Within the
mode]l format, Canadian users "own" aé a reéource the' software 'that they have
developed in-house or- have pald to have developed for the1r use. They do not IWn
software ”rented" from manufacturers or software houses.

To estimate the value of software produced m—house by users of Canadian -

computlng services, the followmg pomts were consrdered

- CIPS Salary Surveys show that systems analysts and programmers (SAPS)
account for about 35% of total EDP . Pe'rsonnel costs, and their supervision
and management for a further '15%. Half- of the Personnel costs establlshed

in the model can therefore be ascr1bed to software.

- Maintenance (including all enhancements) is"considere_dv to(absorb the
greater part of this staff cost today, ‘but ir_rthe '60's most .ofr this_cost:was
used to develop new software. It is assumed that about 2/3 of this cost was
available to develop new software of continuing value in 1965, that this
share declined rapidly to 39% in 1975 more slowly to 3406 in 1980 and
vstablhzes at 33% after 1985, ' "

30,

- Software development requires certain support costs. These are assumed to
average 50% for machine costs, key punching and secretarial costs, and
25% for accommodation, supplies, education and travel.

- The resulting annual figure appears on the first line of section | of Fig.
3.6.1. Five year and ten year cumulations set the range for the value of
software in use (first line, section 2). We have no solid information on how
long a software system typically lasts before it must be re-developed, but
5-10 yeérs seems a reasonable range. (See discussion in 3.4 abo_ve.)

' ' Sevéral assumptions also had to be made to set a value for software supplied -
by firms and individuals engaged in this activity:

- Statistics Canada data (Reference 6) for 1972-1979 were converted to an
activity basis and adjusfed for the effects of changes in coverage, data
suppression, and shortfalls. These adjusted data suggest that software

formed the following proportion of total computing service activity

revenues:
1972 1973 1974 1975 1976 .1977 1978 1979
Annual 16,9 183 253 211 196 21.0 239 24.9
3-term MA 20.2 2.6 22.0 20.6 21.5 233
5-term MA 20.2 21.1 222 22.1

- This suggests little change in the software proportion of services during the
early '70's but strong growth in the late '70's (paralleled by the rise of one
sof tware devélopmént company to a leading position among service
industry firms, the biggest of which were previously all service bureaus).
The "annual" data above, rounded (and smoothed in 1978) were used for
1975-79, and a declining rate of increase to 33% in 1985 and 38% in 1980
was assumed. These percentages were applied to the Canadian Computing

Service Revenues of the model to obtain software revenues.

- Software firms perform maintenance as well as new development. For lack
of good information, it is assumed that their proportion of new
development is higher, but also declining from 80%.in 1970 to 60% in 1990.

3L

¢

This percentage, applied to software revenues, gives line 2 of section ! of
Fig. 3.6.1; five and ten year cumulations give line 2 of section 2.

Software Maintenance

Maintenance, including all enhancements, accounts for most of the remaining
in-house expenditure on SAPS. (including overhead: 80% of the balance is assumed) and
for most of the remaining expenditure on purchased software (a constant 10% of the
total is allowed for "other" work). This "other" work, which is not included in the table,
would include executive software groups (and supporting purchased expertise), one-
shot experimental programming and other miscellaneous ‘activmes; The estimates for

maintenance appear in Section 3 and 4 of Fig. 3.6.1.

Maintenance work must be considered in relation to the amount of software to
be maintained. If a five-year software life is assumed, then maintenance costs per -
annum are 28%-32% of development costs, which seems high. If a ten-vear life is+
assumed, then rnainten_ance ‘costs fall in the 17%-22% range, which seems more .

reasonable.

Note that one. outcome of the assumptions made to this point is .that

' maintenance costs rise as a proportmn of inventory through the '70', but decline in the -

'80's. This outcome is believed to be essential to. the contmued development of

computing use though it must be admitted that the evidence for it is stlll non-existent.

Other Software

‘ Certain software elements reported ‘svepara'tely- in - both Treasury Board
(Reference 7) and Statistics Canada surveys (Reference 6) were included in equipment
costs- when the Growth model was designed. These were the costs of acquisition of
software packages. Prior to IBM's "unbundling" at the end of the '60's, almost all such
software was usually supplied without charge by manufacturers, and the amount and
quahty of software supplied was a critical factor in computer choice. Even after‘
unbundling it remained a critical factor, and mduqtry and government personnel have

1nd1cated that manufacturers' software (whether or not charged for separately) was

E¥s

usually included with equipment rentals in their accounts. What tended to be reported .
"to Treasury Board or Statistics Canada was payments to _q:c_b_eg‘_-softwaré suppliers -
(hence the small size of the amounts reported). Most such packages originate with
foreign. firms, though some are sold and serviced through Canadian agents.

The pfoportion of equipment costs that these packages form can 'easily be
isolated and expressed as a percentage of the equipment totals for the Canadian Use

and Computer Services modules of the model. The percentages are:

, C74-5 75-6 76-7 77-8. 789 79-80 80-8!
B S 1.9 0.9 23 25 2.8 2.9 3.2
- C.S. Industry 3.1 56 53 6.2

These data show higher ekpenditures by the service industry than government
users (about 5:2) and a rising trend for both. These assumptmns underlie the figures in ‘
Section 5 of Fig. 3.6.1 and represent a gradually increasing proportion of ‘the new.
software developed (section 1), rising from 3.4% in 1975 to 8.2% in 1990.

_Another software element that should not be overlooked (though again not part.
of the "ihventory") is the software component of the use of foreign services. This is
largely sdf;cware developed by parent companies for use of parent and subsidiary, but
also includes the appreciable software cost of specialized computing services .'
purchased by users from foreign firms not directly represented in Canada (real estate
listings, credit checking, cablevision bﬂling and database services are all examples as
typical as remote computing). For lack of other information, this was taken to bear
the same proportion to the total cost of use of foreign éervices as software bears to
the total cost of using'dqmestic services'(exclud'ing the specialized and one-shot jobs).
This appears as section 6 of Fig. 3.6, 1.

For Comparison

Two other lines attempt to give some perspective to these estxmates The first
(Sectxon 7 of Fig. 3.6.1) is the increase in annual rental value of computers installed in
Canada. If this is compared to new.software developed in the year (Section 1) the

increase in computer rentals falls from 25% of new software development cost in 1975

33.

to only. 14% by 1990. The second (No. 8) ‘is the undepreciated capitai cost of all

computers installed in Canada, which can be corﬁpared with the. estimated
. development cost of all software in use (Section 2). If the l_onger 10-year average lifé
of software is assumed, then software progresses from 89% of computer value in 1975
to 103% in 1990, i.e. it is of the same order of magnitude. If the shorter life cycle, it
is approximately 60% of equipment inventory -'in elther ‘case, an xmpresswe figure

which has been largely 1gnored to date.

Many observers have, for some years, been suggesting that péckaged software
may be about to overtake custom software as a revenue producer for some of .the
software houses. There are some indications that this may now be beginning to happen.
For examplé, Systemhbuse received revenue -of $8 4M from package- software and
$20.9M from services and custom software in 1980. That company's 1981 flgures are
estimated to be $54M from packages and $36M from services. The software houses '
which are benefiting from this increase in business note that most of the sales are
'being made to non-technical end-users -rather than to EDP professionals in éxiéting
data processing departments However, the latest data - available from Statl‘StICSA
Canada (1979) still shows software packages as accountmg for less than 30% of ‘

sof tware revenues, and llttle mcrease in this share since the mid 1970'

34,

Figure 3.6.1 - Summary of Software Estimates -

Software Development

l. Written in year by
Canadian service users
Cdn. Comp. Service Suppliers
Total ‘

2. Total Value in use
Canadian service users
Cdn. Comp. Service Suppliers
Total Inventory '

Software Maintenance

3. Total annual cost
Canadian service users

Cdn. Comp. Service Suppliers ,’

Total

4, Maintenance as % Inventory

Other Soffware

5. Cost of Rented packages
Canadian service users

Cdn. Comp. Service Suppliers.

Total

28%-19% 32-22%

10
5
15

6. Software component of For. Serv. Used

by Foreign Service Users

For Comparison

7. Increase in year of ARV of

Computers installed in Canada

90

8. Undepreciated capital cost of all

Computers installed in Canada

35.

2.8

110

30
10
40

330

170

5.5

1975 1980 1985
(SM)
- 380 660 960
60 170 330
440 830 1,290
_ ($B)
1.5-2.2 2.7-4.1 4.2-6.9
0.2-0.3 0.6-0.8 1.3-1.9
1.7-2.5 3.3-4.9 5.5-8.8
(M)
470 1,020 1,560
10 50 130
480 £,070 1,690

1990

1,200
460
1,460

1,950
230
2,180

319%-19% 29%-17%

($m)

50
- 30
80

950

(5M)

225

($B)
9.2

&0
40
120

1,620

200

12.6

3.7 Desktop Computers -

Desktop computers have been included as a separate topic for several
reasons: they represent a specialized area of the computing market, an area which is
getting a large amount of publicity and which is experiencing a high growth rate; the
future .orientation of this market is not yet clear; there is the potential for much -
greater diversification of software productidn; and ‘both the merchandizing methods
and the customer base for these machines appear to be quite’ different from those

previously experienced in the computer world.

Although it appears that most desktop computers are sold for use as small
business machines (SBMs) they are not normally included in the SBM category of

~ computer surveys which tend to include larger machines with more‘peripherals and a

higher price range than most desktops. Reference 8 suggests that purchase prices for
SBMs are usually in the region of U.S. $5,000 to U.S. $100,000 and while acknowledging
that many desktop machines are now being purchased as SBMs; it indicates that, when
equipped for use as an SBM, the desktop computer is likely to have a pnce in excess of
U.S. $5,000, rather than being in the usual desktop entry-level price range of U.S. $5OO
to U.S. $l 000.

The definitbns of a desktop compﬁtef are at least as val;ied as those of a
minicomputer or an SBM. The wusual price range of desktop computers is SI,OOO to
$10,000, however, some desktop computers are available for. around $200, a price
lower than some pocket computers and programmable -calculators. Surveys on the
number of -desktop computers seldom make clear what machines ate included. Figure.
3.7.1 estimates worldwide growth of desktop machines based on the U.S. IDC figures.
Flg 3.7.2 depicts estimates of the Canadian desktop- computer population. These

estunates are based on the assumptions that the Canadxan market for desktops -

' developed slightly later than the U.S. market and still lags somewhat behind. -

" There is no sharp division between desktop computers and other comp’uters‘"

but rather a continuum of processing power which ranges from the very largest general

~ purpose computer to the simplest microprocessor. At the.low end of this continuum we

have the single purpose pre-programmed computer on a chip, whichl may be used for
controlling the fuel supply in an automobile or controlling a microwave oven.

Increasing- in complexity we have electronic games and .non (user) programmable -

36.

electronic calculators. The next step in the continuum is the programmable calculator
and the pocket computer from which we progress through the wide range of available

desktop computers to the more traditional data processing machines.

When desktop machines were first introduced to the market place, they
- were directed mainly towards the home and hobby market and marketed through retail
stores and by mail order rather than by traditional computer sales techniques. Surveys
have indicated, however, that the small business user has accounted for most of the
sales since 1978 (Figure 3.7.3). The rapidly growing market in desktop machines is
difficult to categorize and to quantify. The desktop machine which is sold for business
use, however, is likely to be more fully equipped than one sold for home or hobby use.
The average retail price of a business desktop machine in Canada is believed to be of
the order of $4,000 (excluding software). Discussions with dealers and suppliers would
suggest that between 30,000 and 35,000 such machines are likely to be sold in Canada
in 1982. '

In the context of programming resources, regardless of the amount of
programming necessary, each of these machines draws the necessary programming
talent from the same labour pool, no matter whether the programming involved is a
one time unchangmg program for a microcomputer in a toy or a game, a set of
~programs to be made available off-the-shelf for buyers of programmable calculators,

or large scale system or application programs.

The softw'are‘ market for desktop computer products and services is
different in several respects from the traditional software market. The large number
of desktop machines and their varied use has resulted in countless software packages
being developed, often by hobby computer owners, and sold either through the retail
outlets or -by mail order. Experiments are bemg conducted " in Europe into the
transinission of such programs using . packet radio techmques. Many of the
manufacturere of desktop machines obtain their software by:employing freelance
programmers to whom they pay royalties. Ih this way, they operate like book
publishers. Because of the high production volumes (and sometimes because of the low
overheads of the software producers) these packages sell very cheaply, sometimes for
as low as $10 a copy. '

37.

IDC estimate that the value of the worldwide desktop computer software

market will grow to $200 million (U.S.) this year from $35M in 1978. One example of a

successful desktop software product is a busmess package called Visicale. This

package- makes financial analysis and planning relatively simple for non-technical -

professionals. Introduced in 1979 by a company called Personal Software and priced at
$150 to $200 per copy, the package sold over 25,000 copies in its first year and has, to
date, sold over 100,000 copies. Total turnover of Personal Software was S4M in 1980
and is expected to grow to $12M-$15M in -1981. Another example is Digital Research
of California which, in 6 years, has built up annual sales of $13M largely from.the sale
of CP/M, the most popular operating system for 8-bit micro computers. ‘

One possible problem for the small..bﬁsiness ‘user is that of software
maintenance. If a popular package from a relatively large supplier is b.eing used,
problems are likély to be detected early, reported to the supplier, and remedied fairly
quickly. If, on the"other hand, the software is a little used package, possibly from an
unknown source, not only is there a,potential problem getting the probléms corrected,
they may not even be detected for a considerable tifne, during which many potentially
disasfrous things could be happening.to the data‘ being processed. For a small business
man, partlcularly, the prollferatlon of desktop software suppliers and the lack of any-

g recourse in the event of problems, is a cause for concern.

At the present time, the volume of desktop softWare aét_ivities i.s smélliwhen '
compared to the total of all software activities. Although this is an area which is
growing rapidly, it appearé unlikely to overtake tr_aditional software activities in
volume. in the near future. What is not yét- clear with respect to desktop machines is
whether they do, in fact, represént a- whole new area of computing or whether, as
seems more probable, what we are sceingis a continuation of thé;trend towards wider
use of data processing. It does appear clear, howe\}er,_ that this sector of the
_ computing market will more ‘closely resemble cohventiohal:r‘etail‘markets. than the

'market_ for larger computcr products.

38.

Figure 3.7.1 - Worldwide Market for Desktop Computers

Total Total Value " Total Value

Numbers in Shipped In Use :
Use US $ Million US $ Billion
1976 21,000 - 170 3
1978 - 280,000 © 900 1.5
1980 1,300,000 , 2,300 5.5
Projections
1981 2,100,000 -~ 4,500 9.8,
1983 4,800,000 9,300 ' 25.8
1985 9,300,000 17,000 55.6

NOTES: Based on U.S. manufacturers having 75% of World market.
: These figures make no provision of the retirement of machines
Source: U.S. Figures, IDC (Reference 9) '

Figure 3.7.2 - Estirﬁated Canadian Desktop Computer Population

Total Value

Total Number - In Use
In Use CDN $ Million

1976 400 6
1977 1,600 13
1978 , 8,700 : ©49-
1979 21,000 o 99
1980 44,000 ' 170
Projection '

1981 62,000 230
1985 240,000 720

1990 720,000 2,500 -

Source: DOC Estimate

39.

Home and Hobby
Larger Companies
Small Business
Schools

Figure 3.7.3 - Use of Desktop Compute‘ré" o

Source: Datamation (Ref. 10)

40,

22%
11%
56%

11%

15%

67%
9%

3.3 Software Developmedt Initiatives

" Given the nature Qf‘ software, organized development of new packages on a
medium to large scale can be a high risk activity. In spite of the obvious growing need
for packaged Solutions, companies without large scale financial backing are often
unwilling or unable to commit significant resources to speculative software package
development. QOutside financing is usually not easy to obtain because of the speculative
nature of the venture and the reluctance of financial institutions to regard software as
a tangible asset. This section reviews some of the assistance available to encourage
software development in Canada. In addition, there is a brief examination of some

interesting schemes being tried by other countries.

Canadian Initiatives

Federal Government assistance falls into two categories - ‘aid, and tax
write-offs. Under aid, the Departinent of Industry, Trade and Commerce has an .
Eﬁterprise Development Program which, although not restricted to data processing,
can be used to encourage some software developmient. Conditioné -attaching to this
program include that the development project involve innovation and that it represent
a significant burden on the company's financial resources. In addition, schemes are
available to assist in the cost of marketing software products abroad. National
Revenue/Taxation permits tax write-offs for- software development, both for the

manpower costs and the machine costs.

At least one Canadian company (Systemhouse) has raised money for
software R&D by an equity issue. ‘Another company, (Sydney Development
Corporation), is currently raising $10 million for software package development by
means of limited partnership units. This scheme is similar to oil drilling funds, MURBs
or movie partnerships in that prospective investors agree to buy a minimum of 10 units
($10,000) in exchange for which they acquire a share in the profits of the development.

‘Part of the partnership's development‘ -costs may be written off against personal

income tax.

£
—

or

' Foreign Initiatives

Most western governments have some sort of R&D development assistance
avatlable to encourage the development of new software, e.g. the U.K. has a software
products scheme which is administered by the National Computer _Centre and currently
is paying about $2M. per year in the fornn'of non-repayable grants of up to 50% of .
development . costs. Such schemes appear intended to encourage vdevelopment of
produc_ts within an existing industrial base. Other countries have taken a ‘more
aggressive- approach to encourage the development of a software industry. The Irish
Republic has announced an incentive program of direct cash grants to companies‘
creating software jobs in Ireland, paying up to $10,000 for each job created..Singapor'e
and Japan_are cooperating to set up a centre of software expertise in Singapore which,

it is intended, will compete for software contracts on.a worldwide basis.

The developments in Japan and Singapore are particularly interesting.
Reference 1l outlines the steps to be taken to develop a software industry in

Singapore. These include generous tax incentives to companies developing software;

‘the introduction of computer studies at all junior colleges and secondary schools; the

setting up of computer training centres to. produce programmers and to train non-
computer professionais, and the importation of foreign computer companies and
personne] to he_ip,develop local industry and also to help transmit software skills to the
local population.

Japan is building a significant market for its software. In 1970 the Jépanese
Ministry of International Trade and Industry (MITI) creéted the Information Technology
Promotion Agency to develop software. By 1976, MITI had created a pool of 17
software companies and 5 manufacturing companies ina joint pro;ect to develop and

export software, half the cost being borne’ by the government.

42.

4. ANALYSIS

4.1 Pofen.tial Implications of TBDF for Canadian Software Activities

At first sight, taking the definition of TBDF in its narrowest sense, i.e. the
flow of computerized data over national boundaries, one could well ask the question
"What has this to do with software?" A closer look at the issues, however, indicates

that TBDF could have a very significant impact on our software activities.

The technology which facilitates computerized transborder data flow has
developed to the point where large volumes of data can be transmitted rapidly to or
from any part of the world. Terrestrial transmission media are no longer required. A
satellite channel and an earth station can overcome geographical barriers and
problems of distance. The data transmitted could be computer programs being supplied
from a central origin, or could be data associated with programs developed remotely
by linking the development computer with the software production centre. What the
technology has done is to make it possible to develop and maintain software at the |
most suitable location, wherever that may be in the world. 'Fé\ctors to be considered in
determining 'suitability of location include manpower availability, cost, timeliness,
manageability and ongoing support. Any country which can develop a centre of
software expertise providing timely delivery of competitively -priced software,
together with effective ongoing maintenance support, will be in a strong position to

. compete in world software markets.

Beéause of the generally rgcbgnized shortage of software personnel in
Canada, it could be suggested that any attempt to create such a centre of expertise
here is doomed to failure. It must _be recognized, however, that the software personnel
shortage is not unique to Canada but is é world-wide shortage. Indeed, those countries
offering an environment less hospitable to programming staff than Canada are
suffering far more from the effects of this manpower shortage and are, as a result,
being forced to pay extremely high prices to attract temporary programming staff. In
many respects, Canada is in an excellent position to develop as a centre of software
expertise. The necessary technological and educational infrastructures are already in
place. The problem is that this has not yet been recognized politically as an urgent

requirement for future economic development.

LY PO

As Section 3.6 indicates, Canada has a very largé investment in existing

software and demand for new software (packaged and custom) will conti‘nue to

increase for the foreseeable future. Unless we are able to develop the capability to
meet the demand for softwarenand‘rel_afced services, it is inevitable that the demand

will be met by imports. On the other hand, if we are able t'o‘devélop our domestic

capabilities to meet the home demand, we will have the potential to become suppliers -

to the world, since it is part of the nature of software that once a program is

produced, it can be replicated at very little cost.

The technology which facilitates TBDF could make us net exporters or
importers of software depending on our ability and political will to meet these

challenges.

4.2 The Need for a_Ca_nadién‘Softwére Industry

The software inddstry, unlike the computer hardware ihduStr.y,. is 'n_ot_
dominated by one or two suppliers, but ‘comprises many companies- of greatly varying
size, background and degree of geographic distribution. Reference 15 lists over 400

companies offermg software products and over 70 companles offermg consultmg

services in Canada. Acknowledgement of the diverse’ origins of software is made by

reference in this report to software act1v1t1es rather than a software industry. From a

macro-economic standpoint, however, it is necessary to consider the totality of

software activities as an industry, an industry with two components -~ software

production and software services. In this respect, the software industry is sinilar to

many other industries where a'pr'oduct is produced, marketed and serviced. . - B

It is considered essent1a1 that software be regarded as a product. It is the

software which transforms a naked piece of electromc equxpment into a useful

computing device. Analogies are many, but a- computer with no software may be -

compared with a newspaper with blank pages or a television station with no programs.

The resultant economic value of the end product is largely dependent on a Component :

which cannot be touched or measured in.the way the media on which it is carried can

be touched or measured.

~

[, PO

In addition to ecknowledging that software is a product, it is vital that the
eCOnbmic implications of the current investment, and the anticipated increase in the
use. of software, be recognized. Any extension in the h'umberbof computers and/or
computer-based applications results in an increased demand for software products_ and
services. Reference 16 indicates that the computer. population will continue to grow‘atA

a significant rate during the next eight years.

There are strong reasons for having software developed close to the merket.
These include gaining a sufficient hhderstanding of user needs in order to produce a
useful and relevant product, and providing strong post-seles support (training‘, problem
diagnosis and .consultancy). Software' packages which do not fully meet user
- requirements are often procured as a starting point in a software development. In such
cases, the cost of the effort ekpehded developing or enhancing the backeige may
~greatly exceed the purchase price or even the original development cost of the

package.

As the major hardware manufacturers pricing polzmes change to more
closely reflect the cost of the hardWare, a correspondmg increase in the rental and
purchase price of software offered Aby the manufacturers is inevitable. This will afford‘ '
. considerable opportunivty to independent software suppliers .to offer alternatives to the
vendor-produced software packages. These opportunities will be in addition to those
created by the grthh in demand for software outlined in Section 3. Much has been
~ heard in the past about the lack of a Canadian computer hardware industry. In fact,,
the amount being spent each year on softWare development and maintenance, greatly’
‘exceeds the annual rental value of computers installed in Canada (Fig. 3.6.1) and this

gap is likely to widen as hardware manufacturers fully price their software.

User needs make a strong, home-based software mdustry desxrable, the

-~ economics of the situation make it essentxal

45,

4.3 Factors Influencing the Development of a Software Industry-

Personnel Factors

In addressing the question of shortage of qualified software staff, it.must be
rec:ogmzed that increasing the number of computer science places available in the
universities and community colleges is not . going to resolve the present .acute
manpower shortage. Even-if the facilities and teaching staif (who are als_o-“in short
__supply in this area) were available to double, or even quadruple, the intake of
computer science students, there would still be a manpower shortage in addition to

which any such increase would take at least six years to have any appreciable effect..

It is recognized that a certain number of comouter'science specialists are .
needed each year. However, the majority of programming jobs do not require this -
‘degree of specialization. Indeed, for many applications programming positions,
someone having a degree in computer S_cience would be o?er-qualified‘and probably
over—specialized. As noted previously, for most 'orogramr‘ning positions, aptitude is a |
far more important qualification than a particular academie diploma. Recognition that
one does not need a degree in computer science in order to become a programiner is
essentxal as a first step towards resolving the manpower shortage. Steps need to be
taken to 1dent1fy ‘those with programmmg aptitude and to attract them to the
professmn. Educational institutions (including educational telewsmn), ‘professional
bodies, government and industry, all have .an important role to play in increasing
' computer literacy at all levels. It .is felt that effecfive on-the-job training schemes
| and manpower retraining schemes could be developed and encouraged on a much largex
scale than is presently the case. One further point concerning the programs currently
offered is that employees have indicated a marked preference for graduates of
university and community college cooperative programs. These programs have been.
particularly successful in producing practical (as opposed to theoretical) computer

~ .professionals.

- With the currently available jcechno'logy, the computer can be taken to the
programmer rather than vice versa - software development can be done in areas far
removed from the main computer centres provided that adequate access to the
computer is available via communication links. In this‘_waly,' those areas where the

software staff are more plentiful could help alleviate the acute shortage in other areas

4é.

without the personnel leéving the part of the country in which they have chosen to
- live. The main constraint on this type of decentralization is the requirement to

maintain adequate local support in the markets being served.

Another way in which technology can help in alleviating the personnel crisis
is in helping to mobilize those unable or unwilling to regularly attend a central work
place. Given the opportumty and electromc aides, many disabled people are able to do -
a competent programming job from their homes. In addition, many women who have
left the work force to look after homes or children, would welcome the opportunity to
be able to continue employment from a home base on a full- or part-time basis.
Schemes to encourage such employment are successfully operating abroad and could be

-adopted in Canada.

Of crucial importance to the success of any schemes for augmenting and
mobilizing the programming workforce, is effective management. Possibly the

greatest part of the software manpower crisis is the shortage of project managers,

many programmers having little inclination towards management activities. .

One further item included here under personnel but which could have been
considered under education or productivity, is that .of productivity aids for
non-technical people. By improving overall computer literacy, and by devising more
“aids to enable non-computer people to use the computer themselves to define solutions
to their problems, we shall reduce the need for application programmers. The problem
here, of course, is that most of the aids needed are dependent on software for their

development and maintenance.

Productivity and Portability

It is generally agreed that improvements in programmer productivity are
necessary. Few reports, however, clearly define what is meant by programmer
productivity. As this report is intended to be a discussion of software issues rather

than a treatise on productivity, it respects that tradition, however, some discussion of

common productivity measures is believed to be useful here.

47.

The most common productlvity concept is that of labour productivity,

usually defined. as the total output of an industry or factory divided by the number of

workers employed to produce that output. This concept is not widely used in

connection with computing (partly for lack of a suitable measure of total output), _.

although it is interesting to note that it would likely show’ arsharp year to year
i.ncrease in the productivity of computing-related staff for most of ‘the period that
computers have been in use. The concept which is used here is much narrower, and
relates not to the final output of the computing process but only to the direct 'o.utput
of the programmer himself, expressed as programs completed‘, as lines of code written

or, most often, as debugged (i.e. etror-free) statements of code produced.

Measured in this latter way, there has been little change in programmer

productivity over time. On the average, a programmer will produce some 10 to-l5

- error-free statements per day. (Although these figures may appear low, they include

the time required to design, test, debug and document the program, as well as actual

codmg time.) However, 10 statements written in a high level language can _usually_

accomplish much more than 10 statements writtén in assembler, which supports the

“general view that high level languages have increased programmer productmty, even

if there has been no increase in line of code written.

Attempts to assess programmer productivity based On'_ lines of code are

complicated by an effect similar to the Hawthorne effect, such that if a programmer

is aware he is being assessed, he tends to write the same programs using more lines of

code than if he were not being assessed. In addition, most studies are based on largé

projects using quite a number of programmers. Although ‘the figuresrepreSent an’

average, individual performances can differ greatly. A study in 1967 (Ref 17) reported

: that some programmers are able to produce code almost 10 times more efficiently

“than others and that there was no significant correlation with length of experLence or

aptitude test scores and performance.

There is no consistent means of 1assessing productivity Each study on'the
subject must decide what factors are to be consldered e.g. how much overhead is to

be included and whether only programmers are to be mcluded or other support staff

also. Programs of different types may not require comparable resources per line of
code. This makes comparison between studies difficult and even raises questions about

the validity of some studies. With so many possible variants in the parameters used to

43,

measure productivity, it is not surprising that estimates should show considerable
differences. '

Perhaps some of- the comments which have been made about failure to
improve progi’arﬁmer ‘productivity are unfair to‘ both the programmers who, for the
most part, are working with the best tools available to them and whose numbers have
not kept pace proportionately with the number and power of computers, and to the h

industry as a whole which has been trying to cope with quantum leaps in demand for its

. services. It is evident, however, that insufficient attention has been given to improving

the.output of systems analysts and programmers. Such improvement could greatly

alleviate the present personnel shortage.

Improvements can and should be made at both the hafdware and software o
level. The user interface must be improved to enable the non-computer professional to
use the computer directly, without needing the services of a systems analyst and
programmer to translate his problem into computer language. Greater availability and

use of interactive facilities would reduce turnaround time for the compilation and

testing of programs. The use of standardized languages and improved development and

testmg methodologies would shorten development time and improve maintainability of
programs. Improvements in machine architectures and greater use of virtual-type

operating systems would enable systems programmers to develop software in parallel

, w1th other computer activities instead of needing .a dedicated machine which is ‘

probably available for only a few hours each week and then at unsocial times. Also
additional work needs to be done on development of standardized interfaces which
would - facmtate program portability by reducing the degree of architectural
depcndence of programs. One further possible area for improvement concerns how
programmers spend their time. It has been estimated (Reference 18) that the average
programmer spends only 27% of his time on programming activities, the remainder
being spent on clerical and support functions and attending meetings, etc. It may be
possible to improve productivity by transferring some of these mundane clerical and
support functions to lesser qualified stafi.

Part of the productivity question could be addressed by the increased use of
packaged software. Two problems which exist with packaged software are suitability
and portability. On the question of suitability, management and users could show a

greater flexibility and willingness to compromise by perhaps admitting slight changes- -

49.

in a requirement if _.lt.enabled .an existing package to be used. The question of
portability is less easy to address. There is.a definite need to concentrate on
portability aspects not only of packaged software but also of operating systems and
programming languages. Portability factors. must be considered at the development
stage of a project. Usually, however, there is insufficient incentive at this stage to
develop a portable system and the increased long -term convenience. of portabxllty is

sacrificed because of manpower or time shortages.

It is often believed that by programming in a standardized language, such as
COBOL, portability will be achieved. This is, however, not necessarily the case. As
mentioned in Part 2, where standardized languages are offered, the vendor invariably
also offers extensions which the programmer finds irresistable. In practice, it is often
necessary to redesign programs which have been written in a supposedfy standard
language in order to move from one family of eomputers to another. In such cases, the
original program is able to serve as little more than a de51gn specxflcatlon for the re-

written version.

Urgent review is needed of the whole 'area of software pr‘oductivity' and

portability together with specific initiatives for productivity improvement.

Attitudes and Myths

No analysis of this topic would be complete without a comment on some of
the attitudes towards software and its production - attitudes of both people engaged

in software activities and people who commission software.

Myth Number | - "Software is Cheap". Thxs myth arose in part because -of
the bundlmg and partial bundling techniques of the mainframe computer vendors. When
the cost of software was wholly or partially concealed in the cost of hardware, no ‘one
really considered what the true cost of software was. With independently produced and
marketed software, the total costs of producmg, mamtammg and dlstnbutmg the

package is passed on to the consumer.

Myth Number 2 - "Software isn't any good if its not invented here" This

mvth has resulted in countless hours of unnecessary programmlng effort to duplicate,

50,

or almost duplicate, software which was readily available. Software staff encourage -
the 'not invented here' syndrome because, like the program bug, it gives them job
security and makes for more intéresting work than simply installing, or perhaps
tailoring, someone else's code. Management often accepts this attitude either because
of fear of offending the programmers (and perhaps driving them to alternate
employment) or because of inability to find any valid counter arguments. Acceptance
of this attitude contributes to the shortage of programmers and to some of the low

product1v1ty claims.

Myth Number 3 - "If no one else has done it, neither should we" or "Wait
until someone else does it". This is an unfortunate attitude possibly stemming.from
lack of confidence. It is an attitude all too familiar to Canadian product developers
who, unable to get backing for a product in this country, are forced to take their ideas
and expertise abroad. Paradoxically, .this is an attitude which coexists with myth
number 2. It is, however, an attitude which deters inndvative software development in
this country.

Myth Number 4a - "Programming is Difficult". Myfh Number 4b - "A
program must be comple\c to be good". These two myths are promoted by members of
the "black art" school of prograrmnming who. belleve in mamtammg programming as an
elitist activity and who also believe that a program should be a testlmony to the’
cleverness of the writer. Anyone who has tried to debug or modify a program written

by one of these programmers will support the early dissipation of this myth.
Elimination of these attitudes or myths is dependent in part on the

education process, i.e. increasing overall computer literacy, and in part on improved

management control and understanding.

The Role of Government |

'_In‘ recent years, much of the focus of government aid has been directed
towards making more competitive, those industries which make tangible objects. In
industry today, "more competitive" often means "more automated" or "highly
capitalized". Most segments.of the‘computer manufacturing industry are highly

capitalized. With the increasing trend to robotics, the need for production line workers

51.

will inevitably decrease. On the other hand, software, which .is by its very nature

" intellect-intensive, will continue to make heavy demands on the labour force. Indeed,

without software, it would not be possible to render industry more competitive by the

increasing use of automation. In addition, each software job created, results in at least .

one additional job in software support, e:g. data entry, secretarial work, marketing,

management, etc.

Although it has not been possible to obtain confirming data, it seems

probable that, in those industries engaged in the proddction and sale of data processing

~ equipment in Canada, more people are employed in software and supporting activities

than are actually employed in manufacturing the equipment, and yet strong bias is
perceived towards aiding the manufacture of tahgible goods rather than fthe production

of items such as software. This is a bias whichis in urgent need of adjustment.

It is generally accepted. that the most successful, innovative and efficient .

software has traditionally "beenv‘prod.uCed by ~small teams rather than “large'

bureaucratic organizations. Any action which reduces the opportunity for small-team

software.development may well, therefore, prove counter-productive.

‘While. dxrect grants do have a role to play in the development of some
venture software, it must be recognized that, given the magnitude of software
activities, the effect of direct grants is inevitably going to be small. Further, ‘while
not wishing to underestimate the role of direct assistance, there appears_to be a
marked preference on the part of industry, for trade rather than handouts. On the

subject of direct aid, concern has been expressed that no grants or loans are available

for the development of competitive software packages. (The current IT&C srheme

requires that a project be innovative.)

. The production of complex software may take many man years of effort and i
be a substantial drain on corporate resources. In addition to the production costs,
support costs, e.g. marketing, documentation, post sales support and training, can be

considerable. It is necessary to recognize the support and _consultanéy aspects of

software as useful and productive activities. As the software environment becomes

increasingly complex, these activities will assume vital importance.

52.-

Through the tax system, the government has the ability to offer significant
inducements to software developinent. An example is personal tax writeoffs available
to limited partners investing in R&D schemes. Corporate tax incentives for R&D are
available but are, in some cases, quite restrictive, e.g. in an R&D project, the
computer hardware qualifies for a write-off only if the machine is dedicated to the
R&D project. A machine used half the time for R&D and perhaps the remaining time

for other work, does not now qualify for any write-off.’

The machine-based processing cost represents a significant part of any
software development. The import duties and taxes placed on imported hardware
‘result in machine costs being significantly higher in Canada than in the U.S. This has
~ long been of concern to Canadian service bureaux and software houses who are finding
more and more that economics favour their expanding by setting up data centres

outside Canada.

The implementation of the government’s EDP policy on software results in a
large volume of business being done via the National Master Standing Offer (NMSO).
The NMSO makes it easy to acquire software personnel for projects up to $50,000 but
most of the projects are small and prbjeét control for the most part remains- the
responsibility of the department. The NMSO, while it perides a useful function and
serves. both government and supplier, does very little to promote software as an

industry, as it is oriented towards the procurement of people rather than solutions.

In addition to positive steps which governments may take to promote
software as an industry, it is.at least edually important that measures which could
harm the growth of such an industry be avoided. The success of at least one Canadian
service bureau and software supplier is’dependent on the free flow of the software
from the Canadian head office to the rest of the woﬂd, and also on the ability of
foreign sites to be interconnected with Canadian data centres for diagnostic service.
In addition, this company has been able to employ programmers who live in the
location of their choice (often abroad) but who contribute to the development of

Canadian software packages by remotely accessing the Canadian data centres.

Lastly, if this country is to succeed in developing as a viable centre of
software expertise, it is believed to be essential that dialogue be maintained between
government and industry and between the diverse groups in industry engaged in

software activities.

53,

SUMMARY -

If Canada is to develop as a centre of software expertise; there must be a
concerted effort' towards that goal by government, by educational institutions, by

those engaged in software production and by users of software.

Personnel and productivity problems must be-addressed realistically, constraints -
on the development of a software industry removed, and positive steps taken to-

encourage the production, development and ongoing support of softwa;e in Canada for

both domestic and foreign consumption.

1

~If present. trends continue, Canada could be faced with an annual software
import cost of $2560M by 1990. By developing a Canadian software industry which is
able to meet the home demand, not only can that import cost be avoided but, with

very little extra cost and effort, much software developed for domestic use can be

~ exported worldwide.

54.

References

10.
1.
12.
13,
L6,
L5.
6.
17.

18.

19,

20,

Missing Dimensions in Systems Engineering - Smlley Computer Data, March
'79,

Computer Software and packaged Services Market - Frost & Sullivan Inc. 1977.

Software Maintenance - A User/Management Tug of War - Lientz and Swanson
-Data Management, April '79.

(Reference 3 summarizes a report on a 1978 DPMS survey)

The Growth of Computer/Communications in Canada - Computer/Communica-
tions Secretariat 1978.

Datamation - Source Fig. 3,{8.3.

'Computer Service Industry - Statistics Canada 63.222 1975 to 1979,

Rev1ew of EDP and Telecommumcatlons in the Government of Canada, TBC
1980.

What is a Small 'Busihess Computer? Severino. Data Management, November
1980.

EDP Industry Report - International Data Corporation, June 3, 1981.
Datamation - Hobby and Game Markets Fade - Seidman - April 1979.
"Report of the Committee on National Computerizétion"' - Singapore. 1980.
IDC Industry Report - 26 June 1981.

IDC Advertising Feature in Fortune, 20 April 1981,

EDP Indepth Reports ~ Evans Re_search Corp., April 1981.

- Computer Data, July/August 1981.

Estimates of Costs of Computer Use to 1990 - DOC, December 1981.

Exploratory Experimental Studies Comparing On-line and Off-line
Programming Performance - Sackman, Commumcatlons of the ACM Vol. 1,
No. 1, January 1968. , \

On the Management of Computer Programming - G.F. Weinwurm, Auerbach
1970.

Office of Technology Assessment and President's Reorganization Project,
Federal Data Processing Reorganization Study, Basic Report of the Science
and Technology Team, Washington, D.C., September 1981,

Institute of Electrical and Electronic Engmeers, IEEE Spectrum, Vol. 17, June
1980 and "VLSI/LSI" IEEE Spectrum, Vol 18, January 1981.

55,

CACC | CCAC

THALHT

36256

DATE DUE

I r"

