REFORT NO. 2


```
Preoarec, fon: The Department of Communicerions
    Journal North Building,
    300 Slater Street,
    Ottawa, Ontario.
Ezecared by: E.w. Horriggan & Associates Ltd..,
    Consul:ing Engineers,
    4803 Leslie Street, Suite 310,
    Willowale, Onta=ic.
```

$!$
${ }^{9} 6^{55}$
145^{4}

$$
\begin{aligned}
& \text { DD } 7024819 \\
& D x^{7} 70^{31}
\end{aligned}
$$

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Department of Communications of the Government of Canada.

Industry Canada LIBFAS:

JULL $2 \cdot 3$
BIGLic! : E
Indusiric $-:$ a

TAELE OF CONTENTS
PageSummary of Report
1.0 Introduction 1
2.0 General Discussion 2
3.0 Cross-Section Measurements 4
3.1 Table of Results 6
4.0 Ghost Equations 7
4.1 Echo Delay Equation 8
4.2 Basic Ghost Magnitude Equations 9
4.3 Complete Ghost Analysis Equations 19
5.0 Comparison with Measured Ghosts 21
6.0 Conclusions 23
7.0 Recommendations 25
8.0 Areas for Further Study 28
9.0 Engineering Seal and Signature 29
10.0 Appendix 30
10.1 Graph of Scattering Cross-Sections
10.2 Method of Application10.3 Software Program for TI SR59/PCl00AComplete TV Ghost and FM MultipathDistortion Analysis Program

Summary of Report

This report covers the ghost prediction phase of this project and the integration of these results with those previously obtained to produce a complete television ghost and FM radio distortion analysis program.

All available prediction methods were examined and, in view of their oversimplifying. assumptions or difficulty of application to relevant situations, a new ghost prediction and integrated analysis program was generated.

This new analysis program has been evaluated against known ghost situations (Halifax) and compared to results obtained using the various methods incorporated in the Department's computer program. This shows that the new program has a high value of correlation with the Halifax situation, and falls between the extremes of the EWH Target Gain Method and Knight's Method.

The complete analysis program relating TV picture grade and FM noise and distortion to ghost tower parameters has been prepared as a software package for the T.I. SR-59/PCIOOA Calculator/Printer.

Report No. 2

TV \& FM MULTIPATE INVESTIGATION

Introduction

This study program was commissioned by the Department of Communications under DSS Contract No. 36100-7-0615 to:
a) assess the validity of existing criteria and methods of evaluation, predicting and computing multipath distortion on TV and FM transmissions;
b) to set up, conduct and analyse subjective assessments of impaired transmissions;
c) to make recommendations which will assist the Department to establish "Standards" and "Procedures" in respect to $T V$ and $F M$ multapath impairment.

The Report No. 1 dated September 1978 covered the subjective and objective evaluation phase of the project. Several easily applied equations relating to "Typical Viewer" and "Expert Viewer" gradings and FM Radio extraneous noise and distortion were derived from this subjective and objective measurement phase of the project.

Report No. 2 deals specifically with the ghost prediction phase of this study program and with the integration of the resulting equations with those obtained in the previous phase covered in Report No. 1.

General Discussion

A thorough study was made of all available published documentation concerning re-radiation from towers and similar structures at radio frequencies. Discussions on this subject were also held with BBC and IBA personnel in the U.K. which included a session with Dr. P. Knight of the B.B.C. Research Division.

The general conclusion drawn from this survey session was that no existing method was entirely suitable for our purpose for various reasons.
a) The BBC documents are based on square section towers and make no claim to equate to the more typical triangular section towers used in Canada. Furthermore, although the BBC documents adequately consider the effects of transmitting antenna pattern characteristics; ground reflections and finite length of the ghost tower, they use an exponential mathematical format which is not easily applied. Simplification of the calculations as used in the DOC program produces results which are much too optimistic for practical purposes.
b) The programs based on the "Radar Equation" are also too simplistic and produce results which are, in general, too pessimistic for practical applications. Furthermore, those using equivalent cylinder scattering cross-sections are invalid in the more typical tower face width sizes of less than one wavelength (1).

- 3 -
c) The Target Gain method used a scattering parameter based on actual measurements of typical towers in the invalid equivalent cylinder range. Fowever, this parameter was only valid for towers of small width and was not readily equated with structures expressed in normal cross-section dimensions. Furthermore, several of the simplifying assumptions made in the general equation were also invalid in real situations and lead to very pessimistic answers.

Therefore, it was necessary to completely re-evaluate the prediction process and develop a readily applied, more realistic general equation based on typical triangular tower sections and covering the tower face width range of less than one wavelength and, if possible, extending and merging with the equivalent cylinder cross-section for the larger tower sizes.

3.0 Cross-Section Measurements

In order to define a conventional scattering cross-section for typical triangular section towers as used in North America in the loop size range of 0.5λ to 2.5λ, it was decided to re-evaluate and extend a previous study made by this author. ${ }^{1}$

The technique used and the results obtained are outlined below:
a) Typical lightweight triangular tower sections were suspended horizontally on nylon tackle between two 35 ft. wooden poles in an area free from other structures. Directional transmitting and receiving. antennas were aimed from ground level at the tower section directly above. The planes of polarization of the transmitting antenna and the receiving antenna were orthogonal to each other and mutually at $\pm 45^{\circ}$ to the tower section.
b) The transmitting antenna was fed by means of suitable VHF/UHF signal sources and the receiving antenna was coupled to field strength meters and signal analysers.
c) Prior to each test, the tower section was removed and the orientation of the tunable transmitting and receiving antennas carefully adjusted for minimum mutual coupling $\left(90^{\circ}\right)$ and this minimum reading was recorded.
d) A shorted $\lambda / 2$ dipole was now suspended in the test position oriented in the plane of the horizontal tower section members $\left(\pm 45^{\circ}\right.$ to both. T_{X} and R_{X} antennas). The re-radiated signal was measured and if this was at least 20 dB greater than the mutually coupled signal of c) above, the test dipole was replaced by the test tower section. If not, the operation in paragraph c) was repeated until this condition was obtained.
e) The test tower section re-radiation was measured and recorded.
f) The test frequency and/or tower section was changed to cover the loop dimension range of 0.5λ to 2.5λ, using approximately a one wavelength high tower section for each test.
g) This method of measuring re-radiation or scattering cross-section is considered to be valid because the 45° plane of polarization error is effectively cancelled by using ratio measurements relative to the shorted dipole. These measurements were made at distances of greater than five wavelengths in all cases. The test frequencies ranged from $180-600 \mathrm{MHz}$.

- 6 -
3.1 The results of these tests are listed below:

TAELE I

Loop Dimension	Relative Reflected Dipole	Power Tower	Effective Area per unit λ Height
0.5	$-86 \mathrm{~dB}$	-87dE	$0.36 \lambda^{2}$
1.0	-80dв	-75.5dB	$1.6 \lambda^{2}$
1.5	-86dB	-83.5dB	$1.0 \lambda^{2}$
2.0	-87dE	-79 dB	$2.7 \lambda^{2}$
2.5 $M a t c h e d ~ D i p o l e ~$	-88dB	$\begin{aligned} & -81 d B \\ & -5 d B \end{aligned}$	$2.3 \lambda^{2}$

These tests indicate that the effective area of a shorted $\lambda / 2$ dipole approximates $0.4-0.5 \lambda^{2}$ and is in general agreement with accepted values. Therefore, the tower cross-sections are considered to be realistic values with a tolerance of $\pm 25 \%$. The measured cross-sections of the tower for unit wavelength height are shown in Figure 1 , together with the general equation of the curve and equivalent cylinder.

4.0 Ghost Equations

Definitions: (Note: all dimensions are in metric units.)
(w) width of ghost tower in metres
(s) number of tower sides Δ or
(f) radio frequency in MHz
$\left(h_{t}\right)$ transmitter centre of radiation above reference in metres
(h_{s}) height of ghost tower above reference in metres
(h_{v}) height of viewing antenna above/below reference in metres
$\left(d_{s}\right)$ distance to ghost tower in metres
$\left(d_{v}\right)$ distance to viewer in metres
$\left(d_{g}\right)$ distance from ghost tower to viewer in metres
$\left(d_{d}\right)$ direct distance from transmitter centre of radiation to point P on (h_{s})
$\left(d_{r}\right)$ distance from transmitter centre of radiation to point P on (H_{s}) via reference plane
$\left(P_{i}\right)$ incident power at point P on ghost tower
$\left(\phi \mathrm{H}_{\mathrm{g}}\right)$ arimuth to ghost tower in degrees
($\varnothing \mathrm{F}_{\mathrm{v}}$) azimuth to viewer in degrees
$\left(\phi V_{1}\right)$ depression angle to C / R of ghost tower (h_{s}) in degrees
$\left(\varnothing \mathrm{V}_{2}\right)$ depression angle to reflection plane in degrees
$\left(\phi \mathrm{V}_{3}\right)$ depression angle to viewer in degrees
$F\left(\phi \mathrm{~V}_{1}, \phi \mathrm{~V}_{2}, \ldots . \mathrm{H}_{\mathrm{g}} \ldots ..\right) \quad \begin{aligned} & \text { relative field at given azimuth } \\ & \text { or depression angle }\end{aligned}$
(l) loop length in metres (w) x (s)
(λ) wavelength in metres $\frac{300}{(f)}$
$S_{(z)}$ Fresnel integral $\left[\frac{1}{2}-f(z) \cos \left(\frac{\pi}{2} z^{2}\right)-g(z) \sin \left(\frac{\pi}{2} z^{2}\right)\right]$

(WWh E.W. HORRIGAN \& ASSOCIATES LIMITED

Definitions (cont'd)

$$
\begin{aligned}
& \left(P_{t}\right)=E R P \\
& (z)=\left(\frac{\ell}{\lambda}+0.5\right)
\end{aligned}
$$

4.1 Echo Delay Equation

FIGURE 2

$$
\begin{equation*}
\text { Delay }=3.33\left\{a_{s}-a_{v}+\left[a_{s}^{2}+a_{v}^{2}-2 a_{s} a_{v} \cos \left(\phi H_{g}-\phi H_{v}\right)\right]^{\frac{1}{2}}\right\} n s \tag{1}
\end{equation*}
$$

4.2 Basic Ghost Magnitude Equation

The ghost equation as outlined below is the basic free-space isotropic form which is later modified to conform to the restraints of a realistic environmint.
a) Power density at viewer's location: (W_{d})

$$
W_{\mathrm{d}}=\frac{\mathrm{P}_{\mathrm{t}}}{4 \pi\left(\mathrm{~d}_{\mathrm{v}}\right)^{2}}=\frac{\mathrm{W}}{\mathrm{~m}^{2}}
$$

b) Power density at ghost tower location: (W_{i})

$$
W_{i}=\frac{P_{t}}{4 \pi\left(d_{s}\right)^{2}}=\frac{W}{m^{2}}
$$

c) Power density at viewer's location due to re-radiation from ghost tower: $\quad\left(W_{g}\right)$

$$
\begin{aligned}
W_{g} & =\frac{W_{i} \sigma}{4 \pi\left(d_{g}\right)^{2}}, \text { (where } \sigma \text { is the scattering } \\
\therefore & =\frac{P_{t} \sigma}{4 \pi\left(d_{s}\right)^{2} \cdot 4 \pi\left(d_{g}\right)^{2}}
\end{aligned}
$$

d) Basic ghost/signal ratio
$\frac{\mathrm{w}_{\mathrm{g}}}{\mathrm{w}_{\mathrm{d}}}=\frac{\sigma}{4 \pi}\left[\frac{\mathrm{~d}_{\mathrm{v}}}{\mathrm{d}_{\mathrm{s}} \mathrm{d}_{\mathrm{g}}}\right]^{2}$
given d_{s} and d_{v}, d_{g} can be computed as follows:
$a_{g}=\left(a_{s}{ }^{2}+a_{v}^{2}-2 a_{s} a_{v} \cos \left(\phi_{g}-\phi_{v}\right)\right)^{\frac{1}{2}}$
(d_{g}) can also be obtained from equation (l) as follows:
$d_{g}=a_{v}-d_{s}+\left(\frac{\text { Delay } \mu s}{3.3 \dot{3} \times 10^{-3}}\right)$

Therefore:

$$
\frac{w_{g}}{w_{d}}=\sigma \frac{1}{4 \pi}\left[\frac{d_{v}}{d_{s}\left(d_{v}-d_{s}+\frac{\mu S}{3.33 \times 10^{-3}}\right)}\right]^{2}
$$

Extracting the cross-section σ from this equation and defining the remainder in terms of λ^{2} the equation becomes the propagation factor related to poynting's vector where the energy flow is expressed for convenience as:

$$
\text { Power }=\int_{s} d_{s}=\frac{W}{\lambda^{2}}
$$

- 11 -

Propagation factor: (p)

$$
\begin{equation*}
(p)=\frac{1}{4 \pi}\left[\frac{d_{v}{ }^{\lambda}}{d_{s}\left(d_{v}-d_{s}+\frac{\mu S}{3.3 \dot{3} \times 10^{-3}}\right)}\right]^{2} \tag{2}
\end{equation*}
$$

where (p) is the area of the equivalent spherical surface in units of λ^{2}.

4.2 .1

Scattering Cross-Sections

The measured scattering cross-sections (σ_{t}) of one wavelength high triangular tower sections as listed in section 3.0 have been fitted to a suitable equation over the loop peripheral range of 0.5λ to 2.5λ. The radar cross-section for cylindrical structures have been defined in terms of loop circumference expressed in wavelength units and merged. with the tower section equation at a suitable intercept as shown in Figure 1.

The measured triangular tower cross-section has the form of a modified Fresnel Integral over the loop peripheral range of 0.5λ to 2.5λ.

$$
\sigma_{t}=f\left(\frac{h_{s}}{\lambda}\right) f\left(\frac{\ell}{\lambda}\right) f\left(S_{(z)}\right) \quad \text { where: } s(z)=\int_{0}^{z} \sin \left(\frac{\pi}{2} \cdot t^{2}\right) d t
$$

A working equation was generated using this format which adequately describes the measured results over the loop range 0.5λ to 2.5λ.

$$
\begin{gathered}
\sigma_{t}=\frac{1}{1.2}\left(\frac{\pi}{2} \frac{h}{\lambda}\right)^{2} \cdot\left[\frac{\ell}{\lambda}\left(1-e^{-\left(\frac{2 l}{\lambda}\right)^{2}}\right) s(z)\right] \\
\text { where }(z)=\left(\frac{\ell}{\lambda}+0.5\right)
\end{gathered}
$$

Using the relationship between the Fresnel Integral and its auxiliary functions $f(z)$ and $g(z)$, the Fresnel Integral $S_{(z)}$ can be expressed as:

$$
S_{(z)}=\frac{1}{2}-f(z) \cos \left(\frac{\pi}{2} z^{2}\right)-g(z) \sin \left(\frac{\pi}{2} z^{2}\right)
$$

For computational purposes the rational approximations ${ }^{2}$ for $f(z)$ and $g(z)$ can be used to evaluate $S_{(z)}$:

$$
\begin{aligned}
& f(z)=\frac{1+0.926 z}{2+1.792 z+3.104 z^{2}}+\xi(z) \\
& g(z)=\frac{1}{2+4.142 z+3.492 z^{2}+6.67 z^{3}}+\xi(z) \\
& \text { where }|\xi(z)| \leq 2 \times 10^{-3}
\end{aligned}
$$

$$
\begin{equation*}
\sigma_{t}=\left\{\frac{1}{1.2} \cdot\left(\frac{\pi}{2} \frac{h}{\lambda}\right)^{2} \cdot\left[\frac{\ell}{\lambda}\left(1-e^{-\left(\frac{2 \ell}{\lambda}\right)^{2}}\right) \cdot\left(\frac{1}{2}-f(z) \cos \left(\frac{\pi}{2} z^{2}\right)-g(z) \sin \left(\frac{\pi}{2} z^{2}\right)\right]\right\} \ldots .\right. \tag{3}
\end{equation*}
$$

The scattering cross-section of a right cylinder ($\sigma_{\text {cyl }}$) is defined as:

$$
\begin{aligned}
\sigma_{c y l}=2 \pi \frac{a}{\lambda} L^{2} \quad \text { where } L & =\text { height of cylinder } \\
a & =\text { radius of cylinder }
\end{aligned}
$$

$\operatorname{let} \frac{2 \pi a}{\lambda}=\frac{\ell}{\lambda}$
and let $L=\frac{h_{s}}{\lambda}$

$$
\begin{equation*}
\sigma_{C Y I}=\left[\frac{\ell}{\lambda}\left(\frac{h_{s}}{\lambda}\right)^{2}\right] \tag{3A}
\end{equation*}
$$

"Radar Fundamentals - Effective Areas",
Reference Data for Radio Engineers, Table I, 29-6, Fth Ed. 1968, Howard W. Sam \& Co. Inc. I.T.T. New York.

4.2 .2
 Incident Power on Ghost Tower

In the basic ghost magnitude equation we made the simplifying assumption that the entire system was in a free-space isotropic environment. This situation does not generally exist in practice and therefore the incident power cannot be expressed as:

$$
P_{i}=\frac{P_{t}}{4 \pi\left(d_{s}\right)^{2}}
$$

Consider the situation which will usually exist in a ghosting problem: The two towers are of finite height above a common reference plane separated by a distance which is in the range $h_{s} \leq d_{s} \leq 50 h_{s}$. In this range the effects of ground reflection cannot be ignored and it is necessary to define the incident power function and its

From the geometry of Figure 3 it can be shown that the incident power P_{i} at any point on h_{s} can be expressed by a modification of the cosine law:

$$
P_{i}=\left[\left(F v \varnothing_{1}\right)^{2}+\left(F v \phi_{2}\right)^{2}-2 F v \varnothing_{1} F v \varnothing_{2} \cos \frac{2 \pi}{\lambda}\left\{\left[d_{s}{ }^{2}+(h t-h s)^{2}\right]^{\frac{1}{2}}-\left[d_{s}{ }^{2}+(h t+h s)^{2}\right]^{-\frac{1}{2}}\right\}\right]
$$

$$
\begin{array}{r}
\text { where } v \varnothing_{1}=\tan ^{-1}\left(\frac{h t-h s}{d_{s}}\right) \\
v \varnothing_{2}=\tan ^{-1}\left(\frac{h t+h s}{d_{s}}\right)
\end{array}
$$

To facilitate manipulation and computation let:

$$
\begin{aligned}
& P_{i}=\left(F_{1}\right)^{2}+\left(F_{2}\right)^{2}+2 F_{1} F_{2} \cos (\chi) \\
& \text { where } \chi=\frac{2 \pi}{\lambda}\left\{\left[d_{s}{ }^{2}+(h t-h s)^{2}\right]^{\frac{1}{2}}-\left[d_{s}{ }^{2}+(h t+h s)^{2}\right]^{\frac{1}{2}}\right\} \\
& \text { let } \frac{(h s)^{2}+(h t)^{2}}{\left(d_{s}\right)^{2}}=a \\
& \frac{2(h s)(h t)}{\left(d_{s}\right)^{2}}=b \\
& \text { Radio Frequency }=(f) M H_{z} \\
& X= 1.2(f) d_{s}\left[(1+a-b)^{\frac{1}{2}}-(1+a+b)^{\frac{1}{2}}\right]
\end{aligned}
$$

4.2.3 Mean Value Integral of Incident Power $\left(P_{i}\right)$

The total effective power averaged over the ghost tower equated to that of an evenly illuminated structure will provide a modifying factor for use with the basic ghost magnitude equation. This will relate the original freespace equation to a practical environment.

If the incident power function P_{i} is related to (χ) instead of (hs) the mean value integral (k) becomes:

$$
\begin{equation*}
k=\frac{\int_{0}^{\chi} P_{i} d x}{x} \tag{4}
\end{equation*}
$$

This function can be adequately derived by Simpson's Rule using a modest number of intervals of (χ) because the relationship between (h_{s}) and (X) is not significant in defining the ratio (k).

4.2.4

Centre of Radiation of Ghost Tower

The effective centre of radiation on the ghost tower (\bar{h}_{s}) can be likened to the lst moment centroid of area of the integral of P_{i} in the plane normal to the reference surface.

$$
\bar{h}_{s}=\frac{\int_{0}^{h_{s}} h_{s} d A}{A}
$$

With a view to the simplification of this factor several forms of illumination distribution have been examined and
the likely range of the ratio $\left(\frac{\bar{h}}{h_{s}}\right)$ will be between 0.5 and 1.0. Therefore, a value of 0.75 will be used to compute incident power over the ghost tower.

However, the linear height/gain function $\left(\frac{h}{h_{t}}\right)^{2}$ referred to the viewing location applies only where the air path and ground reflected components of both ghost signal and direct signal are substantially out of phase. Where first Fresnel zone clearance exists the factor $\left(\frac{h_{s}}{h_{t}}\right)^{2}$ should be equated to one (1) for realistic ghost computations.

Linear Height/Gain Function $=\left(\frac{\bar{h}}{h_{t}}\right)^{2}$
Free Space. Function $=(1)$

Approximate solution for lst 'Fresnel' zone clearance:
(f) $\frac{, h_{t} h_{v}}{d_{v}} \leq 75=$ Linear Height/Gain use
(f) $\frac{h_{t} h_{v}}{d_{v}}>75=$ Free Space. Pathuse

$$
\text { where } \begin{aligned}
h_{t} & =T x \text { height } \\
h_{v} & =\text { Viewer height } \\
d_{v} & =\text { Viewer distance } \\
(f) & =\text { Frequency in } M F z
\end{aligned}
$$

4.2 .5

The Transmitting Antenna Vertical Pattern Function

The factor allows for the non-isotropic vertical pattern of a practical transmission antenna. It provides a ratio of the relative vertical power on the centre of radiation of the ghost tower to that at the viewer's location by inputing the relative vertical field at two computed angles. The factor P_{v} is computed as follows:

$$
\begin{array}{r}
\text { let } \phi_{1}=\tan ^{-1}\left(\frac{h_{t}-h_{s}}{d_{s}}\right) \\
\varnothing_{3}=\tan ^{-1}\left(\frac{h_{t}-h_{v}}{d_{s}}\right) . \\
P_{v}=\left(\frac{F v \emptyset_{1}}{F v \emptyset_{3}}\right)^{2} \quad \tag{6}
\end{array}
$$

4.2.6 The Transmitting Antenna Horizontal Pattern Function

This factor allows for the non-isotropic horizontal pattern of the transmitting antenna in a similar manner to that used for the vertical pattern in Section 4.2.5 above.

The pattern factor relative power function P_{h} is derived below:

$$
\begin{equation*}
P_{h}=\left(\frac{F h \phi_{G}}{F h \phi_{v}}\right)^{2} \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } \emptyset_{g} & =\text { azimuth of ghost tower } \\
\emptyset_{v} & =\text { azimuth of viewer }
\end{aligned}
$$

The Complete Ghost Analysis Equations

It is now possible to generate complete ghost prediction equations providing an output as a picture impairment grade number or as an extraneous noise and distortion percentage for the FM radio service.

The subjective TV picture impairment equations contained in Report No. l relate ghost magnitude and delay to the CCIR Recommendation 500 five point grading scale.

The objective measurements of multipath FM radio noise and distortion were similarly reduced to an equation relating echo magnitude and delay to a percentage value of extraneous noise and distortion.

Therefore, the equations contained in this report can be integrated with those in Report No. 1 to provide output desired.

The "Typical Viewer" grade equation has been selected for this integrated TV analysis program:

$$
\begin{aligned}
& \text { Viewer Grade No. }=\left[\left(0.143 e^{-\frac{0.637}{t d}}\right)(G)+\left(6.65 e^{-\frac{0.475}{t d}}\right)\right] \\
& \text { F.M. Noise/Dist\% }=141.4\left(\frac{\mathrm{Log}^{-1}(G)}{20}\right) \sin (1.8 t d)
\end{aligned}
$$

$$
t \alpha=\frac{3 \cdot 33}{1 \times 10^{3}}\left\{d_{s}-d_{v}+\left[d_{s}{ }^{2}+d_{v}{ }^{2}-2 \alpha_{s} d_{v} \cos \left(\phi_{H_{g}}-\phi_{\mathrm{H}}\right)^{1 / 2}\right\} \ldots \ldots\right. \text { (1) }
$$

These complete equations have been programmed for the TI-SR59/PCl00A Calculator/Printer. This program and the input/output format are contained in the appendix to this report.

5.0 Comparison with Measured Ghosts

The CBHT/CJCH-TV Halifax ghost problem was re-examined and ghost predictions were made based on parameters obtained from the original $C B C$ engineering brief and the DOC report by D.M. Skanes of 1961.

Prediction calculations were made based on a viewing location at Site No. 1 and compared to those made by the DOC in 1961 and listed on page 6 of their report, for various tower heights of CJCH from 320 ft . and 600 ft .

These are listed below:

VIEWING SITE NO. 1	TOWER HEIGET - $\mathrm{CJCH}-\mathrm{TV}$			
	3201	360 ,	$445^{\text {1 }}$	6001
Measured by DOC	32.2 de	25.6 dB	19.7 dB	18.8 dB
Predicted by Equations	31.88	28.69	22.61	15.45
Difference	- 0.42 dB	$+3.09 \mathrm{~dB}$	+ 2.91 dB	- $3.35 d B$

These differences are considered to be well within the range of experimental error.

A study of the Toronto Bank of Montreal situation was also made based on a 150 ft. tower of 2 ft . face width using the new program and the Department's computer program based on viewing sites at 2 miles and 40 miles.

DOC Ghost Program

Dist. BBC Re-radiation Coefficients Azm. Mi. Equiv-cyl. Latt-Norm Latt-Diag

Radar Equation-Ghost Delay Cyl. xsec. Target Gn. usec. In.

| 0.40 .0 | -73.4 | -64.6 | -67.0 | -48.6 | -41.6 | 0.50 | 0.19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

New Ghost Proaram

240°	2 mi.	-52.9 dB	5.27
0°	40 mi.	-62.7 dB	0.50 usec.

Conclusions

The ghost levels which are predicted using the above equations were compared to results obtained using the DOC computer program. In general, the results of this new prediction technique are between those predicted using the EWH "Target Gain" Method, which is an overly conservative method, and the BBC results, which are considered to be overly optimistic in the DOC program format.

The original Halifax ghost situation was re-examined in Section 5.0 of this report using the ghost prediction program. The results were compared to the Department's measurements of 1961 at Site No. 1. The predictions and measurements show a. very high. level of correlation.

The original small FM tower on the Eank of Montreal Building in Toronto was examined relative to CFTO-TV Channel 9 transmissions and ghost levels of about 53 dB were predicted in the downtown area as a result of this structure.

It is, therefore, considered that the proposed method provides a reasonably simple way of assessing the impairment to a television or FM radio service caused by the establishment of another tower in proximity to the broadcast radiator.

Furthermore, the method provides results which should ensure that serious ghost situations are avoided while not unduly restricting the extension of the broadcast service.

The previous report dealing with subjective and objective effects of multipath signals indicated that the FM radio service was less impaired than the TV service for similar echo levels and delays.

The BBC measurements on square section towers gave similar values for the re-radiation co-efficients for both vertical and horizontal incident polarization. The nodal positions relative to face width were not identical but the magnitudes were not greatly different.

Therefore, it is considered that the echo amplitude equations developed in this report are reasonably valid for FM multipath distortion analysis purposes.

7.0
 Recommendations

It is considered that this study program has produced an easily applied method of predicting TV ghost and FM multipath echo levels and delays which result from radio towers adjacent to the broadcast antenna. Furthermore, these prediction methods can be integrated with the results of companion study into subjective and objective impairments caused by ghost or multipath signals.

The complete analysis program as presented in these reports can be used as a basis for "Standards." and "Procedures" or as a "Notice to Broadcast Consultants".

Therefore, it is recommended that the "Standards" for TV ghost impairment and FM multipaith distortion be based on a specific grade of service or percentage noise and distortion as the case may be rather than as specific echo amplitude for: a given delay.

It is further recommended that the minimum "Grade Number" for acceptable television service be equal to or better than Grade 1.5 (Very Good) for the major portion of the service area. The equivalent $F M$ impairment grade for extraneous noise and distortion is considered to be 2% (-34 dB).

It is recommended that the "Procedures" should be as follows:

- 26 -
F.M. Multipath Distortion
i) The echo amplitude and delay will be computed by the method described in Broadcast Procedure X, Section Y, using any technique considered acceptable to the Department.
ii) The service grade will be computed by means of Figure 29 or by any other technique considered acceptable to the Department.

An examination of the equations used in this analysis and those of Knight's will reveal the amount of mathematical manipulation, the complexity of the equations, the opportunity for inadvertant error, and finally, the time required to cross-check the results.

Any attempt to simplify these equations results in unreliable predictions which often produce restrictive answers not conducive to service expansion in order to "play safe".

Considerable time has been spent in attempting to produce easily applied nomograms and curves which provided realistic answers to these complex equations. Unfortunately, little success was achieved or envisioned in the cost and time scale allocated to this part of the project. Therefore, the only satisfactory method available is to use some computational device such as a computer or advanced programmable calculator of sufficient memory capability.

In view of this conclusion, the following comments are made:

1. It is extremely necessary to provide the Broadcast Consultants with an agreed computational package to ensure unified results in a given situation.
2. It would be convenient to provide consultants with a computational package written for a specific processor to ensure unified results in a given situation.
3. It may create an impression that the Department is endorsing a specific processor if DOC provides Items 1 or 2 .

Therefore, it is recommended that such packages based on the equations of Reports No. 1 and No. 2 be made available at modest cost to consultants and other interested engineers and agencies through the $C A B$ or $C A B C$.

However, this creates a problem in respect to a published "Procedure" which would either have to specify the whole method including several pages of equations, refer to Reports No. 1 and No. 2 and make these available on demand, or refer to a published paper based on Reports No. l and No. 2 and/or a suggested source of computational package.

8.0
 Areas for Further Study

Several problem areas beyond the current study program have been briefly examined and these are outlined below:

8.1 Ghost Computation "Procedures"

A method of defining a "Procedure" for ghost level computation as discussed in Section 7.0 of this report.

8.2 Ghost Measurement Techniques

A method of measuring ghost amplitudes which eliminates the errors inherent in simple methods as outlined in Section 7.2 of Report No. 1.

8.3 Echo Suppression Techniques.

It is recommended that a study be made of the feasibility of suppressing ghost signals where these are present at the input to a translator system or cable television head-end. This refers to the situation where the ghost source is at the sending end and cannot be modified by receiving antenna orientation. The technique involves the injection of antiphased RF. ghost signals derived from the direct signal.
9.0 ENGINEERING SEAL \& SIGNATURE

SEAL

Cross-section in units of λ^{2}

$\binom{\ell}{\pi}$ Horizontal Loop Peripheral in units of λ

FIGURE 4

FIGURE 5
TYPICAL GHOST AZIMUTH SITUATION

10.2.2 Method of Application

1. The Software Package

The computational package performs the following functions when provided with the listed inputs shown on page 39 of this report.
a) computes and records the echo delay in microseconds
b) computes and selects the measured tower or equivalent cylinder cross-section dependent upon loop size
c) computes incident power on ghost tower based on ground reflection, transmitting antenna vertical pattern, ghost tower height and separation
d) computes mean value integral of incident radiation on ghost tower
e) computes centre of radiation of ghost tower
f) computes propagation co-efficient based on three paths $\left(d_{S}, d_{v} \& d_{g}\right)$
g) computes transmitter to viewer path clearance and selects path treatment
h) computes $T x$ antenna horizontal pattern co-efficient
i) computes $T x$ antenna vertical pattern co-efficient
j) computes and records echo amplitude in $-d B$
k) computes and records "Typical Viewer" grade of TV service

1) computes and records EM Radio extraneous noise and distortion as percentage.

2. Input Procedure

Using page 39 of this report as a guide, define and list the required inputs. The various parameters, with the exception of those which are self-explanatory, are shown in Figures 4 and 5.

Antenna vertical and horizontal relative field patterns for the transmitting antenna are also required.

The calculator should be loaded in the stated sequence always ensuring that the previous operation has been completed prior to the next entry. Subsequent to operation 12 the calculator will print several vertical depression angles. Each printed angłe requires the entry of the relevant vertical field value.

The calculator will request a lower limit of ghost tower integration several seconds after the entry of $F \phi V_{3}$. If the reference plane was drawn in accordance with any of the three elevation situations shown in Figure 4, the limit is zero and the Run/Stop kutton should be pressed to complete the computation. However, if an unusual situation exists and the reference plane does not intercept the ghost tower base because of topographical features, etc., the following action should be taken:

Define new lower limit as ratio of total ghost tower height (i.e. 25%). Recall Store 10 (RCL 10), multipiy display by 0.25 and enter using "User Defined" Key 'A'. The computation will then continue using this new lower limit of integration for the incident power over the ghost tower (h_{s}).

3. Qutput Procedure

The calculator will print the outputs one space below the inputs in the following sequence:
i) Ghost Level in -dB
ii) Echo Delay in μ Secs.
iii) "Typical Viewer" Grade No.
iv) FM Radio Extraneous Noise/Distortion in percentage
"Measured"
FM Radio Scale
Dist. \quad S/N
"Typical Viewer"
TV Grade scale
1.0 - Excellent
1.5 - Very Good
2.0 - Good
2.5 - Fairly Good
3.0 - Fair
3.5 - Rather Poor
4.0 - Poor

4. Approximate Solution

A rough approximation of the ghost situation can be obtained without the use of the software program, for preliminary planning purposes only, by the following method:

Define the various parameters as described in section 3 (previous page).
a) Calculate delay using Eq. (l) on page 8.
b) Calculate propagation factor from Eq. (2) on page 11.
c) Obtain $\frac{\sigma_{t}}{\lambda}$ or $\frac{\sigma_{c y l}}{\lambda}$ factor from Figure 1 for relevant $\left(\frac{\ell}{\lambda}\right)$.
d) Multiply c) by $\left(\frac{h_{s}}{\lambda}\right)^{2}$ to obtain either $\sigma_{c y l}$ or σ_{t} as required - Eq. (3) or Eq: (3A).
e) Obtain rough approximation to Eq. (4) by computing the incident power P_{i} as shown on page 15 and dividing by $2 \frac{E R P}{4 \pi\left(d_{S}\right)^{1}}{ }^{2}$ or by using:
a second order approximation outlined below:
i) compute the relative field at $\phi \mathrm{V}_{1}=F \phi \mathrm{~V}_{1}$ where $\varnothing \mathrm{V}_{1}$ is defined as on page 15

$$
\phi v_{1}=\tan ^{-1}\left(\frac{h_{t}-h_{s}}{d_{s}}\right)
$$

ii) Eq. (4) $\sim\left(\frac{E \varnothing \mathrm{~V}_{1}}{2}\right)^{2}$
f). Compute qualifying equations on page 17 and obtain Eq.(5) or (5A) as required.
g) Compute Eq. (6) on page 18 of this report.
h) Compute Eq.(7) on page is of this report.
i) Obtain Ghost in dB as follows:

Ghost $d B=10 \log _{10}\left(\varepsilon_{q}(2) \times(3\right.$ or $3 A) \times(4) \times(5$ or $\left.5 A) \times(6) \times(7)\right)$
j) Obtain TV Grade No. from Figure 19 of Report No. 1 using a) and i) above.
k) Obtain FM Radio Noise/Dist. \% from Figure 29 of Report No. 1 using a) and i) above.

This method only provides an approximate solution and may be in error by $\pm 10 \mathrm{~dB}$, dependent upon complexity of the situation.

TITLE TV.\& FM. GHOST ANALYSIS
PROGRAMMER E.W.HORRIGAN
PAGE 1 OF 6
DATE 25/10/78
\qquad
\qquad

Program Record
 TI Programmable

Printer 100A
Cards 2

PROGRAM DESCRIPTION

Program predicts TV, and FM. echo levels in ABs and echo delays in u. Secs. and also provides the Grade No. of impairment for the 'Typical Viewer' and the average of of extraneous noise and distortion for FM. reception.

The program requires the inputs which are listed below which are loaded sequentially A new input should not be attempted until the previous input has been executed.
The command R / S at the end of the program will return the calculator to Step 7 retaining Inputs $\cdots \rightarrow 6$ in memory. This is used to evaluate new viewer locations based on the same Ghost situation. The command RST resets the program for a new ghost situation.

USER INSTRUCTIONS

© 1977 Texas Instruments Incorporated
 Ti Programmable PROGRAMMER EW. Horersan , DATE 25/10/78 Coding Form

-41 -
TITLE TV. FM GHOST AMRLVSIS
PAGE 3 of b Tl Programmable
PROGRAMMER \qquad DATE $25 / 10 / 78$

-42-
TITLETV + FM GHOST ANALYSIS
page_4_of t- Tl Programmable Coding Form

PROGRAMMER
E.W. ttorrigan DATE-2510/78

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
324	54	!		379	10	0		434	65	\%	
3 cc	95	$\stackrel{+}{=}$		380	95	$=$		435	日2	2	.-.....-
2 c	35	1\%		381	39	EIH		436	95	$=$	
227	65	\%		3E2	65	8		437	36	$\mathrm{x}=$	
328	59	C		36	43	FCL	,	43 E	94	$+\square-$	
32	43	FEL		$3 \mathrm{B4}$	09	06		439	22	IHM	
3 SO	13	13		385	95	$=$		440	23	LH:	
351	65	\%		286	42	ETD		441	95	,	
39	93	-		36	14	04		442	$\stackrel{7}{5}$	-	
393	- 09	9		388	43	FCL		443	01	1	
394	03	3		369	13	13		444	95	$=$	
355	85	+		890	33	SE		445	94	$+\cdots-$	
96	01	1		891	65	8		446	42	ETD	
89	54	y		392	$\square 9$	9		447	08	18	
356	95	$=$			10	0		49	65	\%	\cdots
39	42	ETD		394	95	$=$		449	53	C	---
240	$0{ }^{0}$	02		395	39	L0S		450	43	FCL	--- - - -
341	43	FOL		39	65	8		451	15	15	---
342	19	13		397	43	FCL		45 E	63	8	
348	45	Y\%		398	D2	02		45	54	\%	- .-......
344	63	3		397	95	=		454	65	\%	-
345	65	8		400	42	$3 T \square$		455	43	FCL	-...-
346	96	E		401	\square	05		456	06	06	
34	99	=		402	5	¢		457	65	\%.	
348	07	7		419	93			458	43	FCL	
349	E5	$+$		4104	W5	5	-	459	12	12	- - - --...
950	59	¢		405	75	-		460	95	$=$	
351	43	FCL		406	43	FICL		4	42	ETD	-----
35	13	13		457	04	04		462	09	05	--... -
ES	39	N		408	75	-		48	43	FCL	---------
S54	65	\otimes		409	43	ECL		464	19	18	-
355	03	3		410	015	05		465	55	\div	
35	98	-		411	54)		468	43	FCL	
St	05	5		412	95	$=$		467	11	11	--
359	54	\%		413	65	8		488	65	8	
359	85	$+$		414	62	2		469	03	3	\cdots
360	43	FCL		415	93			470	010	\square	-
361	13	13		416	02	2		471	01	\square	- - - -
E63	65	8		417	05	5		472	55	\div	-- --.--
36	94	4		415	95	$=$		478	43	ECL	--
$3{ }^{3}$	98			419	42	$5 T \square$		474	16	16	--.---.-
865	01	1		420	10	DE		475	55	\div	--..---
3 E	04	4		421	43	FLL		476	58	C	-...- -
56	54)		42	12	12		477	4	FCL	-
368	Es	\pm		423	65	8		478	20	20	-
369	[2	2		424	53	C		479	65	χ	.- -....
370	95	$=$		425	43	FCL		480	01	1	-... --.........
37	St	1%		426	15	15		481	00	\square	...- --........
2T	42	STD		427	23	x		482	00	0	
37	09	08		428	54	\%		4 4	00	0	
974	49	RCL		429	95	$=$		484	5	\div	
375	13	13		480	42	$\operatorname{ST\square }$		485	03	3	84 ciay
976	S3	x		431	07	07		468	85	$\stackrel{+}{+}$	92 INV) ssgx
977	E5	\because		482	43	ECL		46	43	FCL	IENTS
3 Bt	09	9		433	12	12		488	18	1 E	

\qquad

LOC	CODE	KEY	COMMENTS	LOC	\|code	KEY	COMMENTS		code	KEY	COMMENTS
494	75	-.		54	3	PE		59	13	3	
49	43	FCL		545	95	$=$		600	07	7	
491	16	16		546	42	STD		601	55	\div	
492	54)		547	28	2 c		602	43	RGL	
493	85	$=$		548	5	4		608	20	20	
494	35	N2	¢	549	07	7		604	95	$=$	
495	55	\div	-	550	93	.	:	605	94		
496	04	4		551	05	5	-	806	22	IHY	
497	55	\div		$5{ }_{5}$	32	XTT	-	607	23	LH:	
498	89	17		553	43	FCL	-	008	65	8	
495	95			554	11	11	-	8.19	99	,	
500	42	STI		5	65	\%	.	610	01	1	
501.	10	10		55	53	(-	611	04	4	
502	5	C		557	43	FCL	-	612	03	3	
508	02	2		55	14	14	\because	613	54	\%	
504	93			55	75	-		614	65	8	
505	02	2		560	43	FCL	-	615	43	FGL	
506	15	5		561	15	19	.	616	01	01	
507	5.4	y	;	562	85	$+$		617	95	$=$	
508	3	YtT		563	01	1	-	618	42	ETD	
509	43	ELL		$5 ¢$	00	\square	.	619	08	08	
510	12	12		56	54)	-	$E 20$	53	C	
51	77	GE		568	5	\div		62	93		-
512	15	E		56	43	FCL		62	04	4	
5	43	ELL		568	18	1 E	-	62	07	7	
514	09	09		56	95	$=$		66^{4}	05	5	---
515	61	ETD		570	22	IHV		65	56	\div	
519	10	$E^{\text {a }}$		571	7	LE		6	43	FCL	
517	76	LEL		572	89	7	-	62	20	20	
518	15	E		573	01	$\underline{1}$		E8	95	$=$	
519	43	REL		574	42	STD	:	82	94	$+7-$	---
520	$0 \cdot$	07		57	28	28		630	22	IH4	
521	76	LEL		57	Fe	LEL	-	631	2	LHA	-
E2	10	$E^{\text {a }}$		57	89	1		68	6	x	
53	65	8		578	43	FCL	-	63	18	E	
524	43	RCL		575	2 B	26		634	9\%	:	-
5 ES	10	10		5 ED	65	8		635	DE	E	
56	65	$\%$:	581	43	FCL	-	636	05	5	-
527	43	ECL		5 Ec	27	27		63	54	\rangle	-
5 E	010	00		583	95	-		688	85	$+$	
5 E 9	65	8		584	2 E	LपG		63	43	FCL	-..-----
561	43	FCL		585	65	*		640	- 0	0 0	-
51	25	25		5 EE	01	1		641	-95	=	-
5 S	E5	8		59	00	\square		642	- 4	510	-
5 ES	43	FCL		588	95	$=$		648	- DE	06	
58	21	21		589	98	RTY		644	- 5	¢	- .
585	95	$=$		590	99	FET		645	-11	1	-
56	42	ETD		591	42	STL		648	54	y	
57	27	$3{ }^{3}$		592	01	01		64	32	XT	- -
588	43	FCL		59	43	ECL		648		PCL	
56	29	2		594	20.	20	-. .-.-...--			MERGEDCOD	83 grol
540	55	\div		5	9	FRT	-		$\underline{4}$	73 ECH	
54	43	FLL		59	53	©	-----		Emm	74 Sum	92 [NWV [Seq
542	14	14		597	8	:			Texa	SINSTRU	MENTS

TELEVISION GHOSTING AND FM. MULTIPATH DISTORTION INVESTIGATION
P
91
C655
T4554
1978
v. 2
DUE DATE

I
I
 I
 I I
 1 1

