VOLUME

- Terminal Hardware Requirements -
- Terminal User Requirements

by
John deMercado

Terrestrial Planning Branch
Department of Communications

VOLUME 4
Induc GEna Library Queen.
䍜L 291900

Industrie Canea Bibliotheque Queen

Time Shared System Terminal Hardware

- Terminal Hardware Requirements -
- Terminal User Requirements -
by
John deMercado

Terrestrial Planning Branch
Department of Communications
June 1972

Acknowledgements

The purpose of these notes is to promote dialogue within the Terrestrial Planning Branch and serve as a basis for our computer-communication systems implementation program.

The notes are only in first draft form and borrow heavily from the references. They should be read in conjunction with the attached reference papers.

As a revised version is planned the author would appreciate any corrections or omissions in the text that were brought to his attention. He also wishes to thank Messrs. John Harris, S. Mahmoud and Kalman Toth for their valuable contributions.

Miss Gail Widdicombe and Miss Yollande Chartrand typed them in record time from an almost unreadable handwritten manuscript.
CONTENTS
Page
Terminal Hardware Requirements 1
Introduction 2
Code Requirements 2
The BCD Code 2
Low Speed Communications Terminals 5
High Speed Communications Terminals 6
TTY Terminals 6
Pollable Terminals 7
Programmable Terminals 8
Coding Charts 10
Terminal User Requirements 14
(over)
CONTENTS (continued)
Terminal User Requirements 14
Introduction 15
Timesharing Modes 15
Factors Affecting Selection of Terminals 16

- Nature of Interaction 17
- Physical Constraints 18
- Financial Costs 19
Evaluation of Termínals 19
Case Study 1 20
Case Study 2 23
Disks 25
References for Terminal User Requirements 29
1- C. Smythe, What To Look For, Dara Systems, May 30
2- H.P. Macon, A Survey of APL Compatible Terminals 37
3- A.B. Kamman, How to Pick CRT Terminals, Data Processing Magazine, April 1971 46
General References 53

Terminal Hardware Requirements

Introduction

The following is a preliminary discussion of the operation and characteristics of character display terminals as elements of time shared systems. These terminals have a number of characteristics listed below which are interrelated and of interest to designers of Time Shared Systems, these characteristics are

- speed (baud or character rate)
- transmission mode (synch or asynch) (parallel-serial)
- code
- pollability (addressability)
- peripherals - paper tape, cassettes, local printing
- display type (hard copy or CRT display)

The following schematic shows the relationship and interdependence between these various characteristics as shown in Figure 1.

Code Requirements

Most terminals in a time-sharing environment communicate in either BCD or USASCII communications codes and operate in a serial, asynchronous transmission mode. The internal representation of these codes is given in the tables attached at the end of these notes.

The BCD Code

Figure 1
bit byte plus two zone bits. For transmission, an additional data bit; the parity bit is used plus one start and one stop bit. This is called a 7 level 9 unit code. A variation on BCD is what IBM calls correspondence communications code. This is a code that varies from $B C D$ only in the representation of a few characters.

As only 64 characters may be represented by the 6 real data bits, the convention used to include upper and lower case characters in the set is to assign two special characters for upper and lower case shifts, i.e. - Once an upper case shift character is received, the hardware decodes all characters that follow as the upper case representation of the character - (see Coding Chart). For example, the IBM 2741 termina1* and compatable devices have been designed to handle this code.

This code has two basic character sets - one is 6 bit ASCII code which has 64 characters and the 7 bit ASCII code which has 128 characters. The 7 bit ASCII code has the advantage that both upper and lower case characters may be represented by a single data word. Most of the time-sharing systems that exist have been designed to handle the 64 character ASCII code. In any case, for transmission, either 7 level, 10 unit code or 8 level, 11 unit code is sent. In each code word, 1 "bit is included for parity and one start and 2 stop bits are sent for activating and deactivating the mechanical action of the terminals.

Terminals that are designed for communication in ASCII codes are called teletypes, and include portable terminals like the Execuport which offers 10, 15, 30 character per second

[^0]full or half duplex operation through an acoustic coupler. The cost of this terminal in Canada is about $\$ 4,500$.

Low Speed Communications Terminals
These devices are restricted to rates from 110 baud to 300 baud (some manufacturers claim up to 120 characters per second (say 600 baud)). They are hard copy devices that require hammers or other electromagnetic devices to print on paper. There are however some terminals that print by burning the paper or print by exposing heat sensitive paper to intersive beams of electrons or 1ight.

The reason for the start and stop bits mentioned above on the transmitted data is two fold.

The electro-mechanical action has to be initiated to start the printing process and then signalled to stop the printing process, and return the terminal to some neutral status.

Since data is being received and transmitted serially, the device must detect the beginning of a data word, assemble the serial characters into (out of) a buffer, detect the end of this seriallization (parallelization) and then initiate the transponders to begin the printing action.

The speed of the TTY terminal is limited by the speed at which characters can be displayed/printed by the electro-mechanical devices, that is, since only single character buffering occurs; if the received serial data comes faster than the physical limitations of the device, characters will be either completely lost, or meaningless characters will be displayed. For transmission to the computer the contraints on speed are not severe as the user is invariably much slower than even the mechanical speed limitation of the terminals.

These terminals, almost without exception, can support peripheral equipment in the form of paper tape readers and punches.

High Speed Communications Terminals

Higher speed ASCII devices (and some BCD types) that are capable of displaying characters at speeds in excess of 1200 baud are av̌ailable. These so called CRT's; (cathode ray terminals), use electron gun methods to achieve these high speed display capabilities. CRT's can be divided, in general, into three broad types:

- teletype compatible terminals (T.T.Y.)
- pollable terminals
- programmable terminals that also have the above capabilities
T.T.Y. Terminals: The most elementary terminals in this group behave exactly like the more primitive keyboard teletype terminals except that they are capable of switch selectable speeds of from 100 baud through 600 baud to as high as 9600 baud.

Most of these devices, however, have additional control logic that permits local functions like

- roll up
- homing to any of the four corners of the screen
- rub out
- cursor positioning where the cursor makes the
- next displayable position

The Datapoint 3300 and Hazeltime 2000 are examples of this type of terminal. Typical costs are of the order of $\$ 3000$.

Pollable Terminals: These terminals are usually much more versatile and more expensive than those above. The speeds at which they can communicate are again switch selectable but they have read-write refresh memory capabilities that can be line controlled. In addition these terminals can provide status information on their "status". That is the host computer can, check the terminal and determine whether or not they have a character ready for transmission or whether they require some special service. Special service from the host computer takes the form of the transmission of control characters to initiate some internal or external action (such as drive a printer) by the terminal.

Some other actions that these terminals can perform are:

- transmitting a block of data from the terminal to the host computer, which could typically be a line or several lines from the screen;
- receiving a block of data from the host
- transmitting a block of data to a local device like cassette tape or local printer.
-receiving a block of data from local devices at the request of the host computer.

These terminals in essence can permit the host computer to remote control other tasks. An example. of this type of terminal is the Hazeltime 3000, which costs about $\$ 4,000$.

Programmable Terminals: These terminals can be considered mini-computers in their own right. They have their own memory, cpu and associated peripherals 1ike cassettes, printers, disc etc. These devices are capable; in general, of communicating in parallel to local devices or in serial (both asynchronous and synchronous) to remote devices including the host computer. Their data rates are only restricted by the communications peripherals that are connected to it (modems, DAA, telephone lines). Code conversions can be programmed so that the device can communicate in BCD, ASCII or another code. Special functions can be built into the terminal resident software that recognizes line control characters to effectively speed up on line functions. These devices can in general, without hardware modifications, support other terminals of their own type or of lesser intelligence. An example of these terminals that are used in the Department of Communications system:is the Datapoint 2200 CRT made by Computer Terminal Corporation (a subsidiary of TRW). These terminals are available with from 2 K to 16 K of memory and cost corresponding from $\$ 7000$ to $\$ 15,000$ (for the 16 K machine).

The characteristics which serve to classify CRT terminals are

- screen size (number of lines and screen width)
- clarity of characters (eye fatigue)
- display and transmission rates (switch selectable or programmable)
- character set (may require upper and lower case)
- pollability (can character buffers? be stored)
- programmable features (hardware line control or software control)
- asthetic qualities (does it "look" nice?)

EBCIDIC Coding Chart

	0	1	2	3	4	5	6	7	8	9	A	8	C	D	E.	F	
0	MULL		.		\triangle	\&	-									0	0
1							1		a	j			A	1		1	1.
2									b	k	5		B	K	S	2	2
3									c	1	t		C	L.	T	3	3
튼 4	,				\because				0	m	u		D	M	U	4	4
厌 5									e	n	v		E	N	V	5	5
- 6									1	0	w		F	0	W	6	6
\bigcirc									9	p	x		G	P	X	7	7
${ }_{5} 8$									h	9	y		H	Q	Y	8	8
$\because 9$									1	r	2		1	R	2	9	9
帯 A					1	!		:									A
8					-	\$,	\pm									B
C					$<$	-	$\%$	©									C
D.					1	1	-	1									D
E					+.	:	$>$	=									E
F					1	7	?	"									F

EBCDIC coding chart.

U.S.A. ASCII Coding Chart

rigure ll. 5 CALL./360: BASIC CODE

LOWER CASE

Flgure II. 6 A.P.L. (CORRESPONDENCE)

			$1{ }^{1} \frac{1}{4}$		$\begin{array}{\|l\|l\|} \hline 3 & 1 \\ \hline & 2 \\ \hline 0 & 19 \\ \hline \end{array}$	-ar parmar -at vawit				
Gut mormor arr valus:	712!		${ }_{0}^{1}$	139						
	-101010!	${ }^{\text {sr }}$	r	\leftarrow	1		8 r	\sim	\rightarrow	-
	ocvicil	1	\times	\checkmark	\bigcirc		\cdots	\bigcirc	1	∇
	$00^{0} 10$	2	${ }^{\prime}$	-	\times		-	7	:	+
	O0, 11	3	u	V	$?$		\leq	\downarrow	U	
		$\stackrel{1}{8}$	F	3	1		-	$\stackrel{ }{ }$	1	*
	01101	7	0	n	[\bigcirc	L	P	1
	91110	\bigcirc	κ	1	0		2	1	?	1
	01111	\bullet	c	A	-		\pm	0	a	1
	10100:	4	L	0	1		S	0	-	1
	Tojo 1	0	H	3	\checkmark		\wedge	\triangle	「	1
	1910	z					c			
	10111	${ }^{606}$	8	${ }^{\prime}$	\pm		V	1	ω	-
	11100	isa	PRNI	SESt	180			PER	CA	

Lower CASE

- 5

Fleuro Il. 7 A.P.L. (EBCD)

- 运 คix

Terminal User Requirements

Introduction

In what follows an outline of relative merits of the various means for doing time-sharing is presented. The basic terminal requirements for doing it effectively including the choice and evaluation of terminals is also presented.

Time Sharing Modes

There are basically four modes in which a computer can be time shared, namely through

- Interactive timesharing; that is through the use of small terminals such as teletypes, etc. that are connected to the computer through various types of communication lines. Programs are prepared and run interactively in this mode.
- Batch submissions; that is through the user programs and data that have been prepared on cards, tapes or some other medium. A Volkswagen or some such vehicle delivers the program/data to the computer. The output from the computer is usually returned to the user in a similar manner.
- Remote batch; where user programs and data are prepared as in the case of batch submissions but a given job is initiated from a remote terminal, usually a card reader and printer utilizing highspeed synchronous communication lines.
- Remote initiation of batch; here user programs and data are already at the computer center. A may be remotely initiated from a small terminal
and its progress monitored.

The relative merits of the above four methods are:

- Interactive timesharing, is particularly useful in program development, "one-shot" problem solving, and information retrieval.
- Batch submission, is cheaper, and when time is of little importance also quite convenient. For large scale production programs the cost factor gives batch a firm advantage over timesharing. However, program production can be awkward because of the slow turn-around time.
- Remote batch, while more expensive than manual batch has the same advantages. The turn-around time factor is considerably improved.
- Remote initiation of jobs, provides further flexibility for program development, and usually ensures timely completion of the task. It also provides a progress monitoring capability, which can prove useful in the case of large jobs (large program and/or large data sets).

Factors Affecting Selection of Terminals

To do timesharing effectively, the user should select the best terminal for use with his timesharing system. In making this selection, the three main factors to be considered are

- The nature of the interaction required
- The physical constraints
- The financial costs

Nature of Interaction

This is essentially dependent on the task at hand. Problem solving for example, requires only an adequate character set for the computer language to be used, regardless of application (whether statistics, engineering, etc.).

Information retrieval usually demands a terminal capable of producing good quality output, and having some peripheral control capability for semi-permanent storage of the output.

On-line data entry which is economical only for small quantities of data or for small dedicated systems requires good display or hard-copy or CRT screen and control capabilities for editing and verification.

Off-1ine data entry and unattended data transmission require terminals with peripheral controls and some communications control capability such as automatic dialing to the time-shared computer.

Special output characteristics are necessary in three different kinds of applications: Text-editing requires very high quality output. Simulations, PERT, and CPM cannot be used to advantage without special character sets, when the rough output will be copied by a draftsman. Cartography and other plotting work may need an X-Y plotter, which can either be a terminal or serve as a peripheral to another terminal.

This brief survey only covers some of the most important points; often it is necessary for interaction to be modified according to what is available; availability being defined by other factors.

Physical Constraints

The most important physical constraints are those of telephones and computers.

Telephone capabilities vary widely, by country, area and, of course, by cost. Generally, low speeds (110, 134, 150 , 300 baud) transmissions can be supported on voicegrade lines. These lines can suffice to handle many or most timesharing applications. As timesharing usually involves asynchronous operation, a terminal which provides optional higher speeds and/or synchronous transmission may not be worth the extra cost. Additional telephony considerations are those which dictate the types of modems or acoustic couplers that are required.

The timesharing computer itself places other constraints on terminal selection. Choice of transmission code (ASCII, BCD, etc.) must coincide with that allowed by the computer, as must line speed. Certain intelligent terminals such as the Datapoint 2200 series may allow almost universal access to any computer, but this must be balanced against cost (typically, $\$ 7,000$ and up per intelligent CRT terminal).

If the nature of interaction, described above, requires peripheral control then, this must be regarded as a physical constraint; for example, if hard copy and CRT output are required simultaneously, then since most printers will only
operate at 30 cps , a 60 cps terminal and line may not be useful. Other physical criteria affecting the choice of a terminal are

- Portability and size
- Ruggedness
- Does it have buffers to prevent "falling behind"?
- Is there tabulation for I / O speed?
- Is there an interrupt capability?
- Are there other features pertinent to a class of terminal, such as brightness of CRTs; ease of paper handling for hard-copy terminals, etc.?

Financial Costs

The third and too often the most important consideration in choosing terminals are those of costs and other administrative matters. These may easily be quantified. and the most important are:

- Basic Cost
- Service Agreement Cost
- Rent/Lease/Purchase Costs vs. expected life of terminal
- Service Availability
- Mean Time Between Failines, etc.

Evaluation of terminals

In evaluating terminals various scoring methods have been used. Such a method is due to Kamman, and his paper is included as a reference. Two brief case studies will now be presented which will show the selection of two different types of timesharing terminals. The selection method involves eliminating various terminals by considering interaction and physical factors, ahd then making the final selection on a
cost basis. Interaction and physical factors are graded as YES/NO. One or more occurance, of NO results in rejection. These studies are presented in a tabular fashion.

Case Study 1

This application involved low speed (up to 30 cps) communication in BCD or Correspondence coding for information retrieval. Hard copy, upper-lowercase, and off-1ine data entry capabilities were also required. Ease of moving was desired; but not "suitcase" portability. Good service arrangements were necessary with a purchase agreement. Initially; we consider terminals for interaction capabilities:

TERMINAL	$\begin{gathered} \text { U-L } \\ \text { Char. Set } \end{gathered}$	Peripheral Control	Ease of Interface	Off-1ine Data Entry	$\begin{aligned} & \text { Screen } \\ & \text { Size (for } \\ & \text { CRT). } \end{aligned}$	(if CRT) Hard Copy AV?	Display Quality Output
Teletype ASR/33	NO	Y	Y	Y	na	nà	N
IBM_{2741}	Y	N	Y	N	na	na	Y
$\begin{aligned} & \text { IBM } \\ & 1050 \end{aligned}$	Y	N	Y	\pm	na	ner	Y
$\begin{aligned} & \text { IBM } \\ & 2265 \end{aligned}$	Y	N	N	N	Y	N	Y
$\begin{aligned} & \text { HazeI time } \\ & 2000 \end{aligned}$	NO	Y	Y	Y	Y	Y	Y
$\begin{aligned} & \text { Hazeltime } \\ & 3000 \end{aligned}$	Ψ	Y	Y	Ψ	Y	Y	Y
Novar $540-2$	Y	Y	Y	Y	na	na	Y
$\begin{aligned} & \text { Datapoint } \\ & 3300 \end{aligned}$	N	Y	Y	N	Y	Y	N
$\begin{gathered} \text { Datapoint } \\ 2200 \end{gathered}$	Y	Y	Y	Y	Y	Y	Y
$\begin{aligned} & \text { Burroughs } \\ & \text { B9353 } \end{aligned}$	Y	Y	Y	Y	Y	Y	Y

From this list of ten terminals we are now left with five:

- Hazeltine 2000
- Hazeltine 3000
- Novar 540-2
- Datapoint 2200
- Burroughs B9353.

Proceeding to tabulate physical constraints we have:

TERMINAL	Tranmit Code/Sp.e.ed	Modem/ Coup.ler Req.	"Pro-grammable"	Size	Rug-gedness	$\begin{aligned} & \text { Tabu- } \\ & \text { 1ation } \end{aligned}$	$\begin{aligned} & \text { Inter- } \\ & \text { rupt } \\ & \text { Capabi- } \\ & \text { 1iny } \\ & \hline \end{aligned}$
$\begin{gathered} \text { Hazeltine } \\ 2000 \end{gathered}$	N	Y	N	Y	Y	N	Y
$\begin{array}{r} \text { Haze1tine } \\ 3000 \end{array}$	Y	Y	Y	Y	Y	Y	Y
Novar $540-2$	Y	Y	Y	Y	Y	Y	Y
$\begin{gathered} \text { Datapoint } \\ 2200 \end{gathered}$	Y	Y	Y	Y	Y	Y	Y
$\begin{aligned} & \text { Burroughs } \\ & \text { B9.53 } \end{aligned}$	N	Y	Y	Y	Y	Y	Y

Three terminals now remain, and cost considerations are inspected. As no service was available in this city (Ottawa), the NOVAR 540-2 was eliminated, and we are left with the Datapoint 2200 and the Hazeltine 3000.

A final choice was made of the Datapoint 2200, as specific pricing information was not available on the 3000 .

Case Study

This application involved low speed (110 baud) communication in ASCII for statistical problem solving. Character sets were required to support Basic and FORTRAN. Dependability, good service and low purchase costs were the other prime factors. CRTs were inspected only if they also offered hard copy. The tables below show the process. Note that only two qualities need be considered under interaction. Output from thermal printers did not pass as acceptable.

TERMINAL	Char. Set	Output Quality
Teletype ASR/33	Y	Y
IBM 2741	Y	Y
IBM 1050	Y	Y
Hazeltine 2000	Y	N
Hazeltine 3000	Y	N
Novar 540-2	Y	Y
TI Silent ${ }^{7007}$	Y	N
Datapoint 2200	Y	Y
Datapoint 3300	Y	N
Burroughs B9353	Y	N
IBM 5028	Y	Y
GE Datanet 730	Y	Y
DEC LA30	Y	Y
Olivetti TE308	Y	N

TERMINAL	Transmit Code/ Speed	Modem/ Coupler Req.	Interrupt Capability:	Inter face Req.
Teletype ASR/33	Y/Y	Y	Y	Y
IBM 2741	N / N	Y	Y	N
IBM 1050	N / N	Y	Y	N
Novar 540-2	Y/N	Y	Y	N
Datapoint 2200	Y/Y	Y	Y	Y
IBM 5028	Y/Y	Y	Y	Y
GE Datanet 730	Y/Y	Y	Y	Y
DEC LA30	Y/Y	Y	Y	N

Costs，etc．

TERMINAL	$\begin{aligned} & \text { MTBF } \\ & \text { accept- } \\ & \text { able } \end{aligned}$	$\begin{aligned} & \text { Service } \\ & \text { avail } \\ & \text { able: } \\ & \hline \end{aligned}$	$\begin{gathered} \operatorname{Cost} \\ (\$ \mathrm{U} . \mathrm{S}) \end{gathered}$	$\begin{aligned} & \text { Service } \\ & \text { Cost }(\$ U . S) \end{aligned}$	Total（inc1． 1 yr maint． （\＄U．S）
$\begin{gathered} \text { Teletype } \\ \text { ASR/33 } \end{gathered}$	Y	Y	\＄1025．	\＄ 20.	\＄1265．
$\begin{aligned} & \text { Datapoint } \\ & 2200 \end{aligned}$	Y	Y	？	？	\＄9000．
$\begin{aligned} & \text { TBM } 5028 \end{aligned}$	Y	Y	\＄2240。	\＄ 46.	\＄2792．
GE Data－ net 730	Y	Y	\＄1200．	\＄ 30 。	\＄1560。

The final choice in Case Study 2 was the ASR／33 made by the Teletype Corporation．

Disks

In a number of systems，such as the one in the Department of Communications，disks are being used with time shared terminals to support such functions as high speed off line data entry，for local data storage etc．

Although the first commercially－used disk appeared in 1956 this method of data storage caught on comparatively slowly and it was not until the appearance of drives with interchangeable packs－IBM＇s 1311 was the first，with a maximum capacity of two million 6－bit characters－that the concept began to catch on．Today it is unusual to find a
reasonably sized configuration without any disk storage at all, and even programmable calculators and the small visible record computers are being offered with disk storage capability.

Early systems; comparatively small-capacity disk packs, meant that users could carry out processing far more quickly and frequently than had been the case with a tape-only system and even teleprocessing was carried out with remarkable success.

The demand for larger and faster disk storage was increasing and in 1970 came the IBM 3330 , with a capacity of 100 million bytes per pack and a data transfer rate over 8 times that of the 1311.

One of the aspects of the design of the 3330 which permits such high performance is the height at which the read/write heads "fly". over the disk surface . This can be compared to the size of ash particles suspended in smoke, some of which are over twice as big as the gap between the 3330 head and the disk surface - which is passing at over 100 miles per hour.

Each time speed and capacity are increased there is a corresponding demand for greater reliability, otherwise we would only succeed in generating more errors more quickly. With the increasing dependence on continuous computer operation and the more complex applications of the 1970's, users require not merely the same but greatly improved standards of reliability.

The demand for increased performance and reliability and the fact that it is only in the peripheral market that IBM
has any real competition, has kept manufacturers on their toes. The makers of IBM-compatible disk drives are continually striving to produce models that are as good, if not better, than those marketed by IBM, which sometimes has the effect of forcing IBM to push things out on to the market sooner than they would have done. Nevertheless independent manufacturers are only one step behind.

In the plug-to-plug compatible market activity and competition is comparatively fierce. Most of the independent peripheral manufacturers are concentrating on IBM replacement equipment, although one or two are scratching at Univac. IBM is, of course, the biggest market and although it hit back at its competitors by introducing a fixed term rental plan, and increased its profit-margin period to 36 months instead of 24, the independent companies instantly undercut IBM. The profit-margin is now around 25%, but if IBM cuts its prices by 15% quite a lot of people would go out of business. Hamstrung as it is by anti-trust laws, IBM is not likely to indulge in a price war of this kind and is a sitting duck for the competition.

Disks are likely to increase their ascendancy over tapes steadily. In today's cut-throat, commercially orientated world, a company which hopes to market its product successfully must be able to react rapidly to market changes and forecasts and in this connection disk storage becomes essential. With their advantages of rapid, random access and the promise of high speed MOS memories to accommodate swifter transfer rates, it is forecast that magnetic tapes; as a storage medium, will have virtually gone out of use in another ten years, except as a backup store. Although tapes are still considerably cheaper than disks, the price of the
latter is continually decreasing while the reliability and length of life of both the disks and the hardware associated with them constantly increases. Disks are now available for as Iittle as $\$ 6000$.

Disk software presents few problems: and has the advantage over tape that it provides for more detailed handiing procedures to be recorded on the control console log than is the case with tapes. It is therefore possible for the activities of the operators to be checked with ease, and a high level of system security to be maintained. This provision has had to be built in because of the nature of destructive updating of disks.

The paper in the References by C. Smythe on What To Look For In Disk Drive Data Systems contains a good summary of some of the disk systems available as well as design and selection criteria for choosing them in time shared systems applications.

The design criteria for disk drives in the 1970's must specify not only high performance but also characteristics which will ensure that the user obtains a very high level of availability. Clare Smythe
gry y the tables that follow are given the basic specification of the large number of disk drives and packs at freant on the market and designed for -awor 'host' computer systems. A disk sub-system generally speaking consists. of \therefore eoniroller and one or more disk drives capable of carrying either fixed or removathle disks $^{\text {sin }}$ of several kinds. The role of the controlier is to select the appropriate dich drive and control its operation. The dioh drive is addressed through the con?, 作er which also generates a parity bit during the write operation and check purity when reading.

When $1 B M$ introduced the $370 / 135$ and \therefore iney also announced the Integrated lide Adaptor which meant in simple icms, that hall the control unit was intebratied in the central processor and the rest of the control circuitry was in the same cabinet as the new drive (the 2319 , a modifisation of the 2314). IBM competitors say thet this was to foil the competition offered fr: the independent peripheral manufacibre:t: 1BM say it was to keep- down rorts. However, the opposition quickly hoursed back with their IBM-compatible Nersions of the $2319-13 \mathrm{ASF}$ introduced thei: 6.219 last month-designed to be conneved to IBM's Integrated File Adaptor.

A controller can handle a varying number of drives. Often manufacturers wle so many or hine and one off line. "lodern disk drives are ustally separately eonnceted to the control unit and are

Mese than at limes the number of bits par inch a. 1976 man in $1956-$ one of the sunty comonher of rapid advance, in commati; techmology in the pest decade.
therefore completely interchangeable by means of address plugs and a service address plug, which allows a drive to be taken off line for servieing without disturbing the operation of the rest.

On the earlier drives the clisks were invariably fixed, and fixed drives today usually have heads which are positioned over each track on the disk. The advantage of this is, of course, speed of access but fixed disks also have their disadvantages and are most suitable in applications where there is only a fairly small volume of data to be stored, but which needs to be accessed rapidly and must be continually on line. Some models of fixed disk drives operate only on a dedicated line from the central processor.

Exchangeable packs
Generally, however, the interchange of the file-carrying component on the peripheral is essential and therefore most users preter exchangeable packs of stacked, disks. These are accessed by moving heads on a comb of arms, vith a read/write head for every side in the pack. Electronic methods are normally used for locking the access comb at the point it reaches, and are much to be preferred to mechanical methods. On the older models there is only one read/wite head, which moves up and down a pillar beside the stack of disks and has to poke in and out between the disks seeking the appropriate area.

The rack density has incroased by a factor: of nearly 10 since tBMS first cemmercial divk in 195 (The mos! recont development is almost a two-fold increase over the previous demsity oi 100 racks per inch.

Obviously this has severe disadvantages in the time it takes to access the requiti. data.

The efficiency of the drive will deter. mine the access time-the time it takes to position the head over the reguired data. measured from the moment of executitg. an instruction to call for the data to the moment when the data is stored in the specific location. Search time indicates the average time required to identity an item of data. Eftective search time may son:etimes be lengthened because the selecior chamel from the CPU is flagged againsi interruptions until the search is enfled. Rotational delay indicates the time the disk takes to execute a hale turn.

To most people seek and search time ate synonymous. IBM, however, use somi: what different terms, explained here b: Jack Llewellyn, Product Line Manaser:
'One of the inherent characterisics o: disk storage is the time lag in locatime the required record. This "access" time is mat" up of two parts--"seek" time requirit? "u position the heads over the requised usai and "search" time to locate the record on the track.
'Since 1964 it has been possible io overlap the seek times with other oneration, on the channet (including seeks on other disk drives). However, until the ativent of the $3330 / 3830$, the seareh time, whit on average the time for half a revi: of the disk, has tied up the channel.

The 3830 Control Unit uses is "ht ahead" techinque which locates the !cord on the track without tying up the cham:a. This technique ailows all eight 33.3 us all one 3830 to be seeking or searching in data concurrently, reducing contention and increasing systems throughiput.'
the transfer rate is the lima taker ro-

The grate sives a coned iate of lan :

 millionths of an inch in 1070. Aiviz in

 need a microscope 10 .s. the wit
a byte of information to be transferred from the disk to the channel of the system. The destination of the information is important: if the CPU store has a slow eycle speed as on earlier syatems, the wansfer sate may be ton fast, causing poblems of over-run. The speed of the drive and the packing density of the information recorded on the disk both avern the transier rate.
me disk drive and the disk pack are entary to each other and equally It to eflicient operation. The disk
may have from one to several disks , hich are made of a thin aluminium alloy with a magnetic coating of iron oxide or nickel cobalt compound.

Constant speed

The top and bottom disks are supported by a cover disk, and are only used for recording on the inner surfaces. The bottom cover disk usually has a number of radial slots which monitor the speed of the drive by inducing a pulse in a sensor as the disk rotates-it is essential for the disk to spin at full speed to keep the $\mathrm{read} / \mathrm{write}$ heads floating--and which also indexes the recordings. An air filter tached to the opening at the base of the - © prevents coarse particles of dirt from bring, and also at the base are attached :s to keep its balanee truc.
artridges or cassettes contain one
1 disk within a plastic cassette.
write heads may be already
wled within the disk or may come in m outside. 'The advantage of a disk artridge is the degree of protection it wijoys: but it is only suitable for small volumies of data.

There are two ways of organizing data on disk-by secter and by cy!inder. The cylinder consept is a hangover from the days when actual cylinders were used. and for some unimaginatife reason the disk is looked upon as if it were a cylinder. Thus on a pack with ten recording surfaces eacl with twenty tracks similar to the closed groove on a gramophone, the space is first of all filled on the first track on side onc, then to the first track on side two, then to the same track on side three and so on until side ten is filled. Then control is given to the second track on side one and the process repeated.

The sector method is to divide the surface of the disk into wedge-shaped sectors, so that when reading or writing information the disk, track and sector is specified. This allows for greater precision in seeking during rotational position sensing. The more tracks and sectors the more precise can be the placing and finding of data and the shorter the search time, also the more tracks there are the more data can be packed in. If the packing density rather than the number of tracks is doubled, the transfer rate is also doubled which may lead to problens, and the soft. ware is also more complex. Telex claims to be the only manufacturer which markets a double-track density disk in this country.

Variable life

Obviously the mantufacture of disks is a highly precise operation and the length of their life varies from manufacturer to mamufacturer--for example the balance weights on the lower disk may start to come off and the pack begin to wobble.

'The mamiacture of disks is a highly precise operation and the lengeh of their hife varies from manufucturer to mamufacturer. . .

It is therefore essential that disk paeks should come from a reliable maker. (A list of the major companies making disk is given at the end of this article.)

The IBM 3330 is regarded by some people as the ullimate in disk storage and it eertainly meets the requirements of high performance and a very high level oi availability. Jack l.leweltyn of lisa describes here the capabilitics and operation of these units.

Reliability and Serviceability

'When System/ 370 was launched it was apparent to many computer users that the more powerful processors used in this range were fully complemented in parformance characteristics by the now 3330 disk storage drive. In the last few months the instaliation experience of 370 nisers with 3330 disk units has confirmed the performance advantage of the new duc: between processor and store. Howerer. the final verdict on the 3330 will provably dwell on the greatly increased reliability and serviceability of the product.
'In many senses the complete picture presented by the 3830 disk controller and 3330 disk drive unit represents an inversion of people's experience with advareed technology. It is usual to associate tarse increases in performance with ratho: higher risks of failure and unavallability. But the $3830-3330$ technology story telis not only of "outperforming", but also of "sweeter running".

The essence of the new approach to disk drive performance starts on the ?Oh surface of the 3336 disk pack. The othe 19 surfaces are available to the user: the 20th is turned into a control surface during manufacture. It has become known as the 'scrvo surface' because of the way in which it feeds back signals to the disk drive head positioning actuator. Through this feedback technique the heads follow the tracks and receive maximum signa! strength. A further effect of the servo iss. tem is to allory track following to tatie place even though the track does not ran precisely true. In this way. a complotely new order of reliability is gamed and, at the same time, the recovery procedures can be improyed on although the serro system is not the first line of defence against error. Before the system comes to a halt, the error correcting codes ensure that any error of up to 11 conimuous bics of information can be corrected on the fly. The next stage, if the error is spread one more than 11 bits, is initiated by the con. trol unit without consuming processor time and consists of a number of retties. In many instances, the error disappears of can be put right by the correction coll To prevent a build-up of malfunctions : cont pate ! !

Company	Ampex Great ErifainLtd, Nere Road, Reading, Berks.	BASF United Kingdom Ltd, 197 Knightsbridge, London S.W.7.	- .			Burroughs Mare: A.td, Heatirow house, Batir Road, Cranford, Mddx.
rype	Disk file system	6111 disk drive	6114 disk dive	6214 disk drive .	6230 disk drive	B 9370-2 systom meniory
Storage medium	IBM 2316 or equivalent pack	BASF 618, IBM 1316 or similar pack	BASF 621, IBM 2316 or stimilar pack	BASF 621 pack or similar	BASF 626 disk pack	Fixed head per thact disk
Host system	IBM System/360	IBM	IBM 360/30 upwards		ISM 370	B 2500/3510/4700/6700
Control unit	DC. 314	18M 2841	BASF 6014 or similar	BASF 6014 or similar	BASF 6030	8371
Drive	DM-312	6111	6114	6214	6230	B 9370-2
Number of disks per control unit	Up to 8				Up to four	1-2
Surfaces/pack	20	10	20	20	19	-
Trachsisurface	20	200	200	200	404 plus 7 spare	100
Sectors/track	-	-	-. ...	-	- .	100
Heads						100
Capacity: mega. bytes/pack	29.17	7.25	$29 \cdot 17$	58.34	100	2
Access time (av) Geek time (av)	32 ms	10 ms	12 ms	12 ms track to track	30 ms	17 ms
Rotational delay (av)		12.5 ms	12.5 ms	12.5 ms	8.3 ms	34 ms
Transfer rate (bytes/sec)	312,000	150,000		312,000		291,000
Eperimen configuration					:	B. $371+$ B $9370 \sim 2$
Montily rental for this confly.						£245

. ${ }^{\text {, }}$:					Gonitrol Da Control Da 2an St. Jun London, ss	a btd. a blouse, es's Su. 1			Data rocorc Instriment Hawthome Staines, Md	ang co. i.td., Road, dx.
89372	B 0372	B 9376-2	B 9974-1	B 9974-2	B 9974-2	821 duta file	841 multiple disk drive	$\begin{aligned} & 7638 \text { disk } \\ & \text { fle } \end{aligned}$	844 disk storage unit	Seriés 4000 (4091\&4043)	Scriés 30 310 and $3: 2$
Fixed hoad disk	Flxed head disk	Fixed head dick	Disk pack	Disk pack	Disk pack	fixed disk	871 pack	fixed dishs	872 pack	13M 5440 cartridge	18N 2315 cartricore
[32500/3500/	B 3 200/3500	B $2500 / 3500 /$	B 4.700/	B 47001	B 4700/	3000 series	3000 series	CYBER 76	3000 series		
4700/6700	4700/6700	4700/0700	$0 \% 10$	6700	B700	or CYBER 70	$\begin{aligned} & \text { or CYBER } \\ & 70 \end{aligned}$		or CYBER 70		
83,373	13373	B 373	B 387	B. 388	B 388	3553 .	3553	(included)	7054	OEM	OEM
B 9372	B 0371-2	B 9371-4	B 94872 or 3	B 9488-1	B 9488-2	821	841	7638	844		
1-5	1-5	1-5	1-16	1-16	1-16	-	3-8:1 spare	1	up to 8	Single	Shogle dish catildege
:	--	-	20	20	20	20	20	- ..	20°	2 and 4	2
100	100	100	406	406	406	-	-	-	404	$203+3$ spare	203:3 spare
100	100	100	-	-	.	- .	-	--	-	-	
100	100	100		-	-	20	20 .	-	- .	2 and 4	2
10	20	20	121 or 181	121	242	419 or 838 m.chs.	36 m.chs	800 m .chs	109 m.chs	25 and 50 M bits	$\begin{aligned} & \therefore 12 \text { and } 24 \mathrm{M} \\ & \text { bits } \end{aligned}$
20	23	40	. 42.5	42.5	$42 \cdot 5$	87.5 mis	75 ms	87.5 ms	30 ms	38 ms	60 ms
0	0	0	30	30	30	75 ms	60 ms	75 ms	20 ms	-	-
40	46	80	25	25	25	12.5 ms	15 ms	12.5 ms	10 ms	12.5 ms	20 ms
208,000	377,000	400,000	312,000	625,000	625,000	$420,000 \mathrm{cps}$	$420,000 \mathrm{cps}$	42 m cps	880 mcps	2. 5 MHz	781 and 1562kHz
$\mathrm{B373}+$	$8373+$	B373 +1	B387 +	B388 -	B388 +	$821+3553$	$3 \times 841+$	7638	$844+7054$		
$9371-1$ $9372-5$	$9371-2+3$ $\times 9372-7$	$\begin{aligned} & 9371-4+ \\ & 3 \times 9376-2 \end{aligned}$	948\%-2	9488-1	9488-2		3553				
(50M 51460	(60MB) ± 1370	(60MB) $f 1060$	£889 £1435	£1332	£1805	£1000	¢1000	$£ 4000$	£900		

- Information nad, :1\%.						;	IBM United Kingdora Lid. 389 Chiswick High Roast. London, W.4.
thangeable Drive	272 and 273	277	DSU 167	DSU270	DSU 180	DSU 190	5444
vemovable Disk pack	Removable disk	Removable disk	Removabie disk	Fixed disk	Removable disk	Removable disk	5440 dlsk cartridge and nixed-disk
Model 58	Series 200/2000	Series 200/2000	Series 6000	Series 0000	Series 6000	Series 6000	System/3
DSU 050	257/260	Integral	DSS 467	DSC 270	DSS 180	DSS 190	In cpu
DSU 162 ,	272 or 273	277	ADU 167	DSU 270	DSU 180	DSU 190	-
2	8	8	$8(+1)$	20	$16:$	16 (32 dual crossbarred)	1 or 2
10	10	20	20	8	20	$19(-+1)$	2 or 4
203	200	200	200	150 (3 zones)	200	404	200 or 50
	Varlable	Varlable	10	34 (Av.)	18	30	- . .
10	1	1	20	head/track	20	$19(1-1)$	2 or 4
5.760,000	9.2 or $18.4 \mathrm{~ms} \mathrm{chs}$.	64 chs.	15 chs.	15 chs.	27.5 chs.	133 chs.	$2 \cdot 45$ and 4.9
72.5 ms ,	62.5 ms .	46.5 ms .	-98 ms.	26 ms.	46.5 ms .	38.3 ms .	269 and 153 ms .
60 ms .	50 ms .	34 ms .	85.5 ms ,	none	34 ms .	30 ms .	
12.5 ms .)	12.5 ms .	12.5 ms ,	12.5 ms .	26 ms .	12.5 ms .	8.3 ms .	20 ms .
156,000	$208 \mathrm{kc} / \mathrm{s}$	714	108 kc	273 kc (Av.)	416 kc .	1.078 kc .	199,000
	Control unlt + 2 drives	control unil :2 drives	5 drives	5 drives	10 drives	12 dilves	2 fixed plus 2 removabie
.	£744-5.900	£744-£900	£1,861 (5 yrs.)	£2,942 (5 yrs.)	£3,236	£5,410	£280

Itel International supply Models 714 and 715 disk drives in competition with the IBM 2314 drive, and the 7330 in competition with the IBM 3330 .

Company		Potter Data Products litd, Station House, Harrow Road, Wembley, Middx.		Racal Thermionic Ltd, Hythe, Southampton, Hants.	Rank Zero Division, Empire W Middlesex	td, RXDS k House, Wembley,		
Type	655	4314/4314	5330/4330	Singer Librascope,	7202	7203	7204	7212
Storage mediam	955 disk pack	2316 IBM disk pack or equiv.	IBM 3336 disk pack or equiv.	Fixed disk	Disk	Disk	Disk	Disk
Host system	NCR Century	IBM 360-370	IBM 370		Sigma 3-9	Signa 3-9	Sigma 3-9	Sigma 5-9)
Control unit	625-101	DC 5314 :	DC 4330		7201	7201	7201	72.11
Drive	655-101/102/201	DD 4314-1	DD 4330	Fixed	7202	7203	7204	7212
No. of disks per control unit	Up to 8 (4 dual)	$2-8+1$ spare	2-9	\cdots	1-8*	1-8	1-8	1-4
Surfaces/pack	6	20	20			2	4	4
Recording surface	192	200	400		128	256	-512	64
Sectors/track	8		-	Customer specifled		16	16	
Heads	12 movable	20 movable -	Movable.	Up to 256	Fixed	Fixed	Fixed	Fixed
Capacity megabytes/disk	$4 \cdot 19$	$29 \cdot 17$	100	18×10^{6} Bits	0.75	$1 \cdot 5$	3.0	$5 \cdot 3$
Access time (av)	$44 \cdot 7$	27 ms	25 ms	10 ms	17	17	17	
Seek time (av)	-	6 ms	3.5 mm	NA		0	,	
Rotational delay (av)	20.8	12.5 ms	8.33 ms	Included in access time	17	17	17	17.
Transfer rite (?utos/sec)	108,000	312,000	806 Kb	80K	188,000	188,000	188,000	3,00,000
Specimen contiguration	4 spindies control	$\begin{aligned} & D C 5314+9 D D \\ & 4314 \end{aligned}$	$\begin{aligned} & \text { DC } 5330+ \\ & 8: 4330 \end{aligned}$,	$1+\mathrm{CTL}$	$1+$ CTL	$1: \mathrm{CTL}$	$1+\mathrm{CTL}$
Monthily rental for this combtia	Not availiblo	On application.	On application	Front $\ddagger 1500$	£285	£345	£465	£870

		.		\vdots	Memorex Comozation, Sfivesticuse. St. Ives Road, Maidonbeati, Berks.			The ivationat Ronister co. lu. 2uG Faryteliona Rond. fondion, fiw;
2815	2802	4420	4425	2815.	620 storate drive	630	660 storage drive	657
EDS 60 ciisk cartridge	EDS 8 disk cartridge	EDS 30 disk cartridge	EDS 8 disk cantridge	EDS 60 disk cartridge	1316 or equivaient.	Memorex Mark. 1, IBM 1316	Memorex Mark VI_{1} IBM 2316	957 disk pack.
4-50 up	All 1900	4-50 up	4-50 up ${ }^{\text {- }}$	1902A up	IBM system 360-20	$360 / 25$ up	IBM 360/30 up.	NCR bentury.
4312/2	2802/0	4312/0	4310	2812/3	\rightarrow	2841 or in Cph	661	625-201
2815	2802/3	4225	4425	2815 (buffered)	2311 model 11	IBM 2311-1		57-101/102
3-9	1-8	1-9	1-8	3-9		6	11	Up to 8 spinciles (4clualspinderomis.:)
20	10	20	10	20	10	100	20	20
400	200	203	203 .	406	203 .	$200+3$ spare	$200+3$ spare	203(: 3 spares)
variable	8	variable	variable	15	20 or 32			$1 \text { or } 8$
			,					
:rovible	movable	movable	movable	movable	movable	.		
58.34	8.19	$29 \cdot 17$	7.25	61.4	7-25.	$7 \cdot 25$	29	29
47.5	97.5	87.5	97.5	47.5	50 ms .	50 ms .	50 ms .	60 ms .
35.0	85.0	75.0	85.0	35.0	-	-	-	-
$12 \cdot 5$	12.5	12.5	12.5	12.5	25 ms .	-	-	12.5 ms .
312,000	208,000	312,000	156,000	416,000	156,000.	156,000	312,000	315,000
$\begin{aligned} & 2815 / 9+ \\ & 4312 / 2 \end{aligned}$	8 drives - CTL	$\begin{aligned} & 4420 / 9 \div- \\ & 4312 / 0 \end{aligned}$		9 drives + CTL	\therefore			$\begin{aligned} & 4 \text { spindles } \& \\ & \text { control } \end{aligned}$
-							*Model 670 also available	Not available

			-	Sintrom Electronics L.td., 2 Arkwright Road, Reading, Berks RG2 0LS	- -	Tally Ltd, Cremyll Road, Reading, Berks.	Telox Comipu (UK) Lito., 213 Oxford St London, W.1.	Products
1232	7242	7246	72428	Moving head disk systemi	Fixed head disk system Series 1700	EDP 2000/3000/4000.series	5314 storage system	5311
Disk	Disk pack	Disk pack	Disk pack	2315 type cartridge	Data disk 7200	Single disk	IBM 2316 pack	1316 ciisk pach
Slgma 3-9	Sigma 3-9	Sigma 3-9	Sigma 3-9	Most minicomputers	Most minicomputers	Most minicomputers	IBM 350/370	18M 360
7231	7240	7240	7240.	2923/3110	Data clisk 1200		Telex 5328	18M 284-1
7232	7242	7246	72428	DRI Series 30/33 .	7200		5312	5311
1-4	1-8	1-8	1-8	4-8	1-4 (depends on computer)	1-4	1-9	1-9
4	20	20	20	2	2	8-128	20°	10
512	200	200	200	203	4-64		203	
12	6	6	6	8, 12, 16, 24 standard	at customer demand	To customer requirement	-	
lixat	Movabie	Movable	Movable	2	Ono pertrack	One per track $\quad \cdots$	20	10
,	49.2	$24 \cdot 6$	$98 \cdot 3$	12/24 (single/double (densily)	up to $2 \cdot 2$	0.4-6.0.M.bits	29.	7.25
17 :	$87 \cdot 5$	87.5	87.5	80	20	$8.5 \mathrm{~ms}, 17 \mathrm{~ms}, 17 \mathrm{~ms}$ resp.	$\therefore 30 \mathrm{~ms}$	30 ms
0 引	$75 \cdot 0$	$75 \cdot 0$	75.0	60			- .	
17	12.5	$12 \cdot 5$	12.5	20	20	$8.5 \mathrm{~ms}, 17 \mathrm{~ms}, 17 \mathrm{~ms}$ resp.		
384,000	312,500	312,500	312,500	195k	500k	$3 \mathrm{~m}, 1 \cdot 5 \mathrm{~m}, 2 \cdot 54 \mathrm{mi}$ (bils)	312.000	156,000
1-CTL	$1 \because C T L$	$2+$ CTL	$1+C T L$	8 packs + controller + Interface to PDP-8 or 11	4 M words store + PDP8 i/F		C $\div 5$ drives	$3 \because 5311$
£.715	$£ 655$	$£ 730$	$£ 950$	$£ 660$	£1,650	From $£ 1.500$	From 5820	5.516

come. from p 37
the system, all instances of re-try attempts are logged within the control unit for engineering investigation. This means that incipient errors can be recognized and corrected. rluring scheduled maintenance, before they cause failure of the unit.
However, there are occasions when the re-tries fail to recover from the error and it is in these instances that the track following systom is used after converting it into a track deviating system. One of the likely causes of persistent error rests with minute damage or dirt on the track. liy reading deliberately to one side or the other of the track path, enough signal is murnally collected to enable a correct reading to be obtained.
It should be emphasized that most of

* the error recovery procedures are controlled by the disk channel and the 3830 control unit. In these 370 control units very advantage has been taken of the relatively low cost of integrated circuits inday. The increased density of compons:nts which can be mounted within a
single circuit packape has created the apportunity for speeding up the process of fault finding. The trick is to try to put a complete logical function in a single electronic pack. The diagnostics help with locating the faulty function and the more lucid layout of circuit package helps to simplify the curative process. Using micro. programs, the control unit acts as a data logger and process monitor over all drive and channel activity. Quite apart from keeping track of transient or soft errors, the control unii diagnostics are invaluable to the user when a hard error finally occurs. And because the various disk.
drives are attached to the 3930 like the spokes of a wheel, servicing one dive does; not affect the availability of the others to the axious central processor.

The last point emphasizes what we mean by availability. The availability of a product to the user is a combination of reliability and serviceability aspects of design and production: The 3330 has achieved a much higher standard of reliability by being a disk drive whis: eflectively driven from any disk pack. I: approach assures the user of tull inter: changeability and true backup facilities from any 3330 equipped installations.

Disk suppliers
BASF United Kingdom 197 Knightsbridge, Londan S.W. 7.

Control Dati.
22 St. James Square.
Loniton S.W. 1.
Dataset Lid.
Arnna Housra, Herts.

Funn Continuous, New Continuous fouse. Burslom.
Stoke-on-Trent, Staffs.

Friden Ltd,
101 Blackfriars Road.
101 Blackfriars
London S.E.

Mastertape (Magnetic) Bhackthorne Road. Pyle Trading Estate. Colnbrook, Bucks.	Rank Xerox Data Systems,
	York House,
	Empire Way,
	Wembley, Mddx.
Memory Magnetics,	
Alder House,	
1 Aldersgate Street.	
London E.C.1.	928 High Roud. London N .12
Minnesota Mining \& Manutocturing,	
3M House,	
Wigmore Street,	
London W.1.	41 Grays Itn Road.
The National Cash London W.C.L.	
Register Co.	
202/216 Marylebone Rd, -	
Londori N.W.1.	
	Zonal Films lid,
Precision Data Co.	Holmethorpe Aver
Angel Road Works,	Redlsill,
London N.18.	Suriey.

8. In many cases real - time extraction of information from huge files can be replaced by a small file extracted off - line and introduced via panched cards and 1050 into a few workspaces.

A Survey of APL Compatible Terminals

Harley P. Macon
Senior Operations Research Specialist
American Can Company
In the absence of APL program products from manufacturers other than IBM, the terminals described are those which interface APL/360 and APL/370. In some cases additional equipment is required for such interfacing (i, e., the Memorex 1270 controller when using Memorex 1240, 1241, 1242 terminals or the Teletype model 38).
APL compatible terminals are now available in a wide variety of types and capabilities. . The devices described fall into two broad categories.

1. Keyboards with printers.
2. Keyboards with video displays.

Several devices which do not have (at present) the APL font are included because they may serve well in special applications where program execution only is required.
Where terminal costs are a primary concern the TELETYPE Model 38 is certain to have a significant impact. It is one-half the cost of the least expensive terminals available today. An appropriate font wheel is not currently offered but is certain to be forthcoming.
Those interested in computer graphics will take special interest in the IMLAC PDS-1 which has a full graphics capability, can display the APL character set (in fact any character set), and readily interfaces to APL.
Finally several devices not fully described but which may interest users in the APL community would include:

1. The TSP-212D plotter which is readily interfaced to a storage tube display.
2. The Hewlett-Packard model 7201 A plotter.
3. Image Systems random access mass storage device (microfilm) which operates in conjunction with an APL terminal. Maximum time for retrieval and display is 4 seconds.
Chart I is a list of manufacturers, their addresses, and the abbreviations used in the tables.
Table I is a descriptive list of all devices producing hard copy.
Table II is a descriptive list of video devices.

CIAARTM.

PRINTERS

Manufacturers

Anderson Jacobsen
2235 Mora Drive
Mountain View, Calif. 94040
415-968-2400
Computer Transceivers Systems, Inc.
317 Route 17
Paramus, New Jersey 07652
201-261-6800
International Business Machines Corp. Data Processing Division 1133 Westchester Ave.
White Plains, New York 10604

Itel

Information Products Division
2585 East Bayshore
Palo Alto, California 94303
Memorex Corporation
San Tomas at Central Expressway
Santa Clara, California 95052
408-246-6200
Novar Corporation
NOV:
2370 Charleston Road
Mountainview, California 94040
415-964-3900
Omnitec
OMNI
903 N. 2nd Street
Phoenix, Arizona 85004
602-258-8246
Teletype Corporation
TT
5555 Touhy Avenue

- Skokie, Illinois 60076

312-676-1000
Texas Instruments, Inc.
TI
Digital Systems Division
PO Box 66027
Houston, Texas 77006
University Computing Company
UCC
1300 Frito-Lay Tower
Dallas, 'Texas 75235
214-350-1211

Abbreviations

A.J.'
C.T.C.
1.B.M.
ITEL

MEM
MEMOMI
\squareTT
\qquad

.
.

VIDEO DISPLAYS

Computer Communications, Inc.
C.C.
701 W. Manchester Blyd.
Inglewood, California 90301
Computer Terminal CorporationC.T.9725 Datapoint Drive
San Antonio, Texas 78229
Incoterm Corporation INCO
Hayes Memorial Drive
Marlborough, Mass. 01752
Imlac Corporation IMLAC
296 Newton Street
Waltham, Mass.
MISCELLANEOUS
Hewlett-Packard
1501 Page Mill Road
Palo Alto, Calif. 94303
Image Systems
30 E. 40th Street
New York, New York
212-685-2120
Time Share Peripherals Corp.
Box 361
Wilton, Conn. 06897
203-762-3348

$\begin{aligned} & \text { Li } \\ & \text { E } \end{aligned}$	3 0 0 0					$\begin{aligned} & \dot{\oplus} \\ & \dot{A} \\ & \dot{H} \\ & \dot{y} \end{aligned}$			$\sum_{\varepsilon_{2}^{2}}^{\stackrel{\rightharpoonup}{4}}$	RES 2 2 8 0 0	咸	
A. 5.	841.	1	14.9	1,2,3	130, 156	54	Yes	134.5	4,5,10,34,40	3,12,31,32,35,3		
c.t.c.	300	T	10,15,30	4.	- 80	30	No	to 300	3,4,5,25.32.	21,26	(1)	
IPRi	1050	1	15	2	130	N.A.	Yes	134.5	5,37	$\begin{aligned} & 4,7,22,23,24, \\ & 54,46,50,52, \\ & 31,53,51 \end{aligned}$		
	2741	1	15		130/156	N.A.	Yes	134.5		$\begin{aligned} & 4,12,31,40,42, \\ & 44,48,51, \end{aligned}$		
	2740-1	I	15	,	130/156	N.A.	Yes	134.5	5	$\begin{aligned} & 4,7,12,36,37,46, \\ & 40,42,43,44,33, \\ & 51 \end{aligned}$		
ITEL	1021	1	15		156	87	Yes	134.5	40			$\begin{aligned} & \text { EIA } \\ & \text { RS232 } \end{aligned}$
	1051	I	15		156	92	Yes	134.5	22,40			$\begin{aligned} & \text { EIA } \\ & \text { RS232 } \end{aligned}$
MEM.	1240	I	$\begin{gathered} 10,15,30 \\ 60(0) \\ \hline \end{gathered}$	4	120	150	Yes (0)	to 600	6,44, 40,	$\left\{\begin{array}{l} 2,3,4,5,7,8,9,11, \\ 37,41,45,45 \end{array}\right.$	(1)	$\begin{aligned} & \mathrm{EIA} \\ & \mathrm{RS} 232 \\ & \hline \end{aligned}$
	1241	I	$\begin{aligned} & 10,15,30 \\ & 60(0) \end{aligned}$	4	120	150	Yes (0)	to 600	$6,36,45,40$,	$\begin{aligned} & 2,3,4,5,7,8,9 \\ & 11,37,41,46,47 \end{aligned}$	(1)	$\begin{aligned} & \text { EIA } \\ & \text { RS232. } \end{aligned}$
	1280	I	10,15,30	4	120	150	Yes (0)	to 1200	$\begin{aligned} & 6,13,21, \\ & 44,40 . \end{aligned}$	$\begin{aligned} & 2,3,4,5,7,8,9,11, \\ & 37,41,45,46 \end{aligned}$	(1)	$\begin{aligned} & \hline \text { EIA } \\ & \text { RS232 } \end{aligned}$
	1242	I	$\begin{aligned} & 10,15,30, \\ & 60(0) \end{aligned}$	4.	120	150	Yes (0)	to. 1200	$\begin{aligned} & 2,6,8,14 \\ & 37,40 \end{aligned}$	$\begin{aligned} & 3,4,5,7,9,11, \\ & 41,46,47 . \end{aligned}$	(1)	$\begin{aligned} & \hline \text { EIA } \\ & \text { RS232 } \end{aligned}$
Nov.	5-40-1	I	15	2	130		Yes	$\begin{aligned} & 134.5 \\ & \text { or } 300 \end{aligned}$	$\begin{aligned} & 2,5,6,7,8,12, \\ & 40,42,44 \end{aligned}$	$\begin{aligned} & 3,4,11,31,36,37 \\ & 43,45,47 \end{aligned}$		$\begin{aligned} & \text { EIA } \\ & \text { RS232 } \end{aligned}$
	$5-40-2$ \cdots	I	15	2	130		Yes	$\begin{gathered} 134.5 \& \\ 300 \text { or } 600 \text { or } \\ 200 \text { or } 1800 \end{gathered}$	$6,8,12,40,42$	$\begin{aligned} & 3,4,14,31,36,37, \\ & 38,39,45,47,48 \end{aligned}$		$\begin{aligned} & \text { EIA } \\ & \text { RS2 } 20 \end{aligned}$

TABLE 1

HARD COPY SEVICE FEATURES

1. Binary synchronous transmission
2." Automatic correction of transmission (line) error
2. Acoustic coupler
3. Modem
4. Parity check
5. Buffer 2 char.
6. Automatic EOB, EXT
7. Extended buffer
8. Split buffer (allows due preparation while simultaneously transmitting).
9. Repeat function
10. Numeric key cluster
11. Typamatic
12. Tape editing capability
13. Keyboard editing
14. Tape cassette
15. . Paper tape
16. Card reader
17. Card punch
18. Peripheral interface
19. Video display
20. Pin feed for paper
21. Carrying case
22. Terminal to terminal communications
23. Local/Communications switch
24. Reverse break - allows computer to lock keyboard
25. Polling and Addressing
26. Record checking (LRCC)
27. Special document handling
28. Header control
29. Dial up capability
30. Remote tab sef
31. Receive interrupt
32. Transmit control
33. Transmit interrupt
34. Tractor' feed
35. Unattended operation
36. Vertical forms control
37. Buffer receive
38. Print inhibit
39. EOT suppression (continuous transmission)
40. Audible alarm
41. Shared line capability
42. Auto fill character generation
43. Programmed keyboard
44. Additional printers

TABLE II

VIDEO DISPLAYS FEATURES

1. Upper case only
2. Upper and lower case
3. Character size
a.: $\quad 4 / 32 \times 3 / 32$
b. $\quad 0.14 \times 0.1$
c. Variable
d. N.A.
4. Numeric keyboard
5. Tapes
6. Modem
7. Rollup
8. Characters displayed are software determined
9. Automatic polling
10. Printer
11. IBM compatible tape drive
12. Multiplexer
13. - Paper tape
14. Software
a. Assembler
b. Test editor
c. Graphics
15. Tape cartridge drives
16. Lightpen
17. Tablet
18. Jaystick
19. Card reader
20. Acoustic coupler
21. Synchronous communications
22. Memory word size
a. 8 bits
b. 16 bits
23. APL characters (note characters are program defined)
24. Line sharing
25. Multiple cursors

TRANSMISSION CODES

1. Correspondence $=$ Selectric
2. $\mathrm{BCD}=\mathrm{PTTC} / \mathrm{BCD}$
3. $\mathrm{EBCDIC}=\mathrm{EBCD}$
4. ASCII

PRINTING METHODS

Impact - I
Thermal - T

GENERAL NOTES

1. Requires ASCII to EBCDIC conversion of incoming data using a device such as the Memorex 1270 Terminal Control Unit.
2. Cannot use public telephone networks.
3. Has second tape cassette drive
4. Uses strip printer
5. The availability of an APL font on the print wheel would make this the most economical terminal for APL.

DISPLAY TERMINAL STATISTICS

Line insert-with the cursor at the beginning of a line, pressing a "line insert" key moves that line and all subsequent lines down.

Line delete-with the cursor at the beginning of a line, pressing a "line delete" key causes the line below to replace that line and all subsequent lines to move up.

Roll-up-on a 20 -line screen, typing a 21 st line causes the first line to disappear, all other lines to shift up, and the 21st line to appear at the bottom.

Roll-down-assuming roll-up capability, can a special key cause line one to reappear and line 21
to disappear, reversing the roll-up characteristic?
Tabulating feature-can tabs be set so that pressing a "tab" key will move the cursor to a predetermined position, to the right or down?

Vector generation-is a true generation technique used to draw lines on the screen? Or can the dots that normally form dot matrix characters also create vectors such as curves or lines.

Cursor type-blinking, character-underlined, etc.
Split screen capability-one part of the screen can display variable data, while the rest contains a fixed format.
"How should I select a crt terminal?" Ask that question to ten people and you'll get ten different answers. And each will have impressive collections of statistics with which to back up their contentions. The prospective buyer may, himself, have access to sophisticated and expensive services which provide a great deal of data, most of which is updated periodically. Or he may rely on computer periodicals for similar information.

A sound method of data reduction is particularly important when selecting a crt terminal because there are now over 40 U.S. manufacturers producing between 60 and 70 models, and using from 20 to 40 different specification categories. The simplified method described here reduces all data into summary tabular form. Final analysis may then be made with confidence, based on that summary.

The procedure divides into four operations: data collection and tabulation (gather all up-to-date material, define terms, list the information, and note inconsistencies for later analysis if needed), calibration of specifications (form weightings based on the application or on expert opinion), scoring the matrix (organize data, calculate the weighted values, and compare), and analysis (study, in depth; all the equipment scoring higher, and a few which score lower but seem comparable).

The first step in any selection procedure is collecting information to form a current data base. Many computer shops have outdated equipment comparisons published by various services. Often; the companies subscribe to a service for a year or two, drop the subscription, and rely on the old data. Most offices also have collections of suppliers' brochures picked up at various conferences. Both of these situations can cause mistakes. So to eliminate this risk, new data should be requested from potential sup-pliers-and in a specified form.

Since semantic difficulty is always a constant problem in the edp field, the user must do some research before comparing peripherals. He must set the definitions and specifications that are meaningful to him and request precisely that information.

For this article, a technical questionnaire-designed to be filled out easily-was sent to 37 crt display terminal manufacturers. All information in the tables was obtained directly from the producers via the questionnaire.

The following definitions apply to crt terminals:
Unit cost-basic retail sale price of one unit, excluding quantity discounts, optional features, installation fees, and maintenance contracts.

Display area-height and width, in inches, of the area of screen used to display characters.

Spot diameter-diameter of the focused spot on the screen, in mils.

Character generation technique-dot matrix (5×7, 9×11, etc.), stroke, monoscope, or other.

Deflection method-magnetic, electrostatic, or other.

Brightness-in foot-lamberts. If crt model uses a screen (colored or polaroid), give brightness with screen in place.

Characters per line
Lines
Maximum displayable character positions-characters per line multiplied by the number of lines. Does not include characters stored in memory.

Character size-height and width, in inches, of the character font used.

Controller separate-is the controller logic built into the terminal?

Controller size, if separate- height X width X depth, in inches.

Memory type-delay line, core, mos/LSI, etc.
Characters in memory-number of characters which can be held in storage at one time.

Rate-speeds ' (basic and optional) in baud at which the model can operate. List optional as well as basic data.

Output code-usascir, ebcdic, etc.
Terminal size, including keyboard-height \times width X depth, in inches, assuming that the keyboard is attached to, or flush with, the crt case.

Detachable keyboard?-answer yes, no, or o for optional.

Character typeover-with the cursor over a character, pressing a key replaces the character with a new one.

Character insert-with the cursor over a character, pressing an "insert" key displaces that character, and moves others one space to the right.

Character delete-with the cursor over a character, pressing a "delete" key causes the character under the cursor to disapper and everything to the right shifts one space to the left.

DISPLAY TERMINAL COMPARISON ：

－								$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { W. } \\ & \stackrel{H}{0} \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { i } \\ & 0.0 \\ & 8 \\ & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \text { 苟 } \\ & \text { N } \\ & \text { 区 } \end{aligned}$				8． 品 $\stackrel{1}{4}$		
1．Cost por Unit																							
2．Display Area Size （hxwxd－inches）		－－＋	－	＋	－		－	－			＋				－	－	－	－		－－			＋－
3．Spot Diameter（mils）		+ ＋		＋			－	＋		＋	＋	－			＋	＋	＋	＋－		＋－	＋		＋
4．Character Generation Tecinique		－＋＋	－	＋	－		－	＋		－				－		－	＋	＋＋		＋＋	－		＋
5．Dafloction Method	1	＋																					
6．Brightness（Foot－ Lamberts）	3	＋＋	＋	＋	＋			＋		＋	－	＋			＋		－	＋		+ －	－		＋－
7．Characters par Line	3	＋＋＋	$+$	＋	＋		－	＋		＋	＋	＋		＋	＋	－	＋	＋		＋			＋＋
8．Linos	3	$-\quad+$	－	－	－		－	－		－	＋	－	－		－	－	－	－－	＋	＋	－		－－
9．Maximum Displayable Character Positions	3	＋	－	－			－	－			＋	－			＋	－	－	－－		＋	－		－－
10．Size of Character （hxw－inches）		＋＋		＋	＋		＋	＋								＋	＋	＋		－－	＋		＋
11．Is Controller Separate？	3	－		－	－		－									－	－	－		－			
12．Type of Mamory	1	－＋－	＋		－		－	＋		－		＋		＋	＋	＋	－	－，－		＋．	＋		－
13．Characters in Memory	3	＋－	－	－	－		－	－		－		－			＋	－	－	－＋		－－			－－
14．Rate（Baud or bps）	2	＋	－		－		－	－		－	－	－		－	＋	＋	－	－－	－	－－＋	＋		－＋
15．Code for Output	2															－							
16．Sizo of Torminal，Inci． Keyboard（hxwxd－inchas）	1	＋＋＋	＋		＋			＋						＋		＋	＋	＋＋		＋＋			＋
17．Is Keyboard Detachablo？	1	－	－				－	－		－	－	－		－	－								
18．Coneroller，If Separate （hxwxd－inches）	1	－		－	－		－									－	－	－		－			
19．Character Typoover？	3										－												
20．Character Insort？	3	－		－			－	－		－				$-$			－			－			－
21．Character Delete？	3	－		－			－	－		－				－			－			\bigcirc			
22．Line Insert？	2	－－－		－	－		－	－		－	－	－		－			－	－		－－			
23．Line Delete？	2	－－－		－	－		－			－	－	－		－			－	－－	－	－－			－
24．Roll－up Feature？	1	．－		－	－		－			－							－	－－		－－－			－－
25．Roll－down Feature？	1	－－－	－	－	－		－			－	－	－		－			－	－－	－	－－－			－－
26．Tabuiating Featura？	1						－											－					
27．Vector Generation？	1	－	－	－			－	－		－		－		－	＋	－	－	－－	－	－－－			
28．Type of Cursor？	1																						
29．Split Screen Capability？	2	－		－				－									－	－					－
30．Partial Transmit Capability	2	－			－			－			－												
31．Audibie Alarm for incoming Messages？	1	＋	－	－			＋			＋		－		＋	＋	＋	－	－		－－			－
Total Plus Score．		101820	8	15	11		3	15		11		7		6	19	9	11	1413	12	216	9		1111
Total Minus Score		161918	20	29	26	4	31	28		31	21.	21	26	6	6	24	37	2421	28	61920	21		3617
Nat Score		－6－1＋2	－12	－14	－15			－13		20	－6	． 14	－20		＋13	－15	－28	－10－8	－14	4 －3．13	－12		－25－6

Key so Codo：$\quad+=$ Probably superior to Terminal X －a Probably inferior to Terminal X
comparison technique, and is not intended as an absolute ranking of display terminals. It is based on only 24 of the models for which information was supplied, and therefore does not reflect the total universe of products supplied by these vendors. Also, nine manufacturers did not reply, and a user interested in a true and total comparison would have to persist until he received suitable replies from all sources.

To illustrate the scoring matrix, compare the technical specifications of Terminal X with those of the Alphacom DW-33 in the statistics chart. In the second category, display area size, Alphacom provides fewer square inches than Terminal X. Therefore, a minus is placed in that position in the comparison table. Comparing spot diameter, Alphacom's focus point is smaller (offering a potentially crisper character image), so it rates a plus in the appropriate column.
When all comparisons are finished, all the plusses and minuses-multiplied by their weightings-are added and the net result listed. Alphacom for example scored +10 and -16 , netting a - -6 .

Scoring matrix results indicate that terminals with a net plus score are probably superior overall to Terminal X from the viewpoint of the people responsible for the weightings, while those with a negative score are probably inferior. Since the weightings reflect the specific application, or the biases of the users asked for their opinions, they are usually valid only for a current study. Comparisons of terminals for other applications would probably pro-

duce different weighting systems, which, in turn, would generate different net scores.
All candidate terminals should be listed in descending order of their scores; a selection is made consisting of all those with a positive score, and several with negative scores but which seem to have qualities similar to those offered by Terminal X. A final listing can now be made, by cost, and analysis of the remaining candidates can begin.

Corning Data Systems' terminal, at \$19,650, caters obviously to a different market and need not be considered further. Also note that the questions raised earlier about the Bunker-Ramo and IBM terminals do not need to be answered since neither made the final list.
Only six terminals remain that compare closely with Terminal X. Atlantic Technology and Stromberg DatagraphiX are similar but cost $\$ 1,700$ more. Further investigation shows that they are compatible with IBM mainframes. If the application requires an ibm computer, and if Terminal X doesn't ofer this feature, these terminals might be worth the additional cost.

Assuming that Terminal X is made by a fairly new company, it corresponds in that respect to all of the remaining terminals with the exception of Univac's. The Uniscope 100, at half the price of Terminal X , must be considered prime competition for two reasons. First, many users prefer the security of purchasing from an established firm, and second, Univac maintains a competent nationwide service organization. So salesmen from the other candidate companies must be questioned in detail about their maintenance facilities and procedures. The remaining three terminals, Alphacom, Delta Data Systems, and American Data Systems, all seem to ofer comparable or superior features at a lower cost than Terminal X. But Terminal X, which happens to be Incoterm's SPD 10/20, is programable, making it more flexible than the others. All of these should rank behind Uniscope in the summary chart.

The result of this evaluation has been to reduce the original 24 models to four. If the application requires extreme emphasis on one or two terminai characteristics, such as editing functions, the field can be reduced even further.

空茳	$\begin{aligned} & 8 \% \\ & 5 \\ & 8 \\ & 8 \\ & \frac{6}{6} \\ & 6 \\ & 0 \end{aligned}$							$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 8 \\ & \frac{8}{2} \\ & 5 \\ & 5 \end{aligned}$
\$340/Mo:	\$4.350	\$8.325	55,670	\$8,5001Est.!	\$2,995 \$	\$2,383	\$4,980	\$3,646
10×5	7×9	8×5.6	7×0.3	$B \times 0$	$8 \times 5 \quad 6$	64×9	7K×9\%	5×10
20	15	$3{ }^{3}$	20	NA	50	15	20°	NA
Stroke	Monoscope	Monoscopa	Stroko	Charaction	5×7 dot. 5	5×7 dot	$5 \times 7 \mathrm{dot}$	Stroka
EM	M	M	M	M	M	EM	M	EM
- .								
13	50	50	30	40	40	27	40	22
80, 64	40.80	64.61	$\begin{aligned} & 64 \mathrm{H}, 52 \mathrm{~V} \\ & 84 \mathrm{H} \\ & (0) \end{aligned}$. 80	80	60	80, 64	32,64, 60
12, 16	12.16*	20.14	82H. 48 VV	36	24. 12 (0)	20	12, 15	6. 12, 16
- 0601	10.40, 1.472 (0)	1.134, 1.782 (0)	2,688	2,880	1.920	1.000	960	1,024
. $13 \times .18$	- $21 \times .16$. $14 \times .10$. $13 \times .08$. $13 \times .09$. $10 \times .08$.	. $19 \times .13$. $12 \times .08$. $16 \times .12$
Yas	Yas	No	No.	Yes	No	No	Yos	No
Delay	Ditay	Delay	Dalay	Datay	MOS	mos	Delsy	Coro
080	1.040	2,268	700	1,100	2.048	1.000		1.024
ASCl!	ASCII	ASCII	ASCII	ASCII	ASCII	ASC!	ASClI	ASCII
.			.					
16/18/26	16/18/24	14/17/30	18/10/28	16/14/30	16/20/21	12/14/17	15/14/19	12/18/28
Yer	Yes	Yes	Yes	No	No	Yos	Yas	Yos
27/15/26	15/20/25	NA	NA	14/12/23	NA	NA	12/17/12	NA
Ya	Yes	Y_{68}	Ves	Yos	Yas	. Yos	Yas	Yos
No	Yes	Yas	No.	Y*i	Yes	Yes	No	Vei
No	Yes	Y*s	No	Yes	Yos	Yas	No	Yas
No	No	Yes	No	No	Yes	Yes	No	Yos
No	No	No	- No	No	Yas	Yes	: No	Yor
No	No	No	No	No	0	Yas	No	No
No	No	No	No	No	0	Yai	- No	No
Yes	Yes	0	Yos	Yes	Y6s	Yes	Yas	Yes
No	No	No	No	No	No	No.	Partisi	No
CUIStand	6 Invarted L	cu/steady	UB	Squareb	cu/steedy	y. Ca	cu	Rt. Angla
No	Yes	0	No	Ves	- Yer	Yes	No	Yos
Yor	Yas	Yes	Yas	Yes	Yes	Y 03	Yes	Yes
No	No	- 0	No	0	No	VE:	No	UN
			,					

Partial transmit capability-data in various parts of the screen can be transmitted without sending the entire display.

Audible alarm for incoming messages-an incoming message, or a code asking the operator to interrogate the computer, activates an audible alarm such as a buzzer or a bell.

Of the terminal makers polled, 26 responded, and the information was tabulated. The tabulation such as the Display Terminal Statistics chart, shown on these pages, should be performed directly by the user so he gets a feel for the data, and recog-
nizes inconsistencies which he may eventually question. Some apparent inconsistencies were noted during the tabulation of this study. In the Display Terminal Statistics chart, for example, the price of the Bunker-Ramo terminal is listed as $\$ 1,825$. This seems exceptionally low for the qualities provided, and for the pricing history of its manufacturer. Perhaps the price applies only to the display terminal, and the controiler (absolutely necessary to make any terminal work) is priced separately. In another instance, IBM replied with monthly rentals for their terminal and controller. But the user must have the actual purchase price in order to compare properly. He must also know, either from experience or by questioning the vendor, that "factory quote" for the Conrac terminal means that it can be bought only as oem equipment, and that an end-user must make arrangements through another vendor.

One major advantage of this comparison system is that such inconsistencies as those just described don't have to be resolved immediately. They become meaningless if the terminal doesn't qualify for the Final Summary table on page 45 . So they are noted and set aside until needed.

Havimg collected all restimeme data, the next step is to weight each of the specifications. The user can do this if he knows his application well, and understands the relative importance of each category. If the comparison is being made by a vendor testing his product against others, or by a corporate stafi member-who might be unfamiliar with the details of the application-opinions should be collected from users, and the weighting system formed from these factors.

A simple weighting system has proved quite adequate to reduce the matrix. A weight of three was applied to very important factors, two for less important factors, and one for unimportant features.

These weightings, which are listed under the appropriate columns in Display Terminal Comparison chairt on page 44, reflect the collective opinion of over 80 display terminal users throughout the country. To form effective weightings, the user must know which technical methods are best. Using character generation as an example, a 7×9 dot matrix is generally superior to a 5×7 matrix since the resulting character is clearer. Furthermore, since a stroke technique probably produces an even sharper character, a terminal with this method would rate higher than either of the dot matrix terminals.

To illustrate the comparison process, the name of one vendor has been deleted without his knowledge, and the designation "Terminal X " substituted.

Terminal X will be compared to every other terminal for each of the defined specifications. Where the terminal feature under comparison is superior to Terminal X , a plus ($(+$) sign is placed in the table; where the subject feature is considered inferior, a minus (-) sign is entered in the table.

Remember that the information here illustrates a

The Datapoin 3000 was developed to provide the time sharing user with an inexpensive, interactive display terminal with full-screen teletypewriter compatability. The terminal is attractively styled and quiet enough to fit the most critical office environment.

The Datapoint 3000 operates at data rates of $110,150,220$, and 300 bits/second (10, 15,20 , and 30 characters per second), and can be used with a Datapoint 3300 Thermal Printer for hard copy. A separate eleven-key number pad and ten function keys provide a functional keyboard arrangement.

FUNCTIONAL CHARACTERISTICS

Screen Size

12 inch rectangular tube
Character Size
$0.16^{\prime \prime} \times 0.11^{\prime \prime}$
Number of Characters 1800

Characters Per Line 72

Number of Lines
25
Refresh Rate
60 frames per second
Character Set (ASCII)
27 alphabetic
10 numeric
26 special

Controls

Cursor: up, down, right, left, home up, home down
Erase: to end of line, to end of frame
Frame roll: up, down
Power: on, off
Mode: remote/local
Transmission: full duplex/half duplex Rate: 110, 150, 220, 300 bits/second

PHYSICAL CHARACTERISTICS

Dimensions
Width: 18 inches
Height: 14 inches
Depth: 19 inches
Weight: 48 lbs.

POWER REQUIREMENTS

115 v.a.c., $60 \mathrm{~Hz}, 130$ watts
Model Codes
3000-100 Interactive CRT Terminal 3300-102 Answerback option (factory-installed only)
3300-110 Telegraph Loop Keyer 3300-111 230 v.a.c., 50 Hz option (factory-installed only)
3300-112 Aúto carriage-return/ line-feed deletion kit
3300-113 Coded Cursor Key Kit 3300-114 Backspace Coding Kit 3300-115 Escape Key Coding Kit 3300-116 Space Over-write Latch Kit 3300-200 80 Column Printer 3300-201 Print Control option for 3300-200 3300-400 Data Coupler

1. R. Watson	Time Sharing System Design Concepts McGraw Hill 1970 (\$12.50)
2. Harry Katzan Jr.	Advanced Programming Van Nostrand Reinhold 1970 (\$15.00)
3. J. Maxtin	Teleprocessing Network Organization Prentice Hall 1970
4. DATAMAIION	A Catalogue of EDP. Products and Sasvices (1971) Available from Datamation, 1301 South Grove Barrington, Illinois 60010. (\$35.00)
5. AUERBACH	On Time Sharing (1967) available from Auerbach Info. Inc., Philadelphia, Pa 19109. (\$14.00)
6. James Ziegler	Time Sharing Data Processing Systems Prentice Hall 1967 (\$13.00)
7. Douglas Parkhill	The Challenge of the Computer Utility, Addison Wesley: (\$8.00)

QUEEN QA 76.53 .D44 1972 v. 4 De Mercado, John, 1941-
Time shared systems

TIME SHARED SYSTEMS
--deMercado, John

QA
76.53

D44
v. 4

Date Due

[^0]: * Terminal cost if about $\$ 5,000$ and rental about. $\$ 130$ per month.

