# A CAPITAL BUDGET OPTIMIZATION MODEL FOR SUBSCRIBER LOOP FACILITIES IN THE TELECOMMUNICATIONS CARRIER INDUSTRY 

PREPARED<br>UNDER THE DIRECTION OF<br>DR. J.C. SPRAGUE<br>DEPARTMENT OF MECHANICAL ENGINEERING<br>UNIVERSITY OF ALBERTA<br>EDMONTON



# THE UNIVERSITY OF ALBERTA 

TGG2GB

March 29, 1979

Mr. G. Henter
Dept. of Communications 300 Slater Street
Ottawa, Ontario
KIA 0C8
Dear Mr. Henter:
This report discusses a model which optimizes the subscriber loop facilities in the telecommunications carrier industry. Special emphasis has been placed on developing construction plans and capital budgets.

The model described in this report utilizes the forecast informatimon, along with the layout of physical facilities, cost data, and details of alternative networks, to develop a construction program for the first year and capital budgets for all the periods within the planning horizon.

Recommendations have been made concerning the length of the short range and the long range planning periods. The report also discusses the results of a test on the model, conducted using a hypothetical problem (which simulates practical conditions).

The model should be useful to the regulator as well as to the carrier companies and can be adopted by any company with marginal changes to its budgeting system.

Yours truly,

> S.C. Spague, Ph.D., P. Eng. Professor Mechanical Engineering University of Alberta

## ACKNOWLEDGEMENTS

Funds for the support of research assistants and graduate students involved in this project were supplied through a resea'rch grant from the Department of Communications. Two Masters theses have resulted from this study.

A11 individuals involved in this project are very grateful to Edmonton Telephones and Alberta Government Telephones. This project could not have been completed without the technical guidance and information supplied by the individuals within these companies.
Chapter

1. INTRODUCTION ..... 1
1.1 Purpose ..... 1
1.2 Background Information ..... 3
1.2.1 Classification of plant ..... 4
1.2.2 The Method of Optimization within an Integral System. ..... 5
1.3 Scope and Methodology ..... 5
1.3.1 Basic Framework of the Design System. ..... 8
2. SUMMARy ald CONCLUSIONS ..... 14
2.1 Recommendations for Further Study ..... 16
3. DEVELOPNENT OF THE OPTIMIZATION MODEI ..... 18
3.1 Overview of the Total System ..... 18
3.1.1 Output of the Optimization Model ..... 18
3.1.2 Inputs to the Model. ..... 19
3.2 Problem Formulation. ..... 20
3.3 Alternative Systems Studied ..... 23
3.3.1 Simplex Method ..... 24
3.3.2 Network Analysis Approach ..... 24
3.3.3 Evaluation of Alternatives ..... 26
3.4 Structuring the problem. ..... 27
4. DETAILED ANALYSIS OF THE SOLUTION TECHNIQUE. ..... 34
4.1 Data Bank ..... 34
4.1.1 Network Information ..... 35
4.1.2 Forecast Data ..... 37
4.2 Input Conversion System. ..... 43
4.3 Master Control Unit ..... 45
4.3.1 Operating Sequence ..... 48
4.3.2 Programs in the Master Control Unit. ..... 57
4.4 Output Conversion System. ..... 59
5. THE COST MODEL ..... 65
5.1 Technology Assessment ..... 67
5.1.1 Technological Developments. ..... 67
5.1.2 History of Technological Developments. ..... 69
5.1.3 Alternative Methods of Evaluating Technological Change. ..... 72
5.1.4 Assessing Technology ..... 76
5.1.5 Measuring Technology ..... 79
5.1.6 Logistics Curve ..... 82
5.2 The Structure of The Cost Model in Relation to PNET ..... 82
5.3 The Development of the Basic Cost Functions. ..... 85
5.3.1 Direct Labor and its Loadings. ..... 87
5.3.2 Direct Material Cost. ..... 105
5.4 Depreciation and Salvage values. ..... 119
5.4.1 The Total Cost Model ..... 121
6. TESTING THE MODEL ..... 128
6.1 Test Problem ..... 128
6.1.1 Data Format for the Input Conversion System. ..... 139
6.1.2 Cost Related Data. ..... 141
6.1.3 Command Data Set ..... 151
6.1.4 Data Set for Intermediate problem Update. ..... 152
6.1.5 Input Data Required for the output Conversion. ..... 152
6.2 Test procedure. ..... 154
6.3 Test Results and Inference. ..... 156
6.3.1 Secondary Information ..... 156
6.3.2 Capital Budget and Construction Plan ..... 158
6.3.3 Conclusions. ..... 166
BIBLIOGRAPHY ..... 171
APPENDIX-A THE INPUT CONVERSION PROGRAM ..... 175
APPENDIX-B NOTES ON THE MASTER CONTROI UNIT ..... 191
APPENDIX-C COMPUTER PROGRAM FOR CONVERSION OF OUTPUT INFORMATION. ..... 213
APPENDIX-D THE COST MODEL COMPUTER PROGRAM. ..... 234
APPENDIX-E TECHNICAL INFORMATION ON CARRIER SYSTEMS ..... 258
appendix-F the "S" curve parameters ..... 266

## 1. INTRODUCTION

## 1.1 ㄹucegse

The purpose of this study is to develop a capital budgeting model for the telecommancations network within an urban area (e.g. city). The total system will have the capability of forecasting telecommunications demand by switching center area and pinpointing the demand within the switching center area. The short term forecast (over the immediate three years) which allocates the demand to modules within the switching center area and a long term forecast for the whole switching center area (until its ultimate growth) will serve as the basis of the optimization model for budgeting purposes and the recommendations for actual physical plant to be installed. This information will be utilized to develop capital budgets for the immediate three years and a construction program for the first period. Figure 1.1 is a schematic of the basic steps in the capital budgeting process.


Figure 1.1 Schematic Representation of the Computer Based System For The Development of A Capital Budget For the Subscriber Loop Facilities.

### 1.2 Background Inforgation

The telecommunications industry is highly capital intensive and most of the facilities have a life span in excess of 20 years. The industry experiences major advances in technology on a continuing basis and life spans of facilities appear to be decreasing with new technology developments and the customer environment. These factors emphasize the need and the difficulties experienced in designing an optimal strategy for physical facilities.

Telecommunication facilities consist of a physical network that allows verbal and written communication between users of the system.

Telecommunications plant within an urban area can be best classified under two major headings from a costing point of view.

1) Support facilities (service and administration)
(a) land.
(b) buildings,
(c) office furniture and equipment, and
2) Operating facilities
(a) subscriber station equipment.
(b) subscriber loop facilities,
(c) exchange trunking and toll trunking facilities, and
(d) local switching facilities (central office).

The support facilities include all physical facilities necessary to perform the administrative and service functions such as accounting, corporate planning, research and development and engineering. Support equipment (e.g. vehicles and tools) required as part of the direct functions performed by plant personnel should be allocated directly to each class of plant.

The subscriber station equipment represents the equipment utilized by the subscriber at point "A" to communicate with the subscriber at point "B". The network facilities (outside plant, drop facilities, inside wiring and central office equipment) represent the telecommunications equipment necessary to transport the message from point "A" to point "B". For ease of developing an optimization model, the following classifications as outlined in Figure 1.2 are usefal.

### 1.2.1 Classification of plant

Telecommuncations plant within an urban area may be classified under the following categories:

1. subscriber station equipment,
2. subscriber loops.
3. local switching,
4. exchange trunking - between exchanges.
5. toll connecting trunks between local


Figure 1.2 Physical Plant Facilities Within a Telecommunications Network
exchanges and toll switching centers, 6. toll switching (toll switching centers) and, 7. inter toll trunking (connecting trunks between toll switching centers).
1.2. 2 The $\operatorname{HEthod}$ of Optigization within an Integral Systeg The switching center area (exchange area) is considered the critical building block within an integral system (a switching center area is the area serviced by an individual switching center). Therefore, all information with respect to the design of a near optimal network such as forecasting data and equipment requirements will be generated by switching center area. The interaction between other individual switching center areas within the system (e.g. city) and the impact of each area on the toll system must be carefully monitored and converted into capital and operating budget requirements. Figure 1.2 is a schematic of the physical facilities uithin a telecommunications network. Figure 1.3 is a schematic representation of the switcaing center area as a building block.

## 1. 3 Scope and Methodology

The study treats a representative Canadian city as a total integral system. This reseach considers the important criteria of: 1) urban area size, 2) switching center service


Figure 1.3. The Switching Center Area As A Building Block
area 3) subscriber density 4) traffic patterns 5) geographic terrain 6) economies of scale 7) growth rates, and
8) technology. These factors allow adaptability of the model to various cities across the country.

The study limits itself to the analysis of the subscriber loop portion of the telecommunications plant. The subscriber loop facilities are discussed under the following classifications of physical plant:

1) underground paired cable,
2) aerial paired cable,
3) buried paired cable.
4) underground coaxial cable,
5) aerial coaxial cable,
6) buried coaxial cable,
7) manholes, conduits,
8) poles, and
9) line concentrators.

The drop wire and inside wiring from the access terminal to the station subscriber equipment is omitted in the analysis.

### 1.3. 1 Basic Framework of the Design System

The schematic of the optimization model chosen for design is shown in figure 1.4. It consists of two major components: the cost development system and the solution


Figure 1.4 Schematic of the Optimization Model for Telecomnunications Facilities Within an Urban Area
technique. The function of the cost development system is to compute the unit cost of installing plant in any segment of a switching center area, given the conditions of the area in question. The solution sub-system will use these costs as well as information on the network in developing a near optimal policy for the planning period considered.

The total optimization system can be sub-divided into five sub-systems, which are 1) the data bank, 2) the input conversion system, 3) the cost model, 4) the master control unit, and 5) the output conversion system.

The data bank stores the information that is necessary for the functioning of both the cost development system and the solution technique of the optimization model. It contains:

1) cost related information such as:
a) rate of inflation.
b) impact of technology,
c) rate of growth of the company,
d) the cost of capital,
e) the labor rates in the region,
f) the sizes of cable, conduits and poles available and the associated costs, and
g) the number of periods in the planning horizon and the duration of each period.
2) network details including:
a) the layout and details of existing plant,
b) the possible future routes,
c) the distance (e.g. length of cable required) between various nodes (e.g. manholes, poles) in the network.
d) the geographic conditions, i.e., the topography and the climatic conditions of the area, and
e) the constraints on type of plant such as governmental regulations and technical requirements, and
3) forecast data which consist of:
a) the locations of the demand points in the area,
b) the total demand at each of these points upto and including the first period, and
c) the incremental demands for the remaining periods within the planning horizon.

The input conversion system will use the network and forecast data to restate the problem so that it can be readily fed into the optimization program. In the process this sub-system will supply the cost model with the information on the conditions in any segment in the area to obtain the unit cost of adding plant. The system distinguishes between time periods by creating one complete network for each period. These networks will be interlinked to allow for the excess capacity in one period to be made available for the succeeding period. In such a formulation,
the first three periods refer to the first three years, while the last period covers the remaining years in the planning horizon, which is the time required for the ultimate fill of the switching center area. Different technologies are handled by creating parallel networks for each type foreseen.

The cost model will draw on the cost related information in the data bank to define the parameters associated with the cost function(s) to be used. The cost function (s) will be used to calculate the cost per line for any arc in the network, when information relating to topography, length, etc. are supplied. The cost model will interact with the input conversion system as well as the master control unit.

The master control unit contains:

1) a command program that controls the optimization program,
2) the optimization program, PNET, and
3) programs to update the cable sizes and costs so that they correspond with those cable sizes that are available in the market, and to introduce additional arcs necessary and to verify whether or not the final near-optimal solution has been obtained.

The main source of input to this system is the input' conversion system. After a basic feasible solution has been obtained this unit will progressively update the cable sizes and costs, period by period until the last period is completed. The revised costs for the arcs thus modified are obtained by invoking the cost model. The output of this unit, which is the near-optimal plan; is fed into the output conversion system.

The output conversion system is a buffer between the optimization program and the user. Its purpose is to convert the output of the PNET program into a form. which is easily comprehendable in practice. Thus, the information output by the system can be used directly in the planning of operations and in capital budgeting.

The remaining chapters of this report discuss the organization of the model, the tests conducted on it and the results obtained on testing the model. The various coinputer programs used as parts of the total optimization model are given in the appendices.

## 2. SUMMARY AND CONCLUSIONS

This study has developed a model that will give valuable assistance to the planning of outside plant facilities in a telecommunications carrier industry. The technique developed can be used with a forecasting model to yield a capital budget and a construction program.

A switching center area was chosen as the integral unit that can be used as a building block for planning purposes. Thus, the model developed can be directly applied to the optimization and planning of subscriber loop facilities in a telecommuncations industry. The output of the model can be classified under two major headings:

1. capital budgeting information, and
2. a construction program.

The capital budget is useful in planning the financial requirements of the carrier company. The budget, along with the details of the investment in existing plant, can also be used as the basis for the development of just and reasonable rate structures. The construction plan will assist manpower planning, job scheduling and control and in arriving at the operating budget for the first period.

The solution technique is structured around a minimum cost flow network algorithm, PNET, developed at the University of Texas, Austin. Several programs were developed to transform the input and output information and to
structure the problem so that it can be solved using the program PNET. The program PNET requires costs calculated on a unit basis. The cost model calculates the arc cost. per unit of plant for the different plant classifications. The cost computed will be that based on the present value of ail expenses such as installation costs, maintenance costs and salvage value. Factors considered in such a calculation include changing technology, rate of inflation and varying geographic conditions. It should be noted here that the cost of plant in a telecommunications industry depends also on several other factors such as the municipal rights, management policy, economies of scale, growth rates, and the size and age of plant in service. So the costs do not vary linearly with the size of plant and are non-continuous. functions. Therefore, no procedure developed for planning purposes can be mathematically proved to be optimal. The technique developed by the study yields a near optimal solution which can be termed as the "practical optimum".

The tests conducted on the model revealed that the model can be adopted in a practical situation, using a planning range consisting of at least four periods. The last period in the planning range should represent the time spanning the end of the short range through to the point when tie switching center area reaches ultimate fill. Short range forecasts should cover a period which is longer than the economic interval and one period is necessary to denote each year within this short range planning horizon.

The costs of operating the model and using it for capital budgeting depend on the size of the switching center area and several other considerations. Using this optimization technique involves studying the switching center area considered and developing a network that consists of the existing as well as other alternative routes. So the actual size and therefore, the cost of oferating the model is directly affected by the ingenuity of the user in eliminating those routes that are not critical to decision-making.

## 2. 1 Recommendations for Further Study

This study developed a model for the optimization of subscriber loop facilities within an urban area in the telecommunications industry. Several additional studies are necessary to achieve the ultimate goal of evaluation of capital expenditure proposals in a telecommunications industry and a related system to develop just and reasonable rate structures, outlined in this section are some suggestions for future research.

1) Development of cost models for specific technologies. The optimization model can be used to decide on the timing of the introduction of new technologies if suitable cost models can be developed for specific technologies.
2) Extension of the model to include the switching center,
exchange trunks and toll trunks.
Procedures for planning investment in subscriber loops were developed by the study. These procedures can be extended to encompass the switching center and exchange and toll networks. Since the switching center and trunk facilities affect the subscriber loops and vice versa, any attempt to consider subscriber loops in isolation will only result in a sub-optimal solution. Studies should be undertaken to integrate switching and trunking costs into the model.
3) Development of rate structures. The capital investment in a telecommunications system has a direct impact on the rate structure. In addition to the capital investment, several factors including the demand for telecommunication services, management, government and regulatory policies and regulations also affect the rates. An in depth study should be undertaken to develop a methodology for the development of just and reasonable rate structures in the telecommunications industry.

## 3. DEVELOPMENT OF THE OPTIMIZATION MODEL

3.1 Overyiew of the Total System
The optimization model to be designed for the telecommunications industry will be developed considering the switching center area as the basic element and the city as the integral system. This section outlines the characteristics of the total model.

### 3.1.1 Output of the optimization Model

The optimization model will output:

1) the additions/replacements to be made to the existing plant throughout the planning period.
2) the nature of these additions, i.e., the size and type of changes to be made during each period,
3) the timing of the additions/replacements, and
4) the investment costs for each period within the planning horizon under the near optinal plan.

### 3.1.2 Inputs to the Model

The model requires the following input information in order to accomplish the functions indicated in the previous section:

1) network information including
a) the geographic area considered,
b) the location within the specified area,
c) the existing and utilized plant capacities in the area, and
d) the possible future routes,
2) the cost information such as:
a) the cost by size and type of plant,
b) the prevailing labor rates,
c) the growth rate of the firm,
d) the cost of capital, and
e) the rate of inflation,
3) the number and duration of the periods in the planning horizon,
4) the forecast data comprising:
a) the locations of demand points,
b) the total demand upto and including the first period in the planning horizon, and
c) the incremental demand for the remaining periods, and
5) technology assessment,i.e.,
a) the expected number and rype of telecommunication carrier technologies for each
period, and
b) the cost trends of the past and future expectations in the case of each technology.

The optimization model will develop a near optimal capital investment plan based on the information discussed above. In developing such a program, the model will consider the entire planning period of thirty years and the impact of customer demand and future technologies on the physical plant.

### 3.2 Problem Forgulation

The philosophy adopted in formulating the optimization of suoscriber loop facilities in a telecommuncation industry is listed below:

1) The switching center area, in most towns, can be divided into a series of arcs.
2) The arcs can be identified by beginning and ending nodes, both of which represent a point where lines can be branched (e.g. manholes, access terminals).
3) Demand is aggregated at certain convenient points and these points have to be identified based on factors such as the city development plans, the type of customers in the area, etc.
4) The goal of the company is to determine the minimum cost route as opposed to the minimum length route.

However, usually, both routes are identical.

Figure 3.1 portrays a representative switching center area, with its constituent arcs and nodes. If the total number of periods in the planning period is equal to 'N', the total cost function can be simpli described by,

$$
z=\sum_{n=1}^{n} \sum_{i=1}^{m} \sum_{j=1}^{m}\left(\Delta_{i j n} F_{i j n}+c_{i j n} x_{i j n}\right)
$$

where,
'n' is the subscript representing the period,
'i','j', are the beginning and ending nodes of the arc considered,
'm' is the total number of nodes in the entire area, 'C ijn' is the variable cost per line for the arc i-j in period, $n$,
' $X_{i j n}$ ' is the capacity of plant installed in period, $n$, between nodes,'i' and 'j',
' $F_{i j n}$ ' is the fixed costs of installing plant across i-j in period, $n$, and

$$
\begin{aligned}
\Delta_{i j n} & =0 \text { if } x_{i j n}=0 \\
& =1 \text { if } x_{i j n}>0
\end{aligned}
$$

The constraints on this simplified objective
function, which is to be minimized, include:
(i) non-negativity of arc capacities, i.e., $X_{i j n}{ }^{20}$,
(ii) the dependency of costs, $\mathrm{C}_{i j n}$ on the actual capacities. $\mathrm{X}_{\mathrm{ijn}}$ 。
(iii) the relationship between existing plant,

[.] Switching Center

* Demand Points
$x$ Nodes, numbered 1,2...,m
1-2,1-3,... Arcs

Figure 3.1 Representation of Subscriber Loop Facilities as a Series of Arcs
additions/replacements and total plant at the end of a period, which is,

$$
\begin{aligned}
P_{i j n} & =P_{i j(n-1)}+X_{i j n} \\
& =P_{i j(n-1)}+A P_{i j n}-R P_{i j n}
\end{aligned}
$$

where
"AP ${ }_{i j n}$ " is the additions made in arc segment i-j during period,n
" $R P_{i j n}$ " is the amount of plant retired in the arc i-j during period, $n$
' $P_{i j n}$ ' is the total capacity of plant between nodes 'i.' and 'j' at the end of period, n ,
(iv) the demand requirements which can be stated as $\sum_{i=1}^{m} P_{i j n} \geq D_{j n}$, where
'Dijn' is the total demand at node 'j' upto period, n,
and,
(v) the sizes of plant available in the market (e.g. cable sizes).

### 3.3 Alternative Systems Studied

Two alternative systems, namely, the Simplex method of linear programming and the network analysis approach were studied for the problem formulated as outlined in the preceding section.

### 3.3.1 Simplex Method

This system involves utilizing the simplex algorithm, developed by George B. Dantzig, for solving the optimization problem . Computer packages based on this algorithm are available in almost all computer installations.

Under this method, the costs are initially assumed to be linear. After one run with the program, the results are examined to see whether or not the costs and the flow for all the arcs match and if the plant size additions recommended are available in the market. The plant. capacities and the costs are then updated to correspond to the next higher size available. The resulting problem is again solved using the simplex method. This process is repeated until all the arcs in the network satisfy the constraints.

### 3.3.2 Network Analysis Approach

This approach utilizes the integer programming methodology, PNET, developed at the University of Texas, Austin. This formulation requires the problem to be stated as a network flow problem. The network problem must be of the form shown in Figure 3.2. All the flows are assumed to emanate from a super-source (shown by "1" in the diagram). The fundamental constraint in this network is that the net inflow into a node equals the net outflow. All the flows


Figure 3.2 Basic Structure of PNET, The Network Algorithm
ultimately go to the super-sink, which in turn is connected back to the super-source to complete the cycle. A unit cost is attached to each arc and the cost of an arc is computed by the product of the unit cost and the flow across the arc. The flow through any arc in the network can be restrained by specifying lower and upper bounds for the arc. So the basic flow constraints and the objective of cost minimization are already built into the PNET program and it can be used, after a few modifications are made, to solve the problem of optimization of outside plant in the telecommunications carrier industry.

The PNET program uses a simplex primal algorithm and is specifically designed for the solution of minimum cost transshipment problems. It outputs the optimal solution and the total cost.

### 3.3.3 Evaluation of Alternatives

The two alternative systems were compared considering several criteria, mainly 1) the ease of operating the model, 2) the validity of results, and 3) the cost of operation.

Since both the simplex methodology and the network model are basically linear programming algorithms, they represent about the same degree of accuracy with respect to the results. Both of these methods assume that the total cost function is linear and this assumption makes it
impossible to find a solution which can be mathematically proved to be the optimal. Computer packages using the simplex method are easy to operate as they are very common and most often are programmed in an interactive language. However, since the number of variables and the constraints in a telecommunications network are likely to be very large, the cost of running the resulting model is prohibitive. Therefore, the network model was chosen for detailed study and design.

The basic network model will be modified to facilitate optimization of plant in a switching center area. Two buffer systems, one to convert the data with respect to the switching center area into a format that is required by the PNET program and the other to report the results in a usable format are designed herein to increase the ease of operation.

### 3.4 Structuring the problem

The PNET program is designed to solve simple transshipment problems. So, it cannot directly handle the problem of optimizing subscriber loop facilities in a telecommunications carrier industry. Several modifications are necessary on the physical network before the PNET program can be deployed. These changes must take into account:
(i) the customer demand,
(ii) the different time periods within the planning horizon,
(iii) the several types of technology encountered.
(iv) the various types and sizes of plant,
(v) the dependency of costs on the size of plant installed, and
(vi) the existing plant.

Figure 3.3 is a schematic of an arc in the network incorporating all these factors into its structure. Customer demand is taken care of by creating dummy arcs from demand points (representing terminals) to the super-sink with the lower bound equal to the demand.

One complete network is utilized to describe one period in the planning horizon. Intermediate (dummy) nodes are created between each pair of successive nodes. This arrangement is necessary to link the different time periods with one another. The excess capacity in an arc flows through the intermediate node to the corresponding node in the following period allowing for use of the unutilized capacity in the succeeding period.

Assessment of technology is one of the objectives of the total system. Within each time period, parallel networks are created to designate the different types of technology available in that period. The costs used on the arcs representing different technologies are calculated


LB - Lower Bound
$X, Y, Z$ denote time neriods
$M, N$ denote technologies
$D_{i}$ denotes demand in period, i
Figure 3.3 Structure of an Arc, I-J; in the Flow Network
considering the full impact of the technologies considered. Thus the technologies compete to supply the denand forecasted.

The PNET program is an integer programming algorithm, which assumes that the arc flows (or the plant capacities) can be any positive integer. In a telecommunications industry, however, plant additions/ replacements can be made only in certain packages and these sizes are dictated by the market specifications. To account for such an occurrence, the plant sizes are updated. progressively by periods, in the manner discussed below. After every run with the pNET program, all the arcs in the period considered will be scanned to verify. whether or not the flows correspond to a size of flant available. If the flow in an arc equals a size of plant available, the lower and upper bound for the arc are equated to the flow in the arc. Ctherwise, the upper and lower bounds are made equal to the next higher capacity of plant available. These updated arcs are referred to as the primary arcs. There can; at most, be one primary arc between a given pair of nodes. There are certain fixed costs (such as trenching costs, conduiting costs) associated with installing plant that do not change linearly with the size of plant. If there is a primary arc between a certain pair of nodes, these fixed costs would have already been taken care of in the unit cost specified for the arc. Hence any additional plant to be installed will, normally, cost less to install. When a
primary arc is updated, this factor is taken care of by introducing an additional arc with a cost equal to the incremental unit cost. The incremental unit cost is obtained by dividing the additional cost involved in placing the next higher size of plant available by the increase in capacity of plant. When the resulting network is run with the program PNET, flow in the new arc will indicate whether or not it is desirable to place more plant to take care of future demand. Between a given pair of nodes, one arc will represent one type of plant (e.g. underground cable, aerial cable, buried cable).
once again. it is important to note that the dependency of cost on actual flow and the fact that there is a fixed cost associated with installing plant imply that it is impossible to be certain whether or not the solution output by the program is optimal. The unit cost specified for an arc, initially, are those based on the smallest quantum of addition possible. This cost is computed by dividing the cost of plant of the smallest size by the capacity. If the flow, after a run with PNET, is found to exceed the flow used as the basis for cost calculations, the cost is revised to correspond to the new size of plant. For example, if the cost calculations for the initial run were made based on a capacity of 600 lines and the flow in the arc was 850 lines, the next iteration is run using the cost for a 900 pair cable. This process is repeated until the flow and the cost match for all the arcs in the entire
network.

The model should be able to decide whether to use existing facilities or to abandon existing plant and install new plant in an arc segment. The true value of any existing plant is obtained by calculating the present equivalent cost considering the material value less the removal charges, the operating costs, and the salvage at the end of its useíul life. An arc, with a cost per line equal to the value thus obtained, is used to denote existing plant wherever there is some installed capacity. Original costs are ignored because they are sunk costs and are irrelevant in making decisions and in capital budgeting. The upper bounds for these arcs are specified to be equal to the respective capacities to signify the size available.

Figure 3.3 represents an arc that has both existing plant and an end node that is a demand point. It should be noted that it is not necessary that all arcs have existing plant or that there is demand at the ending node. The arcs denoted by "PA" represent the primary arcs or those that have been updated. The arcs "EA" denote existing plant. while the node "X J" is a dummy node created to represent the terminal with a demand "D". The sum of the Elows in the arcs between a certain beginning node (e.g. XMI in Figure 3.3) and the corresponding intermediate node (XMIJ) will indicate the total installed capacity between the nodes at the end of the period in question. If the flow in the
existing plant were subtracted from the total installed capacity, the resulting value will be the additions to be made in the period considered between the nodes. The flow in the arc connecting the intermediate node to the corresponding node of the following period (e.g. arc XMIJ-YMIJ in Figure 3.3) represents the excess capacity at the end of the period that can be utilized in later periods. Chapter 4 presents a detailed description of the optimization technique while the cost model is discussed in Chapter 5.

## 4. DETAILED ANALYSIS OF THE SOLUTION TECHNIQUE

The organization of the total optimization model and the specific role of the solution technique were outlined in the preceding chapter. A detailed report on the solution method is presented in the following sections. The solution method includes the following sub-systems:

1) the data oank,
2) the input conversion system.
3) the master control unit, and
4) the output conversion system.

## 4. 1 Data Bank

The data bank stores the cost information, forecast data and details of existing and alternative routes for the subscriber loops. The cost model utilizes the cost data, a brief description of which was given in sectior 1.3.1. The format in which the forecast and network information are stored are discussed below.

### 4.1.1 Network Information

The integral area (e.g. a city) considered is represented on cartesian coordinates as shown in Figure 4.1. The axes can be chosen so that the $y$-axis runs from the north to the south and the $x$-axis east-west. The network to be optimized can be described on this grid by specifying the location of switching center (s) and manholes, the type of cable used between two adjacent nodes and the installed and utilized capacities of plant for all pairs of adjacent nodes. The city can be divided into different zones based on the topography. This arrangement is necessary for the estimation of the cost of installing plant in any location within the area.

To facilitate storing this information in a
computer, the entire network, proposed and existing, can be visualized as being composed of several series of arcs, each with a preceding and succeeding node. The description of the nodes and arcs can be conveniently stored in a computer by defining:
(i) the names of the nodes and their co-ordinates,
(ii) the names of the beginning and ending node for each arc in the network; these nodes represent the location of either a manhole, pole, access terminal or a switching center,
(iii) the type of plant (e.g. cable) used, or that can be used, in the arc; this is accomplished by utilizing a numerical code to represent each


## Legend:



Figure 4.1 Representation of an Integral Telecommunications System (e.g. a city) on Cartesian Co-ordinates
type of plant (e.g. cable),
(iv) the number of installed and utilized lines in each arc.
(v) a code for the topographic condition of the arc,
(vi) the length of the arcs,
(vii) the airline distance of the beginning node of an arc from the switching center, and
(Viii) the number of additional cables of a certain size (e.g. 100 pair cable) that can be accommodated in the arc with existing facilities (such as conduits).

The airline distances are used, in conjunction with an airline distance to physical plant distance ratio, to design the plant required in the various arcs in the network.

### 4.1.2 프들ast Data

For the purposes of storing the present and future demand for telecommunication facilities in a data bank, the demand will be assumed to be aggregated at those points that represent the location of access terminals, existing and possible. Thus the forecast pattern can be fully described by defining the coordinates of the demand points on the grid of Figure 4.1 and by specifying against each of these points:
(i) the aggregate demand upto and including the
first period, and
(ii) the incremental demand, by period, for all the remaining periods.

The forecast data for a switching center area is specified by modules. which are identified by dividing the entire switching center area based on the subscriber concentration and growth potential. The forecasted demand For the whole switching center area is allocated to the modules considering these two factors.

The pNET program requires a pinpoint demand forecast and hence there arises a need for the allocation of the forecasts within each module to specific points. The process of allocating demand within modules involves the stages outiined below.

1) Find areas within the module with common subscriber density. This stage involves isolating the points where specific developments are foreseen (e.g. locations of apartments, shopping centers) and areas which have single family dwellings, etc. The objective here is to insure, as far as possible, that a single sub-area identified has a uniform subscriber concentration. City development plans, opinion polling and subjective judgement of forecasting personnel are some sources of data that can be useful for this categorization.
2) Locate point(s) in each of the sub-areas of stage (1) that are potential location(s) of access terminal(s).

This phase includes finding the center(s) of gravity of the sub-areas. Factors such as the existing plant and geography (physical barriers) will have to be considered in locating the access terminal points. From past experience and the specific development plans, obtain the expected demand for the sub-areas. For example, consider a sub-area where an apartment complex with a capacity of 200 units is being developed and is expected to be completed in the following year. Further, suppose that it is known that it is likely to house middle income families and that past data
indicate that such apartments generate a demand of one line per household. Then, the expected demand for the sub-area is 200 lines.
4) Based on the expected demand figures obtained in stage (3) assign weightage factors for each sub-area. The weightage factor "Wn " described for area "m" and period "n" is given by,
$W_{m n}=$ (Expected demand for the sub-area)/ (Sum of the expected demands for all the sub-areas in the module)
5) Multiply the forecast for the module by the weightage factors of individual sub-areas to obtain the forecasts for the sub-areas.
6) Allocate the demand to the access terminal points by dividing the sub-area demand by the number of access terminal points in the sub-area.

Figure 4.2 is a grid map showing the modules and point forecasts for one module in a switching center area. Considerable judgement has to be exercised in allocating forecasts within modules as the location of the demand points is a critical factor in developing a near optimal project plan.

Table 4.1 shows the format in which the network and demand information will be stored in the computer. The actual demand will be modified to include a certain factor of safety. This factor is necessary to take care of the errors in the forecast, to allow for some bad lines in the plant, and for other reasons which include administrative regulations of the company and the need for some means of commuricating between two points in the netrork while repairs/ rearrangements are done. The factor can also be obtained by determining the useful capacity of a facility for demand service. The additional capacity to be planned for varies depending on the forecast used and the type of plant used. For example, if the forecasts included an allowance for errors, this additional capacity may fall in the range of ten to twenty lines. But if the forecast does not include any allowances for the risk, the factor of safety used may provide for an additional 100 lines of cable. Demand points are identified by creating a dummy arc and placing the forecasts by period on the card/line following the one that contains the arc. The dummy arc has


Figure 4.2 Grid Map Showing Telecommunications Demand Modules and the Nodes Within the Modules

Table 4.1 Network Information stored in the data bank

| From <br> Node | Node <br> Nonstraints <br> on the <br> type of Plant | Installed <br> Capacity | Utilized <br> Capacity | Geogra- <br> phic <br> Code | Arc <br> Length | Airline <br> Distance <br> of beginning <br> node from the <br> Switching Center | Number of <br> cables that can be <br> accommodated by <br> the existing facil- <br> ities |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

the demand point for its beginning node and a dumy zero as its ending node. It is important that all arcs emanating from a node (including the dummy arc representing demand) be placed together in the data bank.

In addition to the forecast and network information, the number of periods in the planning horizon, the duration of each of these periods and the number of different types of technology forseen in each period will also be stored in the data bank and used by the input conversion system. The details of the several different types of plant available, a brief description of the accounts and the unit of measurement of plant in these accounts are also stored in the data bank for use by the output conversion system in developing capital budgets.

## 4. 2 Input Conversion System

The basic function of this sub-system in the optimization model is to transform the information in the data bank in order to facilitate using the network algorithm, PNET, to obtain an optimal plan.

The input conversion system accomplishes the following major oojectives:
(i) naming the nodes in a sequential manner and storing their locations to help in transforming the output into an easily comprehendable form,
(ii) creating parallel networks, each of which represents one period within the planning horizon; for each period one complete network will be used to define a particular type of technology,
(iii) connecting all points with non-zero supply (demand) to a dummy source (sink) node; the switching center is usually connected to the source and demand points to the sink, activating the cost model to obtain the appropriate costs for each arc in the network and specifying the cost per cable pair for each arc,
(vi) placing capacity restraints on existing plant by equating the upper bound for the arcs that represent existing plant to the installed capacity , and
(vii) allowing excess capacity from one period to be used in the following periods by creating intermediate nodes between all pairs of adjacent nodes and linking the intermediate node of one pericd to the corresponding node of the succeeding period. The intermediate nodes of the
last period will be connected to the sink.

Figure 4.3 shows the schematic of the output of this system while the form in which it will be stored in the computer and fed into the master control unit is illustrated in Table 4.2. A complete listing of the computer model that is used to achieve the goals of the input conversion system is given in appendix A.

The program utilizes the information in the data bank to establish a description of the network similar to Table 4.2 for a given pair of adjacent nodes. The number of arcs between the nodes will equal the number of alternative types of plant. For example, if both underground and aerial cables can be used in a certain portion of the area, two arcs will be created for each pair of manholes/poles in the area. In addition, a third arc, representing existing plant, will be added wherever there is some installed plant. In arranging a table similar to Table 4.2 , the sequence in which the arcs are placed is important. The 'PNET' program requires all arcs emanating from a node to be placed together.

## 4. 3 Master Control Unit

The master control unit of the optimization model contains:
(i) the command program that controls the operation


Figure 4.3 A Schematic of the Output From the Input Conversion System

Table 4.2 Output of the Input Conversion System


Capacity is equated to the upper bound only if the arc represents existing plant.
of the optimization program,
(ii). PNET, the main optimization program based on a minimum cost flow network, and
(iii) programs to perform the operations such as required in between iterations.

The purpose of the master control unit is to utilize the basic network and cost information provided by the input conversion system to develop a near optimal route plan that will minimize the cost for the entire planning period.

### 4.3.1 Operating Sequence

The optimization program works on the principle that the flow in an arc can be any positive integer. The available sizes of plant in a telecommoncation carrier industry are discrete, i.e., plant additions can only be made in certain packages. Hence there is a need for modifying the solution as determined by the first run of the optimization program, PNET. This is done by updating the . flow in the network, period by period, and running the program with a new network, containing additional constraints, until all the periods in the planning range have been considered. Figure 4.4 shows the operating procedure on a flow diagram. The pNeT program is a linear optimization technique wherein the cost of installing plant in an arc is calculated by computing the product of the cost


Figure 4.4 The Flow Diagram for the Master Control Unit
per line and the capacity. Thus the program cannot handle fixed costs and variable costs separately. This difficulty is overcome by iterating until the unit costs (the present equivalent cost/ line) specified for the arcs correspond to the respective flows.

The various steps involved in the operating process of the master control unit are summarized below.

1) Obtain a basic feasible solution by running program PNET with the data supplied by the input conversion system. The output of this stage will indicate the flow necessary in each period to satisfy the forecasted demand.
2) Set the lower bound on all arcs connecting the intermediate nodes, XIJ, to ending nodes, XJ, equal to the flow in the respective arcs. The symbol 'X' refers to the period the arc represents and 'IJ' is a dummy node introduced between nodes 'I' and 'J'.

Set period for which updating is to be done, $N$, equal to one.
4)

Scan all the arcs connecting 'XI' and intermediate nodes 'XIJ' in period, N.
(i) No changes are made to those arcs where the flow is zero.
(ii) If the flow in any of these arcs equals a size of plant available, equate the lower and upper bounds. for the arc to the flow.

Otherwise, set lower bound and upper bound equal to the next higher capacity of plant available. These arcs are referred to as primary arcs. Invoke the cost model to obtain relevant unit costs for these primary arcs. Create a new arc between all pairs of nodes linked through a primary arc. This is necessary to allow for installation of more plant if it were found to minimize the cost in the next iteration. The cost on the new arc fill be equal to the incremental unit cost of increasing plant capacity to the next higher size available. The incremental unit cost is defined as the difference in cost between two sizes of plant divided by the corresponding difference in size.

Run the program PNET with the output of stage (4) to obtain a new solution set.

Scan all the non-primary arcs of period $N$ in the new solution to check how many of these arcs have a flow greater than the specified lower bound.
(i) If none of the arcs have flow in excess of the lower bound, proceed to step (9).
(ii) If there is at least one arc with flow more than the lower bound continue with
step (7).
7) Adjust the lower bound on all the non-primary arcs. The new lower bound will be equal to the flow, if plant of that capacity is available. Otherwise, the lower bound will equal the next higher size of plant. Activate the cost model to obtain the relevant unit cost for the arc. No additional arcs need to be introduced because no upper limit is specified for these arcs.
8) Run the program PNET with the output of step (7) to obtain a new solution and return to step (6).
9) Increment the period indicator by one, i.e., the new value of 'N' becomes $\mathbf{N + 1 1}$. If the new value of $N$ exceeds $M$, the number of periods in the planning horizon, the final solution has been obtained and can be fed into the output conversion system for decoding. Otherwise, return to step (4).

The computer commands necessary to carry out the nine stages in the operation of the master controi unit are indicated in Appendix B. Figures 4.5 and 4.6 show schematically the state of the network at the end of stages (4) and (7) respectively.

To illustrate the functioning of the master control unit, consider an arc "I-J" in the physical network. This arc will be initially represented by a series of arcs,


Figure 4.5 The State of a Representative Arc After the Fourth Stage of Operation

$L B=$ Lower Bound, $U B=$ Upper Bound
Figure 4.6 The State of a Representative Arc at the end of the Seventh Stage of Operation
"XNI-XNIJ" and "XNIJ-XNJ", where "X" and "N" are integers denoting the different periods and technologies respectively. In addition, the intermediate nodes "XNIJ" representing one period are connected to the corresponding nodes, " $(X+1) N I J "$ of the succeeding period. After one initial run with the program PNET, all the "XNIJ-XNJ" arcs in the network are scanned and the lower bound is equated to the flow in these arcs. At this stage, all the beginning and ending nodes in the network are connected to both the source as well as the sink. This arrangement is necessary to balance the flows in the arcs when they are updated. The output of the initial run symbolizes the arc capacities necessary to satisfy the existing and forecasted demand. Since all the beginning and ending nodes are connected to the source, when the PNET program is run with the new network, it will attempt to satisfy the demands by drawing the necessary flows directly from the source. In practice, the demand cannot be satisfied by just placing plant at the demand points because these points must be connected to the switching center. By specifying lower bounds on the arcs connecting the intermediate and ending nodes, at least that quantity of flow is insured through the entire network, that is necessary to satisfy the demand.

The next stage is to update the arcs in the network that represent the first period. Since plant additions can be made only in certain packages, the lower and upper bounds in all the arcs, "XNI-XNIJ", are made equal
to the next higher size of plant addition possible. While these arcs are updated the costs are also adjusted to correspond to the new capacities of plant. For example consider an arc in the following situation:
the cost of installing a 500 pr . cable $=\$ 600$
the cost of installing a 600 pr . cable $=\$ 700$
the cost of installing an 800 pr cable $=\$ 800$
Assume that the additions can only be made in quantities of 5001ines. 6001 ines or 8001 ines and that the cost originally specified for the arc was that corresponding to a capacity of 500 lines, i.e., $\$ 600 / 500=\$ 1.20$. If the flow in this arc was 571, the lower and upper bounds would now be specified. to be equal to 600 and the cost would be adjusted to $\$ 700 / 600=\$ 1.16$. This arc is termed as the primary arc for the pair of nodes considered. By specifying the upper and lower bound equal to 600 , the plant to be added in this segment of the network in the first period has been constrained to be equal to 600. In a practical situation, it would be desirable to place more plant, to take care of future demand, if this were found to be economical. To account for such a possibility, an additional arc is created with cost equal to $\$(800-700) /(800-600)=0.50$. This cost represents the incremental unit cost in placing an 800 pair cable instead of a 600 pair cable.

After the resulting network is run along with the progran $P N A T$, the flow and the cost in the non-primary arcs (i.e. the new arc between nodes that have a primary arc and
the original arcs in other situations) are compared to verify whether they match. If the flow and the cost for all the arcs match, updating is carried out for the arcs which represent the second period in the planning horizon. This procedure is repeated until all the arcs in the last period have been updated.

### 4.3.2 Programs in the Master Control Init

This section enumerates the programs that are required to perform the different stages in the functioning of the master control unit. The coded version of all the programs are given in Appendix $B$, which also gives the instructions necessary to facilitate the use of these programs.

The command program parameters can be altered, as indicated in Appendix $B$, to control the functioning andor the output of the optimization program. With the help of the command program, the pNET program can be controlled to report only the total cost, or the flow pattern and the total cost , as desired by the user.

The optimization program, PNET, reads in the input data in a format similar to that of Table 4.2. It uses a primal simplex algorithm to find the minimum cost routes. The execution of the iterative steps is carried out until an optimal solution is found or until the number of iterations exceed a pre-specified amount. on termination of the
computations the program outputs the final network by specifying for each arc:
(i) the beginning and ending nodes,
(ii) the unit cost. i.e. the cost per line.
(iii) the lower and upper bounds that were supplied, (iv) the flow or the capacity of plant installed, (v) the total cost of plant, and
(vi) the marginal cost, which is the change in total cost effected by increasing the capacity of the arc by one additional line.

In addition, PNET also reports the total cost, the number of iterations carried out and whether or not an optimal solution has been found.

Several sub-programs are required to assist in examining the output of each successive run of the PNET and to modify the constraints and unit costs. Subroutine CAPACITATE performs stage (2) of section 4.3.1. It also introduces dummy arcs connecting a fictitious switching center to all the initial and final nodes, $I$ and $J$. The arcs connecting the nodes $I$, $J$ to the sink are also introduced through the use of 'CAPICITATE'. These arcs are necessary to balance the flows as explained in section 3.3. programs UPDATE1 and UPDATE2 perform the updating stages 4 and 7 of section 4.3.2.

## 4. 4 Output Conversion System

The output conversion system decodes the near optimal plan of the optimization model and reports it in a format which is readily comprehendable.

The input to this system is composed of:
(i) the output of the PNET, i.e.,
a) the arcs and the number of cable pairs in each arc.
b) the arc costs,
c) the marginal arc costs, and
d) the total cost,
(ii) data bank information comprising:
a) the different classes of subscriber loop plant.
b) a brief description of the accounts within each class of plant, and
c) the units of measurement on which the construction costs are to be calculated, and
(iii) the output of the master control unit, i.e.,
a) the period each arc represents,
b) the type of plant denoted by each arc,
c) the length of each arc, and.
d) the construction costs associated with each arc.

The output conversion system processes these data to obtain:
(i) construction information which includes:
a) the different arcs in the network,
b) the capacity additions to be made to these arcs in the first period,
c) the nature of the additions, i.e., the type of plant and cable used, and
d) the total installed and utilized capacities for the arcs at the end of the first period,
(ii) the switching center capacities by periods and type of technology, and
(iii) capital budgeting information such as:
a) the volume, by type and size, of plant required each period,
b) the projected unit construction costs for each type of plant, and
c) the total estimated costs for the different types of plant.

Table 4. 3 shows the format in which the construction plan summary is output. This information, in conjunction with a map of the area showing the locations of the nodes, can be used in operations planning and control. Such an arrangement facilitates continuous monitoring of the construction plans and updating of the physical plant details as plans are implemented. This table can be used as the basis for the preparation of input data for the optimization program in future periods. The switching center

# Table 4.3 Subscriber Loop Construction plan Sumary 

```
Switching Center Area --------
Date -----
```

From To Capacity Installed Utilized Class of Type of
Node Node Additions Capacity Capacity Plant Additional
(Lines) (Lines) (Lines) Plant
capacities, shown in Table 4.4. give the total capacity in the first period and the incremental capacities necessary to fulfill the demand in later periods.

Table 4.6 depicts the format in which the periodic capital budgets are obtained. The construction costs and the total units required for each type of plant are accumulated by scanning all the arcs that represent a particular period. The unit construction cost for an individual type of plant is calculated by dividing the total estimated cost for that plant by the corresponding volume. Finally, the system also outputs a summary of capital investment by period. These details, arranged as illustrated in Table 4.5. allow a carrier company to integrate all the switching centers in an urban area and prepare the overall budgets for the company.

The output conversion program and the variables used in performing its functions are discussed in Appendix $C$.

Table 4.4 Switching Center Capacity by Period in Lines

| Technology |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Period | 1 | 2 | 3 | 4 |
| 1 |  |  |  |  |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |

Table 4.5 Subscriber Loop Capital Investment Sumary

$$
\begin{array}{lr}
\text { Switching Center Area ------- } & \text { Date ----- } \\
& \text { Investment in Dollars } \\
\text { Class of Plant } & \text { by Period } \\
& 1
\end{array}
$$

Tnderground Paired Cable
Aerial Paired Cable
Buried Paired Cable
Underground Coaxial Cable
Aerial Coaxial Cable
Buried Coaxial Cable
Underground Conduit
Poles
Line Concentrators

# Table 4.6 Capital Budgeting Information by Switcting Center Area 

| Switching Center Area | Date |  |  |
| ---: | ---: | ---: | ---: |
| Class of Plant | Total | Unit | Total |
| Descriptiont | Unit Units Construction | Estimated |  |

## 5. THE COST MODEL

The cost model is analysed in relation to the following important considerations and developed in a suitable format to perform its intended function. These considerations include:

1. Technology assessment - the specific technology used within any class of plant can have a significant impact on costs. A method of assessing the impact of technology is described in section 5.1.
2. The structure of the cost model in relation to 'PNET': In the case of already existing plant the carrier company tends to be 'locked into' the past investments. The 'PNET' model recognizes this fact and treats the past investments as a sunk cost. These past. investments have a capital cost equal to the depreciated value of the material cost less the removal costs, for economic evaluation purposes.
3. The development of the basic cost functions : There are several important factors that shall be considered in the development of the basic cost functions. These include:
a. Economies of Scale - for example;
1) the installation cost per pair varies significantly as a function of cable size, and
2) the material cost per pair varies significantly by gauge.
b. Age of plant in service - The age of plant in service directly affects costs and will be reflected in the cost modei chrough operating costs and by the depreciation schedule.
c. Excess capacity - Excess capacity may result for several reasons (e.g. economies of scale, growth rates, inflation and technology) and have an impact on costs.
d. Growth Rates - The rate of growth within switching center areas has a bearing on costs. Growth rates also directiy affect the age or plant in service and the excess capacity considerations. However, the impact of the growth rate is implicitly considered by the forecasting model and hence needs little consideration in the actual cost model.
e. Geographic Location - Geographic location may

# result in differences in costs through differences in such factors as; 

1) soil conditions,
2) labor rates.
3) weather conditions,and
4) building and land costs.

The basic cost functions include all of the above factors.

## 5. 1 Technology Assessment <br> Technology can have a significant impact on the analysis of alternative investment decisions.

### 5.1.1 Technological Developments

To quantitatively state the impact of technology becomes very difficult due to the many interacting parameters affecting changes in technology. These include: 1. Dir트t Competition

Many organizations rely primarily on advanced technology For competitive advantage and therefore concentrate major resources on fostering research and development. Clearly a shift in the basic competitive strategy of an industry is likely to have a strong influence
on the rate of technological progress.
2. Corporate Strategy

It is clear that technological progress does depend on prevailing corporate strategy. Which is in turn conditioned to some degree by non-technological factors. 3. Sunk Costs

The telephone companies have invested large sums of money into plant of a specitic technology. These companies may be adverse to adopt an altogether new kind of technology within a short time span because of these sunk costs. The inertia of these past investments will affect the replacement cycle of existing equipment and the learning curve characteristics of the industry which in turn affect the rate of technological change.
4. National and international political and Economic Environwent

Political and economic environments are major controlling factors affecting technological change. The direct impact of defence strategies and the effect of technological spin-off of these strategies on the industrial environment are very significant.

### 5.1.2 History of Technological Developments

To highlight some of the major technological trends, let us survey briefly the historical developments in the field of transmission medium.

1. Resistance and Induction

The early developments date back to the use of copper wire as the transmitting medium, prior to which the electrical resistance of the telephone line limited the service originally to very short distances. The first copper wire tried made a good conductor, however, it was too soft to be of practical use as it would break of its own weight when used on open wire spans. Hard drawn copper wires overcame this structural difficulty and found large-scale use starting in 1884. The induction or cross talk problem was also solved about the same time by interchanging or transposing the position of the wires in the medium. 2. Need for placing Lines Underground and the frinciple of Loading Coils

The rapid increase in the number of subscribers and the corresponding increase in overhead wires soon resulted in a move to underground circuits . The first underground cables were placed around 1890. The first cables used were large gauge copper conductors (small diameter) and an effort was made to reduce the diameter of the conductor.

The year 1900, marked the important development of applying the loading coil principle (i.e.) the insertion of
inductance in small quantities at regular and frequent intervals greatly improves the transmission efficiency.

## 3. Repeaters or 패plifiers

By 1911, it was apparent that a satisfactory means for amplifying the attenuated telephone currents on a long circuit would be necessary. To accomplish this a new device known as a repeater or amplifier was developed. 4. Carci를 Systems

With the distance barrier solved; caring for the ircreasing volume of calls presented the problem of placing more telephone channels on existing facilities. The electronic vacuum tube by 1918, was available for getting carrier currents which would allow the use of a wider frequency range than the voice frequency range. other technical advances provided a means to temper, or modulate the carrier currents with the voice currents and to reproduce, or demodulate, the voice currents at the receiving end of the telephone line. In addition filters were developed which were capable of separating into groups a mixture of currents at different frequencies transmitted over the same conductors.

Carrier; systems were a substantial factor in meeting the growth requirements in exchange trunking and toll trunking where they naturally provide economies. However, recently they have been used in the subscriber loop facilities. The development of carrier systems has
significantly advanced solution to the problem of distance and costs.

## 5. Coaxial Systems

Another major development of the carrier principle of transmission came'into use by the end of 1936. The carrier principle was applied to an entirely new type of line facility known as the coaxial cable. A coaxial system consists of a copper tube, down the center of which runs a copper uire held in place by insulating discs. It is capable of transmitting hundreds of telephone circuits.
6. Radio Relay Systems

Another type of transmission facility more recently developed is known as the microwave radio relay system. The system provides a very broad frequency band and is capable of carrying television channels and hundreds of telephone circuits.

## 7. Eadio Telephones

Although the development dates back to the 1920's. the use in subscriber loop plant is very recent.

In summary, many improvements have been wate in transmission capabilities due to the developments in the basic transmitting facility, introduction of various carrier systems and introduction of radio transmission. These changes in technology have come about in an attempt to provide a more ideal transmission system at minimun cost to
the subscribers in connection with:
(1) good quality.
(2) sufficient volume,
(3) uniform transmitting and receiving efficiency
independent of the lengh of the loop.
(4) freedom from side tone,
(5) freedom from excessive cross talk and noise, and
(6) aesthetic appeal.

### 5.1.3 Glternative Methods of Evaluating Technological Chanqe <br> Companies implement technological change in an effort to minimize cost in the long run. With this idea in mind, the following two alternative methods were considered in order to quantify technological change.

The following steps outline the method adopted in the first approach. The alternate technologies considered are those that are applicable in subscriber loop plant and Which are in either the application stage or the developmental stage.

## Methodology

1. List all the possible technologies that are known at present or will be used in the near future in the subscriber loop plant, such as:
a) voice frequency (VF) cable pair;
b) small analogue carrier systems;
1) Anaconda 56 A ( 7 channels)
2) Superior cont CM8 (8 channels)
c) large digital carrier systems;
3) ITT, DM 32 S ( 32 channels, 128 lines), and
4) Northern, DMS1 (48 channels, 256 lines);
d) digital radio: (e.g. Farinon $S$ r radio);
e) cables CXR: (e.g. Lenkust 84A, 1 chanmel + 1 physical);
f) Vidar SCT: (e.g. 24 or 48 Channel dedicated PCM); and
g) fibre optics cable.
2. For each technology, segregate the total cost into the following components and project these costs into the future.
a) the initial cost (B) consisting of:
1) direct labor cost, loadings on labor,
2) direct material cost, indirect material cost, and
3) overheads such as;
(a) motor vehicle and special tools cost,
(b) engineering cost, and
(c) miscellaneous cost (contract bills, cost shared with other utilities) ;
b) the operating cost or the annual equivalent of operating costs based on a life span of $n$ years, if the plant considered is installed in years $0,1,2 \ldots . .$. to the planning horizon. The operating cost will also
have the same components (1) to (3) listed above; and c) the salvage value of plant at the end of the life span.
d) annual depreciation for the different years considered.

The unit of measurement used herein is the cost per subscriber line per unit of distance, based on a particular capacity of plant. If the capacity, actually required is different from the particular capacity considered, then the cost per line per unit of distance will be corrected to reflect the actual cost by multiplying by a factor which is the ratio of cost per subscriber line per unit of distance of new capacity to the cost per subscriber line per unit of distance of the capacity considered. The above factors can be determined from historical cost data. Similarly the operating cost, depreciation and salvage values are determined. The data, for any specific technology, may appear as shown in Figures 5.1 and 5.2. 3. From the above figures the present Equivalent Cost (PEC) per unit capacity of plant per unit distance in the various years can be determined for the different technologies. These pec values may then be used as arc costs in the network formulation as suggested in section 5.4.1.

In the second approach, which is the approach suggested herein, the present equivalent costs are not segregated as is suggested in the first method. Instead, the


Time in Years

Figure 5.1 Initial Cost - Time Functions for Technology $x$


Figure 5.2 Operating Cost - Time Functions for Technology $X$
overall effect of technology on cost is measured by making use of technology survivor curves. The cost fer subscriber line per unit distance forms the inverted 'S' shaped envelope curve gracing the technological súrvivor curves. This envelope curve is used to find the technological growth factor which is incorporated into the cost model. This method offers significant advantages over the first method in that it concentrates on determining the overall effect of technology on cost per subscriber loop without analysing the specific micro details of the individual technology survivor curves. In addition it saves on the number of nodes and arcs that would have to be considered using the first method, thereby significantly reducing the computer time required. The sections that follow describes this selected method in detail.

### 5.1.4 Assessing Technology

When a new technology is introduced its initial costs are usually at the maximum level, however over the years the initial costs tend to decrease through technical improvements and economies of scale. The present equivalent cost of each technology drops to a minimum total cost point and then tends to increase in costs giving way to the introduction of new, more efficient technologies. As an illustration, the capital costs of a particular technology behaves as shown in Figure 5.3. Initially the costs will be

Present Equivalent cost in dollars of Technology $X$


Year of Placement of Technology X

Figure 5.3 Present Equivalent Cost of Technology ' X ' Versus Year of Placement
high, followed by a minimum cost period and an increase as the technology becomes obsolete and the manufacturer phases in new technologies. Similarly, the initial operating costs are normally high due to debugging and personnel being unfamiliar with the technology. However, once the personnel are trained and the debugging process is over operating costs decrease. Later, with the introduction of a new technology the operating costs will rise due to the unavailability of spare parts except by special order resulting in makeshift arrangements and an increase in shut-down time. The total costs, which is the sum of the above two curves, behaves basically as shown in Figure 5.3.

Heuristic reasons suggest an exponential law of social and technological change. In most cases the exponential phase of change eventually comes to a saturation level. A convenient mathematical function which has this behaviour is the logistic curve or 'S' curve of the form;

Where,

$$
f(t)=f(t o)-\frac{f(t o)}{1+A e^{-k t}}
$$

$f(t)$ is the cost performance at time $t$ (in years),
$f(t o)$ is the cost performance as of today,
$A$ and $k$ are parameters of the curve. (refer APPENDIX E)

Technological change in the fast growing telecommunication field can be pictured graphically by a
series of displaced trough shaped curves whose envelope is the 'S' curve mentioned previously. These intersecting curves represent the gradual displacement of old technologies by their successors. In Figure 5.4 the curves of technologies $I$ and II represents the case of well developed old technologies, versus the dotted curve of a new technology in the early stages of development. The company with foresight enough to steer its planning to the new technology will gain substantial advantage in its cost reducing measures.

### 5.1.5 Measuring Technology

Technological change as depicted by the 'S' curve may be measured in terms of an index; treating the 0 th year ordinate as 1 , the other ordinates of the future years may then be expressed in terms of the base year. This index will either positively or negatively influence the decision to defer the present technology being used.

In order to plot the 'S' curve, the individual technology curves neer to be plotted first. This entails the drawing of two curves for capital cost and the operating cost per subscriber line per unit of distance. From the capital construction accounts of the outside plant equipment, the aggregate capital cost of a certain type of plant in a particular year is derived. This cost when divided by the quantity of lines installed will give the


Figure 5.4 Technology Survivor Curves and the Envelope Curve
capital cost per line per unit of distance. In the case of operating cost, it is not realistic to find the figure for a particular vintage. However, if we assume that the operating cost of a certain item of plant is increasing with age at the rate of 'b' per year per dollar, then the following equations may be used to calculate the operating costs attributable to a certain class of plant in a particular vintage. For example if we consider three consecutive years, the equations will be:

$$
\left.\begin{array}{ll}
7^{\text {st }} \text { year } & =T 1 \\
2^{\text {nd }} \text { year }(7+b) x+\quad y & =T 2 \\
3^{\text {rd }} \text { year }(7+b)^{2} x+(1+b) Y+ & Z
\end{array}\right) T 3
$$

where,
T1, T2, T3 are the operating costs of the respective years considered. 'X' is the operating cost incurred on the surviving plant. in 1 st year. 'Y'and 'Z' are the operating cost incurred on the vintages installed in the $2 n d$ and $3 r d$ years.

Once a reasonable value for 'b' is established by the maintenance department, that value can be used and the above equations can be solved for the values of 'Y','Z' and so on. From this figure the operating cost per line per unit of distance is easily found.

### 5.1.6 Logistics Curve

In the logistic curve (normalized 'S' curve), in Figure 5. 5 :

$$
f(t)=f(t o)-f(t o) /[1+A(\operatorname{EXP}(-k t)]
$$

dividing by f(to)

$$
f(t) / f(t o)=1-1 /[1+A \cdot \operatorname{EXP}(-k t)]
$$

If we assume a constant improvement in the technological performance and assuming a 30 year time span, then;

$$
\begin{equation*}
T I(t+30) / T I(t)=(1-I T) * * 30 \tag{1}
\end{equation*}
$$

where,
TI. =ordinate of the normalized 'S' curve
$T I(t)$ =ordinate of the 'S' curve in year 't' TI ( $t+30$ ) = ordinate of the 'S' curve in year ' $t+30$ '
IT = constant technological improvement factor.
From equation (1),

$$
I T=1-\mathrm{e} \frac{\left[\ln _{\left\{\frac{T I(t+30)}{T I(t)}\right\}}^{30}\right] / 30}{}
$$

This factor.IT, will be incorporated into, the interest rate factor, as shoun in section 5.4.1.(a).
5. 2 The Structure of The Cost Model in Relation to PNET

In order that the cost model performs the computation for the 'PNET' model, it has to be structured in a particular manner. Considering a specific technology, Figure 5.6 explains the situations under which the cost model will


Time in Years

Figure 5.5 The Logistics Curve (Normalized to the Cost in Year Under Consideration)


Figure 5.6 The Structure of the Cost Model In Relation to the PNET, Program
be required to do the computations for the 'PNET'model.
5.3 The Development of the Basic Cost Functions

Individual carrier companies use slightly different methods of developing their construction unit costs. Construction unit costs by type of plant forms the basic input to the cost model. Since a uniform system of measuring company performance is desirable or necessary at some stage, it is recommended that a uniform system for the development of costs be adopted. A company may develop its own program to convert its construction unit costs to the arc costs that is required by the pNET program. In this report an effort is made to build the cost model from the basic data. However, it is relatively easy for an individual carrier company to adopt their unit costs to the system in order to arrive at the unit arc cost.

The total cost of the plant is split into three components; (1) capital cost (installed cost), (2) operating cost, and (3) salvage cost. For capital budgeting and monitoring purposes a unit construction cost is desirable. In order to develop unit construction costs by type of plant, the capital cost is divided into the following basic cost components:

1. direct labor and its loadings,
2. direct material and its loadings, and
3. motor vehicle and tools capital cost, engineering overheads, contract work overhead and other overheads.

Although the operating cost could be split into the above basic components, the development of a unit cost for operating costs in the same manner as for capital cost is not practical. The system would require a tremendous amount of effort and additional paperwork on the part of all plant personnel and would be difficult to administer and monitor. Also the usefulness of operating costs to this degree of refinement is marginal in its contribution. Therefore, the operating cost is divided into only two basic components for each type of plant, by switching center area. 1. rearrangements or change (modifications), and, 2. ordinary repairs and maintenance.

These operating costs and any other costs in that category that are not covered are expressed as a percentage of the capital costs.

The direct labor item of the capital cost will be affected by such factors as:

1. seasonal differences

- rainy weather and cold climate will influence the time taken to do a job;

2. geographic variations in a switching center

-     - varying geographic conditions favors the decision of one type of plant in preference to another.

The salvage value and depreciation form a portion of the total cost and will be treated together in the analysis. The division of the total cost into its components is shown diagrammatically in Figure 5.7. The cost functions will be developed in reference to these components considering a general link i-j. Once the cost functions are developed for a specific technology, it is easily extended to cover other technologies.

### 5.3.1 Di드르 Labor and its Loadings

 Direct labor covers all direct labor costs for productive occupational hours charged directly to final accounts and to other accounts used for billing purposes. It covers the salaries and wages of occupational employees, first line supervisors and all other employees at the locai plant administration level. These employees are identified by different craft types in this model. Figure 5.8 shows the components of the direct labor.The loadings on direct labor are due to the indirect labor force and other associated tool expenses which are supplemental to the direct labor in the completion of the job. For convenience of costing, they are generally expressed as percentages of the direct labor cost. Figure 5.9 shows the components of the loadings applicable to direct labor.


Figure 5.7 Components of Total Cost for Telecommunications Plant


Figure 5.8 Components of the Direct Labour Cost


Figure 5.9 Components of the Loadings on the Direct Labour Cost

The total direct labor cost is discussed under the following sub-headings in order to include all the factors that influence the direct labor cost:

1. direct labor time by function performance,
2. direct labor hourly rate by craft type,
3. loadings on labor, ( and direct labor cost model).
4. seasonal dirferences in labor rates,
5. learning curves, and
6. geographic area.
7. Direct Labor Time by Function Rerformance

The direct work content of a job (Function Derformed) is usually estimated by various time study nethods. This involves dividing operations into their basic elements, applying time factors to these elements and finally arriving at the total time for each function performed. The carrier companies have a reasonably good estimate of these basic direct labor times. (These basic times such as the time to install a pole, the time to place a meter of cable etc. should be checked periodically by jop sampling techniques.)

For the general link i-j, the direct labor time by function performed is computed in the format shown in Table 5.1. If some of the functions are irrelevent to the link considered, then the corresponding time elements are set equal to zero.

Table 5.1 Direct Labour Time by Function Performed

| Function Performed | Construction <br> (C) in manhours | Install \& Repair (R) in manhours | Removal (X) in manhours | Changes (M) in manhours | 0thers (0) in manhours | Total hours |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installing Poles | $\mathrm{x}_{11}$ | $\mathrm{x}_{12}$ | $\mathrm{x}_{13}$ | $\mathrm{x}_{14}$ | ${ }^{x} 15$ | $\mathrm{x}_{\mathrm{aa}}$ |
| Laying Aerial Cables | $\mathrm{x}_{21}$ | $\mathrm{x}_{22}$ | $\mathrm{x}_{23}$ | $\mathrm{x}_{24}$ | $\mathrm{x}_{25}$ | $x_{b b}$ |
| Trenching | $\mathrm{x}_{31}$ | $\mathrm{x}_{32}$ | $x_{33}$ | $\mathrm{x}_{34}$ | $\mathrm{x}_{35}$ | $\mathrm{x}_{\mathrm{cc}}$ |
| Laying Underground Cable | ${ }_{41}$ | $\mathrm{x}_{42}$ | ${ }^{1} 43$ | $\mathrm{x}_{44}$ | $\mathrm{x}_{45}$ | ${ }^{\text {dd }}$ |
| Laying Underground Conduits(+Manhole) | ${ }^{5} 5$ | $\mathrm{x}_{52}$ | $\mathrm{x}_{53}$ | $\mathrm{x}_{54}$ | $\mathrm{x}_{55}$ | $\mathrm{x}_{\text {ee }}$ |
| Digging for buried cable | $\mathrm{x}_{61}$ | $\mathrm{x}_{62}$ | $\mathrm{x}_{63}$ | $\mathrm{x}_{64}$ | $\mathrm{x}_{65}$ | $\mathrm{x}_{\mathrm{ff}}$ |
| Laying buried cable | $\mathrm{x}_{71}$ | ${ }^{\text {x }} 72$ | ${ }^{\text {x }} 73$ | ${ }^{7} 74$ | ${ }^{75}$ | $\mathrm{x}_{\text {ee }}$ |
| Installing loading coils etc. | $\mathrm{x}_{81}$ | $\mathrm{x}_{82}$ | $\mathrm{x}_{83}$ | $\mathrm{x}_{84}$ | $\mathrm{x}_{85}$ | $\mathrm{X}_{\mathrm{ff}}$ |

## 2. Direct Labor Hourly Rate by Craft Type

Direct labor costs are calculated in proportion to the productive hours of associated occupational employees, using a predetermined direct labor hourly rate. The direct labor hourly rate should represent occupational, first-line supervisory and local administration costs, the cost of paid absent time (vacation, sickness, etc.) premium payments (overtime, night differentials, etc.) and unclassified time. Direct labor hourly rates for plant personnel vary depending on the skill of the individual. Plant personnel are divided into groups representative of their duties, each group being designated by a letter :

Craft A-(line and cable placing forces)- This group also includes employees engaged as unskilled labor for digging and trenching etc.

Craft $B$-(cable splicing forces) - Employees who are primarily engaged in splicing or repairing aerial, underground, buried cables, e.g. cablemen, cablesplicers. This group also includes occasional enployees engaged to assist in splicing work. Craft C (equipment installers)-Employees who are primarily engaged in installing, removing, accepting or rearranging central office equipment associated with outside plant facilities.

Craft D - Personnel involved in the inspection of contract work involving the construction, repair rearrangement and removal of outside plant facilities.

They are known as first line supervision. Craft E - Mainly inspection personnel or local plant administration personnel.

The work force costs are calculated from the components shown in Table 5.2. The total manhours are ootained from the payroll information. The total direct manhours is multiplied by the productivity of the different craft type in order to arrive at the actual manhours for each craft type. The productivity consists of a combination of factors that will have to be estimated by the engineer in charge. The total cost column is divided by the actual direct. man hours to arrive at the average direct labor rate by the craft type. The required elements in this matrix are filled with data from the past year, or the past period whichever is appropriate.

In Table 5.1, the productive assignable hours includes manhours resulting from construction, installation and repair, removal, and changes. The unassignable occupational hours consisting of holidays, vacations, sickness, personal absences and other unclassified hours are excluded from the productive hours and they are classified under the column of other manhours. When a contractor performs the functions described above, contract equivalent hours are to be derived by dividing the contractors bill by an appropriate loaded company rate.

Table 5.2 Direct Labour Rate by Crew Type
$\left.\begin{array}{|l|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Craft } \\ \text { Type }\end{array} & \begin{array}{c}\text { Regular } \\ \text { Payrol7 } \\ \$\end{array} & \begin{array}{c}\text { Overtime } \\ \$\end{array} & \begin{array}{c}\text { Hiring/ } \\ \text { Training } \\ \$\end{array} & \begin{array}{c}\text { Employee } \\ \text { Termination } \\ \$\end{array} & \begin{array}{c}\text { Shift } \\ \text { Premium } \\ \$\end{array} & \begin{array}{c}\text { Total } \\ \text { Cost } \\ \$\end{array} & \begin{array}{c}\text { Total } \\ \text { Manhours } \\ \text { (hours) }\end{array} & \text { Productivity }\end{array} \begin{array}{c}\text { Direct } \\ \text { Labour Rate } \\ \text { (\$/hr) }\end{array}\right]$

If 'Xuv' denotes a general direct labor time associated with a function performed 'u' and type of work 'v', in Table 5.1, Xuy can be further split to take account of the percentage work contributed by different crafts. Note Table 5.3.

Once the appropriate elements of the total direct labor cost in a general link i-j are determined, these values are linearly spread over the entire length of the link. This means that for some categories of jobs (e.g. installing poles) the direct labor costs are expressed on a unit linear distance basis (for simplifying the programming) . However, for other categories of jobs (e.g. placing cables) the direct labor costs are computed on a unit distance basis from the beginning itself. These values when multiplied by the distance between the nodes i,jwill give the value of the direct labor cost in the link i-j.

Using the above format, the direct labor cost can be computed for the different categories of jobs. As an example:

The direct labor cost for the installation of poles equals

$$
\begin{gathered}
x_{a a}\left[\left(\mathrm{P}_{11} \cdot \mathrm{DLR}_{A}\right)+\left(\mathrm{P}_{21} \cdot \mathrm{DLR}_{B}\right)+\left(\mathrm{P}_{31} \cdot \mathrm{DLR}_{C}\right)+\right. \\
\left.\left(\mathrm{P}_{41} \cdot \mathrm{DLR}_{\mathrm{D}}\right)+\left(\mathrm{P}_{51} \cdot \mathrm{DLR}_{E}\right)\right]
\end{gathered}
$$

The direct labor cost for the laying of aerial cable

$$
\begin{gathered}
=X_{b b}\left[\left(P_{11} \cdot D L R_{A}\right)+\left(P_{22} \cdot D L R_{B}\right)+\left(P_{32} \cdot D L R_{C}\right)+\right. \\
\left.\left(P_{42} \cdot D L R_{D}\right)+\left(P_{52} \cdot D L R_{E}\right)\right]
\end{gathered}
$$

Table 5.3 Percentage Work Content by Craft Type

| Craft | Poles | Aerial <br> Cable/Coaxial | Trenching | Underground Cable/Coaxial | Conduits (\& Manholes) | Digging | Buried Cable/Coaxial | Installing loading coils etc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Craft A | $\mathrm{P}_{11}$ | $\mathrm{P}_{12}$ | $\mathrm{P}_{13}$ | $\mathrm{P}_{14}$ | $\mathrm{P}_{15}$ | $P_{16}$ | $\mathrm{P}_{17}$ | $\mathrm{P}_{18}$ |
| Craft B | $\mathrm{P}_{21}$ | $\mathrm{P}_{22}$ | $\mathrm{P}_{23}$ | $\mathrm{P}_{24}$ | $\mathrm{P}_{25}$ | $\mathrm{P}_{26}$ | $\mathrm{P}_{27}$ | $\mathrm{P}_{28}$ |
| Craft C | $\mathrm{P}_{31}$ | $P_{32}$ | $\mathrm{P}_{33}$ | $\mathrm{P}_{34}$ | $\mathrm{P}_{35}$ | $\mathrm{P}_{36}$ | $\mathrm{P}_{37}$ | $\mathrm{P}_{38}$ |
| Craft D | $\mathrm{P}_{41}$ | $\mathrm{P}_{42}$ | $\mathrm{P}_{43}$ | $\mathrm{P}_{44}$ | $\mathrm{P}_{45}$ | $\mathrm{P}_{46}$ | $\mathrm{P}_{47}$ | $\mathrm{P}_{48}$ |
| Craft E | $\mathrm{P}_{51}$ | $\mathrm{P}_{52}$ | $\mathrm{P}_{53}$ | $\mathrm{P}_{54}$ | $\mathrm{P}_{55}$ | $\mathrm{P}_{56}$ | $P_{57}$ | $\mathrm{P}_{58}$ |

Similarly the direct labor cost for other items are developed. If the total cost of the direct labor, which is the sum of the above cost items, is denoted by ' $C^{\prime}$; then.

$$
D L=C \cdot d i j
$$

where,
DL = the direct labor
dij $=$ the distance between the nodes $i$ and $j$.
3. Loadings on Labore Direct Labor Cost Model

Expenditures on indirect labor and other associated expenses are grouped under loadings on direct labor and are rormally expressed as a percentage of direct labor. They are:
(a) general plant supervision $=P(a) \%$
(b) tool and equipment expense $=P(b) \%$
(C) fringe benefits and general expense $=P(C) \%$
(d) plant miscelleneous expense $=P(d) \%$

Therefore the total loadings on labor $=P=P(a)+P(b)+P(c)+P(d)$

Since 'DI' is the direct labor cost described in the previous section, the total direct labor cost and the loadings are expressed mathematically by:

DL(1+ $\mathrm{p} / 100$ ) per unit distance per unit of
facility between the link $i$ and $j$.

Therefore. Direct labor cost in the link i-j per unit of plant facility is equal to :

DL ( $1+\mathrm{P} / 100$ ) dij

The above value when multiplied by the decision variable xij will give the value of the direct labor cost plus loadings in the link ij. If the annual increase in the direct labor cost IDL is determined, it can be used to find the labor costs in subsequent years. The formula is modified to reflect the annual increase in direct labor. Hence to mathematically express:

Direct labor plus loadings becomes equal to;

$$
D L\left(1+\frac{P}{100}\right) d_{i j} X_{i j}\left[\left(1+\frac{I D L_{n}}{100}\right)^{n}\right]
$$

where,

> Xij = the decision variable as determined by 'PNET'
> IDI = the percentage increase in yearly direct
> labor
> n = a suffix to indicate the period under consideration.

In that case inflation rate will have to be adjusted to avoid double counting and therefore was not included in that manner.
4. Seasonal Differences in Labor Rates.

Generally most of the construction work is seasonal (e.g. in Edmonton during the summer). If any work is done in the winter months, due to the climatic conditions prevalent, the standard time taken to do a job will likely change. In order to make a correction to the standard times used, the following modification is recommended.

Let $X u v$ denote a general element in the direct Labor time (Table 5.1). Then:

Standard time, Xuv = 1/100 [ ( Percentage work done during summer) $x($ Normal time in summer $)+($ Percentage work done in winter) $x($ Normal time in winter) $]$.

Incorporating the productivity element into the model produces a typical productivity vs temperature graph which will look like the one shown in Figure 5. 10.

If $P(r e f)$ denotes the productivity with reference to average year round temperature, and $P(s)$ denotes the same for average summer temperature, and similarly $P(w)$ denotes the productivity for average winter temperature, then:

Xuv $=1 / 100$ ( (\% work done in summer) $x$
(Normal time for Reference temp)\}/R(s)
x pref

+ ( (苟 work done in winter) $x$
(Normal time for Reference temp)/p(w)

```
x P (ref) ] .
```



Figure 5.10 . Productivity for Various Temperatures

Where 'Normal time for the Reference Temperature' is the time taken to do the job at a particular reference temperature, assumed to be the average temperature for the year.

## 5. Learning Curves

An employee's efficiency is dependent upon the employee's experience in working with a new technology.

When all the employees are treated together the work units per hour index has been a good indicator of their performance. The terms used in the definition of this index are described below.
A. Work Units

Work units are a relative expression of the quantity of work represented by a given task or combination of tasks. They comprise 'measured work units ' and 'total work units' defined as follows:

## 1) Measured ㄲork Units

Measured work units are the quantities of work units developed by counting selected work operations or plant items and then multiplying these counts by predetermined work unit factors. The factors relate to the system average work time in a past study period and include an allowance for work time on closely associated items which are not separately counted. They also include allowances for vocational

> training time, travel and access time, job preparation time, etc.

## 2) Total №든 Units

Total work units are measured work units plus an allowance of work units for unmeasured time.

## B. Wori Units Per Hour

Work units per hour is a comparative index of production based on the ratio of measured work units to measured hours. In reference to a past period, it shows the change that has taken place in work output as the combined result of changes in techniques and changes in operating efficiency. It shows the work output per hour expended.

This index, 'work units per hour' is easily obtained from accounting data and is projected into the future years. Assuming the 'work units per hour' index as 1 in year 0 , the future indices can be found. The job times are multiplied by a factor which is the inverse of this index.

Thererore,
Standard time in year $n$
$=$ (Standard time in year 0$) /($ work units per hour index in year $n$ )

## 6. Geographic Area

Varying soil conditions may be encountered in the same switching center area or in different switching center areas that makes one kind of job more difficult than the others. For example, hard rocky areas pose problems for trenching to lay underground cable. It is understood that the varying soil conditions directly affects the labor time. In order to account for these deviations, the switching center area is classified into the following categories of soils and they are identified by number codes. They are:
a) 1 - soft soil - suitable for normal operation, b) 2 - hard rocky area - difficult for digging, trenching,
c) 3 - ravine or uneven area - poses problem for any aerial work.
d) 4 - paved areas - difficult for digging, trenching cost increases due to repaving, and
e) 5 - muskeg and swamp area - where work will be done in adverse conditions.

A difficulty rating matrix is constructed with the available information. Using 100 as the reference index for soft soil, the matrix will resemble the one shown in Table 5. 4.

The switching center area is divided into zones and number codes will identify the difficulty factors applicable to that area under consideration.

Table 5.4 A Difficulty Rating According to Soil Conditions For the Placement of Telecommunications Plant

| Function Performed | Code '1' Soft Soil | Code '2' Rocky Area | Code '3' <br> Ravine Area | Code '4' <br> Paved Area | Code '5' <br> Swamps | Total Factor Being Denoted by ' $D_{l k}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installing Poles | 100 | $\mathrm{D}_{11}$ | $\mathrm{D}_{12}$ | $\mathrm{D}_{13}$ | $\mathrm{D}_{14}$ | $\pi \mathrm{D}_{1 k}$ |
| Laying Aerial Cable | 100 | $\mathrm{D}_{21}$ | $\mathrm{D}_{22}$ | $\mathrm{D}_{23}$ | $\mathrm{D}_{24}$ | $\pi D_{2 k}$ |
| Trenching | 100 | $\mathrm{D}_{31}$ | $\mathrm{D}_{32}$ | $\mathrm{D}_{33}$ | $\mathrm{D}_{34}$ | $\pi D_{3 k}$ |
| Laying U.G. Cable | 100 | $\mathrm{D}_{41}$ | $\mathrm{D}_{42}$ | $\mathrm{D}_{43}$ | $\mathrm{D}_{44}$ | $\pi \mathrm{D}_{4 k}$ |
| Laying U.G. Conduits | 100 | $\mathrm{D}_{51}$ | $\mathrm{D}_{52}$ | $\mathrm{D}_{53}$ | $\mathrm{D}_{54}$ | $\pi D_{5 k}$ |
| Digging | 100 | $\mathrm{D}_{61}$ | $\mathrm{D}_{62}$ | $\mathrm{D}_{63}$ | $\mathrm{D}_{64}$ | $\pi \mathrm{D}_{6 k}$ |
| Laying Buried Cable | 100 | $\mathrm{D}_{71}$ | $\mathrm{D}_{72}$ | $\mathrm{D}_{73}$ | $\mathrm{D}_{74}$ | $\pi \mathrm{D}_{7 \mathrm{k}}$ |
| Installing Loading Coils | 100 | $\mathrm{D}_{81}$ | $\mathrm{D}_{82}$ | $\mathrm{D}_{83}$ | $\mathrm{D}_{84}$ | $\pi \mathrm{D}_{8 \mathrm{k}}$ |

Note : $\pi=\begin{aligned} & \text { Sum of the Product of the Difficulty Factors } \\ & \text { Relating to Different Codes }\end{aligned}$

Total hours column Xaa,. Xbb... etc. in Table 5.1 will be prorated by the factor $D 1 k$, depending on the type of job and whether the link i-j falls into any of the above categories of soil conditions.

### 5.3.2 Direct Material Cost

The material cost is divided into two components:
(1) direct material cost, (2) indirect material cost.

The direct material costs are due to those materials which become a part of the transmission medium in the final subscriber loop and are involved in such a way that the material cost can be estimated. The indirect material costs are due to those materials which are critical to the operation but do not become a part of the transmission medium. These costs may include inventory carrying cost , ordering cost and shortage cost etc. These indirect material costs are normally expressed as a percentage of the direct material cost.

From an analysis standpoint, the direct material is subdivided into the following categories :
a) underground plant (includes cable, manholes, ducts, and loading coils etc.).
b) underground coaxial cable plant,
c) buried coaxial cable plant.
d) buried cable plant,
e) aerial cable plant, and
f) aerial coaxial cable plant.

The rules for the "resistance design" states that the total resistance of the subscriber loop under loaded or unloaded conditions is to be limited to 1300 ohms. This limit varies depending on the type of switching center equipment in use. The resistance limit implies that it is not always possible to use the thinnest gauge cable available, and in the case of long subscriber loops it becomes imperative to use loading and a combination of cables of varying gauges. In the case of composite gauges, the thinner cable is placed closer to the switching center. Normally subscriber loops (with combination of gauges) in excess of 5460 meters ( 18,000 feet) need loading.

Figure 5.11 shows the subscriber loop design chart. The limiting distance (resistance limit design) for using a 26 gauge cable in a non-loaded loop is approximately 4850 meters $\{16,000$ feet). In the loaded environment, for instance the 24 gauge cable can handle a distance of approximately 7575 meters ( $25,000 \mathrm{ft}$. ) . Normally the routes must follow streets, which are for the most part rectangular in pattern, and the subscriber must be reached over the sum of the $x-y$ coordinates with the switching center at the origin. The mean ratio of conductor route miles to airline miles based on the following mathematical development
subscriber loop desion chart [Bell Telephone Co. of Canada]


Figure 5.11 Subscriber Loop Design Chart
assuming a uniform arrangement would be:
where $R=$ route distance

$$
\begin{aligned}
& a=\text { airline distance } \\
& \theta=\text { angle between airline route and } x \text { axis. }
\end{aligned}
$$

The above ratio called airline ratio works out to be 1.27. Concentric contours (circles) are drawn with the switching center as the origin and a radius equal to the resistance limit length divided by this ratio, in order to arrive at a method of zoning the usage of various gauges. If an appropriate airline ratio specific to a carrier company is found by scientific sampling techniques, then that figure can be used instead of 1.27.
a) Undeㄷqround cable

Normally the cable used for underground feeder routes is 3600 pair 24 gauge stalpeth cable. However, in any link ij, where the cable to be used is underground cable of cost ci dollars, then the cost per unit length of cable is equal to $C 1 / L$ where $L$ is the standard length of the cable. The graph in Figure 5.12, shows the cable cost per unit length against the number of pairs of cable for various gauges.


Let UCC denote the cost per cable pair per foot, then

$$
U C C=\$(C 1 / L) / \mathbb{N}
$$

Then UCC is represented by the slope of the above curves.

The cost of the cable in the link ij will be equal to:

$$
\text { Xij }[\{(100 \text { UCC }) / F\} \operatorname{dij}]
$$

where,

> dij = the distance between the nodes
> $\mathrm{UCC}=$ the cost per cable pair per foot
> $\mathrm{F}=$ the cable fill percentage
> Xij = the decision variable as determined by PNET.

A maximum cable fill percentage of $80 \%$ is assumed and the forecasted demand will be updated to reflect the actual plant required in the model. A linear regression of cost of cable per unit distance versus the number of cable pairs is done and the slope and intercept of this line is stored in the program for the dirferent types of cable. These stored values will be used in calculating the cable cost depending on the flow required. The general regression equation will resemble;

$$
\mathrm{c} 1 / \mathrm{L}=\mathrm{ak}+\mathrm{bk} \cdot \mathrm{Xij}
$$

where 'ak' and 'bk' are the intercept and slope respectively of the ' $k$ ' th type of cable. b) Repeaters. Amplifiers and Load Coils

The voice repeaters, amplifiers and load coils are treated as terminal equipment and their weighted average costs are determined for the different sizes of cable plant, considering the frequency of usage.

If $C(R), C(A)$ and $C(L)$ represent the average costs of the repeaters, amplifiers, and load coils respectively that are installed in the circuit, then these costs are distributed over the entire length of the cable. Therefore, the cost function will be:

$$
\left[\frac{100 U C C}{F} \cdot d_{i j}+\frac{C(R)+C(A)+C(L)}{d_{i j}}\right] \cdot x_{i j}
$$

when, $\sum_{i=0}^{m} d_{i(i+1)>d} \quad$ ( $m$ denotes the total number of nodes) $>1.27 x a i r$ line distance.

Where 'd' is the cut off distance beyond which the use of voice repeaters, amplifiers and load coils are necessary. otherwise the cost function will be:

$$
\left[\frac{\text { looucc }^{F \cdot d_{i j}}}{\mathrm{~F}_{\mathrm{ij}}} x_{i j}\right.
$$

when, $\sum_{i=0}^{m} d_{i(i+1)}<d$
The limiting distances are stored for each gauge of cable and 1.27 times the airline distance is compared with these figures, in order to find out whether loading is necessary and to include any relevent costs.

## c) Underqround Conduits

Normally the underground conduits are placed far in excess of the quantity required to meet the immediate demand. They are usually placed to handle ultimate demand. Figure 5.13 represents a typical cross section of a conduit, partly filled with cables.

If

$$
\begin{aligned}
& \mathrm{w} \\
& \begin{array}{l}
\mathrm{d}(1), \mathrm{d}(2) \\
=\text { the } \text { number of way conduits } \\
\mathrm{C}_{2} / \mathrm{L} \\
\mathrm{~F}
\end{array} \quad=\text { the cost per meter of one conduit } \\
& \quad=\text { the percentage fill allowed in any conduit }
\end{aligned}
$$

then, the cost of conduit in link ij is:

$$
\left\{\frac{\left(C_{2} / L\right) \cdots W \cdot d(2)^{2}}{F \cdot d(1)^{2}}\right\} d_{i j} / x_{i j}
$$

where

$$
\begin{aligned}
& d(1)=\text { diameter of the conduit normally used, } \\
& \text { and }
\end{aligned}
$$

$d(2)=$ diameter of the conduit selected for use. The cost per unit length (of different radii conduits) are plotted against the number of ways and is shown in Figure 5. 14.
d) The Buried Cable

Let UCC represent the cost of cable per meter and $N$ is the number of pairs in the cable then, (Figure 5.15):

$$
U C C=(C 3 / L) / N
$$



Figure 5.13 Cable Fill in a Four-Way Underground Conduit


No. of Ways of Conduit

Figure 5.14 Conduit Price Vs. No. of Ways of Conduits


Figure 5.15 Cost per Unit Length of Buried Cable Versus the Number of Pairs (Based on Published Price Lists for 1978)

Therefore the cost per cable pair, assuming a percentage of fill of $F$ \% is equal to:
( DCC / F ) 100.dij
which results in the cost of cable between nodes $i$ and $j$ as:
Xij [ (UCC / F ) 100 . הij ]

A straight line regression is done with respect to the cost of cable per unit distance and the number of pairs of cable. These regression values are utilized to compute the cable cost.
e) Aerial Cable

Normally the cable used is $50-600$ pair straight alpeth (unfilled) 24 gauge cable. The average span between poles i.s 100 feet with a maximum span of 125 feet in some places. The poles are generally 35 feet high and cost approximately $\$ 300$ per pole. The aerial cable cost is developed under the following classifications:

1. cable cost ;
2. pole cost -(sometimes shared with other utilities) ; and
3. auxillary pole line equipment
a) cross arms, and
b) terminals.

If ( $C 4 / L$ ) is the cost of the cable per unit of
length, and $N$ is the number of pairs of cable, then the cost per unit length per cable pair is, $\quad$ UCC $=\$(C 4 / L) / N$, where $N<600$. (Note Figure 5.16).

Let 'Cp' be the material cost of a pole and '( $\Sigma b)$ Cp/100'is the cost of the auxillary pole line equipment such as cross arms, terminals etc. where ' $\Sigma p$ ' is the overall percentage loadings of the above items on the material cost of the pole. In some cases the pole lines are shared with other utilities, and one of the elements of ' $\Sigma$ ' takes a negative value to account for this factor.

If 'r' is the number of poles between nodes I and $J$, then the cost of the poles between the nodes $I \mathcal{E} J$,

$$
=r\left[C p+\frac{(\Sigma p) C p}{100}\right]
$$

Therefore, cost per cable pair per unit distance (meter)

$$
=\frac{r\left[C p+\frac{(\Sigma p) C p}{100}\right]}{N} \cdot \frac{1}{d_{i j}}
$$

The total cost of pole lines in link ij,

$$
=\left[\frac{C_{4} / L}{N}+\frac{r\left\{C p+\frac{(\Sigma p) C_{p}}{100}\right\}}{N} \cdot \frac{1}{d_{i j}}\right] d_{i j} \cdot x_{i j}
$$

where Xij is the decision variable as determined by the PNET program.

The above procedure was repeated for other types of plant.


No. of Pairs
Figure 5.16 Cost per Unit Length of Aerial Cable Versus the Number of Pairs (Based on published Price Lists for 1978)

Generally accepted accounting principles state that depreciation is the recovery of capital in a rational and uniform manner over the useful life of the plant. Under ideal conditions of constant dollar value, not only does this recover the capital investment in property in dollar amounts, but it also recovers the same purchasing power. The method of capital recovery that matches capital recovery with capital consumption while recognizing the dispersion about the average service life and which is still considered as a straight line method is the 'unit summation' or 'equal life group (ELG). method.

Most of the carrier companies use this method in order to arrive at a value for the depreciation amount, for rate making purposes.

In the case of a pure econonic study involving income tax considerations, however, the capital cost allowance to arrive at taxable income is the prime consideration. Capital cost allowance represents an allowable expense in arriving at taxable income and thus affects the cash disbursements for income taxes. Telecommunication plant (in Canada) is subject to the declining balance method, and the Canadian Government has chosen to group these capital assets by class(class 17) and to state the capital cost allowance rate ( $8 \%$ ) that applies
to a specific class of assets.

The declining balance method as it implies, allows one to calculate the cost allowance by applying the capital cost allowance rate to the book value of the assets for the particular year in question.

In applying the depreciation, rate the plant is grouped into categories as given below;

1. poles,
2. aerial cable,
3. ducts and vaults,
4. underground cable,
5. aerial coaxial cable,
6. underground coaxial cable,
7. buried coaxial cable,
8. buried cable, and
9. miscelleneous equipment.

If 'di' is the depreciation of the $i$ th category
of plant (on a unit basis) and 'Vi' is its estimated salvage value, then a capital tax factor (note derivation pp. 124-126) is computed for that plant and applied to the first cost and the salvage value. This factor takes into account all the effects of depreciation for tax purposes. In the case of surviving plant the initial cost is found from the book value.

### 5.4.1 The Total Cost Model

In designing a uniform system for the measurement of costs, there are three basic components that enter the total cost model.
4. An after-tax cash flow requirement (ATCFR). This requirement includes repayment of capital invested and an after-tax rate of return on the investment (The opportunity cost of capital). The required rate of return to meet the investors threshold of acceptability will be referred to as, (MARR) the minimum attractive rate of return.
5. An income tax requirement, and
6. An operating cost requirement.

Figure 5.17 is a simplified schematic of a corporate cash flow diagram. This diagram specifically shows the major cost factors that contribute to the cost structure. The notations of the variables used in the development of the total cost model will be explained below. Their Fortran equivalents are given in brackets. ATCFR =after-tax cash flow requirement (ATCFR)

PEC $\quad=$ present equivalent cost (PEC)


Figure 5.17 A Simplified Corporate Cash Flow Diagram [21]

| PEM | $=$ present equivalent of operating costs (PEM) |
| :---: | :---: |
| B | $=$ first cost (the installed cost) (B) |
| V | $=$ salvage value ( V ) |
| n | = number of periods in years (N) |
| N | =life of the plant (NN) |
| t | $=$ the income tax rate (TT) |
| CCA | = capital cost allowance (CCA) |
| PECCA | $=$ the present equivalent of the capital cost allowance (PED or PECCA) |
| $(a / p)_{n}^{i}$ | =annual equivalent of a present sum |
| $(p / a)_{n}^{i} a_{n}$ | =present equivalent of an annual sum |
| $(\mathrm{p} / \mathrm{f})_{\mathrm{n}}^{\mathrm{i}} \mathrm{a}$ | = present equivalent of a future sum |
| rd | ```=debt ratio( debt capital/(debt capital + equity capital)) (RD)``` |
| id | $=$ interest rate on debt capital(ID) |
| ie | = interest rate on equity capital (IE) |
| ic | $=$ composite cost of capital (IC) |
| ia | =minimum attractive rate of return (MARR) |
| it | =technological improvement rate(IT) |
| if | =inflation rate(IF) |
| d | =declining balance depreciation rate (DRZ) |
| b | =operating cost growth rate (b) |
| C | =first cash flow in a geometric series of discrete Cash flows |
| CTF | =capital tax factor (CTF) |
| PPEF | =partial present equivalent of a future sum (PpeF) |
| $(\mathrm{p} / \mathrm{c})_{\mathrm{n}}^{\mathrm{i}_{\mathrm{a}}}$ | =present equivalent of geometric series |

## (a) Minimum Attractive Rate of Return

The effect of inflation on debt capital is assumed to be zero. The equity capital is fully responsi ve to inflation. Similarly the technological improvement on cost performance directly affects the equity capital, whereas the debt capital is unaffected by any change.

Hence, the cost of composite capital is a weighted average cost of capital based on the percentage of debt and equity in the capital structure:

$$
\begin{equation*}
i_{c}=\left(1-r_{d}\right)\left[\left(1+i_{e}\right)\left(1+i_{f}\right)\left(1-i_{t}\right)-1\right]+r_{d} \cdot i_{d} \tag{1}
\end{equation*}
$$

The minimum attractive rate of return, MARR, is

$$
\begin{equation*}
\operatorname{MARR}=i_{a}=i_{c}-t \cdot r_{d} \cdot i_{d} \tag{2}
\end{equation*}
$$

The component 't. $r_{d} \cdot{ }^{i}{ }_{d}$ ' is known as the tax shelter. Those carrier companies that do not pay any tax will have this term equal to 0 in equation (2). Combining equations (1) and (2)

$$
\begin{align*}
i_{a} & =\left(1-r_{d}\right)\left[\left(1+i_{e}\right)\left(1+i_{f}\right)\left(1-i_{t}\right)-1\right]+r_{d} i_{d}-t \cdot r_{d} \cdot i_{d} \\
& =\left(1-r_{d}\right)\left[\left(1+i_{e}\right)\left(1+i_{f}\right)\left(1-i_{t}\right)-1\right]+(1-t) r_{d} \cdot i_{d} \tag{3}
\end{align*}
$$

This value of 'ia'will be used in discounting the cash flow streams.
(b) Capital Tax Factor

```
If d= CCA rate,(declining balance method)
t = tax rate,
i = MARR, and
```

$$
\mathrm{n} \quad=\text { year: }
$$

then the installation of a depreciable asset for cost 'B' results in a series of tax credits equal to B.t.d in the first year, B.t.d.(1-d) in the second year, and so on B.t.d. (1-d)**n-1 in the nth year.

The present equivalent cost, after subtracting these series of tax credits is equal to :

$$
P E C=B-\frac{B \cdot t \cdot d}{(1+i)}-B \cdot t \cdot d \frac{(1-d)}{(1+i)^{2}} \cdots \cdots-B \cdot t \cdot d \cdot \frac{(1-d)^{n-1}}{(1+i)^{n}}
$$

Therefore,

$$
(1-d)(\text { PEC }-B)=-B \cdot t \cdot d\left[\frac{(1-d)}{(1+i)}+\frac{(1-d)^{2}}{(1+i)^{2}}+\ldots . .+\frac{(1-d)^{n}}{(1+i)^{n}}\right]
$$

A geometric series is convergent with sum $\mathrm{Sn}=$ $a /(1-r)$, if modulus of $r$ is less than 1 , and $n$ is very large, where 'a' is its first term and 'r' is its common ratio.

Therefore,

$$
\begin{aligned}
(1-d)(\text { PEC }-B) & =-B \cdot t \cdot d\left[\frac{(1-d) /(1+i)}{1-(1-d) /(1+i)}\right] \\
& =-B \cdot t \cdot d(1-d) /(i+d) \\
& =B(1-t \cdot d /(i+d))
\end{aligned}
$$

The factor,$(1-t . d /(i+d))$, is called the capital tax factor.

Assuming the books of the carrier company are open, the capital tax factor by class of plant is found ;

$$
\begin{equation*}
C T F=1-\frac{t \cdot d}{\left(i_{a}+d\right)} \tag{4}
\end{equation*}
$$

This factor when multiplied by the first cost of the plant (B) or the net salvage (V) in any given year will combine the effect of future tax savings on depreciable assets , and gives the after-tax cash flow of the plant.

## (c) Present Equivalent of Maintenance

When the operating costs increase at a rate of $b$, with the age of plant:

Case 1 when b>IA;
$X=(1+b) /(1+I A)-1$
$(p / C)_{n}^{i} a=[1 /(1+I A)](f / a)_{n}^{x} \cdots \cdots-\cdots(5 a)$
Case 2 when $b=I A$
$\mathrm{X}=0$
$(p / C)_{n}^{i} a=n /(1+I A)$
Case 3 when $b$ is less than IA
$X=(1+I A) /(1+b)-1$
$(p / c)_{n}^{i_{a}}=[1 /(1+b)](p / a){ }_{n}^{x}$
The maintenance cost in any given year when multiplied $b y$ one of the above proper factors will be brought to the present day dollar amounts. This factor is used extensively in calculating the present equivalent of maintenance cost (PEM).
(d) Total Cost Model

The present equivalent cost of an investment is given by;

$$
P E C=P E M+\frac{\left[B-V(p / f)_{n}^{i_{a}}-t(P E C C A)\right]}{(1-t)}
$$

Introducing the CTF factor given by equation
(4), the above equation reduces to,

$$
P E C=P E M+\frac{\left[B \cdot C T F-V \cdot C T F \cdot(p / f)_{n}^{i} a\right]}{(1-t)}
$$

This equation is used for every arc of the plant considered in the network. All the factors in the above equation will vary depending on the type of plant considered in the arc , the period under consideration, the estimated life of the plant, the operating cost attributable to each class of plant and whether it is an existing plant or a plant to be newly installed.

## 6. TESTING THE MODEL

The entire optimization model, comprising the solution technique as well as the cost model, was tested on a hypothetical problem to assess the capability of the model.

## 6. 1 Test Problem

The hypothetical problem used for the test was developed after a careful study of several switching center areas in the City of Edmonton, Alberta. Hence it represents a simulated version of the actual problem and was used to test the practical capabilities of the model. The use of a hypothetical problem enabled modifying the input data to test the model for the several different situations that are encountered in practice.

A map of the area used as the test problem is shown in Figure 6.1. The diagram shows locations of the various nodes in the network, both existing and alternative.


Figure 6.1 Map of the Test Area (Switching Center XYZ) Showing Existing Plant

The switching center(S), manholes(M) and the access terminals(T) form the different categories of nodes. The grid system used to describe the network was one with a scale of 5 metres/unit. But, any convenient system can be chosen in practice. Table 6.1 shows the coordinates of all the nodal points on the cartesian grid system chosen. This information is useful in locating the nodes in the physical network and relating the program output to physical facilities. A code consisting of a number followed by a letter is used to denote a node. The letter in the codes used in defining the nodes signifies the type of plant that is used at the node (e.g. switching center, manhole, access terminal).

The forecast information is shown in Table 6.2. To allow for possible bad lines within a cable and to account for errors in the forecast, a maximum permissible cable fill of $80 \%$ was used to obtain the number of lines required to satisfy the demand at each point. The map of Figure 6. 1, the demand data and a percentage fill of $80 \%$ were used as the basis for developing the network information shown in Table 6.3. Note that in Table 6.3 all the arcs emanating from a node are placed together. This arrangement is necessary for the functioning of the optimization program.

Table 6.1 Co-ordinates of the Nodes in the Network (Switching Center Area XYZ)

| NODE | X-COORD | Y-COORD |
| ---: | ---: | ---: |
|  |  |  |
|  |  |  |
|  |  |  |
| 1 S | 95.00 | 170.00 |
| $2 M$ | 107.50 | 169.00 |
| $3 M$ | 72.00 | 169.00 |
| 4 M | 34.00 | 169.00 |
| 5 M | 108.00 | 221.80 |
| 6 M | 167.10 | 256.50 |
| 7 M | 111.80 | 272.50 |
| 8 T | 85.00 | 231.00 |
| 9 T | 62.10 | 223.10 |
| 10 T | 61.30 | 208.30 |
| 11 T | 44.20 | 207.10 |
| 12 T | 16.80 | 190.70 |
| 13 T | 30.00 | 224.50 |
| 14 T | 16.10 | 237.20 |
| 15 T | 42.00 | 252.00 |
| 16 T | 15.80 | 225.00 |
| 17 T | 16.10 | 237.20 |
| 18 T | 16.90 | 257.40 |
| 19 T | 17.80 | 275.10 |
| 20 T | 18.40 | 29.50 |
| 21 T | 81.60 | 249.80 |
| 22 T | 62.10 | 285.70 |
| 23 T | 76.80 | 294.00 |
| 24 T | 92.00 | 303.90 |
| 25 T | 51.80 | 305.50 |
| 26 T | 40.00 | 220.90 |
| 27 T | 143.00 | 303.30 |
| 28 T | 168.90 | 324.00 |
| 29 T | 178.40 | 310.90 |
| 30 T | 186.30 | 297.70 |
| 31 T | 178.40 | 289.70 |
| 32 T | 193.10 | 343.80 |

Table 6.1 Co-ordinates of the Nodes in the Network (contd.) (Switching Center area XYZ)

| NODE | $\mathrm{X}-\mathrm{COORD}$ | $\mathrm{Y}-\mathrm{COORD}$ |
| :---: | :---: | :---: |
| 33 T | 137.60 | 168.10 |
| 34 T | 171.00 | 184.30 |
| 35 T | 179.40 | 139.00 |
| $36 T$ | 180.00 | 123.30 |
| 37 T | 125.70 | 92.00 |
| 389 | 148.00 | 92.70 |
| 39 T | 175.00 | 91.90 |
| 40 T | 175.00 | 75.20 |
| 41 T | 175.00 | 58.80 |
| 42 T | 34.00 | 144.20 |
| 43 T | 21.50 | 143.70 |
| 44 T | 22.00 | 127.50 |
| 451 | 11.80 | 117.00 |
| 46 T | 34.00 | 129.00 |
| 47 T | 56.40 | 130.20 |
| 48T | 34.00 | 110.80 |
| 49 T | 22.00 | 93.30 |
| 50 T | 199.00 | 75.10 |
| 511 | 213.10 | 88.00 |
| 52 T | 206.00 | 120.00 |
| 53 T | 206.10 | 197.20 |
| 54 T | 195.80 | 239.00 |
| 55 T | 199.80 | 270.80 |
| $56 T$ | 159.50 | 336.10 |
| 57 T | 161.20 | 356.20 |
| 587 | 146.00 | 326.20 |
| 59 T | 145.40 | 356.10 |
| 60 T | 126.00 | 358.50 |
| 611 | 124.50 | 309.00 |
| 62 T | 114.70 | 322.30 |
| 631 | 110.00 | 296.20 |

# Table 6.2 Forecast Information for Switching Center XYZ (in number of lines) 

## NODE PERIOD1 PERIOD2 PERIOD3 PERIOD4

| 81 | 55 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 9 T | 239 | 0 | 0 | 0 |
| 10 T | 21 | 0 | 0 | 0 |
| 11T | 4 | 0 | 0 | 0 |
| 12T | 19 | 0 | 0 | 0 |
| 13 T | 11 | 0 | 0 | 0 |
| 14 T | 11 | 3 | 7 | 0 |
| 159 | 11 | 4 | 0 | 0 |
| 16 T | 79 | 39 | 39 | 239 |
| 17T | 19 | 0 | 11 | 0 |
| 18T | 19 | 0 | 0 | 0 |
| 19 T | 11 | 0 | 0 | 0 |
| 209 | 79 | 0 | 0 | 95 |
| 21T | 29 | 0 | 0 | 0 |
| 22T | 32 | 0 | 0 | 0 |
| 23T | 18 | 0 | 0 | 0 |
| 24 T | 7 | 0 | 0 | 0 |
| 25T | 11 | 0 | 0 | 0 |
| 26 T | 11 | 0 | 0 | 127 |
| 27T | 11 | 7 | 0 | 0 |
| 28T | 15 | 7 | 7 | 0 |
| 29 T | 7 | 3 | 1 | 0 |
| 30T | 4 | 2 | 4 | 67 |
| 31ㅍT | 7 | 3 | 3 | 2 |
| 32T | 39 | 7 | 7 | 103 |
| 33T | 79 | 39 | 39 | 0 |
| 34 T | 39 | 39 | 0 | 0 |
| 35T | 56 | 0 | 0 | 0 |
| 36 T | 19 | 0 | 0 | 0 |
| 37T | 33 | 0 | $\bigcirc$ | 0 |
| 38 T | 17 | 3 | 0 | 0 |
| 39 T | 11 | 4 | 0 | 0 |


| $40 T$ | 4 | 2 | 2 | 2 |
| :--- | ---: | ---: | ---: | ---: |
| $41 T$ | 19 | 3 | 3 | 211 |
| $42 T$ | 17 | 0 | 0 | 0 |
| $43 T$ | 7 | 3 | 0 | 0 |
| $44 T$ | 4 | 0 | 0 | 0 |
| $45 T$ | 11 | 3 | 3 | 299 |
| $46 T$ | 11 | 0 | 0 | 0 |
| $47 T$ | 19 | 7 | 3 | 0 |
| $48 T$ | 3 | 3 | 0 | 0 |
| $49 T$ | 11 | 4 | 3 | 3 |
| $50 T$ | 4 | 0 | 0 | 4 |
| $51 T$ | 7 | 7 | 3 | 27 |
| $52 T$ | 0 | 0 | 39 | 7 |
| $53 T$ | 13 | 7 | 7 | 15 |
| $54 T$ | 7 | 7 | 7 | 7 |
| $55 T$ | 4 | 7 | 7 | 0 |
| $56 T$ | 7 | 3 | 0 | 0 |
| $57 T$ | 3 | 3 | 3 | 0 |
| $58 T$ | 0 | 5 | 3 | 0 |
| $59 T$ | 0 | 1 | 8 | 2 |
| $60 T$ | 3 | 239 | 2 | 7 |
| $61 T$ | 3 | 3 | 0 | 4 |
| $62 T$ |  |  | 3 | 3 |

Table 6.3 Network Information for Switching Center XYZ


Table 6.3 Network Information for Switching Center XYZ (con'd)

|  | ROM | то |  | ARC | total | USED | GEOG. | ABC | A TRLINE | $\begin{array}{r} \text { EXCESS } \\ \text { FACILITY } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ODE |  | NODE | CODE | LINES | LINES |  | LENGTH | DISTANCE |  |
|  |  |  |  |  |  |  |  | (METRES) | (HETRES) |  |
|  | 197 |  | 20 T | 1131 | 200 | 100 | 400 | 104. 13 | 652.03 | 0 |
|  | 19 T |  | 00 |  |  |  |  |  |  |  |
| 15 | 0 | 0 | 0 |  |  |  |  |  |  |  |
|  | 20 T |  | 00 |  |  |  |  |  |  |  |
| 100 | 0 | 0 | 120 |  |  |  |  |  |  |  |
|  | $21 T$ |  | 22 T | 1131 | 600 | 104 | 400 | 208.33 | 404.59 | 0 |
|  | 21T |  | 00 |  |  |  |  |  |  |  |
| 37 | 0 | 0 | 0 |  |  |  |  |  |  |  |
|  | 22T |  | $23 T$ | 1131 | 50 | 33 | 400 | 100.57 | 601.43 | 0 |
|  | 22.5 |  | 25 T | 1131 | 300 | 30 | 400 | 143.61 | 601.43 | 0 |
|  | 22T |  | 00 |  |  |  |  |  |  |  |
| 41 | 0 | 0 | 0 |  |  |  |  |  |  |  |
|  | 23T |  | 24 T | 1131 | 25 | 10 | 400 | 94.58 | 626.64 | 0 |
|  | 23 T |  | 00 |  |  |  |  |  |  |  |
| 23 | 0 | 0 | 0 |  |  |  |  |  |  |  |
|  | 24 T |  | $23 T$ | 2151 | 0 | 0 | 400 | 103. 52 | 669.67 | 0 |
|  | 247 |  | 00 |  |  |  |  |  |  |  |
| 10 | 0 | 0 |  |  |  |  |  |  |  |  |
|  | 25T |  |  | 1131 | 200 | 15 | 400 | 449. 12 | 711.58 | - 0 |
|  | 25x |  | 00 |  |  |  |  |  |  |  |
| 15 | 0 | 0 | 0 |  |  |  |  |  |  |  |
|  | 26T |  | 00 |  |  |  |  |  |  |  |
| 15 | 0 | 0 | 160 |  |  |  |  |  |  |  |
|  | 27T |  | 28 T | 1131 | 600 | 96 | 100 | 206.33 | 708.39 | 0 |
|  | 27 T |  | 61 T | 2151 | 0 | 0 | 100 | 111. 17 | 708.39 | 0 |
|  | 27 T |  | 587 | 2151 | 0 | 0 | 100 | 117.58 | 708.39 | 0 |
|  | 27 T |  | 31 T | 2151 | 0 | 0 | 100 | 194.04 | 708.39 | 0 |
|  | 277 |  | 00 |  |  |  |  |  |  |  |
| 15 | 10 | 0 |  |  |  |  |  |  |  |  |
|  | 28 T |  | 29 T | 1131 | 200 | 26 | 100 | 82.49 | 854.07 | 0 |
|  | 289 |  | 32 T | 1131 | 400 | 50 | 100 | 165.05 | 854.07 | 0 |
|  | 281 |  | $56 T$ | 2151 | 0 | 0 | 100 | 94.93 | 854.07 | 0 |
|  | 28 T |  | 00 |  |  |  |  |  |  |  |
| 20 | 10 | 10 | 0 | 0 |  |  |  |  |  |  |
|  | 29 T |  | 30 T | 1131 | 150 | 16 | 100 | 83.73 | 818.66 | 0 |
|  | 29T |  | 00 |  |  |  |  |  |  |  |
| 10 | 5 | 2 | 0 |  |  |  |  |  |  |  |
|  | 30T |  | 31 T | 1131 | 25 | 10 | 100 | 62.75 | 784.90 | 0 |
|  | 307 |  | 55 T | 2151 | 0 | 0 | 100 | 181.69 | 784.90 | 0 |
|  | 30 T |  | 00 |  |  |  |  |  |  |  |
| 6 | 3 | 6 | 85 |  |  |  |  |  |  |  |
|  | 30) T |  | 5515 | 2151 | 0 | 0 | 100 | 170.45 | 784.90 | 0 |
|  | 317 |  | 00 |  |  |  |  |  |  |  |
| 10 | 5 | 5 |  |  |  |  |  |  |  |  |
|  | 32 T |  | 57 T | 2151 | 0 | 0 | 100 | 184. 64 | 997.87 | 0 |
|  | 32T |  | 00 |  |  |  |  |  |  |  |
| 50 | 10 | 10 | 130 |  |  |  |  |  |  |  |
|  | 33T |  | 34 T | 1121 | 600 | 50 | 100 | 232.74 | 213.21 | 4 |
|  | 33 T |  | $35 T$ | 1121 | 600 | 96 | 100 | 265.34 | 213.21 | 3 |
|  | 33.7 |  | 00 |  |  |  |  |  |  |  |
| 100 | 50 | 50 | 0 | 0 |  |  |  |  |  |  |

Table 6.3 Network Information for Switching Center XYZ (con'd)


Table 6.3 Network Information for Switching Center XYZ (con'd)


### 6.1.1 Data Format for the Input Conversion System

The format in which information has to be fed into the computer is very critical for the working of the model. This section outlines the data decks and the sequence in which they are to be supplied to the programs. Specific formats are discussed in the Appendices.

Data set \#1 contains information required by the input conversion system. It consists of four control cards followed by the network data illustrated in Table 6.3. The first card in the deck contains the problem title not exceeding 80 characters in length. The title used in the test was "SUBSCRIBER LOOP OPTIMIZATION".

The second lata card in the deck contains a string of 36 characters. These characters are used by the input conversion system in designating a code name to the nodes in the network. Such a system enables more nodes to be accommodated with minimum space requirements. To illustrate, consider a situation where only three characters can be used to designate a node. With a numerical code, each node can take on a value between 0 and 999. Therefore, the maximum number of nodes in this case is 1000. With a code using the 26 letters of the English alphabet in addition to the ten digits, as many as 46,656 nodes can be handed in the same situation. The characters used on the second card can be any one among those available on a keypunch/terminal. The only
condition that has to be satisfied is that one character may occur only once in the string specified. The string: 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ was used in the test problem.

The third card contains the number of periods in the planning horizon considered. Four periods were considered while testing the programs. The first three periods represented the first, second and the third year respectively and the fourth period covered years four through to the time required by the switching center to reach ultimate capacity. It was assumed that it would take 30 years for the switching center to attain its ultimate capacity.

On the fourth card in data set \#1, the number of technologies that are explicitly considered in each period are specified. In testing the model, it was not possible to collect specific cost data for the different technologies available in the telecommunications industry. So only one technology was considered each period, and the general technological trend curve was used to forecast future costs.

The network information shown in Table 6.3 follows the four control cards. The columns occupied by specific variables are discussed in Appendix A. Demand points are identified by placing zeros in place of ending node codes. The card following a demand point so designated, must contain the periodic line requirements; total requirements
for the first period and the increments for the following periods.

### 6.1.2 Cost Related Data

The cost data described herein was required for the subroutine $\cos T$ which was used in testing the model. Therefore the specific cost information required may be different if other cost models were used. New cost routines can be used by modifying the input conversion, UPDATE1 and UPDATE2 programs as indicated in the Appendices.

The cost subroutine used in testing the model utilizes the different classifications of plant, workforce and activities explained below.

Two different classifications were used for the physical plant. The first of these classifications is based on the six classes of plant, i.e., underground paired cable, aerial paired cable, buried paired cable, underground coaxial cable, aerial coaxial cable and buried coaxial cable. The second classification, which is required for the purposes of accounting and capital budgeting, divides the physical plant into nine categories, which are:

1. aerial paired cable,
2. poles,
3. aerial coaxial cable,
4. buried paired cable,
5. buried coaxial cable,
6. underground paired cable,
7. conduits (or ducts) and manholes (or vaults).
8. underground coaxial cable, and
9. 1ine concentrators (or loading equipment).

The workforce is classified into five craft types, type $A$, type $B$, type $C$, type $D$ and type $E$. The outside plant activities have been divided into eight major types which are:

1. installing poles,
2. laying aerial cable,
3. trenching,
4. laying underground cable.
5. laying underground conduits,
6. digging,
7. laying buried cable, and
8. installing loading equipment.

Table 0.4 shows the cost data that were used in testing the model. In Table 6.4, lines with an asterisk (*) in the first column are shown only to explain the significance of the values given in the lines that follow. Hence they do not form a part of the input data.

While supplying information on the sizes of plant available within a class of plant, zeros are placed if a certain type of plant is not available. When the model was

## Table 6.4 Cost Data Used in Testing the Model



Table 6.4 Cost Data Used in Testing the Model (con'd)


Table 6.4 Cost Data Used in Testing the Model (con'd)


Table 6.4 Cost Data Used in Testing the Mode1 ( $\operatorname{con}^{\prime} \mathrm{d}$ )


Table 6.4 Cost Data Used in Testing the Model (con'd)


Table 6.4 Cost Data Used in Testing the Mode1 (con'd)


Table 6.4 Cost Data USed in Testing the Model (con'd)


Table 6.4 Cost Data Used in Testing the Model (con'd)

tested, the coaxial cables were omitted for simplicity. This was done by placing zeros on data cards numbered 288. 289 and 290, which refer to the number of sub-classes of plant (such as stalpeth cable, alpeth cable) available within underground, aerial and buried coaxial plant respectively.

A listing of the subroutine "COST" and a glossary of the variables used in the program can be found in Appendix D.

### 6.1.3 Command Data Set

The command data set (data set \#2) contains the commands required to operate the optimization program, PNEI in the master control unit. This data set contains the following cards in the order shown:

LUSOL 0
SKIP 0
SOLVE 1
REPORT 2
STOP

An explanation of the command parameters and a description of the use of these commands car be found in Appenãix $B$.

### 6.1.4 Data Set for Intergediate Probleg Update

The third data set is composed of a single card with a character representing the period being updated. This card is read in by the programs UPDATE1 and UPDATE2 in the master control unit and the character has to be changed when updating of a particular period is completed. When the first period is being updated, the first character in the 36 -character array on the second card of data set \#1 is used. The second character in the array is used to designate the second period, the third character for the third period and so on.

### 6.1. 5 Input Data Required for the output Conversion

The major source of data for the output conversion system is the master control unit, which supplies the output of the last iteration of the PNET and a description of the arcs from the last apdate performed. In addition to these data, details of the different types of plant available, the units of measurement for each type, the date on which the test was carried out and the name of the switching center area under study are supplied to the output conversion program directly from the data bank. These information, shown in Table 6.5, form data set \#4 required for optimization purposes. In Table 6.5, a description of each line is given in parentheses to explain the significance of

Table 6.5 Input Data Required by the Output Conversion System

```
XYZ (NAME OF THE SHITCIIING CENTER)
78:08:01 (DATE CF STUDY)
0123456789ABCDEFGHIJKLMNOPQRSTUVNXYZ (LETTER CODES)
    4 (NUNBER OF [ERIODS)
        (NUMBER OF CONDUIT SIZES)
            3 4 (THE CONDUIT SIZES)
            (NUMBER OF DIFFERENT WAIS OF CONDUXT)
            2 3 (THE DIFEEEENT HAYS OF CONDUIT)
    (NUMBER OF SUBCLASSES OF PLANT)
STAとpETII
ALPETH (DESCRIPTION OF SUBCLASSES)
    4 (NUABER OF GAUGES)
    26 24 22 19 (GAUGE SIZES)
    35 (NUHBER OF DIFFERENT SIZES OF CABLE)
    4 6 6 11 1.12 16 18 18 25 37 50 50 75 100 150 200 300 400 450
90010001100120014001500160018002100240027002800300033003600 (THE CABLE SIZES)
U/G PAIRED CAELE (TITLE OF ONE CLASS OF PLANT)
CABLE 1
CONDUIT 1
LINECONC 1 (DESCRIPTION AND UNITS OF HEASUREMENT OP THE TYPES OF RLANT)
    AERIML PALRED CABLE
    CABLE 1
    POLE 1
LIHECONC 1
BURIED PAIRED CABLE
    CABLE 1
LINECONC 1
    U/G CO-aX CABLE
    CASLE 1
    CONDUIT 1
LINECONC 1
    AERIAL CO-AX CABLE
    CABLE 1
    POLE 1
IINECONC 1
EURIED CO-AX CABLE (THE SIXTH AND TGE LAST CLASS OF PLANT)
    CALLE 1
LINECONC 1 (THE TYPES OF PLANT GITHLN THE LAST CLASS OF PLANT)
        (THE NUMBER OF TECHNOLOGIES EXPLICITLY CONSIDERED IN TUN FIEST PEICD)
        (THE NUUBER OF TECHNOLOGIES EXPLICITLY CONSIDERED IN THE LAST PGRIOD)
    U/G CABLE (THE FTRST CATEGORY OF PLANT- BASED ON CAPITAL BODGETING EEQUIREMENTS)
    AEAIAL CCABLE
    BURIED CABLE
    U/G COAX CABLE
    AER COAX CABLE
    EUR COAX CABLE
    U/G CONDOIT
    POLES
    IINE CONC. (THE LAST CATEGORY OF PLANT- FOR CAPITAL BUDGETING PURPOSES)
```

the input parameters. Hence those statements do not form a part of the data required.

The first card contains the name of the switching center under study, the total length of which should not exceed twenty letters. This card is followed by one containing the date the study was undertaken, occupying eight spaces. Three two digit numbers, the first representing the year, the second referring to the month and the third denoting the date of the study, separated by colons was used to indicate the date of testing. However, any other designation can also be used in its place. The next card contains the 36 -character array of data set.\#1. The two cards must be identical because this string is used to decode the node names used at the time of input conversion. The fourth card contains the number of periods under consideration. The remaining cards in the data deck contain tine different classes of plant considered and the types of plant within each category. They are arranged in the order shown in Table 6.5.

## 6. 2 Test procedure

This section sumarizes the operation of the entire optimization model. The specific computer commands used to perform the different stages outlined below are shown in the Appendices.

The stages involved in the operational procedure are:

1) Run the input conversion program and the cost subroutine with data set \#1 and the cost data to obtain the input in a format required by the program. PNET.
2) Use the output of stage (1) and the command data set to run the program, PNET and obtain an initial solution.
3) Deploy program CAPACITATE to introduce additional dummy arcs and update arcs representing utilized capacity.
4) Prepare data set \#3 by setting the input character to that denoting the first period.
5) With the new output and data set \#3 run program UPDATP1 to perform the primary update.
6) Perform the next iteration with program PNET using the new network.
7) Use program UPDATE2 and data set \#3 to perform updating of the non-primary arcs. If no arcs require updating proceed to stage (8). Otherwise, return to stage (6).
8) Alter the character forming data set \#3 to the one denoting the next period. If all the periods have been updated proceed to step (9). Otherwise return to stage (5).
9) Use data set \#4 and the output of the last iteration of the PNET to activate the output conversion program and obtain the capital budget and construction plan.

Figure 6.2 is a simplified flow diagram of the optimization process. Stage (1) represents the input conversion, stage (9) the output conversion and the intervening stages the operation of the master control unit. All the programs, except the PNET, require the arc descriptions of the preceeding stage as part of the input.

## 6. 3 Test Results and Inference

The goal of the optimization model as also that of the * solution technique is to obtain a capital budget covering the short range and a construction program for the first period. Hence, the construction plan and the capital budget form the major portion of the output of the model. However, other information can also be obtained after each stage in the operation of the total optimization model. This information is discussed in Section 5.3.1.

### 6.3.1 Secondary Information

optimization is carried out in a sequential manner with the output of one stage or operation forming the input for the succeding stage. This enables the user to examine the results of one iteration and make changes if required. The input conversion system, the program UPDATE1 and the program UPDATE2 supply information that is in a format readily usable by the optimization program. All these data have a


Figure 6.2 Flow Diagram of the Total Optimization Process
structure similar to the one shown in Table 6.6. The column titles have been introduced only to explain the significance of each column and are not part of the computer output. The arc descriptions laid out in computer code are also output by these programs and the program CAPACITATE. These give a brief description of the arc by specifying the arc code, distance, construction costs and the type of plant used. A simple program can be used to transform this information and output it, if required.

The output of each run of the program PNET is in the format shown in Table 6.7. Only a part of the output is shown here for simplicity. The output includes a log of all the commands supplied in data set \#2, an indication of whether or not an optimal solution has been found, statistics relating to the number of arcs and nodes in the network and the value of the objective function which is the present equivalent cost of the total plant investment.

### 6.3.2 Capital Budget and Construction Plan

The capital budgets obtained from the test are shown in Tables 5.8 and 5.9. The first table gives details of the periodic budgets giving the total volume, unit construction cost and toial estimated cost for each type of plant involved. Table 6.9 contains a summary of the capital investment for the switching center area, by period.

Table 6.6 Structure of the Input to the PNET program


Table 6.7 Structure of the Output of the PNET Program


Table 6.8 Capital Investment Budget for Switching Center XYZ


Table. 6.8 Capital Investment Budget for Switching. Center XYZ (con'd)


Table 6.8 Capital Investment Budget for Switching Center XYZ (con'd)


Table 6.8 Capital Investment Budget for Switching Center XYZ (con'd)


Table 6.9 Capital Investment Summary


Table 5.10 Switching Center Capacities (in number of lines)

```
SWITCHING CENTER: XYF
    SQIICHING CEUMEA CAPACITIES
    (EY TYZS OF TFCHNOLOG*)
MEEICD 1 
PERIOD 3 0
```

    DA:E: 78:00:01
    Tables 5.10 and 5.11 show the switching center capacity for each period and the construction plan respectively.

### 6.3. 3 Conclusions

The test conducted on the optimization model revealed that the model can be applied to planning of plant investment in subscriber loops of telecommunications carrier industry. In designing the test problem, attempts were made to simulate situations parallel to those encountered in the real world.

Computer times required for compiling and execution of the programs on an Amdahl $470 \mathrm{~V} / 6$ computer are tabulated in Table 6.12. The number of nodes in the test network was 830, while the number of arcs varied from around 1900 for the initial run to about 2400 for the final iteration. The computer time required for optimization increases significantly with the number of nodes involved. Therefore, every effort must be made to eliminate nodes that are not critical. Considerable judgement must be exercised at the time the data are prepared in reducing the number of nodes to a minimum. For example, in areas where only one possible route exists, the series of arcs that forms the route can be replaced by a single arc with a cost equivalent to that of the entire route. The cost of running the test

Table 6.11 Construction Plan Summary for Switching Center XYZ

| SWITCIEING CENTER: XYT |  |  |  |  | DATE: 78:08:01 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| comstmetion dan smmany <br> (Subscreser loos tiant) |  |  |  |  |  |  |
| Fin\% | To | Choscity | IMSTALIED | Tf:ILIPRD | DIAMm | CABLE |
| NODE | NODE | ADDITIOVE | CADACITY | CRPACITy | CIASS | type |
| 1 | $?$ | 0 | 9470 | 3526 | 1 |  |
| 1 | \% | 0 | 3600 | 564 | 1 |  |
| - 2 | 5 | 0 | 7200 | 2536 | 1 |  |
| 2 | 33 | 0 | 1200 | 413 | 1 |  |
| 2 | 37 | 0 | 1000 | 477 | 1 |  |
| 3 | 4 | 0 | 3600 | 564 | 1 |  |
| 4 | 12 | 25 | 25 | 25 | 3 | 26-ALPETH |
| 4 | 4 ? | 0 | 1800 | 197 | 3 |  |
| 5 | 6 | 0 | 2400 | 7 | 1 |  |
| 5 | 7 | 0 | 3.400 | 1004 | 1 |  |
| 5 | 3 | 0 | 2400 | 1570 | 3 |  |
| 6 | 54 | 13 | $!1$ | 7 | 3 | 26-MLPETH |
| 7 | 27 | 0. | 600 | 496 | 3 |  |
| 7 | 57 | 000 | 6, 00 | 4.35 | 3 | 26-aypert |
| 3. | 21 | 0 | 1200 | 301 | 3 |  |
| 8 | $\bigcirc$ | $n$ | 1200 | 333 | 3 |  |
| 9 | 10 | 0 | 200 | 33 | 3 |  |
| $\bigcirc$ | 13 | 0 | 600 | 599 | 3 |  |
| 10 | 11 | $?$ | 109 | 6 | 3 |  |
| 13 | 14 | 0 | 50 | 36 | 3 |  |
| 13 | 16 | 0 | 800 | 400 | 3 |  |
| 14 | 1 C | 0 | 25 | 15 | 3 |  |
| 35 | 17 | 0 | 700 | 275 | 3 |  |
| 17 | 18 | 0 | 250 | 250 | 3 |  |
| 13 | 19 | 0 | 2.25 | 215 | 3 |  |
| 19 | 29 | , | 200 | 100 | 3 |  |
| 21 | 22 | 0 | 6.00 | 254 | $?$ |  |
| 22 | 23 | 0 | 50 | 33 | 3 |  |
| ?2 | 25 | 0 | 300 | 190 | 3 |  |
| 23 | 24 | 0 | 25 | 10 | 3 | - |
| 25 | 25 | 0 | 200 | 15 | 3 | . |
| 27 | 28 | 1 | 600 | 420 | 3 |  |

Table 6.11 Construction Plan Summary for Switching Center XYZ (con'd)

| SWITC: ${ }^{\text {PNG }}$ | CFNTEF: XYZ |  |  |  | DATE: 78:03:01 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\operatorname{comsent}$ (S:1ES | RUCTION ?LA SCRIber ion | $\begin{aligned} & \text { N STMMARY } \\ & \text { P PLPATM } \end{aligned}$ |  |  |
| Feor | T? | CADMCITY | TMSEAILFD | UPIILEED | Ptant | CABE ${ }^{\text {P }}$ |
| vopr | Yobe | modernive | CAEACIPY | Capacity | Ci.ass | TYPE |
| 27 | 58 | 37 | 37 | 31 | 3 | 26-ALPETE |
| 27 | 31 | 11 | 11 | 10 | 3 | 2E-xiPETH |
| 28 | 29 | 0 | 200 | 169 | 3 |  |
| 2.5 | $3 ?$ | 0 | 400 | 50 | 3 |  |
| 29 | 30 | 0 | 150 | 89 | 3 | - |
| 30 | 55 | 100 | 100 | 0 | 3 | 26-AI.pfich |
| 32 | 34 | 0 | 600 | 107 | 2 |  |
| 33 | 35 | 0 | 600 | 95 | $?$ |  |
| 34 | 5.3 | 75 | 75 | 17 | 3 | 2f,alpeth |
| 35 | 36 | 0 | 200 | 25 | 2 |  |
| 37 | 39 | 0 | 500 | 422 | 3 |  |
| 33 | 39 | 9 | 400 | 331 | 3 |  |
| 39 | 40 | 0 | 300 | 206 | 2 |  |
| 39 | 51 | 16 | 16 | 15 | 3 | 26-sLPRTH |
| 40 | 41 | 0 | 200 | 25 | 3 |  |
| 42 | 43 | 0 | 100 | 85 | 3 |  |
| 42 | 45 | 0 | 75 | 65 | 3 |  |
| 43 | 44 | n | 75 | 58 | 3 |  |
| 44 | 45 | 0 | 50 | 30 | 3 |  |
| 45 | 43 | 15 | 15. | 15 | 3 | - 26-AEPETH: |
| 46 | 47 | 0 | 50 | 25 | 3 |  |
| $4 \%$ | 48 | 0 | 11 | 6 | 3 |  |
| 48 | 49 | 11 | 11 | 0 | 3 | 3 26-MIPTTH |
| $\leq 1$ | 50 | 11 | 1.1 | 6 | 3 | 3. 26-hinepu! |
| 55 | 54 | 75 | 75 | 33 | 3 | 3 26-AL?Ex4 |
| 56 | 57 | 31 | 11 | 10 | 3 | 3 2G-ALPETY |
| 58 | 56 | 76 | 76 | 16 | 3 | 3 25-dyerre |
| 58 | 59 | ? 1 | 11 | 5 | 3 | 3 ? ${ }^{\text {a }}$-ALretil |
| f. 2 | 60 | 16 | 16 | 0 | 3 | 3 26-EIPETE |
| 63 | 61 | 16 | í | 15 | 3 | 3 26-ALPETFI |
| 6.3 | 62 | 500 | 600 | 15 | 3 | 3 26-AI 2ETM |

Table 6. 12 Computer Time Statistics for the Test Run

| Number of Nodes in the Network | $=830$ |
| :--- | :--- |
| Average Number of Arcs | $=2132$ |
| Number of Periods |  |

Average

| Compilation | Execution | Number |  |
| ---: | ---: | ---: | ---: |
| Time | Time | of |  |
| Program | (sec.) | (sec.) | Runs |


| Cost Model | 3.215 | $\ldots .$. | 9 |
| ---: | ---: | ---: | ---: |
| Input Conversion | 1.107 | 4.441 | 1 |
| PNET | 3.679 | 10.987 | 5 |
| CAPACITATE | 0.437 | 7.919 | 1 |
| UPDATE1 | 0.463 | 8.335 | 4 |
| UPDATE2 | 0.498 | 8.500 | 4 |
| Output Conversion | 1.665 | 5.349 | 1 |

problem was around $\$ 100$. The cost to test a switching center area would vary depending on the number of actual nodes in the physical network. This cost should not exceed $\$ 1000$, but it will vary depending on the ingenuity of the analyst.

Since optimization of outside plant is done every year, detailed yearly plans for the time beyond the short range are not useful. So, one period, representing the time between the end of the short range forecast and the time when a switching center attains full capacity is sufficient for optimization purposes. The test revealed that the economic interval for plant additions in the test problem was at least three years. Since the data used in the test run yielded erroneous forecasts beyond a three year short range, the exact length of the economic interval could not be determined. In a practical situation, it is important to obtain a rough estimate of the economic interval and to have a short range forecast period that is longer than this interval.

## BIBLIOGRAPHY

1. American Telephone \& Telegraph Company, Notes for Engineering Economic Courses. A.T. \& T. Co., 1966.
2. Ayres,R.J., Technological Forecasting and Long Range Planning, Mcgraw-Hill Book Company, U.S.A., 1969.
3. Bell Canada, Engineering Economy Seminar, May, 1973.
4. Breary. D., "Computer aided Planning of the United Kingdom Trunk Network," Telecommnication Journal, Volume 38. III/1971. pp. 135-140.
5. Drowning, C.G. "An Efficient Planning Idea for Telco Builders," Telephony, April 11, 1977, pp.82-91.
6. Buffa, t.S., and Taubert, H. H., Production-Inventory Systems: Dianning and Control, Richard D.Irwin Inc., Homewood, Illinois, 1972.
7. Chouinard, P., "The Next Step for the Subscriber Loop,"Telesis, Vol. 5, No. 4, August, 1977, pp. 102-106.
8. Dobbin, D.P., "Distribution Terminals Cut Costs in the

Loop Plant," Telephone Engineer and Management, April 15.1977. pp. 94-96.
9. Forsyth,J.D.,"The Roles of the Equal-Life Group Depreciation Method," Cost and Management, July-August. 1972, pp.33-37 Telephone Engineer and Management, April 15. 1977, pp.94-96.
10. Giffin, W.C., Introduction to operations Engineering, Richard D. Inwin, Inc., Homewood, Illinois, 1971.
11. Glover, F. and Klingman, D., Network Application in Industry and Government, Research Report CCS 247, University of Texas, Austin, September, 1975.
12. Glover, F. and Klingman, D. "" Real World Applications of Network Related Problems and Breakthroughs in Solving Them Efficiently, $A C M$ Transactions in Mathematical Software, Vol. 1, No. 1, March, 1975,pp. 47-55.
13. Hempstead,J.C.,"Equal-Life Group procedure for Calculating Depreciation," The Engineering Economist, Vol. 13- No. 1,1968, pp.27-44.
14. Hill, R.D., "CEPER : The Outside Plant Recording System that Works," Telephony, Sept. 13, 1976, pp. 20-22.
15. Hillier, F.S. and Lieberman, G.J., Introduction to Operations Research. Holden-Day. Inc. , San Fransisco, 1967.
16. Kochansky, T.M., "A Totally Mechanised Outside Plant Environment," Telephone Engineer and Management, April 15. 1977. pp. 84-90.
17. Ostergren, C.N. "Equal-Life Group Plan of Depreciation Rate," The Engineering Economist, Vol. 12-No. 2 (Winter). 1967.pp.93-105.
18. Scott, A.J., "The Optimal Network Problem : Some Computational procedures", Transportation Research, Vol. 3. 1969. pp. 201-210.
19. Snavely, King and Tucker, Inc. and R. K. House and Associates, Costing Manual, Oct.. 1974.
20. Snavely. King and Tucker, Inc. and R. K. House and Associates, The Costing of Telecommunication Services, Volume IV, Oct., 1974.
21. Smith,G.W., Engineering Economy:Analysis of Capital

Expenditures, The Iowa State University Press, Ames, 1973.
22. Sprague, J.C., A Systems Framework for the Evaluation of Capital Expenditure Proposals in the Telecommunications Industry, University of Alberta, Edmonton, March, 1977.
23. Sprague,J.C., Basic Cost Function Information for the Telecommunications Carrier Industry, Global Consultants Ltd., Edmonton, March, 1977.
24. Szabo,l.I., Henter, G.G., "Straight-Line Method of Cost Allocation for Integrated Properties." The Engineering Economist, Vol. 12- No. 3 (Spring), 1967, pp. 129-154.
25. Terrault, C., "Planning the Telecommunication Network of the Future", Telesis, Vol. 2, No. 4, 1976.
26. Wagner, H.M., Principles of Operations Research with Applications to Managerial Decisions, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969.

## APPENDIX-A THE INPUT CONVERSION PROGRAM

The computer program that performs the functions of the input conversion system is discussed in this chapter. The main function of the program is to codify the input data so that it can be used by the optimization program, PNET. A main routine and a function subprogram, "NAME", comprise the input conversion program. The function "Name" is used to substitute an alphanumeric code to represent the node names. The input data format and the operation of the program are discussed following a glossary of the variables used in the program. The last part of the appendix contains a listing of the program.
A. 1 Variables Used in the Input Conversion Routines ARCODE(I) A variable used to define the type of existing plant or the type of plant that can be installed in the arc, I. It is a four digit numerical code with digits, IE, IT, IC, and IS, where,

IE=1 for existing plant, and,
$=2$ for new plant.
IT represents the type of technology used/permitted.

IC=1 refers to $\quad$ /G cable,
$=2$ refers to aerial cable, and
$=3$ refers to buried cable,
$=4$ indicates that types 182 are permitted,
$=5$ indicates that types $1 \& 3$ are permitted,
$=6$ indicates that types $2 \& 3$ are permitted,
and.
$=7$ means that there are no constraints on the type of plant to be used, and, IS=1 refers to paired cable,
$=2$ refers to coaxial cable, and $=3$ indicates that either is allowed.

CODARC (J) A code used to refer to the size and type of plant used in an arc. This variable is evaluated inside the cost sub-routine and is stored as part of the arc description for use in later stages. This is an eight digit code which has three parts; the first containing one digit, the second with three digits and the third with four digits. part one contains the class of plant code, ITYPE, explained below. part two contains the number of poles if the class of plant is aerial, while for underground plant, it contains the size and number of ways of conduit used. In the case of buried plant this has a value zero. The third part contains a description of the cable used; one digit for the major category under which the cable falls (1 for stalpeth and 2 for alpeth), one digit for the gauge (1 for 26 gauge, 2 for 24 gauge and so on), and two digits for the size of cable (01 for 11 pair, 02 for 25 pair and so on).

CODBEG(I) Refers to the type of plant that the beginning
node of the arc.I represents. It is a one character code with:
"S" representing a switching center.
"M" representing a manhole, and
"T" representing an access terminal.
CODE (K)
An array of length three elements in function "NAME". It is used to form the character string representing the code for a node.

CODEND (I) A code used to represent the type of plant represented by the ending node of the arc.I. The codes used are the same as those for CODBEG.

CoIL (I). A variable which is equal to the number of line concentrator sets used in an arc. It is evaluated inside the cost routine.

DEMAND(I,J) A variable used to represent the demand at the demand point, $I$, for the period, J.

DIST(I) A variable that denotes the length of cable required for the arc.I.

GAUGE(I) Stands for the airline distance of the beginning node of the arc.I, from the switching center. A three digit integer describing the geographic condition of the arc, I. The digits have a value between zero and five. "1" denotes soft soil. "2" a hard area, "3" ravine and uneven surface , "4" a paved area and "5" a swamp. If three conditions occur simultaneously the code has no zeros. If less than three conditions are
prevelent. the code has dummy zero(s) as its last digit(s).

IA
ICAP 1

ICAP2

II (K)

IP
IT
ITMAX

ITYPE

JTYPE1

JTYPE2

A DO-index used as the counter for the arcs. An integer referring to the lowest capacity an arc is designed for. An integer referring to the upper limit on the capacity of an arc.

A variable used in function NAME to store the residuals on successive division by 36 .

An integer representing the installed capacity in the arc, I.

A DO-index representing the period.
A Do-index representing the type of technology. A DO-parameter limiting the value of IT to the number of technologies in a particular period. Denotes the type of plant used in the arc. The number codes used for describing an arc are: $1=$ underground paired cable.

2=aerial paired cable,
3=buried paired cable,
4=underground coaxial cable,
5=aerial coaxial cable, and
6=buried coaxial cable.
An integer used in finding ITYPE. It has a value equal to "IC" in ARCODE.

An integer used in finding ITYPE. It has a value equal to "IS" in ARCODE.

KDEM
KINT

KODBEG

KODE

KODEND

LETTER(I) An array initially used to read in and write the problem title. The array is then used in the function "NAME" to develop codes for the nodes.

This array is common to both the routines.
LINES(I) A variable representing the number of 100 pair cables that can be installed in the arc, I with the existing facilities such as poles or conduits.

MAXARC Used to denote the number of arcs in the physical network.

The function which returns the alphanumeric codes for a node when the original number is supplied.

NBEG(I) The number of the beginning node of the arc.I supplied from the data bank.

NCALI A counter which keeps track of the number of times the cost routine is called.

NEND(I) The numerical code for the ending node of the arc.I supplied by the data bank.

NEER The number of periods in the planning horizon.

WTECH(I) Stands for the number of technologies explicitly considered in the period.I.

UNCOST(I,J) A $2 \times 3$ matrix containing the construction costs for the arc under three categories; cost of loading, cost of conduiting/poles and cost of cabling.

A description of the variables used within the cost routine is given in Appendix $D$.

## A. 2 Input Data Format

The sequence in which the data deck is to be arranged and the field occupied by the different variables on a computer card/line are explained below:

CARD NO.

1

2
3
4 5-N
data
PROBLEM TITLE
36-CHARCTERS OF Letter NPER
$\mathrm{NTECH}(\mathrm{I})$
ARC DATA CARDS
a) Physical arcs
a) Physical Arcs

NBEG(I)
$\operatorname{CODBEG}(\mathrm{I}) 9$

## NEND (I)

11-18
CODEND (I) 19
$\operatorname{ARCODE}(I) \quad 21-24$
INSTAL (I) 26-30
GEOG (I) 46-48
DIST(I) 51-60
GAUGE(I) 61-70
LINES(I) 76-80
b) Demand Points

NBEG (I) 1-8
CODBEG (I) 9
$\operatorname{NEND}(\mathrm{I})(=0) \quad 11-18$
$\operatorname{CODEND}(\mathrm{I}) \quad(=0) \quad 19$
followed by another card with, DEMAND (I,1) 1-5 DEMAND (I,2) 5-6


- •
DEMAND (I,NPER). -


## A. 3 Operational procedure

Three logical units are required by the input conversion programs. They are:
$5=$ input data file,
$6=$ output data file on which the input to PNET is printed,
$8=$ output data file on which arc descriptions are stored for use in the succeeding stages.

In addition, the cost model requires certain data files through which cost data can be supplied.

It should be noted here that any cost routine can be adopted by removing the COMMON blocks (lines 38 through 44 of the program) and replacing the calling statements by the appropriate statements. However, the cost model used must be capable of calculating the variables CODARC, COIL, UNCOST,ICAP1 and ICAP2.

The program also utilizes a subroutine "SWCOST" to calculate the switching cost per line. Since this study was concerned with subscriber loop plant, a switching cost of
$\$ 200 /$ line was supplied using the subprogram "SWCOST", given at the end of Table A.1. This subroutine has to be replaced with a routine that calculates switching costs when the model is used in practice.

Suppose that the cost routine, "CoST", is used and that it requires two data files, one on each logical unit one and two. Then, the input conversion program can be used by specifying the following commands:
\$run *FORTG scards=input conversion program+cost
\$run -load\# $1=$ costdata $12=\operatorname{costdata} 25=$ inputdata $6=0$ utput 1 $8=$ output 2

The program can also be compiled and run on WATFIV and IF compilers.
A. 4 Listing of the program

The following pages contain a listing of the input conversion programs.

Table A. 1 Input Conversion Program

```
C***************** INPUT CONVERSION PROGRAM ******************
C
C THIS PROGRAM PERFORMS THE FUNCTIONS OF THE INPUT.
C CONVERSION SYSTEM.
C IT TRANSFORMS THE DATA IN THE DATA BANK OF A
C TELECOMMUNICATIONS CARRIEE INDUSTRY INTO THE FORMAT
C REQUIRED FOR THE OPERATION OF THE pROGRAM "PNET".
C
DECLARE ARRAYS FOR THE VARIABLES DEFINING THE ARC
C CONDITIONS.
C
```

    INTEGER NBEG(200), NEND (200), ARCODE (200).
        1INSTAL (200), GEOG (200), DEMAND ( 100,10 ),
        2 LINES (200), CODARC (2).
        3NTECH (10), SC/'S'/,KODBEG,KODEND.
        4 CODEND (200), CODBEG (200)
    C
REAL DIST (200), GAUGE (200), UNCOST (2,3), COIL(2)
C
deciare tie array for the letter codes used
LOGICAL* 1 LETTER(80)
declare arrays for the variables required by the cost
MODEL.
INTEGER LIMIT(5), GSIZE(5), NNEX(6),PAIRS(35)
REAL DFACTO (7, 4), $\operatorname{SIZE}(6,2,4,40), \operatorname{VO}(9), Y N N E X(9)$,
1 LCCOST (6), PERSAL (9) , DLCOST (8), ISUM (6) ,
$2 \operatorname{ASUM}(6), \operatorname{CONCOS}(5,6), \operatorname{INTCPT}(6,3,5), \operatorname{SLOPE}(6,3,5)$,
$3 E Q U I P M(6,2,4,40), \operatorname{OPCOST}(5,9), \operatorname{PMC}(5), \operatorname{CTF}(5,9)$,
$4 \operatorname{SPEC}(5,2,10), \operatorname{IAF}(5), \operatorname{TINDEX}(5), \operatorname{PPEF}(5), \operatorname{PEF}(5), \mathrm{TIME}(5)$.
5MHCOST
C
C COMMON BLOCK /Z/ CONTAINS LETTER CODES
COMMON /Z/LETTER
C
C PLACe THE COST MODEL VARIABLES IN THE COMMON BLOCKS
C
COMMON /A/DFACTO/B/PARAFO,PARA,PARK/C/NSIZE,SIZE
1/D/VO, VNNEX/E/CODARC,COIL,UNCOST/G/LCINT, POLDIS
2/H/LCCOST, PERSAL, DLCOST, LSUM, MSUM, OHPERC, NCSIZE,
3LIMIT, CONCOS,MHCOST,INTCPT,SLOPE, EQUIPM, POLCOS,
4NGAUGE,GSIZE/J/OPCOST,GFMAIN,NNEX,PMC,IAF/K/CTF
5//NCALL,NUMDIS,SPEC,TT,TINDEX,PPEF,PEF,NEER,TIME
6/L/PAIRS

```
C
C READ IN THE PROBLEM TITLE AND OUTPUT
C
    READ(5,100) (LETTER(I),I=1,80)
100 FORMAT(80A1)
    WRITE(6,200) (LETTER(I),I=1,80)
200 FORMAT('BEGIN'./.80A1./.'ARCS')
C
C READ IN THE LETTER CODES,NUMBER OF PERIODS AND
C THE NUMBER OF TECENOLOGIES IN EACH PERIOD
C
    READ (5,100) (LETTER(I),I=1,36)
    READ(5,300) NPER
300 FORMAT(10I2)
    PEAD (5,300) (NTECH(I),I=1,NPER)
C
C INITIALIZE THE COUNT
    K}=
    NCAIL=0
    ZERO=0.0
    IZERO=0
    INF=99999
C
C READ THE ARC DATA
C
    DO 1 I=1,1000
    GEAD(5,400, END=2) NBEG(I),CODBEG (I),NEND(I),CODEND(I).
    1ARCODE(I),INSTAL(I),GEOG(I),DIST (I),GAJGE(I),LINES(I)
C
C CHECK IF THE ARC REPRESENTS A DEMAND POINT
C
    IF (NBEG(I).EQ.0) GO TO 2
    IF(NEND(I).NE.0) GO TO 1
    K=K+1
    EEAD (5,500) (DEMAND (K,J),J=1,NPER)
1 CONTINUE
400 FORMAT (2 (I8,A1, 1X),I4,1X,I5,15X,I3,2X,2F10.2,5X,I5)
500 FORMAT(15I5)
C
C SET VARIBLE MAXARC ZQUAL TO THE TOTAL NJMBER OF ARCS
C IN THE NETWORK
C
    I=1001
2 MAXARC=I-1
C
C COMMENCE FORMATTING THE OUTPUT
C ONE COMPLETE NETWORK FOR EACH TECHNOLOGY IN
C THE DIFFERENT PERIODS
C
    DO 6 IP=1,NPIR
    ITMAX=NTECH(IP)
    DO 5 IT=1,ITMAX
C
```

        IN TER \(=0\)
        \(J D E M=0\)
        \(K D E M=0\)
        \(K I N T=0\)
        DO \(23 I A=1, M A X A R C\)
    C
C CHECK WHETHER THE PRESENT AND THE PREVIOUS ARCS HAVE THE
C SAME BEGINNING NODE.
C IF THEY EMANATE FROM DIFFERENT NODES, CREATE INTERMEDIATE
C NODES BEFORE FORMATTING THE NEW ARC.
C

IF (IA. EQ. 1) GO TO 3
$I F(N B E G(I A) \cdot E Q \cdot V B E G(I A-1))$ GO TO 3
7 KINT=KINT+1
C CREATE DUMMY ARCS TO SINK FOR ANY DEMAND POINT LEFT
C
IF (JDEM.EQ.0) GO TO 26
KODBEG=NAME (NBEG (JDEM))
KODEND=NAME (NEND (JDEM))
WRITE (6, 800) LETTER (IP), KODBEG,IZERO, INF,
1DEMAND (KDEM, IP)
800 FORMAT (4X,A1,4X,A3.4X,'SINK', 3I10)
KODE=500
WRITE (8) KODE, ZRRO, IZERO, ZERO, ZERO, ZEPO,
1GEOG (IA), DIST (IA), IP, GAUGE(IA), LINES (IA).IT
JDEM=0
26 IF (NEND(KINT) - EQ.0) GO TO 8

C
C CREATE INTERMEDIATE TO FINAL AND INTERMEDIATE TO NEXT
C. PERIODS INTERMEDIATE ARC.

C ALSO STORE ARC DETAILS FOR FUTURE USE.
C
$K O D B E G=N A M E(N B E G(K I N T))$
KODEND=NAME (NEND (KINT))
WRITE (6, 600) LETTER (IP), LETTER (IT) ,KODBEG
1KODEND,LETTER(IP), LETTER(IT), KODEND,
2IZERO, INF,IZERO
600 FORMAT (4X, 2A1, 2A3,2A1,3X, A3.3I10)
$K O D E=300$
WRITE (8) KODE, ZERO,IZERO, ZERO, ZERO, ZERO,
1GEOG (IA), DIST(IA), IP, GAUGE (IA), LINES (IA), IT
IF (IP.EQ.NPEE) GO TO 19
WRITE(6, 1100) LETTER(IP), LETTER(IT), KODBEG,KODEND,
1LETTER(IP+1), LETTER(IT), KODBEG,KODEND,IZERO, INF,IZERO
KODE $=400$
MRITE (8) KODE, ZERO, IZERO, ZERO, ZERO, ZERO,
1GEOG (IA), DIST(IA), IP, GAUGE (IA), LINES (IA), IT
GO TO 8
$19 \operatorname{WRITE}(6,1400) \operatorname{LETTER}(\operatorname{IP}), \operatorname{LTTTER}(I T), K O D B E G, K O D E N D$,
1IZERO,INF,IZERO
1400 FORMAT ( $4 \mathrm{X}, 2 \mathrm{~A} 1,2 \mathrm{~A} 3,4 \mathrm{X}$, 'SINK', 3I $^{2} 0$ )

```
1100 FORMAT(4X,2(2A1,2A3),3I10)
        KODE=400
        WRITE (8)KODE, ZERO,IZERO, ZERO, ZERO, ZERO,
    1GEOG(IA),DIST(IA),IP,GAUGE(IA),IINES(IA),IT
C
C CHECK IF INTERMEDIATE NODES HAVE BEEN CREATED FOR ALL THE
C PREVIOUS ARCS.
C
8 IF(KINT.LT. (IA-1)) GO TO 7
    IF(INTER.EQ.1) GO TO 4
C
C IF THE ARC DOES NOT REPRESENT A DEMAND POINT SKIP
C THE FOLLOWING SECTION
C
3 IF(NEND(IA).NE.O) GO TO 9
    KDEM=KDEM+1
    KODBEG=NAME(NBEG(IA))
    WRITE(6,700) LETTER(IP),LETTER(IT),KODBEG,IETTER(IP),
    1KODBEG,IZERO,INF,IZERO
    KODE=0
    MRITE(8)KODE, ZERO,IZERO,ZERO,ZERO,ZERO,
    1G\PsiOG(IA),DIST(IA),ID,GAUGE(IA),IINES(IA),IT
700 FORMAT(4X, 2A1,3X,A3,A1,4X,A3,3I10)
    IF(IT.GT.1) GO TO 4
    IF(IA.EQ.MAXARC) GO TO 25
    IF(NBEG(IA),NE.NBEG(IA+1)) GO TO 25
    JDEM=IA
    GO TO 4
    WRITE(6,800) IETTER(IP),KODBEG,IZERC,INF,
    1DEMAND(KDEM,IP)
        KODE=500
        NRITE (8)KODE,ZERO,IZERO,ZERO, ZERO, ZERO,
    1GEOG(IA), DIST(IA),IP,GAUGE(IA),IINES(IA).IT
        GO TO 4
C
C INSERT ONE ARC FOR EACH TYPE OF PIANT ALLOWED IN
C THE AREA.
C
9 KODBEG=NAME(NBEG(IA))
    KODEND=NAME(NEND(IA))
    ICAP 1=0
    ICAP2=0
    JTYPE1=MOD(ARCODE (IA), 100)/10
    JTYPE2=MOD (ARCODE(IA),10)
    JTYPE3=200
    IF (CODBEG (IA).EQ.SC) JTYPE3=600
    IF((ARCODE(IA)/1000).NE.1) GO TO 13
    IF(IP.NE.1) GO TO 13
    IF((MOD(ARCODE(IA), 10001)/100.NE.IT) GO TO 13
    ITYPE=JTYPE1+3*(JTYPE2-1)
    CALL COST(GEOG(IA).DIST(IA),ITYPE,INSTAL(IA),
    1INSTAL (IA), O,GAUGE(IA), LINES(IA),IT,ICOST)
    WRITE(6,1000) LETTER(IP),IETTER(IT),KODBEG,LETTER(IP),
    1LETTER(IT),KODBEG,KODEND,ICOST,INSTAL (IA),IZERO
```

KODE＝JTYPE 3＋10＋ITYPE
WRITE（8）KODE， $\operatorname{COIL}(1), \operatorname{CODARC}(1),(\operatorname{UNCOST}(1, \mathrm{~J}), \mathrm{J}=1,3)$,
1GEOG（IA）．DIST（IA），IP，GAUGE（IA），LINES（IA）．IT

CAIL COST，（GEOG（IA），DIST（IA），ITYPE，ICAP1，ICAP2，IP，
1GAUGE（IA），LINES（IA），IT．ICOST）
WRITE（6，1000）LETTER（IP），LETTER（IT），KODBEG，LETTER（IP），
1LETTER（IT），KODBEG，KODEND，ICOST，INF，IZERO
1000 FORMAT（ $4 \mathrm{X}, 2 \mathrm{~A} 1,3 \mathrm{X}, \mathrm{A} 3,2 \mathrm{~A} 1,2 \mathrm{~A} 3,3 \mathrm{I} 10$ ）
KODE＝JTYPE $3+20+I T Y P E$
WRITE（8）KODE，COIL（1），CODARC（1），（UNCOST（1，J），J＝1，3），
1GEOG（IA），DIST（IA），IP，GAUGE（IA），IINES（IA），IT
GO TO 4
11 IF（JTYPE1．EQ．6）GO TO 14
ITYPE＝1＋3＊（JTYPE2－1）
CALL COST（GEOG（IA），DIST（IA），ITYPE，ICAP1，ICAP2，IP，
1GAUGE（IA），LINES（IA），ITr．ICOST）
सRITE（6，1000）LETTER（IP），LETTER（IT），KODBEG，LETTER（IP）。
1LETTER（IT），KODBEG，KODEND，ICOST，INF，IZERO
$K O D E=J T Y P E 3+20+I T Y P E$
WRITE（8）KODE， $\operatorname{COIL}(1), \operatorname{CODARC}(1),(\operatorname{UNCOST}(1, J), J=1,3)$ ，
1GEOG（IA），DIST（IA），IP，GAUGE（IA），IINES（IA），IT
IF（JTYPE1．EQ．5）GO TO 15 ITYPE＝2＋3＊（JTYPE2－1）
CALL COST（GEOG（IA），DIST（IA），ITYPE，ICAP1，ICAP2．IP。
1GAUGE（IA），IINES（IA），IT，ICOST）
WRITE（6，1000）LETTER（IP），LETTER（IT），KODBEG，LETTER（IP）。
1LETTER（IT），KODBEG；KODEND，ICOST，INF，IZERO $K O D E=J T Y P E 3+20+I T Y P E$
WEITF（8） $\operatorname{KODE}, \operatorname{COLL}(1), \operatorname{CODARC}(1),(\operatorname{UNCOST}(1, J), J=1,3)$ ，
1GEOG（IA），DIST（IA），IP，GAUGE（IA），LINES（IA），IT IF（JTYPE1．EQ．4）GO TO 4 ITYPR＝3＋3＊（JTYPE2－1）
CALI COST（GEOG（IA），DIST（IA），ITYPE，ICAP1，ICAP2，IP，
1GAUGE（IA）IINES（IA），IT，ICOST）
WRITE（6，1000）LETMER（IP），LETTER（IT），KODBEG，LETTER（IP），
1LETTER（IT），KODBEG，KODEND，ICOST，INF，IZERO $K O D E=J T Y P E 3+20+I T Y P E$
WRITE（8）KODE， $\operatorname{COLL}(1), \operatorname{CODARC}(1),(U N C O S T(1, J), J=1,3)$,
1GEOG（IA），DIST（IA），IP，GAUGE（IA），IINES（IA），IT
C
C IF ALL ARCS HAVE BEEN CONSIDERED GO ON TO THE
C NEXT PERIOD．
C
4 IF（IA．NE．MAXARC）GO TO 23
IF（KINT．EQ．MAXARC）GO TO 23
INTER＝1
GO TO 7
CONTINUE
23
$\begin{array}{ll}5 & \text { CONTINUE } \\ 6 & \text { CONTINUE }\end{array}$
C
C CREATE A DUMMY ARC CONNECTING THE SINK TO THE SOURCE

```
C THIS ARC COMPLETES THE FLOF CYCLE.
C
    WRITE(6.1300) IZERO,INF.IZERO
    IP=1
    IT=1
    KODE=0
    WRITE(8) KODE,ZERO,IZERO,ZERO, ZERO, ZERO,
    1GEOG (1),DIST(1),IP,GAUGE(1),IINES (1),IT
1300 FORMAT(8X,'SINK', 2X,'SOURCE'.3I10)
C
C CREATE ARCS CONNECTING THE SOURCE TO THE SWITCHING CENTER
C
    DO 17 IA=1,MAXARC
    IF(CODBEG(IA).NE.SC) GO TO 17
    IF(IA.EQ.1) GO TO 16
    IF(NBEG(IA).EQ.NBEG(IA-1)) GO TO 17
    DO 18 IP=1,NPER
    ITMAX=NTECH(IP)
    DO 18 IT=1,ITMAX
    CALL SWCOST(IP,IT,ICOST)
    KODBEG=NAME(NBEG (IA))
    WRITE(6,1200) LETTER(IP),LETTER(IT),KODBEG,ICOST.
    1INF,IZERO
1200 FORMAT(6X,'SOURCE',2A1,3X,A3.3I10)
        KODE=100
        HRITE (8) KODE, ZERO,IZERO,ZERO, ZERO, ZERO,
    1GEOG (IA),DIST(IA),IP,GAUGE(IA),LINES (IA),IT
18 CONTINUE
17. CONTINUE
    WRITE(6,1500)
1500 FORLAT('END')
        STOP
        END
C
C
C THIS FUNCTION IS USED TO CONVERT THE NUMBER CODES INTO
C A THREE CHARACTER. AIPHANUMERIC CODE.
C
    FUNCTION NAME(I)
    INTEGER II(3)
    INTEGER NAME,NEH
    LOGICAL*1 CODE(3),LETTER(80)
    COMMON /Z/LETTER
    EQUIVALENCE (NEW,CODE)
    J=I
C
C CONVERSION BEGINS
C FIND THE RESIDUALS AFTER DIVIDING BY 36.
C
    DO 1K=1,3
    KK=4-K
    II (KK)=J+1
    IF(J.IE. 1) GO TO 3
```

```
    II (KK)=MOD (J,36) +1
    J=J/36
    CONTINUE
C FIND THE LETTER CODE THAT CORRESPONDS TO EACH RESIDUAL
C AND FOKM THE CHARACTER STRING TO REPRESENT THE ARC.
C
    DO 2 K=1.3
    CODE(K)=LETTER(II (K))
    NAME=NEW
    RETURN
        END
C
C **************** SUBROUTINE SWCOST ******************
C
C THIS SUBROUTINE, USED TO CALCJLATE SHITCHING COSTS
C RETURNS A VALUE OF $200 FOR THE SWITCHING COST PER LINE.
C THIS ROUTINE HAS TO BE REPLACED WITH A SUBROUTINE
C THAT CALCULATES THE CORRECT SWITCHING COST WHEN THE
C SWITCHING CENTER PLANT IS ALSO STUDIED.
C
    SUBROUTINE SWCOST(IP,IT,ICOST)
    ICOST=20000
    RETJRN
    END
```


## APPENDIX-B NOTES ON THE MASTER CONTROL UNIT

The master control unit of the optimization model for planning of subscriber loop facilities in a telecommunications industry contains the optimization program $P N E T$, the command program that controls it, and programs CAPACITATE. UPDATE1 and UPDATE2. The command program is used to control the functioning of the PNET program. The program CAPACITATE introduces dummy arcs necessary for balancing the arc flows and places lower bounds on the arcs that connect an intermediate node to an ending node. Programs UPDATE1 and UPDATE2 are used to perform the primary and non-primary updates, respectively, on the arcs representing a particular period. B. 1 Glosssary of the Variables Ised in the Programs CAPACITATE UPDATE1 and UPDATE2

An array used to read the first few lines of PNET output in the programs CAPACITATE, UPDATE1 and UPDATE2. This array is used to signal the beginning of the actual arc descriptions.

ARCODE A three letter code used in the programs CAPACITATE, UPDATE1 and UPDATE2 to describe an arc. This code is the same as "KODE" in the input conversion program.

BEGNOD (J) A 16-element array used in CAPACITATE to form the eight letter code that represents the beginning node of the arc considered.

BLANK An alphanumeric variable which is equivalent to
three blank spaces. It is used in all the three programs.

CCDARC

CODARC(I)

COIL

COIL (I)
$\operatorname{cost}$

DIST

DUMAY

EMPTY

FLOW used by all the three programs.

GAUGE

GEOG

IARC

ICAP1

ICAP2

ICOST

INODE (J)

IP

IT

ITYPE

Used in CAPACITATE, UPDATE1 and UPDATE2 to represent the airline distance of the beginning node of the arc considered from the switching center.

A code used in all the three programs to represent the geographic terrain of the arc considered.

Signifies the arc number in all the three programs.

The lowest capacity for which an arc is designed in programs updatel and update 2.

The maximum capacity for which an arc is designed in programs UPDATE1 and UPDATE2. The value of the unit cost that is computed and returned by the $\operatorname{cost}$ subroutine to the programs updater and updatez.

Used in CAPACITATE to find the code for the beginnning node of the arc considered.

Denotes the period an arc represents. It is used in all three routines.

Denotes the type of technology an arc
represents. This variable is used in all three programs.

An integer code in UPDATE1 and UPDATE2
representing the class of plant the arc represents. The codes are the same as those used for ITYPE in the input conversion program.

K

An eight digit code used in Capacitate that stands for the code for the beginning node of the arc considered.

A counter in UPDATE2 that keeps count of the number of arcs updated.

Represents the lower bound for the arc considered in all three programs.

A counter in CAPACITATE which counts the number of lines printed.

The number of 100 pair cables that can be accommodated with existing facilities. This variable is used in all three routines; A four element array in CAPACITATE containing the four parts that compose the code for the beginning node of an arc. The first part contains one character that represents the period. The second, also a single character, defines the type of technology. The third and fourth parts are three characters long and in the case of intermediate nodes (XMIJ), they represent the physical arcs that are linked by the node. If the node is not an intermediate node, the third part has three blank spaces. A variable used in UPDATE1 and UPDATE2 to denote the first part of the beginning node code as explained under NBEG(I).

A variable in UPDATE1 and UDDATE2 that
represents the second part of the beginning node code.

The variable that defines the third part of the beginning node code in programs UPDATE1 and UPDATE2

NBEG 3

NBEG 4

NCALI

NEND (I)

NEND 1

NEND2

NEND 3

NEND 4

NODE (I)

Used in UPDATE1 and UPDATE2 to signify the fourth part of the beginning node code. Used in UPDATE1 and UPDATE2 to count the number of times the $\cos T$ subroutine is called. The four element array in CAPACITASE that contains the four parts of the ending node code for the arc considered. The parts have the same significance as the four in NBEG(I). Used in UPDATE1 and UPDATE2 to represent the first part of the code for the ending node of the arc considered.

Used in UPDATE1 and UPDATE2 to represent the second part of the code for the ending node of the arc considered.

Used in UPDATE1 and UPDATE2 to represent the third part of the code for the ending node of the arc considered. Used in UPDATE1 and UPDATE2 to represent the fourth part of the code for the ending node of the arc considered. An array used in CAPACITATE to store the beginning node codes of all the nodes.

NUM1,NUM2 A parameter used in all the three programs to form the letter string in the word, "NOMBER".

OLD A variable in CAPACITATE which stores the code for the beginning node of the previous arc.

PERIOD A variable used in UPDATE1 and UPDATE2 to represent the period being updated.

TIT1. TIT2 Parameters used to form the letter string in the word, "title".

UB
Stands for the upper bound placed on the arc considered in all the three routines.

UCosT
Used in UPDATE1 and UPDATE2 to represent the unit cost specified for an arc.

UNCOST (I,J) Stores the three categories (i.e., loading, conduiting / instaliing poles, and cabling ( of the construction costs for an arc. This array is used in UPDATE1 and UPDATE2.

UNCOST (J) Used in CAPACITATE for storing the construction costs for an arc under the three categories.

VOID
A parameter in CAPACITATE that is equivalent to
a string of eight blank spaces.

## B. 2 Command Proqram Structure

The command file controls the functioning of the optimization program, PNET. The file is composed of cards/ lines containing a command word followed by a zero or one numeric arguments. The command words must be left justified in columns $1-6$ of a card. Arguments are specified as integers and may be placed anywhere in columns 7-16.

A description of the commands and the appropriate default values are indicated below. In the following lines, the command words are capitalized, "lun" denotes a logical unit number and "n" denotes an unsigned integer.

## Command

LUSOL IUn

REUIND I un Rewind file lun.
SKIP n

SOLVE $n$

RE PORT. n

LưCom lun Set command file logical unit number to lun. Default is $1 u n=1$. LUDATA lun set problem input data file logical unit number
to lun. Default is lun $=$ system input data file Set problem input data file logical unit number
to lun. Default is lun $=$ system input data file (5).

LUPRNT Iun set logical unit number of output file on which printed solution reports are generated to lun. Default if lun $=$ system output file (6).

Set solution output data file logical unit number to lun. To suppress this file set lun $=$ 0 . Default is 1 un $=10$. Read and solve $n$ problems from the input data file.

## Action

Skip $n$ problems on the problem input data file. A problem is treated as a set of card images ending with a card containing the word, 'END'.

Set printed report flag IREPTF $=$ n. If IREPTF $=$ 0 , print only objective function value and solution statistics. If IREPTF $=1$, print solution giving only arcs with non-zero flow. If IREPTF $=2$, print complete solution giving all
arcs regardless of flow. Default is IREPTF $=0$.
STOP Terminate run.

## B. 3 The PNET Program

The pNET program is a mathematical programming algorithm that can be used to solve minimum cost flow networks. The program, developed at the University of Texas, Austin, is written in FORTRAN IV and uses a primal simplex method.

It can be used in the batch or interactive mode and an be controlled by varying the command parameters discussed in Section B. 2.

The PNET program package can be obtained by writing to:

Analysis, Research and Computation, Inc., P.O. Box 4067. Austin, Texas. 78765.

Some minor modifications are necessary to the PNET program before it can be used for the optimization of subscriber loop plant in a a telecommunications industry. The changes involve altering some FORMAT statements in the program as indicated in Table B.1. The first column in the table gives the number of the line on which the statement is placed in the program and the second column identifies the statement number attached to the Format. The next two columns show the original and the revised forms of the statements respectively.

Table B. 1 The modifications to be made to the PNET program

| Line Number | Statement Number | Original Statement | Revised Statement |
| :---: | :---: | :---: | :---: |
| 665 | 602 | FORMAT(I10,5X,2(A6, 4x) ,6I10) | FORMAT (I 10,1X,2 (A8,4X),6 I 10) |
| 669 | 610 | FORMAT (2A6, I 10) | FORMAT (2A8, I 10) |
| 726 | 514 | FORMAT(A4, $2 \mathrm{X}, 2 \mathrm{~A}, 2 \mathrm{C}, 3 \mathrm{I}$ 10) | FORMAT(A4,2A8,3 I 10) |
| 760 | 600 | FORMAT(2 I 10,2A6) | FORMAT ( 2 I 10,2A8) |
| 1708 | 100 | FORMAT(2I 10,2A6) | FORMAT(2 I 10,2A8) |
| 1113 | 101 | FORMAT(A3,3X,2A6, 2X, 3 I 10,15) | FORMAT(A3,1X,2A8,3 I 10,I5) |
| 1163 | 105 | FORMAT(/6X, A6,5X, A6, $3 \mathrm{X}, 3 \mathrm{I}$ 10,5X,3 I 10) | FORMAT (/4X, A8, $3 \mathrm{X}, \mathrm{A} 8,3 \mathrm{X}, 3 \mathrm{I} 10,5 \mathrm{X}, 3 \mathrm{I}$ 10) |
|  |  |  |  |

The output of the input conversion progran and those of the programs UPDATE1 and UPDATE2 are formatted for direct use by the PNET program. Thus, the output from any of these programs may be directly used as the data input to the PNET program. The pNEP program uses several files for which the default logical units are specified in lines 23 through 30 of the program. If the input file, LUDATA $=5$, the output file, LUOUT $=6$, the command file, LUCOM $=1$, and the intermediate scratch files LUSCR1 and LUSCR2 equal to 11 and 12 respectively, the program can be activated by the following commands:
*run *FORTG scards=PNET
trun -load\# $1=$ command file $5=$ data file
6=output file 11=scratch file1 12=scratch file2

## B. 4 Program CAPACITATE

Program CAPACITATE is used after the first iteration with the PNET program is completed. Thus, it is used only once in the entire optimization process. This program uses four logical units on a computer. The unit numbers and the files they represent are explained below:
$4=$ arc description file output by the input conversion system.
$5=$ File containing hte output of the PNET.
$6=$ Output file on which the formatted network information is printed.
$8=$ Output file on which new arc descriptions are

## stored in machine code.

The program CAPACITATE is written in FORTRAN IV and can be used by issuing the following commands:
\$run *FORTG scards=CAPACITATE \$run - load\# $4=a r c$ description file $5=$ PNET output $6=$ output file $18=0$ utput file 2

A listing of the program is given in Table B. 2 , at the end of this Appendix. Program CAPACITATE can also be used with other. Fortran compilers sach as WATFIV and IF. B. 5 operating procedures for programs UPDATE1 and UPDATE2

The programs UPDATE1 and UPDATE2 perform similar functions in the master control unit of the optimization model. UPDATE1 is used to set the bounds and change the costs on the primary arcs in a period, while the program UPDATE2 is utilized for updating the non-primary arcs in a particular period.

UPDATE1 is used only once for each period. Thus, the number of times it is used in the optimization process is equal to the number of periods in the planning horizon. The program UPDATE2 is used in the subsequent updates on a period. These non-primary updates are carried out on a particular period until the program prints out a message on logical unit number, 7 , indicating that operations on that period are complete. When such a message is received, the output of the PNET is run with the program UPDATE1 to
perform the primary updating on the following period.

Both programs UPDATE1 and UPDATE2 use five logical units, the numbers and the use of which are outlined below: $4=$ Arc description file from the previous run of UPDATE1 or CAPACITATE or UPDATE2.
$5=$ Data from the output of the previous run of PNET or capacitate.
$6=$ The output file on which input to the next run of the PNET program is printed.
$7=\quad$ The data file containing one card image which has the character code representing the period to be updated.
$8=$ The output file on which arc descriptions are stored for use in the next stage.

The only information that has to be prepared before using these two programs is one card/line containing the code for the period to be updated in the first column.

The programs JPDATE1 and UPDATE2 can be used with any cost calculating subroutine by removing the common statement in lines 27 through 33 of the programs and replacing the call statements by the appropriate new statements. The new cost routine must be capable of supplying the values for the variables CODARC, ICAP1, ICAP2, COIL and UNCOST to the updating routines.

If the cost subroutine is in a file, "Cost", and
if it requires two data files one each on logical units, "1" and "2", the programs UPDATE1 and UPDATE2 can be invoked by the following commands:

$$
\begin{aligned}
& \text { \$run *FORTG scards=UPDATE1 /UPDATE2 }+ \text { COST } \\
& \text { \$run -load\# } 4=a r c \text { description file } 5=\text { network data } \\
& 1=\text { cost data1 } 2=\text { cost data } 27=\text { period data } \\
& 6=\text { output filel } 8=0 \text { output file } 2
\end{aligned}
$$

These programs can also be used with other Fortran compilers. The programs UPDATE1 and UPDATE2 are listed in Tables B. 3 and B. 4 respectively.

Table B. 2 Listing of program CAPACITATE

```
C ******************
                    program CAPACITATE
C
C THIS PROGRAM SETS THE LOWER BOUND ON ARCS"IJ-J" AND
C CREATES DUMMY ARCS THAT ARE NECESSARY TO BALANCE THE
C FLOWS
C
C DECLARE ARRAYS
C
    INTEGER NBEG(4),NEND(4),COST,UB,LB,FLOW,
    1BLANK/' //,EMPTY/' 1/,ARCODE.
    2A(20).TIT1/' TIT'/.TIT2/'LE 1/,NOM1/'NUMB'/
        3,NUM2/'ER 1/,GEOG,CODARC
        REAL UNCOST(3)
        REAL*8 JNODE,NODE(999),OLD/' 1/,
        1VOID/' 1/
        LOGICAL*1 INODE(8), BEGNOD(16)
        EQUIVALENCE (NBEG,BEGNOD), (JNODE,INODE)
C
C INITIALIZE THE COUNTS
C
    ZERO=0.0
    IZERO=0
    INF=99999
    LINENO=0
    I=0
    K=0
C READ IN ARC INFORMATION FROM THE OUTPUT
C OF THE PNET.
C
    DO 6 LINE=1,50
    READ (5,400) (A(J),J=1,20)
    IF(A(3).EQ.TIT1.AND.A(4).EQ.TIT2) WRITE(6,400)
    1(A(J),J=1,20)
    IF (A(2).NE.NUM1.OR.A(3).NE.NOM2) GO TO 6
    WRITE(6,400) (A(J),J=1,20)
    READ (5,500) DUMMY
    WRITE (6,500) DUMMY
    GO TO 1
6 CONTINUE
400 FORMATP(20A4)
500 FORMAT(F5.0)
1 I=I+1
    IF(MOD(I,50).NE.36) GO TO 8
    READ (5,900) (A(KK),KK=1,20)
900 FORMAT(20A4,//////)
8. READ(5,100,END=4) IARC, (NBEG (II),II=1,4),
    1(NEND(II),II=1,4), COST,UB,LB,FLOW
100 FORMAT(I10,1X,2(2A1,2A3,4X),4I10)
C
```

```
C EQUATE THE INDIVIDUAL CHARACTERS OF BEGNOD
C TO THOSE OF INODE.
C
C SET LOWER BOUND EQUAL TO FLOW IF
C THE ARC RERRESENTS AN "IJ-J" ARC.
C
    INODE (1)=BEGNOD (1)
    INODE (2) = BEGNOD (5)
    DO 21 JJ=1,3
    INODE (JJ+2)=BEGNOD (JJ+8)
21 INODE(JJ +5)=BEGNOD (JJ+12)
    IF(JNODE.EQ.VOID) GO TO 4
    READ(4) ARCODE,COIL,CODARC, (UNCOST (NO),NO=1,3),
    1GEOG,DIST,IP,GAUGE,IINES,IT
    IF(NBEG(3)-EQ.BLANK) GO TO 2
    IF(NEND(3).NE.BLANK) GO TO 10
    LB=FLOW
    GO TO 10
2 IF(JNODE.EQ.OLD) GO TO. 10
    IF (NBEG(2).EQ.EMPTY) GO TO 10
C
C IF THE BPGINNING NODE IS NOT A SWITCHING
C CENTER, CONNECT IT TO THE "SINK"
C
    IF((ARCODE/100)-EQ-6) GO TO 10
    K=K+1
    NODE (K)=JNODE
    OLD=JNODE
    IF (NEND(3).EQ.BLANK) GO TO 10
    IINENO=LINENO+1
    IF(MOD(IINENO, 50).NE. 36) GO TO.9
    WRITE (6,800)
9 NRITE(5,200) IARC, (NBEG (II),II=1,4).
    1IZERO,INF,IZERO,IZERO
    WRITE(8) IZERO, ZERO,IZERO, ZERO,ZERO, ZERO,
    1GEOG,DIST,IP,GAUGE,IINES,IT
    LINENO=LINENO+1
    IF(MOD(LINENO,50).NE.36) GO TO 3
    WRITE (6,800)
3 WRITE (6,100) IARC, (NBEG (II),II=1,4).
    1(NEND(II),II=1,4),COST,UB,IB,FLOW
    WRITE(8) ARCODE,COIL,CODARC, (UNCOST(NO),NO=1,3),
    1GEOG,DIST,IP,GAUGE,LINES,IT
    GO TO 1
800 FORMAT('1PROBLEM TITLE',/////)
C
C CONNECT ALL "I" NODES, OTHER THAN
C THE SWITCHING CENTER TO THE SOURCE.
C
4 DO 5 J=1,K
    IARC=I+J
    LINENO=LINENO+1
    IF(MOD(IINENO,50) - NE. 36) GO TO 11
```

```
WRITE (6.800)
11 WRITE (6,300)
WRITE(8). IZEFO,ZERO,IZERO,ZERO,ZERO,ZERO.
1GEOG,DIST,IP,GAUGE,LINES,IT
    CONTINUE
    FORMAT(I 10, 1X, 2A1,2A3,8X,'SINK',4X,4I10)
    FORMAT(I10,3X,'SOURCE',4X,A8,4X,4I10)
        STOP
    END
```

Table B. 3 Program UPDATE1

```
C
C #************** PROGRAM UPDATE1 ***************
C
C THIS PROGRAM PERFORMS THE PRIMARY UPDATE ON THE
C ARCS REPRESENTING THE PERIOD, "PERIOD"
C
C DECLARE ARRAYS
C
    INTEGER NBEG1,NBEG2,NBEG3,NBEG4,NEND1,NEND2,
    1NEND3,NEND4,UCOST,UB,LB,FLOW, PERIOD,ARCODE,CODARC(2),
    2 BLANK/' /,GEOG,
    3A(20),TIT1/' TIT'/.TIT2/'LE '/,NUM1/'NUMB'/,
    4NUM2/'ER 1/
    REAL UNCOST (2,3),COIL (2)
C DECLARE ARRAYS FOR THE VARIABLES REQUIRED BY THE COST
C MODEL
C
C
    REAL DFACTO (7,4),SIZE (6, 2,4,40),VO(9),VNNEX(9),
        1LCCOST (6), PERSAL (9), DLCOST (8), LSUM (6).
        2MSUM (6), CONCOS (5,6), INTCPT (6,3,5),SLOPE (6,3,5),
        3EQUIPM (6,2,4,40),OPCOST (5,9),PMC (5),CTF (5,9),
        4SP &C (6, 2, 10),IA (5),TINDEX (5),PPEF (5),PEF (5),TIME (5),
        5MHCOST
C
C PLACE THE COST MODEL VARIABLES IN THE COHMON BLOCKS
C
        COMMON /A/DFACTO/B/PARAFO,PARA,PARK/C/NSIZE,SIZE
        1/D/VO,VNNEX/E/CODARC,COIL,ONCOST/G/LCINT,POLDIS
        2/H/LCCOST,PERSAL,DLCOST,LSUM,MSUM,OHPERC,NCSIZE,
        3LIMIT,CONCOS,MHCOST,INTCPT,SLOPE,EQUIPM,POLCOS,
        4NGAUGE,GSIZE/J/OPCOST,GFNAIN,NNEX,PMC,IA/K/CTF
        5//NCALL,NUMDIS,SPEC,TT,TINDEX,PPEF,PEF,NPER,TIME
        6/L/PAIRS
C
C SET COUNTERS TO ZERO.
C
    NCALL=0
    IZERO=0
    INF=99999
    I=0
C
C READ IN THE CODE FOR TGE PERIOD TO BE
C UPDATED.
C
    READ(7.100) PERIOD
    FORMAT(A1)
C
```

```
C WRITE THE INITIAL CONTROL STATEMENTS REQUIRED
C FOR PNET AND GO ON TO READ ARC INFORMATION.
C
500 FORMAT('BEGIN')
    DO 2 LINE=1.50
    READ (5,600).(A(J),J=1,20)
    IF(A(3).NE.TIT1.OR.A(4).NE.TIT2) GO TO 3
    WRITE (6,600) (A (J),J=6,20)
    WRITE(6,800)
3 IF(A(2).NE.NUM1.OR.A(3).NE.NUM2) GO TO 2
    READ(5,700) DUMMY
    GO TO 1
2 CONTINUE
600 FORMAT(20A4)
700 FORMAT(F5.0)
800 FORMAT('ARCS')
1 I=I+1
    IF (MOD(I,50).NE.36) GO TO 5
    READ (5,1100) (A (KK),KK=1,20)
1100 FORMAT (20A4,/////)
5 READ (5,200,END=10) TARC,NBEG1,NBEG2,NBEG3,NBEG4,
    1NEND1,NEND2,NEND3,NEND4,UCOST,UB,LB,FLOW
200 FORMAT(I10,1X,2(2A1,2A3,4X),4I10)
    IF (IARC.EQ.0) GO TO 10
    READ (4) ARCODE,COIL(1),CODARC(1),
    1(UNCOST(1,JN),JN=1,3),GEOG,DIST,IP,GAUGE,IINES,IT
C
C IF THERE IS NO FLOW IN THE ARC NO
C ALTERATIONS NEED TO BE MADE.
C
    IF(FLOW.EQ.0) GO TO 9
    IF (NBEG1.NE.PERIOD) GO TO 9
    IF(MOD((ARCODE/100),4).NE.2) GO TO 9
C
C IF THE ARC REPRESENTS EXISTING PIANT, SET LOWER
C BOUND EQUAL TO THE UPPER BOUND.
C
    IF((MOD (ARCODE,100)/10).NE.1) GO TO 4
    LB=UB
    GO TO 9
C
C UPDATE ARC COSTS BY ACTIVATING THE COST
C MODEL AND CHANGE THE BOUNDS.
C
ICAP 1=0
    ICAP2=FLOW
    ITYPE=1OD(ARCODE, 10)
    CALL COST(GEOG,DIST,ITYPE,ICAP1,ICAP2,IP,GAUGE.
    1LINSS,IT,ICOST)
    HRITE (6,300) NBEG1,NBEG2,NBEG3,NBEG4,NEND1,NEND2,
    1NEND3,NEND4,ICOST,ICAP2,ICAP2
    WRITE (8) ARCODE,COIL(1),CODARC(1).
    1(UNCOST(1,JN),JN=1,3),GEOG;DIST,IP,GADGE,LINES,IT
```

```
300 FORMAT(4X,2(2A1,2A3),3I10)
C
C INTRODUCE A NEW ARC WITH COST EQUAL TO
C THE INCREMENTAL UNIT COST.
C
        ICAP2=0
        CALL COST(GEOG,DIST,ITYPE,ICAP1,ICAP2.IP,GAUGE,
        1LINES,IT,ICOST)
        ARCODE=ARCODE+10
        UCOST=ICOST
9 WRITE(6,300) NBEG1,NBEG2,NBEG3,NBEG4,NEND1,NEND2,
        1NEND3,NEND4,UCOST,OB,LB
        WRITE(8) ARCODE,COIL(1),CODARC(1),
        1(UNCOST(1,JN),JN=1,3),GEOG,DIST,IP,GAUGE,IINES,IT
        GO TO 1
C
C GRITE THE FINAL CONTROL STATEMENT AND STOP.
C
10. WRITE (6,400)
400 FORMAT('END')
    STOP
    END
```

Table B. 4 Program update 2

```
C
C THE pROGRAM CAN BE USED TO UPDATE THE NON RRIMARY ARCS
C OF a particular period.
C
C DECLARE ARRAYS
C
    INTEGER NBEG1,NBEG2,NBEG3,NBEG4,NEND1,NEND2,
    1NEND3,NEND4,UCOST,OB,LB,FLOW,PERIOD,CODARC(2).
    2BLANK/' 1/,ARCODE,GEOG,
        3A(20),TIT1/' TIT'/,TIT2/'LE '/.NUM1/'NUMB'/.
        4NUM2/'ER 1/
            REAL UNCOST(2,3),COIL (2)
C DECIARE ARRAYS FOR THE VARIABLES REQUIRED BY THE COST
C MODEL
C
                            INTEGER LIMIT(5),GSIZE(5),NNEX(6),PAIRS(35)
C
                            REAL DFACTO (7,4),SIZE(6,2,4,40),VO(9),VNNEX(9).
    1LCCOST(6),PERSAL (9),DLCOST (8),LSUM (6),
        2MSUM (6), CONCOS (5,6), INTCPT (6,3,5),SLOPE (6,3,5),
        3EQUIPM (6,2,4,40),OPCOST (5,9),PMC (5), CTF (5,9),
        4SPEC(6,2,10),IA(5),TINDEX(5), PPEF(5), DEF(5),TIME(5),
        5MHCOST
C
C PLACE THE COST MODEL VARIABLES IN THE COMMON BLOCKS
C
        COHMON /A/DFACTO/B/DARAFO,PARA,PARK/C/NSIZE,SIZE
        1/D/VO,VNNEX/E/CODARC,COIL,UNCOST/G/LCINT,POLDIS
        2/H/LCCOST,PERSAL,DLCOST,LSUM,MSUM,OHPERC,NCSIZE,
        3LIMIT,CONCOS,HHCOST,INTCPT,SLOPE,EQUIPM,POLCOS,
        4NGAUGE,GSIZE/J/OPCOST,GFMAIN,NNEX,PMC,IA/K/CTF
        5//NCALL,NUMDIS,SPEC,TT,TINDEX,PPEF,PEF,NPER,TIME
        6/L/PAIRS
C
C INITIALIZE THE COUNTERS
C
C R READ IN THE CODE FOR THE pERIOD
C
    NCALL=0
    IZERO=0
    IN F=99999
    K=0
    I=0
    READ(7,100) PERIOD
100 FORMAT(A 1)
C
C WEITE THE INITIAL CONTROL CARDS BEFORE
```

```
C COMMENCING READIND IN FROM PNET OUTPUT.
C
    WRITE(6,900)
900 FORMAT('BEGIN')
    DO 2 IINE=1,50
    READ (5,600) (A (J),J=1,20)
    IF(A (3).NE.TIT1.OR.A(4).NE.TIT2).GO TO 3
    WFITE(6,600) (A (J),J=6,20)
    WRITE(6,800)
3 IF(A (2).NE.NUM1.OR.A(3).NE.NUM2) GO TO 2
    READ(5,700) DUMMY
    GO TO 1
2 CONTINUE
600 FORMAT (20A4)
700 FORMAT (F5.0)
800 FORMAT("ARCS')
1. I=I+1
    IF(MOD(I,50).NE.36).GO TO 5
    READ(5,1000) A(1)
1000 FORMAT(A4,/////)
5 READ (5,200, END=10) IARC,NBEG1,NBEG2,NBEG3,NBEG 4,
    1NEND1,NEND2,NEND3,NEND4,UCOST,UB, LB,FLOW
C
C IF ALI ARCS HAVE BEEN COMPLETED, STOP.
C
    IF(IARC.EQ.0) GO TO 10
    R&AD(4) ARCODE,COIL(1),CODARC (1).
    1 (UNCOST (1,JN),JN=1,3),GEOG,DIST,IP,GAUGE,LINES,IT
200 FORMAT(I10,1X,2(2A1,2A3,4X),4I10)
C IF ARC FLOW EQUALS THE LOHER BOUND OR IF
C THE ARC DOES NOT REPRESENT THE PERIOD UPDATED
C SKIP THE FOLIONING SECTION.
C
    IF(NBEG1.NE.PERIOD) GO TO 4
    IF(FLOW.EQuLB) GO TO 9
    IF (MOD (ARCODE/100,4).NE.2) GO TO 4
    K=K+1
    ITYPE=MOD(ARCODE, 10)
C
C IF THE ARC REPRESENTS EXISTING PLANT, SET
C LOWER BOUND EQUAL TO THE UPPER BOUND.
C IF IT PEPRESENTS A PRIMARY ARC OBTAIN NEW ARC COSTS
C AND BOUNDS.
C IF ARC REPRESENTS A NON-PRIMARY ARC, OBIAIN
C NEW COSTS AND CHANGE ONLY THE LOWER BOUND.
C
    IF((MOD (ARCODE, 100)/10)-2) 6,7,8
6 IB=UB
    GO TO 4
7 ICAP1=0
    ICAP2=FLOW
    CALL COST(GEOG,DIST,ITYPE,ICAD1,ICAP2,ID,GAUGE,IINES,
    1IT,ICOST)
    WRITE(6,300) NBEG1,NBEG2,NBEG3,NBEG4,NEND1,NEND2,
```

```
    1NEND3,NEND4,ICOST,ICAP2,ICAP2
        WRITE (8) ARCODE,COIL(1),CODARC (1).
    1(UNCOST(1,JN),JN=1,3),GEOG,DIST,IP,GAUGE,IINES,IT
        ICAP2=0
        GO TO 11
I ICAP2=ICAP 1+FLOW
11 CALL COST\GEOG,DIST,ITYPE,ICAP1,ICAP2,IP,GAUGE,IINES,
    1IT,ICOST)
        IF ((MOD (ARCODE, 100)/10). 卫Q - 2) ARCODE=ARCODE+10
        UCOST=ICOST
        GO TO 4
9 IF((MOD (ARCODE,100)/10).NE.2) GO TO 4
        ICAP1=UB
300 EORMAT (4X,2(2A1, 2A3),3I10)
4 WRITE(6,300) NBEG1,NBEG2,NBEG3,NBEG4,NEND1,NEND2,
    1NEND3,NEND4,UCOST,UB,IB
        WRITE(8) ARCODE,COIL(1) ,CODARC (1).
        1(UNCOST(1,JN),JN=1,3),GEOG,DIST,IP,GAUGE,LINES,IT
        GO TO 1
C
C WRITE THE LAST CONTROL STATEMENT
C
10 WRITE(6,400)
400 FORMAT('END')
C
C IF NO ARCS NEEDED UPDATING, PRINT
C A MESSAGE INFORMING THAT UPDATING
C ON THE NEXT PERIOD CAN COMMENCE:
C
        IF(K.EQ.0) WRITE(7,1100). PERIOD
1100 FORMAT(///'ORERATIONS FOR DERIOD N'.A1,'" ARE ',
    1'COMPLETE'//' COMMENCE UPDATING FOR NEXT PERIOD.')
        STOP
        END
```


## APPENDIX-C COMPUTER PROGRAM FOR CONVERSION OF OUTPUT

## INFORMATION

The output conversion system of the optimization model is the buffer unit that converts the results of the optimization process into a capital budget and a construction program. The program outputs the capital budget by period, a summary of capital expenditures, the construction plan for the first year and a table showing the switching center capacities in lines by type of technology and period. These information can be directly used by the company for planning of outside plant.

The output conversion program consists of a main routine and subroutines, "DECODE", "OUT", "SEARCH" and "ACOUNT". The main routine reads the output of the last iteration of the PNET program, the arc descriptions and data from the data bank, and uses them to prepare formatted reports. Subroutine "DECODE" is used to convert the node codes back to those that were originally supplied to the optimization model, while subroutine "OUT" prints out the periodic budgets after information on all the arcs representing that period have been examined. Subroutine "OUT" also stores a summary of all capital investment for output at the end of the run. Subprogram "SEARCH" uses the arc codes to identify the type of plant used in an arc and this information is made use of by the subprogram "aCOUNT" to maintain a cumulative total of the investment in each type of plant.
C. 1 Glossary of the Yariables Used in the main routine and subroutines DECODE OUT SEARCH and ACOUNT

A
Used in "DECODE" to represent the eight character code for a node. An array used in the main program and in "OUT" to read various alphanumeric data.
$\operatorname{ADCOST}$
$A R C O D E$
An integer used in the main routine to account for the total additional cost for a physical arc.

Used in the main routine to read the arc codes off the arc description file. The codes used are the same as those used for $A R C O D E$ in programs UPDATE1 and $\quad$ OPDATE2.

ARCOST(I,J) A $2 \times 3$ matrix used in the main program to store the construction costs under the three categories; loading, conduiting/ installing poles, and cabling. A variable used in "DECODE" to form the character string representing the code for a node.

BEG
An eight character alphanumeric variable utilized in the main routine to denote the beginning node code for the arc considered.

CESIZE(I) An array used in the main program and the subroutine "OUT" to store the different cable sizes available.

CODARC
Used in the main program to denote the plant
used in an arc.
$\operatorname{CODE}(\mathrm{I})$

COIL
coscab
(I, J, K, L)
Used in the main program and in subroutines "OUT" and "ACOUNT" to store the investment in the varios types of cable available.

COSCON (I, J) An array which stores the investment in conduits, by type, in the main routine and in "OUT" and "ACOUNT".
$\operatorname{CoSLC}(I) \quad$ The array used to maintain a cumulative total of the investment in loading coils by class of plant. It is used in programs "OUT" and "ACOUNT" and in the main routine.

COSPOL Used in nain. "ACOUNT" and "OUT" to denote the investment in poles.

Cost

CSIZE(I) An array used in main and "OUT" to store the different sizes of conduit available.

DATE(I) Used in main and "OUT" to denote the date of the study.

DESTAL (I, J) An alpnanumeric matrix that stores the sub-class descriptions (e.g. stalpeth, alpeth), in main
and "OUT".

DIST

DUMMY

END

EQUC

FLOW

GAUGE

GEOG

IA 1

IA 2

IADCAP

Represents the length of cable required for an arc in the main program and in "ACOUNT". A dummy variable used in the main routine to skip line in the data file.

A variable that represents the code for the ending node of the arc considered in the main routine.

A function, available at the university of Alberta computing library, that is used by "DECODE" to compare an integer variable to a logical variable.

Used in the main routine to denote the flow in an arc.

Used in main to read the airline distance of the beginning node of an arc from the switching center.

Used in the main program to represent the geographic code for an arc. This variable is not used by the program in any calculations.

Used in the main program and in "OUT" to store the different gauge sizes available.

An integer used in "DECODE" to represent the third part in the name code for a node.

Used in "DECODE" to represent the fourth part in the code name for a node.
Used in the main program to represent the
capacity additions to be made to an arc.

IARC
IBEG

IEEGO

IC

ICIASS
ICS

ICW

IEND

IENDO

IG

InSTAL

Represents the arc number in the main routine. used in the main program to rpresent the beginning node of an arc in the physical network.

A variable, used in the main routine, to represent the beginning node of the previous arc considered.

Used in "OUT" and in the main routine as a Do-index.

A Do-index used in the main routine.
Used as a Do-index in main and "out" and as a variable representing the size of conduit used in an arc in "ACOUNT" and "SEAECH". Used as a Do-index in "OUT" and main, and as a variable representing the number of ways of conduit/ number of poles in "SEARCH" and "ACOUNT".

Used in main to represent the ending node of a physical arc.

Used in main to represent the ending node of the previous arc.

Used in the main routine and in "OUT" as a Do-index and in subroutines "SFARCH" and "ACOUNT" as variable representing the gauge size.

Used in the main routine to represent the the
total installed capacity in a physical arc. Stands for the current period in programs main and "OUT", and for the period a node represents in "recode".

A variable representing the time period that a an arc represents, It is used in the main program.
Used as a Do-index in the main program and in "OUT" and as a variable representing the sub-class of plant in "ACOTNT" and "SEARCH". Used as a Do-index in the main and "ouT" routines and as a variable representing the size of plant in "ACOUNT" and "SEARCH". Used in "DECODE" to denote the type of technology an node represents. Used in the main program to represent the type of technology an arc represents.
A variable that represents the class of plant an arc represents in in main. "ACOUNT" and "SEARCH".

A variable used in "OUT" to represent the unit of measurement of a certain type of plant. The recommended units are:

1. meters for all tynes of cable,
2. meters for the underground conduits,
3. one unit for the poles, and
4. one loading set for line concentrators (a
loading set includes a loading coil, a capacitor and other equipment that are installed while placing a loading coil).

Represents the third part of the character code used for a node in main.

Represents the fourth part of the character code of a node in main.

A variable used in main to refer to the type of arc (same as the first digit of KODE in the input conversion program).

Used in main to refer to the time period a node represents.

Used in main to refer to the type of technology a node represents.

A variable that stands for the type of plant used in an arc in "SEARCH".

Used in the main routine to denote the arc order (e.g. primary, secondary and existing). Used in main to represent the lower bound for an arc.

Used in "DECODE" to identify the individual characters in the code name for a node. a counter used in the main routine to keep count of the number of lines read from the data file. A counter used in the main program to count the number of lines read off the input file.

A variable signifying the excess conduits/ pole
lines available in an arc. It is read off the arc description file in the main program, but is not used in any calculations.

NAME (I)

NCBSIZ Used in main and "OUT" routines to denote the number of cable sizes available.

NCSIZE

NG AUGE

NNWAY

NPER

NSTAL

NTECH

NUM1. NUM2 Used to form the letter string "NUMBER" in the main routine.

NUM (I)

NWAY
Used in "DECODE" to convert each individual
character to the corresponding numerical equivalent:

Used in fain and "OuT" to represent the
different number of ways of conduit possible.
SCCAP(I, J) A matrix used to store the switching center capacities in lines, by period and type of technology, in the main routine.

SUMRY(I,J) The matrix that stores the summary of capital investment in the programs main and "OUT".

TIT1,TIT2 The variables used to form the letter string "TITLE" in the main program.

UNCAB
(I,J,K,L) Used in the main routine and in the subroutines "OUT" and "ACOUNT" to keep account of the total volume of cable required for a period.

UNCOND (I,J) An array that stores the cumulative units of conduit required in a particular period. This array is used by programs main, "acount" and "OUT".

UNCOST(I) Stores the arc construction costs under three categories in main.

UNLC
An array keeping tally of the inventory of line concentrators in the programs main, "OUT" and "ACOUNT".

UNPOLE A variable used to denote the numer of poles used in a particular period.

UTILIZ A variable used in the main program to represent the total utilized capacity in a physical arc.
B. 2 operating procedures for the output Conversion System
the types of plant available for it to output a construction program and a capital budget. These data are to be arranged as indicated below.

CARD NO.
1
2
3
4
5
6
7
8
9
$10-\mathrm{N}$
$\mathrm{N}+1$
$N+2$
$\mathrm{N}+3$
$\mathrm{N}+4-\mathrm{H}$
$M+1$
$M+2$

$$
4+2
$$

- 
- 

X
$x+1$

VARIABLE
NAME (I)
DATE(I)
LETTER(I)
NPER
NCSIZE
CSIZE(I)
NNWAY
NHAY(I)
NSTAL
DESTAL (I, J)
NGAUGE
GSIZE(I)
NCBSIZ
CBSIZE(I)
Class of plant
TYPE OF PLANT
UNIT OF MEASUREMENT
9-13

NTECH FOR PERIOD 1
$Y$
$(Y+1)-(Y+9)$

NTECH FOR PERIOD,NPER 1-2
CATEGORY OF PLANT $1-8$

In the above description the specific number of lines/ cards required depends on the number of cables available, the number of different types of plant within a class of plant, etc. So the letters "N". "M"."X", and "Y" have been used to denote the number of cards required.

These information will be referred to as the data set \#5. The output conversion system uses the following logical unit numbers:
$1=\quad$ the file containing data set \#5,
$2=$ an intermediate scratch file.
$3=$ an intermediate scratch file,
$4=\quad$ arc description file.
$5=$ file containing the output of the last iteration of the pNET program,
$6=$ output file on which the construction plan and switching center capacities are printed, and,
$8=$ output file on which the capital investment information are printed.

The output conversion system can be activated ky issuing the following commands:
\$run *FORTG scards=output conversion program
\$run -load\# $1=$ data set\#5 $2=$ scratch file 1
3=scratch file2
$4=a r c$ description file $5=P N E T$ outputfile

## $6=$ output file1 $8=o u t p u t$ file 2

Table c. 1 below contains a complete listing of the output conversion program. This program can also be compiled and executed on other Fortran compilers.

Table C. 1 Output Conversion Program

```
C ************** OUTPUT CONVERSION PROGRAM ***************
C
C THIS PROGRAM IS USED TO CONVERT THE OUTPUT OF THE FINAL
C ITERATION OF THE "PNET" PROGRAM INTO A CAPITAL BUDGFY AND
C A CONSTRUCTION PROGRAM
C
C DIMENSION THE ARRAYS USED
C
    INTEGER COST,FLOW,ARCODE,A(20), SCCAP(10,10),
    1ADCOST,UTILIZ,GEOG,CODARC,
    2dESTAL(3,2),GSIZE(5),CBSIZE(50),NHAY(5),CSIZE(10)
    3.TIT1/' TIT!/.TIT2/ILE 1/.NUM1/'NUMB'//NUM2/'ER %/
    4,NAME(5),DATE(2)
C
    REAL*8 BEG,END
C
    LOGICAL*1 CODE (36)
C
    REAL ARCOST (2,3),UNCOST (3),SUMRY (5,9),UNLC (6),
    1UNCAB (6,3,5,50), COSCAB}(6,3,5,50),\operatorname{UNCOND (5,10).
    - 2UNLC (6), COSCON (5,10)
    COMMON CODE/A/NSTAL,NGAUGE,NCBSIZ,CBSIZE,
    1GSIZE,DESTAL,SUMRY,NCSIZE,NNWAY,NGAY,CSIZE,NPER
        2,NAME,DATE
        3/B/UNCAB,COSCAB,UNCOND,COSCON,UNLC,COSLC,
        4UNPOLE,COSPOL
C
C READ IN THE NAME OF THE SWITCHING CENTER AND THE
C DATE OF THE STUDY
C
    READ (1,600) (NAME(KK), KK=1,5)
    READ(1,1200) (DATE(KK),KK=1,2)
C
C READ IN THE ARRAY CONTAINING CODES
C
    READ(1,400) (CODE(KK),KK=1,36)
C
C read IN the Number of periods
C
400 FORMAT (36A1)
    READ(1,800) NPER
800 FORMAT (I2)
C
C BEGIN READING IN THE TYPES OF PLANT AVAILABLE
C
    GEAD(1,1100) NCSIZE
1100 FORMAT(20I4)
```

```
    READ(1,1100) (CSIZE(NO),NO=1,NCSIZE)
    READ(1,1100) NNWAY
    READ(1,1100) (NWAY(NO),NO=1,NNWAY)
    READ(1,1100) NSTAL
    READ (1,1200) ((DESTAI (IX,NO),NO=1,2),IX=1,NSTAL)
1200 FORMAT (2A4)
    READ(1,1100) NGAUGE
    READ(1,1100) (GSIZE(NO),NO=1,NGAUGE)
    READ(1,1100) NCBSIZ
    READ(1,1100) (CBSIZE(NO),NO=1,NCBSIZ)
C
C INITIALIZE THE COSTS AND THE VOLUMES
C
    DO }56\mathrm{ NO=1.NPER
    DO 56 ICLASS=1,9
56 SUMRY (NO,ICLASS) =0.0
    DO 57 IC=1.6
    UNLC (IC)=0.0
    COSLC (IC)=0.0
    DO 58 IS=1,NSTAL
    DO 58. IG=1,NGAOGE
    DO 58 ISZ=1.NCBSIZ
    UNCAB(IC.IS,IG,ISZ)=0.0
58 COSCAB(IC,IS,IG,ISZ)=0.0
5 7 ~ C O N T I N U E ~
    DO 59 ICS=1,NCSIZE
    DO }59\mathrm{ ICW=1;NNWAY
    UNCOND (ICS,ICW) =0.0
59 COSCON (ICS,ICW) =0.0
    UNPOLE=0.0
    COSPOL=0.0
    DO }91\mathrm{ INO=1,10
    DO }91\textrm{JNO}=1,1
    SCCAP(INO,JNO) =0
91 CONTINUE
    DO 92 INO=1,2
    DO 92 JNO=1,3
    ARCOST (INO,JNO) =0.0
    COIL1=0.0
    COIL2=0.0
    COTL 3=0.0
    ITYPE1=1
    ITYPE2=1
    IP=1
    IINENO=0
200 FORMAT ///, 15X, SWITCHING CENTER: , 5A4, 23X,
    1'DATE: ', 2A4,//,35X,'CONSTROCTION PLAN SUMMARY'./*
    236X,'(SUBSCRIBER LOOP PLANT)'.//.
    316X,'FRO['.8X,'TO', 2X,'CAPACITY', 1X,'INSTALLED', 2X,
    4'UTILIZED',10X,'PLANT',7X,'CABLE'./!
    516X,'NODE',6X,'NODE',1X,'ADDITIONS', 2X,'CAPACITY',
        62X,'CAPACITY',10X,'CLASS'.8X,'TYPE',/)
C
C READ THE PNET OUTPUT
```

```
C
    DO 32 IINE=1,50
    READ (5,600) (A (J),J=1,20)
    IF(A (3).NE.TIT1.OR.A(4).NE.TIT2) GO TO }3
C WRITE(8,60.0) (A(J),J=6,20)
    WRITE (8,200) NAME,DATE
33 IF(A(2).NE.NUM1.OR.A(3).NF.NUM2) GO TO }3
    READ (5,700) DUMMY
    GO TO 10
    CONTINUE
32
C
C COMMENCE READING THE ARC NAMES AND FLOWS.
C
10. REWIND 2
    REWIND 3
2 LINENO=LINENO+1
    IF(MOD(IINENO,50).NE.36) GO TO 22
    READ (5,500) A(1)
22 READ(5,100,END=9) IARC,BEG,END,LB,FLOW,COST
100 FORMAT (I 10,1X,2(A8,4X),20X,3I10)
C
C IF TALI THE ARCS HAVE BEEN READ IN, GO ON TO ACCOUNT
C FOR THE COSTS. ELSE, SORT OUT THE ARCS BY THE CODES
C
    IF(IARC.EQ-0) GO TO }
    READ (4) ARCODE,COIL,CODARC,(UNCOST(NO),NO=1,3),
    1GEOG,DIST,IPP,GAUGE,LINES,ITT
    IF(ARCODE.EQ.O) GO TO 2.
    JARC=ARCODE/100
    GO TO (71,72,73,2,2,72), JARC
    WRITE(6,1500)
1500 FORMAT(/, 2X,'ARCODE HAS A BIG VALUE')
    STOP
71 CALL DECODP(END,JP,JT,JA1,JA2)
    SCCAP (JP,JT) =SCCAP (JP,JT) +FLOW
    GO TO 2
72 C CALI DECODE(END,JP,JT,JA1,JA2)
    JARC=ARCODE- (JARC*100)
    WRITE(2) JP,JT,JA1,JA2,COST,FLOW,JARC,
    1COIL,CODARC, (UNCOST (NO),NO=1,3),DIST
    GO TO 2
73 CALL DECODE(BEG,JP,JT,JA1,JA2)
    WRITE(3) JP,JT,JA1,JA2,IB
    GO TO 2
600 FORMAT (20A4)
700 FORMAT (F5.0)
C
C ACCOUNTING BEGINS
C
9 ENDFILE 2
    ENDFILE3
    REHIND 2
    EEWIND3
    LINE=0
```

```
C
C READ IN THE DETAILS FOR AN "I<IJ" ARC
C AND TOTAL UP TO FIND THE INSTALLED CAPACITY
C
75 LINE=LINE+1
    READ(2,END=80) IPP,ITT,IBEG,IEND,COST,FLOW,JARC,
        1COIL, CODARC,(UNCOST(NO),NO=1,3),DIST
            IF(IINE.NE.1) GO TO 76
C
C IF A NET PERIOD IS TO BE COMMENCED, OUTPUT OLD
C VALUES AND RESET COSTS TO ZERO.
C
    IF(IPP.EQ.IP) GO TO 77
    CALI OUT(IP)
        IP=IP+1
77 IBEGO=IBEG
        IENDO=IEND
C
C PRINT THE TITLE
C
    ADCOST=0
    INSTAL=0
    UTIIIZ=0
    IADCAP=0
    GO TO 78
76 IF(IBEG.NE.IBEGO) GO TO 79
    IF(IEND.NE.IENDO) GO TO 79
78 INSTAL=INSTAL+FLOW
        ADCOST=ADCOST+COST
        KTYPE=MOD (JARC, 10)
        IF ((JARC/10)-2) 75,62,63
62 I ADCAP=IADCAP+FLOW
        CALL SEARCH(CODARC,ITYPE1.ICS1,ICW1,IS 1,IG1,ISZ1)
        DIST1=DIST
        COII1=COIL
        DO 64 NO=1.3
        ARCOST (1,NO)=UNCOST(NO)
        GO TO 75
63 IADCAP=IADCAP+FLOW
        CALL SEARCH(CODARC,ITYPE2,ICS2,ICW2,IS2,IG2,ISZ2)
        DIST2=DIST
        COIL2=COIL
        DO 65 NO=1.3
65 ARCOST (2,NO)=UNCOST(NO)
    GO TO 75
79 BACKSPACE 2
C
C READ IN DETAILS OF THE "IJ-J" ARC
C NOTE THE UTILIZED CAPACITY
C
80 READ(3,END=14) IPP,ITT,IBEG,IEND,LB
    IF(IBEG.NE.IBEGO) GO TO }8
    IF(IEND.NE.IENDO) GO TO 81
    UTILIZ=LB
```

```
    GO TO 80
81 BACKSPACE 3
    IF(INSTAL.EQ.0) GO TO 11
    IF(IADCAP.EQ.0) GO TO 96
    DO 67 NO=1.3
67 UNCOST (NO) =ARCOST (1,NO) +ARCOST (2,NO)
    COIL 3=COIL 1+COIL 2
    IF(ARCOST(2.3). SQ.0.0) GO TO 66
    ITYPE1=ITYPE2
    ICS1=ICS2
    ICH1=ICW2
    IS1=IS2
    IG1=IG2
    ISZ1=ISZ2
66 CALL ACOUNT (UNCOST,COIL3.ITYPE1,ICS1,ICW1,IS1
    1,IG1,ISZ1,DIST1)
    DO 69 MM=1,2
    DO 69 NO=1,3
6 9 ~ A R C O S T ~ ( M M , N O ) = 0 . 0 ~
    COIL1=0.0
    COIL 2=0.0
    COIL 3=0.0
    ITYPE1=1
    ITYPE2=1
C
C OUTPUT THE CONSTRUCTION PLAN FOR THE
C SEGMENT IF THE ARC REPRESENTS THE FIRST
C PERIOD.
C
    IF(IP.NE.1) GO TO 11
    HRITE(8,300) IBEGO, IENDO,IADCAP,INSTAL,UTILIZ,
    1KTYPE,GSIZE(IG1),(DESTAL(IS1,NO),NO=1,2)
300 FORMAT (10X,5I10,5X,I10,3X,I3,'-1, 2A4)
    GO TO 11
96 IF(IP.NE.1) GO TO 11
    WRITE(8,300) IBEGO,IENDO,IADCAP,INSTAL,UTILIZ,KTYPE
11 LINE=0
    GO TO 75
500 FORMAT(A4,/////)
C
C OUTPUT THE CAPITAL BUDGET FOR THE IAST PERIOD
C AND THEN GO ON TO OUTPUT SHITCHING CENTER
C CAPACITIES AND A SUMMARY OF CADITAL INYESTMENT
C
14 CALL OUT (NPER)
    WRITE(8,1000) NAME,DATE
1000 FORMAT (// . 20X.'SWITCHING CENTER: '5A4,10X,
        1'DATE: ', 2A4,//.40X,'SHITCHING CENTER CAPACITIES'./%
        242X,'(BY TYPE OF TECHNOLOGY)',//,49X,'1',9X,'2'.
        39X.'3')
        DO 41 IP=1,NPER
        READ (1,800) NTECH
        WRITE(8,900) IP,(SCCAP(IP,IT),TT=1,NTECH)
4 1
    CONTINUE
```

```
900 FORMAT(30X,'PERIOD',I2,2X,3I10)
    WRITE(6,1300) NAME,DATE, (IP,IP=1,NPER)
1300 FORMAT (//., 2X,'SNITCHING CENTER: '.5A4.20X,
    1'DATE: '.2A4,//.22X.
    2'SUBSCRIBER LOOP CAPITAL INVESTMENT SUMMARY'./. 3X,
    3'CLASS OF PLANT',6X,7(I10,4X))
    DO 61 IC=1,9
    READ (1,600) (A (NO),NO=1,4)
1400 FORMAT(2X,4A4,3X,7F14.2)
    WRITE(6,1400) (A(NO),NO=1,4),(SUMRY(IP,IC),IP=1,NPER)
6 1 ~ C O N T I N U E ~
    STOP
    BND
C ***************** SUBROJTINE DECDDE *****************
C
    THIS SUBROUTINE IS USED TO DECODE THE NODE NAMES
    AND FIND THE ORIGINAL NUMERICAL CODES.
    SUBROUTINE DECODE(A,IP,IT,IA1,IA2)
C
C THIS FUNCTION EQUC IS USED TO COMPARE
C AN INTEGER AND A LOGICAL VARIABLE
C THIS ROUTINE IS AVAILABLE AT THE UNIVERSITY
C. OF ALBERTA
C
    LOGICAL EQUC
    INTEGER NUM(8)
    REAL*8 A.B
    LOGICAL*1 LETTER(8),CODE(36)
    COMMON CODE
    EQUIVALENCE (B,IETTER)
    B=A
    DO 3 II=1.8
    DO 1 JJ=1,36
    IF(EQUC{CODE(JJ).IETTER(II))) GO TO 2
CONTINUE
    NUM(II) =0
    GO TO. }
    NUN(II)=JJ-1
2 CONTINUE
    IP=NUM (1) +1
    IT=NUM(2) +1
    IA1=((NUM (3)*36) +NUM(4))*36+NUM (5)
    IA2=((NOM (6)*36) +NUM (7))*36+NUM (8)
    RETURN
    END
C *****************
    SUBROUTINE OUT *****************
C
THIS SUBROUTINE OUTPUTS THE CAPITAL BUDGETS
C FOR EACH PERIODS AND STORES THE TOTAL INVESTMENT IN EACH
C PLANT CATEGORY FOR THE FINAL SUMMARY.
C
    SUBROUTINE OUT (IP)
```


## C <br> C DECLARE ARRAYS

C
INTEGER A (10), DESTAL (3,2), GSIZE (5), CBSIZE(50), 1 NWAY (5), CSIZE(10), NAME (5), DATE (2)
REAL UNCAB $(6,3,5,50), \operatorname{COSCAB}(6,3,5,50)$, UNCOND $(5,10)$. $1 \operatorname{COSCON}(5,10)$, UNLC $(6), \operatorname{COSLC}(6), \operatorname{SUMRY}(5,9)$
COMMON /A/NSTAL,NGAUGE,NCBSIZ,CBSIZE,GSIZE,
1DESTAL, SUMRY, NCSIZE, NNWAY, NWAY, CSIZE,NPEE
2, NAME, DATE
3/B/UNCAB, COSCAB, UNCOND, COSCON, UNLC, COSLC, UUNPOLE, COSPOL
WRITE $(6,100)$ NAME,DATE, IP
FORMAT (//,5X.' SWITCHING CENTER: '.5A4. 125X, 'DATE: 1.2A4.//.5X, 1 \#\#\#** 2'SUBSCRIBER LOOP CAPITAL INVESTMENT', 3' BUDGET FOR PERIOD',I2,' *****')
C
C COMMENCE OUTPUTTING OF BUDGET BY CLASS OF C PLANT.
C
DO $1 I C=1,6$
$\operatorname{READ}(1,300)(\operatorname{A}(I), I=1,10)$
WRITE(6,200) IC, (A(I), I=1,10)
FORMAT (/.5X,I1;'CLASS OF PLANT: ', 10A4.//.
 210X,'ESTIMATED',/.10X.'ACCOUNT DESCRIPTION',7X, 3'UNIT', 5X,'UNITS', 11X.'COST', 15X,'COST'。/)
300 FORMAT (10A4).
$\operatorname{READ}(1,400)(\mathrm{A}(\mathrm{I}), I=1,2)$, IUNIT
400 FORMAT (2A4, I5)
DO 2 IS $=1$, NSTAL
DO 2 IG=1,NGAUGE
DO 2 ISZ $=1$, NCESIZ
IF (UNCAB (IC,IS,IG,ISZ) .EQ.0.0) GO TO 2
ANO=UNCAB (IC,IS,IG,ISZ)/FLOAT (IUNIT)
$U C C=\operatorname{COSCAB}(I C, I S, I G, I S Z) / A N O$
WRITE(6,500) (A(I), I=1,2), CBSIZE(ISZ),GSIZE(IG),
1 (DESTAL (IS,I), I=1,2), IUNIT,ANO,UCC,
2COSCAB (IC,IS,IG,ISZ)
500 FORMAT $5 \mathrm{X}, 2 \mathrm{~A} 4,1 \mathrm{X}, \mathrm{I} 5,1-1, I 2,2 \mathrm{~A} 4,5 \mathrm{X}, \mathrm{I} 5,4 \mathrm{X}, \mathrm{F} 6.0$,
15X,F10.2.5X,F14.2)
SUMRY(IP,IC) $=$ SUARY (IP,IC) $+\operatorname{COSCAB}(I C, I S, I G, I S Z)$
$\operatorname{COSCAB}(I C, I S, I G, I S Z)=0.0$
UNCAB (IC,IS,IG,ISZ) $=0.0$
2 CONTINUE
IF (MOD (IC, 3) - NE. 1) GO TO 3
$\operatorname{READ}(1,400)(A(I), I=1,2), I U N I T$
DO 4 ICS $=1$.NCSIZE
DO 4 ICW=1, NNWAY
IF (UNCOND (ICS,ICN) •EQ.0.0) GO TO 4
ANO=UNCOND (ICS.ICH)/FLOAT (IUNIT)
UCC $=\operatorname{COSCON}$ (ICS,ICW)/ANO
HRITE $(6,600)(A(I), I=1,2)$, NWAY (ICW), CSIZE(ICS), IUNIT,

```
    1ANO,UCC,COSCON(ICS,ICN)
3 IF(MOD(IC,3).NE.2) GO TO 5
    READ (1,400) (A(I),I=1,2),IUNIT
    IF(UNPOLE.EQ.O.0) GO TO 5
    ANO=UNPOLE/FLOAT (IUNIT)
    UCC=COSPOL/ANO
    WRITE (6,700) (A(I),I=1,2),IUNIT,ANO,UCC,COSPOL
700 FORMAT(5X,2A4,22X,I5,4X,F6.0,5X,F10.2.5X,F14.2)
    SUMRY(IP,8)=COSPOL
    COSPOL=0.0
    UNPOLE=0.0
5 READ(1,400) (A (I),I=1,2),IUNIT
    IF(UNLC(IC).EQ.0.0) GO TO 1
    ANO=UNLC (IC)/FLOAT (IUNIT)
    UCC=COSLC(IC)/ANO
    WRITE(6,700) (A (I),I=1,2),IUNIT,ANO,UCC,COSLC(IC)
    SUMRY (IP,9)=SUMRY(IP,9) +COSIC (IC)
    COSLC (IC) =0.0
    UNLC (IC) =0.0
1 CONTINUE
C
C IF THE CURRENT PERIOD IS NOT THE LAST.
C BACKSPACE THE INPUT FILE SO THAT THE
C TYPES OF PLANT AVAILABLE CAN BE READ IN
C ONCE AGAIN
C
    IF (IP.EQ.NPER) RETURN
    DO 6 KK=1,22
    BACKSPACE 1
6 CONTINUE
    RETURN
    END
C ***************** SUBROUTINE SEARCH ***************
C
C THIS SUEPROGRAM USES THE ARC CODE TO OBTAIN INFORMATION
C ON THE DIFFERENT TYPES OF PLANT THAT WENT INTO THE ARC.
C
    SUBROUTINE SEARCH(KODE,ITYPE,ICS,ICW,IS.IG.ISZ)
    ITYPE=KODE/10000000
    ICS=MOD(KODE,10000000)/1000000
    IC F=MOD(KODE;1000000)/10000
    IS=MOD (KODE, 10000)/1000
    IG=MOD(KODE,1000)/100
    ISZ=MOD(KODE, 100)
    IF (MOD (ITYPE,3).EQ.1) GO TO 1
    ICF=MOD (KODE,10000000)/10000
1 RETURN
```

C
C
C
C THIS SUBPROGRAM adDS THE COST OF THE ARC TO THE C appropriate construction account.
C
SUBROUTINE ACOUNT(UNCOST,COIL,ITYPE,ICS,ICW,IS,IG, 1ISZ,DIST)

C
C DECLARE ARRAYS
C
REAL UNCOST (3), $\operatorname{COSCON}(5,10)$, $\operatorname{TNCOND}(5,10)$, UNLC $(6)$,
$1 \operatorname{UNCAB}(6,3,5,50), \operatorname{COSCAB}(6,3,5,50), \operatorname{COSLC}(6)$
COMMON/E/UNCAB, COSCAB, UNCOND,COSCON,
1UNLC, COSLC,UNPOLE, COSPOL
IF (ITYPE.EQ.0) RETURN
IX=MOD (ITYPE,3)
IF (IX.NE.1) GO TO 1
IF (ICS.EQ.0.OR.ICW.EQ.0) GO TO 1
$\operatorname{COSCON}(I C S, I C W)=\operatorname{COSCON}(I C S, I C W)+U N C O S T(2)$
UNCOND (ICS,ICW) $=$ UNCOND (ICS,ICW) + DIST
1 IF (IX.NE.2) GO TO 2
UNPOLE=UNPOLE+FLOAT (ICK)
COSPOL $=$ COSPOL + UNCOST (2)
2 UNLC (ITYPE) = UNLC (ITYPE) +COIL $\operatorname{COSLC}(I T Y P E)=\operatorname{COSLC}(I T Y P E)+U N C O S T(1)$
IF (IS.EQ.O.OR.IG.EQ.O.OR.ISZ.EQ.0) GO TO 3
UNCAB (ITYPE,IS,IG,ISZ) =UNCAB (ITYPE,IS,IG,ISZ) +DIST
COSCAB (ITYPE,IS,IG,ISZ) =COSCAB(ITYPE,IS,IG,ISZ)+
1UNCOST (3)
RETURN
3 VRITE 3,100 ) ITYPE,ICS,ICW,IS,IG,ISZ
100 FORAAT('SUBSCRIPT HAS VALUE ZERO'./.'ITYPE=1,
 $2^{\prime} I G=1, I 3.5 \mathrm{X}$, ISZ=1,I3)
RETURN
END

## APPENDIX-D THE COST MODEL COMPUTER PROGRAM

This program is a subroutine of the total oftimization system. The program, written in FORTRAN IV, was run on an AMDAHL $470 \mathrm{~V} / 6$ machine at the University of alberta Computing Services. This program run in conjunction with the input conversion system, master control unit( pNET program) and the output conversion system will give the near optimal plant layout and the capital budgeting information, including the construction program by switching center area. The cost model contains eight subprograms, namely MAINT, FCOST, CODE, EXCOST, NEWSIZ, TECH, GAREA, and AVCOST in addition to the main program.

The glossary of the variables used in the program is explained below, followed by the computer listing of the program.

## D. 1 Glogssary of the Variables

CAP1 An integer referring to the lower capacity of the plant in an arc.

CAP2
An integer referring to the upper capacity of the plant in an arc. This is a variable.

A variable used to refer to the first cost.
CODARC (J) A code used to refer to the size of plant used in an arc. This code is assembled inside the
cost model for describing a particular arc. It is an eight digit code which has three parts: the first part contains one digit, the second contains three digits and the last part has four digits. The first part refers to the code specifying the class of plant, ITYPE. Part two contains the number of poles needed in the case of aerial cable, the size and number of ways of conduit used in the case of underground cable, and zero values in the case of buried cable plant. The third part contains the describtion of the cable used ; one digit for the major category of the cable (1-stalpeth, 2-alpeth etc.), the next digit for the gauge of cable used ( 1 for gatuge 26 , 2 for gauge 24,3 for gauge 22 , 4 for gauge 19), and the last two digits are for the size of the cable (01 for 11 pair, 02 for 25 pair and so on).

COIL A variable used to account for the number of loadings coils used in the arc considered.
$\operatorname{CoNCOS}(I, J)$ a variable referring to the cost of conduit. The cost are stored in a matrix referred to by the size and number of ways of the conduit.

COSTL A variable to denote the labor cost.
CoSTA A variable to denote the material cost.
CTF The capital tax factor.
DFACTO (I, J)

Difficulty rating matrix (a $7 \times 4$ matrix)
DLCOST(I) Total direct labor cost by function performed (an 8 row matrix).

DLRATE (I) The direct labor rate by craft type. (a 5 row matrix).

DLRMAT (I,J)
Components of the direct labor wage payment for the differnt types of craft (a $5 \times 5$ matrix).

DKTIME(I) Direct labor time by function performed (an 8 row matrix).

DRZ(I) Depreciation rate applicable to each type of plant (a 9 column matrix).

EQUIPM
(I,J,K,L) A variable representing the cost of any additional equipment required at the nodes of the arc in installing the cable plant. (If necessary the cable splicing equipment can be included in this category).

FUNPER(I,J) A matrix containg the time elements to do a particular function.

GAUGE(I) Refers to the airline distance of the beginning node $I$ of the arc $I J$, from the switching center.

GFMAIN Percentage growth in maintenance cost of a unit of plant as it ages. This is estimated by the maintenance department.

GSIZE(K) A variable used to refer to the gauge of the cable.

I
ID
IE
IF
IFREQ

IG AUGE

IIMAX

INTCPT(I.
$\mathrm{J}, \mathrm{K}$ )

ISPEC

ISTAL

ITYPE

A variable used in the do-loops. The interest rate on debt capital. The interest rate on equity capital. The inflation rate. The frequency of usage of a particular type of equipment -

A variable counter used in choosing the gauge of the cable .

Maximum number of available cables of different sizes.

The intercept of the regression line of cable cost per unit length versus the number of pairs. A variable containing five digits and is used to refer to an arc, as explained below;
the first digit $=1$ means the arc needs loading, $=2$ means the arc is non-loaded,
the second digit $=1$ refers to stalpeth cable,

$$
=2 \text { refers to alpeth cable, and }
$$

the third, fourth and the fifth digits refer to the gauge of the cable, (e.g. 026).

A code to represent the different types of cable; 1-for stalpeth, 2-for alpeth. Denotes the type of plant used in an arc. The number codes used for describing an the arc:

1 =underground paired cable.
2 =aerial paired cable,


NGMAX The maximum number of gauges of a particular kind of cable that is available.

NN The planning horizon (normally 30 years).

NNEX (I) The remaining useful life of the existing plant - expressed for each category of plant.

NPER The number of periods considered in the planning period.
NSIZE Number of different sizes of cable that is available.

NUMDIS The number of resistance limiting distances.

NOWAY(I, J) The number of ways of conduits for each different sizes of conduits available.

NUMWAY The number of number of ways of conduits that can be installed.

OHLOAD (I) The overall loading on the combined direct material and direct labor costs. This is divided into four groups.

OHPERC
Total loading on direct labor and direct material costs, expressed as a percentage.

OPCOST (I,J) The operating cost by year for the different categories of plant.

PARA The parameter 'A' in the technology assessment curve.
parafo
The parameter ' $f(0)$ ' in the technology
assessment curve. This will be equated to one in the first period, in order to express the other values interms of this base index.


The effective tax rate.
UNCOST (I, J) A $2 \times 3$ matrix containing the construction costs for the arc under consideration. It stores the cost in three categories: cost of loading, cost of conduiting/poles, and cost of cabling.

UNKOST (I,J) Similiar to the above variable.
VNNEX(I) Salyage value of the existing classes of plant at the end of their useful life.

Vo(I) Current salvage value of the existing plant.

Table D. 1 The Cost Model Computer Program.
 C THIS PROGRAM CALCULATES THE ARC COST IN ANY GIVEN C. NODE.

C
C DIMENSION THE ARRAYS USED IN THE PROGRAM.
C THE REAL VARIABLES ARE DECLARED FIRST, FOLLONED
C BY THE INTEGER VARIABLES.
C
SUBROUTINE COST (IGEO.DIST, ITYPE,CAP1, CAP2,NYEAR, \%GAUGE, LINES,ITECH,ICOST)
REAL DLRMAT $(5,5), \operatorname{TOTCOS}(5), D L R A T E(5), T M A N H R(5)$. \&FUNPER (8,5), DRTIME (8), PRCENT (5, 8), DLCOST (8) , GILOAD $(6,4), M L O A D(6,4), \operatorname{LUM}(6), M S U M(6)$, ZSLOPE $(6,3,5), \operatorname{INTCPT}(6,3,5), \operatorname{FQUIPM}(6,2,4,40)$, ॠMHCOST, LCCOST (6), $\operatorname{CONCOS}(5,6), O H L O A D(4), I T(5)$. $\% I E, I D, I F, I A(5), C T F(5,9), P E F(5), P M C(5), P D E F(5)$, \%UNDEP (9), OPCOST $(5,9), \operatorname{SPEC}(6,2,10), V O(9)$, \%DIAMTR (50), PERSAL (9), COIL (2), UNCOST (2, 3) , \%KOIL, UNKOST (3), FACTOR (5), DFACTO (7, 4). \%SIZE (6, 2, 4, 40), TINDEX (5), DRZ (9), BV (9) \%, VNNEX (9) , PRICE (50) , TIME (5)

INTEGER NOWAY (5, 10), LIMIT (5), CAP1, CAP2, QTY (9). \%NUMLIN (6).崄NEX(6).GSIZE(5), CODARC (2). DAIRS (35)
C
C THE COMMON BLOCKS ARE DECLARED BELOR.
COMMON /E/KODARC,KOIL, UNKOST//NCALI, NUMDIS, SPEC,品TT, TINDEX,PPEF,PEF,NPER,TIME
\%/A/DFACTO
\%/B/PARAFO, PARA, PARK
\%/C/NSIZE,SIZE
\%/D/VO, VNNEX
$\% / E / C O D A R C, C O I L, U N C O S T$
$\% / G / L C I N T, P O L D I S$
$\% / H / L C C O S T, ~ P E R S A L, D L C O S T, L S U M, H S U M, O H P E R C, N C S I Z E, L I M I T$
\%, CONCOS, MHCOST, INTCPT, SLOPE, EQUIPM, POLCOS, NGAUGE,GSIZE
\%/J/OPCOST, GFMAIN, NNEX, PMC.IA
$\% / \mathrm{K} / \mathrm{CTF}$
$\% / L /$ PAIRS
C
C INITIALIZE THE VARIABLES.
C
$\operatorname{ICOMP}=0$
DO $1800 \mathrm{LP}=1,2$
$\operatorname{CODARC}(I P)=0$
$\operatorname{COIL}(L P)=0$.

Do $1801 \mathrm{MP}=1,3$
UNCOST (LP,MP) $=0$.
1801 CONTINUE
1800 CONTINUE
C UPDATE THE NUMBER OF TIMES THIS PROGRAM WAS CALIED. C

NCALL=NCALL+1
C If CAILING FOR THE SECOND TIME OR MORE SKIP THE
C CALCULATION OF DIRECT LABOR COST, DIRECT LABOR
C RATES etc.
IF (NCALL.GT. 1) GO TO 100
C READ THE PLANNING HORIZON, LENGTH OF PLANNING
C PERIODS.
EEAD $(1,6)$ NPER
DO $1401 \mathrm{KK}=1$. NPER
PEAD (1,6) LPER
IF (KK.NE. 1) GO TO 1402
TIME (1)=FLOAT(LPER)
GO TO 1401
C ADVANCE THE TIME TO INDICATE THE CORRECT PERIOD.
1402 TIME (KK) =TIME (KK-1) +FLOAT (LPER)
1401 CONTINUE
C READ THE HAGES, FRINGE BENIFITS etc. FOR CALCULATION
C OF DIRECT LABOR COST.
$\operatorname{READ}(1,1)((\operatorname{DLRMAT}(I, J), J=1,5), I=1,5)$
1 FORMAT(5F10.2)
DO $1000 \quad \mathrm{I}=1.5$
$\operatorname{TOTCOS}(I)=0.0$
DLRATE $(I)=0.0$
DO $1001 \mathrm{~J}=1,5$
C CALCULATE THE TOTAL $\operatorname{GAGE}$ PAYMENT.
$\operatorname{TOTCOS}(I)=\operatorname{TOTCOS}(I)+\operatorname{DLRMAT}(I, J)$
1001 CONTINUE
C $\operatorname{kad}$ THE DIRECT MANHOURS BY EACH CRAFT, AND THE
C PRODJCTIUITY FACTOR OF EACH CRAFT.
READ (1, 1) TMANHR(I), FACTOR (I)
TMANHR (I) =TMANHR (I) *FACTOR (I)
IF (TMANHR(I).EQ.O) GO TO 1000
C FIND THE DIRECT LABOR RATE BY CRAFT TYPE.
DLRATE (I) $=$ TOTCOS $(I) / T M A N H R(I)$
1000 CONTINUE
DO $1002 \quad I=1,8$
C READ THE DIRECT LABOR TIME TO PERFORM DIFFERENT
C FUNCTIONS.
$\operatorname{READ}(1,2)$ (FUNPER (I, J) , J $=1,5)$
2 FORMAT (5F10.4)
$\operatorname{DRTIME}(I)=0.0$
DO $1003 \mathrm{~K}=1,5$
$\operatorname{DRTIME}(I)=\operatorname{DRTIME}(I)+\operatorname{FUNPER}(I, K)$
1003 CONTINUE
1002 CONTINUE
C
C CALCULATE DIRECT LABOR COST BY FUNCTION PERFORMED.
C

```
    READ (1,3)((PRCENT (I,J),J=1,8),I=1,5)
3
    FORMAT(8F10.8)
    DO 1004 I=1,8
    DLCOST (I) =0.0
    DO 1005 J=1,5
    DLCOST(I)= DLCOST (I) +PRCENT (J,I)*DLRATE (J)
1005 CONTINUE
    DLCOST(I)=DLCOST (I)*DRTIME(I)
1004 CONTINUE
    READ (1,4)((DFACTO(I,J),J=1,4),I=1,7)
FORMAT(4F10.2)
C
C CALCULATE DIRECT LABOR LOADINGS, DIPECT MATERIAL
C LOADINGS.
C
    READ (1,5)((I,LOAD (I,J),MIOAD (I,J),J=1,4),I=1,6)
5 FORMAT (8F10.2)
    DO 2105 I=1,6
    LSUM (I) = 0.
    MSUM(I)=0.
    DO 1006 J=1.4
    ISUM(I)=LSUM(I) +ILOAD (I,J)
    MSUM(I)=MSUM(I)+MLOAD(I,J)
1006 CONTINUE
2105 CONTINUE
C
C READ THE CABLE DATA : THE NUMBER OF PAIRS,THE GAUGES
C OF CABIE AVAILABLE, AND THEIR PRICE.
    READ (1,6) NGAUGE
    DO 1201 K=1,NGAJGE
    READ (1,6)GSIZE(K)
1201 CONTINUE
    READ (1,6)NSIZE
    READ (1,40) (PAIRS (L),L=1,NSIZE)
40 FORMAT (20I4)
    DO 1507 I=1,6
    READ (1,6)ISTAL
    IE(ISTAL.EQ.0)GO TO 1507
    READ (1,6) NUMDIS
    IF(NUMDIS.EQ.0) GO TO 1507
    DO 1018 N=1,NUMDIS
C
C READ THE CABLE DESIGN SPECIFICATIONS.
C
    KEAD (1, 14)(SPEC (I,M,N),M=1,2)
14 FORMAT (F10.2,F5.0)
1018 CONTINUE
6 FORMAT (I3)
    DO 1607 J=1,ISTAL
    READ (1,6) NGMAX
    IF(NGMAX.EQ.0)GO TO. 1607
    DO 1007 K=1,NGAUGE
    READ (1,6)IIMAX
    IF(IIMAX.EQ.0)GO TO 1007
```

DO 1403 II=1,IIMAX

```
C
C READ CABLE SIZES,PRICEAND ANY OTHER ADDITIONAL
C EQUIPMENT NEEDED ALONG WITH THE CABLES.
        READ(1,4)SIZE(I,J,K,II),PRICE (II), EQUIPM(I,J,K,II)
    1403 CONTINOE
C
C DO THE REGRESSION AND FIND THE SLOPE AND THE INTERCEPT
C OF ALL the CABLES CONSIDERED. STORE THESE VALUES.
C
    MSIZE=0.
    SUMX=0.
    SUMY=0.
    SUMXY=0.
    SUMX2=0.
    DO 1008 ISIZE=1,IIMAX
    IF(PRICE (ISIZE).EQ.0)GO TO 1008
    MSIZE=MSIZE+1
    SUMX=SUMX+SIZE (I,J,K,ISIZE)
    SUMY=S0MY+PRICE(ISIZE)
    SUMXY=SUMXY+SIZE (I,J,K,ISIZE)*PRICE(ISIZE)
    SUMX2=SUMX2+SIZE(I,J,K,ISIZE)*SIZE (I,J,K,ISIZE)
1008 CONTINUE
        SLOPE(I,J,K)=(SUMXY-(SUMX*SUMY)/MSIZE) /
    %(SUMX2-((SUMX*SUMX)/MSIZE))
        INTCPT(I,J,K)=(SUMY-SLOPE(I,J,K)*SUMX)/MSIZE
1007 CONTINUE
C
1607 CONTINUE
1507 CONTINUE
C
C
C READ THE MANHOLE COST, THE CONDUIT COST, AND THE
C LOADING COIL COST.
    READ (1,6)MHOLE
    MHCOST=AVCOST (MHOLE)
    READ (1,7) LCINT
    DO 1024 I=1,6
    READ (1,6) LCCOIL
1024 LCCOST(I)=AVCOST (LCCOIL)
    READ (1,7) NCSIZE
FORMAT (2I6)
    DO 1009 I= 1,NCSIZE
    READ (1,7) LIMIT(I),NUMWAY
    READ (1,8) (NOWAY (I,J), CONCOS (I,J),J=1,NUMWAY)
8 FORMAT(I3,F10.2)
1009 CONTINUE
    READ (1,31) POLCOS, POLEQ, POLDIS
31 FORMAT(3F10.2)
    READ (1, 1) {OHLOAD (I),I=1,4)
    OHPERC=0.
    DO 1010 I=1,4
1010 OHPERC=OHPERC+OHLOAD(I)
C
```

```
C READ THE FINANCIAL DATA: TAX RATE,DEBT RATIO,INTEREST
C ON EQUITY,INTEREST ON DEBT, AND THE INFLATION RATE.
C
9 FORMAT (5F10.5)
C READ THE PLANNING HORIZON, THE DEPRECIATION RATE
C BY TYPE OF PLANT, SALVAGE VALUE BY TYPE OF DLANT
C IN THE CASE OF NEWLY INSTALLED PLANT.
        READ (2, 10)NN, (DRZ (I),I=1,9)
        READ (2,22) (PERSAL (I) ,I=1,9)
        FORMAT(I3./.9F5.3)
10
C
C READ THE TECHNOLOGY CURVE PARAMETERS AND THE GROLTH
C FACTOR ATTRIBUTABLE TO MAINTENANCE COST.
C
    READ (2,11) PARAFO,PARA,PARK,GFMAIN
11.FORMAT(4F10.5)
C CALCULATE THE TECHNOLOGY INDEX FOR VARIOUS YearS FROM
C THE TECHNOLOGY CURVE.
        DO 1011 I=1,NPER
        TINDEX(I)=TECH(TIME(I))
        IT(I)=1.-EXP(ALOG(TECH(TIME(I) +FLOAT (NN))
    %/TECH(TIME (I)))
    %/FLOAT(NN))
C
C CALCULATE THE MINIMUM ATTRACTIVE RATE OF RETORN.
        IA (I) = (1.-RD)*((1.+IE)*(1.+IF)*(1.-IT (I))-1.)
        %+(1.-TT)*RD*ID
        DO 1012 J=1.9
C
C CALCulate the CAPITAL TAX FACTOR.
        CTF(I,J)=1.-(TT*DRZ(J))/(IA(I)+DRZ(I))
1012 CONTINUE
C
C FIND THE PARTIAL PRESENT EQUIVALENT OF FUTURE SUM AND
C THE PRESENT EQUIVALENT OF A FUTURE SUM FACTORS.
        PPEF(I)=1./((1.+IA(I))**NN)
        PEF(I) =1./((1.+IA(I))**TIME(I))
C
C COMPARE the GROWTH RATE OF MAINTENANCE COST wIth the
C MARF AND CALCUALTE THE APPROPRIEATE PRECENT EQUIVALENT
C OF MAINTENANCE COST FACTORS.
C
    IF (GFMAIN-IA(I)) 1013,1014,1015
C
1013 X=(1.+IA (I))/(1.+GFMAIN) -1.
    PMC (I) = (1./(1.+GFMAIN))*((1.+X)**NN-1.)/(X*((1.+X)
    %**NN))
    GO TO 1011
1014. PMC(I)=NN/(1.+IA(I))
    GO TO 1011
1015 X=(1.+GFMAIN)/(1.+IA(I))-1.
    PMC(I)=(1./(1.+IA (I)))*((1.+X)**NN-1.)/X
1011 CONTINUE
```

```
C
CIN THE CASE OF THE EXISTING PLANT READ THE LIFE OF EACH
C CATEGORY OF PLANT, TGE PRESENT SALVAGE VALUE, AND FUTURE
C SALVAGE AT RETIREMENT.
C
13 FORMAT(6I10)
    READ (2,13) (NNEX(I) ,I=1, 6)
    READ (2,22) (VNNEX(I),I=1,9)
C READ THE ANTICIPATED OPERATING COST PER UNIT SIZE OF
C PLANT FOR A VINTAGE INSTALLED IN THE FIRST , SECOND,
C THIRD, FOURTH PERIODS RESPECTIVELY BY EACH CATEGORY
C OF PLANT.
    NPER 1=NPER+1
    DO 1023 I= 1,NPER 1
    READ (2;22) (OPCOST(I,J),J=1,9)
22 FORMAT (5F10.2,1,4F10.2)
1023 CONTINUE
100 KTYPE=ITYPE
C COMPARE 1.27 TIMES THE AIRLINE DISTANCE WITH THE
C LOADING LIMIT DISTANCES, AND SELECT THE PROPER
C CABLE.
DIST 2=1.27*GAUGE+DIST
    DO 1021 I=1,NUMDIS
    IF(DIST2.LE.SPEC(KTYPE, 1,I))GO TO 1022
1021 CONTINUE
C IF NONE OF THE AVAILABLE CABLES IS WITHIN THE
C RESISTANCE IIMIT DISTANCE OUTPUT A SIGNAL.
    WRITE(6,21)
21 FORMAT('ENDING NODE OUT OF RANGE')
    STOP
C SELECTING THE PROPER GAUGE OF THE CABLE.
1022 ISPEC=IFIX(SPEC{KTYPE,2,I))
    JSPEC=MOD(ISPEC,10000)/1000
    JGAUGE=MOD (ISPEC, 1000)
    DO 3000 IGAUGE=1,NGAUGE
    IF(GSIZE(IGAUGE).EQ.JGAUGE)GO TO 3001
3000 CONTINUE
3001 KSPEC=IGAUGE
    IF (CAP1.NE.CAP2) GO TO 1019
    TF(CAP1. EQ.0)GO TO }102
C IN THE CASE OF THE EXISTING PLANT, CALCULATE THE
C PRESENT EQUIVALENT OF MAINTENANCE COST AND THE
C CAPITAL COST OF THE EXISTING PLANT.
    CALL MAINT(10,KTYPE,CAR1,CAP2,0,DIST,ISPEC,LINES,PEM)
    CALL EXCOST(10,KTYPE,CAP1,CAP2,0,DIST,ISPEC,B,V)
C.
C
C
C
C CALCULATE THE PRESENT EQUIVALENT COST OF THE PLANT.
C
C
    PEC=PEM+(B-(V/((1.+TA(1))**NNEX(KTYPE))))/(1.-TT)
C FIND THE UNIT COST(IN CENTS) OF THE ARC BY DIVIDING
```

```
C BY THE FLOW IN THE ARC.
    ICOST=IPIX(PEC*100./FLOAT (CAP1))
    RETURN
C
C
1020 CAP1=SIZE(ITYPE.JSPEC,KSPEC, 1)
        CAP2=CAP1
        CALL MAINT(20,KTYPE,CAP1,CAP2,NYEAR,DIST,ISPEC
        *,LINES,PEM)
        CALI FCOST (20,KTYPE,CAP1,CAP2,NYEAR,DIST,LINES
        %,ISPEC,IGEO,B,V)
C EVALUATE THE CODE OF THE CABLE SELECTED AND ITS COST.
            CALL CODE(1,KODARC,KOIL,UNKOST)
            GO TO 1100
1019 IF(CAP1.EQ.0)GO TO 1030
            IF(CAP2.EQ.0) GO TO 1031
C UPDATING THE NON-PRIMARY ARC FOR THE SECOND TIME.
        CALL MAINT(31,KTYPE,CAP1,CAP2,NYEAR,DIST,ISPEC
    %,LINES,PEM)
        CALL FCOST(31,KTYPE,CAP1,CAP2,NYEAR,DIST,LINES
    %,ISPEC,IGEO,B,V)
        CALL CODE (1,KODARC,KOIL,UNKOST)
        GO TO 1100
C UPDATING THE PRIMARY ARC, FOR THE FIRST TIME.
1030 CAP2=NEWSIZ(ITYPE,JSPEC,KSPEC,CAP2)
        CALL MAINT (21,KTYPE,CAP1,CAP2,NYEAR,DIST,ISPEC
        %,LINES,PEM)
            CALL FCOST(21,KTYPE,CAP1,CAP2,NYEAR,DIST,IINES
        *,ISPEC,IGEO,B,V)
        CALL CODE(1,KODARC,KOIL, UNKOST)
        IF(MOD(KTYPE, 3).EQ.1)GO TO 1100
        ICOMP=1
        CALL MAINT(21,KTYPE,CAP1,CAP2,NYEAR,DIST,ISPEC
    N,LINES,PEM2)
        CALL FCOST(21,KTYPE,CAP1,CAP2,NYEAR,DIST,LINES
    %,ISPEC,IGEO,B2,V2.)
        CALL CODE(2,KODARC,KOIL,UNKOST)
        GO TO 1100
C UPDATING THE NON-PRIMARY ARC FOR THE FIRST TIME.
1031 CAP2=NEWSIZ(ITYPE,JSPEC,KSPEC,CAP1+1)
        CALL MAINT(30,KTYPE,CAP1,CAP2,NYEAR,DIST,ISPEC
        %,LINES,PEM)
        CALL FCOST(30,KTYPE,CAP1,CAP2,NYEAR,DIST,IINES
        %,ISPEC,IGEO,B,V)
        CALL CODE (1,KODARC,KOIL,UNKOST)
C
1100 PEC=(PEM+TINDEX(NYEAR)* (B-V*PPEF(NYEAR))/(1.-TT))
    Z*PEF(NYEAR)
        IF(ICOMP.EQ.0)GO TO 1200
```

C
C
C
PEC2 $=(\mathrm{PEM} 2+\mathrm{TINDEX}(N Y E A R) *(B 2-V 2 * P P E F(N Y E A R)) /(1 .-T T))$
电*PEF (NYEAR)

```
    IF (PEC-PEC2) 1200,1200,1105
1105 ITYPE=KTYPE
    P EC=PEC2
    CODARC (1) =CODARC (2)
    COIL (1) =COIL (2)
    DO 1220 IL=1,3
1220 UNCOST(1,IL)=UNCOST(1,IL)
1200 IF (CAP2.EQ.CAR1) GO TO 1700
    ICOST=IFIX (PEC*100./FLOAT(CAP2-CAP1))
    RETURN
1700 ICOST=IFIX(PEC*100./FLOAT(CAP1))
    RETURN
    END
C
C ***********SUBROUTINE MAINT*****************************
C
C THIS SUBROUTINE CALCULTES THE PRESENT EQUIVALENT OF
C MAINTENANCE COST FOR EXISTING PLANT AND NEWLY
C INSTALLED PLANT.
    SUBROUTINE MAINT (KODE,ITYPE,CAR1,CAP2,NYEAR,DIST.ISPEC
    %,IINES,PEM)
C DECLARATION OF VARIABLES.
    REAL OPCOST(5,9),IA(5),PMC (5)
    INTEGRR NNEX(6)
    COMMON/G/LCINT,POLDIS/J/OPCOST,GFMAIN,NNEX,PMC
    %,IA
    INTEGER CAP1,CAP2,CAP
C INITIALIZE PEM.
    PEM=0
    NYEAR=NYEAR+1
    CAP=CAP2
    IF ((KODE/10).EQ.3) CAP=CAP2-CAP1
C CALCULATE THE PEM FOR MISCELLENEOUS EQUIPMENT.
C IF CALCULATING FOR THE NON-PRIMARY ARC ONLY TME
C INCREMENTAL PEM IS TO BE CALCULATED.
    IF((ISPEC/10000) . EQ, 1) PEM=PEM+OPCOST(NYEAR,9)*(DIST
    %/FLOAT (LCINT))
    IF (MOD(ITYPE,3).NE.1)GO TO 2
    IF (KODE.NE. 10) GO TO 21
C CALCULATE PEM FOR DUCTS AND VAULTS.
    PEM=PEM+OPCOST (NYEAR,7)*IINES*DIST
    GO TO 22
21 IF(LINES*100.GE.CAP)GO TO 23
C CALCULATE PEM FOR CABLES.
22 PEM=PEM+OPCOST (NYEAR,7) *DIST
23 PTM=PEM+OPCOST (NYEAR,6)*DIST*CAP
    IF (ITYPE.EQ.4) DEM=PEM+(OPCOST (NYEAR.4)-OPCOST(NYEAR,6
    %))*DIST*CAP
    GO TO }1
2 IF (MOD(ITYPE,3).NE.0)GO TO 3
    PEM=PEM+OPCOST (NYEAR,4)*DIST*CAP
    IF (ITYPE.EQ.6) PEM=PEM+(OPCOST (NYEAR.5) -OPCOST(NYEAR,4
    %)) *DIST*CAP
    GO TO 10
```

3 ．IF（KODE．EQ－10）GO TO 24
IF（IINES＊100．GE．CAP）GO TO 25
24 PEM＝PEM＋OPCOST（NYEAR，2）＊（DIST／POLDIS）
25 PEM＝PEM＋OPCOST（NYEAR，1）＊DIST＊CAP
IF（ITYPE．EQ．5）PEM＝PEM＋（OPCOST（NYEAR，3）OPCOST（NYEAR， 1
思）＊DIST＊CAP
10 NYEAR＝NYEAR－1
IF（NYEAR．NE．0）GO TO 11
C COMPARE THE GROWTH FACTOR IN MAINTENANCE WITH MARR
C AND CALCULATE THE APPROPRIEATE PEM FACTOR．
IF（GFMAIN－IA（1））4，5，6
$4 \quad \mathrm{X}=(1 .+\mathrm{IA}(1)) /(1 .+G F M A I N)-1$.
$\mathrm{PEM}=(1 . /(1 .+\mathrm{GFMAIN})) *((1 .+\mathrm{X}) * N N E X(I T Y P E\rangle-1$.
$\%(X *((1 .+X) * N N E X(I T Y P E))) * P E M$
GO TO 7
$5 \quad \mathrm{PEM}=(\mathrm{NNEX}(\operatorname{ITYPE}) /(1 .+I A(1))) * P E M$
GO TO 7
$6 \quad \mathrm{X}=(1 .+\mathrm{GFMAIN}) /(1 .+\mathrm{IA}(1))-1$.
$\operatorname{PEM}=\operatorname{PEM} \ddagger((1 . / 1 .+\operatorname{IA}(1))) *(1 .+X) * * N N E X(I T Y P E)-1.) / X$
7 RETURN
11 PEM＝PEM＊PMC（NYEAR）
RETURN
END
C

C
C THIS SUBROUTINE CALCULATES THE FIRST COST OF NEWLY
C INSTALIED PLANT．IT CALCULATES THE LABOR COST，MATERIAL
C COST AND ANDS THE OVERGEADS TO THEM．
SUBROUTINE FCOST（KODE，ITYPE，CAP1，CAD2，NYEAR，DIST，LINES
\％，ISPEC，IGEO，B，V）
REAL CTF（5，9），ICCOST（6），PERSAL（9），DLCOST（8）
\＄，MSUM（6）， $\operatorname{CONCOS}(5,6), M H C O S T, \operatorname{INTCPT}(6,3,5), \operatorname{SLOPE}(6,3,5)$
\％，EQUIPM $(6,2,4,40), \operatorname{SIZE}(6,2,4,40), \operatorname{UNCOST}(3), \operatorname{LSUM}(6)$
DI MENSION OLDCOS（3）
INTEGER CODARC，GSIZE（5），CAP1，CAP2，LIMIT（5），PAIRS（35） COMMON／C／NSIZE，SIZE／G／LCINT，POLDIS
\％／F／CODARC，COIL，UNCOST
$\% / H / L C C O S T, P E R S A L, D L C O S T, I S U M, M S U M, O H P E R C$ ，
\％NCSIZE，IIMIT，CONCOS，MHCOST，INTCPT，SLOPE，
\％EQUIPM，POLCOS，NGAUGE，GSIZE
\％／K／CTF／L／PAIRS
$\cos T L=0$ 。
$\operatorname{costM}=0$ 。
DO $2 . I=1,3$
UNCOST $(I)=0$ ．
COIL＝0．
CODARC＝0
KOUNT＝0
$B=0$ 。
$V M=0$ ．
$\mathrm{VL}=0$ 。
ISPEC＝MOD（ISPEC，10000）
$K S P E C=M O D(I S P E C, 1000)$
JSPEC=JSPEC/1000
DO 11 IG=1, NGAUGE
IF (KSPEC.EQ.GSIZE (IG)) GO TO ..... 12
CONTINUE
$K S P E C=I G$
DO 13 ICAP=1,NSIZE
IF (CAP1.EQ.PAIRS (ICAP)) GO TO ..... 14
13 CONTINUEMS PEC=ICAPCODARC=ITYPE* 10000000
CODARC=CODARC+JSPEC*1000+KSPEC*100+MSPEC
DO 2222 ICAP=1.40
IF (CAP1. EQ.SIZE(ITYPE,JSPEC,KSPEC,ICAP))GO TO 2223
2222 CONTINUE
2223 MSPEC=ICAP
IF ((ISPEC/10000) •NE. 1)GO TO ..... 22
$\operatorname{COSTM}=\operatorname{COSTM}+L C \operatorname{COST}(I T Y P E) * C T F(N Y E A R, 9) * D I S T$
\%/ELOAT (LCINT)
$V M=V M+C O S T M * P E R S A L$ (9)
COSTL=COSTL+DLCOST (8) *DIST/FLOAT (LCINT)
VL $=\mathrm{VL}+$ COSTL*PERSAL (9)
COIL $=(D I S T / F L O A T(L C I N T))$
UNCOST (1) = (COSTL* (1.+LSUM (TTYPF)/100.)
監 $+\operatorname{COSTM} *(1 .+M S U M(I T Y P E) / 100)) *.(1 .+O H P E R C / 100.1$
IF (MOD (ITYPE, 3) - NE. 1) GO TO 6
IF ((IINES*100). GE.CAP1) GO TO 7
NCAP $1=C A P 1-I I N E S * 100$
DO $8 \mathrm{I}=1$, NCSIZE
IF(LIMIT(I).LT.NCAP1) GO TO 8
$J=1$
GO TO ..... 9
CONTINUE8 CONTINUE
$I=N C S I Z E$
$J=\operatorname{NCAP} 1 / L I M I T(N C S I Z E)$
IF (MOD (NCAP1. IIMIT (NCSIZE)) .NE.O) J=J +1
$9 \quad \operatorname{CosTM} 1=(\operatorname{CONCOS}(I, J) * D I S T+M H C O S T)$
$\operatorname{COSTM}=\operatorname{COSTM}+\operatorname{COSTM} 1 * C T F(N Y E A R, 7)$
$V M=V M+C O S T M 1 * P E R S A L$ (7)
CODARC=CODARC+I*1000000+J*10000
$\mathrm{UN} \operatorname{COST}(2)=\operatorname{COSTM} 1 *(1 .+11 S U M(I T Y P E) / 100)+.\mathrm{UNCOST}(2)$
CAII GAREA (IGEO, 3, GFACTO)
COSTL $1=(D L C O S T(3) * G F A C T O) * D I S T$
COSTL $=\operatorname{COSTL}+\operatorname{COSTL} 1 * C T F(N Y E A R, 7)$
VL=VL+COSTL1*PERSAL (7)
UN COST (2) $=\operatorname{COSTL} 1 *(1 .+\operatorname{LSUM}(I T Y P E) / 100)+.U N C O S T(2)$
CALL GAREA (IGEO, 5,GFACTO)
COSTL $1=(\mathrm{DLCOST}(5) * G F A C T O) * D I S T$
COSTL=COSTL+COSTL1*CTF (NYEAR.7)
$\mathrm{VI}_{1}=\mathrm{VI}+\operatorname{COSTL} 1 * P E R S A L$ (7)
UN COST (2) $=\operatorname{COSTI} 1 *(1 .+\operatorname{LSUM}(I T Y P E) / 100)+.U N C O S T(2)$
JDEP=((ITYPE+5)/ITYPE)*ITYPE

CALL GAREA (IGEO, 4, GFACTO)
$\operatorname{CoSTL} 1=\mathrm{DLCOST}(4) * \mathrm{GFACTO} * \mathrm{CAP} 1$
$\operatorname{CoSTL}=\operatorname{CoSTL}+\operatorname{COSTL} 1 \star C T F(N Y E A R, J D E P)$
$\mathrm{VL}=\mathrm{VL}+\operatorname{COSTL} 1 * P E R S A L$ (JDED)
$\mathrm{UNCOST}(3)=\square N \operatorname{COST}(3)+(1 .+\mathrm{LSUM}(I T Y P E) / 100). * \operatorname{COSTL} 1$

IF (ITYPE.EQ.4) GO TO 10
$\operatorname{COSTM1=(INTCPT(1,JSPEC,KSPEC)}+(S L O P E(1, J S P E C, K S P E C) *$
罚CAP1)) *DIST+EQUIPM(1, JSPEC, KSPEC,MSPEC)
$\operatorname{COSTM}=\operatorname{COSTM}+\operatorname{COSTM} 1 * \operatorname{CTF}(N Y E A R, 6)$
$V M=V M+\operatorname{COSTM} 1 * P E R S A L(6)$
$\operatorname{UNCOST}(3)=\mathrm{UNCOST}(3)+\operatorname{COSTM} 1 *(1 .+\operatorname{MSUM}(\operatorname{ITYPE}) / 100$.
GO TO 15
COSTM $1=((\operatorname{INTCPT}(4, \mathrm{JSPEC}, \mathrm{KSPEC})+$ SLOPE (1.JSDEC.KSPEC)* \%CAP1) *DIST+EQUIPM (4, JSPEC, KSPEC, MSPEC) )
$\operatorname{COSTM}=\operatorname{CoSTM}+\operatorname{CoSTM} 1 * \operatorname{CTF}(N Y E A R, 8)$
$V A=V M+\operatorname{cosTM} 1 * P E R S A L$ (8)
UNCOST (3) = UNCOST (3) +COSTM1* (1.+MSUM (ITYPE)/100.)
$\operatorname{CoSTM}=\operatorname{CosTM} *(1 .+M S U M(I T Y P E) / 100$.
$\operatorname{CosTL}=\operatorname{CosTL} *(1 .+\operatorname{LSUM}(I T Y P E) / 100$.
$V M=V M *(1 .+M S U M(I T Y P E) / 100$.
$V L=V L *(1 .+L S U M(I T Y P E) / 100$.
$B=(\operatorname{COSTM}+\operatorname{COSTL}) *(1 .+O H P E R C / 100$.
$V=(V M+V L) *(1 .+O H P E R C / 100$.
GO TO 5
IF (MOD (ITYPE, 3) - EQ.0) GO TO 16
IF ((IINES*100).GE.CAP1)GO TO 17
NOPOLE=IFIX (DIST/POLDIS)
IF ( (FLOAT (NOPOLE) $\operatorname{FPOLDIS)~-~NE.DIST)~NOPOLE=NOPOLE+1~}$
CODARC=NOPOLE* 10000
COSTM 1=FLOAT (NOPOLE)*POLCOS* (1.+POLEQ/100.)
$\operatorname{CoSTM}=\operatorname{COSTM}+\operatorname{COSTM1*CTF}(N Y E A R, 2)$
$\mathrm{VM}=\mathrm{VM}+\operatorname{COSTM} 1 * \operatorname{PERSAL}(2)$
UNCOST (2) = UNCOST (2) +COSTM 1* (1. + MSUM (ITYPE) /100.)
CALL GAREA (IGEO, 1,GFACTO)
COSTL=GFACTO*FLOAT (NOPOLE) *DLCOST (1)

COSTL=COSTL+COSTL $1 * \operatorname{CTF}(N Y E A R, 2)$
$\mathrm{VL}=\mathrm{VL}+\operatorname{COSTL} 1 * \mathrm{PERSAL}(2)$
$\mathrm{UNCOST}(2)=\mathrm{UNCOST}(2)+\operatorname{COSTL} 1 *(1 .+\mathrm{LSUM}(I T Y P E) / 100$.
CALL GAREA (IGEO, 1, GFACTO)
JDEP=((ITYPE/2) +MOD (ITYPE,2))
COSTL $1=(\mathrm{DLCoST}(2) * G F A C T O)$
$\operatorname{COSTL}=\operatorname{COSTL} L+\operatorname{COSTL} 1 * C T F(N Y E A R, J D E P)$
$V L=V L+\operatorname{COSTL} 1 * P E R S A L$ (JDEP)
$\mathrm{UNCOST}(3)=\mathrm{UNCOST}(3)+\operatorname{COSTL} 1 *(1 .+\mathrm{LSUM}(I T Y P E) / 100$.
IF (ITYPE.EQ.5) GO TO 18
COSTM1=((INTCPT (2,JSPEC,KSPEC) +SLOPE (2,JSPEC,KSPEC)*
$\% C A P 1) * D I S T+E Q U I P M(2, J S P E C, K S P E C, M S P E C))$
$\operatorname{COSTM}=\operatorname{CoSTM}+\operatorname{COSTM} 1 * \operatorname{CTF}(N Y E A R, 1)$
$\mathrm{VM}=\mathrm{VM}+\operatorname{COSTM} 1 * \mathrm{P}$ RRSAL (1)
$\mathrm{UNCOST}(3)=\mathrm{UNCoST}(3)+\operatorname{COSTM} 1 *\left(1 .+M S U M(I T Y P E) / 100 \_\right)$

GO TO 19
$\operatorname{COSTM} 1=((\operatorname{INTCPT}(5, \mathrm{JSPEC}, \mathrm{KSPEC})+\mathrm{SLOPE}(5, \mathrm{JSPEC}, \mathrm{KSPEC}) *$ \% CAP1) *DIST+EQUIPM(5, JSPEC, KSPEC, MSPEC))
COSTM $=\operatorname{COSTM}+\operatorname{COSTM} 1 * \operatorname{CTE}(N Y E A E, 3)$
$\mathrm{VH}=\mathrm{VM}+\operatorname{COSTM} 1 * 2 \operatorname{ERSAL}(3)$
UNCOST (3) $=$ UNCOST (3) $+\operatorname{COSTM} 1 *(1 .+\operatorname{MSUM}(I T Y P E) / 100$.
$\operatorname{COSTM}=\operatorname{COSTM} *(1 .+$ MSUM (ITYPE)/100.)
$V M=V M *(1 .+M S U M(I T Y P E) / 100$.
$\operatorname{COSTL}=\operatorname{COSTL} *(1 .+\operatorname{LSUM}(\operatorname{ITYPE}) / 100$.
VL=VL* (1.+LSUM (ITYPE) 100.$)$
$\mathrm{B}=(\operatorname{COSTM}+\operatorname{COSTL}) *(1 .+$ OHPERC/100.)
$V=(V M+V L) *(1 .+$ OHPERC $/ 100$.
GO TO 5
JDEP=5-MOD (ITYPE, 2)
CALL GAREA (IGEO, 6,GFACTO)
$\operatorname{COSTL} 1=(\mathrm{DLCOST}(6) * G P A C T O)$
$\operatorname{COSTL}=\operatorname{COSTL}+\operatorname{COSTL} 1 * C T F(N Y E A R, J D E P)$
$V L=V L+\operatorname{COSTL} 1 * P E R S A L$ (JDEP)
UNCOST (3) $=\mathrm{UNCOST}(3)+\operatorname{COSTL} 1 *(1 .+L \operatorname{SUM}(\operatorname{ITYPE}) / 100$.
CALL GAREA (IGEO,7,GFACTO)
$\operatorname{COSTL} 1=(\operatorname{DLCOST}(7) * G F A C T O)$
$\operatorname{COSTL}=\operatorname{COSTL}+\operatorname{COSTL} 1 * \operatorname{CTF}(N Y E A R, J D E P)$
VL=VL+COSTL1*PERSAL (JDEP)
UNCOST (3) = UNCOST (3) +COSTL1* (1.+LSUM (ITYPE)/100.)
COSTM1=(INTCPT(ITYPE, JSPEC,KSPEC) +SLOPE (ITYPE,
\%JSPEC,KSPEC) *CAP1*DIST+EQUIPM (ITYPE,JSPEC,
\%KSPEC,MSPEC) )
$\operatorname{COSTM}=\operatorname{COSTM}+\operatorname{COSTM} 1 * \operatorname{CTF}(N Y E A R, J D E P)$
$\mathrm{VA}=\mathrm{VM}+\operatorname{COSTM} 1 *$ PERSAL (JDEP)
UNCOST (3) $=\mathrm{UNCOST}(3)+\operatorname{COSTM} 1 *(1 .+H S U M(I T Y P E) / 100$.
GO TO 19

IF (CAP1.EQ.CAP2) GO TO 3
IF (KOUNT.NE.0) GO TO 21
OLDCAP=CAP 1
OLDV $=V$
CAP1=CAP2
OLDB' $=B$
KOUNT=100
Do 23 IL=1.3
OLDCOS (IL) $=U N C O S T(I L)$
UNCOST (IL) $=0$.
CONTINUE
$\operatorname{CODARC}=0$
GO TO 20
$B=B-O L D B$
$V=V-O L D V$
CAP1=0LDCAP
DO $24 \mathrm{IL}=1.3$
UNCOST (IL) $=$ UNCOST (IL) -OLDCOS (IL)
CONTINUE
DO $25 \mathrm{IL}=1,3$

```
    UNCOST(IL) =UNCOST(IL)*(1.+OHPERC/100.)
    CONTINUE
        RETURN
        END
C
```



```
C
C THIS SUBROUTINE UPDATES THE ARC CODE IN ORDER TO
C ASSIGN THE PROPER COST TO THE ARC CONSIDERED.
    SUBROUTINE CODE(NO,KODARC,
    多KOIL,UNKOST)
        DIMENSION UNCOST (2,3),COIL (2)
        INTEGER CODARC(2)
        REAL UNKOST(3).KOIL
        COMMON/E/CODARC,COIL,UNCOST
        CODARC (NO) = KODARC
        COIL (NO) =KOIL
        DO 1202 IL=1,3
1202UNCOST (NO,II) = UNKOST(IL)
        RETURN
        END
C
C
C
C
```



```
C
C THIS FUNCTION IS USED TO SELECT THE PROPER CABLE
C IN AN ORDER.
        FUNCTION NENSIZ(ITYPE,JTYPE,KTYPE,ICAP)
C DECLARE THE VARIABLES.
    REAL SIZE(6,2,4,40)
    COMMON /C/NSIZE,SIZE
    DO 1 I=1,NSIZE
    IF(SIZE(ITYDE,JTYPE,KTYPE,I).GE.ICAP)GO TO 2
1 CONTINUE
C THE NEW SIZE OF THE CABLE IS SELECTED.
2 NEWSIZ=SIZE(ITYPE'JTYPE,KTYPE,I)
    RETURN
    END
C
C *****************THE PUNCTION TECH*********************
C THIS FUNCTION IS USED TO FIND THE TECHNOLOGICAL
C GROWTH FACTOR USING THE LOGISTICS CURVE.
    FUNCTION TECH(YEAR)
    COMMON/B/PARAFO,PARA, PARK
    NYEAR=TFIX(YEAR)
    TECH=PARAFO* (1.-(1./(1.+(PARA/EXP(PARK*FLOAT
    %(NYEAR))))))
        RETURN
        END
C
```



```
C IT IS USED TO EVALUATE THE GEOGRAPHY DIFFICULIY
```

C FACTOR, DEPENDING ON THE GEOGRAPHICAL CONDITION C OF THE ARC.

C
C
SUBROUTINE GAREA (IGEO, ITEM, GFACTO)
COMMON/A/DFACTO
REAL DFACTO (7,4)
INTEGER CODE (3)
$\operatorname{CODE}(1)=I G E O / 100$
$\operatorname{CODE}(2)=(\operatorname{MOD}($ IGEO, 100) $) / 10$
CODE (3) $=$ MOD (IGEO, 10)
$G F A C T O=1$.
DO $2 \mathrm{~J}=1,3$
IF (CODE (J).EQ.0) GO TO 3
GFACTO=GFACTO*DFACTO(ITEM, CODE (J))
2 CONTINUE
3 RETURN
END
C

C THIS FUNCTION IS USED TO FIND THE WEIGHTED AVERAGE
C COST OF A MANHOLE OR ANY MISCEILENEOUS EQUIPMENTS.
C
FUNCTION AVCOST(N)
DIMENSION COST (30), IFREQ (30)
$\operatorname{EEAD}(1,1)(\operatorname{COST}(I), I F R E Q(I), I=1, N)$
FORMAT (F10.2.I10)
TOTAL=0.
$S U M=0$ 。
DO $2 \mathrm{~J}=1 \mathrm{~N}$
$S U M=S U M+\operatorname{COST}(J) * F L O A T(I F R E Q(J))$
TOTAL=TOTAL+FLOAT (IFREQ (J))
CONTINUE
AVCOST=SUM/TOTAL
RETURN
END
C
C

C
C THIS SUBROUTINE IS USED TO FIND THE COST OF EXISTING
C PLANT*IT CONSIDERS THE LABOR COST AND ANY OTHER
C OVERHEADS THAT WERE INCURRED AT THE TIME OF
C INSTALLATION OF THE PLANT AS SUNK COST. ONLY
C CURRENT MATERIAL COST AFTER DEDUCTING A FIXED
C PERCENTAGE FOR THE COST OF REMOVAL IS RELEVENT
C IN MAKING ANY DECISIONS.
SUBROUTINE EXCOST (KODE, ITYPE, CAP1,CAP2,NYEAR,DIST
$\%, I S P E C, B, V)$
REAL CTF (5, 9), LCCOST (6) , PERSAL (9) , DLCOST (8)
$\$, \operatorname{MSUM}(6), \operatorname{CONCOS}(5,6), \operatorname{MHCOST}, \operatorname{INTCPT}(6,3,5), \operatorname{SLOPE}(6,3,5)$
$\mathscr{m}_{, ~ E Q U I P M}(6,2,4,40), \operatorname{SIZE}(6,2,4,40), ~ U N C O S T(3), L S U M(6)$
\%.VO(9).VNNEX (9)
DIMENSION OLDCOS (3)

INTEGER CODARC,GSIZE(5),CAP1,CAP2,LIMIT(5) ,PAIRS (35) COMMON/C/NSIZE,SIZE/G/LCINT, POLDIS
\%/H/LCCOST, PERSAL, DLCOST,LSUM, MSUM, OHPERC,
\%NCSIZE,IIMIT, CONCOS,MHCOST,INTCPT,SLOPE。
\%EQUIPM, POLCOS, NGAUGE, GSIZE
\%/K/CTF/D/VO,VNNEX
$\operatorname{costM}=0$.
$B=0$.
$V M=0$.
JSPEC=MOD (ISPEC, 10000)
KSPEC=MOD (ISPEC, 1000)
JSPEC=JSPEC/1000
DO 11 IG=1, NGAUGE
IF (KSPEC.EQ.GSIZE(IG)) GCO TO 12
11
CONTINUE
$\mathrm{KSPEC=IG}$
DO 2222 ICAP=1,40
IF (CAP1.EQ.SIZE (ITYPE,JSPEC,KSPEC,ICAPJ)GO TO. 2223
2222 CONTINUE
2223 MSPEC=ICAP
IF ((ISPEC/10000).NE.1) GO TO 22
$\operatorname{COSTM}=\operatorname{COSTM}+\operatorname{LCCOST}(I T Y P E) * C T E(N Y E A R, 9) * D I S T$
\%/FLOAT (LCINT)
$V M=V M+C O S T M * V N N E X(9)$
22 IF (HOD (ITYPE, 3).NE.1) GO TO 6
DO 8 I=1,NCSIZE
IF (LIMIT (I).LT.CAP1)GO TO 8
$\mathrm{J}=1$
GO TO 9
CONTINUE
I=NCSIZE
J=CAP1/LIMIT(NCSIZE)
IF (MOD (CAP1. LIMIT (NCSIZE)). NE.0) $\mathrm{J}=\mathrm{J}+1$
$\operatorname{COSTM} 1=(\operatorname{CONCOS}(I, J) * D I S T+M H C O S T)$
$\operatorname{COSTM}=\operatorname{COSTM}+\operatorname{COSTM} 1 * \mathrm{CTF}(N Y E A R, 7)$
$\mathrm{VM}=\mathrm{VM}+\operatorname{COSTM} 1 * \mathrm{VNNEX}$ (7)
IF (ITYPE.EQ.4) GO TO 10
$\operatorname{COSTM} 1=(\operatorname{INTCPT}(1, \mathrm{JSPEC}, \mathrm{KSPEC})+(\operatorname{SLOPE}(1, \mathrm{JSPEC}, \mathrm{KSPEC}) *$
\%CAP1)) *DIST+EQUIPM(1, JSPEC,KSPEC,MSPEC)
$\operatorname{COSTM}=\operatorname{COSTM}+\operatorname{COSTM1*CTF}(N Y E A R, 6)$
$\mathrm{VH}=\mathrm{VM}+\operatorname{COSTM} 1 * \mathrm{VNNEX}(6)$
GO TO 15
$\operatorname{COSTM} 1=((\operatorname{INTCPT}(4, \mathrm{JSPEC}, \mathrm{KSPEC})+\operatorname{SLOPE}(1, \mathrm{JSPEC}, \mathrm{KSPEC}) *$
若CAP1)*DIST+EQUIPM(4,JSPEC,KSPEC,MSPEC))
$\operatorname{COSTM}=\operatorname{COSTM}+\operatorname{COSTM} 1 * \operatorname{CTE}(N Y E A R, 8)$
$\mathrm{VH}=\mathrm{VA}+\operatorname{CosTM} 1 * \mathrm{VNNEX}(8)$
$\operatorname{COSTM}=\operatorname{COSTM} *(1 .+\operatorname{MSUM}(\operatorname{ITYPE}) / 100$.
$\mathrm{VM}=\mathrm{VM} *(1 .+\mathrm{MSUM}(\operatorname{ITYPE}) / 100$.
$V L=V L *(1 .+L S O M(I T Y P E) / 100$.
$B=0.8 * \operatorname{cost} M$
$\mathrm{V}=0.8 * \mathrm{VM}$
RETURN
IF (MOD (ITYPE,3).EQ.0) GO TO 16
NOPOLE=IFIX(DIST/ROLDIS)

```
        IF((FLOAT (NOPOLE)*POLDIS) . NE.DIST) NOPOLE=NOPOLE+1
        COSTM1=FLOAT(NOPOLE)*POLCOS* (1.+POLEQ/100.)
        COSTM=COSTM+COSTM1*CTF (NYEAR,2)
        VM=VM+COSTM1*VNNEX (2)
        IF(ITYPE.EQ.5) GO TO 18
        COSTM 1= ((INTCPT (2,JSPEC,KSPEC) +SLOPE (2,JSPEC,KSPEC)**
    %CAP1)*DIST+EQUIPM(2,JSPEC, KSPEC, पSPEC))
        COSTM=COSTM+COSTM1*CTF(NYEAR,1)
        VM=VM+COSTM1*VNNEX(1)
        GO TO 19
18 COSTM1=((INTCPT(5,JSPEC,KSPEC) +SLOPE (5,JSPEC,KSPEC)*
        %CAP1)*DIST+EQUIPM(5,JSPEC,KSPEC,MSPEC))
        COSTM=COSTM+COSTM1*CTF (NYEAR,3)
        VM=VM+COSTM1*VNNEX (3)
        COSTM=COSTM*(1. +MSUM(ITYPE)/100.)
        VM=VM*(1.+MSUM(ITYPE)/100.)
        B=0.8*COSTM
        V=0.8*VM
        RETURN
16 JDEP=5-MOD(ITYPE, 2)
    COSTM1=(INTCPT(ITYPE,JSPEC,KSPEC) + SLOPE (ITYPE,
    %JSPEC,KSPEC)*CAP1*DIST+EQUIPM(ITYPE,JSPEC,
    %KSPEC,MSPEC))
        COSTM=COSTM+COSTM1*CTF(NYEAR,JDEP)
        VM=VM+COSTM1*VNNEX(JDEP)
        GO TO 19
    END
C *************************)
```


## E. 1 Transmission

In order to transmit information from point a to point $B$; the following are necessary:
a) terminal equipment consisting of a sender and a receiver,
b) a transmission medium.

The terminal can be a simple telephone set or a complex multi-channel carrier terminal.

The medium may be a pair of wires, a radio path, a coaxial cable tube etc. Disregarding the radio path, the medium can be divided into two main classes;
a) voice frequency circuits (VF)... (on cable - freg. band 300-3400 KHZ)
b) carrier frequency circuits... (on cable, 0 - 24 KHz )

The carrier technique is divided into two broad sub-sections.

1. Frequency Division Mưtiplexing (FDM) - where individual $V F$ circuits are translated from high frequency bands and are 'stacked' or 'multiplexed' in frequency for transmission over a common medium such as a cable pair.
2. Time Division Multiplexing (TDM) - where individual circuits are "sampled"in time and the samples are

# interleaved and "coded" for transmission over a common medium such as a cable pair. 

'FDM' is 'analogue' in nature while TDM is 'digital' in nature.

## E.1.1 Analoque Carrier $\downarrow$ Using FDM.

Figure E. 1. shows a simple three channel analogue carrier system.

Using three identical VF circuits (0 - 4 KHz ), two of the signals are "modulated" to higher frequency bands and sent to the common cable pair. The combined three channels have a carrier frequency of $0-20 \mathrm{KHZ}$ with each channel separated in frequency. If the reverse process is done at the receiving end, each channel is converted back to the original VF frequency.

The above process is termed as "amplitude modulation"; another type of carrier uses "frequency modulation".

## E. $12 \underline{2}$ Digital Carrier (USing TDM 1

Digital carrier is also divided into two or more modulation schemes, of which Pulse Code Modulation (PCM) is in widespread use today.


Figure E. 1 Three Channel Analogue Carrier System


Figure E. 2 Three Channel Digital Carrier System

In Figure E.2, the sampler is an electronic device which samples each VF channel individually in sequence. It produces one complete set of three samples, 8000 times per second. This sequence is now applied to the coder which assigns a unique code or sequence of binary pulses to represent the height or amplitude of the incoming signals. That is the $V F$ information is carried in the sequence or code of the oN/OFF binary pulses, and hence the name "Pulse Code Modulation".

Before transmitting to the cable, the Alternate Mark Inverter' (AMI) reverses the polarity of every other pulse in order to reduce the average d.c voltage level of the binary signal to zero. This simplifies the design of the line repeater required to regenerate the signal. When the signal has travelled a long distance, it is considerably attenuated and distorted. A line repeater (not an amplifier) then regenerates or reconstructs the distorted incoming pulse signal to produce as its output perfect undistorted signal.

## E. 2 Subscriber Carrier System

A few of the subscriber carriers are listed in Table E. 1. The number of channels indicates the number of simultaneous conversations possible over the carrier system. The pair gain indicates the advantage of the carrier system over the cable pair placement.

## E. 2.1 Concentrators

In the subscriber systems listed above each channel of the carrier system is dedicated to one subscriber, and $90 \%$ of the time each channel is idle and earning no revenue. Better use of the carrier system can be made possible by using concentrators. In this situation many subscribers share the available channels back to the switching center on a first come first served basis.

In Figure E. 3. 32 subscribers are connected to the switching center, each being dedicated one channel. In Figure E.4, 128 subscribers are connected to the switching center. By addition of concentrator switches, 128 subscribers can use the same facilities previously required for 32 subscribers. The concentrator connects a subscriber requiring dial tone to the first free channel but of course no more than 32 subscribers can talk simultaneously. However, since each phone is used very little, the chance of call blocking is low.

Using concentration, the maximum pair gain available with the previously listed carriers is as shown in Table E. 2.
 Machines

Pair gain devices were previously considered

Table E. 1 Information Relating to Some Subscriber Carriers

| Manufacturer | Name | Type | No. of <br> wire <br> Pairs | Channe1s | Pair <br> Gain |
| :--- | :---: | :---: | :---: | :---: | :---: |
| a) Anaconda | 56A | Analogue | 1 | 6 | $1: 6$ |
| b) Superior <br> Cont. | CM8 | Analogue | 1 | 8 | $1: 8$ |
| c) ITT | DM 32S | Digita1 | 2 | 32 | $1: 16$ |
| d) Northern |  |  |  |  |  |
| Telecom |  |  |  |  |  |$\quad$ DMS 1 | Digita1 |
| :--- |

Table E. 2 Pair Gains for Different Carriers

| System | Pair Gain |  |
| :--- | :--- | :--- |
| S6A | $1: 24$ | (ES-1 Concentrator) |
| CM8 | $1: 24$ | (ES-1 Concentrator) |
| DM32S | $1: 64$ | (Built in Concentrator) |
| DMS1 | $1: 64$ | (Bui1t in Concentrator) |



Figure E. 3 Subscriber Carrier Without Concentrator


Figure E. 4 Subscriber Carrier With Concentrator
(Carrier, concentrators) working on existing analogue switching machines. With the introduction of digital switching machines the office terminal (OT) of the subscriber carrier is no longer needed. The T-cXR line is directly accepted by the switch without any conversion.

## APPENDIX-F THE "S" CURVE PARAMETERS

The technology curve parameters 'A' and 'k' are obtained from the envelope curve as suggested below. The carrier companies can plot the envelope curve and extrapolate it to obtain the ordinates of the curve in the future years. From these values the representative parameters of the curve can be obtained by simple linear regression of a transformed variable.

In the 'S' curve equation;
$f(t)=f(t o)-f(t o) /(1+A \cdot E X P(-k t))$
Since $f(t o)$ is the ordinate of the curve in year 0 , while normalizing this value becomes equal to 1. Therefore,
$f(t)=1-1 /(1+A \cdot \operatorname{EXP}(-k t))$
if $Z$, a new variable is made equal to $1 /(1+A * E X P(-k t))$. then,
$\ln A-k \cdot t=\ln [(1-Z) / Z] \quad, Z<1$
$\ln [Z /(1-Z)]=k \cdot t-\ln A$

A linear regression of $\ln [Z /(1-Z)]$ versus $t$ will
give the intercept and the line, from which;
$k=s l o p e$ of the line, and
$A=-E X P(i n t e r c e p t)$.

```
A CAPITAL BUDGET OPTIMIZATION MODEL FOR SU3SCRIBER LOOP FACILITIES IN ... -- Sprague, J.C.
```



