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Introdﬁction

The intent of these notes is.to briefly review the features
of the hardware required for effective memory hierarchy
‘management in time Sharing systems. The time shared systems
will have the general architectures as shown in Figure 1 below.
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The major hardware'features'required'By such systems’are:<
- protection mechanisms to help safeguard one- process from
another and the system from 1tse1f and user processes

and: : _ : :

- mechanisms which contribute to eff1c1ent dynamlc,
allocation of resources.

- hlgh,rellabllrty;

Memory system Des1gn Problems

The central resource in current systems is the main memory.
This main memory holds the 1nstruct10ns for the arlthmetlc—
logic processors (CPU's) and for the I/O processors (I0P's).




It also serves as the buffer for 1nformat10n passing over
communlcatlon lines and betWeen various I/O and secondary
storage devices, and stores the code for the resident.
operating system. It goes without saylng that the proper
design of the memory system is critical to the success of
a large scale time-sharing system. Figore 2 shows the
memory centered model of a computer system which shows the
memory as the control resource. '
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Addressing and Allocatlon

Main-memory deV1ceS have multlplexlng propertles that
must be considered in order to spec1fy an approprlate
~addressing and. allocation scheme forﬁa_t1meshared computer.
While any portion of main memory can be dedicated to.a
process. Processors themselves can ‘be allocated only as
units. Processors, however, can be multlpleXed rapldly,
while main memory cannot.~ This time is requlred to move
1nformat10n between main and aUX111ary memory. This
moving of processes between main memory ‘and auX111ary storage
in order to multiplex main memory. is- called swapping.

A requirement in’the‘design of an addressing’scheme for
a timeshared computer is that it should max1m1ze the

allocation advantages of memory and m1n1m1ze the mult1p1ex1ng .

dlsadVantages. For example, 1t is preferable to have ‘only

-




one copy of a particular procedﬁre,~;say a compiler, in main
memory that can be shared by severalfﬁrdcesses rather than
have each‘preceSs’obtainfa"separate_qoby}~;Programs‘designed
to be shared by several processes are called reentrant
.programs or pure procedures, A reentrant program has two
characteristics: - A A ‘

" - none of its instructions or addresses can be mod1f1ed
durlng 1ts executlon,

- temporary storage and data areas ere maintained outside
the procedure itself, usually in the memory space of
the calling programs. ‘

Although re-entrant ptograms can beHWTitten;for mgchines
with a wide variety of addressing techﬁiques, certain addressing
techniques can make the-writingtand protection of these

programs simpler.

Memory can effectlvely be utlllzed by ach1ev1ng flex1b111ty
with respect to where processes can be placed in phy51ca1
memory. This ability to relocate proceSSes dynamlcally in
physical memory is by a variety of addre531ng and allocatlon
technlques, ' o '

The cost of de51gn1ng and 1mp1ement1ng appllcatlon
systems, as well as the treatment of certain classes’ of
problems - is to be affected by the propertles of the
addressing and. allocat1on stheme., The'various tradeoffs
in the design of an addres51ng and allocatlon system nust
take into account both user needs and system cons1derat10ns.
A designer must decide whether the loglcal ~address space
is going-to be smaller, the same size or- 1arger than the
physical-address space. The structure of the 1ogica1 -address
space must 3150]53 determined. : Many structures are poss1b1e,




e.g., the 1arge'1inear array commoniy used, a set of linkable
linear arrays, as found in Multics, or a tree structure. It
must be decided how much of thls structurlng to perform in
hardware and how much in software. The technique of
'translating or_mapping the logical addresses to physical
addresses must be determined. Present systems perform

this mapping at three points, namely

When the procedure is prepared as an operable computer
program; the result-is an absolute program, which, in
effect, is a551gned the samepresources each time it is run.

When the program is loaded; thls is known as statlc
relocation. ' '

When the program is 1n executlon, thls is called dynamlc

relocation.

Usually only 11near arrays or sets of 11near arrays are
considered as forms of hardware memory structures, because
more specialized structures, such_as trees, 115ts! orvrlngs,
are usually left for implementation by»SOftware=processors,.

The translation of data references to physical addresses
is eagily accomplished during program preparation but suffers
from the severe problems which arise when one attempts to
share or modify programs. For example, if one inserts an
instruction into a program, all references to 1nstruct10ns
and data beyond the point of insertion must be updated.




Similarly when one constructs a program out of routines
prepared independently, the address féferences must-be
modified to reflect the locations into which the routines
are loaded, ‘Further, translation at that time restricts
the size of the logical-address space to that of the
physical-address space., ‘

The process of static relocation involves a'fair amount
of computation. in‘systems using static_relocatiOn, prbgrams
are usually assembled as if they were'tO‘be loaded with the
first instruction at location zero;fwith succeeding .
instruction and data WOr&s‘being placed in contiguous cells
from this point. The location of the fifst word of the
program is called the base address. " All instructions or
data words with address references are marked by the assembler.

Then at load time, a progfam called the loader adjusts all

address references to reflect thé actual base address at

which the program was loaded. If seveféliprograms assembled
independently are to be loaded as a unit, the loader, using
information supplied by the assembler, adjusts the interprogram
address references to reflect the actual locations of the

different programs. This process is‘called"linking.

With static'relogation,vaguser can be initiaély‘loaded
anywhere in memory. How@vér, when the process is removed to
auxiliary storage and then returned during swépping,’it;must
be placed in the same locations as befdre,,to avoid the
loading process. (Furthermore, to go through the loading
process again implies that the program muSt~be~sepaTab1e into
a pure procedure part and a data part and that the daté;part
must contain no absolute=memory addresses.) The major\gaiﬁ
of static relocation is that during the loading process
independtly written programs and data can be combined into
a computation with proper linking of parts. The proper




mapping to the physical-address space is performed by the
loader. Each program can be written in a 1og1ca1 space of .
its own, but no dupllcatlon of symbolic location names is
‘allowed, although programming technlques can be developed
to resolve such dupllcatlono

The ab111ty to load programs anywhere in physical memory
is useful in the linking process above but of little value
in ach1ev1ng effectlve memory utlllzarlon in a timeshared
system. For example, when a new process is to be started,
the system can attempt to find a process which would fit
in an available block of cells. If such a process can be
found and it can remain 1n main memory until completlonp
static relocatlon is suff1c1ent fo enable several processes
to share main memory. (The assumptlon of some sort of
memory-protection scheme is implicit;) A more usual
situation will be that the total number of free cells
available is sufficient for the number required by a new
process but that these cells are not in a‘con'tiguou‘s(;;block°

If swapping is required then even 1f a contlguous block

were avallable on initial loading, the same contiguous block"

will not necessarily be available each time the process is
run, without moving some in{ormarion to another aspot in
main memory ot mov1ng it to secondary S‘Lorageo For these
reasons, systems without dynamic-relocation hardwares o
when used for timebharing, generally have" alloWed only one
complete process to reside in memory at a given time. - Thus,
during the Swapping'operations the system must remaiﬁ idke,
It is this situation which motivated the development of
dynamic-relocation methods.



Dynamic Relocation Using Base Registers

One of the simpleSt.and most common dynamic-relocation
techniques uses. base registers,_which_aré'registers that
can have their contents added to the address of each
memoTy operation. By adding the contents of a base

' register to all addresses, one can load a program
~ anywhere in memory in a block of contiguous cells and

then'set the appropriate base address of the program 1nto
the base register. Using base reglstersb programs are -
initially loaded using static—relooation techniques.bﬁt

can be dynamically relocated as a unit later without

going through the loading process. This flexibility results
because the loadlng is to logical space not physical space.
The base registers form a hardware. map which maps logical
space to physical space. Farther flex1b111ty is galned

if there is more than one base register, which facilitates
sharing programs and makes it p0531b1e to spllt a program

&
¥

for loading 1nto noncontlguous stovage areas.
' i

~There are many possible-variatioﬁs of the'base=register

technique. In fact, techniques such as segmentation

are implemented using somelhardwaré registers‘called.base"
registers. Here, we are only interestéd in the concept of
base registers in its simplest form as defined above and
illustrated in Figure 3 below. There are two Common Ways
of specifying which base register to use in forming an ‘
address. One techhiqueg repréSente&-by the IBM System 360,
requires the base reglsters to be dlrectly addressed by the
program and allows the program to access the base. reglsters.
The second: technlquen represented by the UNIVAC 1108, does

not allow programs to access the base reglsters and 1mp11¢1t1y

addresses the base registers dependlng on the type of memory

operation belng executed, For exampleo all 1nstruct10n fetches

use one base register and all data fetches and stores use
another base register,
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Program sharing is performed in a system using base registers

:by writing the reentrant programs to make memory references to
themselves through one base register and to make memory

references to data .in- the calling process through a second -
base register. ' '

BASE BEGIT

" PHYSICAL MEMOV -

BASE REGISIER 2 - |

PROGRA

Figure 3

Two base registers used
1 - for.dynamic relocation

e’ .. of program and data.

DATA -

Size'of'LﬁgicéIlSﬁaée,

The size of the logical-address space-using static relocation
or dynamic relocation with base registers. is usually equal to
or less then the size of the physicélwaddreSS_size, A larger
physical space can be simulated by‘thé user by~ex§1icit1y
overwriting a portion of his cbmputation not-iﬂmediatel?i
required with‘another“payp”byggght in from auxiliary storage.
This process is ca11e¢”cV6flaxgngf ”Overlayiﬁg is closely
related to the concebt‘of SWaﬁbing exteﬁt that overlaying is
a user responsibility whereas SWabbing“is a system responsibility.




Memorx_Utilizafion

' One of the problems uncovefedfby static relocation is
the fact that, once loaded, a procees's address references
are bound to a certain contiguous areatof memory and that
during swapping the process.must be returned to the same
area of main memory each time it is given control of the
physical procesSor° ,When_base.registers are used, this
restriction no longer holds° When fhe processor is to_be'
switched to a process not in main memory, a free contiguous
block of main memory must be found for it to reside in.

If such a block exists, no information need be:saved on
auxiliary memory in order to make room for the incoming
process, The more usual Situation‘résults when although
enough free cells are available in main- memory for the
process, they are not in a large enough contlguous block.
In this case,; a system de51gned to use base reglsters
can. do three things:

- search for a process which will fit'into one of
" the available contiguous blocks,

- swap out part of ‘some process. presently in main
‘memory bordering on a free area. in order to make
a large enough contiguous area, or

- perform a compacting opefatidngon main memory.
Figure 4 illustrates the last two ideas., -

Figure 4a shows memory at a glven p01nt in tlme. There
are two programs entirely residing in memory and three free-
space areas . (holes). It is de51red to bring 1nto memory a
third program C which is larger than 1nd1v1dua1 ‘holes but
smaller than total space available in holes 1 and 2,

Figure 4b shows one approach to maklng enough Space availabl
to fit in program_c° Program A is moved ‘entirely to start

e




at the beginning of memory, thus creating enough free space .

- for program C. Figure 4c shows another way of making
_enough space available to fit in program C. Enough of -

progrém A bordering on hole 1 is reﬁbved to auxiliary
storage to make room for program C. -

One solution to the problem of finding a large enough
contiguous’area'might be to use multipie_base registers so
that smaller pieces of the process could be loaded into
existing free spaces. This apﬁroach seems to be imﬁractical
because the instructions of a given piéce.must refer to the
correct base register. Thus, the ﬁTOgrammer or~compiler

“must decide how to split up the prchss?and which.basé

registers to assign which pieceso__Binaing instructions
to base-register addresses at load time means binding the
process to a portion of logical space. - ' ‘

The system could not easily peffdrm'this base-register
assignment function dynamically because it;would be very
time-consuming and compiicated'to:detérmine which
instructions to modify.' | |
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Figure 4: Memory allocation using base registers: (a) typical
~ memory snapshot at a.point in time; (b) making foom
for program C by compaction; (¢) making room for
program C by partial removal of program A.




.DynamiC'RéIdCatioh USiﬂQ‘P&ging

Dynamic relocatlon uslng base reglsters, which requlres
program to be located in contlguous areas of main memory,
leads to difficulties-in fully utlllzlng main memory because
free areas develop which are not large enough to be used.

If, however, programs and main memory could be broken into
small units and the program pieces could be located in
corresponding sized blocks anywhere -in maln memory, then the
possibility exists of utilizing main memory more éffectlvely.
Paging is the name given to a set of" technlques which enable
such a uniform memory .ragmentation to be implemented.

Paging techniques'can also allow economic imolementation of
a logical-memory space larger than thevbhysical-memory space.

In a paged system, physical memory is considered to be
broken up into blocks of a fixed size, usually 512- 1,024, -or
2,048 words. The term BE&E refers to unlts of logical space,
while equal- 51zed unlts of physmcal space are called blocks.
a size equal to the block size of phy51ca1 memory. Thus,
the address in such a system is considered to be represented
by two numbers: (1) a page address or number end (2) a line-

within-page address, For a machine with an n-bit address field,

the high-order p bits are con51dered the page address and
the remaining n - 'p bits are the. line address.. The operatlng
system may occupy less memory than a: multlple of a larger
page size. In newer systems the- page.slze can be changed-
dynamically'by‘the system. The memory‘can be more fu11y
~utilized by the system if smaller page sizes are available
(64, 128, or 256 words). More effective utilization of
memory results from u31ng smaller page sizes for the
following reason. Slnce a given process is not usually
going to require en.amount of memory space which is an
even multiple of a page size, the last page of a brocess
will not utilize all the'block_assigmed“tOzit.,'ItAseems



‘.

reasonabie to assume that on the average the last page of a
process will use half of its&assigned Block; The larger

the page size, the more potehtial waste space there is

going to be. A paging mechanism requires a table, called

a page table, or map with one entry for each page in order

to perform address translation from logical to physical space.
The smaller the page'size;'the'larger\the table required for
a given logical-address space. Thus, there is a tradeoff

between waster space related to page size and resources

used to store and manipulate large page tables. The total
amount of waste‘5pace'due to unused block'locations depends

on the number of processes expected to:reside in‘main»memory.‘

E.g. Paging on the XDS-940

The address space of a process in the XDS-940
can be as large as. 64K, and thus the 1og1ca1 address space
is smaller than the physical- ~address space. It should be
noted that there are general cases of a paged system
yielding a V1rtua1 memory larger. than the physical-~ ~address
space. A process in the XDS- 940 is broken up into 2K word:
pages, and memory is similarly broken into 2K word blocks.
There are 14 bits in the address field of a 940- 1nstructloﬁ
word. The address field is con51dered to eontaln two parts,
a 3-bit page number and an 11§bitflihe-within-ﬁage-ﬁUmBer.'
The rélocation mechanism (Figure 5). qseS‘eight.G-bit“bytes
called a memory map. The memory map in the XDS-940 is.
organized as two 24-bit fegisters;f Each register cdntains
four map bytes. These registers are: called the real relabe11ng

registers, because they relabel (map) the page number into a
phys1ca1—memory block number. These map bytes are considered
by the hardware numbered 0 to 7 and correspond to 1og1ca1 pages.
A given map byte is addressed by the page number contained in
the memory address. Within a given map bytedis a number for

the actual physical block centainingsthe code for the logical



page. - For example, in Flgure 5 logical page 0 is in physical
‘block 32, logical page 1 is in phy51ca1 ‘block 3, and so
forth, The numbers in the physical blocks’of,the figure
indicate which logical. pages they'cqntain,

The logical address isleonverted to a ﬁhysicai.address as
shown in Figure'6, | ' o

~The 3-bit page number indicates which map register contains

the‘thSical-block number where thefpage-actually resides.
The map register is 6 bits long and is shown in Figure 7;
note 5 bits contain the physical-block number, and 1 bit
is for memory protection. The phy51ca1 address. is 51mp1y
formed by concatenatlng the phy51ca1 block number with the
line number to form a 16- b1t address.~ Wlth 16 bltS, 64K
of memory can be addressed.

This hardware mechanism‘is,Quite‘simple,,but_to work as
parf of the of the total system it requires additionai |
software tables, which keep track of the memory space of
each process. The basic idea is ‘that when.a process 1is
to be brought into main storage, the software monitor
examines the state of main storage and swaps out only. as
many pages as are required 1nicon3unct10nAw1th free pages
to meet the needs of the incoming process., The monitbru
then assigns the available physical»blotkswto.the~1ogica1
pages of the incoming process and swaps its pages into.
these blocks, . The memory map.is updated Then after
restorlng the .processor reglsters and program counter to
the values they had when the process was 1ast execut1ng,
the process is restarted.
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Flgure 6: Mapping from loglcal to phy51ca1
address in the XDS 940.

Memory Mg]i

The most important»general concept introduced above is that
of a memory map. A map translates the logical-address space
into the phy31ca1 address space. In ‘the dynamic-relocation
techniques, the map is a set of tableé in .memory or a.set of
hardware registers. ' In the static-réiddationrtechnique the




map is a program. In the dynamlc-relocatlon method using
base registers, the base, reglsters are the map. In the
dynamic-relocation method using paging, the page map. can
be looked at as a way of efficiently 1mp1ement1ng multiple
base registers. The paglng process is'completely invisible
to the users and to. the compllers, wh1ch function as if - !
they were working with one contlguous 1og1ca1 ‘chunk." The
ability to fragment memory uniformly, made p0551b1e by
splitting main memory into blocks, means that all blocks
of main memory can be used, although assure that no two ‘
shared procedures which might be used concurrently occupled
the same position in loglcal space, If. the page’ table
were organized and addressed as an: aotual or 51mu1ated
associative memory, then it could: be reduced in s1ze |
because no gaps need result., The practlcal problem.of__
implementing in hardware and software such a large
assoclatlve map for eff1c1ent executlon may st111 create
dlfflcultles,.although further study may be frultful.:

In summary, then ‘the dlfflculty of u51ng paglng for
sharing single copies of procedures and data in full generallty
and for allow1ng for data-structure growth results:

- Because of the’ 1arge number of address b1ts required
: to ensure unlque page numbers in- a large loglcal spaCe.-

- Because of the large, possibly sparsely filied map
requlred u51ng an indexed page table (with an eff101ent

~ associative map this argument is reduced, although '

- duplicate entries for each page of shared procedures
and data must exist in the map of each process u51ng
the shared procedures or data)




- Because of the careful bookkeeping required by the
~installation and the system to be certaln that |
procedures used concurrently do not occupy the
same pOSlthD in 10g1ca1 space (1ue., have the same '
page numbers), and to properly p051t10n data whlch
contain address references.

18T sBNs

; 1 PHYSICAL' BLOCK ‘
) — CVN61 “Figure'7' Map byte in the_

e G T
PROYECT g1 S o 1 XDS 940.

The problems with physmcal space allocatlon u31ng statlc
relocation resulted because address references were bound to
positions in ph251ca1 space when procedures and data were
loaded into the system. Once loading was accomplished, all
addresses were absolute physical locations. This restriction
was removed in the base-reglster and paged systems by intro-
duc1ng mechanisms wh1ch allowed phy51ca1 address references~
to be made relative to either a base reglster or block '
number, the contents of which did not have to be set until
execution time., However, the particular base register or
map entry to be used was bound into the instructions at
load time. In other words, once 1oad1ng was accompllshed”
all addresses were to absolute 1og1ca1.locatlonsfp_,

The problem which Segmentation‘sets'out to solve is that
of allowing re1at1ve addre551ng W1th1n the 1og1ca1-memory
space. This means that 1og1ca1 space must be broken up. into
chunks of contlguous locations and a11 addresses within a
given chunk are to be relatlve to the start of the chunk.




We then need a hardware 0T software base reg1ster whlch polnts

" to the base location for each chunk, - Interchunk references must
refer to the proper base reglster and give a relative address
within the referenced chunk. The trick is to develop an
efficient mechanism which allows these base registers-to be
assigned at execution time. The>chunks of contiguous 1ogica1
1ocat10ns are commonly called'segments._ The basic idea of
segmentatlon is thus quite simple, but the mechanisms for
allowing assignment of base reglsters at executlon time are
more involved, ’ R

computer words). hav1ng a name. A partlcular data element »
within a segment is referenced by the symbol1c segment nhame
and the symbolic data-element name . W1th ‘the segment (S)/[aJ
The notation (8) indicates a symbol;c.segment named a.

The symbolic segment name-(S)‘is eVentﬁally_(at run time)
translated into a base-register'number; and the symbolic
data-element name in the segment [o] iS”going;to be. _
translated into a relative location within the segment.

In other words, a segment is- a oner d1menslona1 array, and the
segment name is related to the address in logical space of
this array (its base address), the symbollc €lement name
within the segment is related to the ‘address of the
referenced element relatlve to start of the segment, as -
shown in Flgure 8. '

Segmentationis often referred to as two-dimensional logical-

address space because particular e1ements w1th1n the logical
space are exp11c1t1y referenced by a pair of names. A paging .
system is not consldered two- d1men$1ona1 even though the

address has a page -number and a line- number pa1r,_because
these conventions are 1nv151b1e to the user. To be general



one could consider base-register and paged systems as -
segmented systems allowing one segment, and-thus the"segment
name is implicit. 1In a general segmented system, ‘the user
‘programs his addresses using a pa1r notation, (S)/[d]
segment is a self- contained logical entlty of related.
information defined and named by the programmer, such as

a proCedure, data array, symbol table, or pushdown stack.
There is no 1og1ca1 restriction on the length of a segment,
although in any given 1mp1ementat10n there will be an upper
bound on segment length. Segments ean.grow and contract

as needed. - ST R .

| SEGMENT NAMED <S> . BASE REGISTER
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The purpose of a timeshared computer system is rapld t1me
mu1t1p1ex1ng of computer system resources on ‘behalf of user
requirements. The system attempts to perform thlS multi-
plexing so as to satlsfy user completion and response time
needs and to utilize"system resources efficiently. These
time shared systems are usefully viewed as 1arge communication-
switching centers Wthh control the- transm1551on and trans-




formation of information as. it moves between the large number
and variety of devices (terminals, discs, etc) that are
‘attached. | | '

Communication with Main Memory

The central point'through which the information°pas$es in
present organizations is main memory (with a possible side
journey to the CPU for transformation) as it moves from one
device to another. Main memory is a prime system resource
~and consequently, a potentlal source .of commun1cat1ons" '
“problems. In timesharing systems, multlple CPUs, h1gh transfer—
rate secondary storage devices, and numerous I1/0 dev1cesshare
access to ma1n memory.. The processors which control the
secondary storage and I/O devices and communication with '
memory are usually referred to as. channels, 1/0 controllers,
or I/0 processors.

A basic communlcatlon problem w1th aux111ary storage and
I/0 devices is ga1n1ng access to a. dlrect transfer path to
main memory. A tlmesharlng system contalns a varlety of
devices attached to it. Assoc1ated w1th these: devices 15
a range of dataftranéfer rates. Dlrect transfer paths to
main memory.require'iogic to resolve confllcts;for,access
to a memory module and.require sendiﬁg_an receiving _ ‘
circuits at each end of the path;,therefore, it is usually’
uneconomical to provide a separate path for each device.,
It is possible, however, using the fact that thelattached
devices have a range of transfer-rate requirements, to
design I/0 processorS‘which'enaBle'manY-devices:teféhare
one direct—trensfer path to main memorYAconcurrehtly.-




......
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Three major communication problems are associated with
remote devices such as terminals,'printers, etc. these are

- the transm1551on of 1nformatlon between the central
facility and the remote devices . '

- the interface between transmlsslon 11nes and the E
central facility )

- the 1nterface between transm1551on 11nes and the
remote deV1ces

‘Along with the transm1551on of 1nformatlon technlques
must be considered. for utilizing standard telephone 11nes
for digital 1nformatlon, sharing lines among several ‘devices,
and synchronlzlng communication. between Temote. polnts..>
Assoc1ated with the interface between transm1551on lines

and the central fac111ty are the problems of 1dent1fy1ng,'
controlling, and addre551ng communlcatlng devices and
converting the transmitted 1nformatlon to a form usable by
the central machine and vice versa. Assoc1ated W1th the
interface between transm1551on 11nes ‘and the remote devices
are problems of encodlng.lnformatlon and-prov1d1ng
identification., - -

|
[

Communication With the Main Memory

Mu1t1p1e Memory Box and Bus Organlzatlon The technolog1ca1
problem to be solved. 1nlthe design of a memory communication -
system is to prov1de adequate transfer capablllty between main
memory and all processors requlrlng access. In practlcal
systems, the rate at which data can be transferred between
processors and maln memory is llmlted by the transfer N




capab111t1es of: the memory itself and the memory busses. The
~rate at which the memory can transfer informatlon is often

referred to as the memory ban&W1dth “usually measured in words
per second, Bandw1dth limitations: also ‘exist for the..

busses. Because the memory system is’ shared by several
processors, care must be ‘taken in the deS1gn to keep
performance from being serlously degraded due to interference
caused by simultaneous attempts on ‘the part of the several
processors to utlllze a faC111ty such as a memory bus or

portion of memory itself,’ Flgure 9. shows a common me thod
for organlzmng the memory structure in a resource—sharlng
system. o '

The maximum memory- system bandW1dth for the system shown
in Figure 9 is p X R, where p - is the smaller of the number
of memory modules m .and ‘the number of access paths n,. and
R is the maximum transfer rate.of each box. In other words,
the maximum transfer rate is achleved when each path requests
access to.a separate module. R )

The minimum transfer rate is jﬁst R and'occursmwhen:all
paths request access to the same module. There is -
interference in th1s case.;y '

MEMORYV,BOXES "

S B S .

- teoxsl- - |soxm|

Box1| . |BOX2

MEMORY ™™
.- BUSSES . -~




The scheme shown in F1gure 9 cuts 1nterference by alloW1ng
simultaneous access to more than' one- box. That is, if bus 1
requests access to box 2 at the same tlme buts 2 requests -

. access to box 3, both-accesses are granted because each box
has its own addressing dnd read/write c1rcu1try. Even given
the scheme shown in Flgure 9, serious 1nterference can result
when memory addresses are contlguous in the boxes, e.g.,

box 1 having addresses 1to 16K © 1 to 32K, Consider the
case of avhigh-speed drum processor which transfers at the
memory rate. If this device has a higher priority for
memory access than. the arithmetic unit, then dqring a block
transfer the arithmetic unit could be denied memory'aocess
for a prolonged period if it tried to’ access the memory

box bieng used by the drum processor.; To get around this
problem deslgners have_developed the: technique called

'interleaving.(Analagous‘to multipiexing),'

In an interleaved memory, consecutive addresses are in
different memory boxes. For example, in a two-memory-box
system all the even addresses might be in one box and all
the odd addresses in the other. With an. interleaved‘memOry,
the pTObabllltY of one processor's tying up the memory for
a significant time is greatly decreased. The de51gn problem
is to determine the size of each box and whether or not
1nterleav1ng is to occur over all boxes or over grouplngs
of boxes. : ‘

E.g.- The IBM 360/85 Memory Organlzatlon.. A‘schematic'of '

the model 85 memory- system is given in Figure 10, Main
storage in this system has a cycle time of about 1 microsecond,.
For storage.. conflguratlons of 500K and 1,000K words (32 bit),
storage is 1nter1eaved four Ways.- For smaller storage
conflguratlons, storage is 1nter1eaved two ways.» ‘Note that
the buffer storage is avallable only to the CPU and not to the



I/0 or “other processors{ The buffer storage has a cycle
time of 80 nanoseconds. The buffer storage . is e1ther'
4K, 6K, or 8K words. The de51gn of thls_system was
oriented toward increasing the effective speed of memory

as seen from the CPU, The importance of high data-ttransfer

rate between all processors and memory has not been highly
developed in this_machine. Thevmemory‘bus is four words"
wide in order tohachievevthe bandwidth required for the
main applications envisionedi For 1/0 oriented systems,
this organization offers little advantage, but the bas1c
ideas can be extended. ‘ '

Main memoryjand thehbuffer”sterageﬁére organized into
sectors of 256 words. During_operatien, a\correspondence
is set up between bufferfstorage sectOrs and main—etqrage
seetorsp in which each buffer-storage eector is assigned
to a single different main-storage sectors, Because ef
the limited number of buffer storage sectors, most ma1n- |
storage sectors do not have any buffer storage sectors
assigned to them. Each of the buffer-storage sectors
has a 14-bit sector address reg1ster which holds the
address of the maln storage sector to. wh1ch 1t is
assigned.

MAIN: STORAGE

BUS CONTROL UNIT [+ ' CHANNELS

BUFFER STORAGE

CrY

" Figure 10: :
IBMZ360785 memory system,




The assignment obeuffer—storage sectors is dynamically
adjusted during operation so that they are assigned‘to the
main-storage sectors that are currently being used by
programs. If. the program causes a fetch from a main-storage
sector that does not have a buffer-storage sector assigned
to it, one of the buffer-storage.seCtors“is then reasSigned '
to that main-storage sector. To make .a' good selection of a
bufferAstorage -sector to reassign, enough information is-
maintained to order the buffer- storage sectors 1nto an.
act1v1ty list,

When a buffer-storage sector is assigned toha‘different
main- storage sector, the entire 256 words located in that -
main- storage sector are not loaded into the buffer at once
but each sector is divided into 16. blocks of 16 words each,
wh1ch are located on demand.

Storage operations always'cause main storage to‘be.
updated., If the main-storage sector belng changed has a
buffer- storage sector a551gned to it, the buffer is also
updated; otherwise no act1V1ty related to ‘the buffer takes
place. Since all the data in the ‘buffer are also in main
storage, it is not necessary on a buffer-storage-sector
reassignment to move any data from the buffer'to main
storage. ' ‘

Two 80 nanosecond cycles' are requlred to fetch data that
are in the buffer. The first cycle is used to examine the
sector address and the validity bits to determine if the data
are in the buffer. The second cycle is then used to read
the data out of the buffer. If the data are not in the
buffer, add1t10na1 cycles are requlred wh11e the block is
loaded into the buffer from main storage.



Simulation was oeed.eXtensively during the design:'of
this memory system. Thete are many imoottant_patamétets,
such as choice of a reﬁlacement algorithm, buffe; size;"'
sector and block sizes, which must be determined. '

With the simulation running a representat1Ve scientific-
oriented job mlx, it was found that mean. performance of this
system as compared to an 1dea1 system con51ét1ng of only N
80-nanosecond memory was 81 percent. That is, on aVerage,
the CPU obtained information from the buffer storage on
81 percent of its references, ' ‘

Memory Management Software - Storage Hierarchies

- The purpose of Storage‘system is to hold-information and
to associate the information with a logical address space
known to the remainder of the'computer'system.1 For ekample,
the CPU may present a‘logical,addrees to the storage system

with instructions to either retrieve or modify the information -

associated with that address, If the storage system consists
of a single device,Athen;the logical_a@dreSs‘space;corresponds
directly‘to the'phyéical address space~of.thefdevice.
Alternatively, a storage system with?the same address space
can be realized by a hierarchy of storage ranging from fast
but expensive to slower but relatively ineXpensive~devices.

In such etoragechierarch{es}‘the 1ogica1faddre§s~space‘is_
often partitioned into equal size pagee (or unequal size
segments) that represent the blotks .of 1nformatlon be1ng

moved between dev1ces in the h1erarchy. :

A hierarchy managemeht facility is included to control
the movement of pages and to effect the (generally dynamlc)
association between the logical address space and the _
physical address space of the. hlera?qhy.‘ When the CPU




references a logical address, the hierarchy management
facility first determines the physical location of the.

corresponding logical page and may then move the page
to a fast storage device where the reference is effected.
The goal of the hierarchy management facility is to

maximize the number of times logical information is in

the faster devices when being referenced. As this goal
is approached, most references are directed to the fast,
small stores whereas most of the logical address space
is distributéd over the\slomer;'large%stOres.

Memory (hierarchy) management-becomes'a severe problem
in multiprogramming and .critical memory systems. kln
a mult1programm1ng system, many programs are concurrently
executed by the processor. Thus the main memory is shared
by many programs. Since the total size of all the programs
far exceeds the size of the main memory, in order to keep
information that will be used in the near future in the
main memory, the system constantly moves 1nformat10n
between several levels of storage medla. Here, for example,

we shall consider the.case_of paged memory system; that is,

the address spaces'are,partitioned into equal size blocks

of contiguous addresses. The page replacement problem is
defined as the problem of deciding which page should be kept
in memory and which‘should be removed when additional space
is needed. Obviously, the page‘removed should be a page
with the least probablllty of being needed in. the near
future. However, this should be . done w1thout 1ncurr1ng
difficult 1mp1ementat10n problems at the same t1me.

Many replacement algor1thms have been proposed and stud1eds

examples:



1. Least Recently Used (LRU) fer an‘excellent intro-

2, Stack Replacement Algorlthms duction to those algo-

rithms, see the paper
3. Random Replacement given by R.L. Mattson,

4, Working Set Replacement Algorithm = et, al.

We shall illustrate briefly as‘an:exemple the Working‘Set
Replacement Algorithm. (see the paper by W.W. Chu)

Model (Working Set Replaéement Algorithm),

The working set w(t,t) at a glven time ¢ is the set of
distinct pages referenced in the time interval (t- (T- 1) t)
where T is called the werklng.set parameter. The working -
set size w(t,T) is the number of pages in-W(t,T); The' X
average working set:size S(T) is defined as S(T)= Lim 1. % w(t,T).

, ‘ o 4 oo F tel
For systems employing working set repIaCement algorithm;
several parameters are of interest: ‘

1. page inter-reference - infernal distribution F(t)
which describes the fraction of the page 1nter referenced
1ntervals less than T, ' ‘

2. Average page fault freq.:m(T) which deséribes.the
average number of page faults per page reference for working

set parameter T.

3. AVerage working set size S(T).

used

S e for

program's sequence working set :0of repla- ' £
of reference = ~===% | cement simulator system
‘ ' .algorlthm o design




(An example including-the results is given in Chu's paper).

"Examples of how to use the parameters of the worklng set
replacement algorithm, '

1. Suppbse we would like the syétem‘to operate at_an average
page fault level of about 104 page faults/reference; that is
one page fault in every 10'4 page'referenee, then from the |
graph representing_m(T) versus T for different programs, .

| m(TO) = 107 -4 page faults/reference’

TO = 22 m.sec 'FORTRAN
TO = 45 m.sec DCDL -

TO = 54 m.sec ‘ | META-7 -

and from the graph representing the average working set
size S(T) we find:

.1Svpage. _ FORTRAN.

S(T®) .
- S(T°) = 36 page ~ DCDL"
S(T®) =

39 page META-7

4, Inter-page-fault-time (time between page fault)
distribution P(t,T) which describes the fraction of the inter-
page-fault times less than or equal_tq tgfor a given T,

If we assume that page reference rate is one page/unlt t1me,
we immediately obta1n the fOllOWlng relatlonshlps.-
m(T) = 1- F(T) f
1/m(T) verage runnlng tlme between page faults




1/m(T) =

&
. t=

l.gt, 1.>.(t~1,T') - ls(t;Tj}

To employ measurement techniquesvfpf‘estimating these
parameters, we collect.data bout the.ﬁattefn of references
to all the pages which comprise the executed program and
measure these parameters experimentally'via interpretive _
execution (steps are shown in thefolloﬂing.representation)e

Interpreter JENRUR program's
: e : sequence of
references
(program&' behavior)

object programs

(considred as data) -

Figure Captions

Figurell: Average bage fault frequency m(t) as a function of
working set parameter T.

Figurel2: Avérage working set size‘S(T):as a‘fuhction of
working set parameter T. N '

.Figuré]S: Inter—PﬁgeﬁFaultéTime Distribution
a) FORTRAN Compiler L

b) DCDL ;

c) META-7 Compiler
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ABSTRACT

Page inter-refevence interval distribution, average page fault
frequency (the frequency of those instances at which an executing program

resuives a page of data or cnstruct1ows not in the main memory) average
\,

~working set size end interwpage fau1twtima (time between page fau1t)

distri butxon for a sinulated Horking Set Rep]acemnnt Alcurlthm for. three
Vtypical programs with dif Terenu sizes viere measured ?n the UCLA Signa
Executive (SfX) t1me-sndr1rg sy tem vxa page rererence qtr1ngs. 1hc
measured results are repo?ted in this paper. 1he average.pgga nquit fre-
guency reTationshihs between working set paramaters and process scheduling

are discussed. These re1au onships are useful in planning th working set

- size and process scheduling wh1ch cptimize system eff1c1ency
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1. ~Intreduction

- past: such as Rauaom, F.rthzn First~out, %iack chlunemﬁnf Algorithas’

Memory management becomes a severe problem in multiprogramming and

virtual memory systemws. In a multiprogramming system, many programs are con-

currently executed by the pfocessor. Thus the main memory is shared by many

programs. Since the totaTvsizg of all of the programs far exceeds the size

of the main memory, in order to keep information that will be used in the
near future in the.main membry,'the system constantly moves information
between several levels of storage media.

In fhis‘paper, we consider the case of pagéd memorj systems: that
is, the address spaces are partitioned into éﬁua1 size blocks of ;ontiguous
addresses. 'fhe paged memory systém has been used by many c0mputqv systems,
However, th& basic page rep]acement p:’biﬂe‘1 of deci '”g vhich page should be.

kept in main memory-und which should be removed when additional space is

needed is still Tittle understood and has been of considerable interest.

0bvioué1y, the page ‘vemoved shodld be a page with thé 1east probabilﬁty of
being needed in the near future. The difficulty lies in. Lrylng to determ1nc

which page this will be without. 1ncurr1ng d1ff1cu1t 1np]cn~ntat1on problems
at the swre time. L S

Many rep]acemenu a1gor1thm4 have bpen propoccd and studwcd in the
[13
(for example, Least Recent]y Used (LRU)), and the Working Set Replacement

Aigorithm.tzl The first three rep]acement dlgorithms require a fixed size

- menory space for each process. The Nor!wng Set Rep] aemﬁnt~A1qorith how-

cver,(vequwrea a variabie size storage space for each puocess and the size
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varies with program demands, ThiS'Variable”storage space provides an adaptive

| apab111ty in the replucoment algoritham which is quite apnéaling - The work-

ing set principle of menory management states that a program may use a pro-

cessor on]y if its working set (°et of pages) is in the main ‘memory, and no

working set pages of an actlve pregram may be considered for removal from the

main memory, Propértieé of the workihg set vreplacement a]gorﬁthm, the rela-
t?onships'among page inter~refereﬁce iuﬁerva], a&erage page fault frcduency
and average'working set size for the Working Set Replacement Algorithm are
described in;a recent paper by Denning and Schwartz.[3] ‘
‘Because of‘the complex nature df progrém'behavior, analytical esti-
mation of the aboVenmentioned parameters of program behavior becomes very
diffiqu]tu Yet this information is impdrtantfin the p]anning of an efficiént
replacement algorithm that optimize»system perfovﬁance. Tﬁerefore ve employ.

measurement techniques for such estimations, We collect data abbut the pat-

- tern of references to all the pages which comprise the executed program, and

measure thesc parameters experimentally via interprdtive execution. This

[4]

technique has been used DrevfousTy to measure dynamic progran behavior

(5l

and also to measure the perfonnanve of Be}udy s Optimal iﬂnlacement‘Algorithm
and LRU replacement u1qor1thms.[- 7] |
Here we report che measured prooram bthav1or of the Working Set

eplacenent A1gar1thm.}_we shall“fxrst report measurement results such as

page inter-reference interva}‘aistﬁibution, éveﬁage-page fault frequency,
average working"seﬁ'sige and inter~bage~fau1f«time distribution. We then
discuss the use of average pagé fault freauency to determine the Qbrking set
pavameter, and proposc a page fault scheduling a]gorlghm for ‘process srheéu]\ng

which improves sysnem offic1ency

-




11, 'nasuremeniﬁ_und Results

[ TR

The working set W(t,t) at a given time t is the sot of distinct pages

peferenced in the tive interval ((t-1+1), t) where © is called the working

set pérameter. The vorking set size w(t,r) i's the number of page in W(t,t).

Lim (1 K

”-;m sk ) \‘i‘(lyl )
8 ¥ & | -
For systems employing working et replacewcnf algorithms, several parameters

The ave g *or\ing sct size S(r) defines as 5(1/

of interest are: 1)‘ﬁagé inter-refarence interval distribution F(t), which
describes'the fractioﬁ of the page inter-reterence intervals less than T3
2) average page féu1t frequency m{t) which describes the évefage number of
page faults per page feference for working sgt parameter T; ‘3) évérage
working set size‘S(T))and 4) intér«pagé-fauTtQtime (time between | _
page faoult) distribution P(t,t) which describéslthe fraction=of the inter-
page-fault~-times 1es*'than or équal to't for.a given T. |

F(x) is a fURuJM nuai distribution; it closely rclates to the ofher

, N ol

three paremeters., _wheh ve assume that the page reference:vate.ig oiie page
per unit time, we kncwvthat the page refereaces that result in -page faults

are those refevences'vhaqm irter- eference intervals exceed 1. Thus, m(t) =

1-F{t). 1t can be sho n[ ] that S(T) (Z) Thuq S(T).ié-cioseiv-

?ﬂG

re]ated‘tO'm(T). ]/m(T)~is,the average vunning t1mn bhttncn page faultq.
Since P(t.t) i3 the:fvactioh of 1nterupage—fau1tn (e 10 s than or cqual to
t, 1/m{x) is the tome avarage of “the. dens.ty funct1oa Pit ,r) - P{t,t);
that is, 1/m{t) = 23 te1P(% 1,T)~» Pt ,T)]

=1
To employ measurenient techriques for estinating these parameters, we

. ' [ o~ ) . - . ] *
collect data about the pattern of references to all the pages-whzch coprise
the nxerLLJ p:ograw *nd measure these pu~ameters expevin: nianly via inter-

Dretjvc cxecution.vlbor thi pquo ' an interpseter for the UCLA Sigma-7

time-sharing system has been develeped. This interpreter is capable of
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vecuting S}g w-7 ebject p“oavams'by'hand1ing the Tetter as data 5nd repro-
ducinq.a'prouram sequence of veferences. This sequence,_ in turn, can

then b‘ used as 1nput 1o proorams wh1ch S1mu1ate the UOrP1ng Set Rep1acemcn
:C\'i ;071 thin, .

Thres d{ffe{eht:progvams.with difterent siées were iﬁferpré%iye]y
executed, and thoir behavior waé 1hvestigated'uhder'thezwokang Set Replace-
ment Algorithm. A'FORTRAN Compiler was chosen as the representative for a
small progrom. MEIA~7 was chosen as the representat1ve for a large program.
It transletes progrems written in META-? to the assembly :anguage of the
Sigma-7. A DCDL (Diqwtal Control DESTQR Language) compiler was chosen as a
representative for a mbd1um sjze program. This compiter 1s_written in
META-7. DCDL translates specifications of digita1’hardware-and'micro-'
prouwam cnntrol seouenrces into 1ntnrpret1ve code.

10b1e 1 Qh WS Some Chara cter1st1c propertieq of these pvoorams.

.

- The columa ‘size' is divided into two parts. ‘Static' refers to the number

of pages necessarvy to store the program as an executable file on a disk
where one page. corsists of 512 32-bit words. 'Dynamic' indicates the number

of aifferent pages @ “*t~a11y referenced while processing the given input

“data. The difference beiwepn Lh“ nunber of pagcv un static and dynamic

results from the thL that D:OQPde creat nevi: Daqes cvrinq erecut1on for
wavking‘starage areas and thqt not all paqes of proqréms are reference

dur\ng executing & sp°c1f1c set of . 1nput data.'




- Table 1. Program sizes of the three measqfed programs -

Size . A o Number;of page reverences
Static  ~ Dynamic , |
FORTRAN - swend o 24 3 T 1,000,000
oo U 4 . sg o "i“,ooo,ooo
MeTA-7 leesqe s 153 . 1,000,000

‘Figure 1 shows the average page fau]f.frequency m(t) for the three | |
programs. We note~that all threefpregvams ethbit similar page faUlt char- |
acteristics. The everage page fault frequency decreases vrapidly with 7. - o

Large programs tend to have a slower rate of decrease, The reason for such
characteristics is mainly the locality of the progvaﬁ; that is, during any
interval of execution, a program fava?s.a subset of its pages,vend_this se;
of favored pages'éhahges'its membership sTowly. ~Furthef, the-ToeaTity.for
large programs is usually larger than that of small proqrams. Thé page
inter-reference interval distribution F(< ) >'-m(1) can be obiewned easily
from m{T). The average work1ng set sizes -as a funct1on of T are shown in
Figure 2. Measurement data suppor£ the premise that average work1ng set size
increases as prqgram size increases and reaches.a constunt level as 1 reaches
a certain value. The'P(t,T)'s.pf the three programs for selected t's are
shown in Figure 3. Ue note that P(t,t) ié‘vefy»sensitive to T and program
size. 'Fov a given prograﬁ, the average inter-page-fault~time 1ncfeases as
increases. This occurs because for the small v case, many of the paqos
to be referenced in. the near future ave in the secondury memory, »
thus the average vcrk1ng set size is very sma11 and y1e}ds a high bage fault
rate. For the large T case, wost of the pages are in the main memory which

yields a~large average working set size and a small page fault rate. For




a given t, Jarge size programs have a_highev page fault rate then thot of
a small size program. In the next section we shall discuss the applications
of these pavameters to determine the working set paraneters and process

schoeduting vhich improve system efficiency.

110,  Applicetions of Heasurement Data

(@) Horking Set Parameter T is an important pQPametér which affects
page fault rate, memaﬂy‘utiiiiation,and thus system efficiency. The.measuref
ment data support the fact that v should be chosen according to the execut-
ing program (e,g.,'$ize) and systém:orgahiz?tjon (efg.; avaiiéb?e memory
size and the speed ratio. between main énd'ﬁecéndary memory).  If T is not
properly chosen, for example if s too-shofﬁ,thén pages aré‘remsved from
the main momory whiie.stij?,potentiéilw‘usefui; This resutts in high page
tvaffic betwesn thé different Teve&s‘of:memary; If < §s too long, {hen
pages that ave not néeded may,remain‘in the'main memory, which is an
inefficient use of memoryAspaceg. Instead ofzchoasing 1 arbitrarily, @e
propose to determine v frgm tﬁé measuvéd m(t) and designhate it as %, As

4. 0 . N . ) 2 * ' e Q ] . '
a vesult, v 1s now closely related to program behavior as well as to system

organization.
The cfficiency of a program is defined as the ratio of total
virtval vumiing time to total real ruaning time (total virtual time and totzl

page waiting time); that is,




total virtual running time

EfF = total real running time

- §+m(T)R; S L

wheve . Ro= NT
A

N

i

Access time of the main memory

-
H

Access time of the secondary memory

Since R-{s f1xcd for a given system, from (1) we know a f1xed average page-
fault frequency mirt )_1nonres a certain level of efficxency.

| SLpeoqe we wou?d 11ke the GJSiLﬁ 1o operate at an averagg b
fault level of about 10 -4 paye fau\ts/reference; that is, one page fault

O .

4. .
in every 107 page references. Then from: F]gure 1, v~ for Fortcomp, DCDL

and META«7_are 22,'4§$’and 54 m sec (1 usec pgr page,refarcnce) tespectively;
From Fioure 2, the'corvesponding,averdge workinbiSet;size is 15, 36, and

39 pages. | L ' V |

Usualiy in a multiprogramming environnent scvaral fypes of
programs may be concurrently operated by the ops rat1ng system. The wva1ﬁgv
‘set parvameter of such a-system:muy either be varxabIe‘of r1xé€. fIn_the
variable T case, the ¥ shau%dichange from one program td~another; wﬁile in
the fixed v case,_the’fo remains fized for all types of programs. Because

o

of the simpiicity of a fixed 1 schgmo, it requires less OVCFhe“d to 1mnloment

than the variable T scheme. However, the effrcaency may not be as high as
that of the veriable 1 case..
. One way to determine the value of & fixed 1 is to use the

weighted average working set parameters of'each‘ﬁregram;~thdt-is,_
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vhere Ty vorking set parameter- for the ith program that

selected from its m(T)

= re]at1vo usage frequency of the 1t' program

- .
L

- .
H]

= total number of d1st1nct programs used in the system

The decision as to which scheme shou]d be used for a given system
‘should be based on program behavior, relative usage frequency of all the
. distinct programs used by the system, and the overhead in implementing these

schanes.,

B. Process: Srhedu11nq | |
In a mu1u1programm|ng ,ysiem to 1ncr ase system eff1cuency and

10 veouce response time for short Job», ‘the Job queues for Cchu process1ng
usually have sevefaf.p#1or1ty 1eve1s. Let us.consnder a system hav1ng_two
1eve1s>of queues: -Short Quantum Queue (SQQ) and . Long Quantum Queue (LQQ)
SQQ has'a higher p%%d}ity than LQQ. All JObS enuer 1hc SQQ Processea in
the SQQ are given one time slice at a time. _The:process is put at the back.
of the SQQ after thc ﬁrbcess either 1ﬁ§urred a page.fau1t or used up the
time stlice; thet is, the pvoceqs is qerv1ced in a round-robin- ra<h10n. A
process stays in th SQQ until 1t° short,quanuum time runs out. It is uhcn;
put on the front of the LQQ The QqQ will: not be serV1ccd until: the SQQ 15
empty. A process in the LQQ receives servmce unt11 its: lonq quantum t1me
vuns out. It is ihrn put at the end of the LQQ |

} hhen a system is properly deSIQHed such qcheaulwng a]gorwihms
yield: 1) fast respcnse time to short Jobs,~and ~2) most Qf the short jobs

are vun in the SQQ and tong jobs ( compute-bound processes)‘wil1 run in the

-
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LQQ. Since LQQ provides more.memory spaée for each process than that of
SQQ, such schedu11nq yiclds 1955 page swapplnq. '

If the quontum time of the SQQ is too short, Lth many uf the
short jobs will be in the LQQ; if the quantum t]me is too 1ong, then many
compu*at1ond1 JObS w111 be in the SQQ. The system fs de*ignod suct that most
of the short loos i1413n their procoss1ng in the SQQ and only the comnuto«
bound processes entgr_wnto the~LQQ - The short quantum time shou]a be Targer
than the avérage_real.proce ss time of short jobs. however; the process time
" varies from one proéess,to another. In addition, the processing time is |
further éomp11cated by page fau]ts occurring during its exeéution,

‘The real proéessing time of a proééss is the sum of the virtua]
proceqs t1ne and the total t1me wasted due to page faults of that process.
For example, tvo procevﬁcs requ1r1ng the same amount of virtual CPU proce¢s~ o
ing t*me could have vnry d1fferent pagg fault ’requences and ‘thus yield very
different real process1ng txme. fherefore the rea1~proce351ng-t1me is
extramely difficult to eat1mate. } ‘. |

| ¢ know that. page fault frequency has great influence on system
efficiéncy and the response time of the short Jobs. }He‘ptopose to use q
page fault as a meaéute-ihiprocess scheduling; that is, when a process
exceeds a certain number- of page faults. or'exceedﬁ thn”quantum time'bfAﬁhe ~
SQQ (whxchcvea occurs first), then the process sW1tches from the SQQ to the
1.QQ. Ne shall call such a scheme a page fau?t schedu11ng u190t1thm. Ina
mu]uiprogvammlng EHVTYOPWLHL, the CPU idle t1mns due to page swapp1ng hetween
main and seconcary memor1cs are d1recL1v dfrected by the page fault frequoency.
The pege Taulil schedu?ing a?goréthm should be,effective in.reducing CPU idle time

And-improve system efficiency. (See Appendix).

*For a S}Ctem op ravurq inoa nu it*:rcvxuma1ng env1ronm: W2 s ou]d also

include Lhn time spent in uast1ng for the av ﬂ|1ab111ty of CPU




Processes Qith ﬁigh page faU]t rates occupied in the mqin‘mcmory
greatly reduce the effiﬁient utilization 6f main memory}‘ The page‘fault
scheduling algorithm adaptive1y allocates the Tow page fault rate processes
in the main MCmory'and highet paée-fault rate ﬁroécsshs in the SetondAry
memory. Thus such scheduling imprcvesAthé utilization 6f main memory. Ag
“a result, this will inprove the average respbnsé.timé'of.the system:  An
- analogy to the above-scheduling a]gorithmAis‘the well.known "serQing the
shortest job first" algorithm in queueing theory‘that results in improve-
ments in avevrage waitingtﬂne; except Tn our casé we have furthev imptovcd
© the memory utilization efficiency. | -

The number of page faults occurring during processing before

switching a process from a SQQ to a LQQ depends on the response time required,

the number of processes operating concurrently, the replacement algorithm

used, and page fault frequency characteristics. Further study in this area

is needed. o . L /

" In order to reduce response time, the quantum time of -the SQQ

and 1QQ ave further divided into many time slices. The optimal size of time
stices is another important parameter that affects system efficiency. The

time’s?ice should be selected such that wost of the processes either page

fault or bhecome inactive before running out of the time slice. . Since P(t,t)

describes the intervpag¢=fault"time distributibn"of'é‘process for a given ,
Vthe-time'slice for the Quantum Queues can be determined From P(t,T). ~For

example, if.we wish 95% o% the time thét the pf6géss wi111pége fault betfore
running out of the time slice -- that is, only 5% of tﬁe.t{ma.the process -

will vun to the end of the time slice -~ then from Figure 3 we know
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the time s]icen_of‘the LQQ  for t = 10 m sec are: 28 m sec for the FORTRAN

Compilor, 13 m sc¢ for DCDL, and 12 m sec for META-7. Time slices for t = 25

m sec are: 58 w scc for the FORTRAN Compiler, 38 m sec for DCDL, and 35 m sec

. for FETA-7. Thus, the measurcd inter-page-fault-time distribution provides

a good way to determine the optimal time slices for the Quantum Queues which
-avoids excessive uninatural interrupts that degrade response. times.,

The page fault scheduling algorithm, as well as the selection

- of the time slice fbrﬁ:intﬁr*page»fau1t~time distribuiion, are quite general

and can be applied to other types of replacement algorithms.

V. Conclusions

Page inter-reference interval distribution, average working set size, -
average page de]b f\équency nd intev~paqe—fdu1t~tﬁm5 disfribution for'three
typifa] progr ams with uork1ng set replacement. alqorlthmq are measured and

reported. Measurement results support pvsgr"m YOCa}lty and the fo]l0w1ng

working sot propertﬁes: the average page fault fredugncy decreases rapid]y as T

increases and 1nc1cchs aP progiram size increases. ‘Bésed on-these measured
data, wovking set‘parameter and process scheduling may be selerted firo om and

based on the average page Tault freguency. The time slices for the Quantum

~ Queuas wmay b detenuiﬂh' from inter-page-fault-time distributions. A page

fault scheduling azgmvs\ha is proposed for process qched;]ing'in a muiti-
progvamning enviranmeﬁt, ~$uch an algarithm is effective in reducing CPU idle

time &nd improve system efficiency.

*The three measured- proowume ave not short jobsy they shou]d he run in L00.
Therefore, these measured P(t,[) s provide the estimate 01 time slices for
the Long Quantum Q"‘”D :
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Mthough the Working Sct Algorithm provides an upper bound on rép]hce~
, mehf algovithm performance, the‘ﬁigh‘GOSt of imp]emehtation ﬁrevants it fron
.being widely used. Therefore future vescarch should be in developing Ibw cost
hardvare devices for eqonamichi?y~imp]emehting.the~Ndrking Set Algorithm or,..

. perhaps even more fruitful, in developing new replacement algorithms that

have'performance comﬁafab]e to that of the Horking Set‘A]gorithm-but are much‘.;

éasier to implement, For example, we have recehtly studied a Page Fault
Frequency Replacement Algorithm, Such an algorithm adjusté the_LRU_(Lpast
Recently Used ) stack abcording to page‘fault‘fréquency. ;Pre]iminany‘resuTts,

already indicate it has excellent performance.

I
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‘ APPENDIX
A Cyclic Queueing Hode] to Study CPU and 1/0 Operat1ons

To |11uqtrate Lhe relat:onsh1ps among CPU 1d1e t1me, average page
fault frequency and swapping time (time to bring 1n a new paqe from the aux-
1liary wemory) T, a'cyCTic'queuefng mode1[8] is used td study'CPU and 1/0
operations. The syStemfin‘Figuke 4 consists of two c]asses bf service facili-
ties, Service féci}ity~c1ass I represents a sithe CPU; its.sérvice rate is
divectly determined by fhe average page fault kate* A. Service facility class
II ropvoscnfq k paralle? 1/0 servers W1th each having an average service rate
T } “The k parallel servers represent for exumple, a paging drum w1th ko
differant sectors. Us1ng such 1/0 facilities,’ a h1gh degxee of over?ap of I/O
requests can be achieved in & mu1t1progrgmm1ng systen.witharﬂlative1y low page
fault frcqucnty. . o ‘

Let P, i3 be fhe probabi11ty that a JOb 1eav1ng server § wi11 proceed
to server j. We asstmé that the job leaves CPU (server-o) and goes randomly
to the k 1/0 servers f§r sgryice; %QUé POj =-%-, fbriﬁ = 1,l2,,..‘,k. Since
Jobs which have finished their 1/0 operations always‘return for CPU-Operations,}

50 1j's_are equal to zero.

Pig =1 fori =1, 2, ,.,,’k; and al1 the other Py
 Let' N be the tota1 number of jobs in'the system and Tet ny dendte

the number of jobs in serv.ce plus the number’ 1n queue at the 1th server. The

state of t?e system can then be determxned by the k + 1 tuple (no,nl,.;.,hi)

in which Zf)'H = N, The number of d1st1nguishab1e states of ihc system---gqual
i " ,

to the number of paxtlt:ons of N customers among k + 1 eevvers-~1s (”ka).

o ?'§&stem using Morking Set Replacement Algorithm with parameter 1, then
Xo=mlt). ‘ - . '

v
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Let P("o’“l""’”k) be the stationary probability that the system is
in state (no,nj}...,nk), and ]et'qll the service tines be assuaed to be cx
. ponentially diStributcd; Then the steody state.equationS'cah be written in

the form:

j=] . . » R ] ) . V —
= Ei: e(n ) A Po P(n0+1,n], oy 1,...,nl)
J=1 :
+ E € no) H ‘ (I\O-'] ,n] ,...‘.,ni"‘]',... ,nk) : ) ] (Al}
i=] | ~ | ‘

where the indicating function

ey ={0 TR0
J T ifng 0

‘ accounts for the impossibility of any customer ]eéving the jth

server i that -

server is empty. e | |
The left hand side of (A1) répresehts the rate of transition out

of state (no,ni,n.,nk);'aﬁd the rigﬂt hand side is the rate.of‘transition 1hto

(8l

this state. Solving (AT)‘by a method of separation of varisbles
| oy koY
P(no,nj,...,nk) = -C"(N')‘ n' --ﬂ---

.1 ;‘ o\ ] - ' :
“sr\E) O (R2)

where o = a/u  and the.nonna1izing function G(N) s détermined from the fact

, W have

§

that the sum of a1l the P(no,n],;..,np) is equal to 1. Thus




16

TN | \ E:.. I ni ‘. |
ai) =% T E) |
A k i=1
> n, =N
i=0 :

2”3 ( N-n0+k~1> <g‘ )N““o |
20\ ke K. ,

no ‘

(13)

N-nptke1 L '
. where < k-1 >is the number of distinguishable partitions of N-ny Jobs among
k 1/0 servers, ‘ |

The probability that the CPU is idle is

Py = 2{:1 ‘ P(O«n],nz....,nk)

2 n.= S o o
i":.} o ‘ -- B ’ \, : oL . i | |
EYAVES o o |

o1 [kt | . ‘ ‘_ ‘

G(N) <kw1><k>; : B ‘ o (A4)
. | _ n : . .ON i
For the case k = 1, then (A4) reduces to PO = ﬁe--.
- S ' i
' 450 ©

i i)

For the case N = SIaud k = 6, the values of Po‘s for selected o's

are shown in Table II.
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Table I P vs. o .

o o
L 0.25 0.003
0.50 . 0.019
1.00 0,097
1.50 0.187
2.00  0.273
2.50 0.362
3,00 0,431
3,50 0.488
. 4.00 0,537
4.50 ©0.577 .

5.00 0.612}‘>

We note that o is the ratio of avorage page swgpplng time (from

secondary menory) to avevage” 1nter page fault-t1me. A 1a.ge o 1mp]1es large
/

page swapping time or smell 1ntev paae«fault-time (high pxqe fault freouoncy),
oy both. Thus the prohabilxnv of CrU 1d1e tiine vncreasos as o 1ncre 885

Hence, the pag& fault schedu]ing aigorithm should be effective in reducing

CPU idle tine and should thus improve system efficiency.
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" Fiqure Captions

Figure 1@ Average page fault frequency w(t) as a function of working set
: parameter T, o '

Figure 2:  Average worl1nq set 51ze S(T) as a ﬁunction of working set parameter <.

'hqm"a 3. Inter-Page-Fault-Time Distrwbutwon
a) Fortran. Compi]er
. b) DEOL
c) Meta 7 Comp110r

h

Figuea i A Cyclic Qucuemng system fqrAmodé1ing.CFU and 1/0 operations.
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The desion -of efficient storage hierarchies” generally involees  the
repeated rumning of “ropical”™ program -address traces throngh a
simulated storage’ systent w hile carious Iuomuhv (l('m'n paramelers
. are (u//m(url

Thiy /mpm describes a new m(/ efficieut Im‘f/ll){/ n/ de Ivmmung in
one pass of an address trace,performance measures for a large elass
“of “demand-paged, multilevel storage systems utilizing «a varicty of
mapping schemes and replacement algorithns. o

The technique depends on an algorithm ('Im.lf ication, rallea'
algorithms.” examples of w hich are “least frequently -used.” *“least
recently used,” “optimal,” and “‘random -replacement™
The techniques yield the exact access frequency to each storage

device, which can be used to estimate the overall performance of

actual storage hierarchies.

meatmn technigues for storage hierarchies’
d. Gecsel, D. R. Slutz, and I. L. Traiger

Increasing ‘speed -and size demands on computer systems have

resulted in corresponding démands on storage systems. Since it
has been generally recognized that the speed and capacity require-

sments of storage systems cannot be fulfilled at an acceptable cost-
performance level within any single technology, storage hicrarchies
that use a variety of technologies have becn investigated.

Several previous papers describe the general concepls of hierarchy
design'™ and evaluation,'”® whereas others deal with specific
hlcrarchy systems, such as the core-drum combination on the
ICT Atlas “‘computer”™® and the cache—core combination on -the
1BM System/360 Model 85 to.u

This paper introduces an efficient technique called “stack processing’’

~that can be used in the cost-performance cvaluation of a Jarge
class of storage hierarchies. The technique depends on a classifica-
tion of page replacement algorithms as *stack algorithins” for
which various properties are derived. These properties may be of
use in " the general arcas of program modeling and system analysis,
as well as in the evaluation-of storage hicrarchies. For a better
understandmg of storage hierarchies, we bnefly rev:ew some basw
concepts of thelr design.
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The purpose of a stovige system is to hold information wnd to

assoviade the information with a logical address space known to
the tematnder of the computer system, For example, the Central
Processing Unit (C1ro) may prisent it logical address to the storage

system- with instructions to cither retrieye or madily the informae

tion associated with that address. 10 the stornpe system consists of
acsingle deviee, tien the Togieal ddress space carresponds direetly
to the physical-address space of the device. Alternatively, a storape
system with the same address space can be realized: by a hierarchy
of storage devices ranging from fast but expensive 10 slower. but
relatively incxpensive devices. In such storage hicrarchies, the
logical address space is often partitioned into equal-sizc  pages
(or unequal-size sepments) that represent the blocks of: information
being moved between devices in the hicrarchy.

A hicrarchy management facility is included to control the move-
ment of poages and to clfect the (generally dynamic) association
between the fogical address-space and the physical address space
of the hierarchy. When the CpPU references a logical address, the
hierarchy management facility. first determinces the physical loca-
tion of the corresponding logical page and may'then move . the
page to a fast storage device where (he reference is effected. Since
these actions arc “transparent” to the remainder of the computer
system (cxcept for timing), the logical operation of the hierarchy
is indistinguishable from that of a single-device system.

The goal of the hicrarchy l"nnnagemént ﬂ\cility is to maximize the
number of times logical information is ‘in the. faster devices when
being referenced. As this goal is approached, most references are

directed to the fast, small stores whereas most of tite logical agldrcss ,

space is distributed over the slower, large stores.. The storage

system then acquires .the approximate speed of the fast stores .

while maintaining the approximate cost-per-bit of the slower. and

less cxpensive stores. This increase. in cost-performance is the

!
. ', primary justification for storage hierarchies.
hierarchy i el .
hospecific & Ciearly, many factors can affect the cost-performance of a storage
~n on the | hierarchy. On the performance side, one must consider the capacity -
m on the and characteristics of each storage device, the physical structure
of the hierarchy, the way in which information is moved by the -
o hierarchy management facility, and the expected pattern of storage
rocessing™ references, On the cost side, the hardware and/or software required
of a large to find and move logical information must be considered, as well
~ classifica- as the cost-per-bit and capacity of each device. Because of these
thms™ for factors, it is quite difficult to design an “optimal” hierarchy.
may be of ST ;
_analysis, The typical approach to hierarchy evaluation employed by computer
v a better designers has been to simulate as many hicrarchy systems as possible,
-ome basic at various levels of detail."”'"* During the first stages of design, a
large number of relatively simple simulations may be run with
1BM SYST J No.2 -+ 1970 ‘ - STORAGE HIERARCHY EVALUATION
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fixed, standard address traces. Thiese traces are assumed to be
“typical™ sequences of storage references obtained from existing
computer systems, and they are used to approximate the reference
behavior of future systems, The purpose of these simulations is to
measire such statistics as data flow and frequency of access (o
cach deviee in order to estimate the overall performance of un
actual systeny, The vesulting performance
uscdd to narrow the ficld of possible designs,
more detailed examination, ‘

~ Alternatively, one may try to develop analytical techniques that

avoid point-by-point simulation but still yicld accwate statistics
for data flow and access frequencies. Several papers deal with such
techniques for hicrarchy evaluation,'”® In general, the approach
here is to run a relatively small number of simulations and ex-

. trapolate the mcasured statistics to a larger class of -hierarchies,

The difficulty with this approach is the need for various assumptions
‘about the statistical properties of-address traces and “data flows
required: to formulate the analytical cquations. Moreover, it is
difitcult to include a quantitative dependence.on such factors as
data path structure, page replacement algorithm,"
mapping scheme,” so that many simulations may still be necessary

This paper prcsents a technique that can be used.to circumvent

‘much of the simulation effort ruqmrcd in hierarchy evaluation,
‘Specifically, we present an efficient. procedure that determines, for

a given address trace, the exact frequency of access to-cach level
of a hierarchy as a function of page size, replacement algorithm,

_number of levels, and capacity at each level. In the following, we
_ with
“the ‘samie  feplacement algorithm at every level. The- procedures
' devclopcd lere are applicable to a large class of well-known re-
placement algorithms having certain inclusion properties defined .
later, These algorithms—which we call stack algorithms—include

consider a class of mulilevel, demand-paging hierarchies'*

“least frequently used,” “least recently used " “opumal » and a

: random replacement algorithm, =

The system model,

‘An H-level paged storage hierarchy consists of a colleetion - of

, My, a network of data paths con-

device is partitioned into physical blocks called page frames. For
convenience, the highest-level store M, is called the local store

and the lowest-level store M, is the backing store as shown in '

Figure 1. The hierarchy management facility controls page move-

“ment between ‘the devices and associates each logical page with
‘a physical page frame. Special storage and processiig hardware
may be required, but they are not included in our model.
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References to the storage hicrarchy are presented by a single device
called the gencrator.and they are sequentially serviced in the order

i which they are presented. References from the generator nuy

may represent the requests of several deviees, such as the Cru,and

the. ehanuel, in an actual system, ‘Fhe time sequence of l()pll.‘ll»

address references X s xy X o0, X, i called an address frace,
where cach address consists of o bits as shown in Figure 20 The
set of 2" possible addresses is partitioned into 2' papes of 2'*
logical addresses each, The high-order & bits of each address rep-
resent the numbcer of the: page containing the. address, and the
fow-order n' ~ k bits represent the location or displaccment of
the address within the page. Since information movement on the
hicrarchy is accomplished by transferring pages between levels,
we can analyze space allocation and data movement for a trace X
by considcrinp, a corresponding page trace X* = x*, xt, ... xX;—

where each af is the number of the page containing address x,.
When we constdcr a given fixed page size, we omit the superscript k,

and denoltc pages by x,,

reference from the generator can be serviced. only from .the

local store M,. Thus if the desired page resides in a lower. level

device M, ie. where ¢ > 1, the hlerdruhy -management facility -

must bring that page up to M, for servicing, The hicrarchy provides
a path for bringing pages up to M, which may or may not require
staging through intermediate levels, Any tcmpomry storage lcqumd

for bringing a page up, to M, is included in the hlermchy manage-

ment hardware, and is .therefore not represented in our model.
In this paper we restrict our attention to linear storage hierarchies
in which the only paths for moving pages down the hicrarchy are
dircet ones from cach level M, to leyel M., whetei =12, ...,
H — 1. The reasons for this.restriction arc discussed later in this
paper. Note that the four-level hierarchy in Figure 1 is a linear
hicrarchy. '

The capacity of :the backing store is assumed to be at least 2* page
frames, and all logical pages initially reside in the backing store.
At any timc, each logical page resides in exactly one page frame
of the hierarchy. A mapping function is associated with each hi-

erarchical level, and specifies for cach logical page the page frames -

it may occupy in that level. The mappmg function is further deﬁned
as: - . :
g

P

«  Unconstrained if any page/ fcan occupy any: page frame of the‘

storage device.

o Fully constrained if edch page can occupy only a smgle page
frame.

° Parlmfly con.stramed in all othcr cases.

In a later section, we deﬁne a tcchmque cal!ed “congruencc mdppmg”
that gcnerates a whole spectrum of mappmg functions.
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Swith unconstrained  mapping.

For simplicity in developing techniques for analyzing storape hi-
crarchies, we first cansider a twodlevel, demand-paped hierarchy
Later, o tesudts are extended to
certain elasses of multitevel finear hieraichies employiog the three

types of mapping functions. The tocal store or buller has a capacity

of O pages, and is direetly connected (o the backing store as shown

in Figure 3. At time ¢, the gencrator presents a request for page

x;-to the hierarchy. Under (I(‘muu(/ peating, iF .\,»ls in the bufler,
the reference proceeds and no page mavement. oceurs, Otherwise,
x; is brought to the buffer from the backing store, If the bufler
is already full, x, replaces some page 3, in the buffer. The selection
of the particular page y, is performed by the bufler replacenent
algorithm. This operation is a key element of storage management.

In the two-level hierarchy shown in Figure 3, a reference to a page
residing either at level M| or at M, is called an aceess to that level.

For a given hierarchy and page teace, we define the access frequencies
F. and F, where F; is the relative number of accesses to level M,

during the processing of the trace. Thus, if N, accesses are made

to level M, and N, = L — N, aceesses are made to level M,, we
obmm Fi= N/Land F, = N,/L.

“Some important mcasures of. storagc hierarchy performance can

be obtained from these access frequencies. For example, one can
combine access frequencies with -a set of cfiective access times

) {T:} to obtain an eflective (or average) hierarchy access time

82
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T = FT, + KT,

3

In general uccess times dcpend on the access p'uhq, device access -

times, and characteristics of the hierarchy management facility.
The access frequencies depend only on the page traae, capacity
of the buffer, and repldcement algorithm.

. For a two-levcl hierarchy, accesses to the buffer are called successes;

the relative frequency of successes as a function -of capacity is

given by the success function F(C). For a given capacity C, page

trace X = X, X 50 Xy, replacement | algonthnn and arbitrary
time ¢ (where 1 < ¢ < L), the set of pages in the buffer just after

‘the completed reference to x, is denoted by B,(C). The initial buffer
contents is represented by B,(C). By convention |

BAC) = ¢

for all C where ¢ is the empty set. The set of distinct pages referenced
in x, xp, +++ , x, is denoted by I', and the number of pages in T,

is denoted by : ('i,,fg,(-,y wit)

Yt = I’.Pu I
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Demand paging in.the two-level hicrarchy is formally defined by
the following requirciuents, wherein the operator “--* denotes the

union of disioint sets:

ln € Q) then BC) = BC)

2 x B and PIB(OI < C O then
BAC) = Byo(C) 1 [xi)

AU x @ BA©) and [B(O)] = C  then
BAC) = B, (C) — {p} + {x}

>

where p, & B,.,(C) is determined by the replacement algorithm.
Under demand paging, a buffer of capacity C simply fills as required
by 1 and 2, while the first C distinct pages are referenced. Sub-
sequently, referenced pages are swapped in, as required by 1 and 3.

N

Least recently used replacement

We now consider a particular repfacement algorithm called “least '

recently used” (LRU), and show that the cntire success function
can be abtained by stack processing in qlnglc pass of the address
trace. Bricfly, the single-pass tec hmquc requires the maintaining
af a list of pages, called an LRU stack, and measuring a distance
on this stack for every page reference. Frequencies of these stack
distances are used to caleulate the success function. The existence
of the LRU stack follows from an inclusion property satisfied by
LRU mpl'lccmcnt whereas (he use of distance frequencies hmgcs
on lhc related concept of critical capacity. b

v
1

Under LRU, the page selected for replacement is the one that has
not been referenced for the longest time (i.e., the least recently
used page). One way to obtain the success functioit; for a.given
trace is to simulate the two-level hierarchy system for cach buffer

capacity. Such a simulation determines the buffer contents at every
time £, and counts the nnmber of times the current reference x, -

is found in the buller. In Figure 4, we show an ¢xample of .this
simutation procedure for a given page trace and, buffer cwpacntu,s
C = 1,2, 3, 4. Pages arc denoled by lower-case letters, and page
successes are marked by asterisks.

A greatly simplified method for dbtaining the success function

under LRU replaceinent can be derived from certain properties

of that replacement algorithm. For any page trace and buffer
capacity C. the bufler is initially enipty, and in say = time units,
it fills up with. the first C distinct pages referenced by the trace.
At time 7, the bufier coniains the C pages most recently referenced
through time . When a new page is referenced at a lafer time
(r > 1), this page replaces the least recently used page in the buffer.
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_-Figure 4 Determining success function by buffor stmulation

T | SRR 3 4 5 & ? 8
PAGE TRACE A, b b, [ b a i < e a
— e b - _i__- e e o nes At S & A orame i bt 4 A
. i
SIMUIATIONS . .
S HEEEDHEERGDRDE
H1Y 070 . : o ]
— — —— — S ——y ey [y
Cn2 a o a ¢ L te a a c 4 (4
F(2)=0130 b b b 3 b o o a 2
R . ... Lo ] - L. -~ S — -
' . . . .
Q3 a a a [ a ) 3 5. 2 [
f(3)=0,50 b bl b b " b c < 3
Coe ' ¢ ¢ ¢ d d d d
L. S L L. L. - L] L - S
. . v . . N
. o R E— S N A —— g e
C=4 a a 8 2 3 a a a a &
F(A)=0.60 : b b b b b b b b b
3 c c ¢ c « [
d d d d
* * . .. . L]

Thus at time ¢, the bufler stili contains the C most reeently referenced »
pages. It is €asy to seeithat under LRU the buffer contains the C-

most recently referenced pages for all subsequent times, and that
this property holds for all page traces and buffer capacities.- One
can generate the -buffer contents B,(C) for any time 7-on a trace

' and any capacity by scanning t backward from point ¢ and collecting

lhe ﬁrst C distinct pages cncountered )

Sincc the scl of C most recently referenced pages is always contained

in the set of C + 1 most recently referenced pages, the buffer

contents B,(C) at any time must be a. subset of B,(C + 1). In fact,
B(C) is a proper subset of B(C -+ 1) if at least C 4- 1 distinct
pages have been referenced through time f. More formally, under
LRU replacement, the buffer contents for any page trace X =
Xipg Xgy * o

B(I)CB:(Z)C---CB.(V.)—B.('Y.+K)=-~- o 0
where * "
lBI(C)I =C er 1< C<y
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and

IBI(()I = for C 2 v .

The inclusion property can be observed in Figure 4 where at time
= §, for example I ! -

A1) ="{b)

B(2) =lc, b]

B(3) = la, b, ¢

and ) . - \_ .
B(l4) = !u,b (‘l | '

Because of the inclusion: pr oputy, the bufler contents at dny tlmc "
~and for all capacitics can be represented in the following compact - -
and useful way, We order the set of pages T, into a hst NYRES s,(l),

§(2), - .s,(-y,) where

S = B = B =) fori= 1,2,y ®
Hence : ! [
BC) = {l‘s.(l), 5@, 5(0)) for € <y 5
[s~'(l)’ 5i2), e, st(’Yt)} for C 2 v,

The list S, is referred to as the LRV stack, with s(1) as the top
entry and s,(y,) as the boltom entry. As an example, the LRU stack
for t = §in Figwe 4 is ), :

S, = [b, ¢, a]

The stack S, at time ¢ = 0 has no entries and is therefore called a
null stack, that is, onc with no entries. The entire sequence of
LRU stacks corresponding to Figure 4 is included in Figure 5.

Besides representing the buffer contents for all capacities, the LRU
stack can- be used to clliciently determine (he success function
F(C). Let us quppo‘;c that at time 1, page X, has been previously

1eferenced and thus is a member of at least one set B,_,(C), w where

| € C < 9. Let C, denote the least bufler capacity- such that
% € B,(C) o '

We call C, the critical capacity since, from the inclusion property
given in Equation 1, x, € B,(C) if and only if C > C,. If x, has
not been previously referenced, we set €, = « because x, is not
contained in a buffer of any finite capacity. R

From the definition of LRU stacks in Equation 2, it may _'bct seen
that C, is simply the position of page x, in the stack S,.,, so that
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Figure 5 Sequence of LRU stacks
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We call this page posmon the stack a'nmnca Ay, since A, is csscntm!ly
the “distance” from the top of the stack to

Xi = S (a) s

(Note that here A, = C,. When conslmmed mdppmg funcnons are

!
i

3

- considered, the stack distance may not always equal the critical

capacity.) If x, has not been previously referenced; then A, is set
to infinity. The sequence of stack. distances for our example is
included in Figure 5. g
The significance of stack distances is that they lead directly to thz
success function. To sec this, let n(A) be the number of times the
stack distance ‘A is observed in processing a trace. Since tlic stack
distance equals the critical capacity, the number of times that thc
referenced page is found in the buffer is

«

A-=l

~and thc sticcess function is given by the expresslon
.F(L,)

N(C)/L , S ()

In practice, the set {n(A)] can be detcrmincd from a set of distance
counters, as shown in Figure 5. All counters are set initially .to

_zero, and  the counter for each distance A is incremented whenever
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that distance occurs, For k-bit page numbers, we need at most
2' - 1 counters, corresponding to 1 € A < 2 and A = o, AL
the conclusion of o page trace, the final values of the distance

i
: countery are the vatues ln(A)\‘ .md F(CO) is obtained fr o Lguatians
{ ,} : 4 and &,
( We now calenlate the value of the suceess funttion in a noerical
N Aanple, For A% of 120 3, 1, and m, the conesponding final
. - i connter values in Figare §e 2, 1, 20 1, and AL This distribution
. ‘. is shown in Figure 6A, Dividing by L equats 10 in Figare §, and
l ‘ summing cunulatively, we obtain the success function shown in
i Figure 6B, Onc can verify that the F(C) values for the curve in
o Figure 6B agree with those obtained in the simulations of Fig(lrc 4
%g To lind the access frequencies £y and F, for a given buffer capac )
- C, we mkc Fy=FC)and F, = 1 — K. Asan ex.\mpk for C =3
@ pages, Fy = F(3)= 0.50 as indicated in Figure 6B, I, = 1 — 0.50 =
0, 0.50, dnd the average -access tnm T of the lncr‘uchy ts 0.50T, +
® ; 10.507;.
i ,
' Notc that F(C).is alwdys o mouotomc, non- demc.mng funchon
of C for LRU replacement, since F(C) is obtained by cumulative
summation as shown ‘in ‘Equation 4. Also, F(C) never exceeds
| ([, — v}/ L for any wp.xcny bccausc all pages initially reside
f in the be l('l\mg store. .
o i i
ntiatly | “To avoid constructing cach LRU stack scparately, we now give
\ an itcrative construction of S, from S, and x,. Observe that at
o every time 1, the stack S, is simply the list of pages in I',, according
: to their most recent reference. The most r(‘cently referenced page -
s A # is 5,(1) since s(1) = x,. The second most rcccmly réferenced page
(—r}“" " is 5,(2), and s5,(y,) is the least recently referenced page in T.
t ‘5'\\’ ' ' ‘ . ’ , ’ .
nple T8 Let us suppose that page x, has been previously referenced and
appears at position A on stack S,_,. For time f, we know that x,
must be the top entry in S, because it is the most recently referenced
"o the * page. Consider now a’ page b at some position j on S,., wherc
nes the 1 < j <A Attimer = 1, page b is the jtlt most recently referenced
v stack page, and the intervening pages do not include x,. At time 1, page x,
hat the is added to this set so that page b must now be at position j + |
on stack S,. If jis greater than A, page b must remain at position
j at time ¢, since the set of more recently refercnced pages is un-
Q) changed from time t — 1. ' : '
The net effect of this page motion is shown in Flgure TA. Page x,
(). is moved to the top of the stack, pages previously above x, are
o down-shifted one position, .and all other pages retain the same
« c?lsumce position.- If x, were not previously referenced, x, would be pld(.(‘d
tally to on the top and all other pages would be down-shxfted one posmon as
vhenever shown in Figure 7B. :
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This iterative procedure can be used o pencrate the sequence of
. |

stacks in Fieure 50 Inan actual evalttion, it is not necessary to
store the giitive sequence of stiacks, Rather, only the current stiaek
must be maintained as the teace s seanned, When a page veference
oceurs, that page is put on the top of the stack, and entries in the
stk are down-shilted one-by-one starting from the {op. I page
X, is encovntered, its distance A, is recorded, and x, i< erased beeause
it has already been’ placed on top. The position vacated by x, is
filled by the page downshiftéd from position A, — 1. 1 x, is not.
encountered, then the downshifting proceeds to the bottom of the

sl.wl\‘ and distance By = ® is recorded.

Stack algorithms

We now examine the general class of replacement algorithms that
salisfy the inclusion property. Such algorithms are called “‘stack

“atporithms.” Tt is shown that stacks can be iteratively maintained

for any stack algorithm, and that stack distance frequencies for a
given trace can be used to obtain the corresponding success function.
The main problems considered ave (1) to cfliciently gencrate stacks
{S:} for an arbitrary stack algorithm, and (2) to identify those

. algorithms that are stack algorithms,, Several examples of stack

algorithms' are described, along with onc “replacement algorithm
that is not a stack algorithny. e

A rcplacemcnt Algorilhm is-called u stack algoritlun if: the buffer

conlents in a demand-paged, two-level hicrarchy satisly the in-
clusion property given in Equation I, for every page trace and cvery
point in time, As shown for LRU replacement, a stack can be defined
according to Equation 2 in such a way that the buffer contents for
all capacitics are given by Equation 3. Furthermore, since the stack

_distance A, is a critical capacity, the suecess function for any page

trace can be obtained by summing the stack distance frequencies
tu(A)! aceording to Equation 4. This summation implies that- the

success function is a monotonic and nondecreasing function of .

the capacnly.C for every stack dl;,orllhm.

Let us now consider a replacement algorithm R as 8 collectmn of

mappings
Re: B. .(C) = y(C) whcle y.(C)C B, 1(C)

is thc pdgc replaced by x, in a bufler. of capauty C. From thc con-
straints of demand paging, we know that R is applied only when the

following conditions are true: x, & B,_,(C) and |B,.(C)| = C. If the

inclusion property is satisfied up to and mclu(lmg time 1 — 1, then
R must satisfy certain restrictions at time 1 to maintain the inclusion
property Specifically, if a replacement is leqmred for some capacity
C -+ 1.(and therefore for C), then y(C -+ 1) must be cither y(C)
or 8_(C -+ 1). To prove this, let us assume the following:
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B, (O = C §
: !
B (C o D] = C - | .
and '
X (| B: )((’ \ b .
Note Um from Equation 2, page s5,.(C | 1) is contained iw
B (C -+ 1) but not in B (C). If page »(C - 1) is neither
S-(C -+ Dynor 3 (C), then y(C - 1) is some other pagez € B _(C).
However, page z is included in B,(C), but not in B,(C + l), wlich
would violate the inclusion property.
Wc have given a nccéssary condition for stack e\lgorithms‘. The
same condition is also suflicient, because if w(C -- 1) is ecither
Y(C) or 5,.,(C - 1), then B,(C) is a subset of B,(C - 1). Thcrcf(:.c,'
we conclude that a replacement algorithm is a stack algorithm if
and only if for every time ¢
(€1 = 's,_;,(Cvél-,I) o pCHD =@ (@
for : L
lgC<'y,...‘ and. C-1 <A
Important rcplacémcnt algorithms that satisfy Equation 6 are those  stack
that induce a total ordering on all previously referenced pages and - algorithm
usc this ordering to make replacement decisions: The ordcrmg can  identification
be rcplcsentLd in thc form of a pnoruy list : a
b !
= p(1), p(2), - .1’.(% 1) '
whcn, p.(i) has a bigher priority than p,(i + 1) for 1 <i < Yi-re The
algorithm then scicets for rcplacemcnt thc page in B,..,(C) that has
the lowest pnonty R ‘ :
A convemcnl notation for workmg w1th priorities is min(A), where
A is an arbitrary set of pages in I',_,, and min(A) is the unique page
in A having lowest. prxonty on the list P. If B,_(C) C B.(C-+ 1)
and x, & B,.,(C -+ l), we can cxpress the replaced pages v.(C) and -
»(C + 1)as follow )
»(C) = min [B,_(C)] . S M
-and S » | : A
Y(C+ D)= min[BoC+ 1] B
= min [B;.(C), 5(C + 1] )
= mm{mm [Bi- O 5:cr(C + 1)! o)
= min [(C), s:(C + 1)] : Ca
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Fyuations 7-9 ure based on the definition of the replacement,
algorithm, whereas Fguation 10 is hasul on the propertics of
nnmnn.‘llmn :

We conclude from Eyuidion 11 that any replacement alpoiitlmi

that induces a priovity Hst P, for every time ¢ satisfies Equation 6
and s therefore a stack algorithm, For example, the priveity Hst
[or LRU is just the ordering of pages in Ty, by maost recent reference,
The priority list for “Jeast frequently mcd“ (LEU) replacement is the
ordering of referenced pages by most lreqm‘nt refevence tagether
with a qchcmc to break tics. :

Before dcscribing othcr examples of stack algorithms, let us develop
a stack updating proccdure for algorithms inducing a priority list,
For any page trace X = Xx,, Xy, *++ , X, and any time ¢, where
1 < ¢ < L, suppose that staclk S, ., is available. Also, for any two
pages a, b & Ty, let max (a, b) denote the page having higher
priority, If x, has been previously referenced and appears at positton
A, on stack S,..,, the stack at time ¢ is given by

s(1) = x | R (12).
s() = max [pG — 1), s for2<i<a 0 (13)
'vl(Afj = »d — 1) _ » . R ) (14)

s =520 ford <Py o (15)

Equauons 12, l4 and 15 are based on the constraints 0[‘ dcmdnu
paging, whereas Equation 13 is dcnvcd from Equ.mon 1.

If x, has not-been prcvnousiy referenccd “the defining cqualmnz, for -

stack S, are lhe following:

shy=x o a6)
s() = max [y — D, @) for 2 < i Syia an
sy = i) B ‘ S (18)

In this case,. Equations 16 and 17 expfcss the fact thdt‘réplaccmcnls'

are requucd for all buffer capacntles in the range | € C < vy
Equation 18 corresponds to the new page x, being ‘added to the
stack, wnth the result that a bufier of capacity

Y = Y- F l .
is now full,

Figure 8 illustrates the stack updating procedure as given--in E (jnu-

tions 12-18. The top entry s,(1) |s alv&/ays x;, and the ﬁrst pagc, ~

rcplaccd is

»m—&ﬁ) Cfora, > 1
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Each subsequent cntry s(i) is then determined iteratively from

$io(i) and p (i — 1) according to Equation 13 or 17. If x, is found -

on stack S,., as shown in Figure 8A, we use Equation 14 to

determine §,(A)). All lower entries are unchanged from time t = 1,
If x, is not found on stack S,_,, as shown in Figure 8B, then A, = o,

and we use Equation 18. 1n either case, the replacement algonthmf
does not have to be dppllcd to all the pages for stack updating.

Only a acquencc of pairwise decisions bclwacn pages 5. {) and
n@ — 1) is required.

Comparing our stack updating procedure with l’hd one for - ‘LRU
shown in Figure 7, we sec that page »(C) under LRU is ulways
504(C). Tn fact, the priority list P, is cxactly equal to stack S,
since both lists give the order of pages in I',., by most racent
refcrence. Thus

2(C) = 5-:(C) |

and Equations 13 and 17 then reduce to
5(i) = max[s, o — s -

== 1)

For an arbitrary stack ‘ulm‘rithmihc“stack updating is more complex »
than for LRU, and the order of stack elements at time.r ~ | may be

very different from that at time 1.

Let us now exuminc sevcral examples of stack algorithms. In general

any replacement algorithm that bases its decisions on some page -

usage quantity, whether imeasured or predicted, naturally induces a
priority list and is, thercfore, a stack algorithm. One cxample, of
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course, is LRU, and another example previously mentioned is

least frequently used (11U) replacement,

Under 10U, the page rephiced Trom g buller at time ¢ is that puape
that has been referenced the fewest namber of times over the interval
L <l ¢ < for pcd'):\ps over some Chackward window™ interval
(= h < a9 < gy where 0 < I <2 W wao or more pages are ded for
frast frcquency of use, then some arbitrary rule is wsed Lo break
the tie. As tong as the rule is congistent for all pages and ali
capacities (c.g., if the tied pages are mumer ically ordered) a priority
list P, is induced, and LFU is « stack algorithm. '

Other examples of stack algorithms may arise in analytical studies

of program behavior. If an address trace is generated from some
random -process, it may be desirable to study the behavior of
replacement algorithms that base their decisions on .the param-
cters .of the random process. One such process is a time-invari-
ant, first-order Markov chain,'*"* where any page ¢ is referenced
immediately after page b with a fixed transition probability ..
The process is completely described by the matrix T = {n,.},
(where b and ¢ range over all referenced pa;‘cs) and by the pxg
1cfcrcnecd at time = 1, ‘

One possible rcp\acemcnl' algorithm is to remove the page least

likely to be referenced next, We call this strategy '‘least transition -

probability” (LTP) since, for page x, equal to page b, the.page ¢
chosen for removal is the one thal minimizes =, over those pages

in the bufler. Supplying an appropriate-rule for breaking tics, we

see that LTP induces a priority list and is ‘& stack algorithm,
1 Y ”

»

Another replacement algorithm is to remove the page with the.

largest expected time until next reference. We call this strategy
LNR for “longest next reference.” The expected times. until next
reference can be obtained from the I-matrix by standard tech-
niques.'” As with LTP, LNR induces a priority hst if we supply an
ppl opriate tic-breaking mle :

To analyzc an aclual program trace undef LTP or LNR (perhaps for

testing a Markov model of the program), page reference statistics
may be used to estimate the matrix 1I. For example, the observed
transition frequencies over some interval.f — A to 7 can be used to
-generate a time-varying estimator matrix 1,. A priority list P, can
then be constructed for each tinie ¢, according to the probabilities
in f1,, with the resuit that the overall strategy for rephccmcnt
remains a stack algorithm.

Other stack algorithms may base their dwlsuons on mformdtlon

from the programmer or compiler, or on.properties of the computer

system. For example, the programmer or compiler may supply to
the system'! specxal “program dxrecttves” that indicate which pages
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should bie given high priorities in the immediate future, Another
case 18 where the operating system assigns priofities to propram
pages inarnoliprogranmmed system, based perhaps on the position
of the progeanm i actask quene. 10all the papes in the address space
cutt be ordered in a prim‘ity list 1, far cach tme 1, lhc usuhnu_r
replacement alporithn s a stack .\Iymllhm

In the examples given, we see that prxunty lists can arise. fo o
varicty of ways, We now cansider areplacement. algorithm called
“first-insfirst-out” (FIFO) that is not-a stack algorithm. Under
FIFO, the page that has remained in the buffer for the longest
{continuous) tlmc up to lnnc 1 is removed.

A pcullmny of FIFO is ||Iu<tmtcd by thc foHowm;:, |mgc lmcc
X = abcdabeabcdc '

As shown in Reference 18, the success function for this trace is not

manatonic, and takes the form shown in Figure 9. Since stack
algorithms have monotonic success functions, we conclude that FIFQ

is not a stack algorithm and does not induce a priority list P, at
cvery time 1. In amplifying this conclusion, we note that the relative

pnormes between pages in Ty, may depend on the buffer capacity .

Thus in the cxampla. one can verify that page o has lowest
[)I iority of all pages in B(3) in the sense that d has been in the buffer
longest. Hawever, page ¢ has highest priority in Bn(4), smce it was
brought into the buffer latest,

Whenever the priorities among pages depend on the capacity of
the buffer, we cannot define a single priority list that applies to

every capacity. One instance of this is when priofities depend on *

the frequency of reference to pages after their entering the buffer.

Another case is when priorities depend on total time spent in the

buffer.

As long as prioritics are independent of capacity, and as long
as one can order the referenced pages to reflect these priorities,

. then stack-processing techmques can be uscd to ﬁnd the success-

function.

An optimum replacememalgorithm '

|
We now dlswss a 1cpla<,cment algonthm that ylclds the mdxmmm

value for the success frequcqcy over the space of all replacemf‘nt
algorithms—Tfor every page trace and every buffer capacity. Such

an algorithm is said to be an optimuim replacement algorithm. -

Belady' describes an - optimum replacement algorithm -calied
MIN, and shows how to evaluate the success frequency for a-given
page trace and a given buffer capacity. In the following discussion,
we descnbe a stack aigonthm called OPT.and prove that it is also
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~given in the Appendix, We note here that orT is not realizable in -

Shoan nplnnum replacement alporithin. Unmt' certain propertics n(‘l RU

andd OPT, the entire success hmcllnn Im OPr G i be dclummcd in
two, pmcs of a page {race. . ‘

The l‘L‘PL\(_,N“CI\l ul{'orilhm ort has-the following chavacteristics,
Whenever i page must; be pushed from the bufier, the chosen page
is the one whose next reference is farthest in the Puture. H a tic
results beeause two or more budler pages dre never referenced again,
the tie is broken by an warbitrary rule € that pushes the page with
the latest alphabetical or numerical order. An example of orT
replacement is shown in Figure 10, Tor the bufler capacity € = 3.
As an illustration, notice that at time ( = 5 page ¢ is pushed from
the bufler, since the other buller pages a and b are referenced sooner.
At time 1 = 9, page b is pushed from the bufler, because puge o is
referenced again (at time 1 = 10), and page ¢ has priority over
page b by our rule’ .- ' ' ‘

A formal proof that OPT is an optimak replacement algorithm is

an actual computer system because it u.qmrcs ‘knowledge of future
page references. However, OPT does'serve as a useful benchmark
for any replacement algorithm, including stack-type alporithms.
To show that OPT is a stack algorithm, observe that a priority. list
P, can be constructed for OPT at each time ¢, Specifically, P, is the
list.of the pages referenced again, ordered by their time of next
reference, {ollowed by the list of the pages not referenced again, as
ordered by the tie- bl‘c‘ll\mg rule-§2,

The stack pnoccssmg lechmque for OPT is lllustrdtcd in Fxgurc 1.
Priority lists are ordered s descr ibed above, and curly bruackets
dcnote the pages ordered under the rule Q. For example, at time

= § the priority list is Py = ¢, d, a, b, because ¢ is the next page

Figuro 11
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These results !(nm the basis of a two- [)-lSh stack processing tcchmquc

referenced (£ == 9yand d is the second page veferenced (at ¢ = 10).
apes g and have not referenced ag ingand thus ave ordered ucmrd
ing, to 1ule Q. The sequence of OPT stacks is construeted using the
priovity fists, and the snecess function‘is obtiined from the stack’
distanee frequencies, A m.nm difficutty with the techniguie is the
amonnt of Torward seanning requived to mnah\ul the priority:-lists,

Fortunately, a more efficient procadm‘c exists (‘m' uhmining the
priority lists. For a given page trace X, we define the forward distance
w, i) to a page ¢ al ime 1 as the number of distinct pages referenced
I Xy e X (where x,o is the first reference to page a afler time

0. 1f page a is not referenced again, the forward distance is defined -
as infinity, Note that the priority list under OPT is a listing of the -
pages in T,_, according to their increasing forward distances, An -

Mustrative example of forward distance dctctmnmhon 1% ;,wm in
Figure 12 :

lfthe forward distances to all pages in ', are known at tlmc! -1,
the new forward distances at time f can be determined iteratively
from the single forward distance wi(x,), Spcciﬁc(\lly.‘for page
a # x, and w, & w(x,), we have ‘

[w,_‘(a) —~ 1 for W) £ w, and w.-,(a)t"% ©

w(a) = . . _
w,...(a)v for wy(a) > w, or .(a) =

(19)'

To determine the sequence of forward distances {w} for a puge
trace X, consider the reverse trace X* = Xy, Xp.1s
Suppose that X is amalyzed according to LRU rcplﬁcmncnt and
that x; and x; denote two successive references to page a in the
reverse trace. Thus X Xy vy Xm0, 0%, X = a4,

At time j, the stack distance A; is. the -number of distinet pages

referenced in xa -+ . X;4. (Note that x;,, precedes x; in X*.)
However, this nuwmber of distinct pages is precisely the forward
distance w; lor page trace' X. Thus the »scquence of LRU stack
distances for trace X", namely, A,, A._, *++, Ay Ay, is the reverse
of the sequence of fmw(\rd (hsmnccs Wiy Wy, tee s Wik wy fors
trace X. e

B

for determining the sucéess function for OPT |eplaccmenl The
technique is illustrated by Figure 13, The first pass is a backward
scan of the page trace X using LRU replacement, denoted by the
left-pointing arrow, The LRU stack distances are stored, in reverse
order, on a ‘‘distance tape.” The sccond pass is a forward scan
using OPT replacement, as shown by the right-pointing arrow.
Forward distances read from the distance tape are- used.to mamtam
the OPT priority lists accordmg to Equation 19.

The LRU stack distnncgs gathercd from the reverse page trace yield
important information about the forward page trace. Specifically,
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we claim that the success function for the reversc trace X" under

LRU replacement is equal to the success function for the forward
trace X under LRU replacement. Thus one can use the backward
scan of X, not only to generate the distance tape for OPT, but also.

to generate the success function for LRU.

o To»p:rove-this result, let F;,,“,(C, X) denote the LRU success function .
. for trace X, and consider the set of LRU stack distances measured

for a given page a in X and X®. As the example in Figure 14
illustrates, these sets are always identical. Since this holds for every
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distinet page in the trace, the distance freguencies for X ‘nid X are
identical, so that the sueeess fun( tions Fr(C, /’") and F ...U(C‘, X)
are equald, '

Another resuft, which i proved in the Appendis, icthat Fow (0 X)
Pt to P (0 X whiere Fopa (C N s the OPF sieeess funelion
for teace XL Thos, e twospass teehnigue canche implemented with
orward-lackeard sems as well as with backwiand-forwad seans,
Pyaring the first scan, the suceess Nunction for LRY is obtained, and. \
the distance tape generated. During the second scan the success '
function for OPT is obtained, '

Random replacement

In the stack algorithims considered thus far, a unigue success func-
| ' tion is associated With cach trace. We now extend stack-processing .
f techniques to cover-a “‘random replacement” algorithm (RAND)
that does not always ylcld a unigune success. function. With RAND,

. if the buffer has a capacity of C, any given page is chosen for rep!dcc-
:[ﬂ ment with a probability of 1/C. In analyzing RAND, one "might
perform a Monte Carlo simulation for each buffer capacity to
; obtain « RAND success function. Repeating these simulations would

J o yicld a sct af sample suceess functions to characterize RAND. The
By ‘ sample success [unctions could then be used-to estimate an “average”
success function, :

‘A question that arises is whether stack processing can be used to
generate a sample success function for RAND or any. other algorithm
that bases a replacement choice on the valug of some random
variable. We observe that RAND is not a_ stack algorithm, because .
there certainly exists a trace and a time ¢ for which the mclusmn
property fails to hold with a nonzero probability.

Our approach is to define a réplaccmcnt algorithm RR, which is a
stack algorithm having the same statistical propertics as RAND for
each capacily C. 'The algorithm RR.is defined as follows: at each’
time 1, the priority list P, is obtained by randomly ordering the sct
of pages in T,_, (each of the v,.,1 possible orderings is equally
likely to be chosen). Observe that RR is a‘stack algorithm, since it

X" under . induces a priority list.

¢ forward , ‘ : A
backward To establish that RR is statistically equivalent to RAND, assume
T, but also that a replacement is necessary in a buffer of capacity C at time ..

Since y,(C) = min [B,,(C)}, and P, is randomly chosen, the.proba-
bility that any given page is y,(C) is 1 /C—the same as for RAND, -~

5s _function : . ,
- measured One difficulty in implementing RR is the generation of the random
Figure 14 priority list P,. Fortunately, it is possible to update the stack without
s for every actually constructing the entire priority list. Assuming that A, > j,
MM SYST § NO.2 - 1970 I . STO!UI\GB HIERARCHY EVALUATION 97
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" expression:

let ¢, (N denote the probability that page s, (/) has priovity over
page y() —~ 1) at time o, s, l(]) does not have priority over

30 1), we know that s, (/) = winc[F () Sinee this occurs ‘

W llh probability 1/, we oblain

= g{1) = 1/j
or
gty = (j — D/} . 20y -

Using Equation 20, the stack can be updated at time ¢ for RR
replacement by choosing page s(7) = s..4(j) with probability
(G~ N/ifor2 £ j < A and j < v, As a check, let us compute
the probability @ that an arbitrary page b is pushed from a bufler
of capacity C at time 1. Assuming that page b occurs at some position
k on stack S, -, \xherc 1 < k < C, then Q is given by the following

Q= P{»(C) = b}
Polsik)y =yl ~ 1). sk 4 1) = s,k + 1,
skt 2) = saale R 2), ..s (©) = 5. n(C)} @0

i

The events in the_|omt pnolmblhly in lqu.mon 21 are independent,

so that'we obtain
Q= Pr{sl(k) =y, k ~ l)} 'P,[S,(k + 1) = s,k + l)‘ .
A 'P,{.s,(k -+ 2) = sc-l(k -} 2)} e 'Prlsl(C) = S.-:(C)l

R e L I

al-

Since Q@ = 1/C. holds for any page b and capacity C, ‘we have
verified that the stack updating for RR can be accomplished using

Equation 20, and that RR Nas the same statistical properties as

RAND for each buffer capacity, Note that although a p.uticular
value of a point on the success function, for ex amplc Fd) = 0.3, 1s
Lqmlly likely to occur ynder both RAND and RR, the occurzence
of a particular success functmn is not: equally lllfcly

As the’ example with RR lllustmtes, stack pmccwng technigues
can be extended to cover probabilistic replacement algorithms, In
fact, a replacement algorithm can have a mixture of probabilistic

and nonprobabilistic aspects. For instance, the arbitrary rule used

to break ties in LFU and other algorithms may choose a page at

random.. Another possibility is for a replacement algorithm to favor.

some pages probabilistically in the construction of the priority list,
thereby realizing a so-cafled “biased replacement” algorithm.'? In
any case, the only requirement is that the priority list be constructed
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to tefleet the probabilistic properties of the desired rcpl,wuncnt
atporithin for every mpucny C.

Congruenco mappitg

Up ta now, we fave restiicted our attention to two-evel storipe

hicratchies with unconstrainted mapping wt the first level, Under
this type of mapping, any page in the bulfer may be replaced by the

referenced page. The advantages of unconstrained mapping are -
that all available page franies in the buller can be used, and also

that seldom used pages’ cuannot become “locked™ into the buffer by
mapping constraints. A disadvantage with unconstrained mapping
is that extensive associalive searches may be necessary. to locate
pages in the buffer. Morcover, the implunentdtion overhead of the

replacement algorithin way be excessive, since relative - prmnty‘»

information must be maintained for all pages in the buffer, To
offset these disadvantages, a consirained mapping schenie can be
employed whereby each page is restricted to occupy a membcr of
only a subset of the bumr pdg(, frames,

Qne such mapping technique is called congruence mapping, by which -

the 2% distinct pages in the address space are partitioned into 2°
disjoint congruence clusses, where 0°< o < k, and each class contains
247 pages. The classes are numbered consecutively from Q to
2° -= 1, and class niembership is determined from the « ow-order
bits of the page number. In this case, the a low-order bits constitute
the class nunmber [x] of a page, and the remaining & — a bits are

salled the page prefix as shown in Figure 15, The quantity a is cnlled
the class length, For a class kngth equal to zero, we sct [x] =
for all pages.

In a two-level hierarchy with congruence mapping, every congruence

class is assigned an equal number:of page frames in the buffer—-to
be used exclusively by members of that class. This number is called

the class capac‘lly and is denoted by D. (The total (:dpﬂcﬂ)' of the

bufler in pages is thus C = 2°-D.) When a page x is referenced, it
may appear in any of the D page frames reserved for class [x]). If the

reference page iS not in the bufler, and if the D page frames are all.

occupicd -hy other members of class [x], a rephxccmcnt algorithm
selects one of these pages for removal. We assume, that the same
replacement algorithm is used separately for each of the classes.

Note that when the class length a'is zero, all pages are in the sume

class, and the mapping is uncoustrained. When the buffer capacity
Cis a power of 2, and when € = 2", only one page is allocated to
each class, and the mapping function is fully constrained, Thus
for a fixed buffer capacity C = 2*, where 0 < h < k, we can vary
the mapping function from unconstrained to partially and fully
constrained simply by varying the value of « from 0 to A. -
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Since llu. congruence classes are dmomt and since thc same number
of buffer page frames are -.lllncated to each’ cluss, it is. possible to
treat a bufler as a collcctxon of 2* distinct buffers—-one for each
class [x]. If we also view the backing store as 2° individual backing
stores, as shown in Figure 16, the two-level hicrarchy partitions

"in(o a collection of 27 distinct subhlcmxch_xes, cach with a bufier
“capacily of D page frames. When the replacement algorithm is a

stack algorithm, these subhierarchics can be evaluated scparately
usmgs(ack processing techniques. In practice, 27 stacks {one for
cach subhierarchy) can be maintained as the trace is processed.
Each ‘page referenice x causes only the stack for class [x] to be
updated, and a stack distance A to be determined from that stack.

In congruence mapping, to calculate the success function for a
given trace and given class Iennth a, the stack distances must be

carcfully interpreted. Whenever a stack distance A is measured, the -

corresponding critical capacity of the entire buffer is 2°-A, since
this is the minimum bufler capacity necessary to contain the refer-
enced page. Therefore, the success function F(C) for the set of
2*-Dwhere D = 1,2, -+« ,is given by -

D
P = @) = Y, KA
BN Aw) L
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1

where #(A) iy the total number of times the distance A occurs for
any ol the stacks. s

, Geaerally, stack processing, technigues must be ased separately for
1 cach vatue of the class tenpth oo However, for 1.RU replacement,
) anly o Sinple stack need be maintained in-ordee to determine the
! suceess funetions for alt values of « in the intervad © < o = b Reeall
that wnder ERU, the stack S, s the Hist of all the pages in- 1,
s 7 ordered aceording fo most reeent reference. To form the stack
: S (i o) corresponding to congruence .class § and clasgs lenpth «,
Sl one would Hist the pages in class 7 according to their most recent
reference. However, this ordering is preserved in the stack S, ., for
apy § and any w. Thercfore, S, (i, a) can be determined by listing
in arder all the stack entries of .., belonging to class i, u practice.,
it is not necessary to actually construct eaclh stack S, ([x,],. o) in
order to find the distance AS. One can determine all the stack
distances {A9) in one scan of the LRU stack S, ... To dothis. we
first define the right mateh function ®M(x, p) for two page nunibers
x and y as the number of consccutive low-order bits that match.
oo - For example, RM(OTIGL00101) = 3, and RM(0000,0001) = 0. Note
| that the class nunibers of twa pages are equal ({x] = [y]) if and only
' if the class length salisfics the incquality o < RM(x, p). Now supposc
= : that the current refercnce is to page x, and consider the jth entry
on stack S, which is p = §,..(j). The accurrence of page yon the
stack will contribute to the distance AY if and only if RM(x, ¥) > a.
‘ Therefore, AY can be determined by counting the number of stack
entries p above (and inclnding) page x that satisfy RM(x. ») 2 e

-f“t.ltlllbfll' A simple: pracedure for deterdning Ay for all o is to scan down the ‘
i"ﬂ"‘éi :»'lo stack, and maintain a set of right match frequenicy countess !u(r)i
;” ‘i‘\"f‘{'l for 0 < r < k. Counter w(r) is incremented. whenever RM(x, ) is -
acking : N
7_;? ne equal to . Il page x has been prcwously referenced, we eventually ‘
! ; . find RM(x,y) = k (corresponding to x = y), und. cach dletance Ay o
I D) N .
. is given'b v -
hnt is a i sg ey ' o lr; )
cparately « - . . o
= ¥ ulr where a< . .
(one for A ,{T{, “,(') . OSask r .(23)
;;;C?:e:e ©* However, if page x lias not been previously referenced, the bottom
!stack of stack §,., is reached dand A} is set, cqual‘ to infinity for all class
: ' ' - lengths «. In cither case, each distance A is used to increment the
. appropriate distance connter for class length @ -
ian for a
¢ must be . R - »
» X4 > § pr e i icated in i .
sured, the An example of this P ocedure is ind cate( in- Figure 17. In Figure

FIA, the right match functions are found by scanning down the
stack. In Figure 178, the right match frequencics {p(r)} are plotted
inreverse order as a function of r. Cumulative sammation, according
- to Equation 23, then yields the desired LRU stack distances {A7].
Note that the stack distance for class length zero is the same stack
distance A as obtained for LRU replacement thh unconstrained

" A, since
the refer-
the set of

v

mapping.
. N .
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Flgure 17 Right match funclion.for IRU replacemant,
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WMuitilevel hierarchies

In previous sections of this paper, stack processing techniques are
developed 1o obtain the sucedss function for a two-level hierarchy.

For each bufer capacity, this success function represents the relative

" number’ of accesses to the buffer for a given page trace.

We now show that the same success function can be used to find:
the access frequencies for all levels of a multilevel, linear hierarchy

for any. number of levels, and any eapaeity at each level, Recall that

in'a linear hicrarchy, the only downward data path from cach level

M, is to the next level M, for | < i < H. Also a'path or sequence

of - paths is available from each level M, for 1 < i < #H, to the
tocal’ store. Furthermore, no replacement decisions are required
when a page moves upward through intermediate levels. We now
assume that the same replaeement algorithm is used at all levels,
“and that the mapping funetion is unconstrained at every level,
(Hierarchies with constrained mapping funetions are considerced

Jater in this paper.) At time ¢ = 0, the backing store contains all”

pages, and these pages are moved to the local store M, on demand.
When M, is full, pages replaced in M, are pushed-down to the next
lower level in the hierarchy, M,. As each successively lower level
M, fills, the pages replaced in M, are pushed to the next level
M.y At devel My, the replacement algorithm is applied to the

)
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set of papes alrepdy present, thereby making voom for the currently

e« e rns mrees e s et

g votereneed pape v At the intermediate fevels M for 2 <2 o ",
the peplacement alporithim iy applicd to the set of pages in A and
o to (he pape pushed from tevel Af, . A .
) , o - ;
When page v, s aceessed from seme fevel M (for 237 < H -+ 1), : :
a page is replaced from cach of the fevels AL My -0 M The
N page replaced from fevel A7, is guaranteed to find space at level A,

sinee o poge frame was vacated by x,. When page x, is accessed from .
the backing store My, o page is displaced from ecach of the h,\'dﬂ‘

Ay My, - oo ot a vacant page frame is found. Note that posmm\s

. of pages in (hL hicrarchy-—ars! therefore the access frequencies—

do not deped on the structure of upwar d data paths to the local -
store, but depend only on the replacement (llgomhm and the

cupacity ot cach lc\cl :

‘We have shown that when a stack replacement algorithun is used  Flgure 18 Relaticnsbip batwoun
for a two-level hicrarchy, the top C; pages of the stack ure the stack and hisrarchy
contents of a bufler of capacity € as shown in Figure 18A. Let us : (evels

now assume that the replacement algorithm for a multifevel hier- A worcvuirarcy

archy induces a priority list at every time and that this list determines :

* the replacenient decisions at every level of the hicrarchy. If this is o, M=
true, then for any number of levels and any set of capacitics C., , {,'_ =
Cu + -, €y, the contents of each level at any time can be determined 1 ==
. ﬂom the stack for- this replacement algorithm. More precisely, . wemy, | T=
~fet BI(C)) denote the contents of level M, at time ¢, and let o, dcnotc R ' o—
the sum G, 4- Cy 4 -+ <4~ C. We then claim that : :
Y Bi(CY = 13,(0.-) — Bloi) fori= 1,2, H—| (24) .
{1 ) o o, . s B MULULEVEL HIERARGHY
or cquivalently that B}(C,) can be identified as the first C, entries of oy NI
stack S, and B7 can be identified as-the next C, entries, etc. This M €, ':E_: }o,‘w,;
AP * result is iltustrated for a four-level hierarchy in Figurc 18B, : 1 ‘"*‘ ?—3
' I =l
The main elements of the proof of this result are as follows. Assume’ M Gz oRie)
(hat Equation 24 is satishied *at-time ¢ — {, and that page X, = I * —
s (A 1s an clement of BI_(C) (i.e., level M, is accessed.) As : =
stack S,., is updated to stack S,,.page y,(C)) is removed from - M, S | o | Sedey
the top C, elements of &;_,, with the result that pages s(1),-«:+ ; J,_ —
5,(Cy) represent Bi(C)). WNow .observe that page p(C 4+ C) is { —
removed from the top C, 4 G, elements of S;_;. In terms of the - , P |
hierarchy, we know that y,(C,) is pushed to the next lower level M., Memety == |
since the hierarchy is a lincar one. The replacement algorithm then .- == |
sdects a page from y,(C,\) + B2_(C,) for removal from M,. Since - ‘ |
age y,(C)) has lowest prlorxty in B!_,(C), the page sclected. for ' |
removaf has lowest priority in B!_,(C\) 4+ BI_(C,). But this page
- is y(C, + Cy), so that 5,(1), -+« ,;:5(C, + C,) represent BYC)) +
BY(Cy), and thus s(C, 4 1), -+, s(C, + C,) represent BY(C,).
A similar argument applies to subsequent levels M, where 2 < i <
ro.2 + 1970 - STORAGE MIERARCHY EVALUATION 103
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Figuro 19 Oblaining access

success function

frequencies from

£ = 1. Pape 1{e..) is.pushed from |c\"é| M. i of the hierarchy, and
competes with the pages in B;_(C). The replacement alporithm
selects for-replacement the page SR

min {y(ena) B (C) = min (B (e)] <5 (o)

with the resudt that | .

Bia) = B(CY 4 BACH + oo 4 B(C)
and ‘
B(C) = H(o) — Bai)

Atlevel M, the page p(e,..) th.athns becn pushed from M., finds
A vacant pazm frame, and all loyrer levels remain wnchanged. Then '
BY(C,) = BLAC) + ylre) = X = Bia)) — Blo,uy) |
and | ' |

BUC) = Bi_(C})) = Ble;) — Bo;.1) for j > g

Thus we have shown that Equation 24 is satisfied ot tlme

The signiﬁczmce-of this result is that a stack distance A, where

ik - Coy < AL G d G corresponds to an aceess
to hier axchyl avel M, and the relative number of such A’s is simply
the access frequency £, to that level. Thus

S~ n(d)

) = Py - for 1<g< H~1

(29)

' As wnh two fevel hxcruchms, all other accesseq are dnca.lcd to the
~ backing store so that

é‘li‘*"“‘i:lf*e

1l

= I »F(U'v~l)
Awggmy 4] -

The determination of access frequencies is illustrated graphically
in Figure 19 for a four-level hierarchy. Nate that the technique

-

<

or success function, However, the technique can be used for any
linear hierarchy as long as the replacement algorithm always induces
a single priority list for all hierarchy levels.

Our treatment of multilevel linear hicrarchies can be extended to
include hierarchies with congruence mapping funictions, We assume
that the same class length « is used for every level and that Dy
page frames are allocated to each congruence cluss at level M,.
"The total capacity of level M, is then ‘

'% . S N S e e C — 2u

Hat ey EN e O RN e

N R ALK G S s

where 1 <t H'

Usmg the success function F*(C) and Equahons 25 and 26 we
. obtain the access frequency F7 for each level as follows:
104
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illustrated in the figure cannot be used for an arbitrary hierarchy-
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+ (20) ) A
j tag each reference as cither a fetch or a store. For: fetches, the
d 26, we priority list and the stack ave updated, and a fetch distance A" is
rccorded. For stores, neither the priority list nor the stack is up-
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When using Pauation 27 or the graphic tu.hmquv shown in Figure

I
o for e 0

19, it is important to vanember (hat the suecess function for multi-

level hicrarchies with congruence mapping is defined only when
the storage copacity is @ multiple of 27, o

Fossible exlensions -

It is possible to cxlend ‘stack processing techniques 1o uccount for
various changes in the hierarchy model. For cmmplc with ap-
propriate encoding of the n-bit address, systems with page sizes
that arc not a power of (wo can be evaluated. Similarly, other
encodings of the n-bit address can be used {o evaluate systems with
congruence mapping functions for any number of congruence

‘classes with equal or unequal class sizes. Indicative of.other change;

of the hicrarchy model that can be handled by stack processing
techniques are the following:-

o Pre-loading program pages into the buffer for starting cxecution
o Loading a working set'” of pages into the buflfer when resuming
program exccution

o Returning all pages to the backing storc upon pr ogram interrup-

tion,

o Maintaining copies of pages in several levels of thc storage‘

hicrarchy
o Bringing pages to the local store only (or fetch operatlon';
o Rcturning pages to the backing store for’ referenees such as
stores from an 10 channcl )
o Moving uncqual size pages or scgments_between levels

“To illustrate how stacl 1»%00("~:sixwg techniques can be ."\dapted to

these variations in hICM\Chy ‘design, we describe two.extensions in
some detail. Inour ong,m_al model, the gencrator does not distinguish
fetch operations from store operations.. In some computer systems,
however, pages are brought to the local store only for fetch opera-
tions, and usage statistics for page repldcement algorithms refer
only to references for fetches, Stores to pages in lower levels of the
hicrarchy are broadcast to thesc levels by the hierarchy management
faeility, and no pages are moved. The justification for fetch-store
hierarchies is that feiches or additional stores usually do not im-
mediately follow stores to a paz,e

The evalumion of fetch-store hierarehies requires that the géherafor
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dated. buta store distance A" is recorded, The distributions {n(A9)
and 1A can then be used o determine the feteh and- store
aceess Tegrencies (o each level of the hicrarchy, 11 shoutd be elear
that this technique also works i congriience mapping i inctaded.
We can also consider a maoditied feteh-store desipn where the page
usape statistics are updated for o store C_)p(;l';\liﬂl) even thouph no
page motions oceurs. This chuape s incm‘hmulu{ by updating the
privuty list for both fetches and stores, Thus, for modified fetchs
stoves, the net cliange in our model is that the stack is not upduted

for store opcmllom

Resides distinguishing fetches from stores, a camputer syslem may
also distinguish the various sources of store requests, For example,
a “colt-back™ feature can be used by which a page in the bufTer
is moved to the backing store if the page is stored into by an /O
device. The motivation here is to free the bulier of pages not needed
by the CPU, and to service all 170 stores from the backing store,

For a call-back hicrarchy, the generator must specily at least two
kinds of references—CPU references, and stores from the 170 channcl.
Stack processing techniques can then be modificd as follows, When
a- CPU store or feteh occurs, the stack is updated- in the normal

way (except for special entries to-be described later), and a distance

counter n®""(A) is incremented. ‘When an 170 store accurs, sy
al lime £, a counter n'/°(A) is mcrcmenlcd If pape x, docs not
oceur on-stack S,., then S, is ecqual to S, - I page x, daes oceur
on stack S,_,, then S, = S, except that x, is replaced by the special
entry “#.7 This entry, counted for all stack distance measurements,
represents the empty page frame caused by page x, returning to
the backing store. To ensure that empty page frames are filled as

soon as possible, all #-entrics are assigned the lowest priority -

in replacement decisions.

The call-back feature can be used in conjunction with the. fetch-

store or modificd fetch-store schemes. In all cases, the correctiness
of the. modified stack processing techniques can be established.

Since stack processing allows a large samiple of “typical™ address
tapes to be analyzed, for many hicrarchy models, the efliciency
gained at the early stages of hierarchy design may be great enotigh
to impuct.the whole design process. Mare of these traces can be

"processed in a given time, and more lucmxohy designs can be evalu-

ated for a given number of traces. The ayailability of this data may
help justify the “typical”-trace approach to design, or may lelp in
the development of other modcls for system requiremcnts. As an
example, program models can be more deeply investigated by

evaluating both a program and its model under a very large number

of address traccs. Improvement in program modeling, in turn, may
enhiance the success of analytical disciplines that use these modcls,
such as storage interference studies for multiprogrammed systems.
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Concluding remarks

lhc concepts presented in this: paper have been used to dcvc\op a
\umct) of stack pracessing techniques that are uscful in ‘the evalua-
tion of storage hierarchics, Using the inclusion property, we define
a class of page replacement algorithms, called %mck dlgomhms, and
show that replacement algorithms that induce priority lists—such
- as least reeently used, least frequently uscd and mndom replace-
N ment—belong to this class.

For any stack dlgonthm the frcqucncy of stack (Ilsmncu cin he
obtained from an address trace by stack pracessing and - wsed- o
. calculate the success functions. The success function can then he

' used to determine the relative frequency of access to afl levels of a
multilevel, linear storage Imrarchy, with any number of levels and
any capicity al each level,

For least recently used replacement (LRU), the access frequencies
of hicrarchies with congruence mapping functions can be determined
in a'single pass of the address trace—for any number of congruence

1 classes, any number of levels, and any capacxty per class at. each .
1 level. : .

e

y Some special results are presented concerning an optimal replace-

"t ment algorithm (OPT). It is shown that OPT is a stack algorithm:

W and that OPT minimizes the number of page swaps for any address..

al trace aud buffer capacity. Also, both OPT and LRU can be evaluated -

s, with a forward pass of the address trace followed by a backward .

pass of the same address trace.

We conclude that stack. processmg techmques can ehmmate much{
of the simulation effort required in storage hierarchy evaluation,
Furthermore, we believe that the classification of stack algorithms

sh- N ~and the various extensions to stack. processing techniques may
ess provide insight into the areas of program modeling, system analysas,
and computer design.
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rhay Two results mentioned in the paper concerning the OPT replacement

sdels, - algorithm are proved here. To do this, it is first shown that given

tems. any trace and replaccment algonthm (not necessanly usmg demand

sv‘sr J No.2 - 1970 | . “ S STQKKGB HIERARCHY EVALUAmN‘ 107 : o o i

X Do s PR



s ase

108

paging) another replacement algorithm exists that uses demand
paging and causes the same or a fewer total number of pages to be
louded into the buffer, This result is vsed to show that OPT is an
optimal replacement algorithm-and; in fact, that OFr canses the
minimum total sumber of pages-to be loaded into the buffer.
l"'indlly. it is:shown that the success. function under OPT for nwny
trnee is ldenuc'tl to the success function under OPT for the reverse
of the truce.

)
Definition i

o |S| denotes the number of clements in a set S.’

o |a]y denotes the number of occurrences of a symbol a in a

. .sequence X,

‘o A= lab b, -+ is a finite set of N page addresses or pages

o X = X, Xz +*+ , X, is a finite sequence of L elements from A,

and is called a rrace.
o B(C) € Adenotes the contents ofa buffer of capacxty C at fime
t, and is called a state. L

throughout this appendix, we consider a two-level storage hierarehy

with fixed buffer capacity C. Consequcntly, we use B, instead of

B(C). The term B. denotes the contents of the buffer immediately
after reference x, is made; By is called the initial buffer state; and ¢,

" ! the empty set, denotes an empty buﬂ‘er state

Deﬁnmon

| .
P =pypy e, prisa finite sequence of L sets, p, C A called
an O-policy. s,

o Q=G q is a finite sequence ofL- scts,_'q, C A, called
an F-policy. ' g :

A pohcy isa part:cular realization of a replacement algorlthm for
“a givén trace. For such a trace and initial buffer state B,, an I-policy

. .and an O-policy together determine the sequence of buffer states

“that will occur during the trace. An /-policy gives the set of pages
loaded into the buffer, and an O-policy gives the set removed. If
P = ¢, no page is removed, and if ¢, = ¢, no page is loaded in.
‘Note that only eertam pairs of O: and I-pohcles are: meaningful.
For example, a page cannot be removed-if it is not in the buﬂ‘er
' We consider only méaningful policies, where ¢,.« & B, and P C©
B, 4 g1y, for 0 < t< L~ l In tlus case. B, ., is obtained from
: BHI..—-‘_ (B, +.¢]1+;|] = Din1 .
' 'Deﬁnitioia ' . _
Let X be a trace and ‘B, (where |Bo] <. C) an initial state. A
" sequence of states B=DBy,B, - ,Bisa valtd sequence if x, € B,
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for | <1 < L. A policy pair P and Q is a valid pair for X and B,, |f
apphcatlon of the pmr results in a vahd sequence, .

Note that valid policy pairs are quite gencrdl in that any number of

pages may be moved into or out of the buffer, However, most of
our attention is directed toward demand paging where y

o |p| & ', and |q,] £ 1 ‘

o X\EBa=p=a=9¢ @D
o pEG=q % ¢ - and |B,_-,|i‘—-— C T
foralin, 1 <t < L. | R

Under demand paging, single pages are loaded when necessary until -

the bufler fills; subsequently, page swaps occur only when necessary.

One mieasure of goodness for a policy pair P and Q is the total
number of pages loaded into the buffer 2oL la.| under the policy
pair. The following theorcm supports the usefulness of demand

pagmg

Theorem I

.-

Let P and Q be a vahd pollcy palr for X and B,. There exists a

valid demand policy pair P” and Q° for X and B, such that

i} E la.

h=l

Proof. P” and Q" will be construcled by formmg 4 sequence of

Vnhd policy pairs (P°, Q"), (1" ah (P, @Y, - ,(I’“ Q"), where -

= P,Q" = Q,P"=P" Q" = 0" and 231, lgi| < 2lilai™
for 1<j<K lnformally. P’ and Q' are constructed ﬁ'dm P~ and
0! by altering p “' and g!"' to satisfy the demand paging con-
straints where p, ' and/or qi' are the first occurrences of non-

demand p'lgmg in P! and Q'', This is done by “sliding” oﬂ‘endmg :

elements ofp and/or ¢i~"to a later time in P’ and Q. I a & p!

and a e q, ever occurs then we trivially remove page a fromi both .

p! and gi. Clearly, this does.not disturb the vahdlty of P' and Q'
and only decreases the value of 3.7, |gil. ,

To construct P’ and @' from P'™" and Q'', 1 < j < K, let ¢ be the
smallest time such that p{~! and/or gi~* do not satisfy: Equation Al.
Set P! = P and @' = Q7' except as noted below. Suppose that

 x = aand that ¢/, for 1 < L, does not satisfy Equation- Al If

a G gl thenset g} = g and gl,, = gl3} + ¢."'. (Note that 4

_is defined here since qf“ Npi-t=¢)IfaE ¢! - , then set ¢} = o

and q,'“ giz1+ i7" = a). If 1 = L, then set q,,’ = ¢>ifa & q
or gl = aif a € qi7'. In all cases, note that Q' is. valid, smce

ql & B Jforl <1< L and that }:,,,,, lgi] < Z;,_, [q,“‘[

NO.2 ¢ 1970 i . STORAGE HIERARCHY EV_ALUA’I‘ION
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- Def mtiou

.e>tand x, =

Now suppose that pi™', for 1 < L, .does not satisfy Equation Al
We observe first that [¢j| < 1 and q, = ifact Bl I g! = ¢ or
|Bi- | < C, then set pie=and pi= pha -+ pi- [ lfq, « and
[BiZ}| = C, setpi = b for some b G pi'' and pi,, = p,,l +-
pi- .‘ — b}, (Note that p!-" "¢, sinee |B]2}] = C and ¢i " # ¢.)
Fort = Lysetpf = b&pimt il qf = aand |B}2Y| = C,orp] =
otherwise. In all cuses, we observe that P! is valid, since p} < B!,
for | <t <. L.Since P' and Q' satisfy demand paging at least up
through time 1, the desired demand policics must eventually be
obtained. Thus the theorem is proved: ~

Before considering an optimum. replacement algorithm we make

- two observations. First, under demand paging, a valid policy pair

P and @ can be completely represented by specifying just the O-
policy P. This follows from Equation Al because ¢, » ¢ can only

- occur when x; = a and a & B, (in.which casc we know that
‘¢ = a). Second, for demand policies P and Q, we can use |¢|» as

an alternative criterion of goodness.-To see this let u be the smallest
integer such that |B,| = C, 1 > . Then Iqsl p is given by the followmg
expression:

L

ble = 1 =00 - > ol @y

tautd

Since 1 in Equatlon A2is not a. functlon of the pollctes, Z,.. lq:]-is
J-’ a constant and :

. u L : L )
t‘f’ir = (L -+ ;I‘hl) - Z_: lg:] = constant — ‘Z I‘Ill‘ (A3)

s, .
For a. glven trace X and initial state B., let us define an optlmum
policy pair P and @ as a pair that is valid and minimizes Y~} |q.|

_over the class of valid policies. From Theorem | there al\vays exists

an optimum policy pair which is also a demand policy pair. Since
(A3) holds for all demand policies we can find an optlmum demand
. policy pair if we can find a demand policy P” such that |¢| 0 = |é]p
where P is any demand pohcy

»

Let Xbea trace, andlet a €& 4 be a page The forward distance
d(a, x,) to page a from page x, is the number of distinct pages
occurring in Xiew, ** 4 X,y Where e is the smallest integer satisfying
a. If no such e exists then d(a, X) = o,

- Definition

Let X be a trace and B, an initial state. A vahd demand policy P?,

. called an OPT policy, for X and B, is defined as follows. For 1 = 1,2,

o L, whenever p, > ¢ is required then p, = a where
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The forward distance to a page is just the number of distinclypugcs

referenced before that page is referenced again, An OPT . policy -

requires that the page removed from the buffer be one with the
greatest forward distance, Note that an OPT policy is'a particular
‘realization of the OPT replacement algorithm discussed. in the paper.
We obscrve that, at time ¢, all pages with finite forward distances
have distinct forward distances. However, more than one page may
have an infinite {orward distance. This means that there may exist

more than one OPT policy for a given X and B,. It should be clear ~

that all such policics P° have the same value of |¢|»o.

To show that any P° maximizes |‘1'>|ro over the class of demand’ o

pohcnes we use the following lemma.
Lemma 1

Let X be a trace and B, and B} initial states where

B(,)= To+ [a}
Bo = T0+ [b}

and d(a, x,) < d(b, x,). For any demand. policy P, corresponding to

} for TOQA and ‘a, b Ty - (Ad)

X and B,, there exists a demand pollcy P!, corresponding to X and .. * ‘

!, such that

Yol > bl K

Proof. Given P, we construct P'. Suppose page a firgt occurs in
X at x;, and b at x,,. Thus, i, < iy £ L is assumed. If either b or a.

does not occur in X, then set :,, or i, equal to L + 1. We consnder
thrcc cases.

Case 1. p; = b where p; is the first occurrence of b in' P, and l

1 <j<i, Herewesetp, = p,, 1 £k < Land k 5 j, and p} = a.

Thisresultsin B, = 7, + {(b}'and B} = T, + {a},0 <t < j~ 1

and B, = B!, j < t £ L. Since pages a and b.are both not referenced
up to time j, it should be clear that P’ is a valid dcmand pohcy
(because P is) and that || = |¢]». :

Case 2. p;, = b where p,, is the first occurrence of b in P, In this -

case we set pl = p,, | < k < Land k 5 j, and p}, = ¢. As in

Case 1, P’ is a valid demand policy and |¢|pr = |p]p 4+ 1 2 |$]e. .

Case 3. p; # b, 1 £ j< i, Here we r'nust consider two'subchses.

Case 34. pi, = c. Attime t = i, the states of the buffer are glvcn

by

B, =T + {a}

No.2 - 1970 : : STORAGE HIERARCHY EVALUATION
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-relation [¢]pe

B, = Ti+ (b) + lal — lc} forc € T,

which can also be writtcn as follows: B
= [T + la} = fell+ (e}

By, =[T:i + la} = {e]]l+ [b)

Note this is the same form as Equation A4 with T, replaced by
[Ti. + ta} — lc}land a replaced by . If d(c, xi, 1) < d(b, Xin1)
then we have a situation identical to that in the statement of Lemma
1 where X now is Xinaty ** s Xpo Scltingp, =plorl <k<Li, — l
and p!, = ¢, we again consider Cases 1, 2, and 3, Since the “new”
X is strictly shorter than the original X, this situation can only occur
a finite number of times. Note that P’ is valid as far as it is specified
and that p,, <, p,, contains one more ¢ than ph e, p..

If d(c, %:,4) > d(b, A.,”), we set pi = p, for | < k<i,— 1

" and p!, = ¢, and consider two more cases. First, il p, = b, , where Dy

is the first occurrence of b in X and ¢ < Iy, we set pl- = p,, for
L+ 1<k<Landk s fandp, = c. Here B, = B, for{ <t < L,
and as in Case 1, we see that |¢| - = || p still holds. Second, if p,
b, for ¢ < iy, wesetp! = pi, i+ 1 < k< Land k 5 iy and pf, = c.

Again we have B] = B, fori, < t < L, but we note that p,, = ¢,

whereas p!, = c # ¢. However, since Pi # ¢ and p}, = ¢, the

= lole still holds

Case 3B.-'p:, = ¢. Since g:. = a we observe that |B...,| < C.
Let £ be the smallest integer such that p, ¢ ¢. If no such integer
exists, then let £ =. L - |. Weset p, = p, for 1 < k < i, and con-
sider (wo cases. First, if i, 5 ¢ then we set pf = p, for i, + 1 £

"k < L. Note that 0 = Q except at times i, and i,. Since |B{| = |B]

for i, < t < L, we see that P’ is valid, and |¢|» = |¢|p, since P'.=

P. Second, for the case i, > ¢, note that x, = ¢, where ¢ ' a' and

e b Wesetp] = p,fori,+ | < k< Landk ¢, and p} = 4.
If p. = b, then |B}| = |B]for{ <t < L,and |¢|pr = |@|lp 41 2
|¢|r if pe = a, then the buﬁ'er states at times £ —, l and Lare:

Bi-y '%" T + {a} - Bi=Tut {al + {c}
By = Tx-‘ + {a} + {bl . Br'—" Ter + {b’ + {C)

© Rewritirig the buffer states at time £ as

By = [Ty + {c}] + la}

B, = [T+ lell+ () |

we arrive at a case similar to Case 3A.. As in Case 3A, P! contains
one more ¢ than P in the interval ¢ = 1, , {. Therefore, we treat
this case in the same way, with the rcsult |¢|p 2 |¢|p. Finally, if

p. = dwhere d 5 a and d = b the buﬂ‘cr states at tlme ¢ can bc
written as

[Tl—l + lal + {Cl - ldl]-i- tdl

MA'ITSDN, GECSEI, SLUTZ, AND TRAIGER IBM SYST J .

By = [T+ I}

which again cn
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L + l 2

B, = [Tea+ lal + lc} = )]+ (b)

which again can be treated as in Case 3A.

Note that the situation where i, = ¢ can not arisc in Case 3B, since
b € B.,_,. We have thercfore succcssfully exhausted the possible
cases, and Lemma 1 is proved. :

Theorem 2

Let X be a trace, By an mmal state, and P a valid demand policy
for X and R,. If P° is any valid OPT policy for X and. Bo, then

|¢’]F0 2 |¢]p .

Proof. We recall first that every OPT policy for X and - B, has
exactly the same number of ¢’s. To prove the theorem, we need
only find any OPT policy P® such that |¢|p0 > |¢|,. To do this we
will construct a finite sequence of policies P', P*, -+ . , P', where. P’

" is an OPT policy and |¢]P < lgle £ 000 < ]¢|,,,.

P' is constructed as follows Let i be the smallest mteger such that'
pi # p9 where p9 is an element of an OPT policy. SuppOSe that:

pi = a and p% = b. (Neither p; nor p§-can be qS, since both are
demand pohmes) Wwe observe that :

Bl =T+ {a }
where d(a, x) < d(b, x.). Since x; # a and x; # b, it follows tlmt

d(a, x 1) < d(b, x:.,). Treating B, as By, BS as B%, and L RTRARIN
as X, we can use Lemma 1to find a'policy p,,, ¢+ + ypi that:contains

as least as many ¢'s 88 Py + ,p,,. We then define P' = p, e

I)Lab
p, 1SS i— 1
P;cb: k=i ¢ -

Loit+1<k<L

Note that P! is valid and that |¢|, < |¢|p.. Furthermore, p; = p$,
1 £k <{ forsomed 2 i ' a ‘
Policy P? is constructed from P' in a similar manner with the results
that p? = p9, 1 < k < G where &, > £, and [¢|ps < [p]ps. Since X' is
finite, construction of P', P?, - - - must result in P, for finite j, where
pl=ph 1Sk LIt follows from [¢lp < @lp € -+ £ lqs]p:
that |¢|r < ]¢|p; where P’ is an OPT pohcy and the theorem is
proved. - . .

Combmmg the relatlon in Equation A3, for demand pagmg w1th-

Theorems 1 and 2, we have the following theorem.
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Theorem 3

Let X be a trace, B, an initial state, and P® a valid orr policy.

(Also, let Q° be the correqpondmg I-policy.) For any valld policy
pair P and Q.

Sz X

ted tol

Thus we sce that an OPT policy results in a minimum number of
pages being loaded into the buffer over the class of all valid policies.

_ After giving preliminary Lemmas 2 and 3, we present a final theorem

concerning OPT policies.

-Lemma 2

For a trace X, let the set B, represent the first C distinct pages

referenced in X, For a bufier of capacity C, if P is a valid demand
policy for X and some Bj C Bg, then P is a valid demand poticy
for X and any B' C Be.

Proof Let i be the smallest mteger such lhat x,, oo Xy c_bntains
C distinct pages. If B, < Bg then, for any valid demand policy P,
we have B; = Bg,since py = py =+« = p; = ¢. For B{ & B this

-also holds, so P is a valid demand policy for X and B}, (Note that
/ for different initial states, B; Bq, the Q pohcles will not be the
: same.)

b,

Lemma 3

For a 'trace‘X,. lef the set E, represent the last C distinct pages

referenced in X, For a buffer of capacity C, if P is a valid demand
policy for X and B,, there exists a valid demand policy P’ with a
state sequence Bo, B!, B}, «++ , B} such that B, = Eq and ol 2

ld’ln- . | ‘ .

Proof Let i be the smallest integer ! such that x,, -, X, contains

C distinct pages. Suppose; under policy P, that B._, contains n

elements of Eg, i.e. }Bi.y M E¢| = n. 1t follows that at least C — »
pages will be loaded into the buffer- following time i — 1. Setting
pl=pefor | <k <i-— 1, wewill specify the remainder of P’ in
such.a way that exactly C — n pages are loaded into the buffer

~ following time ¢ — 1 We observe that, since at most C distinct pages

are referenced following time i — 1,-we never-need remove a page b

- from the buffer where b € E,. Thus, if a‘page must be removed at

time ¢ for i < ¢ < L, there always exists a page ¢, where ¢ § Eg, in
the buffer, and we set p{ = c. If P’ is constructed in this manner,

L : L

Z; lail < Z la.l

ta e
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and from Equation A3 we have |¢|pr = |ols. Furthermore, since
no page in E, is ever removed from the buffcr followmg time ¢ =
and |Ee| = C, we sce that B = Ee.

Theorem 4

_.Lct X =2, - ,x beatraceand "X = x,, -+, x, its reverse.
If P? is an OPT policy for X and B, = ¢, and "P? i 1s an OPT pohcy

for "X and "B, = ¢, then [¢[0 = ||, 0.

Proof. Let us ussumye‘thatv the theorem ‘does not hold. Thus,
without loss of generality, suppose that |¢},,0 = |¢{ro + k where k

is an integer and k > 0. If D distinct pages are referenced in X (and -

in "X) and if D < C, the buffer capacity, then we have an immediate
contradiction, since |¢p|lpo = ||, 0 = L. We therefore -assume
D> C. T ‘

Let us denote the state sequence under P° as B,, B,, - -, B,. From
Lemma 2 we can set B, = B, without disturbing the validity of P°.
From Lemma 3 we can alter P° such that B; = E¢.. Note that the
altered policy contains the same number of ¢'s as P, since P® is an
OPT policy. (We subsequently refer to the altered policy as P°))

Similarly, if "By, "B,, - - - , "B, is the state sequence under "P? we can

assume that "B, = "B, and "By = "Eg.

Consider now the state sequence "By, "By, "By, -, '~B,,"B.. Since
X, € By x40 € By, -or X2 € "Bpy, Xy © "By, we see that this
sequence is a valid (not necessarily demand) sequence for the trace X,

Let us denote the corresponding valid policy pair as ' and Q' We

observe first that, since 'Ec = Be, we have "B, = B = B,. Thus'P’
and Q' (as well as P°) are valid policies for X and B, Next we
observe that "B, = "B, 4+ g2} — {2} can be written as

"By = "By, -+ "2} — "q(lj.}.?‘BUt we also have rBL—-l = 'B'Lf+'

{gi} — (pil, which yields g = "p{ and p} = "q2, since "pg M g
¢> Sumlarly, since B,W, =‘ "By + {"g2:) — {"p2..11, we have

P, and pi = "q%_,. Contmumg in thls manner we can
show that
;='r0 ! ,".\ _. . . . C
s ”“’"‘} for 2<¢< L : (A5)
Dt = "qhaa- : -

Now, since x, € 'B, (recall that "B, = 'By), it follows that
P = "¢ = ¢. Similarly, since x, € B, (recall that B, = B¢), it
follows that p! = g = ¢. We can then trivially assume that p! =
"% and g = "p%. The significance of this is that, using Equation A5,

we have established a one-to-one correspondence between P’ and

"Q°, and between Q' and "P°. In particular, [¢|sr = |¢|,e0 and
|$lor = |¢|,,.o. We now observe that |¢],.0 = |q§|,,,o, since |"Bo| =
|'B,| = = |'By| = C. In other words, p% = ¢ if and. only if

NO, 2 * 1970 o " STORAGE HIERARCHY EVALUATION
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"q% = ¢, since the buffer is always full. We thus have shown that
lolp = |¢|rur{= (1P

Recall that P’ and Q' are not necessarily demand policies. From
Theorem | we can find a demand policy pair P” and Q"' such that

A
'2__, let] < Z lai}

From Equutlon A5 and the discussion. that follows, we know that
P}l = |g}| for 1 £ ¢ € L. Since P" and Q"

are demand poltcxes, and since |B,,| |B"| = = |B}| = C,
we have

Ipif| = |q¢’| for l r S L. Combmmg thesc results yields

TS N il or (el 2 ol

But then we have |¢],+ = |¢x| = |¢|cro = |¢]re + k. Since P°
was given as an OPT policy, we have from Theorem 2 a contradiction

t

with. ||, > |¢|po for the demand policy P". Thus our original.

assumption is false, and it must be the case that |¢], .0 = |¢]ro.
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Dynamic program behavior under paging™ o

by GERALD 11, FINE, CALVIN W. JACKSON,**
Systent Developuient Corporation

Santa Monice, California ' E o X 1,{ T S’Oé

INTRODUCTION

In May, 1965, System Developient Corporation
(SDC) proposed to do soine rescarch to study program )
orsanization with respect to dynamic program behavior.
Further, the proposal svggested -that simulation tech-
niques might be used to study the problem of resource
sllocation in a multipiocessor time-sharing  system.
Sanie of the reasons for the proposal related to the
praspective utitization of the Uime-sharing hardware

—

~fentures of the GIE and 1BM time-sharing computers, At

the time, there was considerable interest in investigating.
the concepts of program segmaentation and pags: turning,
hath at SDC and in the time-sharing community af large.
The concept of fised-size paging on demand particus
Luly, raised some questions of pructicality. One of the
carly papers on tha subject by Dennis and Glader? states
that the concept of puge-turning can be cither useful or

disastrous, depending on the cluss of information to

which it is applied. However, the theory appearcd to be
Loth advantageous and elegant, so that the future of
tirire-sharing scemed to be committed to the concept.. -

As a result, an independant activity was iniliated to
investigate some of the problems outlined in the propos-
al: this paper reports the results of this eflort, and points |
out some of the implications of the data obtained.
Diveussion of the problem

A large high-speed memory i5 not being used efli-
ciently if a large porlion of it is occupied by portions of
riograms that are never usad. Avoidance of fetching
unnecessary instructions and data thus appears desir-
e there are obvious gains if processing can bz
wecomplished in paraltel with pertinent fetching, How-
vier, attempts to achieve the above by an arbitrary
dwision of programs into fixed-sized pages “that are
l’ml_lghl to muemory only on actual reference (demand
PeIng) presuppose a program -organization scheine

*1he research reported in this paper was sponsored by the
:’\\l\v‘:m_ccd Research Projucts Ageney Information Processing
cchnn!ngs Otlice and was monieed by the Electronic Sys-
tems Division, Air Foree Systems Cammand under contract
AEI9(628)-5166 with the System Development Corporidion.

and PAUL Vi MCISANC

Galler, et -al* that “the ‘single page’ loading strategy

-incurs, cach- time, the overhcad of discovering why 2
<processing sequences. I has been suggesied by Arden,
“storage relerence failed, finding the nceded page in

sceondary storage, and switching 10 another user duiing
trunsmission of the needed page to high-speed  storage.”

- One should possibly add, “if there is-another user,”

"'7{"},-*{«, y ) . -

_which minimizes interpage references. with respect to

Jeetching can be overlapped - with processing only if-

‘there is some processing 1o be done at the time; it is
possible that many wser programs desiring processing
may be sinultancously held in an unexccutable state
while waiting for pages. Further, these pauses for page
fetching may delay completion of user scrvice requusts
‘and result in a gencrally high user demand. This high

E ]

dser demand might be uscful for a batch-processing

system,. but for tisue sharing it probally means conges-

tion and poor respouse for at Icast some of the users.

‘Method of investigation

The approach taken by the project was to obtrin
empirical information about the actual memory require-
nients and page demand rates ‘of existing . programs

~.operating under the' Q-32 Time-Sharing System.® Such
programs, of course, have not been specifically organ-.

ized to operate in a paging environment. Since it is not
obvious how to accomplish this organizatica nor cven
that programs’ are susceptible to such organization, it
was fclt that such empirical data. would provide a
starting point, perhaps would give some clucs {o auto-

matic methods of structuring, and in any event, would

be useful as input to a simulation medel.

To obtain an accurate picture of a progrant’s dynam-
ic.behavior, it was decided to execute the program in an
interpretive manncer. In this way recordings could be
made to show memory utilization as a function of time
(instruction count). An interpretive routine was written
that performed this function.on the AN/FSQ-32 com-
puter, a high-speed -48-bit word computer.® Metiory
awas considercd as-46 poges of -1024 words cach.. Livery
memory reference: made by the object - progranm was

Lurrenlly with dbhcens Frogr ing C ,, Santa Mo : et \
N ceny Progrimming Compuny, Santa Mon- | . . .
it Califorpia, - rroghuniiig & ompuny "+ checked to obtain theinstructions themselves and the A
. 223 . S R
o o ot M i "
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d.aa references (including all levels of indireet address- -

ing). These references were examined in terms of page
addresses and then were recorded along with the

instiuction count at the thue of vecurrence.

Rc’."l(IfS )

In the initial rung, the instruction count was reset to

zero whenever the object program branched or {ell
throught o a new instruction page; all pages were
considered inactive at this point. As each inactive page
was referenced, the page number and instruction count
were recorded.

that is, until the instruction count was again reset. Thus,

a count of the instructions 'muaﬂy exceuted on each
page was obtained, followed by a list of data pages

referenced by that instruction sequence. Both ‘the last
and the first instruction referencing each data page were
also recorded as well as an indicator as to whether the
data page whs “set” (wriften) or. “uscd only™ (uad
only) during the sequence. :

The first runs on varicus popul.tr programs all
exhibited pretty much the same palturn.

1. Shert instruction  sequences — re .tlwcly fcw in-
structions execiited on any particular page belore a
branch or fall-through to wiother nstruction page.

2. Considerable data page reference per sequence,

3. Bacly and late reference to data pages,

4, Rather rarc occurrences of “uscd only” dita pages.

For example, in a small sample (200 in-:;;'ru,ctioti
scquences tuken from the JOVIAL compiler in a
normal card-processing stage) * the mean instraction
sequence was only 109.4 instructions. During each
sequence, 3.5 data pases were referenced on the aver-
age. Caly onc data page (of 11 1Lf<.mu.ul) was “uscd
only” during the cntire 200 page’ scquence (21881
instructions). Further, data pages tended to be required
quite carly in each sequence and usually were nudud
until nearly the end of the sequence!

In later rung, the recording was n:udiﬁcgl S‘.iglnlly t0
examine multi-page sequences corresponding to what
used to. be defined as a service
Time-Sharing  System. Such @ service interval was
tevininated by a call to the system or by the execution of
80,000 iustructions, whichever occurred . first.
80,000 instruction figure was uscil (o approximate a
system-imposed quantiun "m.uupt ol about 400 ms of
Q-32 time. The insteuction ceunt was accordingly vesct
to zero at the beginning of each such interval, and again
all pages were considered inactive at this point. As each
inactive page was referenced, the page number and
instruction count were recorded as before; in addition
an indicator was recorded if the page was wfmnccd for
‘instructions to show that the program was operating in

B Sy e S SO SR N

The page was then considered to be.
active and available for the remainder of the sequence, .

interval on the Q-32

The'
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that page. Once activated, ])’1"\.% were considered o e
available for the rémainder of the entire interyy), 1
'1ppro.\ch provided a picture of the page call vate 1y
total stm.\% x«.qn'mnulls l‘nr caclt servica mh:\ 1
(One of mare such intervals constituted a complete o

serviee uqm‘st or action.) :
The following five pmvr.m\s were examined in
mahnoy;

LOLISP « - A progranning system providing for g
\wnemlmn, cditing, uﬂnpﬂdll\\lh andd enectition 1o
prograins written in the list- pmus\mn gy,
LISP L.5. (4 pages) n

2. METAS — A syntax-dirccted meta compiter
which translates an object language to a l.\mt
language interpretively, (14 pages)

3. GPDS — An ‘interpretive. display generition sys.
tem that is first interactive while acquiring a d: i
~base and then computational while "anmu.\n the

. display. (41 pages) :

4. TINT — A vonversational, on-line,. algubl.uc JO.

- VIAL interpreter. (23 pages)

_S.SURE—-— A JOVIAL source language progrung.
ming tool that “luunders” JOVIAL source fun:
‘guage, providing a reformatted and concordunce
listing of the program. (30 pages)

"“These programs were operated for shert periods o f
time because the cost of interpretive exccution was div'i.
For the mmt part, they were performing tasks tha
might be selected for demonstration purposes. Seone
cifort was made to choose typical actions covering .-
range of time-sharing uquebls,.lhou hoin the sense
frequency of eccurrence of various request s, the
sample is not quite representative of ac tual time-sh uin"
operations. One hundred and uﬂhly two seevice interve!
ranging fromt three to 80 000 instryctions were exa
incd; these intervals compr isc 35 service Tequests ron
ing (rom sucn to l,?_bl 504 mstruct'uns in tength,

~ The results of recording the dynamic Lehavior of the-e
programs in the manner described are sununarizad
Figures 1, 2,3, and 4. ’ '

Figure 1 'shows the camulative relutive freguency

. the number of instructions executed between vonsevd:

tive calls for new pages. In nearly 5966 of 1737 cuven o
than 20 instructions were executed; in about 8070 of foe

.

cases, less than 200 instructions. In oaly 2.34¢ of 1.

cascs, 10,000 or more instructions weee L\LL['[\.(] R
tween calls; these longer sequences oceurted e
only after the progriun had m.uunuhud @€ lm,um. o
the pages it rcqumd :

This effect is iHustrated more clearly in Fioe
\\hlch shows page demand as . function t,l tine, 1o
time scale is logorithmic in miliiseconds, derivud i

“the, instruction counts by assuraing a proce-sor speetd

S

‘1.6 ps per iustruction, The initiel call rate Jor puiges ®
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extremely high; the ﬁnt ten pages, on the average, were
required within about 5.6 ‘ms; in half of the cascs, these
first ten pages were required in fess than .8 ms. In 256 ¢
of the cases where 20 or more pages were required, the
first 20 p‘wu woere necded within about 7.0 s,

Fipvre 3 also shows the (mean) pase demand lw
individual progean, Uhe oversall paitern seenn o be
fatrly consistent in spite of the di.\.linél‘dissin)il;\lily of
function of the vagiots programs, o _

A plot of total cxecution time per request versus
‘percentage of pages required is shown in Figure 4. The
general trend appears to be what one would expeet; the
longer the service request the more pages required. The
two points in the upper left portion of the plot illustrate
the oceasional occurrerce of requests with rather heavy
page neceds even for very sma'l amounts of processing
scrvice.

The dynamic behavior cof the c\.mumd programs
‘may be briclly, generalized heve:

1. The programs tend to deme md paucs at Vnry mpxd
rates until they have  acquired ‘\-_sulhclu‘.cy of
pages. " '

2. The programs fren: ucnlly do nnt run very long, cven
after having acquived a sufliciency of pages.

" S 01N
.. Gros

17 e s - 2 LISP

: e META

16- .. SURE : .

PAGES
5

o -”‘3—/

- or SDC's, n,qui‘wd to service with reasonable respon- ;
~siveness a heavy load of programs stimilae to those |

3. For those program requests which do run for |,
while; a \ulhucm.) of papes means a considershle
fraction of their total declared page requirements,

Discussion und speculations

(L is ditficult to assess with any certainty the benefin,
of a demand paging stratepy i a tine shaing syt
(‘{)mpulc configuration, work-load environment,
other system characteristics such as seheduling g
priority schomes all strongly influence system perform-
ance; pecformance itseif means dilferent things to ditler-
ent people. Tor a general-purpose system such as MAC

exumined, the data obtained in this study scem to,.

indicate that such programs will require considerable

reorganization (o Opl.rﬂ(b clliciently in a demaind-paging }

pnvnon.nu\t

The usual conception of n‘high-spccd memery filled -
with & page or two (rom cach of many programs
desiring processing docs not look as though it will stand
up subject to the page call rates observed in this study,
The page- fetching mechanizm scems likely lo congest

-withtiv a few nnlhs«.mm.s, uptil some of the prograins
“have acquired a sulliciency of pages there would be little

chance of processing-fetehing overlap; and a sulliciency

06 0

- ——
1.60 16.0 160.0

[ TV

HUME (MILLISECONDS, L0G SCALE)'

" Figure 3 = Page demind (by program)
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of pages for some programs means that others must be
squeezed out of core and deferred. o

Reorganization or structuring of the. programs for
waging is usually proposed as a solution to this problem.
~Just how: much structuring is needed or can be done or

how this is to be accomplished is a matter of specula-
tion. Ideally, every program, during both checkout and
running phases, for cach possible :\c'ibn'that it handlcs,
should be somchow arranged so that it preférably uses
very few pages per action and that it progesses long
cnough betweent page calls on the average to-overlap the
time to fetch a page. Further, still speaking ideally, the
arrangement of programs to bchave in this manner
should be accomplished automatically, perhaps by the
compiler or a speciul oplum/m routine, without bur-
dening the programmer.

The authors confess that they do nol know how to
achicve this ideal or even an approximation to it. The
following suggestions for structuring havc been culled
frony various sources: '

1. Put data' in the instruction pages referring to them.
2. Somchow rearvange data suuchms to reduce data
page flow without causing an appucnb!c increase
ininstruction page flow, - v
3. Duplicate subroutines and constants within pages
*referring to them frequently. - '
4. Muke considerable tise of “*commion routinc;sf’

_In the authors' apinions, none of these seems likely to
have suflicient pay-off, if any. The Tast suazestion needs
some comment perhaps; it is not clear _]U.‘[ what it
meant by “common routines.” Jf onc mcans common
subroutines such as 170 conversions, log, exponentind,
and trigonometric functions, ctc., the whole sct of them

~ hardly constitutes morg thith a page or two of coda and

a frequently used majority of them might mere simply
© be offered to programs as systerm serviees, 1f on the
other hand, “common routines” mcans l'ngu functional
*entitivs such as matrix-manipulation routines or puck-
ages of multi-function routines suclt as an on-line
aleghraic interpreter, filx secarch routines, cte, there
undoubtedly would be considerable common uwage of
these, The problem here s simultaneity; a time-sharing
system s usually unable, without scrious degredation in
response, to withhold service o requasts until thiey can
be “batched” to use a purticular routine in common. In
a heavily loaded general-purpose system-at least, the
chances scem small that the user rcqucql will find the
partlcuhr roullm‘ nqucclud remaining . in core from
some - previolis requost. The  on-line frequency - of
requests for a-particular package is probubly somewhat

proportional to the varicty of -scrvice offered by the
package; the more varicty the larger the pa ekage and

.lhcrcforc the less likelihood that it can reside in core for

any period of time. o :
An alternative. is to abandon the demand-paging
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stratepy and try something else. One idea that has bean

'\dv.nucd xs o \UhLllHL Plﬂ“l W 18 into [m‘uu\n il seg-

n\\,utsn
mox dtor in .ld\'.n ¢ n[ xl\ mu‘\ \\ix‘*xl this in mi‘nd”T‘nc
U'\H PrOZTAN Was evantined inseme detail W L.\.lbl"
mmc, of liuu, e cnovgh clues in the source plonlg_nl__to
prov:dc a belter, onum/.u-mul _schenie,
comniunicator, & compiler, an mtu[ reter, cxp!;ni:ylipn
1ounm., Tand data area wre used in CTINT.
program regions are functionslly independent and, vary
in size, If the program refers o any one page-in any of
these regions, the entive region is likely to be required.
The data arca is dynamic in its stornge requirements.
Some better tilization of the main store might be
realized if this kind of seament information dould be
mads avaitable to the ime-sharing xccutive,.

Rcahstxwlly, it does not scém likely tlmt plo-‘mm— :
mers will stpply such information; it is stitl less likely that

a compiler could ubstract such informidtion from “static
code and automatically pass it on to the Exceutive. Tt is
probably optimistic to assume that programs in general
are susceptible to aute,uatic segmentation beyond the
noenfunctional.division into instructious, data, and-read-
only data. For these prograsis which do cxhibit func-
tional patterns of behavior, the amount. ¢f informa-

tion required to describe these patterns and the process-
~ing required to detest the eurrently requested patterh

niight prove prohivitive, In progriuns which arc prinae-

ily data deiven, for exmuple, any uchievable funclional
segmentation scems likely to be gross. The Lenefits of
Cinaccurate segmentaiion may Locome niarginal consid-
cring that, in.addition’ o the focility for hundling
segiment information, one mudt retain the mee hanmn o
discover apd feteh, on demand, odd missing pages. This
leads to program scgmients wailing, -demed ia core, for
such pages and cai fose back i owupwncy time the sav-
ings which may-have bao

A elstype.

These
“sets of pages”

on achieved in occupaney space.

SUNMMARY und C()NCLUS%dNS

The vesults of éxamining the dynamic behavior under
paging of certain enisting tme-sharing prosrams have
been presented hereo The data oldained in this study
scem Lo indicate that the hawdling of progrines’similer
to these -may be diiicult in a timé- \‘nnn' Cnyirenment
utilizing :a paging ca-demand. stratepy. The problen of
trying {0 alleviaie these diilicuities by reorganization of

* the programs has been discussed and seme speculitions

on the plobluns invalved in employing un alternative

or scamentation stridegy have beea

presented. : , ' "
The difficulty with both the demand paging and “sets

cof puges” strategies is that system performance seems

strongly dependent on assumptions that something can
aad will be-done to the programs to be handled by the
systent. Incthe epinion of the-authors, this appreach of

~trying to fit the work to the system instead of vice versa,

scems unrealistic, It anay not perhaps be entively valid
to assume that the work load characteristics of fuiure

Csystems can be extrupolated from thuse of existing

systems, but there is 1o reason to believe they will ditfer
geeaily. In view of the [act that existing toad charne-
teristics are measurable aud have been mwasuied, it
would appear more fruitful to base system desien
criteria on these known parameters than on op u-nulm
hy otlmtxcal assuraptions. - ' ..
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