
QUEEN
QA
76.53
.D44
1972
\/.2

CANADA

7-4-à
" 76.53
D44

7.;,/
5

VOLUME 2

Industry Gani,..la
Library CluPen ,

3 LI I i ji C 2. 9 1990

COMMIINigATMS CAMARA',

FEB

UeRitliV

Industrie Canada
 Bibliothèqué Queen

TIME SHARED SYSTEMS HARDWARE

- Memory Hierarchy Management -

by

John deMercado

Terrestrial Planning Branch

June 1972

(Cy.)‘?•\

\\.,\

4

Ft.

Acknowl ed.gements

The purpose of these notes is to promote dialogue

within the Terrestrial:P.lahning BranCh and serve as a

basis for our comPuter+cOmmunicationsystems implement-

_ ation program. _
.• 	- 	.

The notes are only in.first:draft form and borr6w

heavily from the references. TheY should be read- in

conjunction with the attached referende papers.

As a revised:version is planned the author would ,

 appreciate any côrrections Or omiSsiOns in the-text

that were brought to his attention .» lie:also wishes to

thank Messrs. John Harris, S. MahmOud ,and Kalman Toth

for their valuable contributions

Miss Gail Widdicombe and Miss Yollande Chartrand typed

them in record time ftom an almost unreadable handwritten

manuscript.

• CONTENTS.

Introduction

Memory System Design Problems

Addressing and Allocation

Static Relocation

Dynamic Relocation Using Base Registers

Dynamic Relocation Using Paging

Memory Maps

Segment Concepts

Communications within the Time Shared Computer

Communication with the Main Memory

Memory Management Software - Storage Hierarchies

Modelling - Working Set Replacement Algorithm

References (attached)

1. W.W. Chu, N. Oliver and H. Opderbeck, "Measurement
Data on the Working Set Replacement Algorithm and
Their Applications'.

2. R.L. Mattson, J. Gecsei, D.R. Dlutz and I.L. Traiger,
"Evaluation Techniques for Storage Hierarchies",

3. Gerald H. Fine, et al, "Dynamic Program Behavior under
paging".

General Rbferences..

CENTRAL
PROCESSING

UNIT

- CENTRAL
PROCESSING'

ALAIN MEMOÙ DRU .

COMMUMMS
COWMLLER

INPUT/CUTPUT
PROCESSOR

INPUT/OUTPU1
PROCESSOR

WWI
LINES TO
REMOTE TERMINALS

DEYIDE

\

I DISK

Introduction

The intent of these notes is to briefly review the features
of the hardware required for effective memory hierarchy
management in time sharing systems. The time shared systems
will have the general architectures as shown in Figure 1 below.

Figure 1

"Time Shared System"

The major hardware features required by such systems are:
- protection mechanisms to help safeguard one process from
another and the system from itself and user processes
and:

- mechanisms which contribute to efficient dynamic,

allocation of resources.
- high reliability.

Memory-system Design Problems

The central résource in current systems is the main memory.
This main memory holds the instructions for the arithmetic-
logic processors (CPU's) and for the I/O processors (MP's).

It also serves as the buffer for information passing over

communication lines and between various I/O and secondary

storage devices, and stores the code for the resident

operating system. It goes without saying that the proper

design of the memory system is critical to the success of

a large scale time-sharing system. Figure 2 shows the

memory centered model of a computer system which shows the

memory as the control resource.

TO I/O OtVICES 	 TO 1/0 bEvicÉs

Addressing and Allocation

Main-memory devices have multiplexing fàroperties that

must be considered in order to specify an appropriate

addressing and allocation scheme for a timeshared computer.

While any portion of main memory can be dedicated to a

process. Processors themselves can be allocated only as

units. Processors, however, can be multiplexed rapidly,

while main memory cannot. This time is required to move
information between main and auxiliary memory. This
moving of processes hetween main memory and auxiliary storage
in order to multiplex main memory is called swapping.

A requirement in the design of an addressing scheme for
a timeshared computer is that it should maximize the
allocation advantages of memory and minimize the multiplexing
disadvantages. For example, it is preferable to have only

FIpÏre 2'

one copy of a particular procedure, say a compiler, in main

memory that can be shared by several processes rather than

have each process obtain a separate copy. Programs designed

to be shared by several processes are called reentrant

programs or pure procedures. A reentrant program has two

characteristics:

- none of its instructions or addresses can . be modified >

 during its execution,

- temporary storage and data areas 'are maintained otitside

the procedure itself, usually in the memory space of

the calling programs. 	• •

Although re-entrant programs can be wtitten for machines

with a wide variety of addressing techniques, certain addressing

techniques can make the writing and protection of these

programs simpler.

Memory can effectively be utilized by achieving flexibility

with respect to where processes can be placed in physical

memory. This ability to relocate processes dynamically in

physical memory is by a variety of addressing and allocation
•

techniques.

The cost of designing and implementing application

systems, as well as the treatment of certain classes of

problems - is to be affected by the properties of the

addressing and allocation stheme. The various tradeoffs

in the design of an addressing and allocation system must

take into account both user needs and system considerations.

A designer must decide whether the logical-address space

is going - to be smaller, the same size or larger than the

physical-address space. The structure of the logical-address

space must also be determined. Many structures are possible,

e.g., the large linear array commonly used, a set of linkable

linear arrays, as found in Multics, or a tree structure. It

must be decided how much of this structuring to perform in

hardware and how much in software. The technique of

translating or mapping the logical addresses to physical

addresses must be determined. Present ystems perform

this mapping at three points, namely

When the procedure is prepared as an operable computer

program; the result , is an absolute program, which, in

effect, is assigned the same resources each time it is run.

When the program is loaded; this is known as static

relocation.

When the program is in execution; this is called dynamic

relocation.

Usuâlly only linear arrays Or sets of linear arrays are

 considered as forms of hardware memory Structures, beCause'

more specialized structures, sUch as trees, lists, or rings,

are usually left for implementation by-softwa•e processors.

Static ReldCation

The translation of data references to physical addresses

is easily accomplished during program preparation but suffers

from the severe problems which arise when one attempts to

share or modify programs. For example, if one inserts an

instruction into a program, all references to instructions

and data beyond the point of insertion must be updated.

Similarly when one constructs a program out of routines

prepared independently, the address references must be

modified to reflect the locations into which the routines

are loaded. Further, translation at that time restricts

the size of the logical-address space to that of the

physical-address space.

The process of static relocation involves a fair amount
of computation. In systems using static relocation, programs

are usually assembled as if they were to be loaded with the

first instruction at location zero, with succeeding
instruction and data words being placed in contiguous cells

from this point. The location of the first word of the
program is called the base address. Ail instructions or
data words with address references are marked by the assembler.
Then at load time, a program called the loader adjusts all

address references to reflect the actual base address at

which the program was loaded. If several programs assembled

independently are to be loaded as a unit, the loader, using
information supplied by the assembler, adjusts the interprogram
address references to reflect the actual locations of the
different programs. This process is called linum.

With static relocation, a user can be initiaély loaded
anywhere in memory. However, when the process is removed to
auxiliary storage and then returned during swapping, it must
be placed in the same locations as before, to avoid the
loading process. (Furthermore, to go through the loading
process again implies that the program must be separable into
a pure procedure part and ,ã data part and that the data part
must contain no absolute-memory addresses.) The major gain
of static relocation is that during the loading process
independtly written programs and data can be combined into
a computation with proper linking of parts. The proper

mapping to the physical-address space is performed by the

loader. Each program can be written in a logical space of

its own, but no duplication of symbolic location names is

allowed, although programming techniques can be developed

to resolve such duplication.

The ability to load programs anywhere in physical memory

is useful in the linking process above but of little value

in achieving effective memory utilization in a timeshared

system. For example, when a new process is to be started,

the system can attempt to find a process which would fit

in an available block of cells. If such a process can be

found and it can remain in main memory until completion,

static relocation is sufficient to enable several processes

to share main memory. (The assumption of some sort of

memory-protection scheme is implicit0 A more usual

situation will be that the total number of free cells

available is sufficient for the number required by a new

process but that these cells are not in a contiguous block.

If swapping is required, then even if a contiguous block

were available on initial loading, the same contiguous block

will not necessarily be available each time the process is

run, without moving some information to another aspot in

main memory or moving it to secondary storage. For these

reasons, systems without dynamic-relocation hardware,

when used for timebharing, generally have allowed only one

complete process to reside in memory at a given time. Thus,

during the ewapping operation, the system must remain idle.
It is this situation which motivated the development of•

dynamic-relocation methods.

Dynamic Relocation Using Base Registers

One of the simplest and most common dynamic-relocation

techniques uses base registers, which are registers that

can have their contents added to the address of each

memory operation. By adding the contents of a base

•register to all addresses, one can load a program

anywhere in memory in a block of contiguous cells and

• then set the appropriate base address of the program into

the base register. Using base regipters e programs are

initially loaded using static-relocation techniques but

can be dynamically relocated as a unit later without

going through the loading process. This flexibility results

because the loading is to logical space not physical space.

The base registers form a hardware map which maps logical

space to physical space. Pùrther flexibility is gained

if there is more than one base register, which facilitates

sharing programs and makes it possible to split a program

for loading into noncontiguous storage areas.

There are many possible variations of the base-register

technique. In fact, techniques such as segmentation

are implemented using some hardware registers called base

registers. Here, we are only interested in the concept of

base registers in its simplest form as defined above and

illustrated in Figure 3 below. There are two common ways ç,

of specifying which base register to use in forming an

address. One technique e represented by the IBM System 360,

requires the base registers to be directly addressed by the

program and allows the program to access the base registers.

The second technique, represented by the UNIVAC 1108, does

not allow programs to access the base registers and implicitly
addresses the base registers depending on the type of memory

operation being executed. For example e all instruction fetches

use one base register and all data fetches and stores use

another base register.

Twe -base registers used
for.dynamic relotation
of prograM and datai

Trogram sharing is perfermed in a system using basé registers
by writing the reentrant programs to make memory references to

themselves through one base'registér and to make memory
references to data in—the'calling process through a second

base register,

Size of IAMEALLS1ace

The size of the logical-address space using static relocation

or dynamic relocation with base registers is usually equal to

or less then the size of the physical-address size. A larger

physical space can be simulated by the user by explicitly
overwriting a portion of his computation not immediately
required with another part_brought in from auxiliary storage.
This process is called' 'Weetleing,. bverlaying is closely
related to the concept of swapping except that overlaying is

a user responsibility whereas swapping is a system responsibility.

yUUlization

One of the problems uncovered by static relocation is

the fact that, once loaded, a process's address references

are bound to a certain contiguous area of memory and that
during swapping the process must be returned to the saine

 area of main memory each time it is given control of the

physical processor. When base registers are used, this

restriction no longer holds. When the processor is to be•

switched to a process not in main memory, a free contiguous

block of main memory must be found for it to reside in.

If such a block exists, no information need be 'saved on
auxiliary memory in order to make room for the incoming

process 9 The more usual situation results when although

enough free cells are available in main memory for the
process, they are not in a large enough contiguous block.
In this case, a system designed to use base registers

can do three things:

- search for a process which will fit into one of

the available contiguous blocks,

- swap out part of some procès presently in main

memory bordering on a free area' in order to make

a large enough contiguous area, Or

- perform a compacting operation on main memory.

Figure 4 illustrates the last two ideas.

Figure 4a shows memory at a given point in time. There
are two programs entirely reàiding in memory and three free-
space areas (holes). It is desired to bring into memory a
third program C which is larger than individual holes but
smaller than total space available in holes 1 and 2 0
Figure 4b shows one approach to making enough space available
to fit in program C. Program A is moved entirely to start

PROGRAM A

HOU-3

HOLE-2

HOLE-I

PROGRA1A C

HOLE-4

PROGRAM El

PROGRAM A :PROGRAM C

•RtMAIROER OF
PROGRAM: A

at the beginning of memory, thus creating enough free space

for program C. Figure 4c shows another way of making

enough space available to fit in program C. Enough of

program A bordering on hole 1 is removed to auxiliary
storage to make room for program C.

One solution to the problem of finding a large enough

contiguous area might be to use multiple base registers so

that smaller pieces of the process could be loaded into

existing free spaces. This approach seems to be impractical
because the instructions of a given pièce must refer to the

correct base register. Thus, the programmer or compiler

must decide how to split up the process and which base
registers to assign which pieces. Binding instructions

to base-register addresses at load time mans binding the

process to a portion of logical space.

The system could not easily perform this base-register

assignment function dynamically because it would be very
time-consliming and complicated to determine which
instructions to modify.

Ei&urel: Memory allocation using base registers: (a) typical
memory snapshot at a point in time; (b) making room
for program C by compaction; (c) making room for
program C by partial removal of program A.

Irs'in: Pa—in

Dynamic relocation using base registers, which requires

program to be located in contiguous areas of main memory,

leads to difficulties in fully utilizing main memory because

free areas develop which are not large enough to be used.

If, however, programs and main memory could be broken into

small units and the program pieces could be located in

corresponding sized blocks anywhere in main memory, then the

possibility exists of utilizing main memory more êffectively.

Lulu is the name given to a set of techniques which enable

such a uniform memory ragmentation to be implemented.

Paging techniques can also allow economic tmplementation of

a logical-memory space larger than the physical-memory space.

In a paged system, physical memory is considered to be

broken up into blocks of a fixed size, usually 512, 1,024, or

2,048 words. The term aell refers to units of logical space,

while equal-sized units of physical space are called blocks.

The programs are also considered to be split into' pLales of

a size equal to the block size of physical memory. Thus,

the address in such a system is considered to be represented

by two numbers: (1) a page address or number and (2) a line-

within-page address. For a machine with an n-bit address field,

the high-order p bits are considered the page address and

the remaining n - p bits are the line address. The operating

system may occupy less memory than a multiple of a larger

page size. In newer systems the page size can be changed

dynamically by the system. The memory can be more fully

utilized by the system if smaller page sizes are available

(64; 128, or 256 words). More effective utilization of
memory results from using smaller page sizes for the
following reason. Since a given process is not usually

going to require an amount of memory space which is an
even multiple of 'a page size, the last page of a process
will not utilize all the block assigned to it. It seems

reasonable to assume that on the average the last page of a

process will use half of its assigned block. The larger

the page size, the more potential waste space there is

going to be. A paging mechanism requires a table, called

a mutable, or man with one entry for each page in order

to perform address translation from logical to physical space.

The smaller the page size, the larger the table required for

a given logical-address space. Thus, there is a tradeoff

between waster space related to page size and resources

used to store and manipulate large page tables. The total

amount of waste space due to unused block locations depends

on the number of processes expected to reside in main memory.

E.g. Paging on the XDS-940

The address space of a process in the XDS-940

can be as large as 64K, and thus the logical-address space

is smaller than the physical-address space. It should be

noted that there are general cases of a paged system

yielding a virtual memory larger than the physical-address

space. A process in the XDS-940 is broken up into 2K wordl

pages, and memory is similarly broken into 2K word blocks.

There are 14 bits in the address field of a 940-instruction

word. The address field is considered to contain two parts,

a 3-bit page number and an 11-bit line-within-page number.

The relocation mechanism (Figure 5) uses eight 6-bit bytes

called a lemamjille. The memory map in the XDS-940 is

organized as two 24-bit registers. Bach register contains

four map bytes. These registers are called the real' relabeline
reals.ters, because they relabel (map) the page number into a

phrsical-memort block number. These map bytes are considered

by the hardware numbered 0 to ,7 and correspond to logical pages.

A given map byte is addressed by the page number contained in

the memory address. Within a given map byte is a number for
the actual physical block containing the code for the logical

page. For example, in Figure 5 logical page 0 is in physical

block 32, logical page 1 is in physical block 3, and so

forth. The numbers in the physical blocks of the figure

indicate which logical pages they contain.

The logical address is converted to a physical address as

shown in Figure 6.

The 3-bit page number indicates which map register contains

the physical-block number where the page actually resides.

The map register is 6 bits long and is shown in Figure 7;

note 5 bits contain the physical-block number, and 1 bit

is for memory protection. The physical address is simply

formed by concatenating the physical-block number with the

line number to form a 16-bit address. With 16 bits, 64K

of memory can be addressed.

This hardware mechanism is quite simple, but to work as

part of the of the total system it requires additional

software tables, which keep track of the memory space of

each process. The basic idea is that when a process is
to be brought into main storage, the software monitor
examines the stateof main storage and swaps out only as
many pages as are required in conjunction with free pages

to meet the needs of the incoming process. The monitor
then assigns the available physical blocks to the logical
pages of the incoming process and swaps its pages into
these blocks. The memory map is updated. Then after
restoring the processor registers and program counter to
the values they had when the process was last executing,
the process is restarted.

PHYSICAL
MEMORY

BLOCK
1

2

3

4

5

6

gyrE MAP
:V 0

REAL RELABELING
REGISTER 1 •

REAL RELABELING
REGISTER 2

11,

32

PAg 	. LIHE

otDPEss
-

1 5 51151i miti. 1 . 164IT PHYSICAL •

, 	•• • 	 • 	»He • 	-

Figure 5: Paging in the XDS-940

Figure 6: Mapping from logical to physical
address in the XDS-940.

Memot Map

The most important general concept introduced above is that

of a memory map. A map translates the logical-address space

into the physical-address space. In the dynamic-relocation

techniques, the map is a set of tables in • memory or a set of

hardware registers. In the static-relocation technique the

map is a program. In the dynamic-relocation method using

base registers, the base,registers are the map. In the

dynamic-relocation method using paging, the page map can

be looked at as a way of efficiently implementing multiple

base registers. The paging process is completely invisible

to the users and to the compilers, which function as if

they were working with one contiguous logical chunk. The

ability to fragment memory uniformly, made possible by

splitting main memory into blocks, means that all blocks

of main memory can be used, although assure that no two

shared procedures which might be used concurrently occupied

the same position in logical space. If the page table

were organized and addressed as an actual or simulated

associative memory, then it could be reduced in size

because no gaps need result. The practical problem of

implementing in hardware and software such a large

associative map for efficient execution may still create
difficulties, although further study may be fruitful.

In summary, then the difficulty of using paging for

sharing single copies of procedures and data in full generality

and for allowing for data- structure: growth results,:

- Because of the' large number of address bits required
to ensure unique page nuMbers 'in a large lOgical space.

- Because of the large, possibly sparsely filled, map

required using an indexed page table (with an efficient

associative map this argument is reduced, although
duplicate entries for each page of shared procedures
and data must exist in the map of , each process using

the shared procedures or data).

- Because of the careful bookkeeping required by the

installation and the system to be certain that 1
procedures used concurrently do not occupy the

saine position in logical space (iïe., have the same
page numbers), and to - properly position data which

contain address references.

• 1 Brr. 	p BITS

! 	-1-PHYSICAL BLOCK NM-
Figure 7 : Map byte in the

6 Bib.> 	 XDS -940 .
PROTECT RUT

Menn5.11:21_9215.e.

The problems with physical-space allocation using static

relocation resulted because address references were bound to

positions in EhmiEal space when procedures and data were

loaded into the system. Once loading was accomplished, all

addresses were absolute phuice loCations. This restriction

was removed in the base-register and paged systems by intro-

ducing mechanisms which allowed physical-address references

to be made relative to either a base register or block

number, the contents of which did not have to be set until

execution time. However, the particular base register or

map entry to be used was bound into the instructions at

load time. In other words, once loading was accomplishe4,
all addresses were to absolute logical locations.

The problem which segmentation sets out to solve is that

of allowing relative addressing within the logical-memory

space. This means that logical space must be broken up into

chunks of contiguous locations and all addresses within a

given chunk are to be relative to the start of the chunk.

We then need a hardware or software base register which points

to the base location for each chunk. Interchunk references must

refer to the proper base register and give a relative address

within the referenced chunk. The trick is to develop an

efficient mechanism which allows these base registers to be

assigned at execution time. The chunks of contiguous logical

locations are commonly called SlemeIs. The basic idea of

segmentation is thus quite simple, but the mechanisms for

allowing assignment of base registers at execution time are 	 •

more involved.

A mzunI is an ordered set of data elements (usually

computer words) having a name. A particular data element

within a segment is referenced by the symbolic segment name

and the symbolic data-element name,with the segment,(S)/[a].
The notation (S) indicates a symbolic segment named a.
The symbolic segment name (S) is eventually (at run time)

translated into a base-register number, and the symbolic

data-element name in the segment [a] is going to be
translated into a relative location within the segment.
In other words, a segment is a one-dimensional array, and the

segment name is related to the address in logical space of

thiS array (its base address), the symbolic element name

within the segment is related to the address of the

referenced element relative to start of the segment, as

shown in Figure 8.

Segmentationis often referred to as ItazdinmeInjaLluiEe].:
acil....pase because particular elements within the logical
space are explicitly referenced by a pair of names. A paging

system is not considered two-dimenSional, even though the

address has a page-number and a line-number, pair, because
these conventions are invisible to the user. To be general

SEGMENT NAMED <S). 	„ BASE BEGISTEB

e•••■■■

RELATI\l‘E ELEMENT. ADDRESS

one could consider base-register and paged systems as

segmented systems allowing one segment, and thus the segment

name is implicit. In a general segmented system, the user

programs his addresses using a pair notation, (S)/H. A

segment is a self-contained logical entity of related

information defined and named by the programmer, such as

a procedure, data array, symbol table, or pushdown stack.

There is no logical restriction on the length of a segment,

although in any given implementation there will be an upper

bound on segment length. Segments can grow and contract

as needed.

ELEMENT
NAMED Icil

Elerl_s: A Segment.

Communications Within the Time Shared Comiditer

The purpose of a timebhared computer system is rapid time

multiplexing of computer-system resources on behalf of user

requirements. The system attempts to perform this multi-

plexing so as to satisfy user completion and response-time

needs and to utilize system resources efficiently. These

time shared systems are usefully viewed as large communication-
switching centers which control the transmission and trans-

formation of information as it moves between the large number

and variety of devices (terminals, discs, etc) that are

attached.

Communication with Main Memory

The central point through which the information passes in

present organizations is main memory (with a possible side

journey to the CPU for transformation) as it moves from one

device to another. Main memory is a prime system resource

and consequently, a potential source of communications

problems. In timesharing systems, multiple CPUs, high=transfer-

rate secondary storage devices, and numerous I/O devicesshare

access to main memory. The processors which control the

secondary storage and I/O devices and communication with

memory are usually referred to as channels, I/O controllers,

or I/O processors.

C omniun ic atio with 	 e and I/O n e'inces

A basic communication problem with auxiliary storage and

I/0 devices is gaining access to a direct-transfer path to

main memory. A timesharing system contains a variety of

devices attached to it. Associated with these devices is

a range of data-tranSfer rates. Direct-transfer paths to

main memory require logic to resolve conflicts for access

to a memory module and .require sending an receiving
circuits at each end of the path; therefore, it is usually'
uneconomical to provide a separate path for each device.
It is possible, however, using the fact that the attached
devices have a range of transfer-rate requirements, to
design I/0 processors which enable many devices to share
one direct-transfer path to main memory concurrently.

• 	 • 	 1

Communication with Rèmote Devices

Three major communication problems are associated with

remote devices such as terminals, printers, etc. these are

- the transmission of information between the central

facility and the remote devices

- the• interface between transmission lines and the

central facility

- the interface between transmisSion lines and the

remote devices

Along with the transmission of information techniques

must be considered for utilizing standard telephone lines

for digital information o .sharing lines among several devices,

and synchronizing communication between remote points.

Associated with the interface between transmission lines

and the central facility are the problems of identifying,

controlling, and addressing communicating devices and

converting the transmitted information to a form usable by

the central machine and vice versa. , Associated with the

interface between transmission lines and the remote devices

are problems of encoding information and providing

identification.

Communication With: the Main Memciry

Multiple Memory Box and Bus Organization:The technological
problem to be solved inl the design of a memory communication

system is to provide adequate transfer capability between main
memory and all processors requiring access. In practical
systems, the rate at which data can be transferred between
processors and main memory is limited by the transfer

MEMORY:. ItiOX0

MEMORY
BUSSES..

capabilities of the memory itself and'the memory busses. The

rate at which the memory can transfer information is often

referred to as the mbilidrY baneWidth e usually measured in words

per second. Bandwidth limitations .also exist for the

busses. Because the memqry system is silared by several

processors, care must be taken in the design to keep

performance from being seriously degraded due to ifiterference

caused by simultaneous attempts on the part of the several

processors to utilize a facility such as a memory bus or

portion of memory itself. Figure 9 shows a common method

for organizing the memory structure in a resource-sharing

system.

The maximum memory-system bandwidth for the system shown

in Figure 9 is p X R, where p is the smaller of the number

of memory modules m and the number of access paths n, and

R is the maximum transfer rate of each box. In other words,

the maximum transfer rate is achieved when each path requests

access to,a separate module . .

The minimum transfer rate is just R and occurs when all

paths request access to the same eodule. There is

interference in this case.

Fi gure 9: Memory organization in a resource-sharing system.

The scheme shown in Figure 9 cuts interference by allowing , 	,
simultaneous access to more than‘one-box. That is, if bus 1

requests access to box 2 at the same time buts 2 requests

access to box 3, both'accesses are granted because each box

has its own addressing and read/write circuitry. Even given

the scheme shown in Figure 9, serious interference can result

when memory addresses are contiguous in the boxes, e.g.,
box 1 having addresses lto 16K 	1 to 32K. Consider the

case of a high-speed drum processor which transfers at the

memory rate. If this device has a higher priority for
memory access than the arithmetic unit, then during a block

transfer the arithmetic unit could be denied memory access

for a prolonged period if it tried to access the memory

box bieng used by the drum processor. To get around this

problem designers have developed th è technique called

interleaving. .(Analagous to multiplexing)

In an interleaved memory, consecutive addresses are in

different memory bbxes. For example, in a two-memory-box

system all the even addresses might be in one box and all

the odd addresses in the other. With an interleaved memory,

the probability of one processor's tying up the memory for

a significant time is greatly decreased. The design problem

is to determine the size of each box and whether or not

interleaving is to occur over all boxes or over groupings
of boxes.

E.g. The IBM 360/85 Memory Organization. A schematic of

the model 85 memory system is given in Figure 10. Main•
storage in this system has a cycle time of about 1 microsecond.
For storage configurations of 500K and 1,000K words (32-bit),
storage is interleaved four ways. • For smaller storage
configurations, storage is interleaved two ways. Note that
the buffer storage is available only to the CPU and not to the

BUS CONTROL UNIT

BUFFER STORAGE

	 CHANNELS

I/O or other processors. The buffer storage has a cycle

time of 80 nanoseconds. The buffer storage is either

4K, 6K, or 8K words. The design of this system was
oriented toward increasing the effective speed of memory

as seen from the CPU. The importance of high data-ttansfer

rate between all processors and memory has not been highly

developed in this machine. The memory bus is four words

wide in order to achieve the bandwidth required for the

main applications envisioned. For I/O oriented systems,

this organization offers little advantage, but the basic

ideas can be extended.

Main memory end the buffer storageare organized into

sectors of 256 words. During operation, a correspondence

is set up between buffer-storage sectors and main-storage

sectors, in which each buffer-storage sector is assigned

to a single different main-storage sectors. Because of

the limited number of buffer storage sectors, most main-

storage sectors do not have any buffer-storage sectors

assigned to them. Bach of the buffer-storage sectors

has •a 14-bit sector address register, which holds the

address of the main-storage sector to which it is

assigned.

MAIN . STORAGE

CPU

IBM 360/85 memory system.

The assignment of buffer-storage sectors is dynamically

adjusted during operation so that they are assigned to the

main-storage sectors that are currently being used by

programs. If the program causes a fetch from a main-storage

sector that does not have a buffer-storage sector assigned

to it, one of the buffer-storage sectors is then reassigned

to that main-storage sector. To make.a . good selection of a

buffer-storage sector to reassign, enough information is

maintained to order the buffer-storage sectors into an

activity list.

When a buffer-storage sector is assigned to a different

main-storage sector, the entire 256 words located in that

main-storage sector are not loaded into the buffer at once

but each sector is divided into 16 blocks of 16 words each,

which are located on demand.

Storage operations always cause main storage to be

updated. If the main-storage sector being changed has a

buffer-storage sector assignéd to it, the buffer is also

updated; otherwise no activity related to the buffer takes

place. Since all the data in the buffer are also in main

storage, it is not necessary on a buffer-storage-sector
reassignment to move any data from the buffer to main

storage.

Two 80-nanosecond cycles'are required to fetch data that

are in the buffer. The first cycle is used to examine the
sector address and the validity bits to determine if the data

are in the buffer. The second cycle is then used to read
the data out of the buffer. If the data are not in the

buffer, additional cycles are required 'while the block is

loaded into the buffer from main storage.

Simulation was used extensively during the design of

this memory system. There are many important parameters,

such as choice of a replacement algorithm, buffer size,

sector and block sizes, which must be determined.

With the simulation running a representative scientific-

oriented job mix, it was found that mean performance of this

system as compared to an ideal system consiiting of only

80-nanosecond memory was 81 percent. That is, on average,

the CPU obtained information from the buffer storage on

81 percent of its references.

Memory Management Software - Storage Hierarchies

The purpose of storage system is to hold information and

to associate the information with a logical address space

known to the remainder of the computer system. For example,

the CPU may present a logical address to the storage system

with instructions to either retrieve or modify the information

associated with that address. If the storage system consists
of a single device, then the logical address space corresponds

directly to the physical address space of the device.

Alternatively, a storage system withthe same address space

can be realized by a hierarchy of storage ranging from fast

but expensive to slower but relatively inexpensive devices.
In such storage hierarchies", the logical address space is
often partitioned into equal size pages (or unequal size
segments) that represent the blotks of information being

moved between devices in the hierarchy.

A hierarchy management facility is included to control

the movement of pages and to effect the (generally dynamic)
association between the logical address space and the
physical address space of the hierarchy. When the CPU

references a logical address, the hierarchy management

facility first determines the physical location of the

corresponding logical page and may then move the page

to a fast Storage device where the reference is effected.

The goal of the hierarchy management facility is to

maximize the number of times logical information is in

the faster devices when being referenced. As this goal

is approached, most references are directed to the fast,

small stores whereas most of the logical address space

is distributéd over the slower, large stores.

Memory (hierarchy) management becomes a severe problem

in multiprogramming and critical memory systems. In

a multiprogramming system, many programs are concurrently

executed by the processor. Thus the main memory is shared

by many programs. Since the total size of all the programs

far exceeds the size of the main memory, in order to keep

information that will be used in the near future in the

main memory, the system constantly moves information

between several levels of storage media. Here, for example,

we shall consider the case of paged memory system; that is,

the address spaces are partitioned into equal size blocks

of contiguous addresses. The page replacement problem is

defined as the problem of deciding which page should be kept

in memory and which should be removed when additional space

is needed. Obviously, the page removed should be a page

with the least probability of being needed in the near

future. However, this should be done without incurring

difficult implementation problems at-the same time.

Many replacement algorithms have been proposed and studied,

examples:

working set of repla-
cement simulator
algorithm

ago

m(T) 	used
F(T) 	for
S(T) 	system

› P(t,T) design

program's sequence
of reference 	•

1. Least Recently' Used (LRU)

2. Stack Replacement AlgorithMs

3. Random Replacement

4. Working Set Replacement Algorithm

for an excellent intro-
duction to those algo-
rithms, see the paper
given by R.L. Mattson,
et. al.

We shall illustrate briefly as an example the Working Set

Replacement Algorithm. (see the paper by W.W. Chu)

Model (Working Set Replacement Algorithm)

The working set W(t,t) at a given time t is the set of

distinct pages referenced in the time interval (t-(T-1),t)

where T is called the working set parameter. The working

set size w(t,T) is the number of pages in W(t,T). The k

average working set size S(T) is defined as S(T)= Lim 1 E W(t,T),
k+oe kt

For systems employing working set replacement algorithm,

several parameters are of interest:

1 0 page inter-reference - internal distribution F(t)

which describes the fraction of the page inter-referenced
intervals less than T.

2. Average page fault freq. -m(T) which describes the

average number of page faults per page reference for working

set parameter T.

3 0 Average working set size S(T).

(An example including the results is given in Chu's paper).

Examples of how to use the parameters of the working set

replacement algorithm.

1. Suppâse we would like the system to operate at an average

page fault level of about 10 -4 page faults/reference; that is

one page fault in every 10 -4 page reference, then from the

graph representing m(T) versus T for different programs,

m(To) = 10 -4 page faults/reference

To = 22 mesec 	FORTRAN

T° = 45 m.sec 	DCDL

T° 	54 m.sec 	META-7

and from the graph representing the:average working set

size S(T) we find: •

S(T °) 	15 page . 	FORTRAN

S(T°) 	36 page 	DCDL

S(T°) 	39 page 	META-7

4 0 Inter-page-fault-time (time between page fault)

distribution P(t,T) which describes the fraction of the inter-

page-fault times less than or equal to t for a given T.

If we assume that page reference rate is one page/unit time,

we immediately obtain the following relationships:

m(T) = 1-F(T)

1/m(T) = average running time between page faults

program's
sequence of
references

(programP behavior)

object programs

(considred as data)

1/m(T) 	S 	P(t l e T) 	P(t e T)3r
tr-71

To employ measurement techniques for estimating these

parameters e we collect data bout the pattern of references

to all the pages which comprise the executed program and

measure these parameters experimentally via interpretive

execution (steps are shown in the following representation).

fIgur.e CUIL9211

Figureil: Average page fault frequency m(T) as a functicin of

working set parameter T.

Figure12: Average working set size S(T) as a function of

working set parameter T.

.Figure13: Inter-Pàge-Fault-Time Distribution

a) FORTRAN Compiler
b) DCDL

cl META-7 Compiler

AVERAGE, PAGE FAULT FREQUENCY ri(7)v (page faOts/reference

Fîgure 12:

10 	20 	30 	40 1 50 	60

WORKING SET PARAMETER TI(msec)

1000 PAGE REFERENCESiemsec

40 B 	12 	16 20 24 28 32 36

INTER-PAGE-FAULT-TIME t, (rnsec)

8 	12 16 20 24 28 32 36 40

INTER - PAGE- FAULT-TIM .E t l '(msec) 	 '

References - Memory Hierarchy

Management

Presented at the PBI International Symposium XXI on Computer-Commnnications

W, twork and Tolctraffic,.April'1972.

Measumoent Data on the Working Set Replacement

Algorithm and Their Applications

by

W.W. Chu, N. Oliver and H. Opderbeck

Computer Science Department
University of California

Los Angeles, California 9002

(Revised March 31, 1972)

ABSTRACT

Page inter-reference interval distribution, average page fault

frequency (the frequency of those instances at which an executing program

requires a page of data or instructions not in the main memory) average

working set size and inter-page fault-time (time between page fault)

distribution for a simulated Working Set Replacement Alporithm for three

typical programs with different sizes were measured on the UCLA Sigma

Executive (SEX) time-sharing system via page reference strings. These

measured results are reported in this paper. The average page fault fre-

quency relationships between working set parameters and process scheduling

are discussed. These relationships are useful in planning the working set

si 	and process scheduling which optimize system efficiency.

* 	• 	 . 	.
Tfiis research was supported by the U.S. Office of Naval Research, Mathfflii.
tical and Information Sciences Division, Centract.No. 1.100014-69-A-0200-

. 4027, NR 048-12D and the Advanced Research Projects Agency. of the Depart-
ment of Defense, Contract No, DAHC 15. •69-C-0285

• >a

t •ormerly of UCLA, new at General Motors ResearCh Technical Center, Warren,..
Michigan.

2

Introduction

Memory management becomes a severe problem in multiprogramming and

virtual memory systems. In a multiprogramming system, many programs are con-

currently executed by the processor. Thus the main memory is shared by many

programs. Since the total size of all of the programs far exceeds the size

of the main memory, in order to keep information that will be used in the

near future in the main memory, the system constantly moves information

between several levels of storage media.

In this paper, we consider the case of paged memory systems: that

is, the address spaces are partitioned into equal size blocks of contiguous

addresses The paged memory system has been used by many computer systems.

However, the basic page replacement peoblem of deciding which page should be

kept in main memory and which should be removed when additional space is

needed is still little understood and has been of considerable interest.

Obviously, the page'removed should be a page with thb. least probability of

being needed in the near future. The difficulty lies in trying to determine
. 	.

• -
which page this will be withOut.incurring difficult implementation problems

at the same time.

•Many replacement algorithms have been proposed and studied in the

past: such as Random, First-in First-out, Stack Replacement A1gorithms [1]

(for example, Least - Recently Used (LRU)), and the Working Set Replacement

Algorithm. [2] The first three replacement algorithms require a fixed size

memory space for each process. The Working Set Replacement Algorithm, how-

ever, requires a variable size storage space for each process and the size

3

varies with program demands. This variable storage space provides an adaptive

capability in the replacement algorithm which is quite appealing. • The work-

ing set principle of memory management states that a program may use a pro-

cessor only if its working set (set of pages) is in the main memory, and no

working set pages of an active program may be considered for removal from the

main memory. Properties of the working set replacement algorithm, the rela-

tionships among page inter-reference interval, average page fault frequency

and average working set size for the Working Set Replacement Algorithm are

described in a recent paper by Denning and Schwartz. [3]

Because of the complex nature of program behavior, analytical esti-

mation of the above mentioned parameters of program behavi or. becomes very

difficult. Yet this information is important in the planning of an efficient

replacement algorithm that optimize system performance. Therefore we employ

measurement techniques for such estimations. We collect data about the pat-

tern of references to all the pages which comprise the executed program, and

measure these parameters experimentally via interpretive execution. This

technique has been used previously to measure dynamic program behavior [4]

and also to measure the performance of Belady's Optimal Replacement Algorithm [5]

 and LRU replacement a1gorithms. [,7

Flore we report the measured program behavior of the Working Set

Replacement Algorithm. We shall first report measurement results such as

page inter-reference interval distribution, average page fault frequency,

average working set size and inter-page-fault-time distribution. We then

discuss the use of average page fault frequency to determine the working set

parameter, and propose a page fault scheduling algorithm for process scheduling

which improves systm efficiency.

Measurements end Results

The workirg set W(t,T) at a given time t is the set of distinct pages

referenced in the tie- interval ((t-T+1), t)) where T is cal led the worLing

set paremeter. The working set size w(t,T) fs the number of pages in W(t,T).

The average working . set size S(T) defines as SM.= 	, v "

For systems employing working set replacement algorithms, several parameters

of interest are: lreage inter-reference inter'val'distribution F(-r), which

describes * the fraction of the page inter-reference intervals.less than T;

2) average page fault frequency m(T) which describes the average number of

page faults per page reference for working set parameter T; 3) average

working set size S(T) and 4) inter-page-fault-time (time between 	'

page fault) distribution P(tiT) which describes'the fractionof-the inter-

page-fault-times less'than or equal to:t for a given T.

• F(T) is a fundamental distribution; it closely relates to the other

three paremeters'. .When We assume that the page reference'rate.is one page

per unit time, we know that the page references that result inepage faults

are thoSe referenceS whose inter-reference intervals exceed T. Thus, m(T)
. f

1-F(T). It can be s'fiWn[3] that S(T) 	m(71 . Thus, S(T).is closely-
' 	k'e0

related to m(T). lim(T)-is,the average running time•between page faults. .

Since P(t,T) is the fraction of interepage-faultetime less than or.equai to .

t, 1/m(y). is the time average of tho. density 'function P(t4.1,T) - . P(t,T); •
Co

that is, 1/m(T) 	t°[P(t.1-1,T) 	P(t,T)]..
t.1

To employ measurement techniques for estimating these parameters, we

collect data about the pattern of ;..eferences to all the pages which comprise

the executed program end measure these parameters experimentally via inter-

pretive execution. For this purpos an interpreter for the UCLA Sigma-7

time-sharing system nas been developed. This interpreter is capable of

execetne'Sigme-7 object programs'by handling the latter as data and repro-

ducing a program's sequence of references.. This sequence eein turn, can -

then be used as input to programs' which simulate the Working Set Replacement

. Algorithm. 	 .

Three different .programs with different sizes were interpretively

executed, and their 'behavior was investigated -under the.Working Set Replace-

ment Algorithm. A FORTRAN Compiler 'was chosen as the representative for à

small program. META-7 was chosen as the.representative for a large. program.

It translateS programs-written in META-7 to the assembly langUage of the 	'

Sigma-7. A DCDL (Digital Control Design Language) compiler was chosen as a

representative for a medium size Program. This' compiler is.written in 	-

META-7. DCDL translates specifications of digitehardwareand . microe . ,

program control sequences into interpretive code.

Table I shows some characteristic - properties of these programs.

The column 'size' is divided into two parts. -*Static' ,refers, tcethe , number

of peees necessary fe'store the program as an executable file on ,a disk

where one page. consists of 51 2 32•bit words..- 'Dynamic' indicates the-number

of different pages actually referenced while processing the given input

- data. The differenee between the number of pages in static and dynamic -

results from the fect that programs creat neWepages-during execution for

working. storage areas and that not all pàgeseof programs are reference

during executing &specific set of .input data.H

6

• Table 1. Program sizes • of the three measured programs

Number_of page references Size

FORTRAN

OCOL

META-7

Static

24

44

.(,, 	e. • 	84

DynaMic 	 .

34 • 	 1,000,000

58 	 1;000,000

153 	 1 ,000,000 •

Figure 1 shows the average page fault frequency m(T) for the three

programs. We note that all three programs exhibit similar page fault char-

acteristics. The average page fault frequency decreases rapidly with T.

Large programs tend to have a slower rate of decrease. The reason for such

characteristics is mainly the locality of the program; that is, during any

interval of execution, a program favoes a subset of its pages, and this set

of favored pages' changes its membership slàwly. Further, the locality for

large programs is usually larger than that of small programs. The page

inter-reference interval distribution F(c)l-m(r) 'can be obtained easily

from m(T) . The average working set sizes as a function of T are shown in

Figure 2. Measurement data support the premise that average working set sire

increases as program size increases and reaches a constant level as T reaches

a certain value. The P(t,T)'s of the three programs for selected 'OS are

shown in Figure 3. We note that P(t,T) is very sensitive to T and program

size. For a given program, the average inter-page-fault-time increases as T

increases. This occurs because for the small T case, many of the pages

to be referenced in.the near future are in the secondary memory;

thus the average working set size is very small and yields a high page fault

rate. For the large T case, most of the pages are in the main memory which

yields a-large average working set size and a small page fault rate. For

7

a given 1. , large e•U!e programs have a higher page fault rate than thot of

a small size program. In the next section we shall discuss the applications

of those parameters to determine the working set parameters and process

sehe(e -Jin.D which improve system efficiency.

	 fj)ftuatiee of Heasurement Data
e e
(A.) Working Set Parameter T iS an important parameter which affects

page fault rate, memory utilization / and thus system efficiency. The measure-

ment data support the fact that t should be chosen according to the execut-

ing program (e.g., size) and system organization (e.g., available memory

size and the speed ratio between main and secondary memory). If T is not

properly chosen, for example if t is too short e then pages are removed from

the main memory while still.potentially useful. This results in high page

traffic between the different levels of memory. If T iS too long, then

pages that are not needed may remain in the main memory, which is an

inefficient use of memory space. Instead of choosing T arbitrarily, we

propose to determine Y from the measured m(t) and designate it as T° . As

a result, 1 ° is now closely relatedto program behavior as well as to system

organization.

• 	 The efficiency of a progrem is defined as the ratio of total

virtual running thee to total real running time (total virtual time and total

page waiting time); that is,

(1)

Eff _ total virtual rennin time.
total ..real running time —

, 	1
Weil R . .

where . R A/T
e,

A Access time of the main memory

T = Access time of the secondary memory

Since Ris fixed for a given system, from (1) we know a fixed average page

fault frequency m(T) insures a certain level of efficiency.

Suppose we would like the,system to operate at an average page

fault level of about 1O 	faults/reference; that is, one page fault

in every 10' page references. Then from Figure 1, o for Fortcomp, DOM

and META-7 are 22,4) and 54 m sec (1 psec per page,reference) respectively. ,

From Figure 2, the corresponding average working sat size is 15, 36 , and

39 pages.

Usually in a multiprogramming environment several types of

programs may bo concurrently operated by the operating system. The working

• set parameter of such a system may either be variable of fixed. In the

variable T case, the T
o

should change from one program to another; while in

the fixed T case, the T ° remains fixed for all types of programs. Because

of the simplicity of . a. fixed T scheme, it requires less overhead to implement

than the variable T scheme. However, thé efficiency may not be as high as

that of the vaeiable T case.

One vay to determine the value of a fixed T if, to use the

weighted average t!orking set parameters of each program; that is,

n

	

_ 1 	
\

U.T.

,
o

1...., T
o

- -

	

" 	i= 	
1 1

1
(2)

th
where T ic . working set parameter for the

4
program that

selected from its m(T)

-.
u i -relative usage frequency - of the I th program.,

n = total number of distinct programs used in the system

• 	The dmision as to which scheme should be used for a given system

*should be based on prograwbehavior, relative usage frequency of all the

, distinct programs used by the system, and the overhead in implementing these

schemes.

. B. 	ProcessSeheduling

In a multiprogramming system, tointrease system efficiency and

to redne response time for'shortjobsthe job queues for CPU processing

usually have several priority levels. Let us consider a system having two

levels of queues: Short Quantum Queue (SQQ) and Long Quantum Queue (LQQ).

-
SQQ has a higher priority than LQQ. All jobs enter the SQQ. Processes in

the SQQ are given one time slice at a time. The process is put at the back

of the SQQ after the process either incurred a page fault or used up the

time slice; that is, the process is serviced in a round-robin fashion. A

process stays in the SQQ until its short quantum time runs out. It is then

put on the front of the LQQ. The LQQ will not be serviced until the SQQ is

empty. A process in the LQQ receives service until its long quantum time

runs out. It is then put at the end of the LQQ.

When a system is properly designed, such scheduling algorithms

yield: 1) fast response time to short jobs, and 2) most of the short jobs

are run in the SQQ and long jobs (compute-bound processes) will run in the

1 0

LQQ. Since LQQ provides more . memory space for each process than that of

SQQ, such scheduling yields less page swapping.

If• the quantum time of the SQQ is too short, then many of tho

short jobs will be in the LQQ; if the quantumiimp is too long, then many

computational jobs will be in the SQQ. The system is designed such that most

of the short jobs finish their processing in the SQQ and only the compute-

bound processes enter into the LQQ. The short quantum time should be larger

than the average real process time of short jobs. However, the process time

varies from one process to another. In addition, the processing time is

further complicated by page faults occurring during its execution.

The real processing time of a process is the sum of the virtual

process time and the total time wastedue to ,page faults of that process.

For example, two processes requiring the sanie amount of virtual CPU process-

ing time could have very different pagq fault frequences, and thus yield very

different real processing time. Therefore the real processing time is

extremely difficult to estimate.

We know that page fault frequency has great influence on system

efficiency and the response time of the short jobs. We pràpose to use a

page fault as a measure in process s'cheduling; that is, when a process

exceeds a certain number of page faults.or exceeds the quantum time of the

SQQ (whichever occurs first), then the process sWitches from the SQQ to the

LQQ. We shall call such a scheme a page fault ; scheduling algorithm. In a

multiprogramming environment, the CPU idle times due to page swapping between

main and secondary memories are directly affected by the page fault frequency.

The page fau • t scheduling elgorithm should be effective in reducing CPU idle time

And improve system efficiency. (See Appendix).

otiratihg in a . multiprogre,mming en v ironmnt, we .should also

include the • time spent ein waiting for the availability of CPU:

Processes with high page fault rates occupied in the main memory

greatly reduce the efficient utilization of main memory. The page fault

scheduling algorithm adaptively allocates the low par fault rate processes

in the main memory and higher page fault rate processes in the secondary

memory. Thus such scheduling improves the utilization of main memory. As

a result, this will improve the average response time of the system. An

analogy to the above scheduling algorithm is the well known "serving the

shorrest job first" algorithm in queueing theory that results in improve-

ments in average waitingtime; except in our case we have further improved

the . memory utilization efficiency.

The number of page faults occurring during processing before

switching a process from a SQQ to a LQQ depends on the response time required,

the number of processes operating concurrently, the replacement algorithm

used, and page fault frequency characteristics. Further study in this area

is needed.

In order to reduce response tin, the quantum time of the SQQ

and LQQ are further divided into many time slices. The optimal size of time

slices is another important parameter that affects system efficiency. The

time *slice should be selected such that most of the processes either page

fault or become inactive before runnIng out of the time slice. Since P(t,T)

describes the inter-page-fault-time distribution of a process for a given 1,

the.time slice for the Quantum Queues cari be determined from P(t,T). For

example, if we wish 95% of the time that the process will page fault before

running out of the time slice -- that is, only 5% of the time the process

will run to the end of the time slice -- then from Figure 3 we know

12

the time slices of the LQQ for .1. 	10 m sec are: 28 m sec for the FORTRAN

Compiler, 13 m sec for.00OL,.and 12 m sec for . META-7. Time slices for T 	25

m sec are: 58 m sec fôr the FORTRAN Compiler, 38 m Sec for DCOL, and 35 m sec

..for ETA-7. Thus, the Measured inter-page-fault-time distribution provides

a good way to determinethe optjmalltime slices for the Quantum Queues which

.avoids excessive unnatural interrupts that degrade response. tiffieS.

The page.fault scheduling algorithm , . as well as the selection

- of the time slice form:inter-page-fault-time distribution, are quite general

and can be applied to .other types of replacement algorithms.: 	-

V. 	Conclusions

Page inter-reference interval distribution, average working set size,

average page fault frequency,and inter-,page-fault-time distribution for three

typical programs with working set replacement algorithms are measured and

reported. Measurement results support program locality and the following

working set properties: the average page fault frequency decreases rapidly as T

increases and increases as program size increase's. Based on these measured

data, working set parameter and proc'ess• scheduling may be selected from end

based on the average page fault frequency. The time slices for the Quantum

Queues may be determined from inter-page-fault-time distributions. A page

fault scheduling algorithm is proposed for proceSs scheduling in a multi-

programming environment. Such an algorithm is, effective in reducing CPU idle

time and improve system efficiency.

*The three measuredlirograms are not short jobs::: they should. he run in . LQQ.
Therefore, theSe •MeaSured Kt,T1's provide.the estimate of time'Slices for
the Long Quantum Queue. •

13

Although the Working Set Algorithm provides an upper bound on replace-

ment algorithm performance, the high cost of implementation prevents it from

being widely used. Iherefore future research should be in developing low cost

hardware devices for economically implementing the Working Set Algorithm or,

perhaps even more fruitful, in developing new replacement algorithms that

have performance comparable to that of the Working Set - Algorithm but are much

easier to implement. For example, we have recently studied a Page Fault

Frequency Replacement Algorithm. Such an algorithm adjusts the LRU (Least

Recently Used) steak according to page fault frequency. Preliminary results

already indicate it hes excellent performance.

Acknowiedoement

The euthorS wish to thank P.E. Denning of Princeton Univei'sity for his

critical comments on this paper. 	•

14

APPENDIX

A Cyçlic Queueing Model to'S 'tudy CPU and I/O Operations

To illustrate the relationships amongCPU idle time, average page

fault frequency and swapping time (time to bring in a new page from the aux-

iliary memory) T, a cyclic qmeueing model [8] is used td study CPU and I/0

operations. The system in Figure 4 consists of two classes of service facili-

ties. Service facility class I represents a single CPU; its service rate is

directly determined by the average page fault rate* X. Service facility class

II represents k parallel I/0 servers with each having an average service rate

1 p - 	. The k parallel servers represent, for exemple, a paging drum with k

different sector. Using such I/O facilities, a high degree of overlap of I/O

requests can be achieved in à multiproeamming systeM mith,relatively low page

fault frequency. 	I.

Let IP
ij
 be the probability that a job leaving server i will proceed

to server j. We asstimé that the job leaves CPU (server 0) and goes randomly

1 to the 'k I/O servers for service; thus P0 . 	
' , for j = 1, 2,....,k. Since k

jobs which have finished their I/O operations always return for CPU operations,

P io . 1 for i . 1, 2, ..., k; and all the other P ip are equal to zero.

Let N be the total number of jobs in the system, and let n1 denote

th the number of jobs in service' plus the numberin.queue at the. i - server. The

state of the system e.ân:thpn be determined-by'the k 1- 1 tuplé (n 0 ,n 1 ,...,n k)

in which >2 trl 	N. e - The number of distinguielable states of the system---equal
'

to the number of partitions of N customers among k 	1 servers-7-is I,k .

à— iii— F-Fii--Working Set Replacement Algorithm. with-parameter T, then • 	..

nj) À Poi

(Al) c(no) p Pio

i=1

904e9nk)

15

Let P(n0 ,n 1 ,...,n k) be the stationary probability that thesystem

in state (n 0 01 .1 ,...010, eaid let all the service t ins be assumed to be cx-

. penentially distributed.; Then the steady state.equations can be written in

- the form: 	 •

k 	-.
e(no) X +): c(ni) p 1) (no

j=1

)

where thé indicating function

c(n.) = I °
1

if n. = 0
. 3

if n. g 0

accounts for the impossibility of any customer leaving the j th server if that

server is empty. 	-

The left hand side of (Al) represents the rate of transition cut

of state(n n). and the right hand side is the rate of transitiou into 0' 1 	k

this state. Solving (Al) by a method of separation of variables [8] , we have

k /Poi X n i
utu LT

_

1 (0)N-no :

G(NT

where « X/p and the normalizing function G(0 is determined from the fact

that the sum of aflthe P.(n 0 ,nl '", n k) is eClual to 1". Thus • 	.

i=1

(A2)

16

(A3)

k)n.
Tr

i=1
>2 n 4 =N
i=0

11, (N-n0 	
)N-no

77

n0=0

. 	 -

(

N-n0 -1-k-1
S. mhere 	k-1 	is the number of distinguishable partitions Of N-no jobs among

k I/O servers. 	:
. 	 .

The probability that the CPU is i:die is 	 _

Po = 	PO0len1yn2s...,1k)

G(N)

	

k• 	,
n =N

	

i=1 	'

1 	(N+k- (o.)
Uriff k-1 , . 	(A4)

For the case k = 1, then (A4) reduces to P = 0 N
-E 1=0

For the case N = 3 and k = 6, the values of Po 's for selected Ws.

are sho'wn in Table

17

Table 11 Po vs. o

po

0.003

0.019

0.091

0.187

0.278 '

0.362

0.431

0.488

0.537

0.577

0.612

We note that ci is the ratio of average page swapping time (from

secondary memory) to everage inter-page-fault-time. A large a implies large

pag2 swapping time or small inter-page-fault-time (high page fault frequency),

or both. Thus the probability of CPU idle time increases bs a increases.

Hence, the page fault scheduling algorithm should be effective in reducing

CPUldie time and sh'oLild thus improve system efficiericy.

0.25

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

8.

REFERENCES

1. 	Mattson, R.L. et al., "Evaluation Techniques for Storage Hierarchies,"
. - IBM . System Journal, Vol. 9, : No. 2, pp.. 78-117, 1970.

2. Denning, P.J., "The Working-Set Model for Program Behavior," Communi-
cations of the ACM, Vol. 11, No. 5, pp. 323-333, May 1968.

3. Denning, P.J. and S.C. Schwartz, "Properties of the Working Set Model,"
Procc:Ainos of th 2 :1-d ACM Symposium on Oneratino'System Princinies,
October 1971.

4. Fine, G.H., C.W. Jackson and P.V. McIsaac, "Dynamic Program Behavior
Under Paging," Proceedings of the 21st National Conference on ACM,
pp. 223-228, 1966.

5. Belady, L.A., "A Study of Replacement Algorithm for a Virtual-Storage
Computer," IBM System Journal, Vol. 8, No. 2, 1966.

6. Coffman, E.G. and L.C. Varian, "Further Experimental Data on the Behavior
of Programs in a Paging Environment, "Communications of the ACM, Vol. 11,
No. 7, pp. 471-474, July 1968.

7. Joseph, M. "An Analysis of Paglng and Program Behavior," Computer
Journal, Vol, 13, No. 1, February 1970.

Gordon, W.T. and G. F. Newell, "Closed Queueing Systems with Exponential
Service," Oneratiops Research, Vol. 15, No. 2, April 1967 9 nn, 245-265.

Ficittre_la_ptions

Figure 1: Average page fault frequency m(T) as a - function of working, set
parameter T.

-

Figure 2: • erage working set size S(T) as a function Of.working set parameter T.

Figure 3. Inter-Page-Fault.-Time Distribution 	'
a) Fortran Compiler 	 •

b) DCDL
c) Meta '7 Compiler 	.

FigItce 1 : A Cyclic Queueing system formodeling.Cril and I/O operations. 	.

• AVERAGF -PAGE FAULT FREQUENCY m(7), (page faults/reference)

f'\7.)

à

•

50 	6C)

rnsec)

DCDL

FORTRA N

) 	
10 	20 	30 	40

WOF-IKING SET PARAMETER T1

40

tti

30

(f)

20
tfi
C9.

0

11.1

(.1 101-7

‘c't

I .
META 7 -\\

, 	.

\' •
	.

-

,

r...r _
e•er enele."'.

=5n-lsec °

i0msec

0 e

eff"'
— I 	,n

(0 f— 	y
0 0

o

50
/msoc Inn() PAGE pr-g-Fpc-mr7;

40

7.7

• 0 t /pp 20 24 28 eAo.

à

A 	I .1e,

r MUL ; 	 r 1
■••••••••• As .0. 07

; 1- !;1/4.'.' 6

90

I

. 	 c à

ms e.

/
e. •

e4,

7 	rn sec
•

•

'enk rtn

r =50 msec
•.•1. -

›,

P",j

9 0

7
t.

Li /
F

0

.rrfr„

1

J

—r

1000 PAGE RPTFRFNCFSirrisec

• * -

,.. 	 •

- - •

lo 	20 24 28 	e- s) 	36
r■••••• • 	 .1

. rAreg'A
1 	Z 	4-"041 L. 	I • eq (rnSe...c)

4.`

4

0 8 î f's•

1

501—f
t•

40 14.

90 e".

à • 	 I

r't •

\..; r3U msec

T.' 25 msec

o

s.

••••■

1000 PAGE REFFR7 NCES/ensec

4 	0 12 	16 	20 24 28 36 •40
• i

7 et

éLreunar

•••••••4

---J

-
•••••••••

• is

4-2,3
••••••••

nsec .

.•eeeeee-,-

r:fee

o . 	 <i-
;)

•

• ••••7• le•••• 	 ••••■ 	•••■ •••• 	 e. • r 	 ,rr• • is ri ••••••

î • ;-••• «
t L. : V S L. t 1 C iTiSeC)

Cro.,...nuarevere ,,nran..,,,,arngs were.

-

Crnalr....13,14., >1 I I .^e,sere..7

•■••••

1 1 1 I 	I ii()

o

ri
o

• o I I I 1

H

t.C)

Authors

Abstracts

1..59

160

Copyright ® 1970 by International Business Machines Corporation. AU rights reserved. Printed in U.S.A.

erflerrflereli!r:' ,'CM.MerirrIWTIVA7r:VP.Te1. 'M-MMereire.""Fe`"w

1

1

,

t e7f, trt
1.g j,i„LL Q,,e) „.z.VitrxiJ

Volume Nine l Number Two I 	o

e,t.. •

• 	 • 1/ \

\ • \ 	•
I ; \.) 	\

_

F: ,iialuation techniques for siorugo hierarchies
R. L. Manson, I. Geese!, D. R.'Slutz, and!. I,. Traiger,.

A mode l of floatim..t buffOring
L. J. Woodrum

Interactive Saturn flight program simuiator,
J. 11. JacObs and T. J. Dillon

L.

L'vaivation techrtiques fi or skorage 'hierarchies
J. Gecsei, D. R. Slutz, and I. L. Traiger

-..treqrzes,e5eem'el.reete,yr.erTige ,%1' • T'7.P.■ ?.,.P.51:tiM7e1P:rir:q1 745..efeek7.Merg;:e37.ee.r..ferM4 .?47 ni

The design of efficient storage hierarchies generally invokes the
repeated running of "teical" program -address . traces through a
simulated storage' system while carious hiera•chy design parameters

are adnisted.

This paper describes . a new and efficient method of determining, in
one pass of an address trace,'priformance measure's for a large class

. ardemand-paged, multilevel storage systems utilizing a variety of
nuipPing schemes and replacement algorithms.

The technique depends on an algorithm clasAification, called "stack
algorithms," examples of which are "least frequently-used," "least
recently Used," "optimal," and "random mlacement" algorithms.

.The techniques yield the exact access frequency to each storage
device, Which can be used to estimate the overall performance b.f. .

acinal storage hierarchies.

Increasing speed • and size demands on • computer systems haVe
resulted in corresponding demands on storage systems. Since it
has been generally recognized that the speed and capacity require-
ments of storage systems cannot be fulfilled at an acceptable cost-
performance level within any single technology, storage hierarchies
that use a variety of technologies have been investigated.

Several previous papers describe the general condepts of hierarchy
design" and evaluation," whereas others deal with specific
hierarchy . systems, such as the core-drirm combination on the
ICr Atlas 'computer" and the cache-core combination on the
IBM System/360, Model 85. 1"

This paper introduces an efficient techniqtre called "stack processing"
that can be used in the cost-performance evaluation or a large
class of storage hierarchies. The technique depends on a classifica-
tion of page replacement algorithms as "stack algorithms" for
which various properties are derived. These properties may be of
use in • the general areas of program modeling and system analysis,
as well as in the evaluation of storage hierarchies. For a better
understanding of storage hierarchies, we briefly review some basic
concepts of their design.

MATTSON, OECSEI, SLUTZ, AND TRAMER

the purpose of a s
associate the
the !cm:limier
Processing, tir;it
syst ,:ni
tion associated with

single devii:c, lR n'
to the physical addr(
system with the s: lin(
of storage devices
relatively inexpelisivi
logical address snarl
(or unequal- sue segu i
being moved bctweer

A hierarthy managet
ment of pages and
between the logical
of the hierarchy. WI
hierarchy 'manageme
lion of the correspe
page to a fast storag
these, actions arc ''tri
system (except for tü
is indistinguishable fill

The goal of the hier
number Of tintes log1
being referenced. Ao,.;,
directed to the fast,
space is distributed
system then acquire
while maintaining 011
less expensive storel
primary juStification1

• 	.1
Clearly, many facton
hierarelty'. On the pei
anél characteristies
of .the hierarchy, thc
hierarchy n:tanagem e1
references. On the e(t1

 to find . and move 1(11
as the Cos4er-bit
factors, it is quite difl

'file typical ZIpproitch

designers ha s been to f
- at „yarious levels of ti
large number of rel1

No. 2 • 1970' 	.
IDtvl SYST J

edre.■ 1110

FI:nr,ugh

■ , far flett'f"S

17171illy„

af

I'd "Slack

"le(ist .

 Igerithals.

h storage
lnance of

ems ...have
. Sit

 y require-
able

es

• hierarchy
h specific
.n on the
n't on the

rocessing"
af a large
classifica-

thins" for
may be of
n analysis,
r - a better
.orne basic

T lie purpose of a storage system is to hold information and to 	hierarchy
assoviate the information ‘vith a logical address space known to 	concepts
the tenuttittier or the computer system, For example, the Central 	.
Processing l init (um) iniy prisent a logical address to the storage
system with instructions to either retrieve or modify the illtOrton-'•

ilsocizit'ed with that 	tlie stomge system cow,ist
:.ingle device, (lien the logical address space corresponds directly

to the PhYsieal . address 4nteç• or the .deviee. AllertiativelY, a torage
system with the sanie address space can be realized- by a hierarchy
of storage, devices ranging from fast but expensive .to slower but
relatively inexpensive devices. In such storage hierarchies, the 	-
logical address space is often partitioned into , .equal-size . pages
(or unequal-size segments) that represent the blocks of information
being moved between devices in the hierarchy.

A hierarchy management facility is included to Control the 'move-
ment of pages and to effect the (generally dynamic) association
between the logical address' -space and the physical address space
of the hierarchy. When the Cmi references a logical . address. the
hierarchy management facility. first determines the physical loca-
tion of the corresponding logical page and may then move the
page to 'a fast storage device where the reference is 'effected.' Since
these actions are "transparept" to the remainder of the computer
system (except for timing), the logical operation of the hierarchy
is indistinguishable from that of a single-device system.

The goal of the' hierarelty management facility is to maximize the
number of times logical information is in the, faster devices, when
being referenced: As this goal . is ,approached, most referenees are
directed tà the fast, small stores Whereas most of tile logical address'
space is distributed over the slower, large 'stores.: The storage
system then ,acquires the approximate speed of the fast stores
while maintaining the approximate cost-per-bit of the slower and
less expensive stores. This increase'. in cost-performance is the
primary justification for storage hierarchies.

. 	t 	. 	 •
Clearly, many factors can,affect the cost-performance of a storage'
hierarchy. On the performance side, one must consider the capacity
and characteristics of each storage device, the physical structure
of the hierarchy, the way in which information is moved by the
hierarchy management facility, and the expected pattern of storage,
references. On the cost side ., the hardware and/or software requirect
to find and move logieal ,information must be considered, as well
as the cost-per-bit and capacity of each device. Because of these
factors, it is quite difficult to design an "optimal" hierarchy.

The typical approach to hierarchy evaluation employed by 'coMputer"
designers has been to simulate as many hierarchy systems as possible,
at various levels of detail»-I2 During the . first stages of design,
large number of relatively simple .simulations may be :run - with

NO. 2 • 1970 STORAGE HIERARCHY EVALUATION 	79 IRM SYsT J

'''":"."`neeneetm"e"'","reertvx-efe.!ieF7,vmMe.g'..7,,enfe,-Pw,17;7.7e,:4-77,Tert7,Îir-7ereek,erF7ertIM.M'MfeeirteieFeerrer,,,--,

— I

80 	MATTSON, CECSEI, SLUTZ, AND "(RAIDER IBM SYST J 	 NO. 2 • 1970

(..

m,

M3

I..........- —......
Lot it u imuld i

m

fixed, standard address traces. Tliese traces are assumed to be
"typical" sequences of storage references obtained from existing
computer systems, inal they are used to approximate the reference
behavior of future systems. 1.4 purpose Of these simulations is to
measure such statistics as data lloW and frequency of ilec.e .si; fo

 each device in order to estimate the overall pertOrmanee of an
Debut' system. The resulting performance estimates ean then be
used to narrow the field of possible desig,ris, which then receive
more detailed exatnination.

Alternatively, one may try to develop .analytical techniques that
avoid point-by-point simulation but - still yield ;teem ate statistics
for data flow and access frequencies. Several papers deal with such
techniques for hierarchy evaluation." In general, the approach
here is to run a relatively small number of simulations and ex-
trapolate the measured statistics to à larger class of .hierarchies.
Thé difficulty with this approach is the need for various assumptions
about the statistical properties or•address traces and data -flows
required , to forinulate the analytical equations. Moreover, it is
difficult to include a quantitative dependence on such factors as
data path structure, page replacement algorithm," and address
mapping scheme,' so that many simulations may - still be necessary.

	

objectives 	This pape• presents a technique that can be used to circumvent

	

of, the 	much of the simulation effort required, in hierarchy evaluation.

	

paper 	Specifically, we present an efficient. procedure that determines, for
a given address trace, the exact frequency of access to each level
of a hierarchy as a function of page size, replacement algorithtn,

. number of levels, and capacity at eaelt level. In the following, we
consider a ,class of muttileyel, dernanct-paging hierarchies'.. 4 with
the saine replacement algorithm at every level. The procedures
develope,d here are applicable to a large class of well-known. re-
placement algorithms having certain inclusion properties defined
later. These algorithms—which we ., call stack algorithms-include
"least frequently used," "least recently used," "optimal," and a
:"randorn" replacement algorithm. .

The sYetem modeI

	

basic 	An H-level paged storage hierarchy consists ot a collection of

	

model 	storage devices MI, M2, • • • , Afil, a network of data paths con-

	

concepts 	necting the devices, and a hierarchy management facility. Each
device is partitioned into physical blocks called page frames. For
Convenience, the highest-level store M i is called the local store
and the lowest-level store Mu is the backing store as shown in
Figure L The hierarchy management facility controls page move-
ment between the devices and associates each logical page with
a physiçal page frame. Special storage and proceSsing hardware
may be requireid, but they are flot included in Our môdel.

Referen(tet, 	thc
called the
in which
may repr(-,cru
the chann , .1. in .

.addrey: rel•('oto,, , •
wit.le each .hido
set or 2" 1)„ii, ■

logical addre,rt.es•
resent the -numb
low -order n /
the addreSS \'•i th

hierarchy is ace ,:
we can analyze st
by considering a

. where each x is
Whed we conside
and denote pages

A reference &On
local store M.
device Al.,
must bring that p
a path for bringii
staging, through
for bringing a pa
nient -hardware,
In this •paper vie
in which the onli
directones from
H I. The reat
paper: Note that
hierarehy;

The capacity of I
frames, and •all I
At any time, ea(
of the hierarchy
crarchical
it may occupy in
as:

• tinconstrainei
storage do., ic,

• . Full y con tra,
frame.

• Par flail). cons'

In ti later section,
that generates a t■

figure 1 linear st °tog°
Mauna),

)

çi te léM111 , 1+

re-nr-t,-irtrnrrte".W' 	'7-1Te-,ve

ailed to be
existini;

IC ef•rence •
to
to

iine• or an
-

hen 	.vo

iiques that
fe statisties
I evith such

approach
as and ex-
ilierarchies.
ssumptions -
data flow s.

 over, it is
factors as

ld address
necessary.

-Arettinvent
ival nation.
.mines, for
each leve l
algorithm,
owicg, we
lies(:)ith
-,roCedures
know- re-
es
s—Luitde
1," and a

lection of
)1 ills con-
lity. Each
'wiles. For
ocal store

. shown in
tge move-
Da-ge with
hardware

SYST J

n k DITS1

DISPLAtt MtN

Figure 2 Loca l address

°ITS-)

PAGE PlitF1)(

	 n BITS

R e rerenees to the storage hierarchy are presented by a single device
called the gencrator,•and they are sequentially serviced in the order
in which they are presented. References from the generah)r may
linty represent the requests of ,several devices, such as the 	a nd
the. channel, in an actual sys'tem. • The time sequence of logietil•
address references X 	. • • , x is called an address mace,
where each address consists of n bits as shown in Figure '2'. The
set of 2" possible addresses is partitioned into 2' pag,es of 2"- `
logical addresses each. The high-order k'bits of each address . rep-
resent the number of the • page containing the- address, and the
low-order n — k bits represent the location or displacement of
the address within the 'page. Since information movement on the
hierarchy is accomplished bY transferring pages betwedn levels,
we can analyze space-allocation and data movement for a trace X
by considering a corresponding page trace. X = 4, 4, • • ,
where each 	is the . number of the page containing address • x,.
When we consider a given fixed.page size, we omit thé superscript k,
and denote pages by x,,

A reference from the generator can be serviced only frem the
local store .M 1 . Thus' if the desired page resides in a lower. level
deviee M , i.e. where i > 1, thé hierarchy management facility
must bring that page up to ld for servicing. The hierarchy provides
a path for bringing pages up to A1, which may or may not require
staging through intermediate levels. Any temporary storage required
for bringing a page up . to M, is included in the hierarchy manage-
ment hardware, and is •therefore not represented in our model.
In this paper vve restrict otir attention to linear storage hierarchies
in which the only paths for moving pages down the hierarchy are
direct ones from each level M ; to level whde i = 1, 2, • • • ,
H — 1. The reasons' for this.restriction are discussed later in this
paper. Note that the four-level hierarchy in Figitre 1 is a linear
hierarchy.

The capacity orthe backing store is assumed to be at least e page
frames, and all logical pages initially reside in the backing store.
At any time, each logical page resides in exactly one page frame
of the hierarchy. A mapping function is associated with each hi-
erarchical level, and specifies for -each logical p,age the page frames
it may occupy in that level. The mapping function is further defined .
as:

ln a later section, we define a technique called "congruence mapping"
that generates a whole spectrum of mapping functions.

STORAGE HIERARCHY EVALUATION 	81

•
;t:Le.,1 	 •

9 Unconstrained if any page/an occupy any page frame of the
storage device.

• Fully constrained if each page - can occupy only a single , page
fratrie.

Q Partially constrained in all other cases. •

NO. 2 • 1970

`•77.7:V§Er•MP'Ter 	 ..',3;;Teeree..77M.fereFeler.1171,7r.>.515r. 	 ,..-•rs""eitIter eve.e7z..w•-ersn-
,

rigwo 3 iwo.levol hiptarchy

(.1 P+I !:A

1
.......

.3._.__
i 	

.
HOF I I n '.:•101“'

M I 	.

1 	 .
HACKING STOW

M.

(

Fo r simplicity in developing techniques for analyrinr, stoi;ive hi-
erarchies, we first consider tt two-level, demand-II:wed hierarchy
with unconstrained mapping. Later, our Icsults are ext ('uded 1 1)
cert ,,,, , , 1 c l asses or cmploying the throe
types of mapping, functions. The local store or butler has capacity

(', pages, and is directly connected to the hacking st o re ; , s shown
in Figure 3. At time 1, the generator presents a, request for 'it,tge..
.v,• to the hierarchy. Under denuind paging, if x,. is in the buffer,
the reference proceeds ,and no page movement. occurs, otherwise,

is brought to the buffer from the backing store. If the 'buffer
is already full, x, replaces some page y, in the buffer. The selectiçm
of the particular page y, is performed by the buffer replacement
algorithm. This operation .is a key element of storage management.

• In the two-level hierarchy shown in Figure 3, a reference to a page
residing either at level ltf, or at 1112 is called an access to that level.

For a given hierarchy and page trace, we definc the access frequencies
/•', and F, where F,,is the relative number of accesses to .level
during the processing of the trace. Thus, if /V, accesses are Made
to level 1141 , and N2 = L 	N, accesses are made to level .M2 , we
obtain F, = NIL, and F2 = N2/L. •

. Some important measures of storage hierarchy performance can
be obtained from these access frequencies. For example, one can

, combine access frequencies with a set of effective access times
to obtain an effective (or average) hierarchy access time

T 	T1 + 172 T2

In general, access thnes depend on the acéess paths, device access
times, and characteristics of the • hierarchy management facility.
The access frequencies depend only on the page trace, capacity

• of the buffer, and replacement algorithm.

For a two-level hierarchy, accesses to the buffer are called successes;
the relative, frequency of successes as a function-of capacity is
given by the success Auction F(C). For a given capacity C, page

• trace X = x l , x2, ; • • x r., replacement .algorithm, and arbitrary
time t (where 1 < t < L), the set of pages in the buffer just after
the completed reference to x, is denoted by B,(C). The initial buffer
contents is represented by Bo(C). By convention 	,

130(C) r çfj

for all C where 95 is the empty set: The set of ctistinct pages referenced
in x„ x2, • • • , x, is denôted by 118 , and the number of pages in 11,
is denoted by

Corle;yy .4d)

Irai
•

82 	MATI"SON, OECSEI, SLUT-4 AND TRAIDER 	 IflMSYST J

Demand 1).;!!.in,
the followillp.
union ot di

1. 11 Nt 	1

2. If 	x,

11,(h 	B, •

3. If 	x,

B(C)

whe re .1 1 1 (7: n,
Under clemand
by 1 and 2, w
sequently, refer,

Least rec.:0;111

We now eonsid
recently used"
can be °Maine(

- trace. - Briefly,
of a list of pag
on titis stack fk
distances are ti:

01 the Ltui sta
'AU repiaccipe
on the'related c

Under LIM, th,
not been refuel
used page). (MI
trace is to simu
capacity. Such I.
time 1, and co
is found in the
simulation proc
C 1, 2, 3, 4.
successes are .rrt

A greatly sirup
under WU reri

of that replace
capacity C. the

 it fills up with
At tinte r, the
thrOtigh time r
(t > r), ibis pai

no. 2 •• 1970 	.

'''",r-n•--0:-..,reregw=77,,ksen17-;?7•4-i.u,wr.e.ea74-17...:.•ve.w.liremmem:5:"..9'.w•Fe.-FaeeeritrMirn 7.;.-iS,tr,,,ferM.M,M#M,-75Ye;

.quencies
wel

le made
Al2 , we

lice can
(Inc can
ss "times

-

e. access
fa c

c a

ircesses;
iacity is
C, page
irbitrary
ust after
al buffer

	

'rage hi- 	i 	Demand paging in .the ,wo -level hierarehY is formally defined by

	

. 	.

	

,i crare h y 	! 	the following requirements, wherein the operator "+" denotes the

	

' lido' to 	: 	union of diioint sets: 	 , . 	 ,

l .) I. lf x, (•:::' P, .,(C) • 	then 	11,(C) ::., 13,,(C) 	„. • 	.

2, li 	A-, (.3 , -. fi,. ,(C) 	and • • ID,. ,(C)I < C 	then

llt(C) "' II, --1(C) - I - l xt i

1 	3. If 	x, (1::• 8,_,(C) 	and 	Illi-A(C)i = C 	then

	

;'e buffer 	■

	

.election 	! 	131(C)'.-- 13,-,(C) -- 1) 181 -f - I•vil 	 .

	

livinent 	• 	 ,

« igement.. 	; 	where y, E.1.3,_,(C) is determined by the replacement algorithm.
Under demand paging, a buffer of çapacity C.simply fills as required

	

.1 a page 	i 	by I and 2, while the first C distinct pages are referenced. Sub-

	

tat level. 	I 	sequently, referenced pages are swapped in, as required by I and 3.

Least recently used replacement

We now 'consider a particular replacement algorithm called "least
recently used ' (LIU)), and • show that the entire success function
cati be obtained by stack processing in a single pass of the address
trace. Briefly, the single-pass technique requires the maintaining
of a list of' pages, called an Liu). stack, and measuring a distance
on titis Stack for every page reference. Frequencies of these stack
distances are used to calculate the success function. The existence
of the HU) stack follows from an inclusion property satisfied by
[RU replacement, whereas the use of distance frequencies hinges
on the related concept of critical capacity. .

Under LRLI, the page selected for replacement . is the one that has 	success
not been referenced for the longest time (i.e., the least Tecently 	function
used page). One .way to obtain the success function for a. given
trace is to simulate the two-level hierarchy system for each buffer
capacity. Such a simulation determines the buffer contents at every
time t, and counts the number of tittles the current reference
is found in the buffer. In Figure 4, we show an éxaMple of this
,simulation procedure for .a given page trace and, buffer capacities
C = I, .2, 3, 4. Pages arc denoted by lower-case letters, and page
successes are marked by asterisks.

. 	• 	, 	A greatly simplified method for Obtaining the success : function
* under LIW replacement can be derived from certain properties

of that replacement algorithm., For any page trace and buffer
ferenced 	capacity C. the buffer is initially eniptY, and in stty T tinie units,
,es in 11, f it fills up with. the first C distinct pages referenced by the trace.

At time r, the buffer contains the C pages most recently referenced
through time r. When a neW page is referenced at a later tinte
(i > r), this page replaces the least recently used page in the buffer.

■ Lf SYST J No. 2 • 1970 STORAGE HIERARCHY EVALUATION 	83

?,”,?‘ 	 47;r ete,„W,VM.Mer, Mrerzil,:elL,TqW 	 rini517. 777.•"T" n")

_

TIM(

Peg-, f 1RACI

•
5imin reer3 •

• 4 	 7 • 2 	3 	 5 	6 	 8 	9 	10

h 	h 	c 	h 	a 	d 	c 	e 	a a . . 	 . ,
.1,- 	 •

The iiic1tii . tt p • opc

1

and

C io

11.■••••■■

[cl

a

A

Lis

LJ EJ j

771
-

a ri - a

d
Le-

re'
•

a

b

d

Thus at time 1, the btiffer still contains the C most recently referenced
pages. It is easy to se& that under LRU the buffer contains the C
most recently referenced pages for all subsequent times, and th'at
this . Property holds for all page' traces and buffer capacities'.- One
can generate the buffer epntents . „B,(C) . for any time t on a trace
and, any capacity by sçanning_ . backward fro' m. point t and collecting .
the first Ç distinct pages encountered., •• .

Since the set of C most recently referenced pages is always contained
in the set of C ± 1 'floe reçently referenced pages,- the buffer•
contents Be) at any time must be a.subset of 13,(C + 1). In fact,
B,(C) is a proper subset of 15',(C + I) if ai least C + 1 distinct
pages have been referenced through time 1. More formally, Under
LRU replacement, the buffer contents for any page trace X =
xi , x„ • •.• , x i, and any time t (where 1 < 1 < L) satisfy the fol-
loWing inclusion property:

B,(1) C B,(2) C • • • C Bt('Yâ) 	B/(71 	I) = • • •

where •

1B1 (C)1 	C • for 1 < C < y, •

(1)

84 	MATTSON, GECSEI, SLUTZ, AND TRAIGEE ntiu SYST

Figure 4 Determining success function by buffer simulation

r.-

I) '(20

C'2

 F(2).0 30

(: .3

F(3).0.50

C=4

F(4). 0.60

11,(1)

8,(2) = 	b}

13,(3)

a 1 Lind

B,(4) — hi, it, cl

Because of the inclu l
and for all capacitiei

. . 811(1 useful way. We' ,1
•,(2). • • • st (y,), wher

s,(i) 	B,(i

d 	 Hence

11,(C)• •{{MI) , s,(2;

The list S, is re.ferre
entry and sb,) as 1W

for t = S in Figure Li,

[14 c, a]
•

The stack Si, at time
null stack, that is, â
LRU stacks correspi i

Besides repres'ent i ng
stack can be used
«C • Let us suppos

referenced and thus
I C < 1.ct

xi

•We call C, the cridc
given in Equation 1,

not 11, ,e11 previously
contained in a buffer

From the definitioit
that C1 is sirUply the

No, 2 • 1970

Pi • 11H11 El El [1]

g■•■■■■•■ry

ti

a

a •

'Ye

STORAGE HIERARGUY EVALUATION 	85 NO. 2. • 1970

ly 'rrInceci
ntaii 	e C
es, P- that

One
t on a trace
ad collecting

ys contained
;, the buffer

1). In fact,
1 distinct

nally, under
trace X

isfy the fol-

(1)

•

IBM SYST J

•

111 Li
a

{ d 	d I —

and

-y, 	for C > -y,

The inclusion property can be observed in Figure 4 where at time
t 	5, for example

le,(1) 	Ibl

I3,(2) 	• l e, 1)1

b ,

and

B,(4) — 1a, b, cl

Because of the inclusion property, the buffer contents at any time
and for all capacities can be represented in the following compact.
and useful way.. We order the set of pages P, into a list S,. s,(I),

• • • sky,), where

st (i) 	13,(i) 	B,(1 	1) 	for i= 1, 2, • • • , 	 (2)

I Ience

B,(C)

• 1

{ {:s•rl 	st(2), • stC)}

{MO, 4(2), 	sifi't)}

for C < y s

for C >
(3)

The list S, is referred to as the LRU stack, with s,(1) as the top
entry and s,(y,) as the bottom entry. As an example, the LR.0 stack
for t 5 in Figure 4 is ■„

•
S,„ 	[b, c, a]

The stack S, at time t = 0 has no entries and is therefore called a
null stack, that is, one . with no entries. The entire sequence of
LRU stacks corresPOriding to Figure 4 is included in Figure, 5.

Besides representing the biffer contents for all capacities:the LRO

stack can be, used to efficiently determine the success function
E(C). Let us suppose that at lime t, page x, has been previously .

 ieferenced and thus is a Member of at least one set B,_ 1 (C), where,
1 < C < y,_,. Let C, denote the least buffer capacity- such that

•

We call C, the critical capacity since, from the inclusion property
given in Equation 1, x, e 13,_,(C) if and only if C > C,. If x, has
not been previously referenced, We set C, = co because x, is not
contained in à buffer of any finite capacity.

From the definition of LRU stacks in Equation 2, it may bo seen
that C, iS simply the position of page.x, in the stack S,_ 1 , so that

—,....,"
.. 	

. 	
. 	

.

,
".. 	

. 	
.

. 	 . 	 .
, 	

. 	
.

-,,,,,,,-,•,,,c.,r.--fr-7,,,,,,,,,,,,,-t---,-...-..-,.m.1,-,.A.,..,-.,..,,,, -,:,i-,,,?3-imarr..---',uf erà .,,.1',171.er:*7.;.M.'775..P.P2.747.7ie,".M.M...rett-,'"x", - F.>""W,'41:-',..".'n'eM-5.-e""e"›""neee"----ew "'"'" 1 	
'

Figure 6 Obtaining success

function from

distance frequeniies

ANCE ff;EQUENCY A

2 1— 91 	9
I 	I IS'i?

0 1 	
• 1 2 3 4 	co

SlIGCESS fUNCT ION

Î
0130

G eco —
..•

0.40

F(3)r. 0.50

LI 	I
O 2 	4 	• 6 	8 	10

0.20

0

RU ST ACK

oa 	to 	 3 	 4 	3

•PISTANCE
MINI(us 11(à.)

O o 	I 	i 	I 	, 	I 	I 	I

6 	o 	o 	o 	I 	I 	I 	.1 	I

o 0 	0 	0 	0 	1 	1 	1 	2

O 0 	0 	0 	0 	0 	0 	1 	1

1 	2 	 4 	4 2 	3 	3 	3 	 4

STACK
DISTANCE

h

2

3

4

4Yr

0
0
0
0
o

(4)

(5)

Figure 5 Seryucnce of LK; stacks

..________________________ ____ .._
NMI I 	2 	3 	4 	0 	6 	7 	e 	,i 	10

_.,______............
PAGE I VAC(A 	 h 	b 	 b 	 d c 	 4 a 	A

x, 	s,,(C,)

We call this page position 'the stack distance à„ since A, is essentially
the ",clistance" from the top of the stack to

. 	•
x, = s,_,(A,) 	 t,

(Note that here A, ---- C,. When conStrained mapping functions are
conSidered, the stack distance may not always equal the critical
capacity.) If *X i has not been previotisly referenced; then is set
to infinity. The sequence of stack. distances for otir example is
included in Figure 5.

The significance of stack distances is that they lead directly to th2
Success function. To see this, let n(A) be the number of times the
stack . distance is obserVed in processing a trace. Since thc stack
distance equalS the critical capacity, the number of times that the
referenced page is fOund in the buffer is

N(C) = E n(à)
A-1

and the sticcess function is given by the expression

F(C) = N(C)/ L

In practice, the set In(A)1 can be determined from a set of distance
counters, as shown in Figure 5. All cOunter's arc set initially to
zero, and the counter for each distance A is incremented whenever

	

111.0 	.1 j..,(1

	

.1. 	1

).

\\ee iio‘v

colnitur
is shown

. summing{
Figure 61
Figure 6r

To find 1.,
tak
/71

 0.50, anct
0.507;.

Note thal
 of C for

surnmatin
(L
in the ba

' 'fo avoid
an iteratii
every timi
to their ti
is s,(I)
is s,(2), ai

Let us stI,
appears a'
!mist be tl
page.
I < j <
page. a.ndi
is added t IL
on stack

at time
chanoecd

The net c
is moved
clown-shifu
position.
on the top
shown in

86 	MATTSON, °EMI, SLUTZ, AND TRAMER 	 SYST J No. 2 	197'

•

(I

Figure 7 Constructing LRU

stacks

•

A PAU 1c, IN Si.,

• St-1

I 	

tI 	PAGF. N t NOT IN SI.

SI-1

STORAGE tilERAncine'EvALvATIoN NO. 2 • 1970

0

0
0

ntially

critic" 1
 is

nple

• to the
nes the

'stack
bat the

(4)

(5)

distance
tially to
vhenever

m'y

te)

that distirnce occurs. For k -bit page numbers, we need at most
1 counters, corresponding to I A 2 and à co. At

the conclusion of a page trace, the final values of the distanee
(soumets are the values In(A)1, and F(C) is obtained from u qua ti ous

 4 und 5,

	

\Vc now calculate the value of the stiecess fonction in a ittouvriclil 	nutnerice1

•For A's of l, 2, 3, 4, and W, the cuti csponding final 	exinintIo'
'couiner values in Figure. 5 'are 2, L. 2, I, and 4. This distribution
is show!' in Figure 6A. Dividing by 1.. equals 10 in Figure 5, and
somming cumulatively, .we obtain the success fonction shown in
Figure 613. One can ■,,erify that the F(C) values for, the curve in
Figure 613 agree v, , ith those obtaincd in the simulations of: Fi g ure 4.

To find the access frequencies 	and 172 , for a eiven buffet: capacity
C, we takeL = F(CI) and F2 = t — Fi. As an example,:for C -.---- 3
pages, F, 	F(3) --= 0.50 as indicated, in Figure 611; 	— .0,50

0..50, and the average .access thne T of the hierarchy is 0.50T5 +
.0.507;,

Note that F(C).is always a monotonie, non-decreasing function
of C for 1.,Rti replacement, silice F(C) is obtained by cumulative
summation as shown ln Tquation 4. Also, F(C) 'lever exceeds

7 1.)//, for any capacity, because all pages initially reside
in the backing store. 	.1

To avoid constructing epell 1,1ZU staék separately, we now give
an iterative construction of S,'rrorrt S,_, and x,. Observe that at
every time 1, the stack S, is simply the list, of pages in r„ according
to their most recent reference. The Most recently refereneed page
is s,(I) since s,(I) 77. x,. The second.most rec'èntly réferenced page
is s,(2), and s,('y,) is the least recently refèrenced page in 11,.-

Let us suppose that page x, has been previously referenced and
appears at position A on stack S, 5 . For tinte t, we knOw that' x,
must be the top entry in S„ because it is the most recently:refereneed
page. Consider nom) a'.page b; at seine position j on S, where
I < j < A. At time t 1, page' b is the jth most recently referenced
page, and the intervening pages do not include x,. At time,t, page x,
is added to this set so that page b must now be, at position j 1
on stack S,. If j is greater than A, page b must remain at position
j at time t, since the set of more recently referenced pages is un-
changed from tinte t — I.

The net effect of this page motion is shown in Figure 7A. Page x,
is moved to the top of the stack, pages previOusly above x, -are
clown-shifted one position, .and all other pages retain the same
position.. If x, were not previously referenced, x, would be placed
on the top and all other pages would be clown-shifted one position as
shown in Figure 713.

(2.7)

1

This iterative procedure ciin he used to generate the ,, equence of
sta • ks in 11tirc 5. In an actual evaluation, il is not ne... c ry ti

;.tOre the entire sequence of staek ,,. Rather, only Ow current•
must he maintained is the trace is scanned, When a pr.(' reference
occurs, that page is put on the top of the sta(71,..; ;Ind enirics i n 1 h !

stack are down -shined one - by -one •starting; from thc top. If
X, is encountered, its distance à, is recordcil, and x, is t••as•d becausn

it luis already been' placed on top, The : position v:icated by x i is
tilled by the page downshifted from position A i -- 	x, is no t .
encountered, then the dOwnshifting proceedS to the bot tom of the

 shin, and distance L,- co is recorded.

Stack algorithms

We now examine the general class of' replacemeni algorithms that
satisfy the inclusion property. Such algorithms are called "stack
algorithms." It is shown that stacks cari be iteratively maintained
for any stack algorithm, and that stack distance frequencies for a
giyen trace - can be used to obtain the corresponding success function.
The mai n . problems considered arc (I) to efficiently generate stacks
I S,I for an arbitrary stack algorithm, and (2) to identify those
algorithms that are stack algorithms.: Several examples of stack
algorithms• are d.escribed, 'along with one replacement algorithm
that is not a stack algoritlint.

• 	A replacement algoritInn is called a s'tack algorithm if the buffer
contents..in a demand-paged, two-level hierarchy . satisfy the in-
clusion property given in Equation l; for every page trace and every
point in time. As shown for tiltu replacement, a stack can be defined
according to Equatien 1 in such a way that the buffer contents for
all capacities are given by Equation 3. Furthermore, since the stack

• . distance A i • iS a critical capacity, the success ,function.for any page
trace can be obtained by summing the stack distance frequencies
•1n(à)I according to Equation 4. This summation implies that the
sticcess function is a monotonie and nondecreasing function of
the capacity C for every stack algeritlim. 	•

,

' stack 	Let 'us noW consider a replacement algerithin R as a collection of
generation 	mappings

: B,(C) 	y(C) 	where j(C) E .

is the page . replaced by x, in a buffer.« Capacity C. From the con-
, . 	straints of demand paging, We knew thatit is applied only when the .

following conditions are true: x i (II- B, _ 1 (C) and IB,..,(C)I = C. If the
 inclusion property is satisfied up to .and inchiding timc I - I, the,n

R must Satisfy certain restrictions at time t .to. maintain the inclusion
property. - -Specifically, if a replacement is required . for some caPacity
C 1 ,(and therefore for C), -then y,(C -F. 1) must be either y,(C)
or 	+ 1). To prove this, let us assume the following:

88 	MATTSON, OECSEI, SLUTZ, AND TRAIGER

i (e-)

.1-

and

xi 0. L't

Nutt., that
R,.,(C
st ,(.(' + 1
Howm, r,
would vioI

We have
, . sanie eon

y,(C)or s,.
we concivu
and only if

Ye + 1) •

for 	.•

I 	C < '

1 mpor ta n t
,t•at induzze
Use this orc
be represen

where p,(i)
algorit h in t
the lowest

A convenic
A is'an arlai
in A havinn.
and x,
y,(C. 	I)

•r,(C) = mi

: and

+

NO. 2 • 1976, 1DM SYST J

STORAGE HIERARCiIY EVALUATION 	89. NO. 2 .• 1970

1
.,,,,,,,,..er,res-eyezereriee)t-meitez=reeemire47

ti e (' Of

Ç to

■ • 	 5

.y A

not•
of the

nts that
‘stack

nttained
-5 for a
ilflCtOfl.
.e stacks
fy those
of stack
lgorithm

:c buffer
the in-

n
dSd

tents' for
he

Any 	.
.quencies
that the

iction lof

ection of

the con- ,
when the

C . If the
— 1, then •
inclusion
capacity

.iter y 1 (C)

131.1 SYST J

`..bLee

'

Di -1(C) C 	+ 1)

t(c)I 	c 	•

,(c: + 1)1 	C 	1

and

x, 	111-1(C 1 - I)

,Note that from Equation 2, page s1 1 (C 	1) is (à-intained in'
131 .,(C + 1) but not in .11, 1 (C). - If page y,(C 	.1) is• neitlicr

-F I) nor y,(C), then Y,(C 1- 1) is some other page 'z E
flov,,ever, page z is included in 131 (C), but not in 111 (C 	I), which
would violate the inchision propertY.

We have given a necessary condition for stack alg,orithins. The
saute condition is also sufficient, because if .p,(C -1- I) is eithcr
y 1 (C) or + 1); then B,(C) is a subset of 13,(C + I). l'herefore;
we conclude that a replacement algorithm is a stack algorithm if
and only if for every tinte t

y,(C . 1) 	 I) 	or 	y,(C 	I) = y,(c) 1 	(6)

for

1 < C < 	and 	C 1 <.

Important replacement algorithms that satisfy Equation 6 are those 	stack
that induce a total ordering on all previously referenced pages and 	algur1thrn

use titis ordering tô make replacement decisions: The ordering can 	identification

be represented in the form - of a priority list 	 .

= 1)1(1), 	 . . 	. 	 •
•

where p,(i) has a higher priority than AU + 1) for 1 < i < 7. The
algorithm then selects for replacement the Page- in B1 (C) that has 	• • • ,
the lowest priority. , • 	•

A convenient notation for working with priorities is min(A), where
A is an arbitrary set of pages in 11,:_„ and min(A) is the unique page
in A having lovvest priority on the list P,. If 131 _,(C) C B,_,(C -I- 1)
and x, EE /31 _ 1 (C 1), We can express the replaced pages y1 (C) and
y,(C + 1) as follow:

Yi(C) = min [BI-1(C)] 	 (7)

.and
•

y,(C + I) = rniu [13,_,(C + 1)] 	 (8)

min [Bi-i(C), 	+ 1)) 	 (9)

= min 1min [Bi-i(C)], si-1(C + 1)1 	 (10)

- = min LYt(C), 	+ 1)] 	 (II)

Each sob:
s,. 1 (i) and
on stack
determine
If .v, is not
and we usi

. does not I
Only a -- sel

.y,(i — I) i:

Compa rim,
shown in .

 s1L.1(C).• In
since both
reference. "

MC) = s,

and Equati

, s,(i)

= si -

For an arbi
. than for LI

very d iffere

Let us . flow
 any replact

usage qudn
Priority lis

ilo. 2 . . 197

Equations 7-9 are based on the definition of the replacement,
Igrithni, ‘vhereas Equation 10 is based on the properties Of

I ipt ■ re 	;

We •onclude f•om Equation I 1 that - anY replacement algolitlini
that induces a p • iOritY HSI 	1 .01 . Cvety time t 	Equation t)
and is therefore a stack algorithm. For example, the priotity list

for Lit tJ is just the ordering of pages in 	by moat recent referenee.
'the - priority list for "lest frequently used" (11 , 1)) replacement 	the
ordering of referenCed pages by iliost frequent reference .together
with a - scheme to.break ties. 	 •

	

stack 	Before describing other examples of-stack alp,orithrus, kt us develop

	

updating 	a stack- updating procedure for algorithms inducing a' priority list.
For any page trace X 	x2, • • • , x), and any time t, where
1 < t 	L, suppcise that stack S1 _, is available. Also, for any two
pages tt, b E r,_„ let Max (a, b) dencite the page having higher
priOrity. lf Xi has been previously referenced and appears at position
A, oh l .stack . S,...„ the stack at time t is given by

si(1) = xi 	 (12).

s,(i) = max ry,(i — i), 	for.2 	< A, 	• 	(13)

• si (&) 	.Vi(Ai — 1) 	 (14)

•
st (i) 	 for A, < j < iy,_, 	 (15)

Equations' 12, 14, and 15 are basecl on the constraints of demand

	

. 	paging, whereas Equation 13 is derived from Equation It

lf x, has not.been previous/y referenced, •the defining equations for
stack S, are the following:

s,(1) = 	 (16)

st (i) = max [31,(i — 1), s,-,(01 	for 2 < i < y 	 (17)

sbi) = 	 • 	(18)

In this case, Equations 16 and 17 express the fact that replacements
are required for all buffer capacities in the range 1 < C
Equatien 18 corresponds to the new page x, being added to the
stack, with the result.that a buffer of capacity

-1 + I

is noW filth

Figure 8 illustrates the stack updating procedure • as given in Equa-
tions 12-18. The top entry s 1 (1) is alviays x i , and the first page
replaced is

y,(1) = s4 „(1) 	for A, > 1

90 	MATISON, GECSEI, SLUTZ, MW TRAIOER ISM SYST J

SI.'

........_ 	_

1"

S t ,: t (4)

'

t ('‘t -I)

_
,(A t 4 I)

(;')

Yt (3)

St
.-------

s t (1)

y11)

_

s1 (,.,, -I)

s
mt\-1) 	"

spi +t)

13 PAGL NOT IN SlACK S1 _

.J m .""•••■-4,..r st(1) 't • 1 (1)

	

1 (2) 	 st (11)

	

3,.. 1 (3) 	 ,■ ,4 1)

Yt(3)

1 (4)

	

8,_ 1 (5) 	 v 	

MY, -711
si(yo

•

Ys (Y-1-70.

STORAGE HIERARCHY EVALUATION 	91 No. 2 	1970

I

CI

1

:?)

3)

16)
 \--

17)

18)

•nts.
-1.

î he

tua -
(ale

J

Figure 0 Stack updating

A PAGE Kt IN STACK St _ I

L

Each subsequent entry s,(i) is then determined iteratiVely from
s,_,(i) and J,,(i — 1) according to Equation : 13 or 17: If x, is found .
on stack S,_, as sh.own . in .Figure 8A, we use Equation 14 to
determine s,(A,). All lOwer entries are unchanged from time 1.
If x, is not found on stack S,_„ as.shown in Figure 8B, then
and we use Equation 18. In either case, the replacement algorithm:
does not havc. to be applied to all the pages for stack updating.
Only a sequence of pairwise decisions between pages st _,(1) .. and

— 1) is ,required.

Comparing our stack Updating procedure with ehe one for LAW
shown in Figure 7, we see that page y 1 (C) under LRU is always
s,,,(C). In fact, the priority list 'P, is exactly equal to stack
since both lists give the order of pages in 1.' 1 _ 1 by most rceent
reference. Thas 	 •

y,(C) =

and Equations 13 and 17 'then reduce to

si(i) 	max[si-M — 1),

st-IU —

For an arbitrary stack algoritlint, the - stack updating:is more complex
than for LRU, and the order of stack elements at time. t — 1 may be
very different from that at timeit.

Let us now examine several examples of stack algorithms. In general 	example;
any replacement algorithm that bases its decisions on sorne page 	of stack
usage quantity, whether i'neasured or predicted, naturally induces a 	algorithms
priority list and is, therefore, a stack algorithm. One example, of

(re.,:,F(r,eir,1ia-7,r11-em.'?"1".rezrzYmt
, •

cou • se,' is HUI, and another example previously mentioned is

ledst frequently used (I .H.1) replacemen (,

t.)ndor utt, the pagc replaced from a buffer tt time t is that page

that lias been referenced the fewc.a number of limes ovor the interval

I 	r 	1, , or peil.ums over some "backward window" interval

I .-- h < < 1,‘vhere 0 h two or more piu. c!, are tied for

least frequency of use, t heu some arbitrary rule is ti ,..ed to break

the tie. As long as the rule is • consistent for all pages and all

capacities (e.g., if the tied pages are numerically or (ered) a priority

list P, is induced, and La) is a stack algorithm.

Othe • examples of stack algorithms may arise in analytical studies

of .program behavior. If an address trace is generated from some

random ''process, it may be desirable to study the behavior .of

replacement algorithms that base their decisions On .the param-

eters .of the random process. One such - process is a time-invari-

ant, first-order . Markov cIaiIl,I5tG where any page c is referenced

immediately after page b with . a fi xed transition probability

The process is completely desCribed by the.'matrix II =

(where b and c range over all.referenced pages) and by the page

referenced at time t = I.

One possible replacement algorithm is to remove the page least

likely to be referenced next. We .call this strategy "least .transition

probability" (LTP) since, for page x, equal to page b, the page c
chosen for removal is the one that ininimizes.ir,„. over those pages

in the buffer. Supplying , an appropriate , rule for breaking ties,' we

sec that induces a priority'list and is.:a stack algorithm.

Another rePlacement- algorithm is to remove the page with the .

largest expected time until next . reference. - We call this strategy

LN1Z for "longest next reference." The expected time s . until..next

reference can be.' obtained from the II-matrix by 'standard tech-

niques." As with LIT, LNIZ induces a priority liSt if we. supply an

appropriate tie-breaking rule. - •

Fo analyze an actual program trace under LT1) ôr LNI1 (perhaps for

testing a Markov model of the program), page reference statistics

may be ttsed to estimate the matrix II. For example, the observed

transition frequencies over some interval / h to lean be used to

generate a time-varying estimator matrix n i . A priority list P, can

then be constructed for each tinte 1, according to the probabilities
in (.1,, with the result that the overall strategy for replacement

remains a stack algorithm.

Other stack algorithms may base their decisions on information
from the programmer or compiler, or on , properties of the computer

system. For example, the programmer or compiler may supply to
the system" special "program directWes" that indicatewhich pages •

92 	1.1ATTSON, GECSEI, SLUTZ, AND TRAIGER

sbenlIt!

t-e

Ca ■

In (11, 	es.1

variety of

"iirst-in fit

Fir, o, the
(contiwoou

A peculiari

X 	c
•

/V; ShOWn i

M onot oi) i c ,

algOrithms

is flot a stl

every time i

priorities b ■

.. C. 'Thus in
priority or 1•

longest. Ile
brought lut

 à.
Whenever
the buffer,
every eaprq

the frequen

Attother ea
buffer.

As , long
as one CIII1

then stack-
function.

An optima.

We now cli
value for tIl

an algorith

Belady'' (11

MIN, and

page trace. g

- W'e describe

NO. 2 • 19'10 • IBM MST J

!l.

iy

ne
- of

,

 ge

,'st
on

es
we

the u,
c-gY
ext
ch-
an

for•
tics
ved
I to
can
. Lies
ient

tion
uter
y to
.ges

ST J

Figure 9 Success function for

FI F0 roplocentnnf

C

should be given high priorities in the immediate future . Another
ease is where the operating system assigns priorities to program,

pages in a multiprogrammed system, based perhaps on the position

or tue program in a ..task queue. If all the pages in the address.sbace
can he mitered in a priority list /), for each time I, the resulting
replacement algorithm is a stack algorithm.

In the examples given, we see that priority, lists can arise in a 	tirstAny

variety of ways. We now consider a replacement algoriihm called 	first-out

"first-initirst-ont" (I11 ,0) that is not • a stack algorithm. Under

FIFO, the page that has remained in the buffer for the longest

(continuous) time up tn tiine t is removed.

A peculiarity of FIFO is illustrated by the f011owing page trace

X — abcdabeabcde 	 •

As shown in Reference 18', the success function for this trace is not

monotonic, and takes the form Shown in Figure 9. Since stack

algorithms have monotonie success functions, we conclude that rtro
is not a stack algorithm and does not induc'e a priOrity list . P, at

every time t. In amplifying this conclusion, we note that the relative
priorities between 'pages in 11 ,_, may depend on the buffer capacity.

C. Thus in the example, one can verify that page d bas lowest

priority of all pages in B (3) in the sense that d has been in the buffer
longest. I lowever, page d has highest priority in B„(4), since it was
brought into the-buffer latest.

Whenever the priorities among pages depend on the capacity of
the buffer, we cannot define a 'single priority list that applies to
every capacity. One instance Of this:is when prieties depend on
the frequency of reference to pages after their entering the buffer.
Another case is when priorities depend on total time spent in the.
buffer.

As long as priorities are independent .of capacity, and as long
as one can order the referenced pages to reflect tbese Priorities,

. then stack-processing techniques can be used to find the success
function.

An optimum replacement algorithm

We now disciiss a replacement algorithm that yields the it -14mm
value for the success frequency over the space of all replacement
algorithms—for every page trace and every buffer capacity. Such
an algorithm is said to be an optitrnim replacement algorithm. •
Belady" describes an optimum replacement algorithm called
MIN, and shows how to evaluate the success frequency for a-given
page trace and a given buffer eapiacity. In the following discussion,
we describe a stack algorithm called OPT and prove that it is : also

NO. 2 • 1970 	 !STORAGE HIERARCHY EVALUATION 	93

PAU TRACE

Mini 11
Q161117/16

10It C••3

I 2 3 4 5 6 7 0 17 10

'
abc ednad cd

aaaa a a aa

bbbbbbb cc

ccddcIddd

• 6 0 •

OPT

Figure 10 Examplt , of ()FT

replacement

c

rc 	• 	(,

ins! to I
prim ity

distan,::c

amount or r

Fortutiatcly,

priority lists,
tv,(a) to a pa
i n x,, t , • ••,
t), r

as infinity.
pageS in F',.
illustrati ve. e

hgure 12.

the for‘var

the ne ■v fors
from thc si
a pe X , nd

w,(a)
lw,

To determin

trace X, coi
 Suppose tha

that .r, and
reverse trace
At time j, t

referenced it
However, th
d ista nee Iv,
distances for
of the segue
trace X.

These results
for detcrmin

technique is
scan of the
left-poi nti ng

order, on a
using yp -r r

Forward dist

the . .OPT pric

The.LRU stuc
 .important mi

1

an optimum replacement algorith i . thing certain properties of titU

and oPT, the entire success function for ()Pr con Ire determined in

two Imsses of a page trace.

The replacement algorithm ()PI has• the', following characteristics.'

Whenever a page Must be pushed from the buffer, the chosen page.

is the one whose next refetence is farthest in the future. If a tie

results because tWo - or more buffer pages are never referenced again ;
 the tic is broken by an arbitrary rule SZ that pushes the imite with

 the latest alphabetical or numerical order. An example of otrr

replacement is shown in Figure 10, for the buffer capacity C — 3.
As . an illustration, notice that at time I . 5 page c is pushed Lfrom

the buffer, since the other buffer pages a and b arc referenced sooner.

At time t = 9, page b is pushed from the buffer, because page (I is

referenced again (at time t = 10), and page a lias priority over

page b by our rule's/.

A forma proof that OPT is an optimak replacement algorithm is
given in the Appendix. We note Ire that OPT is not realizable in
an actual computer syStent because it, requires . knowledge of future
page references.,' However, OPT does'serve as a useful benchmark
for itny replacement algorithm, including stack-type algorithms.
To show that OPT is a stack algorithm,. observe that a priority. list

Pi can be constructed for OPT at each time t. Specifically, P, is the

list .of the 'pages referenced again, ordered by their time of next
referenee, followed by the list of the pages not referenced again, as
ordered by the tie-breaking rule•St.. •

	

static 	The stack processing technique for on is illustrated in Figure 11.

	

processing 	Priority lists are ordered às described above, and curly. brackets

	

example 	denote the pages ordered under the rule R. For example, at time

I = 8 the priority list is PB = c, d, a, h, becaUse c is the next page
•

Figure 11 Stack processing and success function for OPT replacement

TIME 	12315670910

• PACE TRACE 	a" 	b 	c 	a 	dlea , d 	c

so 	a 	bba , dc 	d 	a

MOWv 	bba 	ad 	cda 	b

LIST 	
c 	ç 	d

6

c{o{a 	13 	c

c 	1)6 	cd

a 	be 	a 	dba 	dc 	d

• a 	a 	can 	badc
OPT STACK

bb 	lad 	d, /ba 	a

• ce 	eclab

STACK
DISTANCE 	03 	CO 	co2 	co32 	3 	4 	2

MATISON, GECSEI, surrz, AND IIIAIGER IBM SYST J
No.2 • 1910

. ,e 'Veeer'"7"

vr:Y• •

I Pt)

in

; •

01 , r

3.
from

\ over

:dim is
'able in

future
‘,.hinark •
)rithms.
•rity list

is the
of next

,gam, as

2,trre 11.

bras?!-f.ists

cxt

referenced (at i 	9) . and d is the second page referenced (at t —. 10).

Pages a and b are not referenced ag,ain,.and thus are ordered aceord-

ing to I tile i. The sequence of ovr stacks is constructed w,ing, the 	.

prim It lists, and die success function ls obtained from the:. stack' 	,

distance frequencies. A major difficulty with the technique is the

amount or rorwurd scanhint., required to construct the PrioritY:

Fortunately, a more efficient procedure exists for obtaining the 	tonsqct

priority lists. For a g,iven page trace X, we define the .forward distcuu•e 	distance

w 1 (a) to a page a at time t as the number of distinct pages referenced

in x, 	•.•• , x, (where x, . is the first reference, to page a after (ime

I). If page a is not referenced again, the forward distance is defined 	.

as infinity ., Note that the priority list under OPT is a listing or the •

pages in 1',_,• according tO their increasing forward ,distances. An -

illustrative example of forward ,distance determination is given in

Figure 12. 	•

If the forward distances to ail pages in 	are known at time f —

the new forward distances at time t can be determined iteratively

from the single forward distance tv,(x,). Specifically, for page

a O X 1 and w, w,(x,), we have

j 1.1 , t _ 1 (a) 	1 	for w,_ 1 (a) 	w, and w,... 1 (a)0 0,

w, , (a) , 	for . 	> w, or 	iv,.., (a) = co
(19)

To determine thé sequence pr forward distances 1w,j for a page

trace X, consider the reverse trace X" 	 • • • ,
Suppose that r is analyzed according to LRU replacement and

that x; and x i denote tWo successive references to page a in the

reverse trace..Thus X" 	x L , • • , 	= a, • 	, x, = a, • • • ,

At tiine j, the stack distance A, is the .nuinber of distinct pages
referenced in xi, • • • , 	(Note that x„, precedes x i in r.)
However, this number of distinct >pages is precisely the forward
distance wi for page trace X. Thus the sequence of LRU stack
distances for trace X", namely, AL, At-1, •• • , A2, Al, is the reverse

of the sequence of forward distances w,. 11 2 , • • • , tvi,;„,; iv,: for
trace X..

TIME

PAGE
TRACE

•

Fie« 12 Determination of
forward distances at

time t zr. 4

1 2 34 5 1. 1 	11 91(t

w.(0). 3 194(4).2 w4 (c)..4

These results form the basis of a two-pass stnek processing technique 	maximum

for determining the suceess function for OPT replacement. The 	SUCCeSS

technique is illtistrated by Figure 13. The first pass is a backward 	function

scan of the page trace X using LRU. replacement, denoted by the
left-pointing arràw, The LRU stack distances are stored, in reverse
order; on a "distance tape." The second pass is a forward scan
using OPT replacement, as shown by the right-pointing arrow.
Forward distances read from the distance tape are used to maintain
the 'OPT priority lists according to Equation 19.

The LRU stack distances gathered from the reverse page trace yield
important information about • the forward page trace. Specifically,

No. 2 	1970 STORAGE HIERARCHY EVALUATION 	95
IIIM SYST J

'er..7.ferTe7Mrs-,,!,ere 'e..Frein)

E. FT- PAGI
litACF

— - - 	i e. r ;

	

1. 	11 .- { r

I
0

PROCESSOR

Wt

I w.

FORWARD
DISTANCE

.TAPE
W I

•

BACKWARD
psi A Nu . 	"t

rORWAtin SCAN

X I PAGE
TRACE .

• X,

1 	2 	3 	4 	5 	G 	7 	8 	9 	10 	11 	12 	11 	14 15 	16 TIME

b (a) b 	d b 	d 	c) d ® c

>4\
2

PAGE TRACE
c

2

16 	15 14 13 	12 	11 	10 	9 	8 	7 	6 	5 	4 	3 	2 	1 TIME

c 	bait') n(..DiOc 0 tied
PAGE TRACE

2 4 3 1 	2

t'",;5•1.

%

FiÈrure 13 Two•pass technique for WO and OPT replacement

' A BACKWARD SCAN

Figure 14 Sequence of LRU distances for page a

A TRACE X

11 TRACE Xn

we claim that the success function for the reverse trace Xll under
LRU replacement is equal to the success function for the forward
trace X under LRU replacement. Thus one can use the backward
scan of X, not only to generate the distance tape for OPT, hut also
to generate the success function for LAW. •

To prove this result, let Futu(C, X) denote the LIZU success function
for trace X, and consider the set 0ILIW stack distances measured
for a given page a in X and r. As the example in Figure 14
illustrates, these sets• are always identical. Since this holds for every

clkt iokt pa ,.›
'den:L . 1 •

rf... 	,,•:

. 	•
A.iy , 111,1

f ■ .,r 	•

Durinp, 1hc
the cry,tanc(
function 101

RaiK:OW

.1,11 the. stick
tion is asso:
techniques
that - doef:
if thc.bufror
merit \rah
perforin
obtain a ILA.

yield t set
sample succ
success fum.

A questi
generate a s
that 1)a5.es
variable. W
there ccrtah
properly ra.i

Otir approa
Stack algorii
each capaci
time I, thc
or ,pagcs in
likely to be:
induces a

To establisl
that a repla
Since y,(C):
bility that ai

One difficult
priority list
actually con

96 	MAT1'SON, oEcsEr, SLUTZ, AND TRAIUER 	 SYST J 	 NO. 2 - 1970

1 . '',77,.+,7?,;rre—',,e'vereee-e-71-el'ir r.'meregeg•Ten.. ,'Ml?7,7ffl"1-,.'7' 	 reireMerjenn,r7J

I.

0,

ILi

Ki

c

2 	I

c

co

X n under .
forward

backward
but aisé)

ss function
. measured
Figure 14

s for every

SYST

distinct par.c in the trace, the distance frequencies for X and ,V? are
 identical, so that the success funetions X u) in1 Ful (C, X)

arc cqual.

irmot, \\1 1 i (.1, ;;; pi oVt ■ LI i ii t h e Appendfx, is that
to 	,(('„V n), \vlicre 	X) is the (n..1' sticcess fonction

loi trace X. our two-pass technique edit.he implemented \vint
foi ward-haekward scans as well as with backwaid-forwaid scans.
During the lirst scan, the siiccess function for Liai is obtained, and.
the distance tape generated. f)uring the second sean the .success
function for Dirr is obtained.

llatidom ropleiceniè.nt

In the stack algorithms cOnsidered thus far, a unique suceess .fime-
tion is associated With each trace. We now extend stack-proceSsing
techniques to cover a -"random replacement" algorithm (RAND)
that does not always yield -a unique success.function. With RAND,
if the buffer has a capacity of C, any given page is chosen for replace-
ment- with a probability of 1/C. In analyzing RAND, one 'might
perform a Monte - Carlo simulation for each huiler capacity to
obtain a RAND suecess function. Repeating these simulations would
yield a set of sample success ftmetions to characterize RAND.. The
sample success functions cotild then be used-to estimate an "average"
success function.

,A question duit arises is whether stack processing can be used to
generate a sample suçcess function for RAND or any other algorithni
that bases a replacement choice on the 'value of sortie random
variable. Vie observe that RA .1•115 is not a . stack'' . algorithrn, because .
there certainly exists a trace and a tinie t for which the inclusion
property fails to hold with a nonzero probability'.

Our approach is to define a replacement algorillim Rit, which is a
stack algorithm having .the sanie statistical properties as RAND ror ,

 each capacity C. he' algorithrri RR..is defined as follows:- at each , T
time t, the priority list P,' is obtained by randonily' ordering the set
or pages in r,_,- (each of the possible orderings-. -is equally
likely to bc chosen). Observe that RR is a 'stack algorithM, sinceit
induces a priority liSt.

To establish that Rit is statistically equivalent to RAND, assume
that a replacement is necessary in a buffer of capacity C at time t.
Since MC) = min [B,_,(C)), and P, is randomly chosen, the proba-
bility that anY given page is y,(C) is 1/C—the same as for RAND. •

One difficulty in implementing Rit is the generation of the random
priority list P,. Fortunately, it is possible to update the stack without
actually constiucting the entire priority list. Àssuming that 	> j,

NO. 2 • 1970 	 STORAOE HIERARCHY EVALUAT1ON 	97

5,7!rse'r,-e,r ,:enxre-;r1;11,g,eezere..T:71',W.rn:Ce.,

let •q,(i) denote the. probability that page s,.. ,(j) has priority (wcr
page y,(j. -- I) 'al limo V. If •c1 (j) .do es' not have priority over
•r,(j 	I), we know that s,:,(i) 	,(j)), Since this occurs
N•ith probability 1/j, we obtain

•
I --- q 1 (t) —

or

(a t) 	— 1)/. /

Using Equation 20, the stack can be updated at tinie t for RR

replacement by choosing page si (j) = s,. 1 (j) with probability
(j 1)0, for 2 < j < A, and j < 7". As a check, let us comPute
the probability Q that an arbitrary page b is pitshed from a buffer
of capacity Cat thite t. Assitming that page b occurs at some position
k on stack S 1 _, where 1 < Ic < C, then Q is given by the following
expression:

Q 	P.i.re(C) = 1)1

P,.(s i (k) = y,(Ic — 1), s t (k 	1): = 	-1-- 1), 	•

st(k 4- 2) = st -e 1- 2), • •,* se(C) 	 (21)

The eventà in the joint probability in Equation 21 are itulependent,
so that we obtain

Q =-- P, fs,(k) 	y g (k — 1)1 P r ts,(k + 1) 	s _ 1 (k 	01

• • Pri.s i (k -I-- 2) = s i -1(k + 2)1. 	• • . P,fst(C)

—C 1) •

1

Since Q = 1/C• holds for any page b• and capacity • C, .we .have
verified that the stack updating for. RR can be accomplished using
Equation 20, and that RR has the same statiStieal- properties as
RAND for each buffer capacity. Note that although a particular
value of a point on the success function, for example F(4) 0.3, is
e(jually' likely to occur milder bOth 1A NI) and RR, the occurrence
of a particular success function is neequally likely.

As the example with RR iijuStrates; - stack processing techniques
can be extended to cover probabilistic replacement algorithms. ln
fact, a replacement algorithin can have a mixture of probabilistic
and nonprobabilistic n aspects. For instance, the arbitrary rule used
to break ties in LFU and other algorithms may 'choose a page at
random..Another possibility is for a replacement algorithm to favor
sotne pages probabilistically in the construction of the priority list,
thereby realizing a so-called "biased replacement" algorithrn. 12 In
any case, the only requirement is that the priority list be constructed

MATTSON, GECSEI, SLUTZ, AND TRAIGER

to
uli,.ot jh.i

Ce.MV:irt;etli

Up to,iev.v.
hierarchic:
this type of tr
referenced t
that an
that !c.i.(h-m,
mapping carr
is thai exter:
pages in the t
replacement.
informationll
offset these
employed
only a subset

One such ma
the 2" distill:
disjoint eongy
2' pages.
2". — 1, and
hiss of the p?..;
the class rum
called the //iv

the ckus
for all pages.

In a two-leve
class is as:.ige
be used exch,
the class cap
buffer in pap
Utay appear i;
reference par;
occupied by
Selects one e
replaeement

Note that w17
class, and tiv
C is a power
each class;
for a fixed bz.
the mappinî
Constrained

NO. 2 • 1970

'1

(20) .

ISM SYST J

,'""'"-fe -Se•''en'''Y,--FIV•••;,e1;-,7nze.:?7,.W.i.zen-77MWT:=;Wel"PrAl,reree7M.:Mete-Mp7.7gien7egee;75'411e-lieeeent'rn'4e;rr,7e':ger.e.M.mr.e,,,-7.,.r-rirel

PAGE PREFIX Ct-ASS NUMIlf.f2

Figure 15 Page nimber

,

1)

F1

ty
lite
ffer
ion
ing

21)

(7)1

lave

as
ular
3, is
mcc

-tues
;. In
istic
used

at
•vor
list,

2 In
eted

to reflect the probabilistic properties of. the desired ,replacentent
algorithm for every capacity Ç.

Con9rtionen mapping

1 "

no'',".‘.

 '1."‘\." r" e"icil 	at‘enti `: 11 1 1° t w''" 1" 	M el or„ge
hicrai (Ines with uncomtrainteL mapping a, the fin.t level. Under -

this type oh mapping, any page in the buffer may be replaced by the -

referenced page. The advantages of unconstrained Inapping are
that all available page franks in the buffer can be used, and . also •
that seldom used pages cannot become "locked" into the, buffer by.
mapping constraints. A disadvantage with unconstrained mapping •
is that extensive associative searches may be necessary. to locate

pages in the buffer. lvloreover,-the implementation overhead of the
replacement algorithm may be excessive, since relative - priority

information must be maintained for all pages in the buffer'. To

offset these disadvantages, a constrained mapping schenie can be

employed whereby each page- is restricted to occupy a member of

only a subset of the buffer page frames..

One such mapping technique is called congruence mapping, by which -

the 2 1 distinct pages in the address space are partitioned into 2"

disjoint congruence classes, where 0' --(." cy • < k, and each class contains

2L- " pages.. The classes are numbered consecutively from 0 .to
2" -- 1, and class membership is determined from the a low-order

bits of.the page number. In this ease, the « low-order bits constitute

the class number' Ix] of a page, and the remaining k a bits are

called the page prefix as shewn in Figure 15. The quantity a is called

the class length. For a class length equal to zero, we set [x] = 0

for all pages.

In a two-level hierarchy with congruence mapping, every congruence
class is assigned an equal number of page frantes in the buffer—to
be used exclusively by, members of that . class. This number is Called

the class capacity and is quoted by D. (The total capacity of the

buffer in pages is thus ,C = D.) When a page x is referenced, it

may appear in any of the D page frames reserved for class [x]. I f the
reference page iS not in the buffer; and if the D page frames are all
occupied .by other members et' class. [x], a repIacement.algorithm
selects one of these pages for rernoval. We assume:that the sante
replacement algorithm is used separately for each of the classes.

Note that when the class length a • IS zero,.all pages are in the . same
class, and the mapping is unconstrained. When the buffer capacity
C is a power of 2, and when • C = 2", only one page is allocated to
each class, and the mapping function is fully constrained. Thus
for a fixed buffer capacity C wherç 0 < h < k, we can vary
the mapping function' from uncônstrained to partially and fully
constrained simply by varying the value of a from 0 tel h.

J 99 No. 2 • 1970 STORAGE HIERARCHY EVALUATION

/(1.M

7.7e.17;1`e'se;e12".7e7er17,19751;,117-elwr,rfe;yre,r,p'

le • 	•

•
2 1Y', PAGES

CLASS
71

I iJ 	

•

2 ° CLAMS

t,t.+\

Ii t;

• 2 2..2 	2 g -A

ni ii i M

HACKING

riguiu 16 Two•lvvel itlernrchy with tonpructuo nmpping

Since the congruence classes are disjoint, and since the same number
of buffer page frames are. allocated to each class, it is possible to
treat a buffer as a collectiOn of 2' distinct bufferS---one for etteh
class [x]. If we also view the backing store.as 2" individual backing
Stores, as shown in Figure 16, the two-level hierarchy partitions
into a collection of 2" distinct subhierarchies, each with a buffer
capacity of D page frames. When the replacement algorithm is a
stack algorithm, these subhierarchies can be evaluated separately
using stack processing techniques. In practice, 2" Stacks (one for
each subhierarchy) can be maintained as the trace is processed.
Each page reference x causes only the stack for class [xi . to be
updated, and a stack distance A to be determined from that stile.-

In congruence mapping, to calculate the success function for a
given trace and given class length a, the stack distances must be
carefully interpreted. Whenever a stack distance L is measured, the
corresponding critical capacity of the entire buffer is 2*•tà, since
this is the minimum buffer capacity necessary to contain the refer-
enced page. Therefore, the success function Fa(C) for the set: of
capacities C r where D = 1, 2, • •‘• , is given by •

F(C) 7 r (2 ° • D) = Él‘_?
L

100 	MATTGON, GECSEI, SLUTZ, AND TRAIGER

NVIit'lr

oCiN

c ot o
0111;.., 	.1 ,

that 1;olier
01 . t. 	;. It't

s ■ -1(i, 0)

one would,
efercn,. •c.

any i mcl
in order all
it is 1'1•1 DC

order to ft
distanca.'s I.
first defilic
x and y as
F(',r ev,anip1
that the dal
if the class 1
that the. eu
on stack S c .

stack will ci
Therefore,
entries y ab

A simple
Stack, and
for () r
equid to r.
fincl
is g,iven by

•

,A7

it owt-,er, it
of staa
lengths 	. .1
appropriate

An emunpli
17A, the ri
..•:,tack. ln Fi

reve•! -,c
1.:.gtititio1

Note that
distance à
rriappirig.

No. 2 • 197 0 IBM SYST

STORAGE HIERARCHY EVALUATION No. 2 • 1970 101

'

.number

bu
°

backing
).irti

,ditri is a
(....paratcly
(one for

).- ocessed.
!. xj to be

t stack.

in for a
must be

;11rec.1, the
•"•A, since
the refer-

the set or

18b1 SYST

where n(A) is the total number of times the distance A occurs for
tiny of the staehs.

Generally, stacl:, proeey,ing techniques must be used separately for•
each value or the C length n. llowever, for Igo replacement,
on ly a single stack need be maintained in- order to determine the
success lunctions for all values Or er iu the interval
that under LIU.), 111(' SLiCk 5t .. 1 is the list Of a Il the pages in • 1‘, ,
ordered according to most recent reference. To form the stack
S. 1 (1; o*) COVOSpOildin); to congruence .class I and elass length a,

One WOUld iiSt the pages in class j according to their Most recent
reference. However, this ordering is preserved in the stack S for
any j and any a. Therefore . , S,.,(i, a) can he determine d . by listing
in order all the stack entries of S,.., belonging, to class î. In practiee,
it is not necessary to actually construct each stack S, _ 1 ([x,],, (Y) in
order to find the distance A«,, One cati determine all the stack
distances I All in one scan of the Litt) stack S, To do'•this, we
first define the ,Ight nutich function KM(x, y) for two page nunibers
x and p as the number or consecutive low-order bits that match.
For example, RNi(0110i 3 O0101) 	3, and RM(0000,0001) = O. Note
that the class numbers of two pages are equal ([4 	[y]) if and only
if the class length satis fi es the inequality < ttm(x, y). Now suppose
that the current reference is to page x, and consider the jth entry
on stack S,..,, which is p = s,(j). The occurrence of page yon the'
stack will contribute to the distance e if and only if Rtv1(x, y) >
Therefore, A«, can be determined by counting, the number of stack
entries y above (and including) page x that satisfy n M(x, y) >. a.

A simple:procedure for determining e for all a is to scan clown the
stack, and maintain a set orright Match frequency counters 1 p(r)1
for 0 r < k. Counter p(r) is , incremented. whenever 1:U1(x, y) is
equal to r. If page x lias been previously referenced, we eventually
find itivt(x, y) = k (corresponding to x = y), and each distance
is given by

•

E ,i(r) 	where 0 G a <lc 	 • *. 	(23)
g 	

.

However, if page. x lias not been previously referenced, the boitom
of stack S,.., is reached and A,« is set equal' to infinity for all class
lengths a. In either case, eaelt distance /1 4a is used to. increment the
appropriate distance connter for class length a.

An example of this procedure is indicated in. Figure 17. In Figure
1 .7A, the right match- functions are found by scanning.down the
stack. In Figure 1713,. the right match freqtiencies lp(r)l• are plotted
in reverse order as a function of r. Cumulative summation, according
to Equation 23, then yields . the desired 1,RU stack distances 1117).
Note that the stack distance for class length zero is the Same stack
distance A as obtained far LRU replacement with unconstrained
mapping.

P,f;

Flguto 17 Muhl mc' ih funclion (nr 	reploconlent

A ieu u?,t•ed 1011 1 ,1 /10.111 Med ell 1 lINCIP.01S

l',(;1

[:=.,:.: ..:....1.::::f...1._;...i...,:.....lie....;'..•.. '

0 	0 	0

" 	*

0 	1 	1

1 	1 	.; . 0.

1 	1 	0

0 	0 	1

• -

I 	0 	o

• 1

1

.

;

0 	I 	1

1 	0 	0

1 	0 	0

1 	I 110

1.171.1
SlACK St _ •

Multilevel hierarchies

In previous . sections of this paper, stack procesSing techniques are
developed to obtain the sticess function for a two-level hierarchy.
For each bliffer capacity, this success function represents the relativc .
number of aceesses to the buffer for a given page trace.

We now show that the same success function can be used • to fin d .
the accesS frequencies for all ievels of a multilevel. linear hierarchy
for any.number of levels, and any capacity at each :level. Recall that
in• a linear hierarchy, the Only downward data path from each level
111 , is to the next level 	for 1 < 1 < 11. Also a . path or sequence
of - paths is available from each level M I , for I < i < 	to the
local' store. Furthermore, no replacement decisions are required
when a page moves upward through intermediate levels. We nove
assume that the Sa111C replacement algorithm is used at all levels,

•and that the mapping function is unconstrained' at every level.
(Hierarchies with constrained mapping functions ;ire considered
later in this paper.) At tinie 1 — 0, the backing store contains all
pages, and thèse pages are moved to the local store M 1 on demand.
When M 1 is full, pages replaced in M are pushed . down to the next
lower level in the hierarchy, M 2 . As each successively lower level
M i fills, the pages replaced in A1, are pushed to the next level

At levet M, the replacement algorithm is applied to the

102 	xyrivrrsoN, °ECM, SLUTZ, AND TRA1GER 	 11111/41 SYST J

4

o

6

11 10 11 111,1111A1101.1 11 01 A1 - 1‘. 11 7 .14tC1:1

	 J
A 	 2 	0

r

CI

. 	/10111
.1A101

:{711,r,,,q rA(.ATTrA,..'ree r.

!,c(

()Iv 1‘.r!

(1) JtlÇ 	.•„ 	r

l e a III • •

r.sige rei.,ced
since it-pare t .
the backiug

	

, 	 , • • • 	 ,

	

of 	in .t
do 1111! dcpcn ,

 store, but dc
capacity at .ea

•We havé sho ,
for a tvai-lcv
contents of a..
now asmune t
arehy induces
the repliteeme l
true, then for

cz, 	t
from the sta
kt 	',(C cirri
tho sum C,

or equivalentli
stack S' 1 , and
result is Must,'

The main den
that Equatiori

'1 (/.1,) is an
stack S,..., is
the. top C.", clé
•i(C,) represel
removed tIl IrIt
hierarchy. we
since the IIICI

selects a
page y,(C.)
removal has

is .ri(C. -1-
13 2,(C.,), and th

A similar arga

NO: 2 • 1970 ,

Figure 111 ncdationaldp between

stack and Fdorarchy

lovels

A MO I CM 1111RARCHY

10111.111tVaIKERARC.11Y

c I

1
M„

STACK

À_

!,ei of pages ;11n.sadv present, thereby making room br the cturently
1 , 1,,,,,:o e c ,1 papc v e . 	the iruernwdiate levels AI ,, for 7 	< //,
the lepteinviit 	i., applied tu the ;set (,f plges in AI ,*011 . (1
10 	page pushed (roi level A1, ,.

hc n pare y , is t 	ed From some level M, (for 2 K i K // 	I),
a pag,e us replaced from ea.,, h of tue levels Ai ,, ilI 	 .1 he
page repla,ed (roui level 	is guaranteed to find space at level Al i , :
since a page frame vas vacated by x i . When page x, is accessed froM
the backing store page is displaCed from each of the levels -
M,, M„ • • • , until a vacant page frame. is found. Note that positions
of pagei, in the hierarchy--and therefore the access frequencies--
do not depcnd on the structure of upward data paths to the local. -
More, but depend only on the replacement algorithm and the
capacity at each level.

We have shown that when a stack replacement algorithm is used
for a two-level hierarchy, the top C, pages of the stack are the
contents of a buffer of capacity C, as shown in Figure I8A. Let us
now assume that the replacement algorithm for a multilevel hier-
archy induces a priority list at every time and that this list determines
the replacement decisions at every level of the hierarchy. lf this is
true, then for any number of levels and any set of capacities C,,
C2 , • • • , CH , the contents of each level at any time can be determined
from the stack for this replacement algorithm. More precisely;
let ej(C,) denote the contents of level .111 ; at time 1, and let cri.denote
the sum C, C.„ + • • • + Cf. We then claim . that

13 ,(Ci) 	— 13,(cr i_ 1) 	for j = 1, 2, • • , H — 1 	(24)

or equivalently that B;(C,) can be identified as the first C, entries of
stack S„ and /3 2, can be identified as the next C, entries, etc-This
result is illustrated for a four-level hierarchy in Figure 18B.

The main elements of the proof Of this result are as follows. Assume
that Equation 24 is sittisfied 'at•time t — 1, and that page x, =

is an element or 14_,(C,) (i.e., level M g is accessed.) As
stack S„.., is updated to stack S„. page y,(C,) is removed from
the top C, elements of S, . with the result that pages s,(1),- • • ,
8,(C,) represent .13 1,(C,). Now .observe that page y,(C, C 2) is •
removed from the top C, ± C2 elements of. In terms of the
hierarchy, we know that y,(C,) is pushed to the next lower level 112 ,

since the hierarchy is a linear one. The replacement algorithm then
selects a page from y,(C,) 142_,(C2) for removal from M 2 . Since . -
page y e (C,) has lowest priority in B:_:,(C,), the page selected .fOr
removal has lowest priority in B,(C,) .n..,(C 2). But this page
is y,(C, 	C2), so that .s,(1), • • • 	+ C2) represent B:(C,)
e(C2), and thus s i (C, + 1), • • • , st(C, -I- C2) represent nci).
A similar argument applies to subsequent levels Mi where 2 < 1. <

No. 2 • 1970 STORAGE HIERARCHY EVALUATION 	103

e

Figure 1 9 Obtaining ctccess

frequencies frorn

success function

I 1.00

0.50

o

CI 	c: C4

;

Po ib

It is pc;
va
proprid
that itr.i

coiltn Ltd

of the
techniur

•

• Loa

a P.eol
tion ,

 1\-tai
hier

•
▪ 1:cti

St ore;
C. 	o‘,

To Wits
these
some de
fetch or:
hoWevei
(ions, - a
only. to
hierarch

hierarchi

The eval
tag eacl
priority
recorded

No, 2 • 1

7.77rieef-t;:".7-7,1ePr,:ne

g 	1. Page 	is.pushed from level M i of the hierarchy, and
.compotes with the pages in 13_,((,). The replai»einent algorithm
selects for •replacement the page.

Min [Yr(d1.1), 1i 't..1(()1n i n [• r 	'›; Yt(aI)

- With the result that „ . 	.

1t,(0-,) 	.8 1,(C1) 	.13((7,) .1- • • 	/)(C)

and

BaC..) 	.111(cri) 	Bbri-1)"

At level M, the page.n(iy„,) that-has been pushed from 	finds
a vacant page,frame, and all loyver levels re.main unchanged, Then

!J7(C) = 13° 	p) 	y,(a) — x i = .135 (c r ,)

and

B;(C,.) = 14_ 5 (Ci) = .135 (cr 1) 	B,(0. 1...,) for j > g

Thu s. we have shown that Equation 24 is satisfied at time t..

The significance • of this result is that a stack distance à, where.
Ci.+ • • • + C 1 < à C + • • + corresponds to. an access
to hierarchy level M„ and the relative number,of such A's is simply
the aCcess frequency F to that level. Thus

n(à)
FL, = 	• 	

=
F(G1- 0).— .F(cr„... i) 	for I < g :‹ 	— 1

(25)

As with twO-level hierarchies, all other accesses are directed to the
backing store sp that

/1.-1
Fn. --- 1 — E Fi

The determination of access frequencies is illustrated graphically
in Figure 19 for a four-level hierarchy. Note that the . technique
illustrated in the figure cannot, be used for an arbitrary hierarchy•
or success function. However, the technique can be used for any
linear.hierarchy . as long as the replacement algorithm always induces
a single priority list ‘for all hierarchy levels. . .

Our treatment of multilevel linear hierarchies can be extended to
include hierarchies with congruence mapping functiOns. We assume
that the sanie class •Iength cr is .used for every level and that . Di
page frames are allocated tOE each:congruence class at level M.
The total capacity of level M is *then

c = 2" • D i 	where 1 < f < H.

Using the success function F°(C) and Equations 25 and 26, we
obtain the access frequency ir,T for each level as follows:

SYST

A.fe d .- 1 +1

(26)

104 	mAITSON, GECSEI, SLUTZt AND TRAIDER

‘‘.

I 	=,

}11

t l,I.

1

yH ti ld

IL

,`ti ads
I hen

t.

\vhere
...I access

; simply

— I

(25)

àphically
:Schnique
iierarchy
for any

s induces

ended to
C assume

1 that Di

level M1 .

(26)

d26, we

/.." (it) 	j.'"(uS) 	for 	I 	I 	I
(27)

, 	 Pi 	I

I 	— 	 I 	I t-

When using l'quation 11 or the g (a) hic technique shown in liiFsure
19, it is important to remember that the success function for multi-
level hierarchies NV1111 congruence mapping.; is defined only when
the storage capacity is a multiple of 2.

Possible extensions

It is possible to extend . stack processing techniques to account for
various changes in the hierarchy model.. For example, with ap-
propriate encoding - of . the n-bit 'address, systenis with page Sizes
that arc nol a power Of twO .can be evaluated. Similarly, other
eneodings of the ii -bit address can.be used to evaluate systems with
congruence mapping functions for any number or, congruence
'classes with equal or unequal class sizes. Indicative orother changes
of the hierarchy model that can be handled by stack proceSsing
techniques are the following:•-

o Pre-loading program pages into the biffer for starting execution
o Loading à working set" of pages into the buffer when resuming

.program execution 	•
0 Returning all pages to the backing store upon program interrup-

tion.
o Maintaining copies of pages in several levels of the storage

hierarchy
O ' Bringing pages to the local store only for fetch Operations
O Returning pages to the baCking store for references such as

stores from an i/0 channel
o Moving unequal size pages or.segments,between levels

« To illustrate how .stack .processing techniques can be adapted to
these variations in hierarchy 'design, we describe two, extensions in
sonie detail. In , our original model, the generator does not distinguish
fetch operations' from store operations...In some computer sYsteins,
however, pages are brought to the local store only For fetch opera-

• tions, and usage . statistics for page replacement algorithms refer
only to references for fetches. Stores to pages in lower.levels of the
hierarchy arc broadcast to these levels by the hierarchy management
facility, and no .pages are moved. The jitstification for feteli-store
hierarchies is that fetches or additional stores usuall y . do not im-
mediately follow stores .to a page.•

The evaluation of fetch-store hierarchies requires that the generator
tag each reference as either a fetch or a store. For fetches, the
priority list and the stack aie updated, and a fetch distance A f is
recorded. For stores, neither the priority list nor the stack - is up-

HIM sYS1 J 	 No. 2 • 1970 	 STORAGE HIERARCHY nvnuenoN 	105

""'

(

Is>p,

Co ne lu

'I

tion of'
oi

show ti,,o

as least
ment- •-helong

FM'
obtained fl'011 ■

IISCd to tic

multilevel, lire
tt ■' capacity a

For least recel
hierarehies v

in a single pass
classes, any ni

Sou ne specipl r

went algoritlin

and that 01 , I . ir
trace and bull'er
with a forward
pass of the 5..ani

We conclude th
of the sinuilati
Furthermore , w
and the yarion

provide insight i
and coinputet du

.ACKNOW!..1'.17:{:;`,

Thé authors cvi
comments molli c
proof of Th,,,m. ■ :,

Appernibz

Two results ment
algorithm are pi
any trace and me t

No. 2 • 1970

z,...rge ..meni?;:17.71e',77.77:51r;n7.111717,,enelltl .

dated. but a store distance A" is recorded. The d .t , trihuliotts
and ln't_1')} ean then be used to determine th ,: fetch and store

access bequencies to each level Of the hierarchy. It should be clear
that this technique also worlss if: congruence mapping k n,•luded.

NVe can also cOnsider a niodiltedltl desi?.11 where th 'o page

usage !; 11nIsi ,-'s are uPdatelt ror a !itolc (‘)Befatioll even (hough no

Pi e motion. occurs . This change is incorporated by updating, the

priolity list l'or both fetches and stores' . Thus, for modified fe t ch:.

stores, the net change in our model is that the stack is not updated
for store operations.

Besides distinguishing fetches from stores, a computer system may
also distinguish the various sources of store requests. For example,

a "çall-back" feature .can be used by which a page in the buffer

is moved to the backing store if .the page is stored into by an I/0
device. The motivation here is to free the buffer Of pages not needed

by the CPU, and to service ,all I/O stores from the backing store.

For a call-back hierarchy, the generator must specify at least two

kinds of references-j—CPu references, and Stores from the tit) channel.
Stack processing techniques can then be modified as follows. When

a cPu store or . fetch °caws, the stack is updated , in the normal
way (except for special entries lobe deseribed later), and a distance

counter nc "(A) is incremented. When au I/O store occurs, say

at time t, a counter n"() is increntented. If page x, does not

occur on r stack then S, is equal to If Page x, does occur

on stack S,..„ then S, S, except that x, is replaced by the special
entry " e ." This entry, counted for all stack distance measurements,
represents the empty page frame caused by page. x, returning to

the backing store. Té ensure'that empty page frames are filled as

soon as possible, all #-entries are assigned the lowest priority
in replacement decisions.

The call-back feature can be used in conjunction with the retell-,

store or modified fetch-store schemes. In all cases, the correctness

of the modified stack processing techniques can be established.

Since slac k . processing allows a large sample of "typical" address
tapes to be analyzed, for many hierarchy models, the efficiency
gained at the early stages of hierarchy design may be great enOtigh

to impact, the whole design process. More_ of these traces can be

processed in a given tinte, and more hieraielty designs can be evalu-
ated for a given number of traces. The aYailability of titis data may
help justify the "typical"-traee' approach to design, or may help in
the development of other models for system requirements. As an
example, program models can be more deeply investigated by
evaluating both a Program and its model under a very large number
of address traces. Improvement in prOgram modeling, in turn, may
enhance the success of analytical disciplines that use these models,
such as storage interference studies for multiprogrammed systems.

106 	MATTSON, GECSEI, SLUTZ, AND TRAIOER NIM SY, ST

Concluding remarks

1

Y

n.
 al

.s,
tee.%•

9
 ity

ess

ress
:ncy
ugh
I be
. alu-
rnay
tp in
s an

by
mber
itiay

)dels,
tems.

SYST J

a

The (.7oneeptS presented in this. paper have been used to develop à

variety of stack 'processing techniques that are useftil in the evalua-
tion of storage hierarehieS.,Using the inclusion property, we define

a class of page replacement algorithms, called stack ,algorithnts, and
show that replacement algorithms that indnce Priàrity
as least recently used,, least frequently used, and random replace-
ment—belong tO this class.

For any stack algorithrn, the frequency of stack distances can he
obtained from an address trace . by stack processing and used It.
calculate the success functions. The success function can then' he
used to determine the relative frequency of access to all levels of a
nuiltilevel, linear storage hierarchy, with any number of levels und
any capacity at each level.

For least recently used replacement (LRU), the access frequencies
of hierarchies with congruence mapping functions can be determined
in a single pass of the address trace—for any number of congruence
classes, any number of levels, and any capacity per class at each
level.

Some special results are presented concerning an optimal replace-
ment algorithm (oPT). It is shown that OPT is a stack algorithm
and that OPT minimizes the number of page swaps for any address
trace and buffer capacity. Also, both OPT and LRU can be evaluated
with a forward pass of the address trace followed by a backward
pass of the same address trace.

We conclude that stack. processing techniques can eliminate much
of the simulation effort required in . storage_bierarehy . eyalnation..
Furthermore, we believe that the classification of stack algcirithrns
and the various extensions to Stack processing techniques may
provide insight into the area& of program modeling, system analysis,
and computer design.

ACKNOWLEDGMENT

The authors wish to acknowledge J. H. Eaton for his helpful
comments and criticism, and T. W. MacDowell'for his help lu the
proof of Theorem 4.

Appendix

Two results mentioned in the paper concerning the on replacement
algorithm are proved here. To do this, it is first shown that given
any trace and replacement algorithm (not necessarily using demand

STORAGE IIIERARCHY EVALUATION 	107 No. 2 • 1990

•

•••J

• 1

paging) another replacement algorithm exists that uses demand
paging and causes the same or a fewer total number of pages to be
loaded into the buffer. This result is used to show that ()PT is an

.optimal replacement algorithm -and ., in fact,: that 01Yr causes the
minimum total number of pages ..to be loaded into the . buffer. .
Finally, it is sliown that the success function under 011' for any
trace is identical to the success function . under 01'T for the reverse
of the trace. .

Definition

o 	
•

ISI denotes the nimber of elements in a set S.
e laix denotes the number of occurrences of a symbol a in a

sequence X.
O A = la, b, • • • 1 is a finite set of N page addresses or pages.
e X = x„ x2, • • • , x i, is a finite sequence of L elements from A,

and is called a trace.
o B,(C) C A denotes the contents of a buffer of capacity C at tinte

t, and is called a state.

Throughout this appendix, we consider a two-level storage hierarchy
with fixed buffer capacity C. Consequently, we use B, instead of
B,(C), The term B, denotes the contents of the buffer immediately
after reference x, is made; B o is called the initial buffer state; and gi),
the empty set, denotes an empty buffer state.

' Definition

• P

Pt P, • • , p,. is a finite sequence of L sets, p, C A, called
an 0-policy.

• 0 Q 	qi , q2 , • ; • , q,. is a finite sequence of L sets, q, C A, called
an bpolicy. 	 •

A policy is a particular realization of a replacement algorithm for
a given trace. For such a trace and initial buffer state B o , an /-policy

g .and an 0-policy together determine the sequence of buffer states
that will occur during the trace. An /-policy gives the set of pages
loaded into the buffer, and an 0-policy gives the set removed. If
p, = 0, no page is.removed, and if, q, 4), no page is loaded in.
•Note that only certain pairs of 0- and /-policies are meaningful.
For example, a page cannot be removed if it is not in the buffer.
We consider only meaningful policies, where q, 4. 1 	B, and A.1 c
• q, 4 1 , for 0 < t < L 	1. In this case, B„, is obtained from
B, by 	 ,

A.1 ----- 	qe-;11 — Pt+1

-
j 	 Definition

Let X be a trace and Bo (where 1801 < C) an initial state. A
sequence of states B = Bo, B,, • • • , B,. is a valid sequence if x, G B„

for 1 < t

applieatio

Note that
pages g
our atteni

• 1Pgl

• xg G

• P,
for ai! t, 1

Under dei
the buffer

One meas
number o
pair. The
paging.

Theorem /

Let P anci
valid (Willi

*.E

Proof: P
valid polic
/30 = P,
for 1 < j
Q" by a
straints w
demand pg

 elements d
and a E
p i, and q.
and only

To constrt
smallest ti
Set Pi =

a an
a EE
is defined 1
and e„,
or ql =)
cl ■ Et Bit-1

108 	MATISON, GECSEI, SLUTZ, AND TRAUMA tam sys-r J No. 2 • 19

lenia nd
s to be
I . is im
ses the
hte,5

ror

rev,'

a .

a in a

es.
ioin A,

at time

ierarchy
itead of
tediately
; and 0,

t.'" 	..;..e-n"? •:,V-1'..•e:1,,V-e-e7M4.7.W1r71-e.i'ef,ee:MMee ',

for.1 	< L. A policy pair P and Q is a valid pair for X an B o if
application of the pair reSults in a valid sequence.

Note that valid policy pairs are quite general in that any number Of
pages may be moved into or out of the buffer. However., most of
our attention is directed toward denied Paging where

•
o IPil 	and WI 	I

O x i
•
11,_, 	p, 	= 	 (Al)

o p, 	çi= a, 0 (t, • and 	I,1 	C

for all I, 1 < t < L.

Under demand paging, single pages are loaded when necessary until
the buffer fills; subsequently, page swaps occur only when necessary.

One measure of goodness for a policy pair P and Q is the total
number of pages loaded into the buffer D, lq, I under the policy
pair. The following theorem supports the usefulness of demand
paging.

Theorem 1

Let P and Q be a valid.policy pair for X and B o . There exists a

• valid demand policy pair PP and 	for X and B o such that

E led E
•

Proof. Pi) and Q i) will be constructed by forgring a sequence of
4, c.,z-Mgd 	 valid policy pairs (le, Qn), (P', Q'), 	e), • • • , 	,whère •

Po = P, = Q, PN = P", Q e = Q", and D., 14 	 •
for 1 < j< K. Informally, Pi and Q' are constructed frOm P'' and
el by altering el and 	to satisfy the demand paging con-

bpolicy 	 straints where pis ' and/or • qi, -1 are the first occurrences of non-
er states 	 demand paging in 	and Q'. This is done by "sliding" offending !
of pages 	 elements of pi» and/or tiV - .1 te a later time in Pi and Q i . 	à, G

. 	.

loved. If and a G 	eVer occurs then we trivially remove page a front both
laded in. 	p i, and q. Clearly, this does.not disturb the validity of P. and Qi
aningful. 	 and only decreases the value of 	1 q 1. '
e buffer.'

p1+1 C To construct pi and Qi from 	and Q", 1 < j < K, let t be the
ied frorn 	 smallest time such that p;- ' and/or g' do not Satisfy' Equation Al.

Set Pi =• 	and Qi= QÎl , except as noted below. Suppose,that
x, = a and that 	for 1 < L, does not satisfy Equation AL If
a Et 	, then set = 4) and q i,+, 	+ 	. (Note that "+"
is defined here since 	 0). If a e qi, - ', then set q = a,
and qi,„ 	 — a]. If 	L, then set ql 	•11, if a e te,7 1 ,

state. A 	 or q = a if a G el . In all cases, note that Qi is• valid, since 	•
xs G A, - 	(ye EE 	for 1 < 1 < L, and that Lt.„ lqi,1 <

BM SYST J 	 NO. 2 • 1970 	 STORAGE HIERARCHY EVALUATION 	109

4, called ••

Now suppose that p;', for t < L does not satisfy Equation A 1:
We observe first that 1(1;1 5 1 and ebi = a. if a G /41. If q; = 0 or
1/1;;;; < C, then set p; 	and p 	= 	p; -1 , If q = a and

C, set p 	h for some b E p;* ' and pt 	.4_
(p; - .% — b]. (Note that pi, - 	0, since 10;:11 	C and qii -1 	0.)
For t = L, sct 	b 	pig:- if 	= a and 111/11 	C, or pi, =
otherwise. ln all cases, we observe that Pi is valid, since
for 1 < t C. L. Since Pi and Q i satisfy dentand paging at least up
through time t, the desired demand policies must eventually be
.obtained.' Thus the theorem is proved:

Before considering an optimum replacement algorithm we make
• two observations. First, under demand paging, a valid policy pair

P and Q can be completely represented by specifying just the 0-
policy P.. This follows from Equation Al because q, 0 0 can only
occur when x i. 	a and a G B,_, (in. which case we know that

. q, = a). Second, for demand policies P and Q, we can use kblp as
an alternative criterion of goodness..To.see this let u be the smallest
integer such that ID, j = C, t > u. Then 195lp is given by the following
expression:

101 p= U (L a) — E iqd 	 . (A2)
(..41

Since a in Equation A2 is not a fttnction of the policies, E7. WI is
• a constant and

= 	19d) 	E Id = constant — E iqd
/

, 	(A3)

optimum 	For a given trace X and initial state B, let us define an optimum
replacement 	policy pair P and Q as a pair that is valid and minimizes D.:, Iq,

algorithm 	over the claSs of valid policies. From Theorem 1 there always exists
an optimum policy pair which is also a demand policy pair. Since
(A3) holds for all demand policies we can find an optimum demand

, policy pair if we can find a demand tiolicy,P u such that 101 p > p •
where P is any demand policy. 	...

Definition

Let X be a trace, and let a G A be a page. The forward distance
d(a, x,) to page a from page x, is the number of distinct pages
occurring in • • • , x„ where e is the smallest integer satisfying
e> t and x, •.= a. If no such e exists then d(a, x,) = co.

Definition

Let X be a trace and B. an initial state. A valid demand policy P°,
called an oirr policy, for X and B. is defined as follows. For t = I, 2,
• • • , L, whenever p, 0 0 is required then p, = a where

Ceb C-

The for vu
racrenued
fe(itlifeS th
grea test foi
realization
We observ ■

have distin
have an mi
môre than
that all suc

To show 't
policies. we

Lenana I

Let X be a

= 4 Do

To 4

and d(a, xi
X and 8,1
It such th

101

Proof. Gi
•X at x an
does not o ■
three cases.

Case I. p

This result!
and B,
up to time
(because P

Case 2. p
case we sel
Case 1, P'

Case 3. p

Case 34.
by

T1.

110 	MATTSON, OECSE1, sLurz, AND TRAIGER ISM SYST J No. 2 • 1971

2)

is

ni

ce
ad
)1 t.

tee
;es
ng

Dô ,
 , 2,

4

T STORAGE HIERARCHY EVALUAIION 	111

1

•

e

To show that any P° maximizes 101p0 over the class of demand
policies we use the following lemma.

•
,s 	 Lemma I
it

Let X be a trace and B o and BI, initial states where

Dt, := To +

no = To + (b)

and d(a, 	< (1(b, x1). For any demand policy P, corresponding to
X and B o , there exists a demand policy P', corresponding to X and
Bi„ such that

k 141.

Proof. Given P, we construct P'. Suppose 'page a fire occurs in
X at x G, and b at xi,. Thus, 1„ < ib < L is assumed. If either b or a
does not occur in X, then set ib or ja equal to L I. We consider
three cases.

Case I. pi 	b where pi is the first occurrence of b in P, and
1 < j < i. FIereweset p = pk ,1 < k < L and k j, and p; = a.
This results in B, = T, 	(b)'and B; = T, 	lal, O < t < J— 1
and B, j < t < L. Since pages a and b are both not referenced
up to time j, it should be clear that P' is a valid demand policy
(because P is) and that 195 1P . = 101p.

(Yb E 111-1)ga, x1) 	(/(b,
. 	.

The forward distance to a page js juSt the number of distinct pages
referenced before that page is referenced again. An Orr policy
requires that the page removed from the buffer be one with the
greatest forward distance. Note that an 01'T policy is . a particular
'realization of the ()PT replacement algorithm discussed•n the paper.
We observe that, at time t, all pages with finite forward distances
have distinct forward distances. However, more than one page may
have an infinitë forward distance. This means that there may exist
more than one on. policy for a given X and B. It should be clear
.that all such policies P° have the same value of 1/po.

for 7'0 C A and a, b Ee T. 	(A4)

*•■••-•

Case 2. p i„ = b where p ia is the first occurrence of b in P. In this
case we set pf, 	pk , 1 < k < L and . k 	j, and p;„ 	0. As in
Case 1, P' is a valid demand policy and tole 	kbip -I- 1 	14p.

Case 3. p ~ b, 1 < j < ia. Here we must consider two subcases.

Case 3A. 	= c. At time t 	ic, the states of the buffer are given
by

B. = Tt. 	{a)

No. 2 • 1970

4

Pk•

Bi. = Ti .+ lbl -1- lai 	1c1 for c E Tr.

whi .ch can also be written as follows:

n. = [T 	lai 	tell 	lel •

Bi. =fn.+ 	1cl] 	lbl •

Note this is the same form as Equation A4 with To replaced by
[T1 „ 	1a1 	1c1] and a replaced by c. If d(c, xi. ,,) 	d(b,
then we have a situation identical to that in the statement of Lemma
1 where X now is x g. 4.1, • • • , x. Settingp = p h forl<k< f — 1
and p . = 0, we again consider Cases 1, 2, and 3. Since the "new"
X is strictly shorter than the original X, this situation can only occur
a finite number of times. Note that P' is valid as far as it is specified
and that p1, • • • ,p , contains one more g,,Ig than p„ • • • ,

If d(c, 	> d(b, x i .„. 1), we set j) = ph for 1 < 	1
and p = 0, and consider two more cases. First, if p, = b, where p,
is the first occurrence of b in X and t • < 1f,, we set pl = ph , for

1 < k < L, and k 0 t and p; = c. Here Bi = B, for t < t < L,
and as in Case 1, we see that lo 	> 101p still holds. Second, if p, o
b, for t < ih, we set = ph , i„ 1 < k < L, and k ih and p1, = c.
Again we have 111 = B, for ib < I < L, but we note that pi , =
whereas p'„ =•c 	0. However, since p , 0 gig and 1)% = cp, the
relation Iolp• > lgelp still holds.

Çase 3B. • p = 	Since q i. = a we observe that Pi a,' < C.
Let t be the smallest integer such that p z 0. If no such integer
exists, then let € , =L I. We set pl = p h for 1 < k < i, and con-
sider two cases. First, if i Ç t then we set pl = ph for i. -1- 1 <
k < L. Note that Q' = Q except at times ia and ih . Since 1B11 IBI

 for ih < t < L, we see that P' is valid, and lolp• = lgiglr , since, P' =
P. Second, for the case ih > t, note that x, = c, where c 0 wand
C 0 b. We set pL = ph for i.-1-1<kLandk0t, and pi .= efr. "
If p, = b, then 1811 = 1/3,1 for t < t L, and 10IP 10IP + I ›.
101p. If p, = a, then the buffer states at tintes t 	1 and t are: 	.

g
B ig-g = Ta-1 + (a} 	Bi = 	+ {al 	{c)

Be-e = Te--1 -1-- {al 4- (b) 	Be = Te-1-F lb) 	(e)

Rewriting the buffer states at time t as

B= 	-1- {e }] + 1a1

B, = [TgLI 	I c] -1- 1bl

we arrive at a case similar to Case 3A. As in Case 3A, P' contains
one more than P in the interval t = 1, • • • , t. Therefore, we treat
this case in the same way, with the result igklp• > Igblp. Finally, if
P. = d where d 0 a and d 0 b the buffer states at time t can be
written as

(al 	(c) — Id)] + id)•

Ji e = [Tut -1- 1

whili gain ca

Note that the si

b E B,,..,. We
cases, and Lem(

Theorem 2

Let X be a trac
for X and B.
101r0 	1011••

Proof. We rec
 exactly the sam

only find any 0,
will construct a
is an on policy

PI is constructel
pi p% where

a and ei
demand policies

{b}

B? 	ri + fa)

where d(a, xi) .e
d(a, xi, 1) < el(b
as X,‘,ve can use'
as least as many
P2 as

1 <k

k= i

i

Note that P' is
1 < k < t, for

Policy e is cowl
that /) = eh , 1 •
finite; constructi'
pi = eh , 1 <
that 101,. likt
proved.

Combining the
Theorems 1 and, Bi

112 	MAlTSON, OECSEI, SLUTZ, AND TRAIOER IBM SYST J No. 2 • 1970

"r-',Fs.eslegIVieDee3M - 	e 4i 	k 	• 	 ■ eieeeje.-1•Mffl:', 	 • . 	. 	 e•

NO. 2 • 1970 	 STORAGE HIERARCHY EVALUKHON 	113

[Te - t + lai 	— !di] 	. lbl

whieli again can be trealed as in Case 3A.

Note that the situation where i = t can not arise in Case 3n, since
b G We have therefore successfully exhausted the. possible
cases, and Lemma 1 is .provecl.

• I (mina
j. --•

c "new"
ileoccur

.pecified

1
where p

p,, for
'; t < L,
',if Pi
I); , r= c•
Pi, er

ck, the

II < C.
I integer
and con-

-i- 1 <
I

I cc

pi
„ 	1 >
re: 	.

contains
we treat
▪ if
ê can be

• SYST J

Theorem 2

Let X be a trace, B,, an initial state, and P a valid demand policy 	OPT Is an
for X and B. If P° is any valid OPT policy for X and 110, then 	optimal

101P° ?- kbir• 	 • 	 replacement
• algorithm

Proof. We recall first that every OPT policy for X and Bo has
exactly the saine number of es. To prove the theorem, we need
only find any on policy P° such that 1951po > IiIp. To do this we
will construct a finite sequence of policies Pt , P2 , • • • , P, wheie Pf
is an OPT policy and kbiP < < <

where d(a, x < d(b, 	Since xi 0 a and x i 	b, it follows that
d(a, x 	< cl(b, x i"). Treating B i as B o, B °4 as /Po, and xi +1 , • • • ,
as X, we can use Lemma 1 to find «policy p„ • • • ,p, that:contains
as least as many 	as p 	• • • ,PL. We then define P I =,p1, • • • ,
pas 	 0 .

pk , 1 < k < — 1

b, k =

1+1<k< L

Note that Pl. is valid and thai lelsiP < 10IP.• Furthermore, pl =
1 < k < ti for some t, > i.

Policy P2 is constructed from P' in a similar manner with the results
that g IA, 1 < k < t2 where 4 > A and 10ip. < likIpb. Since X is
finite, construction of P', P2 , • • • must result in P', for finite j, where

= p„ 1 < k < L. It•follows from kilp < 10Ip, < • • • <
that 101, < 	where Pi is an OPT policy and the theorem is
proved.

Combining the relation in Equation A3 for demand paging ,with -
Theorems 1 and 2, we have the following theorem.

P' is constructed as follows. Let i be the smallest integer such that
pi 0 p% where ,e is an element of an oirr policy. Suppose that

a and p°, ---- b. (Neither p, nor pl can be 0, since both are
demand policies) We observe that

Ti 	{14} for a, b
13? •-= 	al 13? •-= 	+ fa)

1)1

and from
no page In
and lEr j

Theorem 4

Let X =
If P" is at
for 'X and

Proof. Lc
without lct
is an intew
in 'X) and
contrad icti
D > C.

Let us den
'Lemma 2 1
From, Lem
altered pol
oirr polic
Similarly, i
assume thî

Consider n
'xh E '13„,
Sequence
Let us den,
observe fit
and Q' (a
observe di

=
'14;1 	ip

Similarl

•show that

= rp2,1

Pé re/2.

Now, sinc
, Pa = eel

follows th
: . 'et and
we have c
'Q°, and

 'Icbio• =
•I'Bil 	• •

No.2 • 19

1,

E kid E
1. 1 	 1. 1

Theorem 3

	

oPT 	Let X be a trace, B o an initial state, and P0 a valid oil' policy.

	

minimizes 	(Also, let 12`) be the corresponding /-policy.) For any valid policy
, 	page 	pair P and Q,

loading

Thus we see that an OPT policy results in a minimum number of
pages being loaded into the buffer over the class of all valid policies.
After giving preliminary Lemmas 2 and 3, we present a final theorem
concerning OPT policies.

Lemma 2

For a trace X, let the set Be represent the first C distinct pages
referenced in X. For a buffer of capacity C, if P is a valid demand
policy for X and some Bts C Be , then P is a valid demand policy
for X and any B C Bc ,

Proof Let i be the smallest integer such that x,, • • • , x i contains
C distinct pages. If Bo C By then, fot any valid demand policy P,
we have 13 = Be , since p, = p2 = • • • = pi = çf). For sit C B c this
also holds, so P is a valid demanctspolicy for X and 134. (Note that
for different initial states, 130 C R , the Q policies will not be the
same.)

s,

For a trace X, lei the set Ec represent the last C distinct pages
referenced in X. For a buffer of capacity C, if P is a valid demand
policy for X and B o , there exists a valid demand policy P' with a
state sequence B o, 13, It • • • , B1, such that /31, = Ec and Isbl y. >

. ,

Proof. Let i be the smallest integer such that x • • , x,, contains
C distinct pages. Suppose, under policy P, that B 	contains n
elements of Ec , i.e. /3;_, 	Ec i = n. It follows that at least C 	n
pages will be loaded into the buffer following time i 	1. Setting

pk for 1 < k < I — 1, we will specify the remainder of P' in
such a way that exactly C 	n pages are loaded into the buffer
following time t 	L We observe that, since at most C distinct pages
are referenced following time i — 1, we never need remove a page b
from the buffer where b E Ee . Thus, if a page must be removed at
time € for i < < L, there always 'exists a page c, where c Ee, in
the buffer, and we set p; = c. If P' is constructed in this manner,

E lei 	E lq ,1
I-1

114 	MATTSON, OEC3E1, SLUTZ, AND TRAIOÈR

Lenuna 3

IBM SYST .1

y.
cy

es
 nd •

cy

ins
P,

his
•at
he.

and from Equation A3 we have lop > ,101,.. Furthermore, since
no page in Ee is ever removed from the buffer following time t= i
and 1E, I = C, we see that 1.4', = Er.

Theorem 4

of

C\—„, 1 	If P
for 'X and

') is an 0m' policy for X and B o = riS, and re is an on policy 	backward
B = 4), then l ' o 	osj,,0 = 101,,,,,. 	 . . • 	on

.

	

. Let X ---•- x,, • • • , x ? , be a trace and 'X = x h , • • • , x, its reverse. 	forward/ -

Cs.
Ill .

Let us denote the state sequence under P° as B 0 , B 1 , • • • , BL . From
Lemma 2 we can set B o = • B,, withont disturbing the validity of P° .
From Lemma 3 we can alter P° such that B, = E. Note that the
altered policy contains the same number of es as P° , since P° is an
OPT policy. (We subsequently refer to the altered policy as P°.)
Similarly, if B o,' Bi , • • • is the state sequence under re we can
assume that ' B o = `Bc. and rjj= rEc .

Consider now the state sequence "B h ,"B L,'IlL .,,, • • • ,'&,'Bi . Since
.ic f, E 'B1, xr,-.1 E r B2, • • • , X2 E 71/,:-1, Jci E r BL, we see that this

4 	 sequence is a valid (not necessarily demand) sequence for the trace X.
. 	 Let us denote the corresponcling . valid policy pair as ,e , and Q'. We
ges • 	 Be,

,. 	• observe fi rst that, since rEe = 	we have 'II 	B I, = Be = o . Thus'P'
.nd ' 	and Q' (as well as P°) are valid policies for X and B o . Next we

1 a • 	 observe that '14, = '131,..., -I .- Ire — Ire can be written as
> • "B i,_, = ' Br, ± MI — 1'0,1. But we also have rEIL _, ----

{ «1 	1 .1) I, which yields (/ = re, and ,M = '' q, since re (1 l'q°, =
0. Similarly, since "B L ._, = ret,,2 -1- i re,-..11 — I r.P2-11, we have

ins 	 q = rp., and f) r----- rq,*.' Continuing in this manner we can
s n 	 • 	

show that
- ' Ii 	 .

q: = rp2 .2.„ . 	 .
ing 	 for 2 < t < L 	 (A5) , • in 	 pi, = re+,_ •
[Ter 	 .

ges 	 Now, since x i, E 'Bo (recall that 'B0 = 'Be) it follows that
.e b 	 '.1)`; = ' q°, - 4). Similarly, since x, E Bo (recall that D o = Be), it
I at' 	 follows that pf = q; ..r.-- 0. We can then trivially assume that p; =
, in 	 re and q; --,.-"p. The significance of this is that, using Equation A5,

,. 	 we have established a one-to-one correspondence between P' and .. 	,
1.Q° , and between Q' and re. In particular, 10IP • = 101,„0 and

i 	kbie• = 10Ir 1, 0. We now observe that l(M,..,,,, = kisirpo, since I rB01 	.
. 	I rBi I = • • • = I rBLI = C. In other Words, re, = te if and only if

Proof. Let us assume that the theorem does not hold. Thus,
without loss of generality, suppose that 101„ 0 = 101 1,0 k where k
is an integer and k > O. If D distinct pages are referenced in X (and
in 'X) and if D < C, the bu ffer capacity, then we have an immediate
contradiction, since 141,o =I4Iro = L. We therefore assume
D > C.

T J. No. 2 • 1970 STORAGE HIERARCHY EVALUATION 	115

ftr.-,"P,VIPerte,"-.4

12. R. W. ON
tem with
Proceeding
New York,

13. 1.. A. Bela
computer,

14. C. J. Ruch
Conferenci
1018 (1 961

15. C. V. liar
and progr
Proceedin:
Computing
229-239 (

16. J. Kral, "I
Communie
7, 475-480

17. J. G. Kern
Company,

18. L. A. Bela
time chara
Communic

• 6, 349-353
19. P. J. Den(

communie
3, 323-333

-

re = 0, since the buffer is always full. We thus have shown that
101/.. = 14 , 00= kbIrpo.

Recall that P' and Q' are not necessarily demand policies. From
Theorem 1 we can find a demand policy pair P" and Q" such that

E led
1.1 	 1.1

From Equation AS and the discussion. that follows, we know that
= 1q1,1 for 1 	t 	L. Since P" and .Q"

are demand poliçies, and since 180 1 = IBM = • • • = 	C,
we have
IpM 	for 1 < t 	L. Combining these results yields

E 	E Ip I or 144. , 	101p ,
1-1

But then we have icklp" 	1011 = kivIreo = 104 	k. Since P°
was given as an ovr policy, we have from Theorem 2 a contradiction
with Içbip- > lOiro for the demand policy P". Thus our original
assumption is false, and it must be the case that 1q51,,c, kbipo.

CITED REFERENCES

. I. A. Opler,. "Dynamic flow of programs and •data through hierarchical
. 	storage," Information Processing 1965, .Proceedings of IMP Congress

I, 273-276 (1965),
• 2. E.: Morenoff and J. I. McLeani'"Application of level changing to a

multilevel storage organization," COntittunications of the Association
for Coniputing Machinery 10, 3, 149-154 ,(1967).

3. C. J. Conti, "Concepts for biffer . storage,"AEEE. Computer Grottp
• News 2, 8, 9-13 (1969). 	 •

. 4. W. Anacker, and C. P. Wang, "Performance :evaluation of computing
•systems with Memory hierarchies," IEEe Transactions on Electronic
Computers EC-16, 6, 764-773 (1967). 	.

, 5. R. L. Mattson and J.-P. Jacob, "Optitnixation studies for computer
. 	systems with virtual memory," Information Processing 1968, IFIP

Côngress Booklet I, 47L54 (1968).
6r J. - E. Shemer. and Gi: A. Shippey, "StatiStical analysis of paged and
• segmented computer systems," IEEE Transactions on Electronic Com-

puters EC-15, 6, 855-863 (1966).
. 7. J. • Fotheringham, "DYnamic storage allocation in the ATLAS com-

puter, including an autbmatic use of a backing store," Communications
of the Association for Computing Machinery 4, 10, 435-436 (1961).

8. T..Kilburn, D. B. G. Edwards, M. J. Lanigan,. and F. H. Sumner,
"One-level storage system,"' IEEE Transactions 'on Electronic Com-
puters BC-11, 2, 223-235 (1962) -. 	•

9. M. H. J. Baylis, D. G. Fletcher, and D."‘J'.. Howartli,'"Paging Studies
made on the I.C.T. ATLAS computer," Information Processing 1968,
IFIP Congress Booklet1), 113-118 (1968). 	•

10.. D. H. Gibson, "Considérations in block-oriented systems design," AMPS
Conference Proceedings, Spring Joint .Computer Conference 30, Aca-
demiè Press, New York, New York, 75-80 (1967)..-' . • •

11. S. J. Liptay, "Structural aspects of ihei .$y*m/360 Model 85: II The
cache," IBM SyStems Journal 7, 	(1968). •

116 	MATTSON, OECSEI, SLUTZ, AND TRAIOER IBM SYST J No. 2 • 1970

1

;

I I

a

•
'P

ig

er
tp

77-

u-
ns
J .

er,
m-

ies
58, ,

PS
ca-

hc i

(")

STORAGE HIERARCHY EVALUATION 	117 No. 2 • 1970

12. R. W. O'Neill, "Experience using a time-sharing nuiltiprogramming sys-
tem with dynamic address relocation hardware," AF1PS Conference
Proceedings„Spring Joint Continuer Conference 30, Academic Press,

New York, New York, 611-621 (1967).
13. 1,, A. Belady, "A'study of replacement algorithms for a virtual-storage

computer, 111.1f Systems Journal 5, 2,78-101 (,1966),
14. C. J. Kuelmer and B. Ranch:11, "Demand paging in perspective." AF1PS

Confertmer Pron'edings, Fan John Cmnpuhy Cmderence 33, 1011 -
1018 (1 9681.

15. C. V. Ramainoorthy, 'Ile analytic design of a dynamic look ahead
and program segmenting system for multiprogrammed computers,"
Proceedings of the 2/si National Conference of the •Assoc:talk», for
Computing Machinery, 'I hompson Book Company, Washington, D. C.,
229-239 (1966).

16. J. Kral, "One way of estimating frequencies of jumps in a program,"
Communications of the Association .for Computing Machinery 11,
7,475-480 (1968).

17. J. G. Kemeny and J. L. Snell, Finite Markov Chains, D. van Nostrand
Company, Inc., Princeton, New Jersey (1960). 	 •

18. L. A. Belady, R. A. Nelson, and G. S. Shedler, "An anomaly in spare-,
time characteristics of certain programs running in a paging machine,"
Communications of the Association for Computing Machinery 12,
6, 349-353 (1969).

19. P. J. Denning, "The working set model for programming behaVlor,"
Communications of the Association for Computing Machinery 11,
5,323-333 (1968).

! I IJ` .". ' 	'-‘' 	• —
--- -- 	-• - --

;r7----
L • .„.

223

Dynamic program behavior uhder pagine

by (ERAM) II. FINE, CALVIN W. JACKSON," and PAUL V. MC ISAAC
System Development Corporation

Santa Monica, California

INTRODUCTION

In May, 1965, System Development Corporation
(spC.) proposed to do some research to study program
organization with respect to dynantic program behavior.
Further, the proposal suggested that simulatio i . tech-
niques might be used to study the . problern of resourCe
allocation in a multipiocessor time-sharing system.-
Some of the reasons for the. proposal related to the
prospective utiliution of the time-sharing hardware,
features of the GE: and 113M time-sharing computers. At
the time, ihere was considerable interest in investigatin g .
Ili: concepts or p •ogram segmentation and page turning , .
both at SDC and in the time-sharing community al large.
The concept Of fixed-size paging on dennmd partiett- .
lady, raised some questions of practicality. One of the
edrly papers on Ur.: subject by Dennis and Glaerl states
that the concept of page-turning can be either Useful or
dk:n,trous, depending on the class of information to
which it is applied. However, the theory appeared to be
lotit advantageous and elegant, so that the future of
nine-sharing, seemed tel be committed to the concept:, •

.As a result, an independent acti‘vity. • was initiated to
investigat e some of the problems outlined in the propos
al; titis paper reports the results of this effort, and points
(.‘ut so nie of the implications of the data obtained.

bi,eus.gon of the problem 	•

A large high-speed memory•iS not •being Used effi-
ciently if a large portion of it is occupied by portions of
pto.2rarns that are never used. Avoidance of fetching
;:nneuessary instructions and data thus appears desk-
Ale; there are obvious gains if processing can be

eomplished in parallel with pertinent fetching. How-
: c‘cr. attempts to achieve the above by an ..arbitrarY

de:ision of programs into fixed-sized pages that are
hrought to memory only on actual reference (demand
P‘le.ing,)• presuppose a program 'organizatiOn scheme

° the rescnrch reported in this paprr was 'sponsored by the

• Advanced Research Projects Agency Information Processing
 leehniques Office and was mon- imrà1 by the Ele .m'onic SYs- kin% Division, Air Force Systcnts Command under contract

19 (62S)-5166 with the System Development Corporation.
.turently with Alutens Programming Company, Santa Môn-
- .1. California:

tyhich mittimizes interpage references, with respect to
1• Gidler, et • al" . that "the ising,le page' loading strategy
-incurs, each. time, the overhead Of dicovering why a
.:Irocessing sequences. It has been suggested by Arden, •
'Storage reference, failecl,• finding the. needed page in
•secondary Storage, and switelting tO ;mother user .dui ing
transmission of the needed page to hig,h-speed storage."

.,One should' possibly- add, "if there is • another user."
.Fetching can be overlapped • with processing only if -
'there is some processing to be done at the time.; it is
possible that many user programs desiring, processing
may be simultaneously held in an unexectitable state
while waiting for pages. Further, these panscs for pag e .
fetching may delay completion of user service requests
and result hi a gzmiaally high user dentaild. This high
tiser demand miat be iiseful for a batcluro:a-issing:.
system,- but . fôr .tinte sharing it prohab,ly means conges-
tion and poor r.esponse for at least Some of the users.

'Method of investigation

The approach taken by thé project was to obtain
empirical information about the actual memory require-
nients and page demand rates of 'e?;is'ting programs

.,operating under the. 0 .-32 Time-Sharing System. 3 Such
programs, of course, have not been speci fically organ-.
ized to operate in a paging environment.. Since it is not
obvious how. to accomplish this organization nor even
that programs' are susceptible to stieh organization, it
was .felt that such eippirical data would provide ,
,starting, peint, perhaps svoulcl give, some chues to auto-
Matic methods of structuring, and in ,any event, %vould
be useful as input to a simulation Model. , •

To obtain an accurate picture of a program's dynant-
ic.behavioe, it was decided to .executo the program h rin
interpretive Mariner. In this ‘vay recordings could be
made to show' memory utilization a5 .a function of time
(insiruction cottnt). An interpretive routine was written
th;tt performed titis function-on the AN/FSQ-32 com-
puter', a higit-speed 48-bit WOrd computer. 3 Mettiory

Avas considered as , 46 . pages of -1024 words each. Every
,MCII1Ory reference made by the object program was
Chee..1:ect to obtain the :instructions themselves and the

- / 	 ••• ■ ••-••... .•

d.:b references (including all levels of indirect address-
inz). These references were examined in terms of page.
adJrcsses and then were recorded along with the
inst uct flu cOunt at the tilne of Occurrence.

Restais •

ln the initial nuls, the instruction CoUllt \VAS reset to
zero wheneVer the objeet • progratn branched or fell
through- trt a Item instruetion page; all page. \veto
considered inactive at titis point. As euh inactive, page
was referenced; the page number and instruction count
were recorded. The page was then considered to be
active and aVailable for the remainder of the sequence,
that is, until the instruction count 'as again reset. Thus,
a count of the instructions aetually executed on each
page was obtained, followed by a list of data pages'
referenced by that instruction sequence. Both the iast
and the first instruction referencing each data page were
also recorded as well as an indicator as .to Whether the
data page whs "Set" (writteti) or . "tised only" (read
only) during the sequence.

„
The first runs on varirus popular programs an

exhibited pretty much the same pattern:

1. Short instruction seqttences 	relatively few in-
structions executed on any particular page borure a
brandi or fall-through to anether instruction page.

2. Considerable data page reference per sequence.
3. Early and late refcrence to data pages. ..
4. Rather rare occurrences of "used only" data pages.

For example, in a small sample (200 instruetion
sequences taken frein the JOVIAL compiler in a
normal card-proeessing stage): the ntean instruction
sequence was 'only 109.4 instructions. During each
sequence, 3.5 data pages were referenced on the aver-
age. Only one data page (of 11 referenced) was "used

	

only" timing the entire 200 Paae. 	séquence (21881
instructions). 'l'imiter, data pages tended to be required
quite early in exit sequence and usually were needed
until nearly the end of the Écrit:once:

In luter runs:, the recording '.vas modiftecl slightly to
examine multi,page sequences corresponding to what
used to be defieed as . a service interval ort . the Q-32,
Time-Sharing System. Suelt a service interval was
terminated by a call to the system or by the execution Of
80,000 instructions, whichever occurred first. The
80,000 instruction ligure vas used to approximatc a
system-impoed quantum interrupt of about 400 ins . of
Q-32 time. The instruction cotte was accordingly reset
to zero at the beginning of each Such,interval, and again
all pages were considered inactive at titis point. As each
inactive page was referenced, the page 'nimber and
instruction count were recorded as before; in addition
an indicator vas recorded if the page was referenced for
instructions to shoW that the program Was operating in

that page. Once autivated, pages were considered to
available for the remainder of the entire inter al. '1U
approach provided a pieture of the - page call rate ;;..1
total Storag,e requiremMs for cach. serv i ce i nfor\

 (Otte or more sitelt intervals constituted a eompic i,: 	f
 servicere(luest or action.)

The following, tire ',rognais wer e. !2xam i lhui i n

 mimer:

	

LISP 	e\ 	 >Y1 1/4'm 1 .`to\ldii‘tt 	11
geneention, editing, eompiltdion, and e .\ ■.'clitiolt
prôgrams written in the list-proce:-.,singlai
LISP 1.5. • (44 pages)

2. N1ETA5 -- A syntaX-clirected méta compiler.
which translates an object language to a tart.et
languag,e interpretively. (14 pages)

3. GPDS -- An interpretive. display generation sv•,-
tern that is first interactive while acquiring a (Cet

..base and then computational while generatin g,
display. (41 pages)

4. TINT 	À cotiversational, 	algebraic JO-
.VEAL intèrpreter. (23 pages)
5. SURE-- A JOVIAL source language progratti..

ming tool that "launders" JOVIAL source 111 .-
guage, providing a ,reformatted and concordait«.
listing of the program. (30 pages)

• These programs were operated for short periods ■ f
tinte beeause the cost of interpretive execution \vas ItivIL
For the Most part, they were performing tasks th:A
might be selected for demonstration purposes. So:Ite
eiTort was made to choose typical actions COVefing

range Of' time-sharing requests,.though in the SCIISe t

frequency of occurrence of varions request tpes. the
sample is not (mite representative Of tietual titne-shat
operations. One hundred and eighty4wo service ititerv.:
ranging from . three to 80,000 instructions wcre eN:ar.-
ined;'these intervals comprise 35 service 'requests
ing front seven to 1,21,504 instructions in length.

The results of recording the dynamie behavior of the-
prograMs in the malin« described are summarized
Figures 1, 2, 3, and 4.

Figure 1 'sho*.vs the cumulative relative freqUency ‘'t
the number, of instructions executcd between eons,..-
tive catis for neW pages. Innearly 59% of 1731
than 20 instructions were executed; in about SOrj. of
cases, less than 200 instructions. In Only
cases, 10,000 or more- instructions •••,cre eut:Lut:d
twcei.calls; these longer sequences oecuned t''"•
only Lifter the program !lad accuintilatd tutu:1;01;1y
the pages it reqUirecl.

_ 	This effect. is illustrated more elearly ht 1.1»11‘.'
wIlich shows page demand as a funetion- of tinte. I

tinte scale is logorithinie itt titil:isixotal, dt.'t k cd
the, instruction ccmnts by assumiitL; a ploCc-mli" 	t

149 per instruction. The initial cati rate for 1..;.› i>

100-

7

C

111

< 60 -
111
CC:

11-/

1st QUARTILE MEDIAN
/ MEAN •

201

19

18

17

16

15

14

13

o 12

el' 11

10

9.1

81

7-

5

4

3

2

.0 '16 .160 	• 1.60 16.0 	 160.0

Dynamic Proi...rar) Behavior 	 225
•••••■••••

201

0
100 10000

(INSTRUCTIONS

Fieure 1 ----Cumultttive rel:tti ,..c fi equency of number of instruction s. exc. tiled Uelwevn 	ccdis .

MAE (MILLISECONDS. LOG SCALE)

Figure 2 — Page demand (all proteams)

TINT -
 GPDS

LISP
META.

4

3

__..4

22-

20-

17 • 1

16-

15-1

14-1

12-

13-1

11-

10

9

8

7

—

-

ye- - • 	• 	 .
-

/

8 	,

4 /
•

,/i<el. •

Fir
• . 	%

r‘'

• / /1

extremely high; the .rnst ten pngcs, on the average, were
required within about 5.6 tns; in half of the cases; thes e
ru • t ten pages • ere .required in less than .8 ms. hi 25çô
of the cases where. 20 or more pages \vere . required, the

first 20 pages were needed within about 7.0 ins.
l'igure 3 also !,hows the (mean) Page demand by

individual program. Ilk% over-till pattern seetn ,r to be
fairly consi\tent in spite of the distinet ¼Iisiil1iIal ity of
function of the \giflotis programs.

A plot of total execution time per request versus
*percentage of ixiges required is shown in Figure 4. The
'general trend ;:ippears to be what one would expect; the
longer the service request the more pages reqttired. The
two points in the uPper left portion of the plot illustrat e
the occasional occurreece of requests with rather heav y.

 page needs even for verY small arnottnts of processing
service.

The dynamic behavio r . cf the examined programs
tivay be brielly,gencialized here: 	 •

. 	1. The programs tend to demand pages .at very'rapid
rates until the)' have • acquired a. sufficiency of
pages. 	 .

2. The programs frequently do nOt run very long evett
after living acqeired a Sufficiency. of pages.

3. For those prOgrani requests which do run for .t
while; a sufficiency of pages means a cotesider e lli„;
fraction of their total declared page requirements. -

Distalv.■ ionionl.yeculations

It i !.; difficult to assu,s \vitlt any cettainty the benefit,
of a demand pagin;t :drateey in a time \hat itte
COMputer configuration, work load environment, ;le d •
other system characteristics suelt as scheduling :wit
priority schemes all strongly influence ystem perform-
ance; performance itself menus different things to differ-
ent people. For a general-purpose system such as 'NIAC I
or SDC's, required to service with reasonable respon-

- siveness a heavy load of programs similar to those
examined, the data obtained in this study seem to
indicate that sticlt programs will require considerable
reorganization to operate efficiently in a demand-paging
environment.

The 'usual conception of a ligh-speed memory fihlcd -
 witlt a page or .two from each of many programs

desiring processing' does not look as though it will -stand
up subject to the page call raies observed in this study.
The page7fetching inechaniffl seems Rely to congcst

few milliseconds; until sortie of the programs
. have acquired a sufficiency of pag,cs there would be little
chance of processing-fetching overlap; and a sufficiency

—r
.016 .160 	 • 	1.60

11ME (mILLISECONDS, LOG S CAL)

Figure 3 	Page dcin;Ind by prourant)

16.0 	 160.0

o o •

e e 'o
-o

C o

o

o
70-

11 .1

60-

LI)

0
50-j

*10-

30-d

1.)yttantiz.-. Prolrarn P.chavior Un der Puginr: 	227

100 -

o
90 -

e.

o

oo

o

o

o

20
o

o
10-

C .160
1.6 • 	 16 	 160

PROCESSING TIME REOUIRED (MILLISECONDS, LOG SCALE)

Figure 4— Page usage vs. processing time

• 1600

of pages for some programs means that others must be
squeezed out of core and clefcri ed . ,

Reorganization or structuring of the. programs for
•aging • s usually proposed as a solution to this problem.
Just how much structuring is needed or can be done or
how this is to be accomplished is a matter or specula-
tion. Ideally, every program, during both checkout and
running phases, for each possible netibn'that it handle's,
should be somehow arranged so that it preferably uses
very few pages per action and that il processes long
enough between page calls on the average to.overlap the
time to fetch a page. Further, still speaking ideally, the
arrangement of prol-_,, rams to behave in this manner
should be accomplished automatically, perhaps by the
compiler - or a special optimizing routine, I.vithout bur-
dening the programmer.

"Ile authors confess that they do not know how to
achieve this ideal or eVen an approximation to it. The
following, sugg,estions for structuring have been cuiled
fioul various sources: •

1. Put data in the instruction pages referring to them.
2. Somehow rearrange data structures to reduce data

page now without causing an appreciable increase
in instruction page flow.

3. Duplicate subroutines and constants within pages
referring, to then). frequently.

4. Make considerable use of "common routines."

. i n the authors' opinions, none of these secnis likcly to
Itae sufficient pay-off, if ai. Thz last suggtn, tion 11CCOs

S01110 C0111111ellt pni1111)S; it iS 110i 'clear just ,what
meant by "cOmmon routines." lf one means common
subroutines such . as I/0 conversions, log, eNponential,
and trigonornetric functions, etc., the whole set of them
hardly constitutes mort than a page ,Of two of code and
a frequently used niajority of them inig,ht more simply
be offered to pro2rants as system services. If on the
other band, "common routines" means larg,ei . functional

' entities such as .matrix-manipulation routines or pack-
ages of multi-function routines Such as an on-line
alegbraic interpreter, flic search routines, etc, there
undoubtedly would be cOnsiclerztble common tu,apc of
these. The problem here is simultaneity; a time-sharing
system is uSually unable., %vithotit serious degradation in
response, to %vithhold service:to requests until th'..y can
be "batched" to use a particular routine in common. In
a 'heavily loaded general-purpose system- at least, the
chances seem - Small that the User request will find the
partieular routine requested remaining in core from
some previotis request: The ou-hue frequency ',:of
requests for it:particular Package is probably sOmewhat
propcirtional to the variety of -service offered by the
package; the more variety the larger the package and
therefore the less likelihood that it can reside in core for •
any period of time.

An alternative: is to abandon • the demand-paging

9 28 t'roceecus 	 .

strategy and try sOmethingee. One idea that 1111s he'an

advanced is to structure programs into fuia:tional scg-

(twins and to brittg, ia -sets of pages • by haying the
•p.ro ,Jain advice"..to .t.te ume-'-atin»g cr

monitor in ttdvance of its needs. \Vai i titis in m in, ,the

TINT program was c unlined in 'some detail to deter-
.. -• • • - • ..•
mine u there are enough clues in the source proaram to . 	.
provide. a better, ,organizatiotral_scheme. Ate1eypc

' communicator, a compiler, an interpreter, explanation
routine, and data area are used in TINT. l'Itese
program regions are functiomdly independent and : vary

in size. If the program refers to any one page in any of
these regions,.the entire region is likely to bc required.

The data nt-ea is dynamic, in its storage requirements.
Some better utilization of the main store might be
realized if this kind of segment information 'éould be

made available to the timc-sharing Executive., .
Realistically, it does tiot sce:m likely that program-

mers will sit pply such information; it is still less likely that
a compiler could abstract such information from 'static
code and automatically pass it.on to the Executive. It is
probably optimistic to assume that programs in general
are susceptible to automatic segmentation beyond the
nonfunetional.division into instructions, data, and-read-
only data. For those prograMs which do exhibit func-
tional patterns of behavior, the amount of informa-
tion required to describe these patterns and the process-
ing rec.-tufted to detect the currently requested patteret
might prove prohibitive. In programs which are primar-
ily data driven, for example, any achievable functiOnal
segmentation SCUDS likely to be gross. The benefits of
inaccurate segmentation may Lecome marginal consid-
ering that, in addition to the facility for handling
segment' information, one nurtt retain the mechanism to
discover and fetch, on clemand, odd missing pages. This
leads to program segments waiting; .clead in core, for
such pages and can lose back in occupancy tinte thtm sav-
ings which maylave bcen achieved in occupancy space.

SUN 11AR'IC and CONCLUSILSNS •

The results of examining the dynamic behavior tmder
paging of certain eNisting time-sharing p.-ograms have •
been ,presented here. The data obtained in this stud y

• seem to indicate that the handling of programs' similar'
to these .may be diilicult in a time-sharing ett\irOnment
tailizing , a mgmng on-demand- strate -gy.• The probLia of
trying to alleviate these diilicuities by re.m•ganizatien of
the programs has been' discussed and some speculations

• on the ...problems involved in eMploying an alternative,
."sets tif pages" or segmentation strategy have been
presented. ,

The digiculty wi th both the demand paging and "sets
of pages" strategics, is that system performance seems

stronglY (kPerlikut on aSSUMPtiOnS that S0111CtiliM; can
and wilt be-done to the programs to be hatall;M by the -
system. ln. the opinion of the tItultors, titis approas1 of

• trying to fit the work to the system instead of vice versa,
• Sc:CIlIS unrealistic.» inay not perhaps be entirely valid

to assume that the work load characteristics of future.'
• systems cati be extrapolated front those of existing
systems, but there is no reason to bdicve they will dilfer
greatly. In ,view of the fact that existing load Charae-
teristics''are 'measurable and have 1.:ben me:haired, it
would appear more fruitful to base system design

 criteria on these, known,parameters than on optimistic
hypothetical assumptions. •

REFERENCES 	 •

J 13 DENNIS a I. GLASER 	 . .

The seruciure of on-line infornjation processing systems
Preceedincs of the SCCC)110 Conuess on the Information •
System Sciences p 6 1965 .

2 	AnD::›1 ii .■ ciAt.t.ER T C 0. 111IN 	11W l's rhitv‘at• -r•
rrogram and addressing structure in a ibnc-sharing •
environmeni
Journal of Ow 	t 3 pp 1-17 Jannary 1966

J I SCI IWARTZ a CI COI 	C 	ISSNIAN

gener'al.purpose tiny-shoring Nystem
SI)C doenteent SP-1499 31 p p 29 Arril 1564

TEXTBOOK REFERENCES

1. R. Watson ' Time Sharing System Design Concepts
. 	McGraw Hill 1970 ($12.50)

2. Harry Katzan Jr.

	

	Advanced Programming
Van Nostrand Reinhold 1970 ($15.00)

3. J. Martin

	

	 Teleprocessing Network Organization
Prèntice Hall 1970

4. DATAMATION

	

	 A Catalogue of . EDP Products of Services •
(1971)
»ailable from Datamation, 1301 South Grove Ave.
Barrington Illinoi 60010. ($35.00)

5. AUERBACH On Time Sharing (1967) •

available from Auerbach Info. Inc.,
Philadelphia, Pa 19109. ($14.00)

6. James Ziegler

	

	Time Sharing Data Processing Systems
Prentice Hall 1967 ($13.00)

7. Douglas Parkhill 	The Challenge of the Computer Utility.

Addison Wesley 	($8.00)

