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INTRODUCTION 

The application of shift register sequences to communications is 

well documented. For a recent (1976) reference, see  the  IEEE Press 

Book edited by R.C. Dixon entitled, "Spread Spectrum Techniques" [2]. 

Not surprisingly, most of the attention has been focused on maximal 

length, linear feedback shift register sequences [7] [8] which will 

be called linear PN sequences here. Two reasons for their popularity 

are: (i) they have a number of desirable noise-like properties and 

(ii) their linearity allows for ease of implementation. Golomb's 

book [8] is a standard reference, and a recent review of the linear 

theory has been published by MacWilliams and Sloane [12]. See also 

Chapter 14 in their book [13]. 

The non-linear sequences were also extensively discussed by 

Golomb [8] and represents the state of knowledge at that time. Since 

then, a number of papers have been published [3-6], [9], [10-12], 

[15-19], but generally the literature is rather sparse. In fact, the 

paper by Key [9] is really about linear sequences. The nonlinear 

shift registers in his paper all have linear equivalents which generate 

the same sequences. A motivation in his work is that the nonlinearity 

(in the feedforward only) allows fewer stages (delay elements or flip-

flops) in the shift register than the linear equivalent. 

There are a few explanations which may explain the apparent lack of 

activity in nonlinear shift register sequences. One of these is the 

feeling that linear sequences have already achieved all the desirable 

properties for the anticipated applications. A second reason is that 

the word "nonlinear" may have scared off many potential investigators. 
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A third reason is that the view that nonlinear shift-registers would 

be hard or expensive to build. 

Perhaps the easiest to dispose of is the third reason. The 

revolutionary developments in digital hardware with the accompanying 

reduction in costs allow much more flexibility in hardware configura-

tions. The second reason mentioned was the "nonlinear" barrier. For 

the reason stated above, the practical concerns have been removed but 

there remains the theoretical anxiety. This is quite natural, since 

the assumption of linearity (mod 2 addition or X-OR) allows a consid-

erable body of mathematical analysis to be employed. However, we still 

have some analytical tools if we allow nonlinearities (mod 2 multiply 

or logical AND, and inversions). 

To justify the effort in analyzing nonlinear sequences, we will 

review briefly, in the next section, some of the desirable properties 

of a pseudo-noise (PN) sequence. However, since these sequences have 

several applications, some of these requirements may conflict. 
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(1)  

(2) 

RANDOMNESS PROPERTIES OF SEQUENCES 

Golomb ([8], Chap. III) gives a discussion of what a "typical" 

random binary sequence should look like. A familiar example would be 

a typical sequence generated by tossing an unbiased coin. More formally, 

consider a binary sequence of O's and l's. We will call the sequence 

random if O's and l's occur with equal probability and successive 

symbols occur independently of all previous symbols. Let 

fa ) 	= 	fa ta ,a ,...) 
01 2 

be such a binary sequence, then 

P(a1+1 la i/ 
a 	. a

0 
 ) = p(a1+1 ) = 1/2 

for any a
1+1, 

i = 0,1,... . The notation p(xly) means the probability 

of x given y. 

Now, although all random binary n-tuples 

aaaa 
012  — n-1 

are equally likely, the n-tuples with n/2 ones (assuming for the 

moment that n is even) are the most numerous. In fact, there are 

exactly n  of them. Generally we would expect a random sequence to 

( 
n 

2 

have roughly an equal number of zeros and ones. Hence, we state the 

first randomness requirement as follows: 

(i) the sequence should have an equal number of zeros and ones. 

Even if the above condition is satisfied, the sequence may 

still not look random. 	For example, the sequence may consist of a 

block of zeros followed by a block of ones. We observe that short 
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runs (of zeros or ones) are more probable than long runs. In particu- 

lar, a run of length r is twice as probable as a run of length r+1. 

For example, ...XX1001XX... is twice as probable as ...XX10001XX..., 

where X may be zero or one. The first is a run of zeros of length 

two and the second is a run of zeros of length three. 

Another observation is that all patterns of a given length are 

equiprobable and we would expect them to occur an equal (or nearly 

equal) number of times. Although the above observations are related, 

we state the second and third randomness properties: 

(ii) there should be twice as many runs of length r as there 

are of length r+1; 

(iii) all patterns of equal length should occur an equal number 

of times. 

Finally there is the autocorrelation property. To avoid ambiguity, 

we note here that we are discussing the periodic autocorrelation as 

opposed to the aperiodic autocorrelation. Golomb ([81, p. 25) says 

that "...random sequences possess a special kind of autocorrelation 

function, peaked in the middle and tapering off rapidly at the ends." 

We recall that all binary n-tuples are equiprobable and hence what we 

are interested in is the nature of the autocorrelation of a "typical" 

n-tuple. Golomb does not formally justify his observation about the 

autocorrelation, and it is subject to various interpretations. For 

example, would the autocorrelation of one of the typical sequences meet 

his criterion, or should we average over the set of "t il"  sequences 

or perhaps average over all binary n-tuples. One may even average the 
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autocorrelation for all shifts for some typical sequence. We raise 

this matter because we feel that the notion of the autocorrelation of 

a random sequence deserves further investigation and clarification. 

To develop our notation, let 

n-1 

c(T) =  E  ai
a
i+T 

i=0 

be the cyclic autocorrelation of the binary n-tuple 

(a
0'

a
1'

a2
"'

a
n-1

) 

where the subscripts are reduced modulo n. [Note that in our defini-

tion of autocorrelation we do not divide by the length of the sequence 

in contrast to Golomb.] Golomb([8], p. 26) defines his third random 

postulate as: "the autocorrelation function is two-valued." Mathe-

matically, this can be stated as 

n when T = 0 

C(T) = 

K when T 0 

where K is some constant. We will not adopt this definition as one 

of our random criteria since we feel it is somewhat arbitrary. Our 

view will be that Golomb's criterion is intrinsically interesting and 

highly desirable for some applications, but is not necessarily a test 

of randomness. Indeed, Golomb gives examples of sequences which satisfy 

his third randomness postulate but do not look like a typical random 

sequence. For instance, he points out that the sequence ([8], p.88) 

0000010001101 

of length 13 has 

	

{ 13 	if T = 0 

C(T) = 

	

1 	if T 

5 



although it has 9 zeros and only 4 ones. Further, the pattern distri-

bution in this sequence is very poor. During this discussion we will 

return to the autocorrelation problem from time to time and hopefully 

will shed some light on the subject. 

Before closing, we mention another test for randomness based on 

the conditional probability as defined in (2). The reader may recall 

that a Markov source of order s is one whose current output depends 

on the most recent past s outputs. By collecting the appropriate 

data from a given binary sequence, one may estimate the conditional 

probabilities for all the 2
s 

possible "states" of the Markov source. 

nthesequence(a. )  tnider examination is truly random (independent 
1 

and equally likely symbols) then all these conditional probabilities 

should be equal to 0.5. If there is a departure from 0.5, it will 

reveal a bias or some memory in the sequence. 

When we apply the test to linear PN sequences of length n = 2
m
-1 

and test for Markov dependence of m-1 or less (i.e., s s m-1) there 

is a bias. However, if the same test is applied to a deBruijn sequence, 

no bias is observed. 

In the next section, we will introduce some interesting binary 

sequences of length n = 2m , called deBruijn sequences [1], and 

compare them with the linear pseudo-random (PN) sequences of length 

2
m
-1. 
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SHIFT REGISTER SEQUENCES OF LENGTH 2m  

There is a class of binary sequences, known as deBruijn sequences 

[1] [8], which have length 2m  and can be generated by certain non-

linear feedback shift registers having m stages. Note that these 

sequences are one digit longer than the well-known linear PN sequences 

of length 2
m
-1. We observe that both types of sequences are generated 

by m-stage shift registers, but they differ in the nature of the feed-

back function. Recall that by "linear function" we mean a modulo 2 

addition (exclusive-OR) of the appropriate logical variables. A non-

linear function will contain in addition modulo 2 (mod 2) multiplication 

(logical AND), and/or inversions. We will denote mod 2 addition by + 

and mod 2 multiplication by juxtaposition. 

At first it appears that by allowing nonlinearities we have gained 

merely a sequence one digit longer. However we wish to observe that 

there are some important advantages as listed below: 

(i) In the deBruign sequences, tile number of ones is exactly 

equal to the number of zeros; 

(ii) every pattern of length m appears exactly once; 

(iii) the deBruijn sequences are a much larger class of sequences 

than the linear PN sequences for a given m. 

We will now discuss these points in turn. 

Concerning property (i), the reader may recall that for linear PN 

sequences, the ones outnumber the zeros by one. This imbalance may 

sometimes be undesirable, e.g., for some applications it may result 

in a resultant DC term. 

Our comment on property (ii) is related to the above in that as a 
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result of the missing zero, linear PN sequences do not contain the all-

zero m-tuple. For certain pseudo-random applications it would be 

desirable to have the symmetry displayed by the corresponding deBruijn 

sequence (since they contain the missing m-tuple). 

Property (iii) has important ramifications for security applica-

tions. For a given m, the number of linear PN sequences is given 

by [8], 

X(m) = )(2m  (1 	-1)/m 

where (1)( ) is the Euler (D-function (see [8], P. 38 for its definition). 

We make the simple observations that if p is a prime, then 

(1)(p) = p - 1 

and in general, for any positive integer q> 1, 

(1)(q) 5 q - 1 

From the above, we conclude that 

X(m) 5  (2m-2)/m . 

On the other hand, it is known [1],[8] that the number of deBruijn 

sequences of length 2m  is given by 

2
m-1 

ô(m) = 2 
(2m-1 -1) 

. 2 	/2 

We note that 6(m) grows like a double exponential. For a quick 

comparison we give a short table of these two functions. Table I makes 

it quite clear how rapidly 6(m) grows. We quote Golomb ([8], p. 111 ), 

"This astronomical increase in the number of good codes justifies, in 

itself, the quest for practical nonlinear shift registers." 
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TABLE I 

2 1" 	X (m) 	 15(m) 

1 	2 	1 	 1 

2 	4 	1 	 1 

3 	8 	2 	 2 

4 	16 	2 	 16 

5 	32 	6 	 2048 

6 	64 	6 	67,108,864 
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DECIPHERING LINEAR AND NONLINEAR PN SEQUENCES  

An interesting question that can be posed about deterministic 

periodic sequences is: How may consecutive digits of the sequence 

must we observe before we can uniquely deteimine the sequence or equi-

valently, its generator? If the sequence is known to be a linear PN 

sequence of period 2
m
-1, then it is knownthat 2m consecutive digits 

are sufficient [20 ] . An informal argument to justify this is as follows. 

We know that the feedback function is a linear combination of some sub-

set of the m contents of the shift register. The unknowns are the 

locations of the feedback taps. The first m digits specify the state 

of the shift register and then the second m digits specify m linear 

equations in m unknowns which can be solved for the tap locations. 

In comparison, it requires about 2
m-1 

consecutive digits to deter- 

mine uniquely which deBruijn sequence of length 2
m 

is being observed. 

Notice that we must observe half the length of the sequence to decide 

which deBruijn sequence it is. An intuitive justification of this 

result is as follows. Borrowing some ideas from information theory, 

we assume that all the sequences are equally likely, and hence we 

need log26(m) bits of information to uniquely specify the sequence. 

Now 

log26(m) = 2m- _m  

and if we allow m bits to initially determine the state of the shift 

register we end up with 2
m-1 

as desired. 

If we apply the above arguments to the linear PN sequences, we 

have 
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log2X(m) < m i. e., 

log2X(m) 	10g(2m-2) - log m 

< log 2m  = m 

If m is large and prime (the most difficult case) then 

log2X(m) < m 

where < means less than but approximately equal to. As before, if 

we allow m digits to acquire the state of the shift register, we 

see that 2m consecutive digits are sufficient to determine a linear 

PN sequence of length 2 -1. A passing thought is that on the average, 

the number of digits required to determine a linear PN sequence is 

m + log2X(m) 

which is strictly less than 2m. 

Returning to the deBruijn sequences, we give an explicit procedure 

to determine the feedback function by observing part of the sequence. 

Golomb ([8], p. 116) has shown that the feedback functicn of a deBruijn 

sequence may be decomposed into a nonlinear function of (m-1) of the 

variables mod 2 added to the m
th 

variable. Hence we can write 

f
m
(x
m-1 1xm_29... , x, , x0) = fm_1 (xm-1 ,xm_2 ,...,x1 ) + xo  

From switching algebra we know that f 	may be expressed as the mod 2 
m-1 

sum of minterms, each minterm consisting of the mod 2 product (AND) 

of the (m-1) variables or their complements. Since each variable 

may be complemented or not, there are 2
m-1 

possible minterms. Once 

the state of the shift register has been acquired, each succeeding 

digit will determine whether or not a given minterm is present in fm-l . 

11 



root 
node 

end node (same 

state as root 

node) 

If there are no repeats, this requires 2
m-1

+1 digits to specify f m-1 

and hence f
m
. If there are repeats, we must observe more digits 

-1 
until all 2m  distinct (m-1)-tuples appear as arguments of f m-1

. 

This algorithm does not take advantage of all the known properties of 

deBruijn sequences but it is easy to apply. We now show that there 

exists an algorithm which will always uniquely identify the sequence 

after observing 2
m-1

+m consecutive digits. 

We prove the following result for deBruijn sequences: 

If two deBruijn sequences of length n =2 coincide for 2
m-1

+m 

consecutive digits then they are identical. 

To show this, take any m-tuple as a reference state (root node) 

and grow a tree of successor states. If all the paths in the tree are 

valid deBruijn sequences, they will all merge at the reference state 

after 2
m 

transitions. The state-diagram generated is a branching 

tree-like structure that grows for a while then starts to remerge until 

it collapses back to the original node. We now make the simple observa-

tion that the mirror image of a deBruijn sequence is also a deBruijn 

sequence. This means that our state diagram (which is somewhat diamond 

shaped) is invariant under a left to right flip or a rotation about a 

vertical axis through its center as shown. 
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The important conclusion we draw from the above argument is that 

the state diagram does not branch beyond the midline. It also means there 

are as many states at the midline as there are distinct deBruijn sequences. 

Hence any two paths starting at the root node that are not distinct at 

the midline will not diverge later are thus the same path. This means 

that if we observe a path from the root node (which is arbitrary) to the 

midline, we have uniquely determined which deBruijn sequence it is. If 

we count the number of consecutive digits involved, this comes out to be 

2
m-1

+m. 

It is worth pointing out that the above procedure is not, as it 

stands, a practical algorithm, since it involves table look-up in a 

large table (if n> 32). Using the left to right symmetry of the state 

diagram it can be seen that the right half of a deBruijn sequence can be 

obtained from the left half of the diagram by reading backward from the 

midline to the root node of the reciprocal sequence. This still requires 

some easily implementable procedure for pairing up these half sequences e  

and seems to be worth further investigation. 
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n 2
m

, when T = 0 

0 	, 	when 1 1- 1 	111-1.  
4 0 	, when ITI = m 

c(T) = 

THE AUTOCORRELATION FUNCTION OF DeBRUIJN SEQUENCES 

In several applications, the autocorrelation function of a sequence 

is of considerable interest, e.g., ranging, timing and synchronization. 

The autocorrelation function of the linear PN sequences have come to 

be regarded as ideal. Indeed, sequences which have two-valued auto-

correlations, which include the linear PN sequences, are called "perfect 

sequences" by Golomb ([8 1, p. 88). It is well-known that a linear PN 

sequence of length n =2m-1 has autocorrelation function 

	

n, 	when T 0 
c(T) 

	

-1, 	when T g o 

It is clear that if we are trying to synchronize using a periodic 

sequence with the Wbove autocorrelation with high central peak and no 

sidelobes, then the chances of false synchronization are relatively 

small. It is usually assumed that the correlation takes place in the 

presence of noise. 

From the outset, we acknowledge that deBruijn sequences do not 

have this kind of autocorrelation function. In fact, Golomb ([8], P. 124) 

has shown that for a deBruijn sequence of length n = 2m , 

Golomb has further shown that if the deBruijn sequence is obtained by 

inserting  •the extra zero into a linear PN sequence, then 

c(T) = -4 	, when ITI = m 

In general, for IT1 > m the autocorrelation function is not known. 
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We will list a few known properties, the proofs of which are given in 

Appendix I. 

(i) c(T) = + 4q , where q is zero or a positive integer. 

Let n = n0 +n1, where n is the length of a binary sequence, n
0 
 is 

the number of zeros and n
1 

is the number of ones, then 

n-1 

— à 1 E c(T) = (n
0
-n

1
)
2
/n 

c = — 
n T=0 

where -c." is the average of c(T) over all cyclic shifts. It follows 

immediately that for deBruijn sequences. 

(ii) = 0 

Note that this is the smallest value possible since  c  is a 

nonnegative quantity. For a linear  PI  sequence of length n = 

n
1
-n

0 = 1 ' and hence 

c
PN 

= l/n 

Thus at least in this average sense, deBruijn sequences have a lower 

(better?) average autocorrelation than linear PN sequences. 

We now recall that except for the extended PN sequences (adding 

the missing zero) the value of c(m) is unknown. Golomb merely states 

that c(m) 	0 for a deBruijn sequence of length 2
m • 
 We have been 

able to specify c(m) in terms of the number of minterms in the feed-

back function fm_1 (xm-1 ,xm_2 ,...,x 1 ) where fm = fm-l+ xo . Explicitly, 

if the number of minterms in f
m-1 

is given by k, then 

(iii) c(m) = 2m- 4k . 

Golomb ([8], p. 122) has shown that for a deBruijn sequence, the number 

of minterms k must be odd. Since c(m) is the nearest non-zero 
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value of c(T) to the central peak, it may be desirable to keep it as 

small as possible in some applications. However, it cannot be zero, 

so the smallest we can achieve is c(m) = + 4, in view of property (i). 

At this point we would like to suggest that instead of concentrating 

solely on autocorrelations that look like those of linear PN sequences, 

we should examine the whole autocorrelation function and thus determine 

a "signature" for that particular sequence. Depending on their loca-

tion, some off-center peaks or sidelobes may contribute to a more rapid 

acquisition of synchronization. As an example, consider the autocorre-

lation of the deBruijn sequence of length n = 8 

SEQUENCE: 11101000 

AUTOCORRELATION: 8,0,0,-4,0,-4,0,0,8,0,0,-4 , 

where we have specified the autocorrelation beyond one cycle. For 

comparison we give the linear PN sequence of length seven and its auto-

correlation 

SEQUENCE: 1110100 

AUTOCORRELATION: 7,-1,-1,-1,-1,-1,-1,7,-1,... 

Using the autocorrelation of the PN sequence, the receiver has no 

idea where it is until synchronization is actually obtained, shifting 

a digit at a time. In contrast, the deBruijn sequence has a more com-

plex autocorrelation pattern which can give clues to the receiver in 

its search for synchronization. For example, if it observes 0,0,-4, 

then it knows uniquely where it is relative to true synchronization. 

It is recognized that such observations are usually made in the presence 

of noise and hence the computed autocorrelat  ion values are only estimates. 

However, to ignore these estimates is throwing away useful information. 
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In some communication systems (e.g., PSK) the polarity of the 

received sequence may be reversed (i.e., zeros become ones and vice 

versa). In this case all the autocorrelation values will be multiplied 

by minus one. As an illustration, the autocorrelation for the eight 

digit deBruijn sequence becomes 

c(T): 	-8,0,0,4,0,4,0,0,-8,... 

Here also, if the receiver knows the signature of the sequence, it 

will recognize the inversion. 

If we allow sidelobes of significant amplitude, a parameter of 

concern is their spacing. It is clear that the main lobes (in phase 

peaks) are spaced n digits apart. Hence, if a large positive side-

lobe occurs midway between the main lobes it will present a serious 

risk of false synchronization. For example, a certain deBruijn sequence 

of length n=16 has the autocorrelation shown below 

c(T): 	16,0,0,0,-12,0,0,0,8,0,0,0,-12,0,0,0,16 

The sidelobe c(8) = 8 is a potential hazard for false synchronization, 

exactly n12 digits away from true synchronization. Fortunately, 

there are many deBruijn sequences of a given length and thus we can 

delete those with autocorrelations of the above type. Notice that the 

large sidelobes with amplitude -12 are spaced eight digits apart and 

are of opposite polarity to the central lobes and thus are a lesser 

threat even in the presence of polarity inversion of the received 

sequence. 

For the whole class of deBruijn sequences, we have not been able 

to put a strong upper bound on the height of the sidelobes. However, 
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they form such a large class of sequences that this may not be surpris-

ing. The computer data obtained so far indicates that for any given 

n, there are some deBruijn sequences with small sidelobes and some 

with large sidelobes. Perhaps there is some way of defining a subset 

of the deBruijn sequences that exclude most or all of the sequences 

with large sidelobes. 

Using a simple argument, we have shown that the largest possible 

positive sidelobe cm  is bounded by 

c 	n - 2 pi 
where  ri  means if x has a fractional part, we round up to the next 

highest integer. The argument goes as follows. Consider a deBruijn 

sequence of length n and consider a shifted version of itself aligned 

with it. We claim that no opposing pair of m-tuples from the two 

sequences can be identical since this would imply a repeated m-tuple in 

the deBruijn sequence. If we partition the whole sequence into 

m-tuples, the argument repeats. We conclude that any m-tuple or remain-

ing fraction of an m-tuple at the end must have at least one disagree-

ment. Since the autocorrelation is given by the number of agreements 

minus the number of disagreements, the positive height of a sidelobe 

cannot exceed 

n- 	_ r.121 = n - 2 n 
m 	m 1 	I  

We give the following simple examples. 

(i) n = 8 = 2
3
, thus m = 3 

8 
CM 	

8 - 2 pl  - _ 8 - 2x3 = 2 3   

but c(T) must be a multiple of four, thus we conclude 
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c
m 	

0 , for n = 8 . 

(ii) n = 16 = 2 4 , thus  m=4  

CM 	
16 - 2 

a 
1 	=  16-8  = 8 
- 1 

4 

I. e. , 

c
m 	

8 , for n = 16 . 

(iii) n = 32 = 2 5 , thus m = 5 

32 
32 - 2 —1= 32 - 2x7 = 18 

5 

as before, c(T) must be a multiple of four, hence 

CM 	16 . 

We have determined the autocorrelation for all deBruijn sequences up 

to length 32, and for each length, there has been a sequence that met 

this bound. This suggests that the bound may be tight. Ignoring the 

small end effect for large n, this suggests that the largest positive 

sidelobe may grow like 

n(1 - 2/m) . 

We would aim to exclude such sequences from the ones of interest. 

No useful bounds have been found for the negative sidelobes and 

in general, they tend to be larger than the positive ones. For example, 

for n = 32, the largest positive sidelobe is 16, but the largest 

negative sidelobe is -24. However, for some applications, negative 

sidelobes are not necessarily bad. 

For reference, we list all the deBruijn sequences of length 16 in 

Table II. 
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TABLE II 

LIST OF ALL SIXTEEN DeBRUIJN SEQUENCES OF LENGTH 16 

Al 	0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 

A2 	0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 

A3 	0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 

A4 	0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 

B1 	0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 

B2 	0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 

B3 	0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 

B4 	0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 

Cl 	0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 

C2 	0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 

C3 	0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 

C4 	0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 

D1 	0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 

D2 	0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 

D3 	0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 

D4 	0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 
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In Table II, we have grouped the deBruijn sequences according to 

their autocorrelation functions. At this point we note that two 

sequences which are reciprocals (mirror images) of each other have the 

same autocorrelation function. Also, sequences which are complements 

of each other also have the same autocorrelation. Thus if there is 

no degeneracy, we obtain four deBruijn sequences with the same auto-

correlation. In Table II, the four A sequences (Al, A2, A3, A4) have 

the same autocorrelation, and similarly for the B, C and D sequences. 

The autocorrelations are 

C
A. 

16,0,0,0,-4,0,0,-4,0 • 
 

C
B.

• 	16,0,0,0,-4,0,-4,0,0 

CC:  16,0,0,0,-4,4,0,-8,0 

CD: 	16,0,0,0,-12,0,0,0,8 

We also list a few of the more interesting autocorrelations for deBruijn 

sequences of length n . 2
5 

= 32. The entire list is given in Appendix II. 

(27) 32,0,0,0,0,-4,-4,0,-4,-4,-4,4,0,0,0,0,0 

(150) 32,0,0,0,0,-4,-4,0,0,0,0,0,-4,4,-4,-4,0 

(191) 32,0,0,0,0,-4,0,0,0,0,0,0,0,0, -8, 0,-8 

(333) 32,0,0,0,0,-4,4,-4,0,0,-4,-4,0,0,0,-4,0 

The number in brackets on the left is the number assigned to the 

sequence in the table in Appendix II. Number (191) has only negative 

àidelobes (and zeros) and the other three obey the rule Ic(T)1 S 4, 

T 	0. 
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IMPLEMENTATION OF DeBRUIJN SEQUENCES 

It is well-known that there is a direct correspondence between 

linear PN sequences and primitive polynomials. The coefficients of the 

polynomial determine the taps for the linear feedback shift register. 

Finding linear PN sequences is thus equivalent to finding primitive 

polynomials of the appropriate degree. Primitive polynomials with 

binary coefficients have been tabulated by various authors and hence 

for most cases, it is merely necessary to consult a table [8]. 

There are no corresponding characteristic polynomials for deBruijn 

sequences. One hopes that there are patterns in the feedback logic 

which will suggest general structures or "canonical" forms. From the 

forms of the shift registers obtained for sequences of length 16, 

some promising patterns have emerged but we do not know at this time 

how to generalize the results for arbitrary n. 

To review our method of attack, we generated all deBruijn sequences 

of length 8, 16 and 32. There are only two of length 8 and they corres-

pond to extended linear PN sequences. They are reciprocals (mirror 

images) of each other and have the same autocorrelation. There are 16 

of length 16 and 2048 of length 32 (see Table I). Those of length 

16 were obtained by hand and those of length 32 by a computer, using a 

tree search algorithm. The tree search was conducted by employing 

the fundamental rule that no m-tuple is repeated in a deBruijn sequence 

of length 2m
• 
 Starting with a root m-tuple, say the all-zero m-tuple, 

we create two branches by appending a 1 to one branch and a 0 to the 

other. A branch is terminated if it results in a repeated m-tuple, 

otherwise it branches again. In the above case, the branch with the 0 
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is terminated since the all-zero m-tuple is repeated. Branching 

continues until the tree terminates at depth n. This procedure will 

generate all deBruijn sequences of length n = 2m , for an assumed m. 

For n = 64, there are over 67 million deBruijn sequences and the need 

for more analytical tools becomes very pressing. 

We now describe a systematic procedure to determine the feedback 

function from the deBruijn sequence. To do this, recall again the 

result from switching algebra which says that any function of t 

switching variables can be expressed as a mod 2 sum of minterms in 

the t variables. Further, Golomb has shown that the feedback function 

x x ) for m-stage shift registers which generate f
m
(x
m-1'

x
m-2' 	' 	0 

deBruijn sequences can be decomposed as 

fm (xm-1 ,.. .,x1 ,x0 ) = fm_ 1 (xm-1 ,... ,x 1 ) + xo  

where the x
i 

are the contents of the shift register and the next 

value x
m 

to be fed back into the register is given by 

x
m 

= f (x 	x x ) 
m m-1" . " l''0 

As an example, consider the deBruijn sequence of length 8 below, time 

flowing from left to right 

0 0 0 1 1 1 0 1 

and the corresponding state sequence 

(x
2' xl' x0  ) -> 0 0 0, 1 0 0, 0 1 0, 1 0 1, 1 1 0, 1 1 1, 0 1 1, 0 0 1,... 

The corresponding feedback shift register can be drawn as shown in 

Fig. 1. We can write 

f
3
(x

2'
xx

0
) = f

2
(x

2'
x
1
) +  x0 
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Figure 1. 

where 

— — 
f (x x) = uxx+uxx+uxx+uxx 
2 2'1 	121 	221 	321 	421 

where the u
i 

are unknown binary coefficients to be determined and the 

bar above a variable means complement. The initial state of the shift 

register is (x
2'
xx

0
) = (0,0,0) and the next state is (1,0,0). 

Hence, when both x2  and x l  are zeros, f2  generates a 1 (note 

that x
o 

is 0 here). This indicates that the minterm x
2
x
1 

is 

present and u
4 

= 1. The next state transition is from (1,0,0) to 

(0,1,0). By a similar argument, this means that x
2
x
1 

is absent 

and u
2 

= O. The next state transition is from (0,1,0) to (1,0,1) 

and hence 
x2'x1 

is present and u
3 

= 1. The next state transition 

provides no new information, but the transition from (1,1,0) to (1,1,1) 

means that u
1 

= 1. Collecting these results we have 

f
2

(x
2'

x
1
) = x

2
x

1
+  -;

2
x

1 
+ 7

2
7

1 

= X1+ X
2
X
1 

and for f
3

, 

f
3 

= x
2
x
1
+ x

l
+ x 

0 
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The shift register corresponding to the above function is shown in 

Fig. 2. We recall that for n = 8, the two deBruijn sequences are 

extensions of the two PN sequences of length 7. We also note that the 

upper mod 2 part of the feedback function corresponds to that of the 

linear PN sequence. The AND gate can be viewed as inserting the extra 

zero at the right place and also gets the shift register out of the all-

zero state. Otherwise, it is dormant, i.e., puts out zeros. The above 

argument generalizes for all deBruijn sequences that are extensions of 

linear PN sequences. This observation is not new and wâs known to 

Golomb [8]. 

The above relationship of the linear PN sequences and some deBruijn 

sequences is interesting, but for even moderate length sequences, such 

deBruijn sequences are an insignificant fraction of the deBruijn 

sequences. We thus set out to see if we could find simplified or 

canonical forms for all the deBruijn sequences of a given length. 

Figure 2. 
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We have done this for length 16, for which there are sixteen sequences, 

although there are only four distinct autocorrelation functions. We 

use the term canonical somewhat liberally here in that we manipulate 

the logical functions until we obtain a form that is "appealing" and 

seems likely to repeat for larger n. In particular, we have tried to 

reduce the feedback function to one AND gate in (m-1) variables mod 2 

added to a linear sum of some subset of the m variables or their 

complements. 

Using the procedure we described above for the three stage shift 

register, we obtain the following sixteen feedback functions for the 

sixteen deBruijn sequences of length n = 2
4 

= 16. As in Table II, 

we have grouped them in fours, each group having the same autocorrela-

tion. We will use the same labelling of the functions in Table III 

as we did for the sequences in Table II. 
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TABLE III 

LIST OF ALL SIXTEEN FEtDBACK /UNCTIONS FOR 
THE DeBRUIJN SEQUENCES OF LENGTH 16 

f
Al

= x + x
l
+ x

- l

x
2
x
3 0 

f
A2 

= X
0
+ X

3
+ X

- 1

X
2
X
3 

f
A3 

= X

- O

t X
3
+ X

1
X
2
X
3 

f
A4 

= x
0

- + x
l
+ x

l
x
2
x
3 

—
 f

Bl 
= X

0
+ X

l
+ X

3
+

>1
X
2
X
3 

•n•••• 

f
B2 

= X
0
+ X

l
+ X

3
+ X

1
X
2
X
3 

— — 
f
B3 

= X
0
+ X

l
+ X

3
+ X

1
X
2
X
3 

— — 
f
B4 

= X

- O

+ X •+ X
3
+ X

1
X
2
X
3 

— 
f
Cl 

= X

- O

+ X
2
+ X

3
+ X

1
X
2
X
3 

— 
f
C2 

= X

- 0

+ X
l
+ X

2
+ X

1
X
2
X
3 

— — 
f
C3 

= X
0
+ X

2
+ X

3
+ X

1
X
2
X
3 

— — 
f
C4 

= X
O
+ X

l
+ X

2
+ X

1
X
2
X
3 

f
D1 

= X
0
+ X

1
X
2
X
3 

f
D2 

= X
0
+ X

1
X
2
X
3 

f
D3 

= X
O
+ X

1
X
2
X
3 

f
D4 

= X
O
+ X

1
X
2
X
3 
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We recall that the sequences Al and A2 are extended linear PN 

sequences. It is also true that they are reciprocals of each other. 

Let Xl mean the reciprocal of the sequence Al, then Xl A2, 

where E. means the two sequences are cyclic shifts of each other. 

Equivalently, we could also write Al E=.. L. Further, let Al mean 

the complement of Al. Then we observe that Al A4, Â3 A4 and 

A2 A3. There are some simple relationships between the feedback func-

tions for sequences which are reciprocals or complements of each other. 

In particular, if two deBruijn sequences of length n = 2m  are reci-

procals of each other, then we obtain the feedback function of one from 

the other by the simple transformation 

X0 
	

x
0  

x 	xi = 12,...,m-1 	. 
m-i ' 	

, 
 

When the sequences are complements of each other, we consider two cases. 

For case (1), let there be an odd number of variables in the linear sum, 

then the complementary sequence is obtained by complementing all the 

variables in the minterms. For example, the minterm for Bl is 

x
1
x
2
x
3 

and the minterm for B3 .7-,7 Bl is 
x1x2x3' 

For case (ii) the 

number of variables in the linear sum is even. In this case, we com- 

plement all the variables in the minterms (or more generally in 

,x2 ,x1 )) and then complement the entire feedback function. 

For example, A3 7:2, where 

f
A2 

= X
0
+ X

3
+ X

1
X
2
X
3 

then according to our rule, 
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f
A3 

= N
O
+ x

3
+ x 1x

2
x
3
1 + 1 

— 
= x 

0
+ x

3
+ x

l
x
2
x
3 

where we have chosen to complement x
0 
 to preserve the apparent 

symmetry. 

It is hoped that the forms of the feedback functions for deBruijn 

sequences of length sixteen will give good clues about the functions 

for longer sequences. It is possible, as indicated earlier, to write 

down the feedback function directly from the deBruijn sequence and 

then manipulate the expression by various switching algebra reduction 

techniques. However this could be very tedious and the patterns may 

not emerge readily. 

Obtaining simplified or canonical feedback functions for sequences 

of length 32 may be worth the effort, by whatever means employed. If 

one can manage not to become confused by the large number of sequences 

involved, the effort may be very rewarding in terms of formulating 

general theorems and algorithms. For example, some prelinimary combin-

atorial arguments indicate that we may need more than one AND-gate 

for m = 5. 
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CROSSCORRELATION OF DeBRUIJN SEQUENCES 

Not much progress has been made on the crosscorrelation problem. 

In general it is more difficult and the number of combinations grows 

much faster than autocorrelation. With the explosive growth of the 

number of deBruijn sequences, the numbers can quickly become over-

whelming. As for autocorrelation, a line of attack is to focus atten-

tion on a suitable subset of the deBruijn sequences. The job of 

defining such subsets remains to be done. 

One result that carries over from our work on autocorrelation is the 

fact that 

(T) = + 4q caie  

where q is zero or a positive integer. This result is proved in 

Appendix I for a larger class of sequences than deBruijn sequences. 

Also, using an argument very similar to the one used in Appendix I, 

it can be shown that 

, n-1 

-ê.013 	—ni 	Ca5  ) = ( ni -no )
2
/n 

T=0 

where  C(-r)  is the crosscorrelation of any two binary sequences a 
ap 

and p that both have n
0 
 zeros and n

1 
ones. Hence, for deBruijn 

sequences, 

= 0 
up 

since n =  n1 . 
1 .  

This means that the average crosscorrelation for two deBruijn 

sequences is zero, but it does not put a bound on the value of a 

particular correlation value. 

For example, the two deBruijn sequences of length eight are 
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1 1 1 0 1 0 0 0 and 1 1 1 0 0 0 1 0 and their crosscorrelation is 

given by 

C (T): 4,0,4,0,0,-8,0,0 
ce 

and we see that the values are zero or multiples of four and that their 

sum is zero. 

There are sixteen deBruijn sequences of length 16 and thus 120 

crosscorrelations. Since the complement of a deBruijn sequence is 

also a deBruijn sequence, if we crosscorrelate such a pair we will 

observe that for some shift, 

c
ap 

 (T) = -n 

If such values of crosscorrelation are to be avoided, only one sequence 

from each complementary pair can be included in the set of interest. 

For positive values of crosscorrelation, +n is not allowed since 

this would imply the sequences were identical. The next largest value 

is n-4 and this has been achieved for sequences of length 16. In 

particular, for the sequences (see Cl and Al in Table II) 

0,0,0,0,1,0,0,1,1,1,1,0,1,0,1,1 

and 

0,0,0,0,1,0,0,1,1,0,1,0,1,1,1,1 

there are 14 agreements and two disagreements and thus 

C(t) = 14-2 = 12 
ae 

= n-4 . 

The above expression is not offered as a useful bound on positive cross- 

correlation sidelobes. We need an algorithm for selecting suitable 
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subsets of dissimilar sequences which would have low crosscorrelation 

sidelobes. The number of minterms in common in the feedback functions 

could be used as a measure of the similarity of two sequences. Some 

crosscorrelation values for a few sequences of length 32 are given 

in Appendix III. 
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APPENDIX I 

(i) To prove that for a deBruijn sequence the autocorrelation 

function is given by 

C(T) =  ±4q 

where q is zero or a positive integer. 

We will prove this result for a larger class of sequences and in 

fact will prove it for crosscorrelation. 

Consider the crosscorrelation of two binary n-tuples a and p 

where a has n
0 
 zeros and n

1 
ones and p has n zeros and 

0 

n'
1 
 ones. Let C(t) be the crosscorrelation function and write 

= A - D 
up 

where A is the number of agreements and D is the number of disagree- 

ments. There are four possible (ai ,p i ) pairs, where ai  and p i  

are the i
th 

element of a and p respectively. Let A
0 
 be the 

number of (0,0) pairs and Al  be the number of (1,1) pairs. Similarly, 

let D
o 

be the number of (0,1) pairs and D
1 
 be the number of (1,0) 

pairs. Then the following relationships are true: 

	

n = n
0
+ n

1 
= n' + n' 	(I-1) 

0 	1 

A + D = n 	 (I-2) 

A = A
O
+ A

l 	
(I-3) 

D = D0+ D
1 	

(I-4) 

cotp 
	

= A - D = 2A - n 	(I-5a) 

	

= n - 2D 	(I-5b) 
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(I-6)  

(I-7)  

A = 2A
0 
 = 2A

1 = even (I-10) 

Lemma I-1:  If n is even, C
ap 

 (T) must be even for all T. 

This follows immediately from (I-5). 

It is not difficult to determine that 

D
o 

=  no- A
0 	1 

= n' -  A1  
1 

D
1  = 

 n1-A1 
 = 

 

Hence, 

D = D
0
+ D1  

=  (no- A0)  +  (n1 - A1 )  

= 
	6

- A
01 
) + (n'-  A1 )  . 

(I-8) 

(I-9) 

Lemma I-2:  If n0  = n and n is a multiple of four, then C (T) 
 1 

is zero or a multiple of four. 

Proof. 

n0 	1 
= n' implies A

O 
= A

l 
from (I-6). It follows that 

from (I-3). If n is divisible by four, we conclude from (I-5a) 

and (I -10) that  C(r)  is zero or divisible by four. ap 
QED . 

In words, Lemma I-2 says that if the number of zeros in one 

n-tuple is equal to the number of ones in the other n-tuple and n is 

divisible by four, then the crosscorrelation is zero or divisible by 

four. 

Lemma  I-3: If n = n' and n is a multiple of four, then C 
0 	0 

is zero or a multiple of four. 
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Proof. 

n
0 
 = n s  implies D

0 
= D

1 
from (I-6) and (I-7) and hence 

 0 

D = 2D
0 
 = 2D

1 
= even . (I-11) 

If n is divisible by four, we conclude from (I-5b) and (I-11) that 

C(T) is zero or divisible by four. 	 QED. 
up 

In view of either Lemma I-2 or Lemma I-3 the property we set out to 

prove for the autocorrelation C(T) of deBruijn sequences is immediately 

true. In fact the result is also true for the crosscorrelation of 

deBruijn sequences since Lemmas I-2 and I-3 were proved for crosscorre-

lation. 

(ii) To prove that 

n-1 
U 	2, c(T) = (n

0
-n

1
) 2/n 

T=0 

where C(T) is the autocorrelation of a binary sequence of length n, 

having n
0 
 zeros and n

I 
ones. 

Proof. 

Let us make the transformation 

b. =: 2a
i
- 1 

where  the a, are digits from the binary sequence with elements from 

(OM and the b
i 

are elements from (-1,+1). Then we can write 

n-1 
C(T) = 	b b. 

1=0  i 1+T 

and 
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x
m-1 

	x
1 	

x 
1 	0 

Figure A-2 

n-1 	n-1 n-1 
1 	1 

"E = — E c(T) = — 2, 2, b.b. 
n 	n 	1 1+T 

T=0 	T=0  1=0  

n-1 	n-1 1 „ 
= 	b

i 
22 b. 

1+T i=0 	T=0 

= 1  (n -n )(n -n ) n  10 1 0 

= (n
1
-n0)

2
In = (n0-n1 )

2
In . 

(iii) To prove that 

C(m) = 2m  - 4k 

for a deBruijn sequence of length n = 2m  where k is the number of 

minterms in f
m-1. 

Proof. 

We recall Golomb's decomposition of the feedback function 

,x1 ,x0 ) into 

= fm _1 (x.-1 ,.. . ,x1 ) + xo  . 

This is illustrated in the figures below. 

QED. 

x
m-1 	• 
	. 	. 	x

1 
	X0 

 

Figure A-1 
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Now, 

xm 	f
m m-1'

...,x1 ,x0) 

= (xm-1 ,...,x1) + xo  . 

Next we observe that C(m) is given by the number of times xm  and 

x are the same minus the number of times that they differ and write 0 

C(m) = A(m) - D(m) 

We can express A(m) as the sum of two parts 

A(m) = A
0 
 (m) + A

1 
 (m) 

where A
D
(m) is the number of times x

m 
= x = 0 and A (m) is the 

0 	1  

number of times x
m 

= x
0 
 = 1. Also, let D

0 
 (m) be the number of times 

x= 0 when x = 1 and let D
1
(m) be the number of times x

m 
= 1 m 0 

Whell 0. Now f 	is the mod 2 sum of k minterms in the x — O 
- 

' 	m-1 

variables x 	. ,x1  and f
m-1 

= I whenever one of its minterms 

assumes the value 1. This will happen k times with xo  = 0 and k 

times with x
o 

= 1 since each m-tuple appears exactly once in a complete 

cycle. We now claim that 

A0 (m) = 2m-i-k , 	(x0= 0, fm-1  = 0, fm  = 01 

Al (m) = 2
m-1

-k , 	(x0= 1, km-1  = 0, fm  = 11 

D
o
(m) = k 

D
1 
 (m) = k 

, 	(x0= 1, km-1  = 1, fm  = 01 

, 	(x0= 0, fm-1  =1
' 
 fm  = 1) 

Then from the definitions 

C(m) = (2m- 2k) - 2k 

= 2
m 
- 4k = n - 4k QED. 
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Remark. Equivalently and somewhat more directly, we could argue that 

x 	x whenever f
m-1 

= 1, 	
m 

since x = f
m-1 

+ x 	The two cases are m 0 	 0 .  

x = 1 when f
m-1 

= 1 and x = 0 when f
m-1 

= 1. Combining these, 0 	 0 

we have 

D(m) = Do (m) + Di (m) = k + k 

= 2k 

Using the simple fact that 

we have 

Finally, 

A + D = n 

A = n - D = n - 2k 	. 

C(m) = A - D = (n-2k) - 2k 

= n - 4k 

= 2
m 
 - 4k 
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Note on Appendix II  

Copies of Appendix II can be obtained from Dr. J.L. Pearce, 

the project officer for the contract, or from the Principal Investigators, 

namely Drs. S.E. Tavares and P.H. Wittke. It is a computer printout of 

all the deBruijn sequences of length 32 (there are 2048 of them) and their 

autocorrelation functions. Sequences with the same autocorrelation are 

grouped together with their corresponding autocorrelation function. As 

discussed in the report, sequences which are mirror images (reciprocals) 

of each other or complements of each other have the sanie autocorrelation. 

Hence for the large majority of cases, four sequences have the same 

autocorrelation function. In some degenerate cases there are only two 

sequences with the same autocorrelation. This happens when the complement 

and reciprocal of a sequence are cyclic shifts of each other. In one 

instance, eight sequences share the same autocorrelation. 

Note on Appendix III  

Copies of Appendix III can be obtained from the same sources as 

Appendix II. It is a listing of the crosscorrelation of those sequences 

which were considered to have good autocorrelation functions. There were 

the sequences numbered (27), (150) and (333) in Appendix II. As for 

Appendix II, sequences with the same crosscorrelation are grouped together. 
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