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CHAPTER 1 

INTRODUCTION AND BACKGROUND. 

1.1 Introduction  

Recent work in the area  of bandwidth-efficient 

modulation [1-3] has seen the development of a new type of 

digital modulation known as multi-h phase coding. This 

modulation which may be regarded as a generalization of fast 

frequency-shift keying (FFSK) [4] has the property that it 

offers coding gains of between 2 and 4 dB at little or no 

expense of bandwidth. 

However, as in the case of FFSK, it is a coherent 

modulation and requires that synchronization be established 

at the receiver in order that the coding gain may be 

realized. As with all coherent modulations, it is highly 

desirable that synchronization be acquired from the 

information carrying signal with no requirement that 

separate pilot or carrier signals be transmitted. 

This report describes research performed during the 

period August 1978 to March 1979 to develop means of 

synchronizing multi-h phase coded signals. In particular we 

describe the underlying rationale and conceptual development 

of a particular synchronization algorithm. This algorithm 

which is analogous to one used in phase-shift keying 

demodulation and to one developed for use with FFSK [5] may 

- 



cos (w
c
t + a. w.(t-iT) + (;)(iT) + 0) 	(1.1) s(t ) 

be characterized as 	a brute 	force 	approach 

Synchronization. On the basis of the work described herein, 

it now appears that other, simpler and more elegant 

algorithms are possible and should be investigated. 

In the remainder of this chapter we shall examine in 

part the demodulation of the multi-h phase codes in order to 

show exactly what coherent or synchronized reference signals 

are required. Then in Chapter 2, we will describe the 

rationale underlying the present synchronization algorithm 

and analyze the spectrum of the qth harmonic of the multi-h 

phase codes to demonstrate the existence of a spectral line 

structure which can be used for synchronization purposes« 

In Chapter 3 we will develop and show in block diagram form 

the proposed synchronization structure. In addition we will 

describe a possible procedure for resolving any possible 

phase ambiguities arising as a result of the synchronization 

process. Finally in Chapter 4, we will attempt to draw some 

conclusions and to indicate other promising avenues of 

research which may lead to other and possibly more effective 

synchronization algorithms. 

1.2 On the Demodulation of Phase Codes  

During the ith signalling interval iT < t < (i+1)T, 

multi-h phase coded signal may be written in the form 



where 	T is the duration of the signalling interval, 

E is the signal energy, 

w
c 

is the nominal angular carrier frequency (= 2uf 

where f c >> 1/T) 

and a is a binary information symbol having the equiprob-

able values ±1. The quantity w. in eqn. (1.1) is the 

angular frequency deviation in the ith signalling interval. 

It may be written in the form 

w 
qT 

(1.2) 

wherethequantityh./q is known as the frequency deviation 

ratio or modulation index. Turning now to the two phase 

terms 0 and (1)(iT) in eqn. (1.1), the first is a random 

initial or carrier phase angle, assumed to be unknown and 

uniformly distributed on (-u, n), and the second (1)(iT) is 

known as the excess phase at time t = iT. It may be written 

in the form 

i-1 	i-1 
1)(iT) =EawT= 11-Ea 

k=0  k k 	
g k=0 k  

(i > 1) 

(1.3) 

4,  (0) = 0 

It is clear that the presence of ep(iT) causes memory in the 

modulation, and it is this memory which permits coding gain 

to be achieved in the reception process. 

n 

each signalling interval is chosen from the ordered set tw o , 

cek-1} 
such that if w i  is the deviation during the 

- ith signalling period, iT < t < (i+1)T, then during the 
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(i+K)th period (i+K)T < t < (i+K+1)T we have 

to 	= 	. 
i+K 	i(moduloK) 

(1.4) 

But this is exactly the same as defining the set of 

modulation indices {h o /q, h i/q, hK_ 1/q}, and during the 

ith signalling interval iT < t < (i+1)T using the modulation•

index h/(1 where for convenience of notation, we have 

defined 

h 	= h
i(moduloK)* 

In multi-h phase-coded signalling, the {h.} and q are all 
1 

requiredtobeintegers.Inadditionwerequireh.<q, so 
1 

that the index in each interval is a rational fraction less 

than unity, implying that the modulated signal is a 

narrowband FM signal [6]. 

The information in the signal of eqn. (1.1) is entirely 

contained in the phase function 

a, w.(t-iT) + tp(iT) 

n h., 	i-1 
= a. 	

•

1 	(t-iT) + 	E a h 	(iT < t < (i+1)T) 
1 qT 	q 	k k 	— 

k=0 

It has previously been shown {1-31 that when the indices 

h i l/q are all rational fractions the phase function (b(t) 

traces a piecewise linear path through a periodic phase 

trellis. Furthermore from eqn. (1.3), it is clear that at 

the end of each signalling interval, there are q possible 

phases uniformly distributed on (0, 2n). The period of the 

phase trellis T s  is defined by 
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K-1 

Ts =KTforr=Eh.even 
1 

i=0 

and 

K-1 
T = 2 KT for r = E h. odd i=0  1 

The number of distinct phase states.in the trellis is 

related to the.number of possible phase functions. Lerelm 

[7] has shown that there are • 

N = q phase positions for r even .' 	. 	• • 

N = 2q phase positions for r odd. 

	

The demodulation/decoding of signals of 'the type 	- • 

defined in eqn. 	(1.1) is accomplished by coherent 

. demodulation and integrate and dump filtering .  The outputs  • 

of. the  integrate and dump filters are then processed using 

the Viterbi. Algorithm [8] to obtain estimates  of the  

transmitted data symbols. • This yields maximum -  likelihood' 

decoding and is described  inn - [1] for multi-h phase codes. A 

detailed exposition for conventional M-ary CPSK 1s given in 

110 1 , and shows many similarities to the present case, 

The Viterbi Algorithm uses the coherently demodulated 

baseband components.to  calculate branch metrics. Coherent 

extraction of the baseband components requires  the 

 . availability in the receiver of coherent frequencies or • 

tones matched to those of eqn. (1.1). 	If,' for the moment, 

we assume the availability of a coherent.symbol timing clock • 

Of period T
-1 

and of a marker of period (KT) , we then know 
-1 

which pair of signalling frequencies 

and 



(i+1)T 
1  (t_ iT) 	

nn + )dt .f . r(t) . cos (wt + 
qT 

• b(hi „n 

and 

b(-h, n) 

0.11 (t) 

0.12 (t) 

0i3 (t) 

0
i4

(t) 

• n h 
w
c qT 

is being used in the ith interal iT <  t<.  (i+1)T. We may 

then ideally compute branch metrics for this interval, where 

r(t) represents the received signal, as 

: 
n = 0, 1, ..., (2q -1) 	

(15) 
 

(i+1)T 	wh., 
1 	nu 	... f 	r(t) cos(w

c
t 	

qT 	
(t-iT) + -- + 0) dt 

iT 	
q 

 

n = 0, 1, ..., (2q-1) 	(1.6) 

where nu/q, n = 0, 1, ..., 2q-1 corresponds to the possible 

initial excess phase values and hence to the 2q trellis 

states, and e represents the locally estimated phase which 

ideally is equal to  O.  

If we now define the ideal reference signals in the ith 

signalling interval as 

n h 
cos (w

c
t + 	

qT 	
(t-iT) + 

• 

n h 
sin (

wc
t + 	

qT 	
(t-iT) + Is)) 

n.1.1
i'  

cos (wct 	
qT 	

(t-iT) 

n h., 
sin (w

c
t 	

qT 	
(t-iT) + ê) 

(1.7) 

we may write the branch metrics of èqns. (1.5) and (1.6) as 



b(h i „n) = X(h 11 ) cos 
 EI 

+ Y(h ) 
s
in 

El 
(1.8) 

n = 0, 1, ..., 2q-1 

nn 
b(-11‘ 1 r  n) = X(-h.,) cos 

nz 
+ Y(-h.,) sin 1 	1 

where 

(1.9) 

X(h ,) = (r,0 	) f 	r(t) 0 i1 (t) dt 
1 

‘lb 	iT 

115-(i+1)T r(t) 0 
(t) Y(h i ,) = -(r,0 12 ) = - 	f 

i2 	
dt 

iT 
(1.10) 

X(-h i ,) = (r,0 13 ) 

Y(-h i ,) = (r,0 1  

(i+1)T 
r(t) 0.

3 
 (t) dt 

1 
iT 

.,p7 f r(t) o
4 
 (t) dt 

T 
iT 

i 

Equations (1.8) to (1.10) show that the branch . metrics 

required by the Viterbi Algorithm are easily calculated 

using in each signalling interval the outputs of the four 

clocked integrate and dump circuits represented by eqns. 

• (1.10). 

Also from eqns. (1.7) to (1.10), it is clear that three 

orders of synchronization are required, namely 

a) phase synchronization of each of the signalling 

frequencies 

n h i  
w
c 

+  	(i = 0, 1, ..., K-1) 	(1.11) 



i3
(t)  

'è
4 
 (t) 

i 

a. n 
	 + (i) sin (w t 

• h 

qT 

h) symbol timing or synchronization of the data clock at 

frequency 1/T 

c) .  interval lock modulo K, so that the receiver knows in 

•each signalling interval which pair of frequencies (cf. 

• (1.11)) to use for coherent demodulation. 	this 

involves synchronization to a clock at frequency 1/KT. 

In practice it is very difficult to generate exactly 

the signals of eqn. (1.7). It is difficult to guarantee a 

zero-crossing (for . = 0) exactly at the beginning of each 

baud. In addition because of the nature of .synchronization 

processes there will usually be  •a phase ambiguity of some 

form. The first of these problems turns out, as we shall 

now see, not to matter. The second is more difficult and 

will be dealt with in Chapter 3. 

In practice, it turns out (cf. Chapter 3) to be fairly 

straightforward to regenerate the signals 

n h. 	a. u 
' 

é 	(t) 	cos (co t + 	
1 
 + 

1 	
+ 13) 

il 	T C 	qT 

u h., 	a
i 
 n 

i2
(t) 	sin (te t + 	 

vT 	qT 	+ ê) 

(1.12) 
I 

u h
i' 	

a 	Tr i  

COS (w c t 	+ 	+ 
qT 	q 

i = 0, 1, ..., K-1 

• 
where a i , a. represent 2q-fold phase ambiguities with a. and• 

i being unknown integers in the set (0, 1,- ..., 2q-1). .If 



we then use these signals, instead of the ideal ones, in the 

coherent demodulation, integrate and dump operation 

specified by eqns. (1.10), we find that the branch metrics 

of eqns. (1.8) and (1.9) have the form 

b(hil ,n) = . X(h i ,) cos  •14 (n-ih i ,-a i ) + Y(h i ,) sin 24 (n-ih i ,-a i ) 

n = 0, 1, ..., 2q-1 	(1.13) 

• and 

1 	- 	1 
b(-h 	n)=X(-h)cos[- (n-ih11 +a )1+Y(-h.,)sin - (n-ih.,+a.) 

i 	1 	q 	i 

n = 0, 1, ..., 2q-1 	(1.14) 

It turns out that the effect of the ih 	terms-is easy 

to• compensate. 	It causes a rotation which, becauàe each 

frequency pair is used in only every Kth signalling period, 

.may except for an initial value be subtracted Out. The 

initial value  will be absorbed: into the carrier phase 
1 

	

estimatee.However,theambiguityterusi a .and 	which • 
1 	. 

follow no predictable pattern, cannot. be  simply tracked out. . 

But, they do tend to remain constant-over long periods . of 

time, and by using the .information within the Viterbi 

Algorithm can be compensated (cf. Chapter 3). 

In order to complete the demodulation/decoding process 

. we make use of the Viterbi Algorithm. ' Assuming a • set of 

path metrics P
n
, n = 0, 1, ..., 2q-1, initially cleared to 

zero, .then using Schonhoff's notation [10], we  may express 

the  Viterbi Algorithm in the ith signalling interval iT < t' 

< (i+1)T as 
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update the path metrics: new P = max [old  P, + b(m,n')] n 
n' 

= -±h 

= 

ii)L1PdatePathhistories:new111.1={01dIl., data bit' , 

 correSponding to' 

branch from n ,  to . n } 

iii) output the  oldest bit of  the most likely path. 

Becausethevaluesofm.1.11.,to be used in each signalling 

interval are known, and because each pair of vàlues-is'used 

only in every Kth interval, it is a straight forward matter 

to track out the ih
i' 

term in eqns. (1.8) and (1.9) by in 

each interval offsetting the values of n by Kh.,. 

In this section we have shown the types of 

synchronizing information required and the coherent signals 

which must be regenerated in the receiver structure. In the 

remainder of the report we will be concerned with the 

generation of these signals. 



CHAPTER 2 

RATIONALE FOR THE SYNCHRONIZATION ALGORITHM. 

2.1 Introduction* 

In any system used to acquire and maintain synchroniza-

tion to a signal using information in the signal itself, it 

must be established that there is non-zero average power at 

the frequency to which it is desired to synchronize. If 

such is not  •the case then some nonlinear operation must be 

performed to create this non-zero power or spectral line 

condition at the frequency of interest or at some harmonic 

of it. For example, in previous work with the fast 

frequency-shift-keying (FFSK) modulation [5], spectral lines 

suitable for use in synchronization were created at double 

the signalling frequencies by squaring the received FFSK 

signal. This nonlinear operation is necessary because the 

FFSK signal contains no lines in its spectrum, and therefore 

no coherent frequency component or spectral line. 

Turning now to the multi-h phase coded  signais, a 

careful spectral study. [7] has shown that they contain no•

spectral lines, provided that the modulation characteristic 

function defined as 

K-1 	Tr h. 
C(1;KT) 	H cos 	 

i=0 
(2.1) 
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is always strictly less than 1 in magnitude. For the codes 

ofinterest,h7q <•1 for all i, and this condition is 

clearly satisfied. 

In order to generate a line structure, we must, 

therefore, perform a nonlinear operation on the received 

signal. From eqn. (1.1), we may write the received signal 

during the ith signalling interval as 

u h., 
2E 

s(t) =.1/w- cos [ut  + a. 	 (t-iT) + 1)(iT) + e] 
qT 

where 

i-1 
4)(iT) =Zzah 

q k=0  k k' 

. (2:2 

(2.3) 

By passing s(t) through a qth Order power-law nonlinearity 

and filtering the output. .to obtain .the qth harmonic we 

obtain 

u h i , 
s (t) = A cos [qw c t + a i 	T 	(t-iT) + q(1)(iT) 	qe] 	( 2 . 4 ) 

iT < t < (i+1)T 

whére A is a suitable amplitude factor. 	It is clear that 

eqn. (2.4) is a multi-h phase coded signal having the set of 

integer modulation indices h o , h l , hK_ 1 , and for which 

the modulation characteristic function is 

K-1 
C (1;KT) =  II cos uh k 

 • 	k=0 

Since the h
k 

are all integers, it is clear that 

IC,-(1;KT)1 = 1 

(2.5) 
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so that S (t) has a lin structure in its. power spectrum'. 

In the next section Ne will determine the characteristics of 

this line structure. 

2.2 Spectral Analysis of the qth Harmonic  

Because s(t) as defined in eqn. (1.1) is actually 

digital FM signal, it may be written as 

2E 
s(t) =-0-- cos [wt + f Ip(t 

c VT 	
0 

where 

co 

E 	. 1)(t) = 	j=0 
a 

 

dt l ] 

j , g(t -jT) 

and g(t) is a unit-amplitude rectangular pulse on [0,T]. It 

is  then clear that the gth harmonic of s(t) is given by. 

t 	• , 	 t. 

s (t) = A cos Up)
c
t + f e(t 

). 
dt 

0 

where 

00 

0(t) = q ip(t) =,T, 	E a. 11 4 , g(t-jT) 
j = 0 J J 

This phase function May readily be written in the form 

co 

e(t) 	E 	u 	(t 
r=0  .r 

Where 

K-1 
71. 

u 
r 
 (t-rT

b 
 ) = — g a 	• h

m' 
 g(t - mT 	rT

b
) 

T 	.m+rK  
m=0 

(2.6) 

(2.7) 

2.8) 

(2.9) 
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f 	x ( t) e 	d 

kT 

(k+1)Tb  
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and .T
b 

= KT is loosely referred to  as the superbaud 

• duration. 
_ 

• Rather than *work directly with s (t), let us. consider 

the complex signal 

(2.10) x(t) = A exp i (qw c t +f o(t ) dt 
Q 

 ) 

where s(t) = Relx(t)}. • Then following Lucky [6], we may 

write the power spectral density .of -  x(t) for positive 

frequency as • 

G(f) = lim 2 
G x  (f) 

f , > 0 	(2.11) 

where 

ift --  
G (f) = E {I f x(t) e

-27 
 - 	dt

2
i 

0 
(2. 12) 

Then letting x = NTb , it is .. a .straightforward - ,  matter to 

expand eqn. (2.12) to the form 	• 

(k+1)Tb  (s+1)Tb  

x(t
1 
 ) x (t

2 
 ) 

N-1 
G
N
(f) =E{s• s 

• k=0 s=0 	kT 
b- 

-2wift
1 

2nift 2  
dt

1 
dt

2
} 

Next consider the quantity 

(2.13) 

Qk ( fl = 

Substituting for x(t) and making use of .eqn. (2.8) in this 

we obtain 
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Q
k
(f) =A 	fe 	exp(i f E u (t -rT )dt )dt 

1 

kT 	 0 r=0 Ur 
(t 

 to c  = 2uf c . Replacing t with t-kTb  in this.and letting 

= 211- (f-qfc ), •we may write 

T
b 	

b 	
t-(r-k)T 

co 

Q
k
(e) = 	f e 	exp(i 	u

r
(T)dt 

0 	 r=0 	0 

where we note that u r (T) = 0 for T <  O.  Finally making use 

of the fact that
.
u
r
(T) = 0 for T <  0 and T.>  Tb ,  may with 

.a little algebra arrive at • 

-if3kT
b 

k-1 

k (s) = A e 	H exp (ibr ) Fk M 	(2.15) 
r=0 

where 

K-1 
b
r 

=11- Eah 	(2.16) 
m=0 m+rK m' 

F (e) 	
b 

= fe-" t  
exp [ibk (t)] dt 	(2.17) 

JS  

0 

K-1 t 
b

k
(t) = E a

m+rK 
h
m' 

-
T 

f g(T-mT) dT 0 < t < T 	(2.18) 
m=0 	0 

Substituting into eqn. (2.13) and regrouping the terms, 

we then obtain 

(k-1-.1)T 
b -2Tri (f-qf )t 	t 

c 	„ 



•  N-2 -iP.sTh 	ib, 
+ E e 	F5+1 (f3) F s 	e 

s=0 
(2.19) 

ir Tr (2.22) 
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N-1 
G
N
(0) = A

2 
E { E 	IF

k 	
2 

k=0 

N-3 N-1 	-i0(k-s)T
b 	

* 	ib
s 	

k-1 
+2 Re [ 	e 	F

k
(B)[F (B) e 	]exp[i 	E b

r l 
s=0 k=s+2 	 r=s+1 

We now want to compute the expected value of this 

expression. Becausethedatasequence{a.}consists of 

independent, identically distributed binary digits with 

values ±1, we may compute the expected values of the various 

terms separately. First we define 

C
q
(coT

b
) = C

q
(oc;KT)  4 E  {ex  p iab

r
} 

Making use of eqn. (2.16) in this we readily obtain 

(2.20) 

K-1 
C. (a;KT) = 	Ti 	cos (auh ) 	• 	(2.21) 

m=0 	• 

Setting  c  = 1 in eqn. (2.21), we obtain the modulation 

characteristic function of eqn. (2.5) as 

K-1 	K-1 	h 
C (1;KT) = II cos u 	m  h , = 	H 	(-1) 	' = 

m=0 	•m=0 

where 

K-1 
A r 	E 	h. 

m=0 m  

Next we compute from eqn. (2.17) 

KT 	. 
= E{F k (8)} = E { f  et exp j bk (t) dt} 

0 

-::After some manipulation this may , bereduded to 'the-form 



F
b
p) = C (1;KT) F (5) (2.25) 

17 - 

K-1 	4Q m  p-1 	T. 	nh t 
F(e) 	e-jL  n  cos(nh ) f e 7 	cos 	

T
P  dt 

p=0 	m=0 	m 
(2.23) 

The int-egral in eqn. (2.23) is readily - evaluated, and we 

• finally obtain 

K-1 : 	 p-1 
F(13) = 2e 	E 	

« 	
exp[12-.1  (T-Tr h ) 	[ II 	( -1 ) 

P= 0 	 m=0 

sin 1/2  (ST.  - wh_) 
(2.24) 

e —  — (rh /T) 

We now want to evaluate the quantity 

ib
s 

F
b
((3) = E {F 5 ( 3) e 	}. 

Following a similar line of reasoning to that used in 

deriving eqn. (2.24), we find that for the present case of 

integer modulation indices 

We note that the results in both eqns. (2.24) and (2.25) are 

independent of the indices (k or s) of summation. 

Substituting eqns. (2.24) and (2.25) into eqn. (2.19), 

it is a straightforward matter to obtain 

N-1 
2 	2 

G P) = A 	E 	IFk
(e)1 	+ 2 A

2 
Re {F(e) F

b
(e) 

k=0 

[(N-1) e
T 	1\1-2 N;1 e KT k-s-1 

C 	(1;KT)1} 
s=0 k=s+2 

Substituting this into eqn. (2.12), and taking the limit as 

N+oe, we obtain the desired power spectral density in the 
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form 

2 
G( 	2A  
G()  = 	 {pm + 2 Re [F(e) F (B) e-

ieKT 
 [1 + A e ieKT ]} 

KT 
 

(2.26) 

where 

N-1 
P(8) = lim 1  s 	E { IF

k
()1 2

} 
N4. 	k=0 

and 

N-3 N-1 
1 

 A = 	
-ie(k-s)KT 

c
k-s-1 

1im 	 E 	e 	(1;KT) 
N4. " s=0 k=s+2 

(2.27) 

The p(s) term results in a continuous component of the power 

spectral density, and has no line structure. It is there-

fore of no interest for synchronization purposes and will 

not be considered further in this report. 

For integer modulation indices the limit in eqn. (2.27) 

is a distribution sum which may be evaluated following 

Barnard [9] so that we finally obtain the desired power 

spectral density in the form 

2A
2 	- 2 

G(8) - --- {P(8)+IF(8)I 	[2n 	E d(SKT-argC
q 
 (1;KT)-2un)-1]1 KT  

(2.28) 

- where .  

K-1 

if 	r =  E h. is even 
i=o,  1 

CO 

arg Cq(1;KT) 
K-1 

if 	r = E 11 4  is odd 
i=0 

(2.29) 

The second term in (2.28) connins an infinite spectral line 

structure where the power in each line is proportional to 

the value of IF(e)I
2 

at the frequency of the line where 



„if 	n 
c KT 

f = 

qf + (2n+1)  
2KT 

r even 

r odd 

2.32) 
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K-1 K-1 2 	 n Ileum = 4132 E 	E Cos [e(p-q)T + — (h - h )] 
2 p 	q p=0 q=0 

p-1 	q-1 	sin 1/2 ( 13T-wh ) 	sin 1/2  (13T -nh ) 
• [ H cosnh ] [ H cosffh ] 	P  • 	q  

2 m=0 	m 	m=0 	
m 	

e
2 

- (nh /T) 	e 2 - (nh /T) 2  
P 	4 

(2.30) 

The positions of the spectral lines are defined from 

(2.28) by the equation 

e  _ arg Cq(1;KT) 	2nn  
KT 	KT  (-= < n < 03) (2.31) 

This may be rewritten in terms of actual frequencies as 

In the next chapter, we will deal with how to use this line 

structure to obtain synchronization for'the multi-h phase-

coded signals. However, before doing so, it is of interest 

to consider the FFSK system which after squaring (q = 2) 

yields a digital FM signal with K=1; h o  = 1 and r = 1. This 

can readily be seen.to  yield spectral lines at 

=2f ± —
1 

C 	2T' 

and an examination of eqn. (2.30) shows that all other 

spèctral lines fall at the nulls Of IF(e)1 2 . 	The two 

surviving lines have previously been used [5] to synchronize 

the.FFSK system. 



CHAPTER 3 

SYNCHRONIZATION STRUCTURES 

3.1 Structures  

From eqn. (2.32), we see that the spectrum of s (t) 

contains an infinite structure of spectral lines spaced by 

1/KT Hz where K is the constraint length of the particular 

phase code being considered. The first problem to be 

considered is which of these lines should be used for 

synchronization. 

In principle, any non-zero line in the spectrum can be•

used for synchronization. In practice we want to use those 

lines which contain the most energy, and these will be the 

lines which fall at or near a maximum of  IF(B)1 2  as defined 

• in eqn. (2.30). 

In general, it has been found [7] that for practical 

phase codes the modulation indices 

. 11
0 

h
1 	

h
K-1 

r • • • y 

tend to be closely spaced rational fractions, and that the 

numerators the h
0' 

h
1 ,  '" 	

h
K-1 

tend to  • be a set of 
'  

consecutive or near-consecutive integers with at most one 

interior member of the set missing. The consequence of this 

12 
is that IF(3)1 has a zone where it is maximum or close to 
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maximum in the neighborhood of the normalized frequencies 

OT= nhp  , p= 0, 1, ..., K-1 

In fact in all cases of interest, we find this maximum 

occurring at or near 

• 

where E is the mean index 

- 	1 K-1  E=± = — E  h.  
K  k=0 k  

Based on this it appears that we want to use those lines 

which occur in the vicinity of the normalized qth harmonics 

± h 0  /T, ± h
1' 
/T, ± h

K-1 
 /T of the signalling frequencies. 

In most cases, the line structure will not coincide with the 

locations of the qth harmonics of the signalling frequencies 

(the possible exceptions are the K=1 and K=2 cases), but as 

it turns out, the line structure in the spectrum of s (t) 

can be used to generate the required synchronization 

information. 

To begin with, let us consider the recovery of interval 

lock modulo K. For this purpose, we consider two adjacent 

lines in the vicinity of the maximum of IF(3)1
2

. In all 

cases, there are at least three strong lines in the vicinity 

of the maximum of  IF(B) 1
2

. Furthermore, there appears to be 

one line which for any phase code always occurs at the 

maximum value of 1F()'
2 
with at least one strong line to 

either side. 

Let m be the value of n in eqn. (2.32) at which the 



or 

e 	2m+1  2(m-1)+1  
and f = (1 1- c  ' 2KT 

f = qfc 	2KT 
(r odd) 
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maximum value of IF(3)1 2 
 occurs, and consider also the lines 

at n = m-1 and n = m+1. 	If we now employ two high-gain 

phase-locked loops (PLL) having their voltage controlled 

oscillators (VCO) centered at the free-running frequencies 

-r - 
KT  

m-1 
f
c 
= qf + --- 

c KT and f = qf (r even) 

we may miX the VCO outputs and pass the mixer output through 

a low-pass filter to obtain a phase-coherent signal at the 

frequency 1/KT. This is the signal required for interval 

lock modulo K. 

Two points about  • this signal are of interest. First, 

the recovered signal at frequency 1/KT is ambiguity-free 

since no frequency-division process is involved in its 

generation. Second it is a very straightforward matter to 

generate from this signal the symbol timing clock at 

frequency 1/T Hz by multiplying the frequency 1/KT by K 

where for practical phase codes K=  2, 3 or 4. We have, 

therefore, solved in a very straightforward manner, two of 

the three synchronization problems. It remains to solve the 

problem of coherently recovering the signalling frequencies 

fc  ± h./2qT. 

First let us consider the recovery of the nominal 

carrier frequency f
c

. This is readily accomplished, albeit 

with a phase ambiguity, from the line structure in the 

spectrum of s (t). An examination of G ( 3) -in eqn. (2.28) 



ci 
m 
KT 

2m+1  
2KT r odd 

h. 
f
c 

+ 
2qT 

=  O,  • K-1 (3.1) 
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reveals that it is symmetric about 8 = 0 and therefore about 

f = qf
c

. Furthermore, the spectral lines are symmetrically 

located about f = qf c  and IF(B)1
2 

is symmetric about e = 0. 

• Therefore to recovery the carrier at frequency fc  Hz, we 

again use two phase-locked loops, one with a free-running 

frequency of 

r even 

and the other . with a free-running frequency of 

1  qf c - 1111(11  

e 	2m+1  
q-c 2KT 

r even 

r odd 

THe VCO outputs from these two loops are then mixed and the 

mixer output is high-pass filtered to produce the frequency 

2qfc  Hz. This is then divided by 2q, possibly using a 

further phase-locked loop to produce the nominal carrier 

frequency in the form 

na 
'A cos (2nf

c
t +— + 0) 

where 	is the estimate of the received carrier phase and 

wa/q represents a 2q-fold phase ambiguity with a being an 

integer in the range 0, 1, ..., 2q-1. 

In order now to regenerate the actual signalling 

frequencies 
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we first divide the unambiguous clock signal at frequency 

1/T Hz by 2q to obtain a signal at frequency 1/2T Hz. As a 

result of the division, the resulting signal will have a 2q-

fold phase ambiguity. This portion of the synchronization 

system, which generates the interval clock at 1/KT Hz, the 

symbol clock at 1/T Hz, the nominal carrier frequency of fc  

Hz and the signal at frquency 1/2qT Hz, is shown in block 

diagram form in Figure 3.1. 

The recovered carrier at f
c H

z  and the signal at 

frequency 1/2qT are now used to drive a signal generation 

structure to regenerate the actual signalling frequencies 

specified in (3.1). The structure of this generator is 

shown in Figure 3.2, and except for the number of 

frequencies to be generated is common to all phase codes. 

It consists essentially of an open loop chain of 

multipliers, n/2 phase shifters and filters. We note that 

very high Q's may be required in the filters which may, 

therefore, have to be implemented as phase-locked loop 

structures. The signalling frequency components appearing 

at the output of this structure will have the ambiguous form 

given by eqns. (1.12). These equations indicate a 2q-fold 

phase ambiguity which in general will be different at each 

signalling frequency. For successful demodulation/decoding 

the ambiguity must be resolved. This is the subject of the 

next section.. 
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Figure. 3.1: Block diagram of subsystem for carrier and clock recovery. 
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3.2 Phase Ambiguity Resolution 

Recall the expressions (1.13) for the branch metrics at 

the end of the ith signalling interval iT < t < (i+1)T. 

These may be written as 

n = 0, 1, ..., 2q- 1 

a. c {0, 1, ..., 2q-1} 
1 

and 
e. 

..' 
I 	 I 

n 	 n 
b(-h

i's
n) = X(-h

i'
) cos — (n-ih.,+a ) + Y(-h i  ) sin — (n-ih. 

+a ) 
q 	1 	i 	i 	q 	1 ' i 

n = 0, 1, ..., 2q-1 

a 	E {0, 1, ..., 2q-1} 

It is clear from these that the correct branch metrics are 

contained in this set but with an unknown offset in the 

value of n. In other words the ordering of the metrics with 

respect to n has been "scrambled". The effect of this 

scrambling will be to cause errors in the receiver output 

data, and hence the phase ambiguity must be resolved or at 

least reduced to a value which is common to all signalling 

frequencies. 

If we examine in detail the phase trellis structure as 

used by the Viterbi Algorithm for decoding the phase codes, 

we find -that the effect of the unknown phase ambiguities is 

to cause discontinuous jumps in the most likely path through 

the trellis. In other words, if either the phase ambiguity 

is zero or is a common value at all signalling frequencies 

then the most likely ,  path through the phase trellis will be 
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(piece-wise) continuous. 

These statements suggest a possible structure to 

generate ambiguity resolving signals, and a block diagram is 

shown in Figure 3.3. The block labelled ambiguity 

resolution circuit monitors the continuity of the most 

likely path through the trellis by comparing the present n., 

the identity of the terminal node in the ith signalling 

interval corresponding to the most likely path, with the two 

possible terminating node identities as calculated from the 

previous 
ni-1' A match indicates continuity and no match 

indicates discontinuity. When discontinuity is detected, 

the phase of the cos (ut/qT) signal (cf. Fig. 3.1) used to 

drive the signal generator of Figure 3.2 is step-changed by 

u/q radians. This procedure is repeated in each signalling 

interval until continuity is detected by the ambiguity 

resolution circuit over a 'succession of signalling 

intervals. 

In order to verify that this algorithm actually works 

to resolve phase ambiguity, a computer simulation was used. 

This simulation actually simulates a receiver for multi-h 

phase codes under the assumption that the phase coherent, 

but ambiguous signals of eqns. (1.12) have been regenerated. 

The simulation was run for several phase codes at 

different values of input signal-to-noise ratio (SNR) 

ranging from-3.0 dB to 7.0 dB. The reason for choosing such 

low SNR values was that if the ambiguity resolution 

algorithm will work effectively in this range it will work 
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even more effectively at high SNR values. We found as a 

result that provided the number of bits of quantization QT  

(see below) is sufficient, then for SNR values of 6 dB and 

above phase ambiguities were virtually always resolved. 

The only problem with this algorithm is that we found 

that it typically requires 100 to 300 signalling intervals 

at the beginning of a transmission in order to ensure 

successful resolution of ambiguity. Provided the system -is 

operating in a continuous rather than a burst mode, this 

represents a fairly small penalty. This is particularly 

true in view of the fact that once the phase ambiguity is 

resolved it tends to stay that way or if it does drop out it 

tends to shift by ± n/q which is easily corrected by the 

algorithm. 

As a side result of the simulation, we have been able 

to determine the number of bits of quantization required in 

the Viterbi Algorithm. We found that error-rate performance 

within a few tenths of a dB of the theoretical results in 

[1] were obtained for any phase code provided that the 

number of bits of quantization QT  is such that 

QT  > log2  (2q) = 1 + log 2  q 

Hence for an eight-phase (q = 8) phase code we should use a 

minimum of 5 bits of quantization. In practice we have 

found that using more than 2 + log2  q bits of quantization 

results in very small improvements, and hence we conclude 

that for all practical purposes 2 + log 2, q bits is 

sufficient. 



CHAPTER 4 

CONCLUSIONS AND SUGGESTED FURTHER WORK 

In this study we have developed a self-synchronization 

algorithm for phase and timing recovery from multi-h phase 

coded signals. The algorithm presented in this report is 

based on the use of the spectral line structure generated by 

raising the received signal to the qth power and filtering 

to obtain the qth harmonic zone. In this respect, it is 

analogous to the procedure often used for M-ary phase-shift- 

Iéyed systems. The algorithm so developed will work for any 

multi-h phase code with its complexity governed only by the 

constraint length of the code and hence by the number of 

signalling frequencies which must be regenerated. 

One problem with this algorithm is that in general each 

regenerated signalling frequency will contain a distinct 

2q-fold phase ambiguity. Hence an algorithm to resolve this 

based on monitoring the continuity of the most likely path 

through the phase trellis was developed. This algorithm was 

found to work for any phase code provided the number of bits 

of. quantization Q T  used in the Viterbi Algorithm was 

sufficient for the code being used  and  provided the received 

SNR was 6 dB or higher. 

Unfortuhately, as can be seen from Figures 3.1 to 3.3, 

the implementation of this self-synchronization algorithm 

- 31 - 
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tends to be rather complex. However, based both on the work 

in the present report and on the realization that multi-h 

phase coded signals are actually digital FM signals and may 

therefore be incoherently demodulated using a discriminater, 

it now appears that simpler algorithms based on remodulation 

or data-aided techniques [11] are possible. 

that such algorithms may be very close 

It also appears 

to the optimum 

estimator of phase and timing as predicted by estimation 

theory [11]. It also appears that such an algorithm could 

lead to a much simpler resolution of any . phase ambiguity 

since the output of the frequency discriminator is 

inherently ambiguity-free. This approach to the 

synchronization study is, however, beyond the scope of the 

present study. 
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