VOLUME 2

TIME SHARED SYSTEMS HARDWARE

- Memory Hierarchy Management
by

John deMercado

TIME SHARED SYSTEMS HARDWARE

- Memory Hierarchy Management -
by

John deMercado

Terrestrial Planning Branch

June 1972

Acknowledgements

Abstract

The purpose of these notes is to promote dialogue within the Terrestrial Planning Branch and serve as a basis for our computer-communication systems implementation program. -

The notes are only in first draft form and borrow heavily from the references. They should be read in conjunction with the attached reference papers.

As a revised version is planned the author would appreciate any corrections or omissions in the text that were brought to his attention. He also wishes to thank Messrs. John Harris, S. Mahmoud and Ka1man Toth for their valuable contributions.

Miss Gail Widdicombe and Miss Yollande Chartrand typed them in record time from an almost unreadable handwritten manuscript.
Introduction
Memory System Design Problems
Addressing and Allocation
Static Relocation
Dynamic Relocation Using Base Registers
Dynamic Relocation Usịng Paging
Memory Maps
Segment Concepts
Communications within the Time Shared Computer
Communication with the Main Memory
Memory Management Software - Storage Hierarchies
Modelling - Working Set Replacement Algorithm
References (attached)

1. W.W. Chu, N. Oliver and H. Opderbeck, "MeasurementData on the Working Set Replacement Algorithm andTheir Applications".
2. R.L. Mattson, J. Gecsei, D.R. Dlutz and I.L. Traiger, "Evaluation Techniques for Storage Hierarchies",
3. Gerald H. Fine, et al, "Dynamic Program Behavior under paging".
General References.

The intent of these notes is to briefly review the features of the hardware required for effective memory hierarchy management in time sharing systems. The time shared systems will have the general architectures as shown in Figure 1 below.

Figure 1
"Time Shared System"

The major hardware features required by such systems are:

- protection mechanisms to help safeguard one process from another and the system from itself and user processes and:
- mechanisms which contribute to efficient dynamic.
allocation of resources.
- high relịability.

Memory-system Design Prob1ems
The central resource in current systems is the main memory. This main memory holds the instructions for the arithmeticlogic processors (CPU's) and for the I / O processors (IOP's).

It also serves as the buffer for information passing over communication lines and between various I/O and secondary storage devices, and stores the code for the resident operating system. It goes without saying that the proper design of the memory system is critical to the success of a large scale time-sharing system. Figure 2 shows the memory centered model of a computer system which shows the memory as the control resource.

Figure 2

Addressing and Allocation

Main-memory devices have multiplexing properties that must be considered in order to specify an appropriate addressing and allocation scheme for a timeshared computer. While any portion of main memory can be dedicated to a process. Processors themselves can be allocated only as units. Processors, however, can be multiplexed rapidiy, while main memory cannot. This time is required to move information between main and auxiliary memory, This moving of processes between main memory and auxiliary storage in order to multiplex main memory is called swapping.

A requirement in the design of an addressing scheme for a timeshared computer is that it should maximize the allocation advantages of memory and minimize the multiplexing disadvantages. For example, it is preferable to have only
one copy of a particular procedure, say a compiler, in main memory that can be shared by several processes rather than have each process obtain a separate copy. Programs designed to be shared by several processes are called reentrant programs or pure procedures. A reentrant program has two characteristics:

- none of its instructions or addresses can be modified during its execution,
- temporary storage and data areas are maintained outside the procedure itself, usually in the memory space of the calling programs.

Although re-entrant programs can be written for machines with a wide variety of addressing techniques, certain addressing techniques can make the writing and protection of these programs simpler.

Memory can effectively be utilized by achieving flexibility with respect to where processes can be placed in physical memory. This ability to relocate processes dynamically in physical memory is by a variety of addressing and allocation techniques.

The cost of designing and implementing application systems, as well as the treatment of certain classes of problems - is to be affected by the properties of the addressing and allocation scheme. The various tradeoffs in the design of an addressing and allocation system must take into account both user needs and system considerations. A designer must decide whether the logical-address space is going to be smaller, the same size or larger than the physical-address space. The structure of the logical-address space must also be determined. Many structures are possible,
e.g., the large linear array commonly used, a set of linkable linear arrays, as found in Multics, or a tree structure. It must be decided how much of this structuring to perform in hardware and how much in software. The technique of translating or mapping the logical addresses to physical addresses must be determined. Present systems perform this mapping at three points, namely

When the procedure is prepared as an operable computer program; the result:is an absolute program, which, in effect, is assigned the same resources each time it is run.

When the program is loaded; this is known as static relocation.

When the program is in execution; this is called dynamic relocation.

Usuālly only linear arrays or sets of linear arrays are considered as forms of hardware memory structures, because more specialized structures, such as trees, lists, or rings, are usually left for implementation by software processors.

Static Relocation

The translation of data references to physical addresses is easily accomplished during program preparation but suffers from the severe problems which arise when one attempts to share or modify programs. For example, if one inserts an instruction into a program, all references to instructions and data beyond the point of insertion must be updated.

Similarly when one constructs a program out of routines prepared independently, the address references must be modified to reflect the locations into which the routines are loaded. Further, translation at that time restricts the size of the logical-address space to that of the physical-address space。

The process of static relocation involves a fair amount of computation. In systems using static relocation, programs are usually assembled as if they were to be loaded with the first instruction at location zero, with succeeding instruction and data words being placed in contiguous cells from this point. The location of the first word of the program is called the base address. All instructions or data words with address references are marked by the assembler. Then at load time, a program called the loader adjusts all address references to reflect the actual base address at which the program was loaded. If several programs assembled independently are to be loaded as a unit, the loader, using information supplied by the assembler, adjusts the interprogram address references to reflect the actual locations of the different programs. This process is called linking.

With static relocation, a user can be initiaély loaded anywhere in memory. However, when the process is removed to auxiliary storage and then returned during swapping, it must be placed in the same locations as before, to avoid the loading process. (Furthermore, to go through the loading process again implies that the program must be separable into a pure procedure part and a data part and that the data part must contain no absolutememory addresses.) The major gain of static relocation is that during the loading process independtly written programs and data can be combined into a computation with proper linking of parts. The proper
mapping to the physical-address space is performed by the loader. Each program can be writeen in a logical space of its own, but no duplication of symbolic location names is allowed, although programing techniques can be developed to resolve such duplication.

The ability to load programs anywhere in physical memory is useful in the linking process above but of little value in achieving effective memory utilization in a timeshared system. For example, when a new process is to be started, the system can attempt to find a process which would fit in an available block of cells. If such a process can be found and it can remain in main memory until completion. static relocation is sufficient to enable several processes to share main memory. (The assumption of some sort of memory-protection scheme is implicit.) A more usual situation will be that the total number of free cells available is sufficient for the number required by a new process but that these cells are not in a contiguous block.

If swapping is required, then even if a contiguous block were available on initial loading the same contiguous block will not necessarily be available each time the process is run, without moving some information to another aspot in main memory or moving it to secondary storage。for these reasons, systems without dynamicrelocation hardware, when used for timesharing, generally have allowed only one complete process to reside in memory at a given time. Thus, during the swapping operation。 the system must remain idie. It is this situation which motivated the development of dynamic-relocation methods.

Dynamic Relocation Using Base Registers

One of the simplest and most common dynamic-relocation techniques uses base registers, which are registers that can have their contents added to the address of each memory operation. By adding the contents of a base register to all addresses, one can load a program anywhere in memory in a block of contiguous cells and then set the appropriate base address of the program into the base register. Using base registers, programs are initially loaded using static-relocation techniques but can be dynamically relocated as a unit later without going through the loading process. This flexibility results because the loading is to logical space not physical space. The base registers form a hardware map which maps logical space to physical space. Further flexibility is gained if there is more than one base register, which facilitates sharing programs and makes it possible to split a program for loading into noncontiguous storage areas.

There are many possible variations of the baseregister technique。 In fact, techniques such as segmentation are implemented using some hardware fegisters called base registers. Here, we are only interested in the concept of base registers in its simplest form as defined above and illustrated in Figure 3 below. There are two common ways of specifying which base register to use in forming an address. One technique, represenced by the IBM System 360 , requires the base registers to be directly addressed by the program and allows the program to access the base registers. The second technique, represented by the UNIVAC 1108, does not allow programs to access the base registers and implicitly addresses the base registers depending on the type of memory operation being executed. For example, all instruction fetches use one base register and all data fetches and stores use another base register.

Program sharing is performed in a system using base registers by writing the reentrant programs to make memory references to themselves through one base register and to make memory references to data in the calling process through a second base register.

Figu're 3

Two base registers used for dynamic relocation of program and data.

Size of Logical Space

The size of the logical-address space using static relocation or dynamic relocation with base registers is usually equal to or less then the size of the physical-address size. A larger physical space can be simulated by the user by explicitly overwriting a portion of his computation not immediately required with another part brought in from auxiliary storage. This process is called averlaying: Overlaying is closely related to the concept of swapping except that overlaying is a user responsibility whereas swapping is a system responsibility.

Memory Utilization

One of the problems uncovered by static relocation is the fact that, once loaded, a process's address references are bound to a certain contiguous area of memory and that during swapping the process must be returned to the same area of main memory each time it is given control of the physical processor. When base registers are used, this restriction no longer holds. When the processor is to be switched to a process not in main memory, a free contiguous block of main memory must be found for it to xeside in. If such a block exists, no information need be saved on auxiliary memory in order to make room for the incoming process, The more usual situation results when although enough free cells are available in main memory for the process, they are not in a large enough contiguous block. In this case, a system designed to use base registers can do three things:

- search for a process which will fit into one of the available contiguous blocks.
- swap out part of some process presently in main memory bordering on a free area in order to make a large enough contiguous area, or
- perform a compacting operation on main memory. Figure 4 illustrates the last two ideas.

Figure 4a shows memory at a given point in time. There are two programs entirely residing in memory and three freespace areas (holes). It is desired to bring into memory a third program C which is larger than individual holes but smaller than total space available in holes 1 and 2. Figure $4 b$ shows one approach to making enough space available to fit in program Co Program A is moved entirely to start
at the beginning of memory, thus creating enough free space for program C. Figure 4 c shows another way of making enough space available to fit in program C. Anough of program A bordering on hole l is removed to auxiliary storage to make room for program C.

One solution to the problem of finding a large enough contiguous area might be to use multiple base registers so that smaller pieces of the process could be loaded into existing free spaces. This approach seems to be impractical because the instructions of a given piece must refer to the correct base register. Thus, the programmer or compiler must decide how to split up the process and which base registers to assign which pieces. Binding instructions to base-register addresses at load time means binding the process to a portion of logical space.

The system could not easily perform this base-register assignment function dynamically because it would be very time-consuming and complicated to determine which instructions to modify.

Figure 4: Memory allocation using base registers: (a) typical memory snapshot at a point in time; (b) making room for program C by compaction; (c) making room for program C by partial removal of program A.

Dynamic Relocation Using Paging

Dynamic relocation using base registers, which requires program to be located in contiguous areas of main memory, leads to difficulties in fully utilizing main memory because free areas develop which are not large enough to be used. If, however, programs and main memory could be broken into small units and the program pieces could be located in corresponding sized blocks anywhere in main memory, then the possibility exists of utilizing main memory more fffectively. Paging is the name given to a set of techniques which enable such a uniform memory ragmentation to be implemented. Paging techniques can also allow economic implementation of a logica1-memory space larger than the physica1-memory space.

In a paged system, physical memory is considered to be broken up into blocks of a fixed size, usually 512, 1,024 , or 2,048 words. The term page refers to units of logical spaçe, while equal-sized units of physical space are called blocks. The programs are also considered to be split into pages of a size equal to the block size of physical memory. Thus, the address in such a system is considered to be represented by two numbers: (1) a page address or number and (2) a line-within-page address. For a machine with an n-bit address field, the high-order p bits are considered the page address and the remaining $n-p$ bits are the line address. The operating system may occupy less memory than a multiple of a larger page size. In newer systems the page size can be changed dynamically by the system. The memory can be more fully utilized by the system if smaller page sizes are available (64; 128 , or 256 words). More effective utilization of memory results from using smaller page sizes for the following reason. Since a given process is not usually going to require an amount of memory space which is an even multiple of a page size, the last page of a process will not utilize all the block assigned to it. It seems
reasonable to assume that on the average the last page of a process will use half of its assigned block. The larger the page size, the more potential waste space there is going to be, A paging mechanism requires a table, called a page table, or map with one entry for each page in order to perform address translation from logical to physical space. The smaller the page size, the larger the table required for a given logical-address space. Thus, there is a tradeoff between waster space related to page size and resources used to store and manipulate large page tables. The total amount of waste space due to unused block locations depends on the number of processes expected to reside in main memory.

E.g. Paging on the XDS-940

The address space of a process in the XDS -940 can be as large as 64 K , and thus the logical-address space is smaller than the physical-address space. It should be noted that there are general cases of a paged system yielding a virtual memory larger than the physical-address space. A process in the XDS -940 is broken up into 2 K word pages, and memory is similarly broken into 2 K word blocks. There are 14 bits in the address field of a 940 -instruction word. The address field is considered to contain two parts, a 3-bit page number and an 11-bit line-within-page number. The relocation mechanism (Figure 5) uses eight 6-bit bytes called a memory map. The memory map in the XDS-940 is organized as two 24 -bit registers. Each register contains four map bytes. These registers are called the real relabeling registers, because they relabel (map) the page number into a physical-memory block number. These map bytes are considered by the hardware numbered 0 to 7 and correspond to logical pages. A given map byte is addressed by the page number contained in the memory address. Within a given map byte is a number for the actual physical block containing the code for the logical
page. For example, in Figure 5 logical page 0 is in physical block 32 , logical page 1 is in physical block 3, and so forth. The numbers in the physical blocks of the figure indicate which logical pages they contain.

The logical address is converted to a physical address as shown in Figure 6.

The 3 -bit page number indicates which map register contains the physical-block number where the page actually resides. The map register is 6 bits long and is shown in Figure 7; note 5 bits contain the physical-block number, and 1 bit is for memory protection. The physical address is simply formed by concatenating the physical-block number with the line number to form a 16 -bit address: With 16 bits, 64 K of memory can be addressed.

This hardware mechanism is quite simple, but to work as part of the of the total system it requires additional software tables, which keep track of the memory space of each process. The basic idea is that when a process is to be brought into main storage, the software monitor examines the state of main storage and swaps out only as many pages as are required in conjunction with free pages to meet the needs of the incoming process. The monitor then assigns the available physical blocks to the logical pages of the incoming process and swaps its pages into these blocks. The memory map is updated. Then after restoring the processor registers and program counter to the values they had when the process was last executing, the process is restarted.

Figure 5: Paging in the XDS-940

Figure 6: Mapping from logical to physical address in the XDS-940.

Memory Map

The most important general concept introduced above is that of a memory map. A map translates the logical-address space into the physical-address space. In the dynamic-relocation techniques, the map is a set of tables in memory or a set of hardware registers. In the static-relocation technique the
map is a program. In the dynamic-relocation method using base registers, the base registers are the map. In the dynamic-relocation method using paging, the page map can be looked at as a way of efficiently implementing multiple base registers. The paging process is completely invisible to the users and to the compilers, which function as if they were working with one contiguous logical chunk. The ability to fragment memory uniformly, made possible by splitting main memory into blocks, means that all blocks of main memory can be used, although assure that no two shared procedures which might be used concurrently occupied the same position in logical space. If the page table were organized and addressed as an actual or simulated associative memory, then it could be reduced in size because no gaps need result. The practical problem of implementing in hardware and software such a large associative map for efficient execution may still create difficulties, although further study may be fruitful.

In summary, then the difficulty of using paging for sharing single copies of procedures and data in full generality and for allowing for data-structure growth results:

- Because of the large number of address bits required to ensure unique page numbers in a large logical space.
- Because of the large, possibly sparsely filled, map required using an indexed page table (with an efficient associative map this argument is reduced, although duplicate entries for each page of shared procedures and data must exist in the map of each process using the shared procedures or data).
- Because of the careful bookkeeping required by the installation and the system to be certain that procedures used concurrently do not occupy the same position in logical space (ise., have the same page numbers), and to properly position data which contain address references.

Figure 7: Map byte in the xDS-940.

Segmentation Concept

The problems with physical-space allocation using static relocation resulted because address references were bound to positions in physical space when procedures and data were loaded into the system. Once loading was accomplished, all addresses were absolute physical locations. This restriction was removed in the base-register and paged systems by introducing mechanisms which allowed physical-address references to be made relative to either a base register or block number, the contents of which did not have to be set until execution time. However, the particular base register or map entry to be used was bound into the instructions at load time. In other words, once loading was accomplished, all addresses were to absolute logical locations.

The problem which segmentation sets out to solve is that of allowing relative addressing within the logical-memory space. This means that logical space must be broken up into chunks of contiguous locations and all addresses within a given chunk are to be relative to the start of the chunk.

We then need a hardware or software base register which points to the base location for each chunk. Interchunk references must refer to the proper base register and give a relative address within the referenced chunk. The trick is to develop an efficient mechanism which allows these base registers to be assigned at execution time. The chunks of contiguous logical locations are commonly called segments. The basic idea of segmentation is thus quite simple, but the mechanisms for allowing assignment of base registers at execution time are more involved.

A segment is an ordered set of data elements (usually computer words) having a name. A particular data element within a segment is referenced by the symbolic segment name and the symbolic data-element name with the segment, $(S) /[\alpha]$. The notation (S) indicates a symbolic segment named α. The symbolic segment name (S) is eventually (at run time) translated into a base-register number, and the symbolic data-element name in the segment [α] is going to be translated into a relative location within the segment. In other words, a segment is a one-dimensional array, and the segment name is related to the address in logical space of this array (its base address); the symbolic element name within the segment is related to the address of the referenced element relative to start of the segment, as shown in Figure 8.

Segmentationis often referred to as two-dimensional logicaladdress space because particular elements within the logical space are explicitly referenced by a pair of names. A paging system is not considered two-dimensional, even though the address has a page-number and a line-number pair, because these conventions are invisible to the user. To be general
one could consider base-register and paged systems as segmented systems allowing one segment, and thus the segment name is implicit. In a general segmented system, the user programs his addresses using a pair notation, (S)/[$\left[\begin{array}{l}\text {. A }\end{array}\right.$ segment is a self-contained logical entity of related information defined and named by the programmer, such as a procedure, data array, symbol table, or pushdown stack. There is no logical restriction on the length of a segment, although in any given implementation there will be an upper bound on segment length. Segments can grow and contract as needed.

Figure 8: A Segment.

Communications Within the Time Shared Computer

The purpose of a timeshared computer system is rapid time multiplexing of computer-system resources on behalf of user requirements. The system attempts to perform this multiplexing so as to satisfy user completion and response-time needs and to utilize system resources efficiently. These time shared systems are usefully viewed as large communicationswitching centers which control the transmission and trans-
formation of information as it moves between the large number and variety of devices (terminals, discs, etc) that are attached.

Communication with Main Memory

The central point through which the information passes in present organizations is main memory (with a possible side journey to the CPU for transformation) as it moves from one. device to another. Main memory is a prime system resource and consequently, a potential source of communications problems. In timesharing systems, multiple CPUs, high-transferrate secondary storage devices, and numerous I/O devices share access to main memory. The processors which control the secondary storage and I/O devices and communication with memory are usually referred to as channels, I/O controllers, or I/O processors.

Communication with Auxiliary Storage and I / O Devices

A basic communication problem with auxiliary storage and I/O devices is gaining access to a direct-transfer path to main memory. A timesharing system contains a variety of devices attached to it. Associated with these devices is a range of data-transfer rates. Direct-transfer paths to main memory require logic to resolve conflicts for access to a memory module and require sending an receiving circuits at each end of the path; therefore, it is usually uneconomical to provide a separate path for each device. It is possible, however, using the fact that the attached devices have a range of transfer-rate requirements, to design I/O processors which enable many devices to share one direct-transfer path to main memory concurrently.

Communication with Remote Devices

Three major communication problems are associated with remote devices such as terminals, printers, etc. these are

- the transmission of information between the central facility and the remote devices
- the interface between transmission lines and the central facility
- the interface between transmission 1ines and the remote devices

Along with the transmission of information techniques must be considered for utilizing standard telephone lines for digital information, sharing lines among several devices, and synchronizing communication between remote points. Associated with the interface between transmission lines and the central facility are the problems of identifying, controlling, and addressing communicating devices and converting the transmitted information to a form usable by the central machine and vice versa. Associated with the interface between transmission lines and the remote devices are problems of encoding information and providing identification.

Communication With the Main Memory

Multiple Memory Box and Bus Organization:The technological problem to be solved in the design of a memory communication system is to provide adequate transfer capability between main memory and all processors requiring access. In practical systems, the rate at which data can be transferred between processors and main memory is limited by the transfer
capabilities of the memory itself and the memory busses. The rate at which the memory can transfer fnformation is often referred to as the memory bandwidth, usually measured in words per second. Bandwidth limitations also exist for the busses. Because the memory system is shared by several processors, care must be taken in the design to keep performance from being seriously degraded due to interference caused by simultaneous attempts on the part of the several processors to utilize a facility such as a memory bus or portion of memory itself.: Figure 9 shows a common method for organizing the memory structure in a resource-sharing system.

The maximum memory-system bandwidth for the system shown in Figure 9 is $p \times R$, where p is the smaller of the number of memory modules m and the number of access paths n, and R is the maximum transfer rate of each box. In other words, the maximum transfer rate is achieved when each path requests access to a separate module.

The minimum transfer rate is just R and occurs when all paths request access to the same module. There is interference in this case.

Figure 9: Memory organization in a resource-sharing system.

The scheme shown in Figure 9 cuts interference by allowing simultaneous access to more than one box. That is, if bus 1 requests access to box 2 at the same time buts 2 requests access to box 3, both accesses are granted because each box has its own addressing. and read/write circuitry. Even given the scheme shown in Figure 9, serious interference can result when memory addresses are contiguous in the boxes, e.g., box 1 having addresses 1 to 16 K .1 to 32 K . Consider the case of a high-speed drum processor which transfers at the memory rate. If this device has a higher priority for memory access than the arithmetic unit, then during a block transfer the arithmetic unit could be denied memory access for a prolonged period if it tried to access the memory box bieng used by the drum processor.: To get around this problem designers have developed the technique called interleaving. (Analagous to multiplexing)

In an interleaved memory, consecutive addresses are in different memory boxes. For example, in a two-memory-box system all the even addresses might be in one box and all the odd addresses in the other. With an interleaved memory, the probability of one processor's tying up the memory for a significant time is greatly decreased. The design problem is to determine the size of each box and whether or not interleaving is to occur over all boxes or over groupings of boxes.
E.g. The IBM 360/85 Memory Organization. A schematic of the model 85 memory system is given in Figure 10. Main storage in this system has a cycle time of about 1 microsecond. For storage configurations of 500 K and $1,000 \mathrm{~K}$ words (32-bit), storage is interleaved four ways. For smaller storage configurations, storage is interleaved two ways. Note that the buffer storage is available only to the CPU and not to the

I/O or other processors. The buffer storage has a cycle time of 80 nanoseconds. The buffer storage is either $4 \mathrm{~K}, 6 \mathrm{~K}$, or 8 K words. The design of this system was oriented toward increasing the effective speed of memory as seen from the CPU. The importance of high data-transfer rate between all processors and memory has not been highly developed in this machine. The memory bus is four words wide in order to achieve the bandwidth required for the main applications envisioned: For I/O oriented systems, this organization offers little advantage, but the basic ideas can be extended.

Main memory and the buffer storage are organized into sectors of 256 words. During operation, a correspondence is set up between buffer-storage sectors and main-storage sectors, in which each buffer-storage sector is assigned to a single different main-storage sectors. Because of the limited number of buffer storage sectors, most mainstorage sectors do not have any buffer-storage sectors assigned to them. Each of the buffer-storage sectors has a 14-bit sector address register, which holds the address of the main-storage sector to which it is assigned.

Figure 10:
IBM $360 / 85$ memory system.

The assignment of buffer-storage sectors is dynamically adjusted during operation so that they are assigned to the main-storage sectors that are currently being used by programs. If the program causes a fetch from a main-storage sector that does not have a buffer-storage sector assigned to it, one of the buffer-storage sectors is then reassigned to that main-storage sector. To make a good selection of a buffer-storage sector to reassign, enough information is maintained to order the buffer-storage sectors into an activity 1ist。

When a buffer-storage sector is assigned to a different main-storage sector, the entire 256 words located in that main-storage sector are not loaded into the buffer at once but each sector is divided into 16 blocks of 16 words each, which are located on demand.

Storage operations always cause main storage to be updated. If the main-storage sector being changed has a buffer-storage sector assigned to it, the buffer is also updated; otherwise no activity related to the buffer takes place. Since all the data in the buffer are also in main storage, it is not necessary on a buffer-storage-sector reassignment to move any data from the buffer to main storage.

Two 80-nanosecond cycles are required to fetch data that are in the buffer. The first cycle is used to examine the sector address and the validity bits to determine if the data are in the buffer. The second cycle is then used to read the data out of the buffer. If the data are not in the buffer, additional cycles are required while the block is loaded into the buffer from main storage.

Simulation was used extensively during the design of this memory system。 There are many important parameters, such as choice of a replacement algorithm, buffer size, sector and block sizes; which must be determined.

With the simulation running a representative scientificoriented job mix, it was found that mean performance of this system as compared to an ideal system consisting of only 80 -nanosecond memory was 81 percent. That is, on average, the CPU obtained information from the buffer storage on 81 percent of its references.

Memory Management Software - Storage Hierarchies

The purpose of storage system is to hold information and to associate the information with a logical address space known to the remainder of the computer system. For example, the CPU may present a logical address to the storage system with instructions to either retrieve or modify the information associated with that address. If the storage system consists of a single device, then the logical address space corresponds directly to the physical address space of the device. Alternatively, a storage system with the same address space can be realized by a hierarchy of storage ranging from fast but expensive to slower but relatively inexpensive devices. In such storage hierarchies", the logical address space is often partitioned into equal size pages (or unequal size segments) that represent the blocks of information being moved between devices in the hierarchy.

A hierarchy management facility is included to control the movement of pages and to effect the (generally dynamic) association between the logical address space and the physical address space of the hierarchy. When the CPU
references a logical address, the hierarchy management facility first determines the physical location of the corresponding logical page and may then move the page to a fast storage device where the reference is effected. The goal of the hierarchy management facility is to maximize the number of times logical information is in the faster devices when being referenced. As this goal is approached, most references are directed to the fast, small stores whereas most of the logical address space is distributed over the slower, large stores.

Memory (hierarchy) management becomes a severe problem in multiprogramming and critical memory systems. In a multiprogramming system, many programs are concurrently executed by the processor. Thus the main memory is shared by many programs. Since the total size of all the programs far exceeds the size of the main memory, in order to keep information that will be used in the near future in the main memory, the system constantly moves information between several levels of storage media. Here, for example, we shall consider the case of paged memory system; that is, the address spaces are partitioned into equal size blocks of contiguous addresses. The page replacement problem is defined as the problem of deciding which page should be kept in memory and which should be removed when additional space is needed. Obviously, the page removed should be a page with the least probability of being needed in the near future. However, this should be done without incurring difficult implementation problems at the same time.

Many replacement algorithms have been proposed and studied, examples:

1. Least Recently Used (LRU)
2. Stack Replacement Algorithms
3. Random Replacement
4. Working Set Replacement Algorithm
for an excellent introduction to those algorithms, see the paper given by R.L. Mattson, et. al.

We shall illustrate briefly as an example the Working Set Replacement Algorithm. (see the paper by W.W. Chu)

Mode1 (Working Set Replacement Algorithm)

The working set $W(t, t)$ at a given time t is the set of distinct pages referenced in the time interval ($t-(T-1), t)$ where T is called the working set parameter. The working set size $W(t, T)$ is the number of pages in $W(t, T)$. The k average working set size $S(T)$ is defined as $S(T)=\operatorname{Lim}_{k \rightarrow \infty} \frac{1}{k} \sum_{t=1} W(t, T)$. For systems employing working set replacement algorithm, several parameters are of interest:

1. page inter-reference - internal distribution $F(t)$ which describes the fraction of the page inter-referenced intervals less than T.
2. Average page fault freq. $\mathrm{mm}(\mathrm{T})$ which describes the average number of page faults per page reference for working set parameter T.
3. Average working set size $S(T)$.

(An example including the results is given in Chu's paper).

Examples of how to use the parameters of the working set replacement algorithm。

1. Suppöse we would like the system to operate at an average page fault level of about 10^{-4} page faults/reference; that is one page fault in every 10^{-4} page reference, then from the graph representing $m(T)$ versus T for different programs,

$$
\begin{array}{ll}
\mathrm{m}\left(\mathrm{~T}^{\mathrm{O}}\right)=10^{-4} \text { page faults/reference } \\
\mathrm{T}^{\mathrm{O}}=22 \mathrm{~m} \cdot \mathrm{sec} & \text { FORTRAN } \\
\mathrm{T}^{\mathrm{O}}=45 \mathrm{~m} \cdot \mathrm{sec} & \text { DCDL } \\
\mathrm{T}^{\mathrm{O}}=54 \mathrm{~m} \cdot \mathrm{sec} & \text { META-7 }
\end{array}
$$

and from the graph representing the average working set size $S(T)$ we find:

$$
\begin{array}{ll}
\mathrm{S}\left(\mathrm{~T}^{\mathrm{O}}\right)=15 \text { page } & \text { FORTRAN } \\
\mathrm{S}\left(\mathrm{~T}^{0}\right)=36 \text { page } & \text { DCDL } \\
\mathrm{S}\left(\mathrm{~T}^{0}\right)=39 \text { page } & \text { META-7 }
\end{array}
$$

4. Inter-page-fault-time (time between page fault) distribution $P(t, T)$ which describes the fraction of the inter-page-fault times less than or equal to t for a given T.

If we assume that page reference rate is one page/unit time, we immediately obtain the following relationships:

$$
\begin{aligned}
& m(T)=1-F(T) \\
& 1 / m(T)=\text { average running time between page faults }
\end{aligned}
$$

$$
\left.1 / m(T)={\underset{L}{2}=1}_{\infty}^{\infty} t_{0} P(t \cdot 1, T)=P(t, T)\right\}
$$

To employ measurement techniques for estimating these parameters; we collect data bout the pattern of references to all the pages which comprise the executed program and measure these paramecers experimentally via interpretive execution (steps are shown in the following representation).
object programs
 (considred as data)
program's sequence of references (programs? behavior)

Figure Captions

Figure 1_{1} : Average page fault frequency $m(\tau)$ as a function of working set parameter τ.

Figure 12: Average working set size $S(\tau)$ as a function of working set parameter τ 。

Figure 13: Inter-page-Fault-Time Distribution
a) FORTRAN Compiler
b) DCDL
c) META-7 Compiler

Figure 12

References - Memory Hierarchy

Management Nathork and Telotraffic, ipril 9972.

Measurement Data on the Working Set Replacement Algorithm and Their Applications*
 by
 W.H. Chu, N. Oliver ${ }^{\dagger}$ and H. Opdembeck
 Computer Science Department
 University of California
 Los Angeles, California 9002 a
 (Revised March 31, 19\%2).

ABSTRACT

Page inter-reference interval distribution, average page fault: frequency (the frequency of those instances at which an axecuting progrom regnires a page of data or instrucions not in the main menory) average working set size and intermage fault-kime (time between page fauti) distribution for a simulated Horking Set Replacement Algorithm for three typical programs with different sizes were measured on the UCLA Sigma Executive (SEX) time-sharing system via page reference strings. These measured results are reported in this paper. The average page fauit freguency relationships between working set parameters and process scheduling are discussed. These relationships are useful in planing the working set size and process scheduling which optimize system efficiency.

[^0]
1. Introduction

Memory managenent becomes a severe problem in multiprogramming and virtual memory systens. In a multiprogremming system, many programs are concurrenty executed by the processor. Thus the main memory is shared by many programs. Since the total size of all of the prograns far exceeds the size of the main memory, in order to keep infonmation that will be used in the near future in the main memory, the system constantly moves information between several levels of storage media.

In this paper, we consider the case of paged memory systems: that is, the address spaces are partitioned into equal size blocks of contiguous addresses. The paged memory system has been used by many computer systems. However, the basic page replacement problem of deciding thich page should be kept in main memory and which should be removed when additional space is needed is still iitile understood and has been of considerable interest. Obviously, the page 'removed should be a page with the least probability of being needed in the near future. The difficulty lies in trying to determine Which page this will be without incurring difficult implementation problems at the same time.

Nany replacement algorithms have been proposed and studied in the past: such as Random, First-in First-out, Stack Replacement Algorithas [1] (for example, Least Recently Used (LRU)), and the Working Set Replacement Algoritim. ${ }^{[2]}$ The first three replacement algorithms require a fixed size menory space for each pocess. The Working Set Replacement Algorithm, however, requires a variable size storage space for each process and the size
varies with program demands. This variable storage space provides an adaptive capability in the replacement algorithm which is quite appealing. The working set principle of memory management states that a program may use a procossor only if its working set (set of pages) is in the min momory, and no working set pages of an active program may be considered for removal from the main memory. Properties of the working set replacement algorithm, the rela. tronships anong page inter-reference interval, average page fauli frequency and average working set size for the Working Set Replacenent Algorithm are described in a recent paper by Denning and Schwartz. [3]

Because of the complex nature of program behavior, analytical estimation of the above mentioned parameters of program behavior becomes very difficult. Yet this infomation is important in the planning of an efficient replacement algoritim that optimize systen porfomance. Therefore ve employ measurement techiques for such estimations. We collect data about the pattern of references to all the pages which comprise the executed program, and measure these parameters experinentally via interpretive execution. This technique has been used previously to measure dynamic program behavior [4] and also to measure the perfomance of Belady's Optinal Replacement Algorithm $[5]$ and LRU replacement algorithins. [6,7]

Here we report the measured program behavior of the Working Sec Replacenent Algorithm, We shall first report measurement results such as page inter-reference intervat distribution, average page faut frequency, avorage working set size and inter-page-fautt-time distribution, We then discuss the use of average page fabit freguency to detemine the working set parameter: and propose a page faule scheduling algorithn for process scheduling which improves system officiency.

I1. Fosurements and Results

The workirg set $W(t, t)$ dt a given tine t is the set of distinct pages reterenced in the time interval $((t-\tau+1), t)$, where τ is called the worting set paranoter. The working set size $w(t, \tau)$ is the nuber of pages in $H(t, \tau)$. The average borking set size $S(r)$ defines as $S(x)=\lim _{k \rightarrow \infty}\left\{\frac{1}{k} \sum_{i=1}^{k} w(t, r)\right\}$. For systems enploying working set replacement algorithms; several parameters of interest are: 1) page inter-reference interval distribution $F(\tau)$, which descmibes the fraction of the page inter-reference intervals less than t ; 2) averitge page fault frequency $m(\tau)$ which describes the average number of page faults per page reference for vorking set parameter τ; 3) average working set size $S(r)$, and 4) inter-page-fault-time (time between page foult) distribution $P(t, r)$ which describes the fraction of the inter-page-faultutimes less chan or equal to t for a given τ.
$F(\tau)$ is a fundamental distribution; it closely relates to the other three poremeters, When ve assume that the page reference vate is one page per unit time, we krow that the page references that result in page faults are those references those inter-reference intervals exceed τ. Thus, m(r) $=$ $1-F(\tau)$. [t can be shom [3] that $S(\tau)=\sum_{i=0}^{T-1} m(z)$. Thus, $S(\tau)$ is closely related to $n(x)$. $1 / m(\tau)$ is the avorage ruming time betwen page faults. Since $P(t, t)$ is the fraction of inter-page-feult-ting less than or equai to $t_{,}, / m(x)$ is the tine average of the density function $P(t r y, \tau) \cdot P(t, \tau)$; what is, $1 / m(t)=\sum_{t=1}^{\infty} r\left[P(t, t, \tau)\right.$ o $\left.P\left(\tau_{s} T\right)\right]$.

To employ measunenent techniques for estimating these parameters, we collect data about the pattern of references to all the pages which comprise the oxecuted progron and measure these parameters experinentaily via interpretive execution. for this purpose an interpreter for the UCLA Sigme-7 timewsharing system has been developed. This interpreter is copable of
cocontiog Signa object programs by handing the latter as dato and reproducing o program's sequence of references. This sequence, ..in turn, can . then be used as input to programs which simulate the Working Set Replacement Algorithan.

Three different programs with different sizes vere interpretively evecuted, and thoir behavior was investigated under the Working Set Replacement Algorithm. A FORTRAN Compiler was chosen as the representative for a snall program. DETA-7 was chosen as the representative for a large progran. If translates programs written in META-7 to the assembly language of the Sigma-\%. A DCDL (Digital Control Design Language) compiler was chosen as a representative for a hedium size program. This compiler is written in BETA-7. DCOL translates specifications of digital hardware and microprogram control sequences into interphetive code.

Table 1 shows some characteristic properties of these programs. The colum 'size' is divided into two parts. 'Static' refers to the number of pages necessary th store the program as an executable file on a disk where one page consists of 512 32-bit words. 'Dynanic' indicates the number of different pages actually referenced while processing the given input data. The differeme between the number of pages in static and dymic results from the fact that programs creat new paqes during execution for working storage areas and that not all pages of programs are reference during executing a specific set of input data.

Table 1. Program sizes of the three measured programis

Size
Static Dynamic

FORTRAM	cwad	24	34	1,000,000
DCDI.	madiu...	44	58	1,000,000
META-7	Waycory	84	153	1,000,000

Figure 1 shows the average page fault frequency $m(\tau)$ for the three programs. We note that all three programs exhibit similar page fault characteristics. The average page fault frequency decreases rapidly with τ. Large programs tend to have a slower rate of decrease. The reason for such characteristics is mainly the locality of the program; that is, during any interval of execution, a program favors a subset of its pages, and this set of favored pages changes its membership slowly. Further, the locality for large prograins is usually larger than that of small programs. The page inter-reference interval distribution $F(i)=1-m(v)$ can be obtained easily from $m(\tau)$. The average working set sizes as a function of τ are shown in Figure 2. Measurement data support the premise that average working set size increases as program size increases and reaches a constant level as r reaches a certain value. The $P(t, \tau)$'s of the three programs for selected τ 's are shown in Figure 3. We note that $P(t, \tau)$ is very sensitive to τ and program size. For a given progran, the average inter-page-fault-time increases as τ increases. This occurs because for the small τ case, many of the pages to be referenced in the near future are in the secondary memory; thus the average working set size is very small and yields a high page fault: rate. For the large τ case, most of the pages are in the main memory which yields arlarge average working set size and a small page fault rate. For
a given τ, large size programs have a higher page fault rate than thot of a shall size progran. In the next section we shall discuss the applications of these paraneters to determine the working set paraneters and process schedulimg thich inprove system efficiency.
111. Aphlicaticns of Heasurement Data
(A). Working Set Parameter τ is an important parameter which affects page fant rate, menory utilization, and thus system efficiency. The measurenient data support the fact that t should be chosen according to the executing program (c.g., size) and system organization (e.g., available menory size and the speed ratio between main and secondary memory). If r is not properly chosen, for example if τ is too short, then pages are reinoved from the main manyy wile still potentially useful. This results in high page traffic between the different levels of memory. If r is too long, then pages that are not needed may remain in the main memory, which is an inefficient use of mamery space. Instead of choosing τ arbitrarily, we propose to cetermine τ from the masured $n(\tau)$ and designate it as τ°. As a result: r° is now closely related to program belavior as well as to system organization.

The efficiency of a progran is defined as the ratio of total Virtoal ruming tire to tota? real ruming time (total virtual tine and total page wating time); that is,

Eff $=\frac{\text { total virtual running sine }}{\text { total real running tine }}$

$$
\begin{equation*}
=\frac{1}{\operatorname{Tan}(T) R} \tag{i}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
R & : A T T \\
A & =\text { Access time of the main menory } \\
T & =\text { Access time of the secondary memory }
\end{aligned}
$$

Since R is fixed for a given systen, from (1) we know a fixed average page. fanlt frequency $n(x)$ instres a certain level of efficiency.

Suppose we would like the system to operate at an average page fault level of about 10^{-4} page faults/reference; that is, one page fault in every 10^{4} page references. Then from Figure $1, \mathrm{r}^{0}$ for Fortcomp, DCDL and 4 ETTA-7 are 22, 45 , and 54 m sec (1 usec per page, reference) respectively. From Figure 2, the correspording average working set size is 15,36 , and 39 pages.

Usually in a multiprogramang enviroment several types of programs may bo concurrently operated by the operating system. The working set paranteter of such a systen may either be variable of fixed. In the variable τ case, the r° should change from one program to another; while in the fixed t case, the r^{0} remains fixed for all types of prograns. Because of the simpicity of a fixed τ scheme, it requires less overhead to implenent than the variable t scheme. However, the efficiency may not be as high as that of the variable t cose.

One vay to determine the value of a fixed τ is to use the weighed average workng set paraneters of each progran; that is

$$
\begin{equation*}
\tau^{0}=\frac{1}{n} \sum_{i=1}^{n} u_{i} \tau_{i}^{0} \tag{2}
\end{equation*}
$$

where ${ }_{i}^{0}=$ working set parameter for the $i^{\text {th }}$ program that selected from its $m(\tau)$
$u_{i}=$ relative usage frequency of the $i^{\text {th }}$ program
$n=$ total number of distinct programs used in the system

The decision as to which scheme should be used for a given system should be based on mogram behavior, relative usage frequency of all the distinct programs used by the system, and the overhead in implementing these schemes.

B. Process Scheduling

In a multiprograming system, to increase system efficiency and to rectac response thine for short jobs, the job queues for cpu processing usually have several priority levels. Let us consider a system having two levels of queues: Short Quantum Queue (SOQ) and Long Quantum queue (LQQ). SQQ has a higher priority than LQQ. All jobs enter the SQQ. Processes in the SQQ are given onc time slice at a time. The process is put at the back of the $S Q Q$ after the process either incurred a page fault or used up the time slice; that is: the process is serviced in a round-robin fashion. A process stays in the $S Q Q$ until its shori quantum time runs out. It is then put: on the front of the LQQ. The LQQ will not be serviced until the SQQ is empty. A process in the LQQ receives service until its long quantum time runs out. It is then put at the end of the l.QQ.

When a system is properly designed, such scheduling algorithms yield: 1) fast response time to short jobs, and 2) most of the short jobs are wo in the $S 00$ and long jobs (compute-bound processes) will run in the

LQQ. Since LQQ provides more menory space for each process than that of SQQ, such scheduling yiclds less page swapping.

If the quantum time of tho $S Q Q$ is too short, then many of the short jobs will be in the $L Q Q$; if the quantum time is too long, then many computational jobs will be in the suQ. The system is designed such that most of the short jobs finish their processing in the SQQ and only the computebound processes enter into the LQQ. The short quantum time should be larger than the average real process time of short jobs. However, the process time varies from one process to another. In addition, the processing time is further complicated by page faults occurring during its execution.

The real processing time of a process is the sum of the virtual process time ard the total time wasted due to page raults of that process. For example, two processes requiring the same amount of virtual CPU processing time could have very different page fault frequences, and thus yield very different real processing time. Therefore the real processing time is extremely difficult to estimate.

Wo know that page fault frequency has great influence on system efficiency ard the response time of the short jobs. We propose to use a page fault as a neasure in process scheduling; that is, when a process exceeds a certain number of page faults or exceeds the quantum time of the SQQ (whichever occurs first), then the process switches from the SQQ to the 1QQ. We shall call such a scheme a page faut scheduing algorithm. In a multiprograming enviromments the CPU idle times due to page swapping between main and secondary menories are directly affected by the page fault frequency. The page fanit scheduling algorithm should be effective in reducing cPU idie time And improve system efficiency. (See Appendix).

[^1]Processes with high page fault rates occupied in the main memory greatly reduce the efficient utilization of main menory. The page fault scheduling algorithen adaptively allocates the low page fault rate processes in the main memory and higher page fault rate processes in the secondary memory. Thus such scheduling mproves the utilization of main memory. As a result, this will inprove the average response time of the system. An analogy to the above scheduling algorithm is the well known "serving the shoriest joi first" aigorithm in queueing theory that results in improvements in average waitingtime; except in our case we have further improved the inemory utilization efficiency.

The number of page fauits occurring during processing before switching a process from a $S Q Q$ to a LQQ depends on the response time required, the number of processes operating concurrentiy, the replacement algorithm used, and page fault frequency characteristics. Further study in this area is needed.

In order to reduce response tine, the quantum time of the $S Q Q$ and LQO are further divided into many time slices. The optimal size of time slices is another important parameter that affects system efficiency. The time slice should be selected such that most of the processes either page fault or becone inactive before running out of the time slice. Since $P(t, r)$ describes the inter-page-fault-time distribution of a process for a given t, the time slice for the Quantum Queues can be detemined from $\mathrm{P}(\mathrm{t}, \tau)$. For example, if we wish 95% of the time that the process will page fault before running out of the time slice -.. that is, only 5% of the time the process will run to the end of the time shice ... then from figure 3 we know
the time slices of the $L 00^{*}$ for $\tau=10 \mathrm{~m}$ sec are: 28 m sec for the FORTRAN Compilor, 13 msec for DCDL, and 12 msec for MTRA-7. Time slices for $r=25$ a sec are: 58 mi sec for the FORTRAN Compiler, 38 msec for DCDL, and 35 m sec for PETA-7. Thus, the measured inter-page-fault-time distribution provides a good way to determine the ontimal time slices for the quantum queues which avoids excessive trinatural interrupts that degrade response times.

The page fault scheduling algorithm, as well as the selection of the time slice form inter-page-fault-time distribution, are quite general and can be applied to other types of replacement algorithms.

V. Conclusions

Page inter-reference interval distribution, average working set size, average page fault frequency, and inter-page-fault-time distribution for three typical programs with working set replacement algorithas are measured and reported. Measurement results support program locality and the following working set properties: the average page fault frequency decreases rapidly as τ increases and increases as progran size increases. Based on these measured diata, working set parmeter and process scheduling may be selected from and based on the average page fault frequency. The time slices for the Quantua Queues may be detemand from inter-page-fault-time distributions. A page fault scheduling algoritha is proposed for process scheduling in a murizpromraming enviroment. Such an algorthn is effective in reducing CPU idre time and improve system efficiency.

[^2]Although the Borking Set Algorithm provides an upper bound on replacement algorithm perfomance, the high cost of implementation prevents it from being widely used. Therefore future research should be in developing low cost: hardware devices for economically implementing the Working Set Algoritha or, perhaps even more fruitful, in developing new replacement algorithms that have perfomance comparable to that of the Working Set Algorithm but are luch easier to implement. For example, we have recently studied a Page Fault Frequency Replacement Algorithm, Such an algorithm adjusts the LRU (Least: Recently Used) stack according to page fault frequency. Preliminary results already indicate it hüs excellent performance.

Acknowledyement
The authors wish to thank P.E. Demning of Princeton University for his critical comments on this paper.

APPENDIX

A Cyclic Queueing Hodel to Study CPU and $1 / 0$ Operations

To illustrate the relationships among cpu idie time, average page fault frequency and swapping time (time to bring in a new page from the allxiliary memory) $r_{:}$a cyelic queueing model ${ }^{[8]}$ is used to study CPU and $1 / 0$ operations. The system in Figure 4 consists of two classes of service facilities. Service facility class I represents a single CPU; its service rate is directly detemined by the average page faulit rate* λ. Service facility class II represents k parallel $1 / 0$ servers with each having an average service rate $\mu=\frac{1}{T}$. The k parallel servers represent, for example, a paging drum with k different sectors, Using such I/O facilities, a high degree of pverlap of $1 / 0$ requests can be achieved in a multiprogiaming systen with relatively low page fault frequency.

Let $P_{i j}$ be the probability that a job leaving server i will proceed to server j. We assime that the job leaves CPU (server 0) and goes randomy to the $k 1 / 0$ servers for service; thus $P_{0 j}=\frac{1}{k}$, for $j=1,2, \ldots, k$. Since Jobs which have finished their I/0 operations always return for CPU operations, $P_{i 0}=1$ for $i=1,2, \ldots, k$; and all the other $P_{i j}$'s are equat to zero.

Let N be the total number of jobs in the system, and let n_{i} denote the number of jobs in service plus the number in queue at the $i^{\text {th }}$ server. The scate of the system can then be detemined by the $k+1$ tuple ($n_{0}, n_{1}, \ldots, n_{k}$) in which $\sum_{i=0}^{k} n_{i}=N_{1}$. The number of distinguishable states of the system....equal to the number of partitions of N customers among $k+1$ servers--is $\binom{1+k}{k}$.

Mor a syscen Usint Horking Set Replacement Algorithm with parameter τ, then
$\lambda:=m(\tau)$. $\lambda=m(\tau)$.

Let $P\left(n_{0}, n_{1}, \ldots, n_{k}\right)$ be the stationary probability that the system is. in state $\left(n_{0}, n_{j}, \ldots, n_{k}\right)$, and let all the service thans be assumed to be c . ponentially distribated. Then the stady state equations can be writion in the fom:

$$
\begin{align*}
& \left\{\varepsilon\left(n_{0}\right) \lambda+\sum_{j=1}^{k} \varepsilon\left(n_{j}\right) \mu \mid P\left(n_{0}, n_{1}, \ldots, n_{k}\right)\right. \\
& =\sum_{j=1}^{k} \varepsilon\left(n_{j}\right) \lambda P_{0 j} P\left(n_{0}+1, n_{1}, \ldots, n_{j}-1, \ldots, n_{k}\right) \\
& +\sum_{i=1}^{k} \varepsilon\left(n_{0}\right) \mu P_{i 0} P\left(n_{0}-1, n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right) \tag{AI}
\end{align*}
$$

where the indicating function

$$
\varepsilon\left(n_{j}\right)= \begin{cases}0 & \text { if } n_{j}=0 \\ 1 & \text { if } n_{j} \neq 0\end{cases}
$$

accounts for the impossibility of any customer leaving the $j^{\text {th }}$ server if that server is empty.

The left hand side of (A1) represents the rate of transition out of state $\left(n_{0}, n_{j}, \ldots, n_{k}\right)$; ard the right hand side is the rate of transtion into this state. Solving (Ai) by a method of separation of variables ${ }^{[8]}$, we have

$$
\begin{align*}
P\left(n_{0}, n_{j}, \ldots, n_{k}\right) & =\frac{1}{G(N)} \prod_{i=1}^{k}\left(\frac{P_{0 i}^{\lambda}}{\mu}\right)^{n_{i}} \\
& =\frac{1}{G(N)}\left(\frac{a}{k}\right)^{N-n_{0}} \tag{A2}
\end{align*}
$$

Where $\alpha=\lambda / \mu$ and the nomalizing function $G(N)$ is determined from the fact that the sum of all the $P\left(n_{0}, n_{1}, \ldots, n_{k}\right)$ is equal to 1 . Thus

$$
\begin{align*}
G(N) & =\sum_{\sum_{i=0}^{k} n_{i}=N} \prod_{i=1}^{k}\left(\frac{\alpha}{k}\right)^{n_{i}} \\
& =\sum_{n_{0}=0}^{N}\binom{N-n_{0}+k-1}{k \cdots 1}\left(\frac{\alpha}{k}\right)^{N-n_{0}} \tag{13}
\end{align*}
$$

Where $\binom{N-n_{0}+k-7}{k-1}$ is the number of distinguishable partitions of $N-n_{0}$ jobs among k I/0 servers.

The probability that the CPU is idle is

$$
\begin{align*}
P_{0} & =\sum_{\sum_{i=1} n_{i}=N} P\left(0, \# n_{1}, n_{2}, \ldots, n_{k}\right) \\
& =]_{G(N)}\binom{n+k-i}{k-1}\left(\frac{\alpha}{k}\right)^{N} \tag{A}
\end{align*}
$$

For the case $k=1$, then $(A A)$ reciuces to $P_{0}=\frac{a^{N}}{\sum_{i=0}^{N} \alpha^{i}}$
For the case $N=3$ and $k=6$, the values of P_{0} 's for selected a 's are shown in Tabie II.

Table II	$P_{0} v s . \alpha$
α	P_{0}
-	0.003
0.25	0.019
0.50	0.097
1.00	0.187
1.50	0.279
2.00	0.362
2.50	0.431
3.00	0.488
3.50	0.537
4.00	0.577
4.50	0.612
5.00	

We note that α is the ratio of average page swaping time (from secondary meniory) to average inter-page-fault-time. A large α implies large paga swaping time or small inter-page fault-time (high page fault frequency), or both. Thus the probability of cfu idle tine increases as a increases. Hence, the page fault scheduling alooritha should be effective in reducing CPU idte tinc and shiouild thus improve system efficiericy.

REFERENCES

1. Mattson, R.L. et al., "Evaluation Techniques for Storage Hierarchies," IBM System Journal, Vo1. 9, No. 2, pp. 78-117, 1970.
2. Denning, P.J., "The Working-Set Model for Program Behavior," Communications of the ACH, Vol. 11, No. 5, pp. 323.333, Hay 1968.
3. Denning, P.J. and S.C. Schwartz, "Properties of the Horking Set Hodel," Procectinas of the zud AGM Sumnsium on Operating System Princinles, October 1971.
4. Fine, G.H., C.H. Jackson and P.V. McIsaac, "Dynamic Program Behavior Under Paging," Proceedings of the 21st National Conference on ACH, pp. 223-228, 1966.
5. Belady; L.A., "A Study of Replacement Algorithm for a Virtual-Storage Comiputer," IBH System Journal, Vol. 8, No. 2, 1966.
6. Coffmati, E.G. and L.C. Varian, "Further Experimental Data on the Behavior of Programs in a Paging Environment, "Communications of the ACM, Vol. 11, No. 7, 1p. 471-474, July 1963.
7. Joseph, M. "An Analysis of Paging and Program Bchavior," Computer Journal, Vol, 13, No. 1, February 1970.
8. Gordon, W.T. and G. F. Newel1, "Closed Queueing Systems with Exponential Service," Operations Research, Vol. 15, No. 2, Abril 1967, nib. 245.265.

Figure Captions

Figure 1: Average page fault frequency $m(t)$ as a function of working set paraneter t.

Figure 2: Average working set size $S(\tau)$ as a function of working set parameter τ.
Figure 3. Inter-Page-Fault-Time Distribution
a) Fortran Compiler
b) DCDL
c) Heta 7 Compiter

Fisura A: A Cyclic Qucueing system for modeling CFU and I/O operations.
AVERAGE PAGE FAULT FREQUENCY $m(t)$, (page faults/reference)

Fi6 2

$;$

II

The design of efficion storage hicrarchies generally imotes the repeated rmaning of "tppical" program address traces through a simuluted storage system while carioms hicrarche design paraneters are adinstet.
This paper describes a new ente efficient method af determining, in one pass of ain adidess trace. performance measures for a large chass of demumd-paged, multilevel storage arstems uilizims a variety of mapping schemes and replacement algorithms.
The rechnique depends on an algorithm classiificution, called "stack algorithims." examples of which are "least frequenty used." "least recently used," "optimal," and "random replacement" algorithms. The techmiques yield the exact access frequency to each storage device, which con be used to estimate the overall performance of actual storage hierarchies.

Evaluation fechnighes for storage hierarchies

J. Cecsei, D. R. Slutz, and I. L. Traiger

Increasing speed and size demands on computer systems have resulted in corresponding demands on storage systems. Since it has been generally recognized that the speed and capacity requirements of storage systems cannot be fulfilled at an acceptable costperformance level within any single technology, storage hierarchies that use a variety of technologies have been investigated.

Several previous papers describe the general concepts of hierarchy design ${ }^{1-3}$ and evaluation, ${ }^{1-0}$ whereas others deal with specific hierarchy' systems, such as the core-drum combination on the ICT Atlas computer ${ }^{7-1}$ and the cache-core combination on the IBM System/360, Model 85 . 10,11

This paper introduces an efficient technique called "stack processing" that can be used in the cost-performance cvaluation of a large class of storage hierarchies. The technique depends on a classification of page replacement algorithnis as "stack algorithons" for which various properties are derived. These properties may be of use in the general areas of program modeling and system analysis, as well as in the evaluation of storage hierarchies. For a better understanding of storage hierarchies, we briefly review some basic concepts of their design.

18m Syst J

The purpose of a : associate the intorn: the lemander of ath Prucessing Upira 1 M system with instuct: fon asoxiated whit a single device, thati (o) the physical indere system with the same of storige devices ri relatively inexpensiv logical address spar (or uncqual-size segn being moved betwees

A hierarely manae ment of pages and between the logical of the helarehy. W hierarchy manageme tion of the correspe page to a fast storag these actions are "tr system (except for t is indistinguishable fo

The goal of the lies number of times log being referenced. As directed to the fast, s space is distributed system then acquire while maintaining, it less expensive store primary justification

Clearly. many facto hierarchy. On the pe and characteristio's of the bierarchy, the hierarchy manageme references. On the co to find and move lo as the cost-per-bit : factors, it is quite dil?

The typical approseh designers hisis been to at various leveis of large number of rel

No. $2 \cdot 1970$
alin thi' diculus) a - Trankers

id "stack A" "heast lgomihms. h storage monce of

objectives of the peper

basic

 model conceptsfixed, standard address traces. Tliese traces are assumed to be "typical" sequences of stomge references obtained from existing computer systems, and they are used to approximate the reference behavior of future systems. The purpose of these simulations is to measire such statistics as data llow and frequency of aceess to each device in order to estimate the overall perfomane of an actual system. The resulting performance estimates sein then be used to narrow the liedd of possible designs, which then reecive more detailed examination.

Alternatively, one may try to develop analytical techniques that avoid point-by-point simulation but still yicld aceusate statistics for data flow and access frequencies. Several papers deal with such techniques for hierarchy evaluation. ${ }^{4-0}$ In general, the approach here is to run a relatively small number of simulations and extrapolate the measured statistics to a larger class of hierarchies. The difficulty with this approach is the need for various assumptions about the statistical properties of address traces and data flows required to formulate the analytical equations. Moreover, it is difficult to include a quantitative dependence on such factors as data path structure, page replacement algorithm, ${ }^{13}$ and address mapping scheme, ${ }^{3}$ so that many simulations may still be necessary.

This paper presents a technique that can be used to circumvent much of the simulation effort required in hierarchy evaluation. Specifically, we present an eflicient procedure that determines, for a given address trace, the exact frequency of access to each level of a hierarchy as a function of page size, replacement algorithm, number of levels, and capacity at cach level. In the following, we consider a class of mulilevel, denand-paging hierarchies ${ }^{14}$ with the same replacement algorithm at every level. The procedures developed here are applicable to a large class of well-known replacement algorithms having certain inclusion properties definted later. These algorithms-which we call stack algorithms-include "least frequently used," "least rec̣ently used," "optimal," and a "random" replacement algorithm.

The system model.

An H-level paged storage hierarchy consists of a collection of storage devices $M_{1}, M_{2}, \cdots, M_{H}$, a network of data paths connecting the devices, and a hierarchy management facility. Each device is partitioned into physical blocks called page frames. For convenience, the highest-level store M_{1} is called the local store and the lowest-level store M_{n} is the backing store as shown in Figure 1. The hicrarchy management facility controls page movement between the devices and associates each logical page with a physical page frame. Special storage and processing hardware may be required, but they are not included in our model.

Reference, in the called the seerma in which the: at may repreach it. the chmment. in abdreat befocme where each sum set of 2 " pasion logical adule mes resent the numb low-order n the address with hierarchy is aco we can andyzes by considering a where each x_{1}^{k} is When we conside and denote pages

A reference from local store M_{1}. device $M_{\text {. }}$ i.e. must bring that a path for bringi staging through for bringing a pa ment hardware, In this paper we in which the onl direct ones from $H-1$. The rea paper. Note that hicrarchy.

The capacity of frames, and all! At any time. cal of the hierarchy crarchical level, : it may occupy in as:

- Uncomstraines storige devios
- Fully comira framc.
- Partially cons

In a later section, that generates a

No. 2 - 1970
imed to be am existing ce metance : ibsmis 10 \therefore ance 10 ance ol an in (i. \cdots be lien wo
igues that le statistics I with such : approach us and exnicrarchics. ssumptions data flows over, it is factors as id address necessary.
sircumvent evaluation. mines, for each level algorithm, owing we liec ºb 6 rocediures know recs incude il" and a
lection of vaths conlity. Each trmes. For ocal store shown in ige movevage with hardware

1DM SYST J

References to the storage hictarchy are presented by a single device called the gemerator and they are sequentially serviced in the order in which they we presented. References from the fenerator may may represent the reguests of several devines, such as the cou and the chamel, in an actual system. The time sequence of lopical. adress references $X:=x_{1}, x ; \cdots, x_{1}$, is called an mherss trace, where each address consists of n bits as shown in ligure 2. The set of $2^{\prime \prime}$ possible adtresses is partitioned into 2^{2} pages of 2^{-1} logical addresses each. The high-order k bits of each address represent the momber of the page containing the address, and the low-order $n^{\prime}-k$ bits represent the location or displacement of the address wilthin the page. Since information movement on the hierarchy is accomplished by transferring pages between levels, we can analyze space allocation and data movement for a trace X by considering a corresponding page trace $X^{k}=x_{1}^{k}, x_{2}^{k}, \cdots, x_{1}^{k}-$ where each x_{1} is the number of the page containing address \boldsymbol{x}_{1}. When we consider a given fixed jage size, we omit the superseript k, and denote pages by x_{1}.

A reference from the gencrator can be serviced only from the local store M_{1}. Thus if the desired page resides in a lower level device M_{i}, i.e. where $i>1$, the herarchy management facility must bring that page up to M_{1} for servicing. The hierarchy provides a path for bringing pages up to M_{1}, which may or may not require staging through intermediate levels. Any temporary storage required for bringing a page up to M_{1} is included in the hierarchy management hardware, and is therefore not represented in our model. In this paper we restrict our attention to linear storage hierarchies in which the only paths for moving pages down the hierarchy are dircet ones from cach level M_{i} to level M_{i+1}, where $i=1,2, \ldots$, $H-1$. The reasons for this restriction are discussed later in this paper. Note that the four-level herarchy in Figure 1 is a linear hicrarchy.

The capacity of the backing store is assumed to be at least 2^{k} page frames, and all logical pages initially reside in the backing store. At any timc, each logical page resides in exactly one page frame of the hierarchy. A mapping function is associated with each hierarchical level, and specifies for each logical page the page frames it may occupy in that level. The mapping function is further defined as:

- Unconsirained if any pagefcan occupy any page frame of the storage devicc.
- Fully constrained if each page can occupy only a single page frame.
- Partially constrained in all other cases.

In a later section, we defme a technique called "congruence mapping" that generates a whole spectrun of mapping functions.

No. $2 \cdot 1970$
Storage hierarchy evaluation

Figure 2 Logical address

Figuro 3 Two leval hierathy

For simplicity in developing technigues for amalysine stomage hierathes, we first consider a two-leve, demand-paped bierarely

 lypes of mapping functions. The local stome or buther has a capacity of C'pages, mad is diveetly connected to the babines stome as shown in Figure 3. At time t, the generator presents a reguest for page x_{1} to the hierarchy. Under demond paying, if x_{i} is in the bufter, the reference proceeds and no page movement oceurs. Otherwise, x_{i} is brouglit to the buffer from the bieking store. If the bufter is already full, x_{i} replaces some page y_{1} in the buffer. The selection of the particular page y_{i} is performed by the buffer replacemem algorithm. This operation is a key element of stomge management.

In the two-level hierarchy shown in Figure 3, a reference to a page residing either at level M_{1} or at M_{2} is called an access to that level.

For a given hierarchy and page trace, we define the access frequencies F_{1} and F_{2} where $F_{;}$is the relative number of accesses to level M_{i} during the processing of the trace. Thus, if N_{1} accesses are made to level M_{1}, and $N_{2}=L-N_{1}$ aceesses are made to level M_{2}, we obtain $F_{1}=N_{1} / L$ and $F_{2}=N_{2} / L$.

Some important measures of storage hierarcly performance can be obtained from these access frequencies. For example, one can combine access frequencies with a set of cffective access times $\left\{T_{i}\right\}$ to obtain an effective (or average) hierarchy access time
$\bar{T}=F_{1} T_{1}+F_{2} T_{2}$
In general, access times depend on the access paths, device access times, and characteristics of the hierarchy management facility. The access frequencies depend only on the page trace, capacity of the buffer, and replacement algorithm.

For a two-level hierarchy, accesses to the buffer are called successes; the relative frequency of successes as a function of capacity is given by the success fiuction $F(C)$. For a given capacity C, page trace $X=x_{1}, x_{2},: \cdots x_{1}$, replacement algorithm, and arbitrary time t (where $1 \leq t \leq L$), the set of pages in the buffer just after the completed reference to x_{1} is denoted by $B_{1}(C)$. The initial buffer contents is represented byं $B_{0}(C)$. By convention
$B_{0}(C)=\phi$
for all C where ϕ is the empty set: The set of distinct pages referenced in $x_{1}, x_{2}, \cdots, x_{1}$ is denoted by I_{1}, and the number of pages in Γ_{1} is denoted by

$$
(\operatorname{sic} \operatorname{lig} \cos t)
$$

$\gamma_{t}=\left|\Gamma_{1}\right|$

Demand pramin the followars: union of di. atin

1. If $x, 0: 12,1$
2. If x if

$$
B_{1}(C)=B_{1}
$$

3. If $\quad x_{1}$ (!)

$$
B_{t}(C)=B_{t}
$$

where $\mu_{1} \in: B$ Under demand by 1 and 2 , w sequently, refer

Least recent!

We now consid recently used" can be obtained trace. Bricfly, of a list of pag on this stack fo distances are us of the LRU sta RU replaceme on the related of

Under l.RU. the not been refere used page). On trace is to simu capacity. Such : time t, and cot is found in the simulation prov $C=1,2,3,4$. successes are mo

A greatly simp under LinU rep of that replace capacity C. the if fills up with At time , the b through time τ $(t>\tau)$, this pat

No. 2 : 1970
\therefore access fac
capa
rcesses;
racity is
C, page urbitrary ust after al buffer

Demand paring in the two-tevel hierarehy is formatly defined by the following requirements, wherein the operator " + " denotes the union of disioint sets:

1. $10 x_{1}\left(B_{1,1}(C)\right.$ then $b_{1}(C)=B_{1,1}(C)$
2. If $\quad x_{1}$ © $B_{1,(C)}$ and $\left|B_{1,1}(C)\right|<C$ then

$$
B_{1}(C)=B_{1-1}(C)+\left|x_{i}\right|
$$

3. If $\quad x_{1}$ \&: $B_{t-1}(C)$ and $\left|B_{t-1}(C)\right|=C \quad$ then

$$
B_{1}(C)=B_{1-1}(C)-\left|y_{1}\right|+\left\{x_{1}\right\}
$$

where $y_{t} \in B_{1-1}(C)$ is determined by the replacement algorithon. Under demand paging, a buffer of capacity C simply fills as required by 1 and 2, white the tirst C distinct pages are referenced. Subsequenly, referenced pages are swapped in, as required by 1 and 3.

Least recently used replacement

We now consider a particutar replacement algorithm called "least recently used" (LRU), and show that the entire success function can be obtained by stack processing in a single pass of the address trace. Briefly, the single-pass technique requires the maintaining of a list of pages, called ampo stack, and measuring a distance on this stack for every page reference. Frequencies of these stack distances are used to calculate the success function. The existence of the trU stack follows from an inclusion property satisfied by LRU reptacement, whereas the use of distance frequencies hinges on the related concept of critical capacity.

Under LRU, the page selected for replacement is the one that has not been referenced for the longest time (i.e., the least recently used page). One way to obtain the success function for a given trace is to simulate the two-level hierarchy system for cach buffer capacity. Such a simulation determines the buffer contents at every time 1 , and counts the number of times the current reference x_{i} is found in the buifer. In Figure 4, we show an example of this simutation procedure for a given page trace and buffer capacities $C=1,2,3,4$. Pages are denoted by lower-case letters, and page suceesses are marked by asterisks.

A greatly simplified method for obtaining the success function under LRU replaceinent can be derived from certain properties of that replacement algorithm. For any page trace and buffer capacity C, the buffer is initially enipty, and in say r time units, it fills up with the first C distinct pages refereneed by the trace. At time τ, the buffer coniains the C pages most recently referenced through time r. When a new page is referenced at a later time $(t>\tau)$, this page replaces the least recently used page in the buffer.
success
function

Figure 4 Defermining success function by buffer simutation

Thus at time t, the buffer still contains the C most rccently referenced pages. It is easy to see that under LRU the buffer contains the C most recently referenced pages for all subsequent times, and that this property holds for all page traces and buffer capacities. One can generate the buffer contents $B_{1}(C)$ for any time t on a trace and any capacity by scanning backward from point t and collecting the first C distinct pages encountered.

Since the set of C most recently referenced pages is always contained in the set of $C+1$ most recently referenced pages, the buffer contents $B_{1}(C)$ at any time must be a subset of $B_{1}(C+1)$. In fact, $B_{1}(C)$ is a proper subset of $B_{1}(C+1)$ if at least $C+1$ distinct pages have been referenced through time t. Morc formally, under LRU replacement, the buffer contents for any page trace $X=$ $x_{1}, x_{2}, \cdots, x_{l}$ and any time t (where $1 \leq t \leq L$) satisfy the following inclusion property:

$$
\begin{equation*}
B_{1}(1) \subset B_{1}(2) \subset \cdots \subset B_{1}\left(\gamma_{1}\right)=B_{1}\left(\gamma_{1}+1\right)=\cdots \tag{1}
\end{equation*}
$$

where
$\left|B_{1}(C)\right|=C \quad$ for $1 \leq C \leq \gamma_{1}$
and
$\mid B, C) \mid=\gamma \quad$ for
The inclusion :rope $1=5$ for catatios
$B_{1}(1)=\{b \mid$
$B_{1}(2)=\{c, b\}$
$B_{1}(3)=\{a, b, c\}$
and
$B_{i}(4)=\{a, b, c \mid$
Because of the inclu and for all capacities and useful way. We , $s_{1}(2), \cdots s_{1}\left(\gamma_{1}\right)$, whers
$s_{1}(i)=B_{t}(i)-B_{t}(i-$
Hence
$B_{1}(C)=\left\{\begin{array}{l}\left\{s_{1}(1), s_{1}(2\right. \\ s_{s}(1), s_{1}(2)\end{array}\right.$
The list S_{1} is referre entry and $s_{i}\left(\gamma_{1}\right)$ as the for $t=5$ in Figure 4
$S_{\mathrm{s}}=[b, c, a]$
The stack S_{n} at time null stack, that is, LRU stacks correspo

Bésides representing stack can be used $F(C)$. Let us suppos referenced and thus $1 \leq C \leq \gamma_{1-1}$. .et $x_{1} \in B_{1.1}(C)$

We call C_{1} the critic given in Equation I, not been previously contained in a buffer

From the definition that C_{t} is simply the

No. 2 : 1970
and
$\left|B_{1}\left(C^{\circ}\right)\right| \cdots \gamma_{1}$ for $C \geqslant \gamma_{1}$
The inclusion property can be observed in Figure 4 where at time $t=5$, for example
$B_{1}(1)=\{b \mid$
$B_{1}(2)=\{c, b\}$
$B_{1}(3)=\{a, b, c\}$
and
$B,(4)=\{a, b, c\}$
Because of the inclusion property, the buffer contents at any time and for all capacities can be represented in the following compact and useful way. We order the set of pages Γ_{1} into a list $S_{1}=s_{1}(1)$, $s_{1}(2), \cdots s_{1}\left(\gamma_{i}\right)$, where
$s_{t}(i)=B_{1}(i)-B_{1}(i-1) \quad$ for $i=1,2, \cdots, \gamma_{t}$
Hence
$B_{1}(C)= \begin{cases}\left\{s_{1}(1), s_{1}(2), \cdots, s_{1}(C)\right\} & \text { for } C \leq \gamma_{1} \\ \left\{s_{1}(1), s_{1}(2), \cdots, s_{1}\left(\gamma_{1}\right)\right\} & \text { for } C \geq \gamma_{1}\end{cases}$
The list $S_{\text {, }}$ is referred to as the $L R U$ stack, with $s_{1}(1)$ as the top entry and $s_{1}\left(\gamma_{t}\right)$ as the bottom entry. As an example, the LRU stack for $t=5$ in Figure 4 is
$S_{5}=[b, c, a]$
The stack S_{0} at time $t=0$ has no entries and is therefore called a null stack, that is, one with no entries. The entire sequence of LRU stacks corresponding to Figure 4 is included in Figure 5.

Besides representing the buffer contents for all capacities, the LRU stack ean be used to elliciently determine the suceess function $F(C)$. Let us suppose that at lime t, page x_{1} has been previously ieferenced and thus is a menber of at least one set $B_{t-1}(C)$, where $1 \leq C \leq \gamma_{1-1}$. Let C_{1} denote the least buffer capacity such that
$x_{1} \in B_{t-1}(C)$
We call C_{1} the critical copacity since, from the inclusion property given in Equation 1, $x_{1} \in B_{1-1}(C)$ if and only if $C \geq C_{1}$. If x_{1} has not been previously referenced, we set $C_{1}=\infty$ because x_{1} is not contained in a buffer of any finite capacity.

From the definition of lRU stacks in Equation 2, it may be seen that C_{1} is simply the position of page. x_{1} in the stack S_{1-1}, so that
no. 2. - 1970

Figure 5 Sequence of LRU Alack:

Figure 6 Oblaining success
function from distance frequencios
a bistance frlquency

a SUCTESS funclion

$x_{1}=s_{1-1}\left(C_{1}\right)$
We call this page position the stack distance Δ_{t}, since Δ_{t} is essentially the "distance" from the top of the stack to
$x_{1}=s_{t-1}\left(\Delta_{t}\right)$.
1
(Note that here $\Delta_{1}=C_{1}$. When constrained mapping functions are considered, the stack distance may not always equal the critical capacity.) If x_{1}, lias not been previously referenced, then Δ_{1} is set to infinity. The sequence of slack distances for our example is included in Figure 5.

The significance of stack distances is that they lead directly to the success function. To see this, let $n(\Delta)$ be the number of times the stack distance Δ is observed in processing a trace. Since the stack distance equals the critical capacity, the number of times that the referenced page is found in the buffer is
$N(C)=\sum_{\Delta=1}^{\sigma} n(\Delta)$
and the success function is given by the expression
$F(C)=N(C) / L$
In practice, the set $\{n(\Delta)\}$ can be determined from a set of distance counters, as shown in Figure 5. All counters are set initially to zero, and the counter for each distance Δ is incremented whenever

Ih.1! . IV,
$2^{\prime} \cdot 1$.
H1::
cunsters
4 4nt

Hic !ow example. counter is shown sumbing
Figure 6
Figure 61

To find
C, ve tal
manes, F_{1}
0.50 , and
0.50%.
Note tha of C for sumnatio
$(L-\gamma$, in the bac

- To avoid an iterati every tim to their
is $s,(1)$ sis
is $s,(2), a$
Let us sut appears a must be th page. Co $1 \leq j<$ pace, and is added on steck j at time changed f

The net c is moved down-shif position. on the top. shown in no. $2 \cdot 19$

This iterative procedure can be wed to penemate the seguene of stacks in Pieure 5. In an actual evallation, it is mot mespory to bobre the entive sequence of stachs. Rather, only the curemt statek must be mantaned as the trace is scomach. When a pate toferenes oceurs, that patge is put on the top of the sack, and entries in the stack are down-ibifted one-by-one statiog from the lop. If prige x_{1} is encommered, its distance Δ_{2}, is recorded, and x_{1} is censed becouse it has already been placed on lop. The position vacated by x_{2} is filled by the page downshifted from position $A_{4}-1$. If x_{i} is not encomitered, then the downshifting proceded to the bottom of the stick, and distance $\Delta_{t}=\infty$ is recorded.

Stack algorithms

We now examine the general elass of replacement afgorillms that satisfy the inclusion property. Such algorithms are called "stack algorithms." It is shown that stacks can be iteratively maintained for any stack algorithm, and that stack distance freguencies for a given trace ean be used to obtain the corresponding suecess function. The main problems considered ate (1) to efficiently generate stacks $\left\{S_{1}\right\}$ for an arbitrary stack algorithm, and (2) to identify those algorithms that are staek algorithms. Several examples of stack algorithms are described, along with ote replacement algorithm that is not a stack algorithm.

A replacement algorithm is called a stack algorithm if the buffer contents in a demand-paged, two-level hierarchy satisfy the inchasion property given in Equation 1, for every page trace and every point in time. As shown for bed replacement, a stack can be defined aecording to Equation 2 in such a way that the buffer contents for all capacities are given by Equation 3. Furthermore, since the stack distance Δ_{l} is a critical capacity, the suecess function for any page trace can he obtained by summing the stack distance frequencies $\{n(\Delta)\}$ aceording to Equation 4. This stmmation implies that the success function is a monotonic and nondecreasing function of the capacity, C for every stack algorithm.
stack generation

Let us now consider a replacement algorithm R as a collection of mappings

$$
R_{r}: B_{t-1}(C) \rightarrow y_{1}(C) \quad \text { where } y_{i}(C) \in \dot{B}_{t-1}(C)
$$

is the page replaced by x_{1} in a buffer of capacity C. From the constraints of denaind paging, we know that R is applied only when the following conditions are rue: $x_{1} \notin B_{t-1}(C)$ and $\left|B_{t-1}(C)\right|=C$. If the inclusion property is satisfied up to and including time $t-1$, then R must satisfy certain restrictions at time t to maintain the inclusion property. Specifically, if a replacement is required for some capacity $C+1$ (and therefore for C), then $y_{t}(C+1)$ must be cither $y_{1}(C)$ or $s_{t-1}(C+1)$. To prove this, let us assume the following:
$|n, 1: \because|$ and

Note hat
$R_{1,1}(C+$
$s_{1}\left(c^{\prime}+1\right.$
However. would rio!

We have - same conc $y_{r}(C)$ or s_{1} we comeln and only i
$y_{1}(C+1)$
for
$1 \leq C<$

Importaral
that indues
use this ore
be represen
$P_{1}=p_{1}(1)$.
where $p_{1}(i)$
algorithm
the lowest
A convenie A is an arb in A having and x_{1} 里 $y_{1}(C+1):$
$j_{1}(C)=m i$
and
$y(C+1)=$
no. $2 \cdot 1970$
aice of .IIT 11 : 104 $\therefore 16$ If ne: \therefore. ヶ ハ is not of the:
ms that "stack intained \therefore for a naction. estacks iy those of stack horithm
: bufter the innd adery $: \mathrm{d}$ G d lents for the ?
Hix quencies that the action of
action of
the conwhen the C. If the - 1 , then inclusion capacity her $y_{i}(C)$ \therefore ham syst J

$$
\begin{aligned}
& B_{1},(C) C B_{1-1}(C+1) \\
& \left|B_{1}(C)\right|=C \\
& \left|B_{1},(C+1)\right|=C+1
\end{aligned}
$$

ans
$x_{1}\left(\mathbb{F}: B_{1-1}(C+1)\right.$
Nore that from Equation 2, page $s_{1-1}(C+1)$ is contained in $B_{B_{1},(}(C+1)$ but not in $B_{t-1}(C)$. If page $v(C+1)$ is neiliter $s_{1-11}(C+1)$ ner $y_{1}(C)$, then $y_{1}(C+1)$ is some other page $z \in a_{1-1}(C)$. However, page z is inchuded in $B_{i}(C)$, but not in $B_{1}(C+1)$, which would violate the inclusion property.

We have given a necessary condition for stack algorithms. The same condition is also sufficient, because if $y_{1}(C+1)$ is eitlicr $y_{1}(C)$ or $s_{1-1}(C+1)$, then $B_{1}(C)$ is a subset of $B_{1}(C+1)$. Thercforc, we conclude that a replacement algorithm is a stack algorithon if and only if for every time t
$y_{1}(C+1)=s_{t-1}(C+1) \quad$ or $\quad y_{1}(C+1)=y_{1}(C)$
for

$$
1 \leq C<\gamma_{t, 1} \quad \text { and } \quad C+1<\Delta_{t}
$$

Important replacement algorithms that satisfy Equation 6 are those that induce a total ordering on all previously referenced pages and use this ordering to make replacement decisions. The ordering can be represented in the form of a priority list

$$
P_{1}=p_{1}(1), p_{1}(2), \cdots, p_{1}\left(\gamma_{i-i}\right)
$$

where $p_{1}(i)$ has a ligher priority than $p_{1}(i+1)$ for $1 \leq i<\gamma_{t-1}$. The algorithm then selects for replacement the page in $B_{1} \ldots(C)$ that has the lowest priority.

A convenient notation for working with priorities is min(A), where A is an arbitrary set of pages in Γ_{i-1}, and $\min (A)$ is the unique page in A having lowest priority on the list P_{1}. If $B_{t_{-1}}(C) \subset B_{1-1}(C+1)$ and $x_{t} \notin D_{t-1}(C+1)$, we can express the replaced pages $y_{t}(C)$ and $y_{1}(C+1)$ as follow:
$y_{t}(C)=\min \left[B_{t-1}(C)\right]$
and

$$
\begin{align*}
y_{i}(C+1) & =\min \left[B_{t-1}(C+1)\right] \tag{8}\\
& =\min \left[B_{t-1}(C), s_{t-1}(C+1)\right] \tag{9}\\
& =\min \left\{\min \left[B_{t-1}(C)\right], s_{t-1}(C+1)\right\} \tag{10}\\
& =\min \left[y_{t}(C), s_{t-1}(C+1)\right] \tag{II}
\end{align*}
$$

No. $2 \cdot 1970$
stomage hierarcity evaluation
stack algorthm identificationt

Fipuations 7.9 are based on the defmition of the replacement

- Figure 1 aborithm, whereas Pquation 10 is based on the propertios of miminization.

We conchute from Equation II that any rephacement apmitmi that induces a prionty lisi $P_{\text {a }}$ for every time 1 antisfies I funation o $^{\prime}$ and is therefore a stack atgoritho. For example, the primity list for LR U is just the ordering of pages in I_{1-1}, by moss recon referme. The priority list for "least frequently used" (IFU) replacememin the ordering of referenced pages by most frequent reference tugether with a scheme to break ties.
slack updating

Before describing other examples of stack algorithms, tet us develop a stack updating procedure for algorithms inducing a priority list, For any page trace $X=x_{1}, x_{2}, \cdots, x_{1}$, and any time t, where $1 \leq 1 \leq L$, suppose that stack $S_{t-\text {, }}$ is available. Also, for any two pages $a, b \in \mathrm{r}_{t-1}$, let max (a, b) denote the page having higher priority. If x_{i} has been previously referenced and appears at position Δ_{1} oin stack $S_{i . \ldots}$, the stack at time t is given by
$s_{t}(\mathrm{I})=x_{t}$
$s_{t}(i)=\max \left[y_{t}(i-i), s_{1 \ldots}(i)\right] \quad$ for $2 \leq i<\Delta_{t}$
$s_{1}\left(\Delta_{1}\right)=y_{1}\left(\Delta_{1}-1\right)$
$s_{t}(i)=s_{t-1}(i) \quad$ for $\Delta_{t}<i \leq \gamma_{t-1}$
Equations 12, 14, and 15 are based on the constraints of demand paging, whereas Equation 13 is derived from Equation 11.

If x_{1} has not been previously referenced, the defining equations for stack S_{l} are the following:
$s_{l}(1)=x_{t}$
$s_{1}(i)=\max \left[y_{1}(i-1), s_{t-1}(i)\right] \quad$ for $2 \leq i \leq \gamma_{t-1}$
$s_{1}\left(\gamma_{i}\right)=y_{1}\left(\gamma_{t-1}\right)$
In this case, Equations 16 and 17 express the fact that replacements are required for all buffer capacities in the range $1 \leq C \leq \gamma_{t-1}$. Equation 18 corresponds to the new page x_{t} being added to the stack, with the result that a buffer of capacity
$\gamma_{t}=\gamma_{t-1}+1$
is now full.
Figure 8 illustrates the stack updating procedure as given in Equations 12-18. The top entry $s_{1}(1)$ is always x_{1}, and the first page replaced is
$y_{1}(1)=s_{1-1}(1) \quad$ for $\Delta_{1}>1$

```
    A M,',
```


Esch subl $s_{t, \ldots}(i)$ and on stack determine If x, is not and we us does not Only a se $y_{i}(i-1)$

Compraing shown in $s_{t-1}(\mathrm{C})$. In since both reference. "
$y_{i}(C)=s_{1}$. and Equati

$$
\begin{aligned}
s_{1}(i) & =\mathrm{ma} \\
& =s_{\mathrm{t}-\mathrm{a}}
\end{aligned}
$$

For all arbi than for L . very differe

Let ne nuvi any replace usige quain priorily list

No. $2 \cdot 1976$

Figure 0 Stack updating

Each subsequent entry $s_{1}(i)$ is then determined iteratively from $s_{t-1}(i)$ and $y_{i}(i-1)$ according to Equation 13 or 17. If x_{t} is found on stack S_{t-1} as shown in Figure 8A, we use Equation 14 to determine $s_{t}\left(\Delta_{t}\right)$. All lower entries are unchanged from time $t-1$. If x_{1}, is not found on stack S_{t-1}, as shown in Figure 8B, then $\Delta_{1}=\infty$, and we use Equation 18. In either case, the replacement algorithm does not have to be applied to all the pages for stack updating. Only a sequence of pairwise decisions between pages $s_{t-1}(i)$ and $y_{i}(i-1)$ is required.

Comparing our stack ipdating procedure with the one for LRU shown in Figure 7, we see that page $y_{i}(C)$ under LRU is always $s_{t-1}(C)$. In fact, the priority list P_{t} is exactly equal to stack S_{t-1}, since both lists give the order of pages in Γ_{t-1} by most racent reference. Thus
$y_{1}(C)=s_{1-1}(C)$
and Equations 13 and 17 then reduce to

$$
\begin{aligned}
s_{1}(i) & =\max \left[s_{1-1}(i-1), s_{1-1}(i)\right] \\
& =s_{1-1}(i-1)
\end{aligned}
$$

For an arbitrary stack algorithm, the stack updating is more complex than for LRU, and the order of stack elements at time $t-1$ may be very different from that at time t.

Let us now examine several examples of stack algorithms. In general any rephacement algorithm that bases its decisions on some page usage quantity, whether measured or predicted, naturally induces a priority list and is, thercfore, a stack algorithm. One example, of

No. $2 \cdot 1970$
storaoe hierarchy eval.uation
examples of stack algoritions
course, is $1 . k 0$, and another example previonsly mentioned is lensi frequenty used (1.1-U) rephatement.

Under 1 tu, the pape reptaced from a huffer at time 1 is that papethat has been referened the fewest number of times over the intereal $1 \leq r \leq t$, or pechaps wer some "hackwand wimbe" interval $1-h \leq 1 \leq h$, where $0<h \leq t$. 1 two or more mases are tied for teast frequency of use, then seme arbitrary rute is used to break the tie. As long as the rule is consistent for all pages and all capacities (c.g., if the tied pages are mumerically ordered) a priority fist P_{1} is induced, and fr U is a stack algorithm.

Other examples of stack algorithms may arise in amatytical sturdies of program behavior. If an address trace is generated from some random process, it may be desirable to study the behavior of replacement algorithms that base their decisions on the parameters of the random process. One such process is a time-invariant, first-order Markov chain, ${ }^{18,36}$ where any page c is referenced immediately after page b with a fixed transition probability $\pi_{1} .$. . The process is completely described by the matrix $n=\left\{\pi_{b c}\right\}$, (where b and c range over all referenced pages) and by the page refereneed at time $t=1$.

One possible replacement algorithm is to remove the page last likely to be referenced next. We call this strategy "least transition probability" (LTP) since, for page x_{1} equal to page b, the page c chosen for removal is the one that minimizes $\pi_{b,}$ over those pages in the bufler. Supplying an appropriate rule for breaking ties, we see that LTP induces a priority list and is a stack algorithm.

Another replacement algorithm is to remove the page with the largest expected time until next reference. We call this strategy LNR for "longest next reference." The expected times until next reference can be obtained from the 11-matrix by standard techniques. ${ }^{17}$ As with LTP, LNR induces a priority list if we supply an appropriate tie-breaking nule.

To analyze an actual program trace under LTP ór LNR (perhaips for testing a Markov model of the program), page reference statistics may be used to estimate the matrix II. For example, the observed transition frequencies over some interval $t-h$ to t can be used to generate a time-varying estimator matrix n_{1}. A priority list P_{1} can then be constructed for each time t, according to the probabilities in M_{7}; with the result that the overall strategy for replacement remains a stack algorithm.

Other stack algorithms may base their decisions on information from the programmer or compiler, or on properties of the computer system. For example, the programmer or compiler may supply to the system" ${ }^{14}$ special "program directives" that indicate which pages
sha:nl!! (a:s, i- i.
1.t.!

191914
allito
Mghtcemut
bly the wa wacty of "irst-in in FFO, the (contimotor

A peculiari
$X=a b c$
As shown i monotonic. algorithms is not a st every time prioritics b
C. Thus it priority of longest. Ho brought int

Whenever the bufficr. every capac the fresura Another ea buffer.

As long as as one can then stack. function.

An optim
We now dis value for t algorithm:anl atorith Belady "
 page trace: : we describe

No. 2 - 19

tion

 Hitershould te given high prionities in the immediate foture. Another cone is where the operating system assigns prionities to propam papes in a muhturogammed system, based perhaps on the position
 can be undered in a prionty list r, far each time t, the resulting sphameme atporithm is a stack abguthm.

In the examples eiven, we see that priority lists can ariso in a varicty of ways. We now consider a replacement algorithm called "first-inffirst-oul" (FIFO) that is mot a stack algorithm. Under Friro, the page that has remained in the buffer for the longest (contimous) time up to time t is removed.

A peculiarity of FIFO is illustrated by the following page trace
$X=a b c d a b e a b c d e$
As shown in Reference 18; the success function for this trace is not monotonic, and lakes the form shown in Figure 9. Since stack algorithms have monotonic success functions, we conclude that mro is not a stack algorithm and does not induce a prionity list $P_{\text {, }}$ at cvery time t. In amplifying this conclusion, we note that the relative priorities between pages in Γ_{t-1} may depend on the buffer capacity C. Thus in the example, one can verify that page d has lowest priority of all pages in $B_{6}(3)$ in the sense that d has been in the buffer longest. However, page d has highest priority in $B_{n}(4)$, sinee it was brought into the buller latest.

Whenever the priorities among pages depend on the capacity of the buffer, we camot define a single priority list that applies to every capacity. One instance of this is when priorities depend on the frequency of reference to pages after their entering the buffer. Another case is when priorities depend on total time spent in the. buffer.

As long as priorities are independent of capacity, and as long as one can order the referenced pages to reflect these priorities, then stack-processing techniques can be used to find the success function.

An optimum replacement algorithm

We now discuss a replacement algorithm that yieds the maximum value for the success frequency over the space of all replacement algorithms-for every page trace and every buffer capacity. Such an algorithm is said to be an optimum replacement algorithm. Belady ${ }^{13}$ describes an optimum replacement algorithm called MIN, and shows how to evaluate the success frequency for a given page trace and a given buffer capacity. In the following discussion, we describe a stack algorithm called OPT and prove that it is also

No. $2 \cdot 1970$
STORAGE HIERARCIIY EVALUATION
first.in/
first-out

Figuras Succass function for Fifo replacement

ort

Figure 10 Exomple of OPY replacement

an optimum replacement alporithon. Using certain properties of $1 . R U$ and opt. We entire success fimetion for opr can be determined in two patseses of a page frace.

The replacement algorithon of has the following chamatoristies. Whencer a page must be poshed from the buffer, the chosen page is the one whose next meference is farthest in the limure. If a tie results beause two or more buffer pages are never relerenced again, the tie is broken by an abbitary rule s that poskes the pare with the tatest alphabetical or mumerical order. An example of op T rephacencont is shown in Figure 10, for the buffer capacity $C=3$. As an illustration, notice that at time $t=5$ page c is pucted from the buffer, since the other bulfer pages a and b are referenced sooner. At time $i=9$, page b is pushed from the bulfer, because page d is referenced again (at time $t=10$), and page a has priority over page b by our rule s.

A formal proof that OPT is an optimak replacement algorithm is given in the Appendix. We note here that orr is not realizable in an actual computer system bectuse it requires knowledge of future page references. However, opt does'serve as a useful benchmark for any replacement algorillm, including stack-lype algorithoms. To show that OPT is a stack algorithm, observe that a priority list P_{i} can be constructed for OPT at each time t. Specifically, $P_{\text {, }}$ is the list of the pages referenced again, ordered by their time of next reference, followed by the list of the pages not referenced again, as ordered by the tie-breaking rule s.

The stack processing technique for opt is illustrated in Figure 11. Priority lists are ordered às described above, and curly brackets denote the pages ordered under the rule Ω. For example, at time $t=8$ the priority list is $P_{8}=c, d, a, b$, because c is the next page

Figuro 11 Slack processing and succoss functlon for OPT replacemeni

tigas	1		2	3	4	5	6	6	7	8	9	
TAGE trace	-		b	c	a	ס			a			d
Phonity tIST			b	b								$\left\{\begin{array}{l} a \\ b \\ c \\ d \end{array}\right.$
OPT STACK	0			c		d			t	d	c d d b	$\begin{aligned} & d \\ & c \\ & b \\ & b \end{aligned}$
STACK distance	∞		∞	∞	2	ω	3	3	2	3	4	2

MATTSON, GECSEL, SLUTZ, AND IRAIGER

IBM SYST J
reforno. 1
Pum, ewn!
in! 10 : primity tos distame tre anome of

Formmaty. priority lists wis(a) toa a pa in $x_{1, \ldots}, \cdots$
t). If pape a as infinity. pages in 1 : illustrative: Higure 12.

If the forwat the new for from the si $a \neq x_{1}$:anc
$w_{1}(a)=\left\{\begin{array}{l}w_{1}, \\ w_{1},\end{array}\right.$
To determin trace X con Suppose tha that x_{i} and reverse trace At time j. referenced it However, ith distance ${ }^{1}$, distances for of the seque trace X.

These resums for determin techuicure is scan of the left-pantims order, on a using opr Forward δ ist the opr pric

The LRU stac important inl

No. $2 \cdot 19 \%$
referenced (at $1:=9$) and d is the second page referened (at $t=10$). lapes and b are not referenced agan, and thes are ordered according to whe as The sequence of ort stacks is constrinted using the primity lists, and be suesess function is obtaned from the stack distance ferginemes. A major dilficully with the technigue is the amonn of forwad seaming reguired to construct the priority fists.

Fortunately, a more eflicient procedure exists for obtaining the prionity lists. For a given page trace X, we define the forsard disfance $w_{i}(a)$ to a page a at time: 1 as the number of distinct pages referenced in x_{1}, \ldots, x_{1}, (where x_{1}, is the first reference to page a after time 1). If page a is not efereneed again, the forward distance is deftined as infinity. Note that the priority list under OPT is a listing of the pages in $r_{1,-i}$ according to their increasing forward distances. An illustrative example of forward distance detemination is given in Figare 12.

If the forward distances to all pages in C_{t-1} are known at time $t-1$, the new forward distances at time t can be determined iteratively from the single forward distance $w_{1}\left(x_{1}\right)$. Specifically, for page $a \neq x_{1}$ and $w_{1} \triangleq w_{1}\left(x_{1}\right)$, we have
$w_{1}(a)=\left\{\begin{array}{lll}w_{1-1}(a)-1 & \text { for } \quad w_{t-1}(a) \leq w_{1} \quad \text { and } \quad w_{t-1}(a) \neq \infty \\ w_{1, \ldots 1}(a) & \text { for } \quad w_{t-1}(a)>w_{1} \text { or } \quad w_{1-11}(a)=\infty\end{array}\right.$
To determine the sequence of forward distances fw, for a page trace X, consider the reverse trace $X^{\prime \prime}=x_{1,}, x_{1, \ldots, 1}, \cdots, x_{2}, x_{1}$. Suppose that $X^{\prime \prime}$ is antyzed according to LRU replacement and that x_{i} and x_{i} denote iwo successive references to page a in the reverse trace. Thus $X^{t \prime}=x_{L}, \cdots, x_{i}=a, b_{;}, x_{i}=a, \cdots, x_{i}$. At time j, the stack distance Δ_{i} is the number of distinet pages referenced in x_{i}, \cdots, x_{i+1}. (Note that x_{i+1} precedes x_{i} in X^{n}.) However, this number of distinct pages is precisely the forward distance w_{i} for page trace X. Thus the sequence of LRU stack distances for trace X^{n}, namely, $\Delta_{h}, \Delta_{l-m}, \cdots, \Delta_{2}, \Delta_{1}$, is the reverse of the sequence of forward distances $w_{1}, w_{2}, \cdots, w_{i, 1}, w_{i}$ for: trace X.

These results form the basis of a tivo-pass stack processing techinique for determining the success function for OPT replacement. The technique is illustrated by Figure 13. The first pass is a backward scan of the page trace X using LRU replacenent, denoted by the left-pointing arrow, The LRU stack distances are stored, in reverse order, on a "distance tape." The second pass is a forward sean using OPT replacement, as shown by the right-pointing arrow. Forivard distances read from the distance tape are used to maintain the OPT priority lists according to Equation 19.

The LRU stack distances gathered from the reverse page trace yield important information about the forward page trace. Specifically,

forwati

Histance

Figures 12 Daterminotion of
forward distunces at fime $=A$

maximum
success
function

Figura 13 Ywo.pass fechnique for 184 and OPT raplocomens
distine pros identie:

Figure 14 Sequence of LRU disfances for page a
a tracex

B trace x^{R}

we claim that the success function for the reverse trace $X^{\prime \prime}$ under LRU replacement is equal to the success function for the forward ; trace X under LRU replacement. Thus one can use the backward scan of X, not only to generate the distance tape for OPT, but also. to generate the success function for LRUU.

To prove this result, let $F_{\text {Lew }}(C, X)$ denote the LRU success function for trace X, and consider the set of LRU stack distances measured for a given page a in X and X^{R}. As the example in Figure 14 illustrates, these sets are always identical. Since this holds for cevery
are , i, : 1 .

Anmbey re
 for tray
forvand bat Durin: the the distane function for

Ramom:

In the stack tion is asses techimiques that does n if the buffer ment with perform a obtain a kA yield a set sample suce success fimu

A question generateas han bases virtiable. W there certai property fai

Our approa stack alkori cach capaci time 1 , the of piges in likely to be induces a p"

To establis! that a repla Since $y_{i}(C)$ bility that a

One difficm prionity fist actually con

No. $2 \cdot 1970$

distine pare in the trace, the distance frequences for X and $x^{\prime \prime}$ are wentical, so that the surecess functions $F_{\text {inn }}\left(C, X^{\prime \prime}\right)$ and $F_{1, n}(C, X)$ are equal.

 fon ward lack wand seans ats well as with back wad forwad :ams.
 the distance tape generated. During the second sem the suecess function for OPT is obtained.

Random replacement

In the stack atgorithoms considered thus fat, a unigue success function is associated with eath trace. We now extend stack-processing techmiques to cover a "random replacement" algorithm (RAND) that does not always yicld a unique success function. With RAND, if the buffer has a capacity of C, any given page is chosen for replacement with a probability of $1 / C$. In analyzing RAND, one might perform a Monte Carlo simulation for each buffer capacity to obtain a RAND success function. Repeating these sinulations would yicid a set of sample success functions to characterize RAND. The sample success functions could then be used to estimate an "average" success function.

A question that arises is whether stack processing can be used to gencrate a sample success function for RAND or any other algorithon that bases a replacenent choice on the value of some random variable. We observe that RAND is not a stack algorithm, because there certainly exists a trace and a time t for which the inclusion property fails to hold with a nonzero probability.

Our approach is to define a replacement algorithm RR, which is a stack algorithon having the same statistical properties as RAND for each capacity C. The algorithm RR is defined as follows: at each time t, the priority list P_{1} is obtained by randomly ordering the set of pages in Γ_{t-1} (each of the γ_{t-1} possible orderings is equally likely to be chosen). Observe that RR is a stack algorithm, since it induces a priority list.

To establish that RR is statistically equivalent to RAND, assume that a replacement is necessary in a buffer of capacity C at time t. Since $y_{i}(C)=\min \left[B_{t-1}(C)\right]$, and P_{t} is randomly chosen, the probability that any given page is $y_{t}(C)$ is $1 / C$-the same as for RAND.

One difficulty in implementing $R R$ is the generation of the random priority list P_{1}. Fortunately, it is possible to update the stack without actually constructing the entire priority list. Assuming that $\Delta_{t}>j$,

No. $2 \cdot 1970$
stobaoe hierarchy evaluation
let $\varphi_{1}(t)$ denote the probability that page s_{1} ((i) has priority over page $p_{i}(j-1)$ att time t. If $s_{1},(j)$ does mot hase prionty over ni($j \cdots \cdot 1)$, we know that $s_{1}(j)=$ min $\left[B_{1},(j)\right]$. Since this occurs with probability $1 / j$, we obtain
$1-g_{i}(t)=1 / j$
or
$q_{i}(t)=(j-1) / j$
Using Equation 20, the stack can be updated at time t for RR replacement by choosing page $s_{1}(j)=s_{1}(j)$ with probability $(j-1) / j$, for $2 \leq j<\Delta_{1}$ and $j<\gamma_{t-1}$. As a check, let us compute the probability Q that an arbitrary page b is pushed from a buffer of capacity C at time t. Assuming that page b occurs at some position k on stack S_{t-1}, where $1 \leq k \leq C$, then Q is given by the following expression:

$$
\begin{align*}
Q= & P_{r}\left\{y_{1}(C)=b\right\} \\
= & P_{r}\left\{s_{1}(k)=y_{1}(k-1), s_{1}(k+1)=s_{t \cdots 1}(k+1),\right. \\
& \left.\quad s_{1}(k+2)=s_{1-1}(k+2), \cdots s_{t}(C)=s_{t-1}(C)\right\} \tag{21}
\end{align*}
$$

The events in the joint probability in Equation 21 are independent, so that we obtain

$$
\begin{aligned}
Q & =P_{r}\left\{s_{t}(k)=y_{t}(k-1)\right\} \cdot P_{r}\left\{s_{t}(k+1)=s_{t-1}(k+1)\right\} \\
& =\left(\frac{1}{k}\right)\left(\frac{k}{k+1}\right)\left(\frac{k+1}{k+2}\right)_{b} \cdots\left(\frac{C-1}{C}\right) \\
& =\frac{1}{C}
\end{aligned}
$$

Since $Q=1 / C$ holds for any prage b and capacity C, we have verified that the stack updating for RR can be accomplished using Equation 20, and that RR lats the same statistical properties as RAND for each buffer capacity. Note that although a particular value of a point on the success function, for example $F(4)=0.3$, is equally likely to occur, mader both RAND and RR, the occurence of a particular success function is not equally likely.

As the example with RR illustrates, stack processing technigues can be extended to cover probabilistic replacement algorithoms. In fact, a replacement algorithm can have a mixture of probabilistic and nonprobabilistic aspects. For instanee, the arbitrary rule used to break ties in LFU and other algorithms may choose a page at random. Another possibility is for a replacement algorithm to favor some pages probabilistically in the construction of the priority list, thereby realizing a so-called "biased replacement" algorithm. ${ }^{12}$ In any case, the only requirement is that the priority list be constructed
to reflet th: abouithon la

Comerumer

Up $10,16 \cdots$ hiararchac: a this tyme of ar referenced that all axais that seldom: mapping amf is that cater pages in the replacenem information : offset these employed wh: only a subsed

One such man the 2^{\prime} distine disjoint congr 2^{k-a} pages. $2^{\prime \prime}-1$, and bist of the pe? the class mum called the poss the ciess lom for all pages.

In a two-leve class is assige be used exch the ciuss cap buffer in pas may appear reference pas occupied by selects one 0 replacement

Note that we class, and the C is a power each class; for a fixed be the mapping constaained s

No. $2 \cdot 1970$

10 tetleet the probabitistic properties of the desired replacement alyonithon for every capaciy C:

Congruenen mapping

 hieraschics with menonstranted mapping ut the fired leved. Under Lhis type of mophing, any page in the buffer may be teplaced by the referenced page. The advantages of unconstrained mapping are that ath available page frames in the buffer can be used, and also that seldom used pages camot become "locked" into the buffer by mapping constraints. A disadvantage with unconstrained mapping is that extensive associative searehes may be necessary to locate pages in the buffer. Moreover, the implementation overhead of the replacement algorillm may be excessive, since relative priority information must be maintaned for all pages in the buffer. To offise these disadvantages, a consiraned mapping scheme can be employed whereby each page is restricted to occupy a member of only a subset of the buffer page frames.

One such mapping technique is called congruence mapping, by which the 2^{4} distinct pages in the address space are partitioned into $2^{\prime \prime}$ dişoint congrunce classes, where $0 \leq \alpha \leq k$, and each class contains $2^{1-\infty}$ pages. The classes are numbered consecutively from 0 to $2^{\prime \prime}-1$, and elass membership is determined from the a low-order bits of the page number. In this case, the α low-order bits constitute the class mumber $[x]$ of a page, and the remaining $k-\alpha$ bits are called the page prefix as shown in Figure 15. The quantity α is called the class length. For a class length equal to zero, we set $[x]=0$ for all pages.

In a two-lcvel hierarchy with congruence mapping, every congruence class is assigned an equal number of page frames in the buffer--to be used exclusively by members of that class. This number is called the class capucity and is denoted by D. (The total capacity of the buffer in pages is thus $C=2^{\text {a }}$. D.) When a page x is referenced, it may appear in any of the D page frames reserved for class $[x]$. If the reference page is not in the buffer, and if the D page frames are all occupied by other members of class. $[x]$, a replacement algorithm selects one of these pages for removal. We assume that the same replacement algorithm is used separately for each of the classes.

Note that when the chass length α is zero, all pages are in the same chass, and the mapping is unconstrained. When the buffer capacity C is a power of 2 , and when $C=2^{\prime \prime}$, only one prge is allocated to each class, and the mapping function is fully constrained. Thus for a fixed buffer capacity $C=2^{h}$, where $0 \leq h \leq k$, we can vary the mapping function from unconstrained to partially and fully constrained simply by varying the value of α from 0 to h.

Figure 15 Pago number

Since the congruence classes are disjoint, and since the same number of buffer page frames are allocated to each class, it is possible to treat a buffer as a collection of 2^{a} distinct buffers-one for eath class $[x]$. If we also view the backing store as $2^{\prime \prime}$ individual backing stores, as shown in Figure 16, the two-level hierarchy partitions into a collection of 2^{4} distinct subhicrarchies, cach with a buffer capacity of D page frames. When the replacement algorithm is a stack algoritm, these subhierarchies can be evaluited separately using stack processing techniques. In practice, $2^{" \prime}$ stacks (one for each subhierarchy) ean be maintaned as the trace is processed. Each page reference x causes only the stack for class $[x]$ to be uphoted, and a stack distance Δ to be determined from that stack.

In congruence mapping, to calculate the success function for a given trace and given class length α, the stack distances must be carefully interpreted. Whenever a stack distance Δ is measured, the corresponding critical capacity of the entire buffer is $2^{a} \cdot \Delta$, since this is the minimum buffer capacity necessary to contain the referenced page. Therefore, the success function $F^{a}(C)$ for the set of capacilies $C=2^{\prime} \cdot D$ where $D=1,2, \cdots$, is given by
$F^{\alpha}(C)=F^{\alpha}\left(2^{\alpha} \cdot D\right)=\sum_{\Delta=1}^{D} \frac{n(\Delta)}{L}$
whele 11 ally al llà
(:1)
Cin in - hat
onit , 1 ,in:
stacs ©
that wheres orderm ad
$S_{t-1}(i, a)$ one would reterome. any i and: in order all it is mot no order (1) f distanes first define x and y as For reampl that the cla if the class that the ou on stack $S_{\text {t }}$ stack will Therefore. chatrics yabs

A simple p: stack, and for $0 \leqslant r$ equaltur. find RMif.x. is given by $\Delta_{l}^{n}=\sum_{i=1}^{\prime}$

However, if of stack S, tugths as. appropwiato

All exampl 17A, the ri stack. in Fi in reversen to Equation Note that distance Δ mapping.

No. $2 \cdot 1970$
where $n(1)$ is the total momber of fimes the distance Δ oceurs for any of the stieks.

Genemally, shat procenime techaigues must be used sepmotely for:
 amly a suple stacli med be mantained in where for determbe the suces hanctions for all values of a in the interval or ar k, kecall that mater fold, the stack $S_{t,-}$ is the list of all the pages in I: ordered according to mont resent reference. To form the stack $S_{t}(i, w)$ correspondine (o congrnence class i and class length x. one would list the pages in chass i according to their most recent reference. However, this ordering is preserved in the stack S_{-1} for any i and any ex. Therfore, $S_{\text {, }}(i, a)$ can be determined by listing in order all the stack entrics of $S_{1 .}$, belonging to class i. in practice. it is not necessary to actually construct cach stack $S_{t-1}\left(\left[x_{i}\right]_{1}, r\right)$ in order to find the distance $A_{\text {: }}^{\text {. One can determine all the stack }}$ distances $\left\{\Delta_{1}^{\prime}\right\}$ in one sean of the bre stack S_{1}. . To do this, we first define the right math fuction RM (x, y) for two page numbers x and y as the number of consecutive low-order bits that match. For example, RM(01!01,00101) $=3$, and RM $(0000,0001)=0$. Note that the class numbers of two pages are equal $([x]=[y])$ if and only if the class length satisfies the incquality $a \leq \mathrm{RM}(x, y)$. Now suppose that the current reference is to page x, and consider the j th entry on stack S_{1-1}, which is $y=s_{1, \ldots}(j)$. The occurrence of page y on the stack will contribute to the distance $A_{i}^{\prime \prime}$ if and only if $\mathrm{BM}(x, y) \geq \alpha$. Therefore, Δ_{i}^{*} can be determined by counting the number of stack entries y above (and inchading) page x that satisfy $R M(x, y) \geq \alpha$.

A simple procedure for detemoning $\Delta_{;}^{\sim}$ for all α is to sem down the stack, and maintain a set of right match frequeity counters $\{\mu(r)\}$ for $0 \leq r \leq k$. Comater $\mu(r)$ is ineremented whenever $\operatorname{RM}(x, y)$ is equal to r. If page x has been previously referenced, we eventually find $R M(x, y)=k$ (corresponding to $x=y$), and each distance Δ_{1}^{x} is given by

$$
\begin{equation*}
\Delta_{i}^{a}=\sum_{r=n}^{k} \mu(r) \quad \text { where } \quad 0 \leq \alpha \leq k \tag{23}
\end{equation*}
$$

However, if page x has not been previously referenced, the botlom of stack $S_{1 . .}$ is reached and Δ_{i}^{n} is set cqual to infinity for all chass lengths α. In either case, each distance Δ_{i}^{α} is used to increment the appropriate distance cointer for class length α.

An example of this procedure is indicated in Figure 17. In Figure 17 A , the right match functions are found by scaming down the stack. In Figure 17B, the right match frequencies $\{\mu(r)\}$ are plotted in reverse order as a finction of r. Cumulative summation, according to Equation 23, then yields the desired LRU stack distances $\left\{\Delta_{i}^{n}\right\}$. Note that the stack distance for class length zero is the same stack dislance Δ as obtained for LRU replacement with unconstrained mapping.

No. $2 \cdot 1970$
storage hierarchy evaluation

Mulilevel hierarchies
In previons sections of this paper, stack processing techniques are developed to obtain the success function for a two-level hierarchy. For each buffer capacity, this success function represents the relative. number of accesses to the buffer for a given page trace.

We now show that the same success function can be used to find the access frequencies for all levels of a multilevel. Linear lierarchy for any number of levels, and any eapaeity at each level. Recall that in a linear hierarchy, the only downward data path from each level
 of paths is available from each level M_{1}, for $1<i \leq H$, to the tocill store. Furthermore, no replacement decisions are required when a page moves upward through intermediate levels. We now assume that the same replacenent algorithm is used at all levels, and that the mapping funetion is unconstrained at every level. (Hierarchies with constrained mapping funetions are considered later in this paper.) At time $t=0$, the backing store contains all pages, and these pages are moved to the local store M_{1} on demand. When M_{1} is full, pages replaced in M_{1} are pushed down to the next lower level in the hierarchy, M_{2}. As each successively lower level $M_{\text {i }}$ fills, the pages replaced in $M_{\text {; }}$ are pushed to the next level M_{i+3}. At level M_{1}, the replacement algorithm is applied to the
an of per.
 the nop! iomer w he 1 ar

Whe: prow , : bace is rab pagerentaned since a paye the batekings $M_{1}, M_{1} \cdot \cdots$, of pros in ti do me: depem siore, bui de capacity ai ca

We have sho? for a tworleve comems of a now assume archy induces. the replaceme true, then for $C_{2}, \cdots, C_{1}^{\prime},!$ from the slat det $B ;(C)$ den the sum $C_{1}+$
$B_{1}^{i}(C)=B_{1}(0$
or cquivalent stack $S_{1, ~ a n d ~}^{\text {and }}$ result is illusi

The main elen that Equation $s_{1}\left(\Delta_{1}\right)$ is an stack $S_{1,-1}$ is the top C, do $s_{1}\left(C_{1}\right)$ represe removed frum hierarclyy, we since the then selects a prows page $b,(C) h$ removal hat: is $y_{1}\left(C_{1}+C_{2}\right.$ $B_{1}^{2}\left(C_{2}\right)$, and 1

A similar are

 on the pape pastual fom lead A. 1.

Shen pare x is acessed from some leved Af, (for $2 \leq i \leq \|-. \quad 1$), a pipe is replaced from eatio of the levels $A h_{\text {, }}, A_{2}, \ldots . M_{i,}$. The pase replaced from level M_{i-1} is gatanteed to find space at level M_{i}. since a page frame was vacated by x_{1}. When page x_{i} is accessed from the backing store A_{n}, a page is displaced from each of the levels M_{1}, M_{2}, \cdots, matil a vacant page frame is found. Note that positions of pages in the hierarhy-ans! therefore the access frequencies-da not depent on the structure of upward data paths to the locat store, but depend only on the replacement atgorithm and the capacity at cach level.

We have shown that when a stack replacement algorithon is used for a two-level hierachy. the top C_{1} pages of the stack are the conkents of a bufter of capacity C_{1} as shown in Figure 18A. Let us now assume that the replacement algorithm for a multilevel hierarchy induces a priority list at cvery time and that this list determines the replacement decisions at every level of the hierarchy. If this is true, then for any number of levels and any set of capacities C_{6}, C_{2}, \cdots, C_{11}, the contents of each level at any time can bedetermined from the stack for this replacement algorithm. More precisely, let $D_{1}^{i}\left(C_{)}\right)$denote the contents of level M_{i} at time t, and let σ_{i} denote the sum $C_{1}+C_{2}+\cdots+C_{i}$. We then claim that
$B_{i}^{i}\left(C_{i}\right)=B_{1}\left(\sigma_{i}\right)-B_{1}\left(\sigma_{i-1}\right) \quad$ for $i=1,2, \cdots, H-1$,
or equivalently that $B_{1}^{\prime}\left(C_{1}\right)$ can be identified as the first C_{1} entries of stack S_{1}, and B_{1}^{2} can be identified as the next C_{2} entries, etc. This result is illustrated for a fou-level hierarchy in Figure 18B.

The main elements of the proof of this result are as follows. Assume that Equation 24 is satisfied 'at time $t-1$, and that page $\boldsymbol{x}_{\boldsymbol{t}}=$ $s_{1-1}\left(\Delta_{i}\right)$ is an clement of $B_{i-1}^{0}\left(C_{v}\right)$ (i.e., level M_{0} is accessed.) As stack S_{1-1} is updated to stack S_{1}, page $y_{1}\left(C_{1}\right)$ is removed from the top C_{1} elements of S_{i-1}, with the result that pages $s_{1}(1), \cdots$, $s_{1}\left(C_{1}\right)$ represent $B_{1}^{1}\left(C_{4}\right)$. Now observe that page $y_{1}\left(C_{1}+C_{2}\right)$ is removed from the top $C_{1}+C_{2}$ elements of S_{1-1}. In terms of the hierarchy, we know that $y_{1}\left(C_{1}\right)$ is pushed to the next lower level $M_{\text {. }}$, since the hierarchy is a linear one. The replacement algorithm then selects a page from $y_{1}\left(C_{1}\right)+B_{1-1}^{2}\left(C_{2}\right)$ for removal from M_{2}. Since page $y_{1}^{\prime}\left(C_{1}\right)$ has lowest priority in $B_{1-1}^{1}\left(C_{1}\right)$, the page selected for removal has lowest priority in $B_{i-1}^{1}\left(C_{1}\right)+B_{1-1}^{2}\left(C_{2}\right)$. But this page is $y_{1}\left(C_{1}+C_{2}\right)$, so that $s_{1}(1), \cdots, s_{1}\left(C_{1}+C_{2}\right)$ represent $B_{1}^{1}\left(C_{1}\right)+$ $B_{1}^{2}\left(C_{2}\right)$, and thus $s_{1}\left(C_{1}+1\right), \cdots, s_{1}\left(C_{1}+C_{2}\right)$ represent $B_{1}^{2}\left(C_{2}\right)$.

A similar argument applies to subsequent levels M_{i} where $2<i \leq$
\& - . 1. Page $s_{1}\left(\sigma_{\ldots}\right)$ is pushed from leved M_{1}; of the hierarehy, and conpeles with the pages in $B_{1-1}^{i}\left(C_{1}\right)$. The replarement apporithon selects for feplacement the pare
$\min \left[y_{1}\left(0_{1}\right), b_{1, \ldots}\left(C_{1}\right)\right] \approx \min \left[l_{1,1}(0),\right) \div y_{1}\left(0_{1}\right)$
wibh the result that
$B_{1}\left(\sigma_{1}\right)=B_{1}^{\prime}\left(C_{1}\right)+B_{1}^{2}\left(C_{2}\right)+\cdots+B_{1}^{\prime}\left(C_{1}\right)$
and
$B_{1}^{\prime}\left(C_{1}\right)=B_{1}\left(\sigma_{i}\right)-B_{1}\left(\sigma_{i .1}\right)$
Al level M_{n}, the page $y_{n}\left(\sigma_{p-1}\right)$ that has been pushed from $M_{r} \ldots$ finds a vacant page frame, and all lower levels remain mohanged. Then
$B_{i}^{p}\left(C_{q}\right)=B_{i-1}^{p}\left(C_{0}\right)+j_{i}\left(\sigma_{p-1}\right)-x_{1}=\dot{h}_{1}\left(\sigma_{\theta}\right)-B_{1}\left(\sigma_{c-1}\right)$
and
$B_{i}^{i}\left(C_{i}\right)=B_{i-1}^{i}\left(C_{i}\right)=B_{1}\left(\sigma_{i}\right)-B_{1}\left(\sigma_{i-1}\right)$ for $j>g$
Thus we have shown that Equation 24 is satished at time t.
The significance of this result is that a stack distance Δ, where $C_{1}+\cdots+C_{v-1}<\Delta \leq C_{t}+\cdots+C_{0}$, corresponds to an access to hierarchy level M_{p}, and the relative number of such Δ 's is simply the access frequency F_{0} to that level. Thus
$F_{v}=\sum_{\Delta=\sigma_{\theta-1+1}}^{\sigma_{0}} \frac{n(\Delta)}{h}=F\left(\sigma_{\theta}\right)-F\left(\sigma_{0-1}\right) \quad$ for $\quad 1 \leq g \leq M-1$

As with two-level hierarchies, all other accesses are directed to the backing store so that
$F_{n}=1-\sum_{i=1}^{\mu-1} F_{i}$
The determination of access frequencies is illustrated graphically in Figure 19 for a four-level hierarchy. Note that the technique : illustrated in the figure cannot be used for an arbitrary hierarchy or success function. However, the technique can be used for any linear hierarchy as long as the replacement algorithm always induces a single priority list for all hierarchy levels.

Our treatment of multilevel linear herarchies can be extended to include hierarchies with congruence mapping functions, We assume that the same class length α is used for every level and that $D_{\text {, }}$ page frames are allocated to each congruence class at level $M_{\text {. }}$. The total capacity of level M_{i} is then
$C_{i}=2^{u} \cdot D_{i} \quad$ where $1 \leq i \leq H$.
Using the success function $F^{\alpha}(C)$ and Equations 25 and 26, we obtain the access frequency F_{i}^{α} for each level as follows:
v. 1141 y.llm

When using lequation 27 or the graphie technigue shown in Figute 19. it is important to remember that the suecess function for mititevel hicrathies with conernence mapping is delined only when the storage espacity is a multiple of 2^{2}.

Possible extensions

It is possible to extend stack processing techniques to account for various changes in the hierarchy model. For example, with appropriate encoding of the n-bit address, systems with page sizes that are nol a power of (wo can be evaluated. Similarly, other encodings of the m-bit address can be used to evaluate systems with congruence mapping functions for any number of congruence classes with equal or umequal class sizes. Indicative of other changes of the hicrachy model that can be handled by stack processing, techniques are the following:

- Pre-loading program pages into the buffer for starting execution
- Loading a working set ${ }^{19}$ of pages into the buffer when resuming program exccution
- Returning all pages to the backing store upon program interruption.
- Maintaining copies of pages in several levels of the storage bicrarchy
- Bringing pages to the local store only for fetch operations
- Returning pages to the backing store for references such as stores from an I / O chamel
- Moving uncqual size pages or scgments, between tevels

To illustrato how stack processing techniques can be adapted to these variations in hicrarchy design, we describe two extensions in, some detail. In our original model, the gencrator does not distinguish fetch operations from store operations. In some computer systems, however, pages are brought to the local store only for fetch operations, and usage statistics for page replacement algorthms refer only to references for fetches. Stores to pages in lower levels of the hierarchy are broadcast to these levels by the hierarchy management faeility, and no pages are moved. The justification for fetch-store hierarchies is that fetches or additional stores usually do not immediately follow stores to a page.

The evaluation of fetch-store hierarehies requires that the generator tag eath reference as cither a fetch or a store. For fetches, the priority list and the stack are updated, and a fetch distance Λ^{\prime} is recorcled. For stores, neither the priority list nor the stack is up-
ended to c assume 1 that D_{i} level M_{i}.
d. 26; we
tavesest J
dated, but a stome distance a^{n} is recombed. The distributions $\left|n^{\prime}\left(s^{\prime}\right)\right|$ and $\left\{m^{\prime}\left(A^{9}\right)\right\}$ can then be wed to delemme the: felen and store

 Werem atso consider a modibed keteh-stare design where the page usiage statisties are updated for a stome operation even llough no pape motion oceurs. This ehange is memporated by matating the primuly list for both fetches and stores. Thus, for modified fetchstores, the net cliange in our model is that the stack is mot updated for store operations.

Besides distinguishing fetches from stores, a compater system may also distinguish the various sourecs of store requests. For cxample, a "call-back" feature can be used by wheh a page in the buffer is moved to the backing store if the page is stored into by an $1 / 0$ derice. The motivation here is to free the bufter of pages not needed by the CPU, and to service all $1 / 0$ stores from the backing store.

For a call-back licrately, the generator must specily at least wo kinds of relerenees-Cru references, and stores from the w/O chamel. Stack processing techmiques ean then be modified as follows. When a CPU store or fetch occurs, the stack is updated in the nomal way (except for special entries to be described later), and a distance counter $n^{\text {ery }}(\Delta)$ is incremented. When an I/O store ocems, say at time t, a counter $n^{1 / 0}(\Delta)$ is increntented. If pape x_{1} docs not oceur on stack S_{t-1}, then S_{1} is equal to S_{t-1}^{\prime}. If page x_{t} docs oceur on stack S_{t-1}, then $S_{1}=S_{1-1}$ except that λ_{i} is replaced by the special entry " \#." This entry, counted for all stack distance moasurements, represents the empty page frame caused by page x_{i} returning to the backing, store. To ensure that empty page frames are filled as soon as possible, all \#-entrics are assigned the lowest priority. in replacement decisions.

The call-back fature can be used in conjunction with the fetchstore or modified fetch-store schemes. In all cases, the correctness of the modified stack processing techniques can be established.

Since stack processing allows a large sample of "typicat" address tapes to be analyzed, for many licrarehy models, the efliciency gained at the early stages of hierarchy design may be great enough to impact the whole design process. Mare of these traces can be processed in a given time, and more hierachy designs can be evaluated for a given number of traces. The ayalability of this data may help justify the "typical"-trace approach to design, or may help in the development of other models for system requirements. As an example, program models can be more deeply investigated by evaluating both a program and its model under a very large mumber of address traces. Improvement in program modeling, in turn, may enhance the success of analytical disciplines that use these models, such as storage interference studies for multiprogrammed systems.

THacol ranin! 1: •": lan al el : : 0 \therefore ches ulan show that ret as lust 1 eon mont -belong

For any stack obtained fron saleatiale me msed lo acion manhile ad hne any capacio: as

For least recer fhimeratiess in a simble pass clastes, any min buel.

Some spocial mont alporilhin and that gild a trace and hatact with a fomard pass of the smm

We conclude 11 of the sim:una Furthermore. w and the variou provide insigh i and computer d

ACKNOW!!ar:
The :uthors w comments alld proof of 'sheres

Appendis:

Two results ment algorithm arip any trace and le

The eoncepts presented in this paper have been used to develop a varicty of stack processing techoiques that are useful in the evaluation of storage hiemarchics. Using the inclusion property, we define a chass of page replacement algorithms, called stack algorithoms, and show hat replacement algorithms that induce priority lists-such as least recently used, least frequently used, and random replace-ment-belong to this class.

For any stack algorithm, the frequency of stack distances can be obtained from an address trace by stack processing and whel Io calculate the success functions. The success function catn then the used to determine the relative frequency of access to all levels of a multilevel, linear storage hierarchy, with any number of levels and any capacity at each level.

For least recently used replacement (LRU), the access frequencies of hicrarchies with congruence mapping functions can be determined in a single pass of the address trace-for any number of congruence classes, any number of levels, and any capacity per class at each level.

Some special results are presented concerning an optimal replacement algorithm (OPT). It is shown that OPT is a stack algorithm and that OPT minimizes the number of page swaps for any address trace and buffer capacity. Also, both OPT and LRU can be evaluated with a forward pass of the address trace followed by a backward pass of the same address trace.

We conclude that stack processing techniques can eliminate much of the simulation effort required in storage hierarchy evaluation. Furthemore, we believe that the classification of stack algorithms and the various extensions to stack processing techniques may provide insiglit into the areas of program modeling, system analysis, and computer design.

ACKNOWLEDGMENT

The authors wish to acknowledge J. H. Eaton for his helpful comments and criticism, and T. W. MacDowell for his help in the proof of Theorem 4.

Appendix

Two results mentioned in the paper concerning the OPT replacement algorithm are proved here. To do this, it is first shown that given any trace and replacement algorithm (not necessarily using demand
paging) another replacement algorithom exists that uses demand paging and causes the same or a fewer total number of pages to be loaded into the buffer. This result is used to show that opr is an optimal replacenent algorithm and, in fact, that orr canses the minimum total number of pages to be loaded into the buffer. Finally, it is shown that the success function under ort for uny truce is identical to the suceess function under opt for the reverse of the trace.

Definition

- $|S|$ denotes the number of elements in a set S.
- $|a|_{x}$ denotes the number of occurrences of a symbol a in a sequence X.
- $A=\{a, b, \cdots \mid$ is a finite set of N page addresses or pages.
- $X=x_{1}, x_{2}, \cdots, x_{L}$ is a finite sequence of L elements from A, and is called a trace.
- $B_{1}(C) \subseteq A$ denotes the contents of a buffer of capacity C at time t, and is called a state.

Throughout this appendix, we consider a two-level storage hierarchy with fixed buffer capacity C. Consequently, we use B_{1} insteid of $B_{1}(C)$. The term B_{i} denotes the contents of the buffer immediately after reference x_{1} is made; B_{0} is called the initial buffer state; and ϕ, the empty set, denotes an empty buffer state.

Definition

- $P=p_{1}, p_{2}, \cdots, p_{L}$ is a finite sequence of L sets, $p_{1} \subseteq A$, called an O-policy. \&
- $Q=q_{1}, q_{2}, \cdots, q_{\mathrm{L}}$ is a finite sequence of L sets, $q_{1} \subseteq A$, called an I-policy.

A policy is a particular realization of a replacement algorithm for a given trace. For such a trace and initial buffer state \mathcal{B}_{0}, an I-policy c and an O-policy together determine the sequence of buffer states that will occur during the trace. An 1 -policy gives the set of pages loaded into the buffer, and an O-policy gives the set removed. If $p_{1}=\phi$, no page is removed, and if $q_{1}=\phi$, no page is loaded in. Note that only certain pairs of O and I-policies are meaningful. For example, a page cannot be removed if it is not in the buffer. We consider only meaningful policies, where $q_{t+1} \subseteq \subseteq B_{1}$ and $p_{t+1} \subseteq$ $B_{t}+q_{t+1}$, for $0 \leq t \leq L-1$. In this case, B_{1+1} is obtained from B_{1} by

$$
B_{l+1}=\left[B_{1}+q_{l+1}\right]-p_{l+1}
$$

Definition

Let X be a trace and B_{0} (where $\left|B_{0}\right| \leq C$) an initial state. A sequence of states $B=B_{0}, B_{1}, \cdots, B_{L}$ is a valid sequence if $x_{1} \in B_{1}$,
for $1 \leq 1$ applicatio

Note that pages ma our atten

- |n| \mid
- $x_{1} \in$
- $p_{1} \neq$
for all t,
Under del the buffer

One meas number 0 pair. The paging.

Theorem
Let P anc valid dem
$* \sum_{i=1}^{L}\left|q_{i}^{p}\right| \leq$
Proof. valid polig $P^{0}=P, Q$ for $1 \leq j$ Q^{i-1} by a straints w demand p elements o and $a \in$ p_{1}^{i} and q_{i}^{i}. and only

To constre smallest tit Set $P^{i}=$ $x_{i}=-a$ an $a \notin q_{i}^{i-1}$, is defined and $g_{1+1}^{i}=$ or $q_{L}^{i}=1$ $q_{i}^{i} \in B_{i-1}^{i}$
lemiluad sto lie r is all ses the hor 6 Cl a in a ses. rom A, at time ierarchy stead of rediately ; and ϕ, 4. called 1. guld illinitror t-policy er states of pages loved. If raded in. aningful. e buffer. ${ }_{1} p_{1+1} \subseteq$ led from
state. \dot{A} $: x_{1} \in B_{1}$, bM SYST y
for $1 \leq 1 \leq L$. A policy pair P and Q is a calid pair for X and B_{0} if application of the pair results in a valid sequence.

Note that valid policy pairs are quite general in that any number of pages may be moved into or out of the buffer. However, most of our attention is directed toward demand paging where
$\left.\begin{array}{lll}- & \left|p_{1}\right| \leq 1 \quad \text { and }\left|q_{1}\right| \leq 1 \\ - & x_{1} \in B_{1-1} \Rightarrow p_{1}=q_{1}=\phi \\ - & p_{1} \neq \phi \Rightarrow a_{1} \neq \phi \quad \text { and } \quad\left|B_{i-1}\right|=C\end{array}\right\}$
for all $t, 1 \leq t \leq L$.
Under denand paging, single pages are loaded when necessary until the buffer fills; subsequently, page swaps occur only when necessary.

One measure of goodness for a policy pair P and Q is the total number of pages loaded into the buffer $\sum_{i=1}^{L}\left|q_{1}\right|$ under the policy pair. The following theorem supports the usefulness of demand paging.

Theorem 1

Let P and Q be a valid policy pair for X and B_{0}. There exists a valid demand policy pair P^{D} and Q^{D} for X and B_{0} such that
$\sum_{i=1}^{L}\left|q_{i}^{D}\right| \leq \sum_{i=1}^{L}\left|q_{i}\right|$
Proof. $P^{\prime \prime}$ and $Q^{\prime \prime}$ will be constructed by forming a sequence of valid policy pairs $\left(P^{n}, Q^{n}\right),\left(P^{1}, Q^{1}\right),\left(P^{2}, Q^{2}\right), \cdots,\left(P^{k}, Q^{N}\right)$, where $P^{n}=P, Q^{0}=Q, P^{K}=p^{\prime \prime}, Q^{K}=Q^{\prime \prime}$, and $\sum_{i=1}^{L}\left|q_{i}^{\prime}\right| \leq \sum_{i=1}^{L}\left|q_{i}^{i+1}\right|$ for $1 \leq j \leq K$. Informally, P^{i} and Q^{i} are constructed from P^{i-1} and Q^{i-1} by altering p_{1}^{i-1} and q_{1}^{i-1} to satisfy the demand paging constraints where p_{1}^{i-1} and/or q_{1}^{i-1} are the first occurrences of nondemand paging in P^{i-1} and Q^{i-1}. This is done by "sliding" offending : elements of p_{1}^{i-1} and/or \dot{q}_{1}^{i-1}, to a later time in P^{i} and Q^{i}. If $a_{i} \in p_{i}^{i}$ and $a \in q_{1}^{i}$ ever occurs then we trivially remove page a from both: p_{1}^{i} and q_{i}^{i}. Clearly, this does not disturb the validity of P^{\prime}. and Q^{i} and only decreases the value of $\sum_{i=1}^{L}\left|q_{i}^{i}\right|$.

To construct P^{i} and Q^{i} from P^{i-1} and $Q^{i-1}, 1 \leq j \leq K$, let t be the smallest time such that p_{t}^{i-1} and/or q_{1}^{i-1} do not satisfy: Equation A1. Set $P^{i}=P^{i-1}$ and $Q^{i}=Q^{i-1}$, except as noted below. Suppose that $x_{\mathrm{f}}=a$ and that q_{1}^{i-1}, for $t<L$, does not satisfy Equation A1. If $a \notin q_{1}^{i-1}$, then set $q_{1}^{i}=\phi$ and $q_{1+1}^{i}=q_{1+1}^{i-1}+q_{1}^{i-1}$. (Note that " + " is defined here since $q_{i}^{i-1} \cap p_{1}^{i-1}=\phi$). If $a \in q_{1}^{i-1}$, then set $q_{i}^{i}=a$, and $q_{i+1}^{i}=q_{i+1}^{i-1}+\left[q_{1}^{i-1}-a\right]$. If $t \doteq L$, then set $q_{i}^{i}=\phi$ if $a \notin q_{L}^{i-1}$, or $q_{L}^{i}=a$ if $a \in q_{L}^{i-1}$. In all cases, note that Q^{i} is valid, since $q_{i}^{\prime} \oplus B_{i-1}^{i}$ for $1 \leq t \leq L$, and that $\sum_{i=1}^{L}\left|q_{i}^{i}\right| \leq \sum_{i=1}^{L}\left|q_{i}^{i-1}\right|$.
optimum replacement algorithm

Now suppose that p_{1}^{i-1}, for $t<L_{\text {, }}$ does not satisfy Equation AI. We observe first that $\left|q_{1}^{i}\right| \leq 1$ and $q_{1}^{i}=a$ if a 本 B_{1-1}^{i-1}. If $q_{1}^{\prime}=\phi$ or $\left|B_{1, i}^{i-1}\right|<C$, then set $p_{1}^{i}=\phi$ and $p_{1, i}^{i}=p_{1,1}^{i-1}+p_{1}^{i-1}$. If $q_{1}^{1}=0$ and $\left|B_{1-i}^{i-i}\right|=C$, set $p_{1}^{i}=0$ for some $b E p_{1}^{i \cdot 1}$ and $p_{1,1}^{i}=p_{1 i 1}^{i-1}+$ $\left[p_{1}^{i-1}-l\right]$. (Note that $p_{1}^{i-1} \neq \phi$ since $\left|B_{i-1}^{i=-1}\right|=C$ and $\left.\eta_{1}^{i-1} ; p_{0} \phi.\right)$
 otherwise. In all cases, we observe that P^{\prime} is valid, since $p_{1}^{\prime} E B_{1.1}^{\prime}$ for $1 \leq t \leq$ L. Since P^{i} and Q^{\prime} satisfy denand paging at least up through time t, the desired demand policies must eventually be obtained. Thus the theorem is proved:

Before considering an optimum replacement algorithnt we make two observations. First, under demand paging, a valid policy pair P and Q can be completely represented by specifying just the O policy P. This follows from Equation AI because $q_{1} \neq \phi$ can only occur when $x_{i}=a$ and $a \notin B_{i-1}$ (in which case we know that $\left.q_{1}=a\right)$. Second, for demand policies P and Q, we can use $|\phi|_{p}$ as an alternative criterion of goodness. To see this let u be the smallest integer such that $\left|B_{1}\right|=C, t \geq u$. Then $|\phi|_{P}$ is given by the following expression:

$$
\begin{equation*}
|\phi|_{P}=u+(L-u)-\sum_{i=u+1}^{L}\left|a_{t}\right| \tag{A2}
\end{equation*}
$$

Since u in Equation $A 2$ is not a function of the policies, $\sum_{i \rightarrow 1}^{w}\left|q_{1}\right|$ is a constant and

$$
\begin{equation*}
|\phi|_{r}=\left(L+\sum_{i=1}^{u}\left|q_{i}\right|\right)-\sum_{i=1}^{L}\left|q_{i}\right|=\text { constant }-\sum_{i=1}^{n_{1}}\left|q_{i}\right| \tag{A3}
\end{equation*}
$$

For a given trace X and initial state B_{0} let us define an optimum policy pair P and Q as a pair that is valid and minimizes $\sum_{i=1}^{i}\left|\boldsymbol{g}_{l}\right|$ over the class of valid policies. From Theorem I there alvays exists an optimum policy pair which is also a demand policy pair. Since (A3) holds for all demand policies we can find an optimum demand , policy pair if we can find a demand policy. ${ }^{D}$ such that $\left.\left.\right|_{\phi}\right|_{p D} \geq|\phi|_{P}$ where P is any demand policy.

Definition

Let X be a trace, and let $a \in A$ be a page. The forward distance $d\left(a, x_{i}\right)$ to page a from page x_{1} is the number of distinct pages occurring in x_{1+1}, \cdots, x_{0}, where e is the smallest integer satisfying $e>t$ and $x_{0}=a$. If no such e exists then $d\left(a, x_{1}\right)=\infty$.

Definition

Let X be a trace and B_{0} an initial state. A valid demand policy P^{0}, called an OPT policy, for X and B_{0} is defined as follows. For $t=1,2$, \cdots, L, whenever $p_{t} \neq \phi$ is required then $p_{t}=a$ where

The forwat refereinesed requires if greatest fo realization We observ have distin have an in more than that all suc

To show policies we

Lemina 1

Let X be a
$B_{0}^{\prime}=T_{0}+$
$B_{0}=T_{0}+$
and $d\left(a, x_{i}\right.$
X and B_{0},
B_{0}^{\prime}, such th
$|\phi|_{p} \geq \mid \phi$
Proof. Gi X at $x_{i s}$ an does not oi three cases.

Case 1. $1 \leq j<i_{a}$
This resulte and $B_{1}=2$ up to lime (because P

Case 2. p case we se Case 1, P^{\prime}

Case 3. p_{i}
Case 3A. by
$B_{i_{0}}^{\prime}=T_{i_{\text {. }}}$.
No. $2 \cdot 197$
$\left(\forall b \in B_{t-1}\right)\left(d\left(a, x_{1}\right) \geq d\left(b, x_{t}\right)\right)$
The forward distance to a page is just the number of distinct pages referenced before that page is referenced again. An orr policy requires that the page removed from the buffer be one with the greatest forward distance. Note that an orr policy is a particular realization of the OPT replicement algorithm disenssed in the paper. We observe that, at time t, all pages with finite forward distances have distinct forward distances. However, more than one page may have an infinite forward distance. This means that there may exist more than one OPT policy for a given X and B_{0}. It should be clear that all such policies P^{0} have the same value of $|\phi|_{p o}$.

To show that any P^{0} maximizes $\left.\left.\right|_{\phi}\right|_{p} 0$ over the class of demand policies we use the following lemma.

Lemma 1

Let X be a trace and B_{0} and B_{0}^{\prime} initial states where
$\left.B_{0}^{\prime}=T_{0}+\{a\}\right\} \quad$ for $\quad T_{0} \subseteq A$ and $a, b \notin T_{0}$
and $d\left(a, x_{1}\right) \leq d\left(b, x_{1}\right)$. For any demand policy P, corresponding to X and B_{0}, there exists a demand policy P^{\prime}, corresponding to X and B_{0}^{\prime}, such that
$|\phi|_{r^{\prime}} \geq|\phi|_{P}$
Proof. Given P, we construct P^{\prime}. Suppose page a first occurs in X at $x_{i_{0}}$ and b at $x_{i_{0}}$. Thus, $i_{0}<i_{b} \leq L$ is assumed. If either b or a does not occur in X, then set i_{b} or i_{0} equal to $L+1$. We consider three cases.

Case 1. $p_{i}=b$ where p_{i} is the first occurrence of b in P, and $1 \leq j<i_{a}$. Here we set $p_{k}^{\prime}=p_{k}, 1 \leq k \leq L$ and $k \not \boldsymbol{z}^{\prime} j$, and $p_{i}^{\prime}=a$. This results in $B_{t}=T_{t}+\{b\}^{\prime}$ and $B_{t}^{\prime}=T_{t}+\{a\}, 0 \leq t \leq j-1$ and $B_{t}=B_{i}^{\prime}, j \leq t \leq L$. Since pages a and b are both not refereuced up to time j, it should be clear that P^{\prime} is a valid demand policy (because P is) and that $|\phi|_{P^{\prime}}=|\phi|_{P}$.

Case 2. $p_{i_{0}}=b$ where $p_{i_{0}}$ is the first occurrence of b in P. In this case we set $p_{k}^{\prime}=p_{k}, 1 \leq k \leq L$ and $k \neq j$, and $p_{i_{0}}^{\prime}=\phi$. As in Case $1, P^{\prime}$ is a valid demand policy and $|\phi|_{P^{\prime}}=|\phi|_{P}+1 \geq|\phi|_{P}$.

Case 3. $p_{i} \neq b, 1 \leq j \leq i_{a}$. Here we must consider two subcases.
Case $3 A . p_{i_{\mathrm{c}}}=c$. At time $t=i_{a}$ the states of the buffer are given by
$B_{i_{0}}^{\prime}=T_{i_{\mathrm{a}}}+\{a\}$
$B_{i_{0}}=T_{i_{0}}+|b|+|a|-|c|$ for $c \in T_{i}$.
which can also be written as follows:

$$
\begin{aligned}
& B_{i_{0}}^{\prime}=\left[T_{i_{4}}+|a|-|c|\right]+|c| \\
& B_{i_{0}}=\left[T_{i_{4}}+|a|-|c|\right]
\end{aligned}
$$

Note this is the same form as Equation A4 with T_{n} replaced by $\left[T_{i_{0}}+|a|-|c|\right]$ and a replaced by c. If $d\left(c, x_{i_{n}+1}\right) \leq d\left(b, x_{i_{+1}}\right)$ then we have a situation identical to that in the statement of Lemma 1 where X now is $x_{i_{0}+1}, \cdots, x_{L}$. Setting $p_{k}^{\prime}=p_{k}$ for $1 \leq k \leq i_{1}-1$ and $p_{i o}^{\prime}=\phi$, we again consider Cases 1, 2, and 3. Since the "new" X is strictly shorter than the original X, this situation can only occur a finite number of times. Note that P^{\prime} is valid as far as it is specified and that $p_{1}^{\prime}, \cdots, p_{i_{0}}^{\prime}$ contains one more ϕ than $p_{1}, \cdots, p_{i_{0}}$.

If $d\left(c, x_{i_{0}+1}\right)>d\left(b, x_{i_{\mathrm{o}+1}}\right)$, we set $p_{k}^{\prime}=p_{k}$ for $1 \leq k \leq i_{n}-1$ and $p_{i_{c}}^{\prime}=\phi$, and consider two more cases. First, if $p_{t}=b$, where p_{t} is the first occurrence of b in X and $\ell<i_{b}$, we set $p_{k}^{\prime}=p_{k}$, for $i_{\mathrm{a}}+1 \leq k \leq L$, and $k \neq \ell$ and $p_{t}^{\prime}=c$. Here $B_{i}^{\prime}=B_{1}$ for $\ell \leq t \leq L$, and as in Case 1 , we see that $|\phi|_{P^{*}} \geq|\phi|_{P}$ still holds. Second, if $p_{i} \neq$ b, for $\ell<i_{b}$, we set $p_{k}^{\prime}=p_{k}, i_{a}+1 \leq k \leq L$, and $k \neq i_{b}$ and $p_{i b}^{\prime}=c$. Again we have $B_{i}^{\prime}=B_{1}$ for $i_{b} \leq t \leq L$, but we note that $p_{i}=\phi$, whereas $p_{i b}^{\prime}=c \neq \phi$. However, since $p_{i_{0}} \neq \phi$ and $p_{i}^{\prime}=\phi$, the relation $|\phi|_{P} \geq|\phi|_{P}$ still holds.

Case 3B. $p_{i_{0}}=\phi$. Since $q_{i_{0}}=a$ we observe that $\left|B_{i_{i-1}}\right|<C$. Let ℓ be the smallest integer such that $p_{i} \neq \phi$. If no such integer exists, then let $\ell=L+1$. We set $p_{k}^{\prime}=p_{k}$ for $1 \leq k \leq i_{0}$ and consider two cases. First, if $i_{0} \leqslant \ell$ then we set $p_{k}^{\prime}=p_{k}$ for $i_{\mathrm{a}}+1 \leq$ $k \leq L$. Note that $Q^{\prime}=Q$ except at times i_{a} and i_{b}. Since $\left|B_{i}^{\prime}\right|=\left|B_{i}\right|$ for $i_{b} \leq t \leq L$, we see that P^{\prime} is valid, and $|\phi|_{P^{\prime}}=|\phi|_{P}$, since $P^{\prime}=$ P. Second, for the case $i_{b}>\ell$, note that $x_{i}=c$, where $c \not a$ and $\boldsymbol{c} \neq \boldsymbol{b}$. We set $p_{1}^{\prime}=p_{k}$ for $i_{a}+1 \leq k \leq L$ and $k \neq \ell$, and $p_{!}^{\prime}=\phi$. If $p_{i}=b$, then $\left|B_{i}^{\prime}\right|=\left|B_{i}\right|$ for $\ell \leq t \leq L$, and $|\phi|_{p^{\prime}}=|\phi|_{\mathrm{P}}+1 \geq$ $|\phi|_{p}$. If $p_{t}=a$, then the buffer states at times $\ell-1$ and ℓ are:

$$
\begin{array}{ll}
B_{l-1}^{\prime}=T_{t-1}+\{a\} & B_{t}^{\prime}=T_{t-1}+\{a\}+\{c\} \\
B_{l-1}=T_{t-1}+\{a\}+\{b\} & B_{\ell}=T_{t-1}+\{b\}+\{c\} \\
\text { Rewriting the buffer states at time } \ell \text { as }
\end{array}
$$

$B_{t}^{\prime}=\left[T_{t-1}+\{c\}\right]+\{a\}$
$: B_{t}=\left[T_{t-1}+\{c \mid]+\{b\}\right.$
we arrive at a case similar to Case 3A. As in Case 3A, P^{\prime} contains one more ϕ than P in the interval $t=1, \cdots, \ell$. Therefore, we treat this case in the same way, with the result $|\phi|_{p^{*}} \geq|\phi|_{p}$. Finally, if $p_{6}=d$ where $d \neq a$ and $d \neq b$ the buffer states at time ℓ can be written as
$B_{t}=\left[T_{t-1}+\{a\}+\{c\}-\{d\}\right]+\{d\}$
$B_{1}=\left[T_{t-1}+\right.$ which again cal

Note that the si $b \in B_{b-1}$ We cases, and Lem

Theorem 2

Let X be a trac for X and B_{0}. $|\phi|_{p o} \geq|\phi|_{p}$.

Proof. We rec exactly the sam only find any 0 will construct a is an OPT policy
P^{1} is constructe $p_{i} \neq p_{i}^{o}$, wher $p_{i}=a$ and p^{o} demand policies
$B_{i}=T_{i}+\{b\}$ $B_{i}^{o} \stackrel{\oplus}{=} r_{i}+\{a\}$
where $d\left(a, x_{i}\right)$ $d\left(a, x_{i+1}\right) \leq d(b$ as X, we can use as least as many p_{L}^{1} as
$p_{k}^{\prime} \begin{cases}p_{k}, & 1 \leq k \\ b, & k=i \\ p_{k}^{\prime}, & 1+1\end{cases}$
Note that P^{1} is $1 \leq k \leq \ell_{1}$ for

Policy P^{2} is con that $p_{k}^{2}=p_{\mathrm{t}}^{\mathrm{p}}, 1$ finite; constructi $p_{k}^{\prime}=p_{\mathrm{t}}^{o}, 1 \leq k$ that $|\phi|_{\rho} \leq|\phi|$ proved.

Combining the Theorems 1 and

No. $2 \cdot 1970$
$B_{1}=\left[T_{t-1}+|a|+\{c|-|d|]+|b|\right.$
which again can be treated as in Case 3A.
Note that the situation where $i_{b}=\ell$ can not arise in Case 3 B , since $b \in B_{0_{b}-1}$. We have therefore successfully exhausted the possible cases, and Lemma 1 is proved.

Theorem 2

Let X be a trace, B_{0} an initial state, and P a valid demand policy for X and R_{0}. If P^{0} is any valid ort policy for X and B_{0}, then $|\phi|_{P o} \geq|\phi|_{P}$.

Proof. We recall first that every OPT policy for X and B_{0} has exactly the same number of ϕ 's. To prove the theorem, we need only find any orr policy P^{o} such that $|\phi|_{P^{o}} \geq|\phi|_{r}$. To do this we will construct a finite sequence of policies $P^{i}, P^{2}, \cdots, P^{i}$, where P^{i} is an OPT policy and $|\phi|_{P} \leq|\phi|_{P 1} \leq \cdots \leq|\phi|_{P i}$.
P^{1} is constructed as follows. Let i be the smallest integer such that $p_{i} \not \mathcal{F}^{c} p_{i}^{o}$, where p_{i}^{o} is an element of an OPT policy. Suppose that $p_{i}=a$ and $p_{i}^{o}=b$. (Neither p_{i} nor p_{i}^{o} can be ϕ, since both are demand policies.) We observe that
$\left.\begin{array}{l}B_{i}=T_{i}+\{b\} \\ B_{i}^{o}=T_{i}+\{a\}\end{array}\right\} \quad$ for $\quad a, b \notin T_{i}$
$B_{i}^{o}=T_{i}+\{a\}$
where $d\left(a, x_{i}\right) \leq d\left(b, x_{i}\right)$. Since $x_{i} \neq$ a and $x_{i} \neq b_{\text {, }}$ it follows that $d\left(a, x_{i+1}\right) \leq d\left(b, x_{i+1}\right)$. Treating B_{i} as $B_{0} B_{i}^{o}$ as B_{0}^{v}, and $x_{i+1} \cdots, x_{b}$, as X, we can use Lemma 1 to find a policy $p_{i+1}^{\prime}, \cdots, p_{i}^{\prime}$ that contains as least as many ϕ^{\prime} s as p_{t+1}, \cdots, p_{L}. We then define $p^{1}=p_{1}^{1}, \cdots$, p_{L}^{1} as
$p_{k}^{1} \begin{cases}p_{k}, & 1 \leq k \leq i-1 \\ b, & k=i \\ p_{k}^{\prime}, & i+1 \leq k \leq i\end{cases}$
Note that P^{1} is valid and that $|\phi|_{P} \leq|\phi|_{P .}$. Furthermore, $p_{k}^{1}=p_{k}^{o}$, $1 \leq k \leq \ell_{1}$ for some $\ell_{1} \geq i$.

Policy P^{2} is constructed from P^{1} in a similar manner with the results that $p_{k}^{2}=p_{k}^{o}, 1 \leq k \leq \ell_{2}$ where $\ell_{2}>\ell_{1}$ and $|\phi|_{p 1} \leq|\phi|_{p}$. Since X is finite, construction of P^{1}, P^{2}, \cdots must result in P^{i}, for finite j, where $p_{k}^{i}=p_{k}^{o}, 1 \leq k \leq L$. It follows from $|\phi|_{P} \leq|\phi|_{p:} \leq \cdots \leq|\phi|_{p i}$ that $|\phi|_{P} \leq|\phi|_{P i}$ where P^{i} is an OPT policy and the theorem is proved.

Combining the relation in Equation A3 for demand paging with Theorems 1 and 2 , we have the following theorem.

OPT is an optima! replacement algorithm
contains we treat Tinally, if \& can be

OPT iminimizes page losding

Let X be a trace, B_{0} an initial state, and P^{0} a valid olrt policy. (Also, let Q^{0} be the corresponding I-policy.) For any valid policy pair P and Q.
$\sum_{i=1}^{L}\left|q_{i}\right| \geq \sum_{i=1}^{L}\left|q_{i}^{o}\right|$
Thus we see that an OPT policy results in a minimum number of pages being loaded into the buffer over the class of all valid policies. After giving preliminary Lemmas 2 and 3, we present a final theorem concerning OPT policies.

Lemma 2

For a trace X, let the set B_{c} represent the first \mathbf{C} distinct pages referenced in X. For a buffer of capacity C, if P is a valid demand policy for X and some $B_{0}^{\prime} \subseteq B_{c}$, then P is a valid demand policy for X and any $B_{0}^{\prime} \subseteq B_{c}$.

Proof. Let i be the smallest integer such that $x_{1}, \cdots, x_{\text {; }}$ contains C distinct pages. If $B_{0} \subseteq B_{C}$ then, for any valid demand policy P, we have $B_{i}=B_{c}$, since $p_{1}=p_{2}=\cdots=p_{i}=\phi$. For $B_{0}^{\prime} \subseteq B_{c}$ this also holds, so P is a valid demand policy for X and B_{0}^{\prime}. (Note that for different initial states, $B_{0} \subseteq B_{c}$, the Q policies will not be the same.)

Lemma 3

\&
For a trace X, let the set E_{C} represent the last C distinct pages referenced in X. For a buffer of capacity C, if P is a valid demand policy for X and B_{0}, there exists a valid demand policy P^{\prime} with a state sequence $B_{0}, B_{1}^{\prime}, B_{2}^{\prime}, \cdots, B_{i}^{\prime}$ such that $B_{L}^{\prime}=E_{G}$ and $|\phi|_{P^{\prime}} \geq$ $|\phi| r$.

Proof. Let i be the smallest integer such that x_{i}, \cdots, x_{i} contains C distinct pages. Suppose; under policy $P_{\text {, that }} B_{i-1}$ contains n elements of E_{c}, i.e. $\left|B_{i-1} \cap E_{c}\right|=n$. It follows that at least $C-n$ pages will be loaded into the buffer following time $i-1$. Setting $p_{k}^{\prime}=p_{k}$ for $1 \leq k \leq i-1$, we will specify the remainder of P^{\prime} in such a way that exactly $C-n$ pages are loaded into the buffer following time $t-1$. We observe that, since at most C distinct pages are referenced following time $i-1$, we never need remove a page b from the buffer where $b \in E_{c}$. Thus, if a page must be removed at time ℓ for $i \leq \ell \leq L$, there always exists a page c, where $c \notin E_{c}$, in the buffer, and we set $p_{1}^{\prime}=c$. If P^{\prime} is constructed in this manner, $\sum_{i=1}^{L}\left|q_{i}^{\prime}\right| \leq \sum_{i=1}^{L}\left|a_{i}\right|$
and from no page in and $\left|E_{r}\right|$

Theorem 4
Let $X=$ If p^{o} is an for ' X and

Proof. without 10 is an integ in ${ }^{\top} X$) and contradict $D>C$.

Let us den Lemma 2 From Lem altered pol OPT polic Similarly, assume the

- Consider n
$x_{i} \in{ }^{\prime} B_{1}$,
sequence is
Let us den observe fir and $Q^{\prime}(a ;$ observe th ' $B_{L-1}={ }^{\prime}$
$\left|q_{2}^{\prime}\right|-\mid p$ ϕ. Similarl $q_{3}^{\prime}=p_{L-}^{o}$ show that
$q_{1}^{\prime}={ }^{\prime} p_{L}^{\prime}$
$p_{1}^{\prime}={ }^{\prime} q_{L+}^{o}$
Now, sinc ${ }^{\prime} p_{1}^{o}={ }^{\prime} q_{1}^{o}$ follows th: ${ }^{-} q_{1}^{o}$ and q_{1}^{\prime} we have e ${ }^{\circ} Q^{0}$, and $|\phi|_{0}=\mid \phi$
$\left|B_{1}\right|=\cdot \cdot$

No. $2 \cdot 19$
and from Equation A3 we have $|\phi|_{p^{\prime}} \geq|\phi|_{p}$. Furthermore, since no page in E_{C} is ever removed from the buffer following time $t=i$ and $\left|E_{r}\right|=C$, we see that $B_{i}^{\prime}=E_{\mathrm{r}}$.

Theorem 4

Let $X=x_{1}, \cdots, x_{1}$, be a trace and ${ }^{r} X=x_{i}, \cdots, x_{i}$ its reverse. If P^{0} is an OPT policy for X and $B_{0}=\phi$, and $P^{\prime} P^{0}$ is an OPT policy for ${ }^{\prime} X$ and ${ }^{\prime} B_{n}=\phi$, then $|\phi|_{1,0}=|\phi|, \ldots$,

forward/

 backward OPTProof. Let us assume that the theoren does not hold. Thus, without loss of generality, suppose that $|\phi|_{r_{r} 0}=|\phi|_{p} \sigma+k$ where k is an integer and $k>0$. If D distinct pages are referenced in X (and in ${ }^{\prime} X$) and if $D \leq C$, the buffer capacity, then we have an immediate contradiction, since $|\phi|_{\text {ro }}=|\phi|_{\text {rio }}=L$. We therefore assume $D>C$.

Let us denote the state sequence under P^{0} as $B_{0}, B_{1}, \cdots, B_{L}$. From Lemma 2 we can set $B_{0}=B_{c}$ without disturbing the validity of P^{0}. From Lemma 3 we can alter P^{o} such that $B_{i}=E_{C}$. Note that the altered policy contains the same number of ϕ 's as P^{o}, since P^{o} is an OrT policy. (We subsequently refer to the altered policy as P^{0}.) Similarly, if ${ }^{r} B_{0},{ }^{\prime} B_{1}, \cdots,{ }^{r} B_{L}$ is the state sequence under ${ }^{\prime} P^{0}$ we can assume that ${ }^{\prime} B_{0}={ }^{\prime} B_{C}$ and ${ }^{\prime} B_{L}={ }^{\prime} E_{C}$.

Consider now the state sequence ${ }^{'} B_{L},{ }^{\prime} B_{L},{ }^{\prime} B_{L-1}, \cdots,{ }^{\prime} B_{2},{ }^{\prime} B_{1}$. Since $x_{l} \in{ }^{\top} B_{1}, x_{l,-1} \in^{\top} B_{2}, \cdots, x_{2} \in^{\top} B_{L-1}, x_{1} \in^{\top} B_{L}$, we see that this sequence is a valid (not necessarily demand) sequence for the trace X. Let us denote the corresponding valid policy pair as P^{\prime} and Q^{\prime}. We observe first that, since ${ }^{\prime} E_{C}=B_{C}$, we have ${ }^{\prime} B_{L}=B_{C}=B_{0}$. Thus ' P^{\prime} and Q^{\prime} (as well as P^{0}) are valid policies for X and B_{0}. Next we observe that ${ }^{\prime} B_{L}={ }^{r} B_{L-1}+\left\{{ }^{r} q_{L}^{o} \mid-\left\{{ }^{\prime} p_{L}^{o}\right\}\right.$ can be written as
 $\left\{q_{2}^{\prime}\right\}-\left\{p_{2}^{\prime}\right\}$, which yields $q_{2}^{\prime}={ }^{\prime} p_{L}^{o}$ and $p_{2}^{\prime}={ }^{\prime} q_{L}^{o}$, since $p_{L}^{o} \cap^{\prime} q_{L}^{o}=$ ϕ. Similarly, since ${ }^{r} B_{L-1}={ }^{\prime} B_{L-2}+\left\{q_{L-1}^{o}\right\}-\left\{{ }^{\prime} p_{L-1}^{o}\right\}$, we have $q_{3}^{\prime}={ }^{\prime} p_{L-1}^{o}$ and $p_{3}^{\prime}={ }^{\prime} q_{L-1}^{o^{\prime}}$. . Continuing in this manner we can slow that
$\left.\begin{array}{l}q_{1}^{\prime}={ }^{\prime} p_{L+2-1}^{o} \\ p_{1}^{\prime}={ }^{\prime} q_{L+2-t}^{o}\end{array}\right\} \quad$ for $\quad 2 \leq t \leq L$
(A5)

Now, since $x_{L} \in{ }^{\prime} B_{0}$ (recall that ${ }^{\prime} B_{0}={ }^{\prime} B_{c}$), it follows that $' p_{1}^{o}={ }^{\prime} q_{1}^{o}=\phi$. Similarly, since $x_{1} \in B_{0}$ (recall that $B_{0}=B_{c}$), it follows that $p_{1}^{\prime}=q_{1}^{\prime}=\phi$. We can then trivially assume that $p_{1}^{\prime}=$ ${ }^{\prime} q_{1}^{0}$ and $q_{1}^{\prime}={ }^{\prime} p_{1}^{o}$. The significance of this is that, using Equation A5, we have established a one-to-one correspondence between P^{\prime} and ' Q^{o}, and between Q^{\prime} and ' P^{0}. In particular, $|\phi|_{P^{\prime}}=|\phi|_{100}$ and $|\phi|_{\theta^{\prime}}=|\phi|_{\text {roo }}$. We now observe that $|\phi|_{\text {ro }}=|\phi|_{\text {rpo }}$, since $\left.\right|^{\prime} B_{0} \mid=$. $\left.\right|^{r} B_{1}\left|=\cdots=\left.\right|^{r} B_{L}\right|=C$. In other words, ${ }^{\prime} p_{1}^{o}=\phi$ if and only if
${ }^{\prime} q^{\prime \prime}=\phi$, since the buffer is always full. We thus have shown that $|\phi|_{1,}=|\phi|_{\text {rac }}=|\phi|_{\text {ro }}$.

Recall that P^{\prime} and Q^{\prime} are not necessarily demand policies. From Theorenn I we can find a demand policy pair $P^{\prime \prime}$ and $Q^{\prime \prime}$ such that
$\sum_{i=1}^{n}\left|a_{1}^{\prime \prime}\right| \leq \sum_{i=1}^{n}\left|a_{i}^{\prime}\right|$
From Equation A5 and the discussion that follows, we know that $\left|p_{1}^{\prime}\right|=\left|q_{1}^{\prime}\right|$ for $1 \leq t \leq L$. Since $P^{\prime \prime}$ and $Q^{\prime \prime}$ are demand policies, and since $\left|B_{0}\right|=\left|B_{1}^{\prime}\right|=\cdots=\left|B_{i}^{\prime}\right|=C$, we have
$\left|p_{\prime}^{\prime \prime}\right|=\left|q_{i}^{\prime}\right|$ for $1 \leq t \leq L$. Combining these results yields $\sum_{i=1}^{L}\left|p_{1}^{\prime \prime}\right| \leq \sum_{i=1}^{L}\left|p_{i}^{\prime}\right|$ or $|\phi|_{p} \cdot \cdot \geq|\dot{p}|_{p}$.
But then we have $|\phi|_{p^{\prime}} \geq\left|\phi_{p^{\prime}}\right|=|\phi|_{\text {roo }}=|\phi|_{n o}+k$. Since p^{o} was given as an OPT policy, we have from Theorem 2 a contradiction with $\left.|\phi|_{p^{\prime \prime}}\right\rangle|\phi|_{p o}$ for the demand policy $P^{\prime \prime}$. Thus our original assumption is false, and it must be the case that $|\phi|_{\text {ro }}=|\phi|_{\rho o}$.

CITED REFERENCES

1. A. Opler, "Dynamic flow of programs and data through hierarchical storage," Information Processing 1965, Proceedings of IF1P Congress 1, 273-276 (1965).
2. E. Morenoff and J. B. McLean" "Application of level changing to a multilevel storage organization," Conimunications of the Association for Computing Machinery 10, 3, 149-154 (1967),
3. C. J. Conti, "Concepts for biffer storage," IEEE Computer Group News 2, 8, 9-13 (1969).
4. W. Anacker and C. P. Wang, "Performance evaluation of computing systems with imemory hierarchies," IEEE Transactions on Electionic Computers EC-16, 6, 764-773 (1967).
5. R. L. Mattson and J.-P. Jacob, "Optimization studies for computer systems with virtual memory," Informatlon Processing 1968, IFIP Congress Booklet I, 47-54 (1968).
Gr J. E. Shemer and G: A. Shippey, "Statistical anialysis of paged and segmented computer systems," IEEE Transactions on Electronic Computers EC-15, 6, 855-863 (1966).
6. J. Fotheringham, "Dynamic storage allocation in the ATLAS compuler, including an automatic use of a backing storc," Communications of the Association for Computing Machinery 4, 10, 435-436 (1961).
7. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, "One-level storage system," IEEE Transactions on Electronic Computers EC-11, 2, 223-235 (1962).
8. M. H. J. Baylis, D. G. Fletcher, and D. J. Howarth, "Paging studies made on the I.C.T. ATLAS computer," Information Processing 1968, lFIP Congress Booklet D, 113-118 (1968).
9. D. H. Gibson, "Considerations in block-oriented systems design," AFIPS Conference Proceedings, Spring Joint Computer Conference 30, Academic Press, New York, New York, 75-80 (1967).
10. S. J. Liptay, "Structural aspects of the System/360 Model 85: II The cache," IBM Systems Journal 7, 1, 15-21 (1968).
11. R. W. ON tem with Procerding New Yurk.
12. 13. A. Heti computer,
1. C. J. Kuch Conferenet 1018 (1908
2. C. V. Rar and progr Procceding Computing 229-239
3. J. Kral, " C Conmunic 7. 475-480
4. J. G. Kem Company,
5. L. A. Bela time chara Communic 6, 349-353
6. P. J. Dent Communic 5, 323~333

-

No. $2 \cdot 1970$
12. K. W. O'Neill, "Experience using a time-sharing multiprogramming systen with dynamic address relocation hardware," AFIIS Conference Proccofings, Spring Joint. Comphier Conference 30, Academic Press, New York, New York, 611-621 (1967).
13. L. A. Belady, " Λ study of replacement algorithons for a virtual-storage computer, Imat Systems Jommal 5, 2, 78-101 (1966).
14. C. J. Kuchner mad 13. Randell، "Demand maing in perspective," AllPS
 1018 (1968).
15. C. V. Ramamoorthy, "Ihe analytle destan of a dymmic look nitat and program segmenting systen for multprogtammed computers," Procedings of the $21 s t$ National Conference of the Associallon for Compuling Machinery, 'T hompson Book Company, Washington, D. C.; 229-239 (1966).
16. J. Kral, "One way of estimating frequencies of jumps in a program," Communications of the Association for Computing Machinery 11, 7. 475-480 (1968).
17. J. G. Kemeny and J. L. Snell, Finite Markov Chainṣ, D. van Nostrand Company, Inc., Princeton, New Jersey (1960).
18. L. A. Belady, R. A. Nëlson, and G. S. Shedler, "An anomaly in sparetime characteristics of certain programs running in a paging machine," Communications of the Association for Computing Machinery 12, 6, 349-353 (1969).
19. P. J. Dentiing, "The working set model for programming behavior," Communications of the Association for Computing Machinery 11, 5, 323-333 (1968).

Dynamic program behavior under paging*
b) GLERALD H. FINF, CALVIN W, JACKSON, ** amId PAUL V: MOISAIC

Sven Devolopmon Corporation
Santa Monica, California

INTRODUCTION

In May, 1965, System Development Corporation (SI)() proposed to do sone research to study program oremization with respect to dynamic program behavior. Further, the proposal suggested that simulation technigues might be used to study the problem of resource allocation in a multiprocessor time-sharing system. Sine of the reasons for the proposal related to the prospective utibation of the lime -sharing hardware features of the GIE and MBM time-shamg computers. At the time, there was considerable interest in investigating. the concepts of program segmentation and prep e turing, What SDC and in the ther-shang community ni large. The concept of fired size pasting on demand particulily, raised some questions of practicality. One of the curb papers on the subject by Dennis and Glaser states that the concept o? peecturning can be cither useful or disastrous, depending on the class of information to which it is applied. However, the theory appeased to be lob advantageous and elegant, so that the future of tilu-sharing seemed to be committed to the concept.

As a result, an independent activity was initiated to investigate some of the problems outlined in the proposeal: this paper reports the results of this effort, and points out some of the implications of the data obtained.

Discussion of the problem

A hate high-speed memory is not being used eftcienty if a large portion of it is occupied by portions of justams that are never used. Avoidance of fetching :unnecessary instructions and data thus appears aesirshe there are obvious gains if processing can be acomplished in parallel with pertinent fetching. How'ser, attempts to achieve the above by an arbitrary dinisun of programs into fixed-sized pages that are
raping) presuppose a program organization scheme

[^3]which minimizes interpage references with respect to "Caller, et all that "the 'single page' loading strategy' incurs, each time, the overhead of discovering why a \therefore processing sequences. It has been suggested by Arden, storage reference failed, finding the needed page in secondary storage, and switching to another user deming transmission of the needed page to high-speed storage." One should possibly add, "if there is another user." Fetching can be overlapped with processing only if there is some processing to be done at the time; it is possible that many user programs desiring processing may be simmancously held in an unexceutable state while waiting for poses. Further, these pauses for page a fetching may delay completion of user service requests and result in a generally high user demand. This high taser demand might to useful for a batch-proessing system, but for line sharing it probably means congertimon and poor response for at least some of the users.

Method of investigation

The approach taken by the project was to obtain empirical information about the actual memory requiremints and page demand rates of existing programs operating under the Q-32 Time-Sharing System. ${ }^{3}$ Such programs, of course, have not been specifically orenzed to operate in a paging environment. Since it is not obvious how to accomplish this organization nor wen that programs are susceptible to such organization, it was felt that such empirical data would provide a starting point, perhaps would give some clues to automatic methods of structuring, and in any event, would be useful as input to a simulation model.

To obtain an accurate picture of a program's dymanic. behavior, it was decided to execute the program in an interpretive manner. In this way recordings cone be made to show memory utilization as a function of time (instruction count). An interpretive routine was written that performed this function on the AN/FSQ-32 compuler, a high-speed 48 -bit word computer. ${ }^{3}$ Mentor was considered as 46 pages of 1024 words each. Itwery memory reference made by the object program was checked to obtain the instructions themselves and the
d.:ia references (including all levels of indireet addressing). These references were examined in terms of page addesses and then were recorded along with the instatetion count at the the of oceurrance.

Re:sults

In the initial mons, he instruction come whs reset to zero whenever the object progran bancled or fell through to a new instruction prage, all pages were considered inactive at this point. As each inative page was referenced, the page number and instruction count were recorded. The page was then considered to be active and avaitable for the remainder of the sequence, that is, until the instruction count was again reset. Thus, a count of the instructions actually exccuted on each page was obtained, followed by a list of data pages referenced by that instruction sequence. Both the last and the first inistruction referencing each data page were also recorded as well as an indicator as to wheher the data page wàs "set" (written) or "ised only" (read only) during the sequence.

The first runs on various popular programs all exhibited pretty much the same pattern:

1. Shert instruction sequences - relatively fow instructions executed on any particular page before a branch or fall-h hrough to another instruction page.
2. Considerable dita page ceference per sefuence.
3. Early and lato refcrence to data pages.
4. Rather rare occurences of "used only" data pages.

For example, in a small sample (200 instruction sequenees taken from the JOVIAL compiter in a normal card-processing stage) the mean instruction sequence was only 109.4 instructions. During each sequence, 3.5 dita pases were referenced on the averagc. Only one data pabe (of 11 referenced) was "used only" during the cotio 200 page sequence (21881 instructions). Further, data pages tended to be required quite early in each sequence and usually were needed until nearly the end of the sequence:

In bater runs, the recording was noodified slighly to examine muti-page sequenecs corresponding to what used to be defined as a survice interval on the Q.32. Time-Sharing System. Such a service interval vas teminated by a call to the syem or by the execution of 80,000 instactions, whichever eccurred first. The so,000 instruction figure was used to approxinate a system-ingoosed quatum interrupt of about 400 ms of Q-32 time. The instruction count was accordingly reset to zero at the beginning of each such interval, and again all pages were considered inactive at this point. As each inactive page was refurenced, the poge mumber and instruction count were recorded as befure; in addition an indicator was recorded if the page was refereneed for instructions to show that the program was operating in
that page. Once activated, pages were considered to 1 : avaitable for the remainder of the entire interial. Il:: approach provided a pieture of the page call rate :and total stomge requitements for each service intor.I (One or mon sud inkerals constituld a complete wa servicér request or action.)

The folluwing fise programs were examined in 11.: manner:
 generation, celiting, compilation, athel crecuthon u: programs written in the list-processing lathente. LISP 1.5. (14 pages)
2. METAS-A symax-directed meta compher which tramslates an object language to a tiret language interpretively. (14 pages)
3. GPDS -- An interpretive display generation system that is first interactive while acquiring it dat. base and then computational white gencratiag bi: display. (41 pages)
4. TNT - A conversational, on-line, algebraic Jo. VIAL interpreter. (23 pages)
5. SURE - A JOVIAL source languge program. ming tool that "launders" JOVIAL somed han: gunge, providing a reformatted and concordans: listing of the progran. (30 pages)
These programs were operated for short periods if tine beceuse the cost of interpretive cxecution was dip: For the most part, they were performing tasls that might be selected for demonstration purposes. Se:su: difort was made to choose typical actions covering ti.. range of time-sharing requests, thouph in the sense : frequacicy of occurence of various request tyms, the smple is not quite representative of athal timeshan in: operations. One hundred and eighty-two service inters.: ranging from three to 80,000 instructions were ceme:inch; these intervals comprise 35 service requests r.te: ing from seven to $1,281,504$ instructions in kngth.

The resuts of recording the dymate behavior of thas prograns in the manier described are summarize is Figures 1, 2, 3, and 4.
Figure 1 shows the cumblative relative fregiticy 1 i the number of instructions executed between comses: tive calls for neiv pages. In nearly 59% of 1737 cason than 20 instructions were executed; in atuat sori of :? cases, less than 200 instructions. In only 2.34 of 1% cases, 10,000 or anote instructions wete execterl i: tween calls; these honger sequences ocented wat: \because : only after the program lade accumblated a majnity i: the pages it required.

This effect is illustrated more charly in Fiturs? which shows page demand ats a functime bi time $1:$: time scale is logerithmie in miliseconds, waind hor: the instruction counts by assuming a procemr pheal: 1.6 is per instrtetion. Tho initial call ralle for pasos

Bigure 1... Cumblative retative fiegteney of number of instructions cacented between piee colis

Figure 2-I'age demand (all programs)
extremely high; the frost ten prose, on the average, were required within about 5.6 ms ; in half of the cases, these first ten pages were required in less than . 8 ms. In 255° of the cases where 20 or more pages were required, the first ?0 pages were neceded within about 7.0 ms .

Fisure 3 also :hwse the (mean) pare demand by
 fairly consivem in spile of the diestinct dissimilinty of function of the various programs.

A plot of total exicution tinie per recpucst versus percentage of pages required is shown in Figure 4. The general trend appears to be whit one would expeet; the longer the service request the nore pages required. The two points in the upper feft portion of the phot illustrate the occasional occurcrice of requests with rather heawy page needs eren for very sma!! amounts of processing service.

The dymanic behavior of the examined programs may be brielly, gencralized here:

1. The programs tend to demand pages at very rapid rates until thes have acquired a sulliciency of pages.
2. The progtams ferfuently do not run very long even after having acynitiod a sulticiency of pages.
3. For those program requests which do run for . while, a sufticiency of pages means a comsideraht fration of their total declared page requirements.

Discmesion imalamertations

It is dillicult to assers with any combinty the bemplin of a demand paping :thatey in a time wame Computer confuration, work had chimmome, and other system chameterstics suoh as schodutines amb priority schomes all strondy inthence system pertemance; performance itedf means dilferent thinses to different poople. For a general-purpose system such as MaC or SDC's, required to service with reasonable responsiveness a heavy load of programs similar to those examined, the data obtained in this study seem to. indicato that such promams will require comstarable reorganzation to operate elliciently in a demand paging enviromanent.

The usual conception of a high-speed menory filled with a page or two from each of many pregrams desiring processing docs not look as though it will stand up sutbject to the pase catl rates observed in this staily. The page-futchiag mechanism soems liaely to congest within a fow milliseconds; until some of the prosems have acquired a sulficiency of payes there would be lithe chance of processing-fetching overtap; and a sulficiency

Figure 3 … Page demind (by program)

Figure 4 -- Page usage vs. processing time
of pages for some prograns means that others must be squeczed ont of core and deferecd.

Reorganization or structuring of the prograns for raging is usually proposed as a solution to this problem. atst how: much structuring is necded or can be done or how this is to be accomplished is a mater of speculation. Ideally, cray program, during both clicklout and ruming phases, for cach possiblo action that it handles, shouk be sombow arranged so that it preferably uses very few pages per action and that it proecsses long cuough between page calls on the average to overlar the time to fetch a page. Further, still speaking ideally, the arrangement of programs to behave in this manner should be accomplished automatically, perhaps by the compiter or a special optimizing routine, without burdening lle programencr.
The authors confess that hey do not know how to achieve this ideal or even an approximation to it. The following suggestions for structuring have been culled

- from varions sturces:

1. Put datai in the instruction pages referring to them.
2. Sonchow rearramese data structures to reduce data page fow without causing an appreciable increase in instruction page flow.
3. Duplicate subroutines and constants within pages refering to then frequently.
4. Mike considerable use of "common routines."

In the authors' (pinions, none of these secme lituly to have sunicient pay-ofi, if any. The last sugeestion nocels some comment perhap; it is not clear just what is meant by "cominon routines." Jf one means common subroutines such as 1/O conversions, log, exponential, and trizonometric functions, ctc., the whole set of them hardly constitutes more thith a page or two of code and a frequently used majority of them might more simp!y be offered to programs as systen services. If on the other hand, "common roatines" means harger furctional 'entities such as matrix-manipulation routines or packages of multi-function routines such as an on-line aleghraic interpreter, file search routines, etc, there undoubtedy would be considerable common wase of these. The problem here is simultaneity; a time-sharing system is usually unable, without serious degredation in response, to withhold scrvice to reciuests until 1 l:es can be "batched" to use a particular toutine in common. In a heavily loaded gencral-purpose system at least, the chanees seem small that the user request will find the particular routine requested remaning in core from some previoils request. The on-line frequency of requests for a particular packige is probably somewhat proportional to the varicly of scrvice offered by the packnge; the more varicty the larger the package and therefore the less likelitiood that it can reside in core for any period of time.

An alternative is to abandon the demand-paging
strategy and try something else. One khat that has been advanced is to stricture prognins mat Tancional sesments and to bring in sets of pose by hating the
 moniter in advance of ils eceds. What this in mind, the
 mine of the tre chough clues in the source propram to
 commanicator, a compiler, an intepteter, explamation routine, and data aren itre used in ThyT. These program regions ase functionslly indepondent and vary in size. If the progmo refers to any one pare in any of these regions, the entie region is likely to be required. The data aren is dynamic in its stomgo requirements. Some better utilization of the nam store might be realized if this kind of segment information could be mado available to the time-stang Executive.

Realistically, it does not seen hely that programmers will stiphly sucin information; it is still less likely that a compiler could abstract such information from static code and automatically poss it on to the Exccutive. It is probably optimistic to assume that programs in general are susceptible to antomatic segmentation boyond the nonfunctional division into instructions, data, and readonly data. Por these progranse whieh do exhibit functional pathens of behavior, the amount of information reguied to descrioc hiese pattems and the grocessing requied to detect the currently requesied patierh night prove prohibitive. In pograns wheh are ptimatjly data diven, for example, any andievable functional segmentation seems likely to be gross. The benefits of materate segmentation may beome matginal considecing that, in-additon to the lincility for handing segment infomation, ome must retan the mochanism to cliscover and feteit, on demand, odd mitsing piges. This leads to program segments waiting, weal in core, for such pages and can lose beck ba ocempancy time to savings which may havo boci achiceed in ocenpancy space.

SUMAMARY and CONCLUSIONS

The remblts of examining the dymanic behavior mader poging of certain existing time-shang piotrans have been gresented here. The data ubamed in his stady scem to indicate that the hambling of progranss simitar to these may be diaboult in a the sharing chtionment utilizing a paging on themed statery. The problem of trying io alleviate these dithenties by mombanation of the programs bes been disassed and somes specthatioses on the problens involved in employing an alternative "sets of pages" or segmentation strategy have been presented.

The diniculty with both the demand paging and "sets of pages" stategies is that system perfomance seems strongly dependent on assumptions that somethine con and will be done to the prograns to be hatded by the system. In the opinion of the ambliors, this approach of trying to fit the work to the systen instiad of vice versa, seoms maralistic. It may not perhaps be entioly valia to assume that the work load characteristies of buture systems can be extmpolated from thase of existing sgstens, but there is no reason to belicue diey will diafer greally. In view of the fiat that existing load chanacteristics are mensumble and have been measured, it would appear more frutitul to base system desion criteria on these known parameters than on oftimistic hypothetical assmaptions.

remerences

I J B DI:NNIS IE I. GLASER
The strusture of on-line informution procerrent; systens Preceedings of the Second Cundress on the Informaiion System Scientes p 6 1965
 Prosram and adircesving struchare in a tinte-s?atring chvironnicul
Jommal of the , SCil wol 13 pe $1-17$ Jammay 1966
 A general purpose tine sharins ushem SDC documen SP-149) 31 pp 2.9 April 196.4

1. R. Watson	Time Sharing System Design Concepts McGraw Hill 1970 (\$12.50)
2. Harry Katzan Jr.	Advanced Programming Van Nostrand Reinhold 1970 (\$15.00)
3. J. Martin	Teleprocessing Network Organization Prèntice Hall 1970
4. DATAMATION	```A Catalogue of EDP Products of Services (1971) Available from Datamation, 1301 South Grove Ave., Barrington, Illinois 60010. ($35.00)```
5. AUERBACH	On Time Sharing (1967) available from Auerbach Info. Inc., Philadelphia, Pa 19109. (\$14.00)
6. James Ziegler	Time Sharing Data Processing Systems Prentice Hall 1967 (\$13.00)
7. Doug1as Parkhill	The Challenge of the Computer Utility. Addison Wesley $(\$ 8.00)$

[^0]: This research was supported by the U.S. Office of Navai Research, Hathmatical and Information Sciences Division, Contract No. N00014-69-fome0040z7, NR 048-120 and the Advanced Sesearch Projects Agency of the Departngent of Defense, Contract No. DAHC 15-69-5-02.85
 Fomerly of Uoln, now at General Motors Research rechnical Cemter, Wirren, Michigan.

[^1]: *For a systen operating in a mithiprograming emviroment, we should also include the time spent in batimg for the avalability of cpu.

[^2]: Fhe three measured programs are not short jobs: they should he run in LQO. Therefore, these measured $P(t, T)^{\prime}$'s provide the estimate of time slices for the Long Quantun quene.

[^3]: - The resented reported in this paper was sponsored by the Advanced Research I'rojuets Agency lifornation I'rocissing Techniques Olive mad was monitored by the fileatronie Sostens Division, Air Fate Swims Command under contract A! $19(628)-5166$ with the System Development Computation. - 'urtenty win Ahocats fröramming Cowpat, Santa Mon-

