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Introduction  

The intent of these notes is to briefly review the features 
of the hardware required for effective memory hierarchy 
management in time sharing systems. The time shared systems 
will have the general architectures as shown in Figure 1 below. 

Figure 1  

"Time Shared System" 

The major hardware features required by such systems are: 
- protection mechanisms to help safeguard one process from 
another and the system from itself and user processes 
and: 

- mechanisms which contribute to efficient dynamic, 

allocation of resources. 
- high reliability. 

Memory-system Design Problems  

The central résource in current systems is the main memory. 
This main memory holds the instructions for the arithmetic-
logic processors (CPU's) and for the I/O processors (MP's). 



It also serves as the buffer for information passing over 

communication lines and between various I/O  and secondary 

storage devices, and stores the code for the resident 

operating system. It goes without saying that the proper 

design of the memory system is critical to the success of 

a large scale time-sharing system. Figure 2 shows the 

memory centered model of a computer system which shows the 

memory as the control resource. 

TO  I/O OtVICES 	 TO 1/0 bEvicÉs 

Addressing  and Allocation 

Main-memory devices have multiplexing fàroperties that 

must be considered in order to specify an appropriate 

addressing and allocation scheme for a timeshared computer. 

While any portion of main memory can be dedicated to a 

process. Processors themselves can be allocated only as 

units. Processors, however, can be multiplexed rapidly, 

while main memory cannot. This time is required to move 
information between main and auxiliary memory. This 
moving of processes hetween main memory and auxiliary storage 
in order to multiplex main memory is called swapping.  

A requirement in the design of an addressing scheme for 
a timeshared computer is that it should maximize the 
allocation advantages of memory and minimize the multiplexing 
disadvantages. For example, it is preferable to have only 

FIpÏre 2' 



one copy of a particular procedure, say a compiler, in main 

memory that can be shared by several processes rather than 

have each process obtain a separate copy. Programs designed 

to be shared by several processes are called reentrant 

programs or pure procedures. A reentrant program has two 

characteristics: 

- none of its instructions or addresses can . be  modified > 

 during its execution, 

- temporary storage and data areas 'are maintained otitside 

the procedure itself, usually in the memory space of 

the calling programs. 	• • 

Although re-entrant programs can be wtitten for machines 

with a wide variety of addressing techniques, certain addressing 

techniques can make the writing and protection of these 

programs simpler. 

Memory can effectively be utilized by achieving flexibility 

with respect to where processes can be placed in physical 

memory. This ability to relocate processes dynamically in 

physical memory is by a variety of addressing and allocation 
• 

techniques. 

The cost of designing and implementing application 

systems, as well as the treatment of certain classes of 

problems - is to be affected by the properties of the 

addressing and allocation stheme. The various tradeoffs 

in the design of an addressing and allocation system must 

take into account both user needs and system considerations. 

A designer must decide whether the logical-address space 

is going - to be smaller, the same size or larger than the 

physical-address space. The structure of the logical-address 

space must also be determined. Many structures are possible, 



e.g., the large linear array commonly used, a set of linkable 

linear arrays, as found in Multics, or a tree structure. It 

must be decided how much of this structuring to perform in 

hardware and how much in software. The technique of 

translating or mapping the logical addresses to physical 

addresses must be determined. Present ystems perform 

this mapping at three points, namely 

When the procedure is prepared as an operable computer 

program; the result , is an absolute program, which, in 

effect, is assigned the same resources each time it is run. 

When the program is loaded; this is known as static 

relocation. 

When the program is in execution; this is called dynamic 

relocation. 

Usuâlly only linear arrays Or sets of linear arrays  are 

 considered as forms of hardware memory Structures, beCause' 

more specialized  structures, sUch as trees, lists,  or rings, 

are usually left for implementation by-softwa•e processors. 

Static  ReldCation  

The translation of data references to physical addresses 

is easily accomplished during program preparation but suffers 

from the severe problems which arise when one attempts to 

share or modify programs. For example, if one inserts an 

instruction into a program, all references to instructions 

and data beyond the point of insertion must be updated. 



Similarly when one constructs a program out of routines 

prepared independently, the address references must be 

modified to reflect the locations into which the routines 

are loaded. Further, translation at that time restricts 

the size of the logical-address space to that of the 

physical-address space. 

The process of static relocation involves a fair amount 
of computation. In systems using static relocation, programs 

are usually assembled as if they were to be loaded with the 

first instruction at location zero, with succeeding 
instruction and data words being placed in contiguous cells 

from this point. The location of the first word of the 
program is called the base address.  Ail instructions or 
data words with address references are marked by the assembler. 
Then at load time, a program called the loader adjusts all 

address references to reflect the actual base address at 

which the program was loaded. If several programs assembled 

independently are to be loaded as a unit, the loader, using 
information supplied by the assembler, adjusts the interprogram 
address references to reflect the actual locations of the 
different programs. This process is called linum. 

With static relocation, a user can be initiaély loaded 
anywhere in memory. However, when the process is removed to 
auxiliary storage and then returned during swapping, it must 
be placed in the same locations as before, to avoid the 
loading process. (Furthermore, to go through the loading 
process again implies that the program must be separable into 
a pure procedure part  and  ,ã  data part and that the data part 
must contain no absolute-memory addresses.) The major gain 
of static relocation is that during the loading process 
independtly written programs and data can be combined into 
a computation with proper linking of parts. The proper 



mapping to the physical-address space is performed by the 

loader. Each program can be written in a logical space of 

its own, but no duplication of symbolic location names is 

allowed, although programming techniques can be developed 

to resolve such duplication. 

The ability to load programs anywhere in physical memory 

is useful in the linking process above but of little value 

in achieving effective memory utilization in a timeshared 

system. For example, when a new process is to be started, 

the system can attempt to find a process which would fit 

in an available block of cells. If such a process can be 

found and it can remain in main memory until completion, 

static relocation is sufficient to enable several processes 

to share main memory. (The assumption of some sort of 

memory-protection scheme is implicit0 A more usual 

situation will be that the total number of free cells 

available is sufficient for the number required by a new 

process but that these cells are not in a contiguous block. 

If swapping is required, then even if a contiguous block 

were available on initial loading, the same contiguous block 

will not necessarily be available each time the process is 

run, without moving some information to another aspot in 

main memory or moving it to secondary storage. For these 

reasons, systems without dynamic-relocation hardware, 

when used for timebharing, generally have allowed only one 

complete process to reside in memory at a given time. Thus, 

during the ewapping operation, the system must remain idle. 
It is this situation which motivated the development of•

dynamic-relocation methods. 



Dynamic Relocation Using Base Registers 

One of the simplest and most common dynamic-relocation 

techniques uses base registers, which are registers that 

can have their contents added to the address of each 

memory operation. By adding the contents of a base 

•register to all addresses, one can load a program 

anywhere in memory in a block of contiguous cells and 

• then set the appropriate base address of the program into 

the base register. Using base regipters e  programs are 

initially loaded using static-relocation techniques but 

can be dynamically relocated as a unit later without 

going through the loading process. This flexibility results 

because the loading is to logical space not physical space. 

The base registers form a hardware map which maps logical 

space to physical space. Pùrther flexibility is gained 

if there is more than one base register, which facilitates 

sharing programs and makes it possible to split a program 

for loading into noncontiguous storage areas. 

There are many possible variations of the base-register 

technique. In fact, techniques such as segmentation 

are implemented using some hardware registers called base 

registers. Here, we are only interested in the concept of 

base registers in its simplest form as defined above and 

illustrated in Figure 3 below. There are two common ways ç, 

of specifying which base register to use in forming an 

address. One technique e  represented by the IBM System 360, 

requires the base registers to be directly addressed by the 

program and allows the program to access the base registers. 

The second technique, represented by the UNIVAC 1108, does 

not allow programs to access the base registers and implicitly 
addresses the base registers depending on the type of memory 

operation being executed. For example e  all instruction fetches 

use one base register and all data fetches and stores use 

another base register. 



Twe -base registers used 
for.dynamic relotation 
of prograM  and datai 

Trogram sharing is perfermed in a system using basé registers 
by writing the reentrant programs to make memory references to 

themselves through one base'registér and to make memory 
references to data in—the'calling process through a second 

base register, 

Size of IAMEALLS1ace 

The size of the logical-address space using static relocation 

or dynamic relocation with base registers is usually equal to 

or less then the size of the physical-address size. A larger 

physical space can be simulated by the user by explicitly 
overwriting a portion of his computation not immediately 
required with another part_brought in from auxiliary storage. 
This process is called' 'Weetleing,.  bverlaying is closely 
related to the concept of swapping except that overlaying is 

a user responsibility whereas swapping is a system responsibility. 



yUUlization  

One of the problems uncovered by static relocation is 

the fact that, once loaded, a process's address references 

are bound  to a certain contiguous area of memory and that 
during swapping the process must be returned to the saine 

 area of main memory each time it is given control of the 

physical processor. When base registers are used, this 

restriction no longer holds. When the processor is to be•

switched to a process not in main memory, a free contiguous 

block of main memory must be found for it to reside in. 

If such a block exists, no information need be 'saved on 
auxiliary memory in order to make room for the incoming 

process 9  The more usual situation results when although 

enough free cells are available in main memory for the 
process, they are not in a large enough contiguous block. 
In this case, a system designed to use base registers 

can do three things: 

- search for a process which will fit into one of 

the available contiguous blocks, 

- swap out part of some procès  presently in main 

memory bordering on a free area' in order to make 

a large enough contiguous area, Or 

- perform a compacting operation on main memory. 

Figure 4 illustrates the last two ideas. 

Figure 4a shows memory at a given point in time. There 
are two programs entirely reàiding in memory and three free-
space areas (holes). It is desired to bring into memory a 
third program C which is larger than individual holes but 
smaller than total space available in holes 1 and 2 0  
Figure 4b shows one approach to making enough space available 
to fit in program C. Program A is moved entirely to start 
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at the beginning of memory, thus creating enough free space 

for program C. Figure 4c shows another way of making 

enough space available to fit in program C. Enough of 

program A bordering on hole 1 is removed to auxiliary 
storage to make room for program C. 

One solution to the problem of finding a large enough 

contiguous area might be to use multiple base registers so 

that smaller pieces of the process could be loaded into 

existing free spaces. This approach seems to be impractical 
because the instructions of a given pièce must refer to the 

correct base register. Thus, the programmer or compiler 

must decide how to split up the process and which base 
registers to assign which pieces. Binding instructions 

to base-register addresses at load time mans binding the 

process to a portion of logical space. 

The system could not easily perform this base-register 

assignment function dynamically because it would be very 
time-consliming and complicated to determine which 
instructions to modify. 

Ei&urel: Memory allocation using base registers: (a) typical 
memory snapshot at a point in time; (b) making room 
for program C by compaction; (c) making room for 
program C by partial removal of program A. 



Irs'in: Pa—in 

Dynamic relocation using base registers, which requires 

program to be located in contiguous areas of main memory, 

leads to difficulties in fully utilizing main memory because 

free areas develop which are not large enough to be used. 

If, however, programs and main memory could be broken into 

small units and the program pieces could be located in 

corresponding sized blocks anywhere in main memory, then the 

possibility exists of utilizing main memory more êffectively. 

Lulu  is the name given to a set of techniques which enable 

such a uniform memory ragmentation to be implemented. 

Paging techniques can also allow economic tmplementation of 

a logical-memory space larger than the physical-memory space. 

In a paged system, physical memory is considered to be 

broken up into blocks of a fixed size, usually 512, 1,024, or 

2,048 words. The term aell refers to units of logical space, 

while equal-sized units of physical space are called blocks. 

The programs are also considered to be split into' pLales of 

a size equal to the block size of physical memory. Thus, 

the address in such a system is considered to be represented 

by two numbers: (1) a page address or number and (2) a line- 

within-page address. For a machine with an n-bit address field, 

the high-order p bits are considered the page address and 

the remaining n - p bits are the line address. The operating 

system may occupy less memory than a multiple of a larger 

page size. In newer systems the page size can be changed 

dynamically by the system. The memory can be more fully 

utilized by the system if smaller page sizes are available 

(64; 128, or 256 words). More effective utilization of 
memory results from using smaller page sizes for the 
following reason. Since a given process is not usually 

going to require an amount of memory space which is an 
even multiple  of 'a  page size, the last page of a process 
will not utilize all the block assigned to it. It seems 



reasonable to assume that on the average the last page of a 

process will use half of its assigned block. The larger 

the page size, the more potential waste space there is 

going to be. A paging mechanism requires a table, called 

a mutable, or man with one entry for each page in order 

to perform address translation from logical to physical space. 

The smaller the page size, the larger the table required for 

a given logical-address space. Thus, there is a tradeoff 

between waster space related to page size and resources 

used to store and manipulate large page tables. The total 

amount of waste space due to unused block locations depends 

on the number of processes expected to reside in main memory. 

E.g. Paging on the  XDS-940 

The address space of a process in the XDS-940 

can be as large as 64K, and thus the logical-address space 

is smaller than the physical-address space. It should be 

noted that there are general cases of a paged system 

yielding a virtual memory larger than the physical-address 

space. A process in the XDS-940 is broken up into 2K wordl 

pages, and memory is similarly broken into 2K word blocks. 

There are 14 bits in the address field of a 940-instruction 

word. The address field is considered to contain two parts, 

a 3-bit page number and an 11-bit line-within-page number. 

The relocation mechanism (Figure 5) uses eight 6-bit bytes 

called a lemamjille. The memory map in the XDS-940 is 

organized as two 24-bit registers. Bach  register contains 

four map bytes. These registers are called the real' relabeline  
reals.ters,  because they relabel (map) the page number into a 

phrsical-memort block number. These map bytes are considered 

by the hardware numbered 0 to ,7 and  correspond to logical pages. 

A given map byte is addressed by the page number contained in 

the memory address. Within a given map byte is a number for 
the actual physical block containing the code for the logical 



page. For example, in Figure 5 logical page 0 is in physical 

block 32, logical page 1 is in physical block 3, and so 

forth. The numbers in the physical blocks of the figure 

indicate which logical pages they contain. 

The logical address is converted to a physical address as 

shown in Figure 6. 

The 3-bit page number indicates which map register contains 

the physical-block number where the page actually resides. 

The map register is 6 bits long and is shown in Figure 7; 

note 5 bits contain the physical-block number, and 1 bit 

is for memory protection. The physical address is simply 

formed by concatenating the physical-block number with the 

line number to form a 16-bit address. With 16 bits, 64K 

of memory can be addressed. 

This hardware mechanism is quite simple, but to work as 

part of the of the total system it requires additional 

software tables, which keep track of the memory space of 

each process. The basic idea is that when a process is 
to be brought into main storage, the software monitor 
examines the stateof main storage and swaps out only as 
many pages as are required in conjunction with free pages 

to meet the needs of the incoming process. The monitor 
then assigns the available physical blocks to the logical 
pages of the incoming process and swaps its pages into 
these blocks. The memory map is updated. Then after 
restoring the processor registers and program counter to 
the values they had when the process was last executing, 
the process is restarted. 
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Figure 5:  Paging in the XDS-940 

Figure  6: Mapping from logical to physical 
address in the XDS-940. 

Memot Map  

The most important general concept introduced above is that 

of a memory map.  A map translates the logical-address space 

into the physical-address space. In the dynamic-relocation 

techniques, the map is a set of tables in • memory or a set of 

hardware registers. In the static-relocation technique the 



map is a program. In the dynamic-relocation method using 

base registers, the base,registers are the map. In the 

dynamic-relocation method using paging, the page map can 

be looked at as a way of efficiently implementing multiple 

base registers. The paging process is completely invisible 

to the users and to the compilers, which function as if 

they were working with one contiguous logical chunk. The 

ability to fragment memory uniformly, made possible by 

splitting main memory into blocks, means that all blocks 

of main memory can be used, although assure that no two 

shared procedures which might be used concurrently occupied 

the same position in logical space. If the page table 

were organized and addressed as an actual or simulated 

associative memory, then it could be reduced in size 

because no gaps need result. The practical problem of 

implementing in hardware and software such a large 

associative map for efficient execution may still create 
difficulties, although further study may be fruitful. 

In summary, then the difficulty of using paging for 

sharing single copies of procedures and data in full generality 

and for allowing  for  data- structure: growth results,: 

- Because of the' large  number of address bits required 
to ensure unique page nuMbers  'in a large lOgical space. 

- Because of the large, possibly sparsely filled, map 

required using an indexed page table (with an efficient 

associative map this argument is reduced, although 
duplicate entries for each page of shared procedures 
and data must exist in the map of , each process using 

the shared procedures or data). 



- Because of the careful bookkeeping required by the 

installation and the system to be certain that 1  
procedures used concurrently do not occupy the 

saine position in logical space (iïe., have the same 
page numbers), and to - properly position data which 

contain address references. 

• 1 Brr. 	p BITS 
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The problems with physical-space allocation using static 

relocation resulted because address references were bound to 

positions in EhmiEal space when procedures and data were 

loaded into the system. Once loading was accomplished, all 

addresses were absolute  phuice loCations.  This restriction 

was removed in the base-register and paged systems by intro-

ducing mechanisms which allowed physical-address references 

to be made relative to either a base register or block 

number, the contents of which did not have to be set until 

execution time. However, the particular base register or 

map entry to be used was bound into the instructions at 

load time. In other words, once loading was accomplishe4, 
all addresses were to absolute logical  locations. 

The problem which segmentation sets out to solve is that 

of allowing relative addressing within the logical-memory 

space. This means that logical space must be broken up into 

chunks of contiguous locations and all addresses within a 

given chunk are to be relative to the start of the chunk. 



We then need a hardware or software base register which points 

to the base location for each chunk. Interchunk references must 

refer to the proper base register and give a relative address 

within the referenced chunk. The trick is to develop an 

efficient mechanism which allows these base registers to be 

assigned at execution time. The chunks of contiguous logical 

locations are commonly called SlemeIs. The basic idea of 

segmentation is thus quite simple, but the mechanisms for 

allowing assignment of base registers at execution time are 	 • 

more involved. 

A mzunI is an ordered set of data elements (usually 

computer words) having a name. A particular data element 

within a segment is referenced by the symbolic segment name 

and the symbolic data-element name,with the segment,(S)/[a]. 
The notation (S) indicates a symbolic segment named a. 
The symbolic segment name (S) is eventually (at run time) 

translated into a base-register number, and the symbolic 

data-element name in the segment [a] is going to be 
translated into a relative location within the segment. 
In other words, a segment is a one-dimensional array, and the 

segment name is related to the address in logical space of 

thiS array (its base address), the symbolic element name 

within the segment is related to the address of the 

referenced element relative to start of the segment, as 

shown in Figure 8. 

Segmentationis often referred to as ItazdinmeInjaLluiEe].: 
acil....pase because particular elements within the logical 
space are explicitly referenced by a pair of names. A paging 

system is not considered two-dimenSional, even though the 

address has a page-number and a line-number,  pair, because 
these conventions are invisible to the user. To be general 
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one could consider base-register and paged systems as 

segmented systems allowing one segment, and thus the segment 

name is implicit. In a general segmented system, the user 

programs his addresses using a pair notation, (S)/H. A 

segment is a self-contained logical entity of related 

information defined and named by the programmer, such as 

a procedure, data array, symbol table, or pushdown stack. 

There is no logical restriction on the length of a segment, 

although in any given implementation there will be an upper 

bound on segment length. Segments can grow and contract 

as needed. 

ELEMENT 
NAMED Icil 

Elerl_s: A Segment. 

Communications Within the Time Shared Comiditer 

The purpose of a timebhared computer system is rapid time 

multiplexing of computer-system resources on behalf of user 

requirements. The system attempts to perform this multi-

plexing so as to satisfy user completion and response-time 

needs and to utilize system resources efficiently. These 

time shared systems are usefully viewed as large communication-
switching centers which control the transmission and trans- 



formation of information as it moves between the large number 

and variety of devices (terminals, discs, etc) that are 

attached. 

Communication with Main Memory 

The central point through which the information passes in 

present organizations is main memory (with a possible side 

journey to the CPU for transformation) as it moves from one 

device to another. Main memory is a prime system resource 

and consequently, a potential source of communications 

problems. In timesharing systems, multiple CPUs, high=transfer-

rate secondary storage devices, and numerous I/O devicesshare 

access to main memory. The processors which control the 

secondary storage and I/O  devices and communication with 

memory are usually referred to as channels, I/O controllers, 

or I/O  processors. 

C omniun ic atio with 	 e  and I/O n e'inces 

A basic communication problem with auxiliary storage and 

I/0 devices is gaining access to a direct-transfer path to 

main memory. A timesharing system contains a variety of 

devices attached to it. Associated with these devices is 

a range of data-tranSfer rates. Direct-transfer paths to 

main memory require logic to resolve conflicts for access 

to a memory module and .require sending an receiving 
circuits at each end of the path; therefore, it is usually' 
uneconomical to provide a separate path for each device. 
It is possible, however, using the fact that the attached 
devices have a range of transfer-rate requirements, to 
design I/0 processors which enable many devices to share 
one direct-transfer path to main memory concurrently. 

• 	 • 	 1 



Communication with Rèmote Devices  

Three major communication problems are associated with 

remote devices such as terminals, printers, etc. these are 

- the transmission of information between the central 

facility and the remote devices 

- the• interface between transmission lines and the 

central facility 

- the interface between transmisSion lines and the 

remote devices 

Along with the transmission of information techniques 

must be considered for utilizing standard telephone lines 

for digital information o .sharing lines among several devices, 

and synchronizing communication between remote points. 

Associated with the interface between transmission lines 

and the central facility are the problems of identifying, 

controlling, and addressing communicating devices and 

converting the transmitted information to a form usable by 

the central machine and vice versa. , Associated with the 

interface between transmission lines and the remote devices 

are problems of encoding information and providing 

identification. 

Communication  With: the Main Memciry  

Multiple Memory Box and Bus Organization:The technological 
problem to be solved inl the design of a memory communication 

system is to provide adequate transfer capability between main 
memory and all processors requiring access. In practical 
systems, the rate at which data can be transferred between 
processors and main memory is limited by the transfer 
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capabilities of the memory itself and'the memory busses. The 

rate at which the memory can transfer information is often 

referred to as the mbilidrY baneWidth e usually measured in words 

per second. Bandwidth limitations .also exist for the 

busses. Because the memqry system is silared by several 

processors, care must be taken in the design to keep 

performance from being seriously degraded due to ifiterference  

caused by simultaneous attempts on the part of the several 

processors to utilize a facility such as a memory bus or 

portion of memory itself. Figure 9 shows a common method 

for organizing the memory structure in a resource-sharing 

system. 

The maximum memory-system bandwidth for the system shown 

in Figure 9 is p X R, where p is  the  smaller of the number 

of memory modules m and the number of access paths n, and 

R is the maximum transfer rate of each box. In other words, 

the maximum transfer rate is achieved when each path requests 

access to,a separate module . . 

The minimum transfer rate is just R and occurs when all 

paths request access to the same eodule. There is 

interference in this case. 

Fi gure 9:  Memory organization in a resource-sharing system. 



The scheme shown in Figure 9 cuts interference by allowing , 	, 
simultaneous access to more than‘one-box. That is, if bus 1 

requests access to box 2 at the same time buts 2 requests 

access to box 3, both'accesses are granted because each box 

has its own addressing and read/write circuitry. Even given 

the scheme shown in Figure 9, serious interference can result 

when memory addresses are contiguous in the boxes, e.g., 
box 1 having addresses lto 16K 	1 to 32K. Consider the 

case of a high-speed drum processor which transfers at the 

memory rate. If this device has a higher priority for 
memory access than the arithmetic unit, then during a block 

transfer the arithmetic unit could be denied memory access 

for a prolonged period if it tried to access the memory 

box bieng used by the drum processor. To get around this 

problem designers have developed  th è technique called 

interleaving. .(Analagous to multiplexing) 

In an interleaved memory, consecutive addresses are in 

different memory bbxes. For example, in a two-memory-box 

system all the even addresses might be in one box and all 

the odd addresses in the other. With an interleaved memory, 

the probability of one processor's tying up the memory for 

a significant time is greatly decreased. The design problem 

is to determine the size of each box and whether or not 

interleaving is to occur over all boxes or over groupings 
of boxes. 

E.g. The IBM 360/85 Memory Organization. A schematic of 

the model 85 memory system is given in Figure 10. Main•  
storage in this system has a cycle time of about 1 microsecond. 
For storage configurations of 500K and 1,000K words (32-bit), 
storage is interleaved four ways.  • For smaller storage 
configurations, storage is interleaved two ways. Note that 
the buffer storage is available only to the CPU and not to the 
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I/O  or other processors. The buffer storage has a cycle 

time of 80 nanoseconds. The buffer storage is either 

4K, 6K, or 8K words. The design of this system was 
oriented toward increasing the effective speed of memory 

as seen from the CPU. The importance of high data-ttansfer 

rate between all processors and memory has not been highly 

developed in this machine. The memory bus is four words 

wide in order to achieve the bandwidth required for the 

main applications envisioned. For I/O  oriented systems, 

this organization offers little advantage, but the basic 

ideas can be extended. 

Main memory end the buffer storageare organized into 

sectors of 256 words. During operation, a correspondence 

is set up between buffer-storage sectors and main-storage 

sectors, in which each buffer-storage sector is assigned 

to a single different main-storage sectors. Because of 

the limited number of buffer storage sectors, most main-

storage sectors do not have any buffer-storage sectors 

assigned to them.  Bach of the buffer-storage sectors 

has  •a 14-bit sector address register, which holds the 

address of the main-storage sector to which it is 

assigned. 

MAIN . STORAGE 

CPU 

IBM 360/85 memory system. 



The assignment of buffer-storage sectors is dynamically 

adjusted during operation so that they are assigned to the 

main-storage sectors that are currently being used by 

programs. If the program causes a fetch from a main-storage 

sector that does not have a buffer-storage sector assigned 

to it, one of the buffer-storage sectors is then reassigned 

to that main-storage sector. To make.a . good selection of a 

buffer-storage sector to reassign, enough information is 

maintained to order the buffer-storage sectors into an 

activity list. 

When a buffer-storage sector is assigned to a different 

main-storage sector, the entire 256 words located in that 

main-storage sector are not loaded into the buffer at once 

but each sector is divided into 16 blocks of 16 words each, 

which are located on demand. 

Storage operations always cause main storage to be 

updated. If the main-storage sector being changed has a 

buffer-storage sector assignéd to it, the buffer is also 

updated; otherwise no activity related to the buffer takes 

place. Since all the data in the buffer are also in main 

storage, it is not necessary on a buffer-storage-sector 
reassignment to move any data from the buffer to main 

storage. 

Two 80-nanosecond cycles'are required to fetch data that 

are in the buffer. The first cycle is used to examine the 
sector address and the validity bits to determine if the data 

are in the buffer. The second cycle is then used to read 
the data out of the buffer. If the data are not in the 

buffer, additional cycles are required 'while the block is 

loaded into the buffer from main storage. 



Simulation was used extensively during the design of 

this memory system. There are many important parameters, 

such as choice of a replacement algorithm, buffer size, 

sector and block sizes, which must be determined. 

With the simulation running a representative scientific-

oriented job mix, it was found that mean performance of this 

system as compared to an ideal system consiiting of only 

80-nanosecond memory was 81 percent. That is, on average, 

the CPU obtained information from the buffer storage on 

81 percent of its references. 

Memory Management Software - Storage Hierarchies  

The purpose of storage system is to hold information and 

to associate the information with a logical address space 

known to the remainder of the computer system. For example, 

the CPU may present a logical address to the storage system 

with instructions to either retrieve or modify the information 

associated with that address. If the storage system consists 
of a single device, then the logical address space corresponds 

directly to the physical address space of the device. 

Alternatively, a storage system withthe same address space 

can be realized by a hierarchy of storage ranging from fast 

but expensive to slower but relatively inexpensive devices. 
In such storage hierarchies", the logical address space is 
often partitioned into equal size pages (or unequal size 
segments) that represent the blotks of information being 

moved between devices in the hierarchy. 

A hierarchy management facility is included to control 

the movement of pages and to effect the (generally dynamic) 
association between the logical address space and the 
physical address space of the hierarchy. When the CPU 



references a logical address, the hierarchy management 

facility first determines the physical location of the 

corresponding logical page and may then move the page 

to a fast Storage device where the reference is effected. 

The goal of the hierarchy management facility is to 

maximize the number of times logical information is in 

the faster devices when being referenced. As this goal 

is approached, most references are directed to the fast, 

small stores whereas most of the logical address space 

is distributéd over the slower, large stores. 

Memory (hierarchy) management becomes a severe problem 

in multiprogramming and critical memory systems. In 

a multiprogramming system, many programs are concurrently 

executed by the processor. Thus the main memory is shared 

by many programs. Since the total size of all the programs 

far exceeds the size of the main memory, in order to keep 

information that will be used in the near future in the 

main memory, the system constantly moves information 

between several levels of storage media. Here, for example, 

we shall consider the case of paged memory system; that is, 

the address spaces are partitioned into equal size blocks 

of contiguous addresses. The page replacement problem is 

defined as the problem of deciding which page should be kept 

in memory and which should be removed when additional space 

is needed. Obviously, the page removed should be a page 

with the least probability of being needed in the near 

future. However, this should be done without incurring 

difficult implementation problems at-the same time. 

Many replacement algorithms have been proposed and studied, 

examples: 



working set of repla-
cement simulator 
algorithm 

ago 

m(T) 	used 
F(T) 	for 
S(T) 	system 

› P(t,T) design 

program's sequence 
of reference 	•  

1. Least Recently' Used (LRU) 

2. Stack Replacement AlgorithMs 

3. Random Replacement 

4. Working Set Replacement Algorithm 

for an excellent intro-
duction to those algo-
rithms, see the paper 
given by R.L. Mattson, 
et. al. 

We shall illustrate briefly as an example the Working Set 

Replacement Algorithm. (see the paper by W.W. Chu) 

Model (Working Set Replacement Algorithm) 

The working set W(t,t) at a given time t is the set of 

distinct pages referenced in the time interval (t-(T-1),t) 

where T is called the working set parameter. The working 

set size w(t,T) is the number of pages in W(t,T). The k  

average working set size S(T) is defined as S(T)= Lim 1 E W(t,T), 
k+oe  kt 

For systems employing working set replacement algorithm, 

several parameters are of interest: 

1 0 page inter-reference - internal distribution F(t) 

which describes the fraction of the page inter-referenced 
intervals less than T. 

2. Average page fault freq. -m(T) which describes the 

average number of page faults per page reference for working 

set parameter T. 

3 0 Average working set size S(T). 



(An example including the results is given in Chu's paper). 

Examples of how to use the parameters of the working set 

replacement algorithm. 

1. Suppâse we would like the system to operate at an average 

page fault level of about 10 -4  page faults/reference; that is 

one page fault in every 10 -4  page reference, then from the 

graph representing m(T) versus T for different programs, 

m(To) = 10 -4  page faults/reference 

To = 22 mesec 	FORTRAN 

T° = 45 m.sec 	DCDL 

T° 	54 m.sec 	META-7 

and from the graph representing the:average working set 

size S(T) we find: • 

S(T ° ) 	15 page . 	FORTRAN 

S(T° ) 	36 page 	DCDL 

S(T°) 	39 page 	META-7 

4 0  Inter-page-fault-time (time between page fault) 

distribution P(t,T) which describes the fraction of the inter-

page-fault times less than or equal to t for a given T. 

If we assume that page reference rate is one page/unit time, 

we immediately obtain the following relationships: 

m(T) = 1-F(T) 

1/m(T) = average running time between page faults 



program's 
sequence of 
references 

(programP behavior) 

object programs 

(considred as data) 

1/m(T) 	S 	P(t l e T) 	P(t e T)3r 
tr-71 

To employ measurement techniques for estimating these 

parameters e  we collect data bout the pattern of references 

to all the pages which comprise the executed program and 

measure these parameters experimentally via interpretive 

execution (steps are shown in the following representation). 

fIgur.e CUIL9211 

Figureil: Average page fault frequency m(T) as a functicin of 

working set parameter  T.  

Figure12: Average working set size S(T) as a function of 

working set parameter T. 

.Figure13: Inter-Pàge-Fault-Time Distribution 

a) FORTRAN Compiler 
b) DCDL 

cl META-7 Compiler 
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ABSTRACT 

Page inter-reference interval distribution, average page fault 

frequency (the frequency of those instances at which an executing program 

requires a page of data or instructions not in the main memory) average 

working set size and inter-page fault-time (time between page fault) 

distribution for a simulated Working Set Replacement Alporithm for three 

typical programs with different sizes were measured on the UCLA Sigma 

Executive (SEX) time-sharing system via page reference strings. These 

measured results are reported in this paper. The average page  fault fre-

quency relationships between working set parameters and process scheduling 

are discussed. These relationships are useful in planning the working set 

si 	and process scheduling which optimize system efficiency. 
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Introduction 

Memory management becomes a severe problem in multiprogramming and 

virtual memory systems. In a multiprogramming system, many programs are con-

currently executed by the processor. Thus the main memory is shared by many 

programs. Since the total size of all of the programs far exceeds the size 

of the main memory, in order to keep information that will be used in the 

near future in the main memory, the system constantly moves information 

between several levels of storage media. 

In this paper, we consider the case of paged memory systems: that 

is, the address spaces are partitioned into equal size blocks of contiguous 

addresses The paged memory system has been used by many computer systems. 

However, the basic page replacement peoblem of deciding which page should be 

kept in main memory and which should be removed when additional space is 

needed is still little understood and has been of considerable interest. 

Obviously, the page'removed should be a page with thb. least probability of 

being needed  in the near future. The difficulty  lies  in trying to determine 
. 	. 

• - 
which page this will be withOut.incurring difficult implementation problems 

at the same time. 

•Many replacement algorithms have been proposed and studied in the 

past: such as Random, First-in First-out, Stack Replacement A1gorithms [1]  

(for example, Least - Recently Used (LRU)), and the Working Set Replacement 

Algorithm. [2]  The first three replacement algorithms require a fixed size 

memory space for each process. The Working Set Replacement Algorithm, how-

ever, requires a variable size storage space for each process and the size 
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varies with program demands. This variable storage space provides an adaptive 

capability in the replacement algorithm which is quite appealing. •  The work-

ing set principle of memory management states that a program may use a pro-

cessor only if its working set (set of pages) is in the main memory, and no 

working set pages of an active program may be considered for removal from the 

main memory. Properties of the working set  replacement algorithm, the rela-

tionships among page inter-reference interval, average page fault frequency 

and average working set size for the Working Set Replacement Algorithm are 

described in a recent paper by Denning and Schwartz. [3]  

Because of the complex nature of program behavior, analytical esti-

mation of the above mentioned parameters of program  behavi  or.  becomes very 

difficult. Yet this  information  is important in the planning of an efficient 

replacement algorithm that optimize system  performance.  Therefore we employ 

measurement techniques for such estimations. We collect data about the pat-

tern of references to all the pages which comprise the executed program, and 

measure these parameters experimentally via interpretive execution. This 

technique has been used previously to measure dynamic program behavior [4]  

and also to measure the performance of Belady's Optimal Replacement Algorithm [5] 

 and LRU replacement a1gorithms. [,7 

Flore  we report the measured program behavior of the Working Set 

Replacement Algorithm. We shall first report measurement results such as 

page inter-reference interval distribution, average page fault frequency, 

average working set size and inter-page-fault-time distribution. We then 

discuss the use of  average  page fault frequency to determine the working set 

parameter, and propose a page fault scheduling algorithm for process scheduling 

which improves systm efficiency. 



Measurements end Results 

The workirg set W(t,T) at a given time t is the set of distinct pages 

referenced in the tie- interval ((t-T+1), t) ) where T is  cal led the worLing 

set paremeter. The working set size w(t,T) fs the number  of pages in W(t,T). 

The average working . set size S(T) defines as SM.= 	, v  " 

For systems employing working set replacement algorithms, several parameters 

of interest are: lreage inter-reference inter'val'distribution  F(-r),  which 

describes * the fraction of the  page inter-reference intervals.less than T; 

2) average page fault frequency m(T) which describes the average number of 

page faults per page reference for working set parameter T; 3) average 

working set size S(T) and 4) inter-page-fault-time (time between 	' 

page fault) distribution P(tiT) which describes'the fractionof-the inter-

page-fault-times less'than or equal to:t for a given T.  

• F(T) is a fundamental distribution; it closely relates to the other 

three paremeters'. .When We assume that the page reference'rate.is one page 

per unit time, we know that the page references that result inepage faults 

are thoSe referenceS whose inter-reference intervals exceed T. Thus, m(T) 
. f 

1-F(T). It can be s'fiWn[3]  that S(T) 	m(71 . Thus, S(T).is closely- 
' 	k'e0 

related to  m(T). lim(T)-is,the average running time•between page faults. . 

Since P(t,T) is the fraction of interepage-faultetime less than or.equai to . 

t, 1/m(y). is the time average of tho. density 'function P(t4.1,T) - . P(t,T); • 
Co  

that is, 1/m(T) 	t°[P(t.1-1,T) 	P(t,T)].. 
t.1 

To employ measurement techniques for estimating these parameters, we 

collect  data  about the pattern of ;..eferences to all the pages which comprise 

the executed program end measure these parameters experimentally via inter-

pretive execution. For this purpos an interpreter for the UCLA Sigma-7 

time-sharing system nas been developed. This interpreter is capable of 



execetne'Sigme-7 object programs'by handling the latter as data and repro-

ducing a program's sequence of references.. This sequence eein turn,  can  - 

then be used as input to programs' which simulate the Working Set Replacement 

. Algorithm. 	 . 

Three different .programs with different sizes were interpretively 

executed, and their 'behavior was investigated -under the.Working Set Replace-

ment Algorithm. A FORTRAN Compiler 'was chosen as the representative for à 

small program. META-7 was chosen as the.representative for a large. program. 

It translateS programs-written in META-7 to the assembly langUage of  the 	' 

Sigma-7. A DCDL (Digital Control Design Language) compiler was chosen as a 

representative for a medium size Program. This' compiler is.written in 	- 

META-7. DCDL translates specifications of digitehardwareand . microe . , 

program control sequences into interpretive code. 

Table I shows some characteristic - properties of these programs. 

The column 'size' is divided into two parts. -*Static' ,refers, tcethe , number 

of peees necessary fe'store the program as  an  executable file on ,a disk 

where one page. consists of 51 2  32•bit words..- 'Dynamic' indicates the-number 

of different pages actually referenced while processing the given input 

- data. The differenee between the number of  pages in  static and dynamic - 

results from the fect that  programs creat neWepages-during execution for 

working. storage areas and that not all pàgeseof programs  are  reference 

during executing &specific set of .input data.H 
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• Table 1. Program sizes  •  of the three measured programs 

Number_of page references Size 

FORTRAN 

OCOL 

META-7 

Static 

24 

44 

.(,, 	e. • 	84  

DynaMic 	 . 

34 • 	 1,000,000 

58 	 1;000,000 

153 	 1 ,000,000 • 

Figure 1 shows the average page fault frequency m(T) for the three 

programs. We note that all three programs exhibit similar page fault char-

acteristics. The average page fault frequency decreases rapidly with T. 

Large programs tend to have a slower rate of decrease. The reason for such 

characteristics is mainly the locality of the program; that is, during any 

interval of execution, a program favoes a subset of its pages, and this set 

of favored pages' changes its membership slàwly. Further, the locality for 

large programs is usually larger than that of small programs. The page 

inter-reference interval distribution F(c)l-m(r) 'can be obtained easily 

from m(T) . The average working set sizes as a function of T are shown in 

Figure 2. Measurement data support the premise that average working set sire 

increases as program size increases and reaches a constant level as T reaches 

a certain value. The P(t,T)'s  of the three programs for selected 'OS are 

shown in Figure 3. We note that P(t,T) is very sensitive to T and program 

size. For a given program, the average inter-page-fault-time increases as T 

increases. This occurs because for the small T case, many of the pages 

to be referenced in.the near future are in the secondary memory; 

thus the average working set size is very small and yields a high page fault 

rate. For the large T case, most of the pages are in the main memory which 

yields a-large average working set size and a small page fault rate. For 
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a given 1. , large e•U!e programs have a higher page fault  rate  than thot of 

a small  size program. In the next section we shall discuss the applications 

of those parameters to determine the working set parameters and process 

sehe(e -Jin.D which improve system efficiency. 

	 fj)ftuatiee of Heasurement Data 
e e  
(A.) Working Set Parameter T iS an important parameter which affects 

page fault rate, memory utilization / and thus system efficiency. The measure-

ment data support the fact that t should be chosen according to the execut-

ing program (e.g., size) and system organization (e.g., available memory 

size and the speed ratio between main and secondary memory). If T is not 

properly chosen, for example if t  is too short e then pages are removed from 

the main memory while still.potentially useful. This results in high page 

traffic between the different levels of memory. If T iS too long, then 

pages that are not needed may remain in the main memory, which is an 

inefficient use of memory space. Instead of choosing T arbitrarily, we 

propose  to determine Y from the measured m(t) and designate it as T° . As 

a result, 1 °  is now closely relatedto program behavior as well as to system 

organization. 

• 	 The efficiency of a progrem is defined as the ratio of total 

virtual running thee to total real running time (total virtual time and total 

page  waiting time); that is, 



(1) 

Eff  _ total virtual rennin  time. 
total ..real running time — 

, 	1  
Weil R . . 

where . R  A/T 
e, 

A Access time of the main memory 

T = Access time of the secondary memory 

Since  Ris  fixed for a given system, from (1) we know a fixed average page 

fault frequency m(T) insures a certain level of efficiency. 

Suppose we would like the,system to operate at an average page 

fault level of about  1O 	faults/reference; that is, one page fault 

in every 10' page references. Then from Figure 1, o for Fortcomp, DOM 

and META-7 are 22,4 )  and 54 m sec (1 psec per page,reference) respectively. , 

From Figure 2, the corresponding average working sat size is 15, 36 , and 

39 pages. 

Usually in a multiprogramming environment several types of 

programs may bo concurrently operated by the operating system. The working 

• set parameter of such a system may either be variable of fixed. In the 

variable T case, the T
o 

should change from one program to another; while in 

the fixed T case, the T °  remains fixed for all types of programs. Because 

of the simplicity of . a. fixed T scheme, it requires less overhead to implement 

than the variable T scheme. However, thé efficiency may not be as high as 

that of the vaeiable T case. 

One vay to determine the value of a fixed T if, to use the 

weighted  average  t!orking set parameters of each program; that is, 
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th 
where T ic  . working set parameter for the 

4
program that 

selected from its m(T) 

-. 
u i  -relative usage frequency - of the I th  program., 

n = total number of distinct programs used  in the system 

• 	The dmision  as  to which scheme should be used for a given system 

*should be based on prograwbehavior, relative usage frequency of all the 

, distinct programs used by the system, and the overhead in implementing these 

schemes. 

. B. 	ProcessSeheduling 

In a multiprogramming system, tointrease system efficiency and 

to redne response time for'shortjobsthe job queues for CPU processing 

usually have several priority levels. Let us consider a system having two 

levels of queues: Short Quantum Queue (SQQ) and Long Quantum Queue (LQQ). 

- 
SQQ has a higher priority than LQQ. All jobs enter the SQQ. Processes in 

the SQQ are given one time slice at a time. The process is put at the back 

of the SQQ after the process either incurred a page fault or used up the 

time slice; that is, the process is serviced in a round-robin fashion. A 

process stays in the SQQ until its short quantum time runs out. It is then 

put on the front of the LQQ. The LQQ will not be serviced until the SQQ is 

empty. A process in the LQQ receives service until its long quantum time 

runs out. It is then put at the end of the LQQ. 

When a system is properly designed, such scheduling algorithms 

yield: 1) fast response time to short jobs, and 2) most of the short jobs 

are run in the SQQ and long jobs (compute-bound processes) will run in the 
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LQQ. Since LQQ provides more . memory space for each process than that of 

SQQ, such scheduling yields less page swapping. 

If• the quantum time of the SQQ is too short, then many of tho 

short jobs will be in the LQQ; if the quantumiimp is too long, then many 

computational jobs will be in the SQQ. The system is designed such that most 

of the short jobs finish their processing in the SQQ and only the compute-

bound processes enter into the LQQ. The short quantum time should be larger 

than the average real process time of short jobs. However, the process time 

varies from one process to another. In addition, the processing time is 

further complicated by page faults occurring during its execution. 

The real processing time of a process is the sum of the virtual 

process time and the total time wastedue to ,page faults of that process. 

For example, two processes requiring the sanie  amount of virtual CPU process-

ing time could have very different pagq fault frequences, and thus yield very 

different real processing time. Therefore the real processing time is 

extremely difficult to estimate. 

We know that page fault frequency has great influence on system 

efficiency and the response time of the short jobs. We pràpose to use a 

page fault as a measure in process s'cheduling; that is, when a process 

exceeds a certain number of page faults.or exceeds the quantum time of the 

SQQ (whichever occurs first), then the process sWitches from the SQQ to the 

LQQ. We shall call such a scheme a page fault ; scheduling algorithm. In a 

multiprogramming environment, the CPU idle times due to page swapping between 

main and secondary memories are directly affected by the page fault frequency. 

The page fau • t scheduling elgorithm should be effective in reducing CPU idle time 

And improve system efficiency. (See Appendix). 

otiratihg in a . multiprogre,mming en v ironmnt, we .should also 

include  the  • time spent ein  waiting for the availability of CPU: 



Processes with high page fault rates occupied in the main memory 

greatly reduce the efficient utilization of main memory. The page fault 

scheduling algorithm adaptively allocates the low par fault rate processes 

in the main memory and higher page fault rate processes in the secondary 

memory. Thus such scheduling improves the utilization of main memory. As 

a result, this will improve the average response time of the system. An 

analogy to the above scheduling algorithm is the well known "serving the 

shorrest job first" algorithm in queueing theory that results in improve-

ments in average waitingtime; except in our case we have further improved 

the . memory utilization efficiency. 

The number of page faults occurring during processing before 

switching a process from a SQQ to a LQQ depends on the response time required, 

the number of processes operating concurrently, the replacement algorithm 

used, and page fault frequency characteristics. Further study in this area 

is needed. 

In order to reduce response  tin, the quantum time  of the SQQ 

and LQQ are further divided into many time slices. The optimal size of time 

slices is another important parameter that affects system efficiency. The 

time *slice should be selected such that most of the processes either page 

fault or become inactive before runnIng out of the time slice. Since P(t,T) 

describes the inter-page-fault-time distribution of a process for a given 1, 

the.time slice for the Quantum Queues  cari  be determined from P(t,T). For 

example, if we wish 95% of the time that the process will page fault before 

running out of the time slice -- that is, only 5% of the time the process 

will run to the end of the time slice -- then from Figure 3 we know 
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the time slices of the LQQ for .1. 	10 m sec are: 28 m sec for the FORTRAN 

Compiler, 13 m sec for.00OL,.and 12 m sec for . META-7. Time slices for T 	25 

m sec are: 58 m sec fôr the FORTRAN Compiler, 38 m Sec for DCOL, and 35 m sec 

..for ETA-7. Thus, the Measured inter-page-fault-time distribution provides 

a good way to determinethe optjmalltime slices for the Quantum Queues which 

.avoids excessive unnatural interrupts that degrade response. tiffieS. 

The  page.fault scheduling algorithm , . as well as the selection 

- of the time slice form:inter-page-fault-time distribution, are quite general 

and can be applied to .other types of replacement algorithms.: 	- 

V. 	Conclusions 

Page inter-reference interval distribution, average working set size, 

average page fault frequency,and inter-,page-fault-time distribution for three 

typical programs with working set replacement algorithms are measured and 

reported. Measurement results support program locality and the following 

working set properties: the average page fault frequency decreases rapidly as T 

increases and increases as program size increase's. Based on these measured 

data, working set parameter and proc'ess• scheduling may be selected from end 

based on the average page fault frequency. The time slices for the Quantum 

Queues may be determined from inter-page-fault-time distributions. A page 

fault scheduling algorithm is proposed for proceSs scheduling in a multi-

programming environment. Such an algorithm is, effective in reducing CPU idle 

time  and  improve system efficiency. 

*The  three measuredlirograms are not short jobs::: they should. he run in . LQQ. 
Therefore, theSe •MeaSured Kt,T1's provide.the estimate of time'Slices for 
the Long Quantum Queue. • 
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Although the Working Set Algorithm provides an upper bound on replace-

ment algorithm performance, the high cost of implementation prevents it from 

being widely used. Iherefore future research should be in developing low cost 

hardware devices for economically implementing the Working Set Algorithm or, 

perhaps even more fruitful, in developing new replacement algorithms that 

have performance comparable to that of the Working Set - Algorithm but are much 

easier to implement. For example, we have recently studied a Page Fault 

Frequency Replacement Algorithm. Such an algorithm adjusts the LRU (Least 

Recently Used )  steak  according to page fault frequency. Preliminary results 

already indicate it hes excellent performance. 
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APPENDIX 

A Cyçlic Queueing Model to'S 'tudy CPU and I/O  Operations 

To illustrate the relationships amongCPU idle time, average page 

fault frequency and swapping time (time to bring in a new page from the aux-

iliary memory) T, a cyclic qmeueing model [8]  is used td study CPU and I/0 

operations. The system in Figure 4 consists of two classes of service facili-

ties. Service facility class I represents a single CPU; its service rate is 

directly determined by the average page fault rate* X. Service facility class 

II represents k parallel I/0 servers with each having an average service rate 

1 p - 	. The k parallel servers represent, for exemple, a paging drum with k 

different sector. Using such I/O  facilities, a high degree of overlap of I/O  

requests can be achieved in à multiproeamming systeM mith,relatively low page 

fault frequency. 	I. 

Let IP
ij 
 be the probability that a job leaving server i will proceed 

to server j. We asstimé that the job leaves CPU (server 0) and goes randomly 

1  to the 'k I/O servers for service; thus  P0  . 	
' , for j = 1, 2,....,k. Since  k 

jobs which have finished their I/O operations always return for CPU operations, 

P io  . 1 for i . 1, 2, ..., k; and all the other P ip are equal to zero. 

Let N be the total number of jobs in the system, and let n1 denote 

th the number of jobs in service' plus the numberin.queue at  the. i - server. The 

state of the system e.ân:thpn be determined-by'the k 1- 1 tuplé (n 0 ,n 1 ,...,n k ) 

in which >2 trl 	N. e - The number of distinguielable states of the system---equal 
' 

to the number  of  partitions of N customers among k 	1 servers-7-is  I,k  . 

à— iii— F-Fii--Working Set Replacement Algorithm. with-parameter T, then • 	.. 





nj )  À Poi  

(Al) c(no ) p Pio  

i=1 

904e9nk) 
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Let  P(n0 ,n 1 ,...,n k ) be the stationary probability that thesystem 

in state (n 0 01 .1 ,...010, eaid let all the  service  t ins be assumed to be cx-

. penentially distributed.; Then the steady state.equations can be written in 

- the form: 	 • 

k 	-. 
e(no ) X + ): c(ni ) p 1) (no  

j=1 

) 

where thé indicating function 

c(n.) = I °  
1 

if n. = 0 
. 3 

if n. g 0 

accounts for the impossibility of any customer leaving the j th  server if that 

server is empty. 	- 

The left hand side of (Al) represents the rate of transition cut 

of state(n n 	). and the right hand side is the rate of transitiou into 0' 1 	k 

this state. Solving (Al) by a method of separation of variables [8] , we have 

k /Poi X n i 
utu LT  

_ 

1   (0)N-no : 

G(NT  

where « X/p and the normalizing function G(0 is determined from the fact 

that the sum of aflthe P.(n 0  ,nl '", n k  ) is eClual to 1". Thus • 	. 

i=1 

(A2) 
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(A3) 

k)n. 
Tr 

i=1 
>2 n 4 =N 
i=0 

11,  (N-n0 	
)N-no 

77  

n0=0 

. 	 - 

( 

N-n0  -1-k-1 
S. mhere 	k-1 	is the number of distinguishable partitions Of N-no  jobs among 

k I/O  servers. 	: 
. 	 . 

The probability that the CPU is i:die is 	 _ 

Po = 	PO0len1yn2s...,1k) 

G(N) 

	

k• 	, 
n =N 

	

i=1 	' 

1 	(N+k- (o.) 
Uriff k-1 , . 	(A4) 

For the case k = 1, then (A4) reduces to P = 0 N 
-E  1=0 

For the case  N = 3 and k = 6, the values of Po 's for selected Ws. 

are sho'wn in Table 
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Table 11 Po  vs. o 

po  

0.003 

0.019 

0.091 

0.187 

0.278 ' 

0.362 

0.431 

0.488 

0.537 

0.577 

0.612 

We note that ci is the ratio of average page swapping time (from 

secondary memory) to everage inter-page-fault-time. A large a implies large 

pag2 swapping time or small inter-page-fault-time (high page fault frequency), 

or both. Thus the probability of CPU idle time increases bs a increases. 

Hence, the page fault scheduling algorithm should be effective in reducing 

CPUldie time and sh'oLild thus improve system efficiericy. 
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Figure 1: Average page fault frequency m(T) as a - function of working, set 
parameter T. 

- 

Figure 2: • erage working set size S(T)  as a function Of.working set parameter T. 

Figure 3. Inter-Page-Fault.-Time Distribution 	' 
a) Fortran Compiler 	 •  

b) DCDL 
c) Meta '7 Compiler 	. 

FigItce 1 : A Cyclic Queueing system formodeling.Cril and I/O operations. 	. 
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The design  of  efficient storage hierarchies generally invokes the 
repeated running of "teical" program -address . traces through a 
simulated storage' system while carious hiera•chy design parameters 

are adnisted. 

This paper describes . a new and efficient method of determining, in 
one pass of an address trace,'priformance measure's for a large class 

. ardemand-paged, multilevel storage systems utilizing a variety of 
nuipPing schemes and replacement algorithms. 

The technique depends on an algorithm clasAification, called "stack 
algorithms," examples  of  which are "least frequently-used," "least 
recently Used," "optimal," and "random mlacement" algorithms. 

.The techniques yield the exact access frequency to each storage 
device, Which can be used to estimate the overall performance b.f. . 

acinal storage hierarchies. 

Increasing speed •  and size demands on  •  computer systems haVe 
resulted in corresponding demands on storage systems. Since it 
has been generally recognized that the speed and capacity require-
ments of storage systems cannot be fulfilled at an acceptable cost-
performance level within any single technology, storage hierarchies 
that use a variety of technologies have been investigated. 

Several previous papers describe the general condepts of hierarchy 
design" and evaluation," whereas others deal with specific 
hierarchy .  systems, such as the core-drirm combination on the 
ICr Atlas 'computer" and the cache-core combination on the 
IBM System/360, Model 85. 1" 

This paper introduces an efficient techniqtre called "stack processing" 
that can be used in the cost-performance evaluation or a large 
class of storage hierarchies. The technique depends on a classifica-
tion of page replacement algorithms as "stack algorithms" for 
which various properties are derived. These properties may be of 
use in •  the general areas of program modeling and system analysis, 
as well as in the evaluation of storage hierarchies. For a better 
understanding of storage hierarchies, we briefly review some basic 
concepts of their design. 
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T lie  purpose of a storage system is to hold information and to 	hierarchy 
assoviate the information ‘vith a logical address space known to 	concepts 
the tenuttittier or the computer system, For example, the Central 	. 
Processing l init (um) iniy prisent a logical address to the storage 
system with instructions to either retrieve or modify the illtOrton-'• 

ilsocizit'ed with that 	tlie stomge system cow,ist 
:.ingle device,  (lien  the logical address space corresponds directly 

to the PhYsieal . address 4nteç• or the .deviee. AllertiativelY, a torage 
system with the sanie  address space can be realized- by a hierarchy 
of storage, devices ranging from fast but expensive .to slower but 
relatively inexpensive devices. In such storage hierarchies, the 	- 
logical address space is often partitioned into , .equal-size . pages 
(or unequal-size segments) that represent the blocks of information 
being moved between devices in the hierarchy. 

A hierarchy management facility is included to Control the 'move-
ment of pages and to effect  the  (generally dynamic) association 
between the logical address' -space and the physical address space 
of the hierarchy. When the Cmi references a logical .  address. the 
hierarchy management facility. first determines the physical loca-
tion of the corresponding logical page and may then move  the 
page to 'a fast storage device where the reference is 'effected.' Since 
these actions are "transparept" to the remainder of the computer 
system (except for timing), the logical operation of the hierarchy 
is indistinguishable from that of a single-device system. 

The goal of the' hierarelty management facility is to maximize the 
number of times logical information is in the, faster devices, when 
being referenced: As this goal .  is ,approached, most referenees are 
directed tà the fast, small stores Whereas most of tile logical address' 
space is distributed over the slower, large 'stores.: The storage 
system then ,acquires  the  approximate speed of the fast stores 
while maintaining the approximate cost-per-bit of the slower  and 
less expensive stores. This increase'. in cost-performance  is the 
primary justification for storage hierarchies. 

. 	t 	. 	 • 
Clearly, many factors can,affect the cost-performance of a storage' 
hierarchy. On the performance side, one must consider the capacity 
and characteristics of each storage device, the physical structure 
of the hierarchy, the way in which information is moved by the 
hierarchy management facility, and the expected pattern of storage, 
references. On the cost side ., the hardware and/or software requirect 
to find and move logieal ,information must be considered,  as well 
as the cost-per-bit and capacity of each device. Because of these 
factors, it is quite difficult to design an "optimal" hierarchy. 

The typical approach to hierarchy evaluation employed by 'coMputer" 
designers has been to simulate as many hierarchy systems as possible, 
at various levels of detail»-I2  During the . first stages of design, 
large number of relatively  simple .simulations may  be :run -  with 
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fixed, standard address traces. Tliese traces are assumed to be 
"typical" sequences of storage references obtained from existing 
computer systems, inal they are used to approximate the reference 
behavior of future systems. 1.4 purpose Of these simulations is to 
measure such statistics as data lloW and frequency of ilec.e .si; fo 

 each device in order to estimate the overall pertOrmanee of an 
Debut' system. The resulting performance estimates ean then be 
used to narrow the field of possible desig,ris, which then receive 
more detailed exatnination. 

Alternatively, one may try to develop .analytical techniques that 
avoid point-by-point simulation but - still yield ;teem ate statistics 
for data flow and access frequencies. Several papers deal with such 
techniques for hierarchy evaluation." In general, the approach 
here is to run a relatively small number of simulations and ex-
trapolate the measured statistics to à larger class of .hierarchies. 
Thé difficulty with this approach is the need for various assumptions 
about the statistical properties or•address traces and data  -flows 
required ,  to forinulate the analytical equations. Moreover, it is 
difficult to include a quantitative dependence on such factors as 
data path structure, page replacement algorithm," and address 
mapping scheme,' so that many simulations may - still be necessary. 

	

objectives 	This pape• presents a technique that can be used to circumvent 

	

of, the 	much of the simulation effort required, in hierarchy evaluation. 

	

paper 	Specifically, we present an efficient. procedure that determines, for 
a given address trace, the exact frequency of access to each level 
of a hierarchy as a function of page size, replacement algorithtn, 

. number of levels, and capacity at eaelt level. In the following, we 
consider a ,class of muttileyel, dernanct-paging hierarchies'.. 4  with 
the saine replacement algorithm at every level. The procedures 
develope,d here are applicable to a large class of well-known.  re-
placement algorithms having certain inclusion properties defined 
later. These algorithms—which we ., call stack algorithms-include 
"least frequently used," "least recently used," "optimal," and a 
:"randorn" replacement algorithm. . 

The sYetem modeI  

	

basic 	An H-level paged storage hierarchy consists ot a collection  of 

	

model 	storage devices MI, M2, • • • , Afil, a network of data paths con- 

	

concepts 	necting the devices, and a hierarchy management facility. Each 
device is partitioned into physical blocks called page frames. For 
Convenience, the highest-level store M i  is called the local store 
and the lowest-level store Mu  is the backing store as shown in 
Figure L The hierarchy management facility controls page move-
ment between the devices and associates each logical page with 
a physiçal page frame. Special storage and proceSsing hardware 
may be requireid, but they are  flot  included in Our môdel. 
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R e rerenees to the storage hierarchy are presented by a single device 
called the gencrator,•and they are sequentially serviced in the order 
in which they are presented. References from the generah)r may 
linty represent the requests of ,several devices, such as the 	a nd 
the. channel, in an actual sys'tem. • The time sequence of logietil• 
address references X 	. • • , x is called an address  mace, 
where each address consists of n bits as shown in Figure '2'. The 
set of 2" possible addresses  is  partitioned into 2' pag,es of 2"- ` 
logical addresses each. The high-order k'bits of each address . rep-
resent the number of the  • page containing the- address, and the 
low-order  n  — k bits represent the location  or  displacement of 
the address within the 'page. Since information movement on the 
hierarchy is accomplished bY transferring pages betwedn levels, 
we can analyze space-allocation and data movement for a trace X 
by considering a corresponding  page  trace.  X  = 4,  4,  • • , 
where each 	is the . number of the page containing address • x,. 
When  we consider a given fixed.page size, we omit thé superscript k, 
and denote pages by x,, 

A reference from the generator can be serviced only frem the 
local store .M 1 . Thus' if the desired page resides in a lower. level 
deviee  M ,  i.e. where i >  1, thé hierarchy management facility 
must bring that page up to ld for servicing. The hierarchy provides 
a path for bringing pages up to  A1,  which may or may not require 
staging through intermediate levels. Any temporary storage required 
for bringing a page up . to  M, is included in the hierarchy manage-
ment hardware, and is •therefore not represented in our model. 
In this paper vve restrict otir attention  to linear storage hierarchies 
in which the only paths for moving pages down the hierarchy are 
direct ones from each level M ;  to level whde i =  1, 2, • • • , 
H — 1. The reasons' for this.restriction are discussed later in this 
paper. Note that the  four-level hierarchy in Figitre 1 is a linear 
hierarchy. 

The capacity orthe backing store is assumed to be at least e page 
frames, and all logical pages initially reside in the backing store. 
At any time, each logical page resides in exactly one page frame 
of the hierarchy. A mapping function is associated with each hi-
erarchical level, and specifies for -each logical p,age the page frames 
it may occupy in that level. The mapping function is further defined .  
as: 

ln a later section, we define a technique called "congruence mapping" 
that generates a whole spectrum of mapping functions. 
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9  Unconstrained if any  page/an  occupy any page frame of the 
storage device. 

• Fully constrained if each page -  can occupy only a single ,  page 
fratrie.  

Q Partially constrained in all other  cases.  • 
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Fo r simplicity in developing techniques for analyrinr, stoi;ive hi- 
erarchies, we first consider tt two-level, demand-II:wed hierarchy 
with unconstrained mapping. Later, our Icsults are ext ('uded 1 1)  
cert ,,,, , , 1  c l asses or  cmploying the throe 
types of mapping, functions. The local store or butler has capacity 

(', pages, and is directly connected to the hacking st o re ; , s  shown  
in Figure 3. At time 1, the generator presents a, request for 'it,tge.. 
.v,• to the hierarchy. Under denuind paging, if x,. is in the buffer, 
the reference proceeds ,and  no page movement. occurs, otherwise, 

is brought to the buffer  from  the backing store. If the 'buffer 
is already full, x, replaces some page y, in the buffer. The selectiçm 
of the particular page y, is performed by the buffer replacement 
algorithm. This  operation .is a key element  of  storage management. 

• In the two-level hierarchy shown in Figure 3, a reference to a page 
residing either at level ltf, or at 1112  is called an access to that level. 

For a given hierarchy and page trace, we definc  the access frequencies 
/•', and F, where F,,is the relative number of accesses to .level 
during the processing of the trace. Thus, if /V, accesses are Made 
to level 1141 , and N2  = L 	N, accesses are made to level .M2 , we 
obtain F, = NIL, and F2  = N2/L.  • 

. Some important measures of storage hierarchy performance can 
be obtained from these access frequencies. For example, one can 

, combine access frequencies with a set of effective access times 
to obtain an effective (or average) hierarchy access time 

T 	T1  + 172 T2 

In general, access thnes depend on the acéess paths, device access 
times, and characteristics of the • hierarchy management facility. 
The  access frequencies depend only on the page trace, capacity 

• of the buffer, and replacement algorithm. 

For a two-level hierarchy, accesses to the buffer are called successes; 
the relative, frequency of successes as a function-of capacity is 
given by the success Auction F(C). For a given capacity C, page 

• trace X = x l , x2, ; • • x r., replacement .algorithm, and arbitrary 
time t (where 1 < t < L), the set of pages in the buffer just after 
the completed reference to x, is denoted by B,(C). The initial buffer 
contents is represented by Bo(C). By  convention 	, 

130(C) r çfj  

for all C where 95 is the empty set: The set of ctistinct pages referenced 
in x„ x2, • • • , x, is denôted by 118 , and the number of pages in 11, 
is denoted by 

Corle;yy .4d) 

Irai 
• 
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'rage hi- 	i 	Demand paging in .the ,wo -level hierarehY is formally defined by 

	

. 	. 

	

,i crare h y 	! 	the following requirements, wherein the operator "+" denotes the 

	

' lido' to 	: 	union of diioint sets: 	 , . 	 , 

l . 	) I. lf x, (•:::' P, .,(C) • 	then 	11,(C) ::., 13,,(C) 	„. • 	. 

2, li 	A-, (.3 , -. fi,. ,(C) 	and • • ID,. ,(C)I < C 	then 

llt(C) "' II, --1(C) - I -  l xt i 

1 	3. If 	x, (1::• 8,_,(C) 	and 	Illi-A(C)i = C 	then 

	

;'e buffer 	■ 

	

.election 	! 	131(C)'.-- 13,-,(C) -- 1) 181 -f -  I•vil 	 . 

	

livinent 	• 	 , 

« igement.. 	; 	where y, E.1.3,_,(C) is determined by the replacement algorithm. 
Under demand paging, a buffer of çapacity C.simply fills as required 

	

.1 a page 	i 	by I and 2, while the first C distinct pages are referenced. Sub- 

	

tat level. 	I 	sequently, referenced pages are swapped in, as required by I and 3. 

Least recently used replacement 

We now 'consider a particular  replacement  algorithm called "least 
recently used '  (LIU)), and • show that the entire success function 
cati  be obtained by stack processing in a single pass of the address 
trace. Briefly, the single-pass technique requires the maintaining 
of a list of' pages, called  an  Liu). stack, and measuring a distance 
on  titis  Stack for every page reference. Frequencies of these stack 
distances are used to calculate the success function. The existence  
of the HU) stack follows from  an  inclusion property satisfied by 
[RU  replacement, whereas the use of distance frequencies hinges 
on the related concept of critical capacity. . 

Under LRLI, the page selected for replacement . is  the one that has 	success 
not been referenced for the longest time (i.e., the least Tecently 	function 
used page). One .way to obtain the success function for a. given 
trace is to simulate the two-level hierarchy system for each buffer 
capacity. Such a simulation determines the buffer contents at every 
time t, and counts the number of tittles the current reference 
is found in the buffer. In Figure 4, we show an éxaMple of this 
,simulation procedure for .a given page trace and, buffer capacities 
C =  I, .2, 3, 4. Pages arc denoted by lower-case letters, and page 
successes are marked by asterisks. 

. 	• 	, 	A greatly simplified method for Obtaining the success : function 
* under LIW  replacement  can be derived from certain properties 

of that replacement algorithm., For any page trace and buffer 
ferenced 	capacity C. the buffer is initially eniptY, and in stty T tinie units, 
,es in 11,  f  it fills up with. the first C distinct pages referenced by the trace. 

At time  r, the  buffer contains the C pages most recently referenced 
through time r. When a neW page is referenced at a later tinte 
(i > r), this page replaces the least recently used page in the buffer. 
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Thus at time 1, the btiffer still contains the C most recently referenced 
pages.  It is easy to se& that under LRU the buffer contains the C 
most recently referenced pages for all subsequent times, and th'at 
this . Property holds for all page' traces and buffer capacities'.- One 
can generate the buffer epntents . „B,(C) .  for any time t  on a trace 
and, any capacity by sçanning_ . backward fro' m. point t and collecting . 
the first Ç distinct pages encountered.,  •• . 

Since the set of C most recently referenced pages is always contained 
in the set of C ±  1 'floe reçently referenced pages,- the buffer•
contents Be) at any time must be a.subset of 13,(C + 1). In fact, 
B,(C) is a proper subset of 15',(C + I) if ai least C + 1 distinct 
pages have been referenced through time 1.  More  formally, Under 
LRU replacement, the buffer contents for any page trace X = 
xi , x„ • •.• , x i, and any time t (where 1 <  1  < L) satisfy the fol-
loWing inclusion property: 

B,(1) C B,(2) C • • • C Bt('Yâ) 	B/(71 	I) = • • • 

where  • 

1B1 (C)1 	C •  for 1 < C < y, • 

( 1 ) 
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and 

-y, 	for C >  -y, 

The inclusion property can be observed in Figure 4 where at time 
t 	5, for example 

le,(1) 	Ibl 

I3,(2) 	• l e,  1)1 

b , 

and 

B,(4) — 1a, b, cl 

Because of the inclusion property, the buffer contents at any time 
and for all capacities can be represented in the following compact. 
and useful way.. We order the set of pages P, into a list  S,. s,(I), 

• • • sky,), where  

st (i) 	13,(i) 	B,(1 	1) 	for  i=  1, 2, • • • , 	 (2) 

I Ience 

B,(C) 

• 1 

{ {:s•rl 	st(2), • stC)} 

{MO, 4(2), 	sifi't)}  

for C < y s  

for C > 
(3) 

The list S, is referred to  as the LRU stack, with s,(1) as the top 
entry and s,(y,) as the bottom entry. As an example, the LR.0 stack 
for t 5 in Figure 4 is ■„ 

• 
S,„ 	[b, c, a] 

The stack S, at time t =  0 has no entries and is therefore called a 
null stack, that is, one . with no entries. The entire sequence of 
LRU stacks corresPOriding to Figure 4 is included in Figure, 5. 

Besides representing the biffer contents  for all capacities:the LRO 

stack can be, used to efficiently determine the success function 
E(C). Let us suppose that at  lime  t, page  x,  has been previously . 

 ieferenced and thus is a Member  of at least one set B,_ 1 (C), where, 
1 < C < y,_,. Let C, denote the least buffer capacity- such that 

• 

We call C, the critical capacity since, from the inclusion property 
given in Equation 1, x, e 13,_,(C) if and only if C > C,. If x, has 
not been previously referenced, We set C, = co because x, is not 
contained in à buffer of any finite capacity. 

From the definition of LRU stacks in Equation 2, it may bo seen 
that C, iS simply the position of page.x, in the stack S,_ 1 , so that 
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We call this  page position 'the stack distance à„ since A, is essentially 
the ",clistance" from the top of the stack to 

. 	• 
x, = s,_,(A,) 	 t, 

(Note that here A, ---- C,. When conStrained mapping functions are 
conSidered, the stack distance may not always equal the critical 
capacity.) If *X i  has not been previotisly referenced; then is set 
to infinity. The sequence of stack. distances for otir example is 
included in Figure 5. 

The significance of stack distances is that they lead directly to th2 
Success function. To see this, let n(A) be the number of times the 
stack . distance is obserVed in processing a trace. Since thc stack 
distance equalS the critical capacity, the number of times that the 
referenced page is fOund in the buffer is 

N(C) = E n(à) 
A-1 

and the sticcess function is given by the expression 

F(C) = N(C)/ L 

In practice, the set In(A)1 can be determined from a set of distance 
counters, as shown in Figure 5. All cOunter's arc set initially to 
zero, and the counter for each distance A is incremented whenever 
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that distirnce occurs. For k -bit page numbers, we need at most 
1 counters, corresponding to I A 2 and à co. At 

the conclusion of a page trace, the final values of the distanee 
(soumets are the values In(A)1, and F(C) is obtained from u qua ti ous 

 4 und 5, 

	

\Vc now calculate the value of the stiecess fonction in a ittouvriclil 	nutnerice1 

•For A's of l, 2, 3, 4, and W,  the cuti csponding final 	exinintIo' 
'couiner values in Figure. 5 'are 2, L. 2, I, and 4. This distribution 
is show!' in Figure 6A. Dividing by  1.. equals 10 in Figure 5, and 
somming cumulatively, .we obtain the success fonction shown in 
Figure 613. One can ■,,erify that the F(C) values for, the curve in 
Figure 613 agree v, , ith those obtaincd in the simulations of: Fi g ure 4. 

To find the access frequencies 	and 172 , for a eiven buffet: capacity 
C, we takeL = F(CI ) and F2 =  t  — Fi. As an example,:for C -.---- 3 
pages, F, 	F(3) --= 0.50 as indicated, in Figure 611; 	— .0,50 

0..50, and the average .access thne T of the hierarchy is 0.50T5  + 
.0.507;, 

Note that F(C).is always a monotonie, non-decreasing function 
of C for 1.,Rti replacement, silice F(C) is obtained by cumulative 
summation as shown ln Tquation 4. Also, F(C) 'lever exceeds 

7 1.)//, for any capacity, because all pages initially reside 
in the backing store. 	.1 

To avoid constructing epell 1,1ZU staék separately, we now give 
an iterative construction of S,'rrorrt S,_, and x,. Observe that at 
every time 1, the stack S, is simply the list, of pages in r„ according 
to their most recent reference. The Most recently refereneed page 
is s,(I) since s,(I) 77. x,. The second.most rec'èntly réferenced page 
is s,(2), and s,('y,) is the least recently refèrenced page in 11,.-  

Let us suppose that page x, has been previously referenced and 
appears at position A on stack  S, 5 . For tinte t, we knOw that' x, 
must be the top entry in S„ because it is the most recently:refereneed 
page. Consider nom) a'.page b; at seine position j on S, where 
I < j < A. At time t 1, page' b is the jth most recently referenced 
page, and the intervening pages do not include x,. At time,t, page x, 
is added to this set so that page b must now be, at position j 1 
on stack S,. If j is greater than A, page b must remain at position 
j at time t, since the set of more recently referenced pages is un-
changed from tinte t —  I.  

The net effect of this page motion is shown in Figure 7A. Page x, 
is moved to the top of the stack, pages previOusly above x, -are 
clown-shifted one position, .and all other pages retain the same 
position.. If x, were not previously referenced, x, would be placed 
on the top and all other pages would be clown-shifted one position as 
shown in Figure 713. 

(2.7) 



1 

This iterative procedure ciin he used to generate the ,, equence of 
sta • ks in 11tirc 5. In an actual evaluation, il  is not ne... c ry ti 

;.tOre the entire sequence of staek ,,. Rather, only Ow current• 
must  he  maintained  is  the trace is scanned, When a pr.(' reference 
occurs, that page is put on the top of the sta(71,..; ;Ind enirics i n  1 h !  

stack are down -shined one - by -one •starting; from thc top. If 
X,  is encountered, its distance à, is recordcil, and x, is t••as•d becausn 

it  luis  already been' placed on top, The : position v:icated by x i  is 
tilled by the page downshifted from position A i  -- 	x, is no t . 
encountered, then the dOwnshifting proceedS to the bot tom of  the 

 shin, and distance  L,- co is recorded. 

Stack algorithms 

We now examine the general class of' replacemeni algorithms that 
satisfy the inclusion property. Such algorithms are called "stack 
algorithms." It is shown that stacks  cari  be iteratively maintained 
for any stack algorithm, and that stack distance frequencies for a 
giyen trace - can be used to obtain the corresponding success function. 
The mai n . problems considered arc (I) to efficiently generate stacks 
I S,I for an arbitrary stack algorithm, and (2) to identify those 
algorithms that are stack algorithms.: Several examples of stack 
algorithms• are d.escribed, 'along with one replacement algorithm 
that is not a stack algoritlint. 

• 	A replacement algoritInn is called a s'tack algorithm  if  the buffer 
contents..in a demand-paged, two-level hierarchy . satisfy the in-
clusion  property given in Equation l; for every page trace and every 
point in time. As shown for tiltu replacement, a stack can be defined 
according to Equatien 1 in such a way that the buffer contents for 
all capacities are given by Equation 3. Furthermore, since the stack 

• . distance A i  • iS a critical capacity, the success ,function.for any page 
trace can be obtained by summing the stack distance frequencies 
•1n(à)I according to Equation 4. This summation implies that the 
sticcess function is  a monotonie and nondecreasing function of 
the capacity C for every stack algeritlim. 	• 

, 

' stack 	Let 'us noW consider a replacement algerithin R as a collection of 
generation 	mappings 

: B,(C) 	y(C) 	where  j(C)  E . 

is the page .  replaced by x, in a buffer.« Capacity C. From the con-
, . 	straints of demand paging, We knew thatit is applied only when the .  

following conditions are true: x i  (II- B, _ 1 (C)  and IB,..,(C)I =  C. If  the 
 inclusion property is satisfied up to .and inchiding timc  I - I, the,n 

R must Satisfy certain restrictions at time t .to.  maintain the inclusion 
property. - -Specifically, if a replacement is required .  for some caPacity 
C 1 ,(and therefore for C), -then y,(C -F. 1) must be either y,(C) 
or 	+ 1). To prove this, let us assume  the following: 
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Di -1(C) C 	+ 1) 

t(c)I 	c 	• 

,(c: + 1)1 	C 	1 

and 

x, 	111-1(C 1 -  I) 

,Note that from Equation 2, page  s1 1 (C 	1) is (à-intained in' 
131 .,(C + 1)  but  not in .11, 1 (C). -  If page y,(C 	.1) is• neitlicr 

-F I) nor y,(C), then Y,(C 1- 1) is some other page 'z E 
flov,,ever, page z is included in 131 (C), but not in 111 (C 	I), which 
would violate the inchision propertY. 

We have given a necessary condition for stack alg,orithins. The 
saute condition is also sufficient, because if .p,(C -1- I) is eithcr 
y 1 (C)  or + 1); then B,(C) is a subset of 13,(C + I). l'herefore; 
we conclude that a replacement algorithm is a stack algorithm if 
and only if for every tinte t 

y,(C . 1) 	 I) 	or 	y,(C 	I) = y,(c)  1 	(6) 

for 

1 < C < 	and 	C 1 <. 

Important replacement algorithms that satisfy Equation 6 are those 	stack 
that induce a total ordering on all  previously referenced pages and 	algur1thrn 

use titis ordering tô make replacement decisions: The ordering can 	identification 

be represented in the form - of a priority list 	 . 

= 1)1(1), 	 . . 	. 	 • 
• 

where p,(i) has a higher priority than AU + 1) for 1 < i < 7. The 
algorithm then selects for replacement the Page- in  B1 (C) that has 	• • • , 
the lowest priority. , • 	• 

A convenient  notation  for working with priorities is min(A), where 
A is an arbitrary set of pages in 11,:_„ and min(A) is the unique page 
in A having lovvest priority on the list P,. If 131 _,(C) C B,_,(C -I- 1) 
and x, EE /31 _ 1 (C 1), We can express the replaced pages y1 (C) and 
y,(C + 1) as follow: 

Yi(C) = min [BI-1(C)] 	 (7) 

.and 
• 

y,(C + I) = rniu [13,_,(C + 1)] 	 (8) 

min [Bi-i(C), 	+ 1 )) 	 (9) 

= min 1min [Bi-i(C)], si-1(C + 1 )1 	 ( 10) 

- = min LYt(C), 	+ 1 )] 	 (II) 
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Equations 7-9 are based on the definition of the replacement, 
Igrithni, ‘vhereas Equation 10 is based on the properties Of 

I ipt ■ re 	; 

We •onclude f•om Equation I 1 that -  anY replacement algolitlini 
that induces a p • iOritY HSI 	1 .01 .  Cvety time t 	Equation t) 
and is therefore a stack algorithm. For example, the priotity list  

for Lit tJ is just the ordering of pages in 	by moat recent referenee. 
'the - priority list for "lest frequently used" (11 , 1)) replacement 	the 
ordering of referenCed pages by iliost frequent reference .together 
with a - scheme to.break ties. 	 • 

	

stack 	Before describing other examples of-stack alp,orithrus, kt us develop 

	

updating 	a stack-  updating procedure for algorithms inducing a' priority list. 
For  any page trace X 	x2, • • • , x), and any time t, where 
1 < t 	L, suppcise that stack S1 _, is available. Also, for any two 
pages tt, b E r,_„ let Max (a, b) dencite the page having higher 
priOrity. lf Xi  has been previously referenced and appears at position 
A,  oh  l .stack .  S,...„  the  stack at time t is given by 

si( 1 ) = xi 	 (12). 

s,(i) = max ry,(i — i), 	for.2 	< A, 	• 	(13) 

• si (&) 	.Vi(Ai — 1 ) 	 (14) 

• 
st (i) 	 for A, <  j < iy,_, 	 (15) 

Equations' 12, 14, and 15 are basecl on  the constraints of demand 

	

. 	paging, whereas Equation 13 is derived from Equation It 

lf x, has not.been previous/y referenced, •the defining equations for 
stack S, are the following: 

s,(1) = 	 ( 16) 

st (i) = max [31,(i — 1), s,-,(01 	for 2 < i < y 	 (17) 

sbi) = 	 • 	(18) 

In this case, Equations 16 and 17 express the fact that replacements 
are required for all buffer capacities in the range 1 < C 
Equatien 18 corresponds to the new page x, being added to the 
stack, with the result.that a buffer of capacity 

-1 + I 

is noW filth 

Figure 8 illustrates the stack updating procedure • as given in Equa-
tions 12-18. The top entry s 1 (1) is alviays x i , and the first page 
replaced is 

y,(1) = s4 „(1) 	for A, > 1 
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Each subsequent entry s,(i) is then determined iteratiVely from 
s,_,(i) and J,,(i — 1) according to Equation : 13 or 17: If x, is found .  
on stack S,_, as sh.own . in  .Figure 8A, we use Equation 14 to 
determine s,(A,). All lOwer entries are unchanged from time 1. 
If x, is not found on stack S,_„ as.shown in Figure 8B, then  
and we use Equation 18. In either case, the replacement algorithm: 
does not havc.  to be applied to all the pages for stack updating. 
Only a sequence of pairwise decisions between pages st _,(1) ..  and 

— 1) is ,required. 

Comparing our stack Updating procedure with ehe one for LAW 
shown in Figure 7, we see that page  y 1 (C) under LRU is always 
s,,,(C). In fact, the priority list 'P, is exactly equal to stack 
since both lists give the order of pages in 1.' 1 _ 1  by most rceent 
reference. Thas 	 • 

y,(C) = 

and Equations 13 and 17 'then reduce to 

si(i) 	max[si-M — 1 ), 

st-IU — 

For an arbitrary stack algoritlint, the - stack updating:is more complex 
than for LRU, and the order of stack elements at time. t — 1 may be 
very different from that at timeit. 

Let us now examine several examples of stack algorithms. In general 	example; 
any replacement algorithm that bases its decisions on sorne page 	of stack 
usage quantity, whether i'neasured or predicted, naturally induces a 	algorithms 
priority list and is, therefore, a stack algorithm. One example, of 

(re.,:,F(r,eir,1ia-7,r11-em.'?"1".rezrzYmt 
, • 



cou • se,' is HUI, and another example previously mentioned is 

ledst frequently used (I .H.1) replacemen ( , 

t.)ndor utt, the pagc replaced from a buffer tt time  t is that page 

that  lias  been referenced the fewc.a number of limes ovor the interval 

I 	r 	1, ,  or peil.ums over some "backward window" interval 

I .--  h < < 1,‘vhere 0 h two or more piu. c!,  are tied for 

least frequency of use, t heu  some arbitrary rule is ti ,..ed to break 

the tie. As long as the rule is  • consistent for all pages and all 

capacities (e.g., if the tied pages are numerically or ( ered) a priority 

list P, is induced, and La) is a stack algorithm. 

Othe •  examples of stack algorithms may arise in analytical studies 

of .program behavior. If an address trace is generated from some 

random ''process, it  may  be  desirable to study the behavior .of 

replacement algorithms that base their decisions On .the param-

eters .of  the  random process. One such - process is a time-invari-

ant, first-order .  Markov cIaiIl,I5tG  where any page c is  referenced 

immediately after page b with . a fi xed transition probability 

The process is completely desCribed by the.'matrix  II  = 

(where b and c range over all.referenced pages) and by the page 

referenced at time t =  I. 

One possible replacement algorithm is to remove the page least 

likely to be referenced next. We .call this strategy "least .transition 

probability" (LTP) since, for page x, equal to page b,  the page  c 
chosen for removal is the one that ininimizes.ir,„. over those pages 

in the buffer. Supplying , an appropriate , rule for breaking ties,' we 

sec  that induces a priority'list and is.:a stack algorithm. 

Another rePlacement- algorithm is to remove the page with the . 

largest expected time until next .  reference. - We call this strategy 

LN1Z for "longest next reference." The expected time s . until..next 

reference  can  be.' obtained  from  the II-matrix by 'standard tech-

niques." As with LIT, LNIZ induces a priority liSt if we. supply an 

appropriate tie-breaking rule. - •  

Fo  analyze an actual program trace under LT1)  ôr LNI1 (perhaps for 

testing a Markov model of the program), page reference statistics 

may be ttsed to estimate the matrix II. For example, the observed 

transition frequencies over some interval / h to lean be used to 

generate a time-varying estimator matrix  n i . A priority list P, can 

then be constructed for each tinte 1, according to the probabilities 
in (.1,, with the result that the overall strategy for replacement 

remains a stack algorithm. 

Other stack algorithms may base their decisions on information 
from the programmer or compiler, or on , properties of the computer 

system. For example, the programmer or compiler may supply to 
the system" special "program directWes" that indicatewhich pages  •  
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C 

should be given high priorities in the immediate future .  Another 
ease is where the operating system assigns priorities to program, 

pages in a multiprogrammed system, based perhaps on the position 

or tue  program in a ..task queue. If all the pages in the address.sbace 
can he mitered in a priority list /), for each  time I, the resulting 
replacement algorithm is a stack algorithm. 

In the examples given, we see that priority, lists can arise  in a 	tirstAny 

variety of ways. We now consider a replacement algoriihm called 	first-out  

"first-initirst-ont" (I11 ,0) that is not • a stack algorithm. Under 

FIFO, the page that has remained in the buffer for  the  longest 

(continuous) time up tn tiine t is removed. 

A peculiarity of FIFO is illustrated by the f011owing page trace 

X — abcdabeabcde 	 • 

As shown in Reference 18', the success function for this trace is not 

monotonic, and takes the form Shown in Figure 9. Since stack 

algorithms have monotonie  success functions, we conclude that rtro 
is not a stack algorithm and does not induc'e a priOrity list .  P, at 

every time t. In amplifying this conclusion, we note that the relative 
priorities between 'pages in 11 ,_, may depend on the buffer capacity. 

C.  Thus in the example, one can verify that page d bas lowest 

priority of all pages in B (3 ) in the sense that d has been in the buffer 
longest. I lowever, page d has highest priority in B„(4), since it was 
brought into the-buffer latest. 

Whenever the priorities among pages depend on the capacity of 
the buffer, we cannot define a 'single priority list that applies to 
every capacity. One instance Of this:is when prieties depend on 
the frequency of reference to pages after their entering the buffer. 
Another case is when priorities depend on total time spent in the. 
buffer. 

As long as priorities are independent .of capacity, and as long 
as one can order the referenced pages to  reflect tbese Priorities, 

. then stack-processing techniques can be used to find the success 
function. 

An optimum replacement algorithm 

We now disciiss a replacement algorithm that yields the it -14mm 
value for the success frequency over the space of all replacement 
algorithms—for every page trace and every buffer capacity. Such 
an algorithm is said to be an optitrnim replacement algorithm. • 
Belady" describes an optimum replacement algorithm called 
MIN, and shows how to evaluate the success frequency for a-given 
page trace and a given buffer eapiacity. In the following discussion, 
we describe a stack algorithm called OPT and prove that it is : also 
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an optimum replacement algorith i . thing certain properties of titU 

and oPT, the entire success function for ()Pr con  Ire  determined in 

two Imsses of a page trace. 

The replacement algorithm ()PI has• the', following characteristics.' 

Whenever a page Must be pushed from the buffer, the chosen page. 

is the one whose next refetence is farthest in the future. If a tie 

results because tWo - or more buffer pages are never referenced again ; 
 the tic is broken by an arbitrary rule SZ that pushes the  imite  with 

 the latest alphabetical or numerical order. An example of otrr 

replacement is shown in Figure 10, for the buffer capacity C — 3. 
As . an illustration, notice that at time  I  . 5 page c is pushed Lfrom 

the buffer, since the other buffer pages a and b  arc  referenced sooner. 

At time t = 9, page b is pushed from the buffer, because page (I  is 

referenced again (at time t = 10), and page a  lias  priority over 

page b by our rule's/. 

A forma proof that OPT is an optimak replacement algorithm is 
given in the Appendix. We note Ire  that OPT is not realizable in 
an actual computer syStent because it, requires . knowledge of future 
page references.,' However, OPT does'serve as a useful benchmark 
for itny replacement algorithm, including stack-type algorithms. 
To show that OPT is a stack algorithm,. observe that a priority. list 

Pi can be constructed for OPT at each time t. Specifically, P, is the 

list .of the 'pages referenced again, ordered by their time of next 
referenee, followed by the list of the pages not referenced again, as 
ordered by the tie-breaking rule•St.. • 

	

static 	The stack processing technique for on is illustrated in Figure 11. 

	

processing 	Priority lists  are ordered às described above, and curly.  brackets 

	

example 	denote the pages ordered under the rule R. For example, at time 

I  = 8 the priority list is PB  = c, d, a, h, becaUse c is the next page 
• 

Figure 11 Stack processing and success function for OPT replacement 
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referenced (at  i 	9) . and d is the second page referenced (at  t —. 10). 

Pages a and b are not referenced ag,ain,.and thus are ordered aceord- 

ing to  I  tile  i. The sequence of ovr stacks is constructed w,ing, the 	. 

prim  It lists, and die success function ls obtained from the:. stack' 	, 

distance frequencies. A major difficulty with the technique is  the  

amount or rorwurd scanhint., required to construct the PrioritY: 

Fortunately, a more efficient procedure exists  for  obtaining the 	tonsqct 

priority lists. For a g,iven  page trace  X, we define the .forward distcuu•e 	distance 

w 1 (a) to a page a at  time t as the number of distinct pages referenced 

in x, 	•.•• , x, (where  x,  . is the first reference, to page a after ( ime 

I). If page a is not referenced again,  the  forward distance is defined 	. 

as infinity ., Note that the priority list under OPT is a listing or the • 

pages in 1',_,• according tO their increasing forward ,distances. An - 

illustrative example of forward ,distance determination is given in 

Figure 12. 	• 

If the forward distances to  ail pages in 	are known at time  f  — 

the new forward  distances  at time t can be determined iteratively 

from the single forward distance tv,(x,). Specifically, for page 

a O X 1  and w, w,(x,), we have 

j 1.1 , t _ 1 (a) 	1 	for  w,_ 1  (a) 	w, and w,... 1 (a)0 0,  

w, , (a) , 	for . 	> w, or 	iv,.., (a)  = co 
(19) 

To determine thé sequence pr forward distances 1w,j  for a page 

trace X, consider the reverse trace X" 	 • • • , 
Suppose that r is analyzed according to LRU replacement and 

that x; and x i  denote tWo successive references to page a in the 

reverse trace..Thus X" 	x L , • • , 	= a, • 	,  x,  = a, • • • , 

At tiine j, the stack distance A, is the .nuinber of distinct pages 
referenced in xi, • • • , 	(Note that x„, precedes x i  in r.) 
However, this number of distinct >pages is precisely the forward 
distance wi  for page trace X. Thus  the  sequence of LRU stack 
distances for trace X", namely, AL, At-1, •• • , A2, Al, is the reverse 

of the sequence of forward distances w,. 11 2 , • • • , tvi,;„,; iv,: for 
trace X.. 

TIME 

PAGE 
TRACE 

• 

Fie« 12 Determination of 
forward distances at 

time t zr. 4 

1 2  34 5 1. 1 	11 91(t 

w.(0). 3  194(4).2 w4 (c)..4  

These results form the basis of a two-pass stnek processing technique 	maximum 

for determining the suceess function for OPT replacement. The 	SUCCeSS 

technique is illtistrated by Figure 13. The first pass is a backward 	function 

scan of the page trace X using LRU. replacement, denoted  by  the 
left-pointing arràw, The LRU stack distances are stored, in reverse 
order; on a "distance tape." The second pass is a forward scan 
using OPT replacement,  as  shown by the right-pointing arrow. 
Forward distances read from the distance tape are used to maintain 
the 'OPT priority lists according to Equation 19. 

The LRU stack distances gathered from the reverse page trace yield 
important information about • the  forward page trace. Specifically, 
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Figure 14 Sequence of LRU distances for page a 
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we claim that the success function for the reverse trace Xll  under 
LRU replacement is equal to the success function for the forward 
trace X under LRU replacement. Thus one can use the backward 
scan of X, not only to generate the distance tape for OPT, hut also 
to generate the success function for LAW. • 

To prove this result, let Futu(C, X) denote the LIZU success function 
for trace X, and consider the set  0ILIW stack distances measured 
for a given page a in X and r. As the example in Figure 14 
illustrates, these sets• are always identical. Since this holds for every 
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distinct par.c in the trace, the distance frequencies for X and ,V? are 
 identical, so that the success funetions X u ) in1 Ful (C, X) 

arc cqual. 

irmot, \\1 1 i ( .1, ;;;  pi  oVt ■ LI i ii t h e Appendfx, is that  
to 	,(( '„V n ), \vlicre 	X) is the (n..1' sticcess fonction 

loi trace X. our two-pass technique edit.he implemented \vint 
foi ward-haekward scans as well as with backwaid-forwaid scans. 
During the lirst scan, the siiccess function for Liai is obtained, and. 
the distance tape generated. f)uring the second sean the .success 
function for Dirr is obtained. 

llatidom ropleiceniè.nt 

In the stack algorithms cOnsidered thus far, a unique suceess .fime-
tion is associated With each trace. We now extend stack-proceSsing 
techniques to cover a -"random replacement" algorithm (RAND) 
that does not always yield -a unique success.function. With RAND, 
if the buffer has a capacity of C, any given page is chosen for replace-
ment- with a probability of 1/C. In analyzing RAND, one 'might 
perform a Monte - Carlo simulation for each huiler capacity to 
obtain a RAND suecess function. Repeating these simulations would 
yield a set of sample success ftmetions to characterize  RAND.. The  
sample success functions cotild then be used-to estimate an "average" 
success function. 

,A question duit arises is whether stack processing can be used to 
generate a sample suçcess function for RAND or any other algorithni 
that bases a replacement  choice on the 'value of sortie random 
variable. Vie observe that RA .1•115 is not a .  stack'' . algorithrn, because . 
there certainly exists a trace and a tinie t for which the inclusion 
property fails to hold with a nonzero probability'. 

Our approach is to define a replacement algorillim Rit, which is a 
stack algorithm having .the sanie statistical properties as RAND ror , 

 each capacity C. he' algorithrri RR..is defined as follows:-  at each ,  T  
time t, the priority list P,' is obtained by randonily' ordering the set 
or pages in r,_,- (each of the possible orderings-. -is equally 
likely to bc chosen). Observe that RR is a 'stack algorithM, sinceit 
induces a priority liSt. 

To establish that Rit is statistically equivalent to RAND, assume 
that a replacement is necessary in a buffer of capacity C at time t. 
Since MC) = min [B,_,(C)), and P, is randomly chosen, the proba-
bility that anY given page is y,(C) is 1/C—the same as for RAND. • 

One difficulty in implementing Rit is the generation of the random 
priority list P,. Fortunately, it is possible to update the stack without 
actually constiucting the entire priority list. Àssuming that 	> j, 
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let  •q,(i) denote the. probability that page s,.. ,(j) has priority (wcr 
page y,(j. -- I) 'al limo V.  If  •c1 (j)  .do es' not have priority over 
•r,(j 	I), we know that s,:,(i) 	,(j)), Since this occurs 
N•ith probability 1/j, we obtain 

• 
I --- q 1 (t) — 

or 

(a t) 	— 1)/. / 

Using Equation 20, the stack can be updated at tinie t for RR 

replacement by choosing page si (j) = s,. 1 (j) with probability 
(j 1)0, for 2 < j < A, and j < 7". As a check, let us comPute 
the probability Q that an arbitrary page b is pitshed from a buffer 
of capacity Cat thite t. Assitming that page b occurs at some position 
k on stack S 1 _, where 1 < Ic < C, then Q is given by the following 
expression: 

Q 	P.i.re(C) =  1)1 

P,.(s i (k) = y,(Ic — 1), s t (k 	1): = 	-1-- 1), 	• 

st(k 4-  2) = st -e 1-  2), • •,* se(C) 	 (21) 

The eventà in the joint probability in Equation 21 are itulependent, 
so that we obtain 

Q =-- P, fs,(k) 	y g (k — 1)1 P r ts,(k + 1) 	s _ 1 (k 	01 

• • Pri.s i (k -I-- 2) = s i -1(k + 2)1. 	• • . P,fst(C)  

—C 1) • 

1 

Since Q =  1/C• holds for any page b• and capacity • C, .we .have 
verified that the stack updating for. RR can be accomplished using 
Equation 20, and that RR has the same statiStieal- properties as 
RAND for each buffer capacity. Note that although a particular 
value  of  a point on the success function, for example F(4) 0.3, is 
e(jually' likely to occur milder bOth  1A NI)  and RR, the occurrence 
of a particular success function is neequally likely. 

As the example with RR iijuStrates; - stack processing techniques 
can be extended to cover probabilistic replacement algorithms. ln 
fact, a replacement algorithin can have a mixture of probabilistic 
and nonprobabilistic n aspects.  For instance, the arbitrary rule used 
to break ties in LFU and other algorithms may 'choose a page at 
random..Another possibility is for a replacement algorithm to favor 
sotne pages probabilistically in the construction of the priority list, 
thereby realizing a so-called "biased replacement" algorithrn. 12  In 
any case, the only requirement is that the priority list be constructed 
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 '1."‘\." r"  e"icil 	at‘enti `: 11  1 1° t w''" 1" 	M el or„ge 
hicrai (Ines with uncomtrainteL mapping a,  the fin.t level. Under - 

this  type oh  mapping, any page in the buffer may be replaced by the - 

referenced page. The advantages of unconstrained Inapping are 
that all available page franks in the buffer can be used, and . also • 
that seldom used pages cannot become "locked" into the, buffer by. 
mapping constraints. A disadvantage with unconstrained mapping • 
is that extensive associative searches may be necessary. to locate 

pages in the buffer. lvloreover,-the implementation overhead of the 
replacement algorithm may be excessive, since relative - priority 

information must be maintained for all pages in the buffer'. To 

offset these disadvantages, a constrained mapping schenie can be 

employed whereby each page- is restricted to occupy a member of 

only a subset of the buffer page frames.. 

One such mapping technique is called congruence mapping, by which - 

the 2 1  distinct pages in the address space are partitioned into 2" 

disjoint congruence  classes,  where 0' --(." cy • < k, and each class contains 

2L- " pages.. The classes are numbered consecutively from 0 .to 
2" -- 1, and class membership is determined from the a low-order 

bits of.the page number. In this ease, the « low-order bits constitute 

the class number' Ix] of a page, and the remaining k a bits are 

called the page prefix as shewn in Figure 15. The quantity a is called 

the class length. For a class length equal to zero, we set [x] = 0 

for all pages. 

In a two-level hierarchy with congruence mapping, every congruence 
class is assigned an equal number of page frantes in the buffer—to 
be used exclusively by, members of that . class. This number is Called 

the class capacity and is quoted by  D. (The total capacity of the 

buffer in pages is thus ,C = D.) When a page x is referenced, it 

may appear in any of the D page frames reserved for class [x].  I f  the 
reference page iS not in the buffer; and if the D page frames are all 
occupied .by other members et' class. [x], a repIacement.algorithm 
selects one of these pages for rernoval. We assume:that the sante 
replacement algorithm is used separately for each of the classes. 

Note that when the class length a • IS zero,.all pages are in the . same 
class, and the mapping is unconstrained. When the buffer capacity 
C is a power of 2, and when • C = 2", only one page is allocated to 
each class, and the mapping function is fully constrained. Thus 
for a fixed buffer capacity C wherç 0 < h < k, we can vary 
the mapping function' from uncônstrained to partially and fully 
constrained simply by varying the value of a from 0 tel h. 
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Since the congruence classes are disjoint, and since the same number 
of buffer page frames are. allocated to each class, it is possible to 
treat a buffer as a collectiOn of 2' distinct bufferS---one for etteh 
class [x]. If we also view the backing store.as  2" individual backing 
Stores, as shown in Figure 16, the two-level hierarchy partitions 
into a collection of 2" distinct subhierarchies, each with a buffer 
capacity of D page frames. When the replacement algorithm is a 
stack algorithm, these subhierarchies can be evaluated separately 
using stack processing techniques. In practice, 2" Stacks (one for 
each subhierarchy) can be maintained as the trace is processed. 
Each page reference x causes only the stack for class [xi .  to be 
updated, and a stack distance A to be determined from that stile.- 

In congruence mapping, to calculate the success function for a 
given trace and given class length a, the stack distances must be 
carefully interpreted. Whenever a stack distance  L  is measured, the 
corresponding critical capacity of the entire buffer is 2*•tà, since 
this is the minimum buffer capacity necessary to contain the refer-
enced page. Therefore, the success function Fa(C) for the set: of 
capacities C r where D = 1, 2, • •‘• , is given by  • 

F(C) 7 r (2 °  • D) = Él‘_? 
L 
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where n(A) is the total number of times the distance A occurs for 
tiny of the staehs. 

Generally, stacl:, proeey,ing techniques must be  used  separately for• 
each value or the  C  length n. llowever, for Igo replacement, 
on ly a single stack need be maintained in- order to determine the 
success lunctions for all values Or er iu the interval 
that under LIU.), 111(' SLiCk  5t .. 1  is the list Of a Il  the pages in • 1‘, , 
ordered according to most recent reference. To form the stack 
S. 1 (1; o*) COVOSpOildin); to congruence .class  I and elass length a, 

One WOUld iiSt the pages in class  j  according to their Most recent 
reference. However, this ordering is preserved in the stack S for 
any  j and any a. Therefore . , S,.,(i, a) can he determine d .  by listing 
in order all the stack entries of S,.., belonging, to class  î. In practiee, 
it is not necessary to actually construct each stack  S, _ 1 ([x,],, (Y) in 
order to find the distance A«,, One  cati  determine all the stack 
distances I All in one scan of the Litt) stack S, To do'•this, we 
first define the ,Ight nutich function KM(x, y) for two page nunibers 
x and p as the number or consecutive low-order bits  that  match. 
For example, RNi(0110i 3 O0101) 	3, and RM(0000,0001) =  O.  Note 
that the class numbers of two pages are equal ([4 	[y]) if and only 
if the class length satis fi es the inequality < ttm(x, y). Now suppose 
that the current reference is  to  page x, and consider the jth entry 
on stack S,..,, which is  p  = s,(j). The occurrence of page yon the' 
stack will contribute to the distance e if and only if Rtv1(x, y) > 
Therefore, A«, can  be determined by counting, the number of stack 
entries y above (and including) page x that satisfy n M(x, y) >. a. 

A simple:procedure for determining e for all a is to scan clown the 
stack, and maintain a set orright Match frequency counters 1 p(r)1 
for 0 r < k. Counter p(r) is ,  incremented. whenever 1:U1(x, y) is 
equal to r. If page x  lias  been previously referenced, we eventually 
find itivt(x, y) =  k (corresponding to x = y), and each  distance
is given by 

• 

E ,i(r) 	where 0 G a <lc 	 • *. 	(23) 
g 	

. 

However, if page. x  lias  not been previously referenced, the boitom 
of stack S,.., is reached and A,« is set equal' to infinity for all class 
lengths a. In either case, eaelt distance /1 4a  is used to. increment the 
appropriate distance connter for class length a. 

An example of this procedure is indicated in. Figure 17. In Figure 
1 .7A, the right match- functions are found by scanning.down the 
stack. In Figure 1713,. the right match freqtiencies lp(r)l• are plotted 
in reverse order as a function of r. Cumulative summation, according 
to Equation 23, then yields . the desired 1,RU stack distances 1117). 
Note that the stack  distance  for class length zero is the Same stack 
distance A as  obtained far  LRU replacement with unconstrained 
mapping. 

P,f; 
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1.171.1 
SlACK St _ • 

Multilevel hierarchies 

In previous . sections of this paper, stack procesSing techniques are 
developed to obtain the sticess function for a two-level hierarchy. 
For each bliffer capacity, this success function represents the relativc . 
number of aceesses to the buffer for a given page trace. 

We now show that the same success function can be used  • to fin d .  
the accesS frequencies for all ievels of a multilevel. linear hierarchy 
for any.number of levels, and any capacity at each :level. Recall that 
in• a linear hierarchy, the Only downward data path from each level 
111 , is to the next level 	for 1 <  1 <  11. Also a . path or sequence 
of - paths  is  available from each level M I , for I < i < 	to the 
local' store. Furthermore, no replacement decisions are required 
when a page moves upward through intermediate levels. We nove 
assume that the Sa111C replacement algorithm is used at all levels, 

•and that the mapping function is unconstrained' at every level. 
(Hierarchies with constrained mapping functions ;ire considered 
later in this paper.) At tinie  1 — 0, the backing store contains all 
pages, and thèse pages are moved to the local store  M 1  on demand. 
When  M 1  is full, pages replaced in M are pushed . down to the next 
lower level in the hierarchy, M 2 . As each successively lower level 
M i  fills, the pages replaced in A1, are pushed to the next level 

At levet  M, the replacement algorithm is applied to the 
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!,ei of pages ;11n.sadv present, thereby making room br the cturently 
1 , 1,,,,,:o e c ,1 papc v e . 	the iruernwdiate levels  AI ,,  for 7 	< //, 
the lepteinviit 	i., applied  tu  the ;set (,f plges in AI ,*011 . (1 
10 	page pushed  (roi  level A1, ,. 

hc n pare y ,  is  t 	ed From some level  M, (for 2  K i K  // 	I), 
a pag,e us  replaced from ea.,, h of tue levels  Ai ,,  ilI 	 .1 he  
page repla,ed  (roui  level 	is guaranteed to find space at level Al i , :  
since a page frame  vas  vacated by x i . When page x, is accessed froM 
the backing store page is displaCed from each of the levels -
M,, M„ • • • , until a vacant page frame. is found. Note that positions 
of pagei, in the hierarchy--and therefore the access frequencies-- 
do not depcnd on the  structure of upward data paths to the local. - 
More, but depend only on the replacement algorithm and the 
capacity at each level. 

We have shown that when a stack replacement algorithm is used 
for a two-level hierarchy, the top  C, pages of the stack are the 
contents of a buffer of capacity C, as shown in Figure I8A. Let us 
now assume that the replacement algorithm for a multilevel hier-
archy induces a priority list at every time and that this list determines 
the replacement decisions at every level of the hierarchy. lf this is 
true, then for any number of levels and any set of capacities C,, 
C2 , • • • , CH , the contents of each level at any time can be determined 
from the stack for this replacement algorithm. More precisely; 
let ej(C,) denote the contents of level .111 ;  at time 1, and let cri.denote 
the sum C, C.„ + • • • + Cf. We then claim . that 

13 ,(Ci) 	— 13,(cr i_ 1 ) 	for j  = 1, 2, • • , H — 1 	(24) 

or equivalently that B;(C,) can be identified as the first C, entries of 
stack S„ and /3 2, can be identified  as the  next C, entries, etc-This 
result is illustrated for a four-level hierarchy in Figure 18B. 

The main elements of the proof Of this result are as follows.  Assume
that Equation 24 is sittisfied 'at•time t — 1, and that page x, = 

is an element or 14_,(C,) (i.e., level M g  is accessed.) As 
stack S„.., is updated to stack S„. page y,(C,) is removed from 
the top C, elements of  S,  . with the result that pages s,(1),- • • , 
8,(C,) represent .13 1,(C,). Now .observe that page y,(C, C 2) is • 
removed from the top C, ±  C2  elements of. In terms of the 
hierarchy, we know that y,(C,) is pushed to the next lower level  112 , 

since the hierarchy is a linear one. The replacement algorithm then 
selects a page from y,(C,) 142_,(C2) for removal from M 2 . Since . - 
page y e (C,) has lowest priority in B:_:,(C,), the page selected .fOr 
removal has lowest priority in B,(C,) .n..,(C 2). But this page 
is y,(C, 	C2), so that .s,(1), • • • 	+ C2) represent B:(C,) 
e(C2), and thus s i (C, + 1), • • • , st(C, -I- C2 ) represent nci). 
A similar argument applies to subsequent levels Mi  where 2 <  1.  < 
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g 	1. Page 	is.pushed from level M i  of the hierarchy, and 
.compotes with the pages in 13_,((,). The replai»einent algorithm 
selects for •replacement the page. 

Min [Yr(d1.1),  1i 't..1( ( )1n i n [ • r 	'›; Yt(aI) 

- With the result that „ . 	. 

1t,(0-,) 	.8 1,(C1 ) 	.13((7,) .1- • • 	/)(C)  

and 

BaC..) 	.111(cri) 	Bbri-1)" 

At level  M,  the page.n(iy„,) that-has been pushed from 	finds 
a vacant page,frame, and all loyver levels re.main unchanged, Then 

!J7(C) = 13° 	p) 	y,(a )  — x i  = .135 (c r ,) 

and 

B;(C,.) = 14_ 5 (Ci) = .135 (cr 1) 	B,(0. 1...,) for j > g 

Thu s.  we have shown that Equation 24 is satisfied at time t.. 

The significance • of this result is that a stack distance à, where. 
Ci.+ • • • +  C 1  < à C + • • + corresponds to. an access 
to hierarchy level M„ and the relative number,of such A's is simply 
the aCcess frequency  F  to that level. Thus 

n(à) 
FL, = 	• 	

= 
F(G1- 0 ).— .F(cr„... i ) 	for I < g :‹ 	— 1 

(25) 

As with twO-level hierarchies, all other accesses are directed to the 
backing store sp that 

/1.-1 
Fn.  --- 1 — E Fi  

The determination of access frequencies is illustrated graphically 
in Figure 19 for a four-level hierarchy. Note that the . technique  
illustrated in the figure cannot, be used  for  an arbitrary hierarchy• 
or success function. However, the technique can be used for any 
linear.hierarchy . as  long as the replacement algorithm always induces 
a single priority list ‘for all hierarchy levels. . . 

Our treatment of multilevel linear hierarchies can be extended to 
include hierarchies with congruence mapping functiOns. We assume 
that the  sanie  class •Iength cr is .used for every level and that . Di  
page frames  are  allocated tOE each:congruence class at level  M.  
The total capacity of level M is *then 

c  = 2" • D i 	where 1 <  f  < H. 

Using the success function F°(C) and Equations 25 and 26, we 
obtain the access frequency ir,T for each level as follows: 

SYST 

A.fe d .- 1 +1 

(26) 
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When using l'quation 11 or the g ( a ) hic technique shown in liiFsure 
19, it is important to remember that the success function for multi-
level hierarchies NV1111 congruence mapping.; is defined only when 
the storage capacity is a multiple  of  2. 

Possible extensions 

It is possible to extend . stack processing techniques to account for 
various changes in the hierarchy model.. For example, with ap-
propriate encoding -  of .  the n-bit 'address, systenis with page Sizes 
that arc nol a power Of twO .can be evaluated. Similarly, other 
eneodings of the ii -bit address can.be  used to evaluate systems with 
congruence mapping functions for any number or, congruence 
'classes with equal or unequal class  sizes.  Indicative  orother changes 
of the hierarchy model that can be handled by stack proceSsing 
techniques are the following:•- 

o Pre-loading program pages into the  biffer for starting execution 
o Loading à working set" of pages into  the  buffer when resuming 

.program execution 	• 
0 Returning all pages to the backing store upon program  interrup-

tion. 
o Maintaining copies of pages in several levels of the storage 

hierarchy 
O ' Bringing pages to the local store only for fetch Operations 
O Returning pages to the baCking store  for  references such as 

stores from  an  i/0 channel 
o Moving unequal size pages or.segments,between levels 

« To illustrate how .stack .processing techniques can be adapted to 
these variations in  hierarchy 'design, we describe two, extensions in 
sonie detail. In ,  our  original model, the generator does not distinguish 
fetch operations' from store operations...In some computer sYsteins, 
however, pages are brought to the local store only For fetch opera-

• tions, and usage . statistics for page replacement algorithms refer 
only to references for fetches. Stores to pages in lower.levels of the 
hierarchy arc broadcast to these levels by the hierarchy  management 
facility, and no .pages are moved. The jitstification for feteli-store 
hierarchies is that fetches or additional stores usuall y . do not im-
mediately follow stores .to a page.• 

The evaluation of fetch-store hierarchies requires that the generator 
tag each reference as either a fetch or a store. For fetches, the 
priority list and the stack aie updated, and a fetch distance A f  is 
recorded. For stores, neither the priority list nor the stack -  is up- 
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dated. but a store distance A" is recorded. The d .t , trihuliotts 
and ln't_1')} ean then  be  used to determine th ,: fetch and store 

access bequencies to each level Of the hierarchy. It should be clear 
that this technique also worlss if: congruence mapping  k  n,•luded. 

NVe can  also cOnsider a  niodiltedltl desi?.11 where  th 'o page 

usage !; 11nIsi ,-'s are uPdatelt ror a !itolc (‘)Befatioll even ( hough no 

Pi e motion. occurs .  This change is incorporated by updating, the 

priolity list l'or both fetches and stores' .  Thus, for modified fe t ch:. 

stores, the net change in our model is that the stack is not updated 
for store operations. 

Besides distinguishing fetches from stores, a computer system may 
also distinguish the various sources of store requests. For example, 

a "çall-back" feature .can be used by which a page in the buffer 

is moved to  the  backing store if .the page is stored into by an I/0 
device. The motivation here is to free the buffer Of pages not needed 

by the CPU, and to service ,all I/O stores from the backing store. 

For a call-back hierarchy, the generator must specify at least two 

kinds of references-j—CPu references, and Stores from the tit) channel. 
Stack processing techniques can then be modified as follows. When 

a cPu store or .  fetch °caws, the stack is updated ,  in the normal 
way (except for special entries  lobe  deseribed later), and a distance 

counter nc "(A) is incremented.  When  au I/O store occurs, say 

at  time  t,  a  counter  n"() is increntented. If page x, does not 

occur  on  r stack then S, is equal to If Page x, does occur 

on stack S,..„ then S,  S,  except that x, is replaced by the special 
entry " e ." This entry, counted for all stack distance measurements, 
represents the empty page frame caused  by  page. x,  returning to 

the backing store. Té ensure'that empty page frames are filled as 

soon as possible, all #-entries are assigned the lowest priority 
in replacement decisions. 

The call-back feature can be used in conjunction with the retell-, 

store or modified fetch-store schemes. In all cases, the correctness 

of the  modified stack processing techniques can be established. 

Since slac k .  processing allows a large sample of "typical" address 
tapes to be analyzed, for many hierarchy models, the efficiency 
gained at the early stages of hierarchy design may be great enOtigh 

to  impact, the  whole design process. More_ of these traces can be 

processed in a given tinte, and more hieraielty designs can be evalu-
ated for a given number of traces. The aYailability of titis  data may 
help justify the "typical"-traee' approach to design, or may help in 
the development of other models for system requirements. As an 
example, program models can be more deeply investigated by 
evaluating both a Program and its model under a very large number 
of address traces. Improvement in prOgram modeling, in turn, may 
enhance the success of analytical disciplines that use these models, 
such as storage interference studies for multiprogrammed systems. 
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The (.7oneeptS presented in this. paper have been used to develop à 

variety of stack 'processing techniques that are useftil in the evalua-
tion of storage hierarehieS.,Using the inclusion property, we  define 

a class of page replacement algorithms, called stack ,algorithnts, and 
show that replacement algorithms that indnce Priàrity 
as least recently used,, least frequently used, and random replace-
ment—belong tO this class. 

For any stack algorithrn, the frequency of stack distances can he 
obtained from an address trace . by stack processing and used  It. 
calculate the success functions. The success function can then' he 
used to determine the relative frequency of access to all levels of a 
nuiltilevel, linear storage hierarchy, with any number of levels und 
any capacity at each level. 

For least recently used replacement (LRU), the access frequencies 
of hierarchies with congruence mapping functions can be determined 
in a single pass of the address trace—for any number of congruence 
classes, any number of levels, and any capacity per class at each 
level. 

Some special results are presented concerning an optimal replace-
ment algorithm (oPT). It is shown that OPT is a stack algorithm 
and that OPT minimizes the number of page swaps for any address 
trace and buffer capacity. Also, both OPT and LRU can be evaluated 
with a forward pass of the address trace followed by a backward 
pass of the same address trace. 

We conclude that stack. processing techniques can eliminate much 
of the simulation effort required in . storage_bierarehy . eyalnation.. 
Furthermore, we believe that the classification of stack algcirithrns 
and the various extensions to Stack processing techniques may 
provide insight into the area& of program modeling, system analysis, 
and computer design. 
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Appendix 

Two results mentioned in the paper concerning the on replacement 
algorithm are proved here. To do this, it is first shown that given 
any trace and replacement algorithm (not necessarily using demand 
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paging) another replacement algorithm exists that uses demand 
paging and causes the same or a fewer total number of pages to be 
loaded into the buffer. This result is used to  show  that ()PT is an 

.optimal replacement algorithm -and ., in fact,: that 01Yr causes the 
minimum total number of pages ..to be loaded into the . buffer. . 
Finally, it is sliown that the success function under 011' for any 
trace is identical to  the  success function .  under 01'T for the reverse 
of the trace. . 

Definition 

o 	
• 

ISI denotes the nimber of elements in a set S. 
e laix  denotes the number of occurrences of a symbol a in a 

sequence X. 
O A = la, b, • • • 1 is a finite set of N page addresses or pages. 
e X = x„ x2, • • • , x i, is a finite sequence of L elements from A, 

and is called a trace. 
o B,(C) C A denotes the contents of a buffer of capacity C at tinte 

t, and is called a state. 

Throughout this appendix, we consider a two-level storage hierarchy 
with fixed buffer capacity C. Consequently, we use B, instead of 
B,(C), The term B, denotes the contents of the buffer immediately 
after reference x, is made; B o  is called the initial buffer state; and gi), 
the empty set, denotes an empty buffer state. 

' Definition 

• P 

 

Pt P,  • • ,  p,.  is  a finite sequence of L sets, p, C A, called 
an 0-policy. 

• 0  Q 	qi , q2 , • ; • ,  q,.  is a finite sequence of L sets, q, C A, called 
an bpolicy. 	 • 

A policy is a particular realization of a replacement algorithm for 
a given trace. For such a trace and initial buffer state B o , an /-policy 

g .and an 0-policy together determine the sequence of buffer states 
that will occur during the trace. An /-policy gives the set of pages 
loaded into the buffer, and an 0-policy gives the set removed. If 
p, = 0, no page is.removed, and if, q, 4), no page is loaded in. 
•Note that only certain pairs of 0- and /-policies are meaningful. 
For example, a page cannot be removed if it is not in the buffer. 
We consider only meaningful policies, where q, 4. 1 	B, and A.1 c 
• q, 4 1 , for 0 < t < L 	1. In this case, B„, is obtained from 
B, by 	 , 

A.1  ----- 	qe-;11 — Pt+1 

-
j 	 Definition 

Let X be a trace and Bo  (where 1801 < C) an initial state. A 
sequence of states B = Bo, B,, • • • ,  B,.  is a valid sequence if x, G B„ 

for 1 < t 
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for.1 	< L. A policy pair P and Q is a valid pair  for  X  an  B o  if 
application of the pair reSults in a valid sequence. 

Note that valid policy pairs are quite general in that  any number Of 
pages may be moved into or out of the buffer. However., most of 
our attention is directed toward denied Paging where 

• 
o IPil 	and WI 	I 

O x i
•
11,_, 	p, 	= 	 (Al)  

o p, 	çi=  a, 0 (t,  •  and 	I,1 	C 

for all I, 1 < t < L. 

Under demand paging, single pages are loaded when necessary until 
the buffer fills; subsequently, page swaps occur only when necessary. 

One measure of goodness for a policy pair P and Q is the total 
number of pages loaded into the buffer D, lq, I under the policy 
pair. The following theorem supports the usefulness of demand 
paging. 

Theorem 1 

Let P and Q be a valid.policy pair for X and B o . There exists a 

• valid demand policy pair PP and 	for X and B o  such that 

E  led  E  
• 

Proof. Pi)  and Q i)  will be constructed by forgring a sequence of 
4, c.,z-Mgd 	 valid policy pairs (le, Qn), (P', Q'), 	e), • • • , 	,whère • 

Po  = P, = Q, PN  = P", Q e  = Q", and D., 14 	 • 
for  1 < j< K. Informally, Pi  and Q' are constructed frOm  P''  and 
el  by altering el  and 	to satisfy the demand paging con- 

bpolicy 	 straints where pis ' and/or  • qi, -1  are the first  occurrences of non- 
er states 	 demand paging in 	and Q'.  This is done by "sliding" offending ! 
of pages 	 elements of pi» and/or tiV - .1  te a later time in Pi  and Q i  . 	à, G 

. 	. 

loved. If and a G 	eVer occurs then we trivially remove page a front both 
laded in. 	p i, and q.  Clearly, this does.not disturb the validity of P. and Qi  
aningful. 	 and only decreases the value of 	1 q 1. ' 
e buffer.' 

p1+1 C  To construct pi and Qi  from 	and Q", 1 < j < K, let t be the 
ied frorn 	 smallest time such that p;- ' and/or g' do not Satisfy' Equation Al. 

Set Pi  =• 	and Qi= QÎl , except as noted below. Suppose,that 
x, = a and that 	for 1 < L, does not satisfy Equation AL If 
a Et 	, then set = 4) and q i,+, 	+ 	. (Note that "+" 
is defined here since 	 0). If a e qi, - ', then set  q = a, 
and qi,„ 	 — a]. If 	L, then set ql 	•11, if a e te,7 1 , 

state. A 	 or q  = a if a G el . In all cases, note that Qi  is• valid, since 	• 
xs  G A, - 	(ye  EE 	for 1 < 1 < L, and that Lt.„ lqi,1 < 
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Now suppose that p;', for t <  L  does not satisfy Equation A 1: 
We observe first that 1(1;1 5 1 and ebi = a. if a G /41. If q; = 0 or 
1/1;;;; < C, then set p; 	and  p 	= 	p; -1 , If  q  = a and 

C, set p 	h for some b  E p;* ' and pt 	.4_ 
(p; - .% — b]. (Note that pi, - 	0, since 10;:11 	C and qii -1 	0.) 
For t = L, sct 	b 	pig:- if 	= a and 111/11 	C, or pi, = 
otherwise. ln all cases, we observe that Pi  is valid, since 
for 1 < t C. L. Since Pi  and Q i  satisfy dentand paging at least up 
through time t, the desired demand policies must eventually be 
.obtained.' Thus the theorem is proved: 

Before considering an optimum replacement algorithm we make 
• two observations. First, under demand paging, a valid policy pair 

P and Q can be completely represented by specifying just the 0- 
policy P.. This follows from Equation Al because q, 0 0 can only 
occur when x i. 	a and a G B,_, (in. which case we know that 

. q, = a). Second, for demand policies P and Q, we can use kblp as 
an alternative criterion of goodness..To.see this let u be the smallest 
integer such that ID,  j = C, t > u. Then 195lp is given by the following 
expression: 

101 p= U (L a) — E iqd 	 . (A2) 
(..41 

Since a in Equation A2 is not a fttnction of the policies, E7. WI is 
• a constant and 

= 	19d) 	E  Id  = constant — E iqd 
/ 

, 	(A3) 

optimum 	For a given trace X and initial state B, let us define an optimum 
replacement 	policy pair P and Q as a pair that is valid and minimizes D.:, Iq, 

algorithm 	over the claSs of valid policies. From Theorem 1 there always exists 
an optimum policy pair which is also a demand policy pair. Since 
(A3) holds for all demand policies we can find an optimum  demand 

, policy pair if we can find a demand tiolicy,P u  such that 101 p > p •
where P is any demand policy. 	... 

Definition 

Let X be a trace, and let a G A be a page. The forward distance 
d(a, x,) to page a from page x, is the number of distinct pages 
occurring in • • • , x„ where e is the smallest integer satisfying 
e> t and x, •.= a. If no such e exists then d(a, x,) = co. 

Definition 

Let X be a trace and B. an initial state. A valid demand policy P°, 
called an oirr policy, for X and B. is defined as follows. For t = I, 2, 
• • • , L, whenever p, 0 0 is required then p, = a where  

Ceb C- 
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To show that any P°  maximizes 101p0 over the class of demand 
policies we use the following lemma. 

• 
,s 	 Lemma I 
it 

Let X be a trace and B o  and BI, initial states where 

Dt, := To + 

no = To + (b) 

and d(a, 	< (1(b, x1 ). For any demand policy P, corresponding to 
X and B o , there exists a demand policy P', corresponding to X  and  
Bi„ such that 

k 141. 

Proof. Given P, we construct P'. Suppose 'page a fire occurs in 
X at x G, and b at xi,. Thus, 1„ < ib  < L is assumed. If either b or a 
does not occur in X, then set ib  or ja  equal to L I.  We consider 
three cases. 

Case I. pi 	b where pi  is the first occurrence of b in P, and 
1 < j < i. FIereweset p = pk ,1 < k < L and k j, and p; = a. 
This results in B, = T, 	(b)'and B; = T, 	lal, O < t < J— 1 
and B, j < t < L. Since pages a and b are both not referenced 
up to time j, it should be clear that P' is a valid demand policy 
(because P is) and that 195 1P .  = 101p. 

(Yb E 111-1)ga, x1) 	(/(b, 
. 	. 

The forward distance to a page js juSt the number of distinct pages 
referenced before that page is referenced again. An Orr policy 
requires that the page removed from the buffer be one with the 
greatest forward distance. Note that an 01'T policy is . a particular 
'realization of the ()PT replacement algorithm discussed•n the paper. 
We observe that, at time t, all pages with finite forward distances 
have distinct forward distances. However, more than one page may 
have an infinitë forward distance. This means that there may exist 
more than one on.  policy  for  a given X and B.  It should be clear 
.that all such policies P°  have the same value of 1/po. 

for 7'0  C A and a, b Ee T. 	(A4) 

*•■••-• 

Case 2. p i„ = b where p ia  is the first occurrence of b in P. In this 
case we set pf, 	pk , 1 < k < L and . k 	j, and p;„ 	0. As in 
Case 1, P' is a valid demand policy and tole 	kbip -I- 1 	14p. 

Case 3. p ~ b, 1 < j < ia. Here we must consider two subcases. 

Case 3A. 	= c. At time t 	ic, the states of the buffer are given 
by 

B.  =  Tt. 	{a) 
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Pk• 

Bi. = Ti .+ lbl -1-  lai 	1c1 for c E Tr. 

whi .ch  can also be written as follows: 

n.  = [T 	lai 	tell 	lel •  

Bi. =fn.+ 	1cl] 	lbl •  

Note this is the same form as Equation A4 with To  replaced by 
[T1 „ 	1a1 	1c1] and a replaced by c. If d(c, xi. ,,) 	d(b, 
then we have a situation identical to that in the statement of Lemma 
1 where X now is x g. 4.1, • • •  , x.  Settingp = p h  forl<k<  f  — 1 
and p .  = 0, we again consider Cases 1, 2, and 3. Since the "new" 
X is strictly shorter than the original X, this situation can only occur 
a finite number of times. Note that P' is valid as far as it is specified 
and that p1, • • •  ,p ,  contains one more g,,Ig than p„ • • • ,  

If d(c, 	> d(b, x i .„. 1 ), we set j) = ph  for 1 < 	1 
and p  = 0, and consider two more cases. First, if p, = b, where p, 
is the first occurrence of b in X and t • <  1f,,  we set pl = ph , for 

1 < k < L, and k 0 t and p; = c. Here Bi = B, for t < t < L, 
and as in Case 1, we see that lo 	> 101p still holds. Second, if p, o 
b, for t < ih, we set = ph , i„ 1 < k < L, and k ih  and p1, = c. 
Again we have 111 = B, for ib  <  I  < L, but we note that pi , = 
whereas p'„ =•c 	0. However, since  p ,  0 gig and 1)% = cp, the 
relation Iolp• > lgelp still holds. 

Çase 3B. • p = 	Since q i. = a we observe that Pi a,' < C. 
Let t be the smallest integer such that  p z 0. If no such integer 
exists, then  let  € , =L I.  We set pl = p h  for 1 < k < i,  and con-
sider two cases. First, if i Ç t then we set pl = ph  for i. -1- 1 < 
k < L. Note that Q' = Q except at times ia  and ih . Since 1B11 IBI 

 for ih  < t < L, we see that P' is valid, and lolp• = lgiglr , since, P' = 
P. Second, for the case ih  > t, note that x, = c, where c 0 wand 
C  0 b. We set pL = ph  for i.-1-1<kLandk0t, and pi .= efr. " 
If p, = b, then 1811 = 1/3,1 for t < t L, and 10IP 10IP +  I ›. 
101p. If p, = a, then the buffer states at tintes t 	1 and t are: 	. 

g 
B ig-g = Ta-1 + (a} 	Bi = 	+ {al 	{c) 

Be-e = Te--1 -1--  {al 4-  (b) 	Be = Te-1-F lb) 	(e) 

Rewriting the buffer states at time t as 

B= 	-1- {e }] + 1a1 

B, = [TgLI 	I c] -1-  1bl 

we arrive at a case similar to Case 3A. As in Case 3A, P' contains 
one more than P in the interval t = 1, • • • , t. Therefore, we treat 
this case in the same way, with the result igklp• > Igblp. Finally, if 
P. = d where d 0 a and d 0 b the buffer states at time t can be 
written as 

(al 	(c) — Id)] + id)• 

Ji  e = [Tut -1- 1 

whili gain  ca  

Note that  the si 
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[Te - t +  lai 	— !di] 	. lbl 

whieli again can be trealed as in Case 3A. 

Note that the situation where  i =  t can not arise in Case 3n, since 
b G We have therefore successfully exhausted the. possible 
cases, and Lemma 1 is .provecl. 
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Theorem 2 

Let X be a trace,  B,, an initial state, and P a valid demand policy 	OPT Is an 
for X and B.  If P° is any valid OPT policy for X and 110, then 	optimal 

101P° ?- kbir• 	 • 	 replacement 
• algorithm 

Proof. We recall first that every OPT policy for X and Bo  has 
exactly the saine number of es. To prove the theorem, we need 
only find any on policy P°  such that 1951po > IiIp. To do this we 
will construct a finite sequence of policies Pt ,  P2 ,  • • • ,  P,  wheie Pf  
is an OPT policy and kbiP < < < 

where d(a, x < d(b, 	Since xi 0 a and x i 	b, it follows that 
d(a, x 	< cl(b, x i"). Treating B i as B o, B °4  as /Po, and xi +1 , • • • , 
as X, we can use Lemma 1 to find «policy p„ • • •  ,p,  that:contains 
as least as many 	as p 	• • •  ,PL.  We then define P I  =,p1, • • • , 
pas 	 0 .  

pk , 1 < k < — 1 

b, k = 

1+1<k< L 

Note that Pl. is valid and thai lelsiP < 10IP.• Furthermore, pl = 
1 < k < ti  for some t, >  i.  

Policy P2  is constructed from P' in a similar manner with the results 
that g IA, 1 < k < t2  where 4 >  A and 10ip. < likIpb. Since X is 
finite, construction of P', P2 , • • • must result in P',  for finite j, where 

= p„ 1 < k < L. It•follows from kilp < 10Ip, < • • • < 
that 101, < 	where Pi  is an OPT policy and the theorem is 
proved. 

Combining the relation in Equation A3 for demand paging ,with - 
Theorems 1 and 2, we have the following theorem. 

P' is constructed as follows. Let i be the smallest integer such that 
pi 0 p% where ,e is an element of an oirr policy. Suppose that 

a and p°, ---- b. (Neither  p,  nor pl can be 0, since both are 
demand policies ) We observe that 

Ti 	{14} for a, b 
13? •-= 	al 13? •-= 	+ fa) 

1)1 
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Theorem 3 

	

oPT 	Let X be a trace, B o  an initial state, and P0  a valid oil' policy. 

	

minimizes 	(Also, let 12`)  be the corresponding /-policy.) For any valid policy 
, 	page 	pair P and Q, 

loading 

Thus we see that an OPT policy results in a minimum number of 
pages being loaded into the buffer over the class of all valid policies. 
After giving preliminary Lemmas 2 and 3, we present a final theorem 
concerning OPT policies. 

Lemma 2 

For a trace X, let the set Be  represent the first C distinct pages 
referenced in X. For a buffer of capacity C, if P is a valid demand 
policy for X and some Bts  C Be , then P is a valid demand policy 
for X and any  B C Bc ,  

Proof Let i be the smallest integer such that x,, • • • , x i  contains 
C distinct pages. If Bo  C By  then, fot any valid demand policy P, 
we have 13 = Be , since p, = p2  = • • • = pi = çf). For sit C B c  this 
also holds, so P is a valid demanctspolicy for X and 134. (Note that 
for different initial states, 130  C  R ,  the Q policies will not be the 
same.) 

s, 

For a trace X, lei the set Ec  represent the last C distinct pages 
referenced in X. For a buffer of capacity C, if P is a valid demand 
policy for X and B o , there exists a valid demand policy P' with a 
state sequence B o, 13, It • • • , B1, such that /31, = Ec  and Isbl y. > 

. , 

Proof. Let i be the smallest integer such that x • • ,  x,,  contains 
C distinct pages. Suppose, under policy P, that B 	contains n 
elements of Ec , i.e. /3;_, 	Ec i = n. It follows that at least C 	n 
pages will be loaded into the buffer following time i 	1. Setting 

pk for 1 < k <  I  — 1, we will specify the remainder of P' in 
such a way that exactly C 	n pages are loaded into the buffer 
following time t 	L We observe that, since at most C distinct pages 
are referenced following time i — 1, we never need remove a page b 
from the buffer where b E Ee . Thus, if a page must be removed at 
time € for i < < L, there always 'exists a page c, where c Ee, in 
the buffer, and we set p; = c. If P' is constructed in this manner, 

E lei 	E lq ,1 
I-1 
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and from Equation A3 we have lop > ,101,.. Furthermore, since 
no page in Ee  is ever removed from the buffer following time t= i 
and 1E, I = C, we see that 1.4', = Er. 

Theorem 4 

of 

C\—„, 1 	If P 
for 'X and 

') is an 0m' policy for X and B o  = riS, and re is an on policy 	backward 
B = 4), then l ' o 	osj,,0 = 101,,,,,. 	 . . • 	on 

. 

	

. Let X ---•- x,, • • • , x ? , be a trace and 'X = x h , • • • , x, its reverse. 	forward/ - 

Cs. 
Ill . 

Let us denote the state sequence under P° as B 0 , B 1 , • • • , BL . From 
Lemma 2 we can set B o  = •  B,, withont disturbing the validity of P° . 
From Lemma 3 we can alter P° such that  B,  =  E.  Note that the 
altered policy contains the same number of es as P° , since P°  is an 
OPT policy. (We subsequently refer to the altered policy as P°.) 
Similarly, if B o,' Bi , • • • is the state sequence under re we can 
assume that ' B o  = `Bc. and  rjj= rEc . 

Consider now the state sequence "B h ,"B L,'IlL .,,, • • • ,'&,'Bi . Since 
.ic f, E 'B1, xr,-.1 E r B2, • • • , X2 E 71/,:-1, Jci E r BL, we see that this 

4 	 sequence is a valid (not necessarily demand) sequence for the trace X. 
. 	 Let us denote the corresponcling . valid policy pair as ,e ,  and Q'. We 
ges  • 	 Be,

,. 	• observe fi rst that, since rEe  = 	we  have  'II 	B I, = Be  = o . Thus'P' 
.nd ' 	and Q' (as well as P°) are valid policies for X and B o . Next we 

1 a • 	 observe that '14, = '131,..., -I .- Ire — Ire can be written as 
> • "B i,_, = ' Br, ± MI — 1'0,1. But we also have rEIL _, ---- 

{ «1 	1 .1) I, which yields (/ = re, and ,M = '' q, since re (1 l'q°, = 
0. Similarly, since "B L ._, = ret,,2 -1- i re,-..11 — I r.P2-11, we  have  

ins 	 q  = rp., and f) r----- rq,*.' Continuing in this manner we can 
s n 	 • 	

show that 
- ' Ii 	 . 

q:  = rp2 .2.„  . 	 . 
ing 	 for 2 < t < L 	 (A5) , • in 	 pi, = re+,_ •  
[Ter 	 . 

ges 	 Now, since x i, E 'Bo  (recall that  'B0  = 'Be)  it follows that 
.e b 	 '.1)`; = ' q°, - 4). Similarly, since x, E Bo  (recall that D o  = Be), it 
I at' 	 follows that pf = q; ..r.-- 0. We can then trivially assume that p; = 
, in 	 re and q; --,.-"p. The significance of this is that, using Equation A5, 

,. 	 we have established a one-to-one correspondence between P' and .. 	, 
1.Q° , and between Q' and re. In particular, 10IP •  = 101,„0 and 

i 	kbie• = 10Ir 1, 0. We now observe that l(M,..,,,, = kisirpo, since I rB01 	. 
. 	I rBi I = • • • = I rBLI = C. In other Words, re, = te if and only if 

Proof. Let us assume that the theorem does not hold. Thus, 
without loss of generality, suppose that 101„ 0  = 101 1,0 k where k 
is an integer and k > O. If D distinct pages are referenced in X (and 
in 'X) and if D < C, the bu ffer capacity, then we have an immediate 
contradiction, since 141,o =I4Iro = L. We therefore assume 
D > C. 
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re = 0, since the buffer is always full. We thus have shown that 
101/.. = 14 , 00= kbIrpo. 

Recall that P' and Q' are not necessarily demand policies. From 
Theorem  1  we can find a demand policy pair P" and Q" such that 

E led 
1.1 	 1.1 

From Equation AS and the discussion. that follows, we know that 
= 1q1,1 for 1 	t 	L. Since P" and .Q" 

are demand poliçies, and since 180 1 = IBM = • • • = 	C, 
we have 
IpM 	for 1 < t 	L. Combining these results yields 

E 	E Ip I  or 144. , 	101p ,  
1-1 

But then we have icklp" 	1011 = kivIreo = 104 	k. Since P° 
was given as an ovr policy, we have from Theorem 2 a contradiction 
with Içbip- > lOiro for the demand policy P". Thus our original 
assumption is false, and it must be the case that 1q51,,c, kbipo. 
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Dynamic program behavior uhder pagine 

by ( ERAM) II. FINE, CALVIN W. JACKSON," and PAUL  V.  MC ISAAC 
System Development Corporation 

Santa Monica, California 

INTRODUCTION  

In May, 1965, System Development Corporation 
(spC.) proposed to do some research to study program 
organization with respect to dynantic program behavior. 
Further, the proposal suggested  that  simulatio i .  tech-
niques might be used to study the . problern of resourCe 
allocation in a multipiocessor time-sharing system.- 
Some of the  reasons for the. proposal related to the 
prospective utiliution of the time-sharing hardware, 
features of the GE: and 113M time-sharing computers. At 
the time, ihere was considerable interest in investigatin g . 
Ili: concepts or p •ogram segmentation and page turning , . 
both at SDC and in the time-sharing community  al  large. 
The concept  Of  fixed-size  paging on dennmd partiett- .  
lady, raised some questions of practicality. One of the  
edrly papers on Ur.: subject by Dennis and Glaerl states 
that the concept of page-turning can be either Useful or 
dk:n,trous, depending on the class of information to 
which it is applied. However, the theory appeared  to  be 
lotit  advantageous and elegant, so that the future of 
nine-sharing, seemed tel be committed to the concept:, • 

.As a result, an independent acti‘vity. • was initiated to 
investigat e some  of the problems outlined in the propos 
al; titis paper reports the results of this effort, and points 
( .‘ut so nie of the implications of the data obtained. 

bi,eus.gon of the problem 	• 

A large high-speed memory•iS not •being Used effi-
ciently if a large portion of it is occupied  by  portions of 
pto.2rarns that are never used. Avoidance of fetching 
;:nneuessary instructions and data thus appears desk-
Ale; there are obvious gains if processing can be 

eomplished in parallel with pertinent fetching. How-
: c‘cr. attempts to achieve the above by  an  ..arbitrarY 

de:ision of programs into fixed-sized pages  that  are 
hrought to memory only on actual reference (demand 
P‘le.ing,)• presuppose a program 'organizatiOn scheme 

° the rescnrch reported in this paprr was 'sponsored by the 

• Advanced Research Projects Agency Information Processing 
 leehniques Office and was mon- imrà1 by the Ele .m'onic SYs- kin% Division, Air Force Systcnts Command under contract 

19 (62S)-5166 with the System Development Corporation. 
.turently with Alutens Programming Company, Santa  Môn- 
-  .1.  California: 

tyhich mittimizes interpage references, with respect to 
1• Gidler, et  • al" .  that "the ising,le page' loading strategy 
-incurs, each. time, the overhead Of dicovering why a 
.:Irocessing sequences. It has been suggested by Arden, • 
'Storage reference, failecl,• finding the. needed page in 
•secondary Storage, and switelting tO ;mother user .dui ing 
transmission of the needed page to hig,h-speed storage." 

.,One should' possibly-  add, "if there is • another user." 
.Fetching can be overlapped • with processing only if - 
'there is some processing to be done at the time.; it is 
possible that many user programs desiring, processing 
may be simultaneously held in an unexectitable state 
while waiting for pages. Further, these panscs for pag e . 
fetching may delay completion of user service requests 
and  result hi a gzmiaally high user dentaild. This high 
tiser demand miat be iiseful for a batcluro:a-issing:. 
system,- but .  fôr .tinte sharing it prohab,ly means conges-
tion and poor r.esponse for at least Some of the users. 

'Method of  investigation 

The approach taken by thé project was to obtain 
empirical information about the actual memory require-
nients and page demand rates of 'e?;is'ting programs 

.,operating under the. 0 .-32 Time-Sharing System. 3  Such 
programs, of course, have not been speci fically organ-. 
ized to operate in a paging environment.. Since it is not 
obvious how. to accomplish this organization nor even 
that programs' are susceptible to stieh organization, it 
was  .felt that such eippirical data would provide , 
,starting, peint, perhaps svoulcl give, some chues to auto-
Matic methods of structuring, and in ,any event, %vould 
be useful as input to a simulation Model. , • 

To obtain an accurate picture of a program's dynant-
ic.behavioe, it was decided to .executo the program h rin 
interpretive Mariner. In this ‘vay recordings could be 
made to show' memory utilization a5 .a function of time 
(insiruction cottnt). An interpretive routine was written 
th;tt performed titis function-on the AN/FSQ-32 com-
puter', a higit-speed 48-bit WOrd  computer.  3  Mettiory 

Avas considered as , 46 .  pages of -1024 words each. Every 
,MCII1Ory reference made by the object program was 
Chee..1:ect to obtain the :instructions themselves and the 
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d.:b references (including all levels of indirect address-
inz). These references were examined in terms of page.  
adJrcsses and then were recorded along with the 
inst uct flu cOunt at the tilne of Occurrence. 

Restais • 

ln the initial nuls, the instruction CoUllt \VAS reset to 
zero wheneVer the objeet • progratn branched or fell 
through- trt a Item instruetion page; all page. \veto 
considered inactive at titis point. As euh inactive, page 
was referenced; the page number and instruction count 
were recorded. The page was then considered to be 
active and aVailable for the remainder of the sequence, 
that is, until the instruction  count  'as  again reset. Thus, 
a count of the instructions aetually executed on each 
page was obtained, followed by a list of data pages' 
referenced by that instruction sequence. Both the iast 
and the first instruction referencing each data page were 
also recorded as well as an indicator as .to Whether the 
data page whs "Set" (writteti) or . "tised only" (read 
only) during the sequence. 

„ 
The first runs on varirus popular programs an 

exhibited pretty much the same pattern: 

1. Short instruction seqttences 	relatively few in- 
structions executed on any particular page borure a 
brandi or fall-through to anether instruction page. 

2. Considerable data page reference per sequence. 
3. Early and late refcrence to data pages. .. 
4. Rather rare occurrences of "used only" data pages. 

For example, in a small sample (200 instruetion 
sequences taken frein the JOVIAL compiler in a 
normal card-proeessing stage): the ntean instruction 
sequence was 'only 109.4 instructions. During each 
sequence, 3.5 data pages were referenced on the aver-
age. Only one data page (of 11 referenced) was "used 

	

only" timing the entire 200 Paae. 	séquence (21881 
instructions). 'l'imiter, data pages tended to be required 
quite early in exit sequence and usually were needed 
until nearly the end of the Écrit:once: 

In luter runs:, the recording '.vas modiftecl slightly to 
examine multi,page sequences corresponding to what 
used to be defieed as .  a service interval ort .  the Q-32, 
Time-Sharing System. Suelt a service interval was 
terminated by a call to the system or by the execution Of 
80,000 instructions, whichever occurred first. The 
80,000 instruction ligure vas  used to approximatc  a 
system-impoed quantum interrupt of about 400 ins .  of 
Q-32 time. The instruction cotte was accordingly reset 
to zero at the beginning of each Such,interval, and again 
all pages were considered inactive at titis point. As each 
inactive page was referenced, the page 'nimber and 
instruction count were recorded  as before; in addition 
an indicator  vas recorded if the page was referenced for 
instructions to shoW that the program Was operating in  

that page. Once autivated, pages were considered to 
available for the remainder of the entire inter al. '1U 
approach provided a pieture of the - page call rate ;;..1 
total Storag,e requiremMs for cach. serv i ce  i nfor\ 

 (Otte or more sitelt intervals constituted a eompic i,: 	f 
 servicere(luest or action.) 

The following, tire ',rognais wer e. !2xam i lhui i n 

 mimer: 

	

LISP 	e\ 	 >Y1 1/4'm 1 .`to\ldii‘tt 	11 
geneention, editing, eompiltdion, and e .\ ■.'clitiolt 
prôgrams written in the list-proce:-.,singlai 
LISP 1.5. • (44 pages) 

2. N1ETA5 -- A syntaX-clirected méta compiler. 
which translates an object language to a tart.et 
languag,e interpretively. (14 pages) 

3. GPDS -- An interpretive. display generation sv•,- 
tern that is first interactive while acquiring a (Cet 

..base and then computational while generatin g, 
display. (41 pages) 

4. TINT 	À cotiversational, 	algebraic JO- 
.VEAL intèrpreter. (23 pages) 
5. SURE-- A JOVIAL source language progratti.. 

ming tool that "launders" JOVIAL source 111 .- 
guage, providing a ,reformatted and concordait«. 
listing of the program. (30 pages) 

• These programs were operated for short periods ■ f 
tinte beeause the cost of interpretive execution \vas ItivIL 
For the Most part, they were performing tasks th:A 
might be selected for demonstration purposes. So:Ite 
eiTort was made to choose typical actions COVefing 

range Of' time-sharing requests,.though in the SCIISe t 

frequency of occurrence of varions request tpes. the 
sample is not (mite representative Of tietual titne-shat 
operations. One hundred and eighty4wo service ititerv.: 
ranging from . three to 80,000 instructions wcre eN:ar.- 
ined;'these intervals comprise 35 service 'requests 
ing front seven to 1,21,504 instructions in length. 

The results of recording the dynamie behavior of the-
prograMs in the malin« described are summarized 
Figures 1, 2, 3, and 4. 

Figure 1 'sho*.vs the cumulative relative freqUency ‘'t 
the number, of instructions executcd between eons,..- 
tive catis for neW pages. Innearly 59% of 1731 
than 20 instructions were executed; in about SOrj. of 
cases, less than 200 instructions. In Only 
cases, 10,000 or more- instructions •••,cre eut:Lut:d 
twcei.calls; these longer sequences oecuned t''"• 
only  Lifter the program !lad accuintilatd tutu:1;01;1y 
the pages it reqUirecl. 

_ 	This effect. is illustrated more elearly ht 1.1»11‘.' 
wIlich shows page demand as a funetion- of tinte. I 

tinte scale is logorithinie itt titil:isixotal, dt.'t  k cd  
the, instruction ccmnts by assumiitL; a ploCc-mli" 	t 

149 per instruction. The initial cati rate for 1..;.› i> 
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extremely high; the .rnst ten pngcs, on the average, were 
required within about 5.6 tns; in half of the  cases; thes e  
ru • t ten pages • ere .required in less than .8 ms. hi 25çô 
of the cases where. 20 or more pages \vere . required, the 

first 20 pages were needed within about 7.0 ins. 
l'igure 3 also !,hows the (mean) Page demand by 

individual program. Ilk% over-till pattern seetn ,r to be 
fairly consi\tent in spite of the distinet ¼Iisiil1iIal ity of 
function of the \giflotis programs. 

A plot of total execution time per request versus 
*percentage of ixiges required is shown in Figure 4. The 
'general trend ;:ippears to be what one would expect; the 
longer the service request the more pages reqttired. The 
two points in the uPper left portion of the plot illustrat e  
the  occasional occurreece of requests with rather heav y. 

 page needs even for verY small arnottnts of processing 
service. 

The dynamic behavio r .  cf the examined programs 
tivay be brielly,gencialized here: 	 •  

. 	1. The programs tend to demand pages .at very'rapid 
rates until  the)'  have • acquired a. sufficiency of 
pages. 	 . 

2. The programs frequently do nOt run very long evett 
after  living acqeired a Sufficiency. of pages. 

3. For those prOgrani requests which do run for .t 
while; a sufficiency of pages means a cotesider e lli„;  
fraction of their total declared page requirements. - 

Distalv.■ ionionl.yeculations 

It i !.;  difficult to assu,s \vitlt any cettainty the benefit, 
of a demand pagin;t :drateey in a time \hat itte 
COMputer configuration, work load environment, ;le d • 
other system characteristics suelt as scheduling :wit 
priority schemes all strongly influence ystem perform-
ance; performance itself menus different things to differ-
ent people. For a general-purpose system such as 'NIAC I 
or SDC's, required to service with reasonable respon- 

- siveness a heavy load of programs similar to those 
examined, the data obtained in this study seem to 
indicate that sticlt programs will require considerable 
reorganization to operate efficiently in a demand-paging 
environment. 

The 'usual conception of a ligh-speed memory  fihlcd - 
 witlt a page or .two from  each of many programs 

desiring processing' does not look as though it will -stand 
up subject to the page call raies observed in this study. 
The page7fetching inechaniffl seems Rely to congcst 

few milliseconds; until sortie of the programs 
. have acquired a sufficiency of pag,cs there would be little 
chance of processing-fetching overlap; and a sufficiency 

—r 
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of pages for some programs means that others must be 
squeezed out of core and clefcri ed . , 

Reorganization or structuring of the. programs  for 
•aging • s usually proposed as a solution to this problem. 
Just how much structuring is needed or can be done or 
how this is to be accomplished is a matter or specula-
tion. Ideally, every program, during both checkout and 
running phases, for each possible netibn'that it handle's, 
should be somehow arranged so that it preferably uses 
very few pages per action and that  il  processes long 
enough between page calls on the average to.overlap the 
time to fetch a page. Further, still speaking ideally,  the 
arrangement of prol-_,, rams to behave in this manner 
should be accomplished automatically, perhaps by the 
compiler -  or a special optimizing routine, I.vithout bur-
dening the programmer. 

"Ile authors confess that they do not know how to 
achieve this ideal or eVen an approximation to it. The 
following, sugg,estions for structuring have been cuiled 
fioul  various sources: • 

1. Put  data in the  instruction pages referring to them. 
2. Somehow rearrange data structures to reduce data 

page now without causing an appreciable increase 
in instruction page flow. 

3. Duplicate subroutines and constants within pages 
referring, to then). frequently. 

4. Make considerable  use  of "common routines." 

. i n the authors' opinions, none of these secnis likcly to 
Itae sufficient pay-off, if ai. Thz last suggtn, tion 11CCOs 

S01110 C0111111ellt pni1111)S; it iS 110i 'clear just ,what 
meant by "cOmmon routines." lf one means common 
subroutines such . as I/0 conversions, log, eNponential, 
and trigonornetric functions, etc., the whole set of them 
hardly constitutes mort than a page ,Of two of code and 
a frequently used niajority of them inig,ht more simply 
be offered to pro2rants as system services. If on the 
other band, "common routines" means larg,ei .  functional 

' entities such as .matrix-manipulation routines or pack-
ages of multi-function routines Such as an on-line 
alegbraic interpreter,  flic  search routines, etc, there 
undoubtedly would be cOnsiclerztble common tu,apc of 
these. The problem here is simultaneity; a time-sharing 
system is uSually unable., %vithotit serious degradation in 
response, to %vithhold service:to requests until th'..y can 
be "batched" to use a particular routine in common. In 
a 'heavily loaded general-purpose system- at least, the 
chances seem -  Small that the User request will find the 
partieular routine requested remaining  in core from 
some previotis request: The ou-hue  frequency ',:of 
requests for it:particular Package is probably sOmewhat 
propcirtional to the variety of -service offered by the 
package; the more variety the larger the package and 
therefore the less likelihood that it can reside in core for • 
any period of time. 

An alternative: is to  abandon  •  the demand-paging 
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strategy and try sOmethingee. One idea that 1111s he'an 

advanced is to structure programs into fuia:tional scg-

(twins and to brittg, ia -sets of pages • by haying the
•p.ro ,Jain advice"..to .t.te ume-'-atin»g cr 

monitor in ttdvance of its needs. \Vai i  titis in m in, ,the 

TINT program was c unlined in 'some detail to deter-
.. -• • • - • ..• 
mine u there are enough clues in the source proaram to . 	. 
provide. a better, ,organizatiotral_scheme. Ate1eypc 

' communicator, a compiler, an interpreter, explanation 
routine, and data area are used in TINT. l'Itese 
program regions are functiomdly independent and : vary 

in size. If the program refers to any one page in any of 
these regions,.the entire region is likely to bc required. 

The data nt-ea is dynamic, in its storage requirements. 
Some better utilization of the main store might be 
realized if this kind of segment  information  'éould be 

made available to the timc-sharing Executive., . 
Realistically, it does tiot sce:m likely that program-

mers will sit pply such information; it is still less likely that 
a compiler could abstract such information from 'static 
code and automatically pass it.on to the Executive. It is 
probably optimistic to assume that programs in general 
are susceptible to automatic segmentation beyond the 
nonfunetional.division into instructions, data, and-read-
only  data.  For those prograMs which do exhibit func-
tional patterns of behavior, the amount of informa-
tion required to describe these patterns and the process-
ing rec.-tufted to detect the currently requested patteret 
might prove prohibitive. In programs which are primar-
ily data driven, for example, any achievable functiOnal 
segmentation SCUDS likely to be gross. The benefits of 
inaccurate segmentation may Lecome marginal consid-
ering that,  in  addition to the facility for handling 
segment' information, one nurtt retain the mechanism to 
discover and fetch, on clemand, odd missing pages. This 
leads to program segments waiting; .clead in core, for 
such pages and  can lose back in occupancy tinte thtm sav-
ings which maylave bcen achieved in occupancy space. 

SUN 11AR'IC and CONCLUSILSNS • 

The results of examining the dynamic behavior tmder 
paging of certain eNisting time-sharing p.-ograms have • 
been ,presented here. The data obtained in this stud y  

• seem to indicate that the handling of programs' similar' 
to these .may be diilicult in a time-sharing ett\irOnment 
tailizing , a mgmng on-demand- strate -gy.• The probLia of 
trying to alleviate these diilicuities by re.m•ganizatien of 
the programs has been' discussed and some speculations 

• on the ...problems involved  in  eMploying an alternative, 
."sets tif pages" or segmentation strategy have been 
presented. , 

The digiculty wi th  both the demand paging and "sets 
of pages" strategics, is that system performance seems 

stronglY (kPerlikut on aSSUMPtiOnS that S0111CtiliM; can 
and  wilt be-done to the programs to be hatall;M by the - 
system. ln. the opinion of the tItultors,  titis  approas1 of 

• trying to fit the work to the system instead of vice versa, 
• Sc:CIlIS unrealistic.» inay not perhaps be entirely valid 

to assume that the work load characteristics of future.' 
• systems  cati  be extrapolated front those of existing 
systems, but there is no reason to bdicve they  will dilfer 
greatly. In ,view of the fact that existing load Charae-
teristics''are 'measurable and have 1.:ben me:haired, it 
would appear more fruitful to base system  design 

 criteria on these, known,parameters than on optimistic 
hypothetical assumptions. • 
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