

The Canadian Deparment of Comunications (DDC), contracted the Institute of Ipplied Economic Research (TABR), of Concordia University to carry out a study of the productive and financial characteristios for carriers operating in the telephone industry.

The work was done at the IABP during the latetr part of 1976 and the first part of 1977 , by the followAng teami of researchers:

```
PROUECI' DIMECNOR:
```



```
RESEARCH ADVISORS:
Vittoxjo Corbo
and
Anastasios Ariastasopoulos
```

We would like to thank the members of the noc for their cooperation, and for the beneficial discussions with us while carrying out inis, study.

TAETE OF CONTENTS

BXECUTIVE SUMWARY IV
CHAPMER 1. INTRODUCTITON 1
CHAPIER 2.TITE GFNERAL MODEL6
APPENDIX 2.1 20
FOO'INOTES 23
REFERENCES 24
Chapmer 3. Tite DEMAND MODULE 25
Abpendta 3.1 93
FOOTNOMES 97
PEFERENCES 98
Chapter 4. THE PFODUCTION MODUSAE 99
APPENDTX 4.1 128
FoOMNOTES 129
ReFERENCDS 130
CHAPTER 5. THE FTNANCCAL MODULE 132
POOTNO'PES 171
REFHMENCES 172
CHAPrex 6
TIEE GTMULATRON MODULE 173
ABPENDIX 6.3. 186
mperendex 1.90
ATPENDIX \quad-. 3 193
moonnotes 1.99

1. Purpose

This study purposes to evaluate the interaction of the productive factor and financial charactexistics of telephone carriers. A model is developed, estimated, and sinulated depicting the interaction oE the corporate decision mechanisms with regards to pricing, output, factor and financiol reguirements. Conclistons are drawn as to the nature of the determinants of demand and hence revenues, the nature of the production processes, the ability of the carrjers to affect the costs of their alternative financing instruments, the form of regulation, and finally the ability of the model to simulate the past hehaviour of Bell Canade

2. Structure

A genexal theoretical model is developed of a privately owned telephone carriex which maximizes profit. mue profit maximiziny utility is envisioned as being a monopolist in its product, and a competitor in it's labour majkets. The carrier is financed by both debt and equity and has some degree of momopoly power in these financial carital markets. Indeed, this is one of the novel elements of the rodel, in the sense that the firm is ainle to influence the rate of return to debthalders and shareholders. Bocause of the imperfections in these markets, there is a difference between the arerage costs of the different methods of financing and the marginal
costs of financing, with, of course, the marginal costs being the ejements which are used in detemming the portfolio composition. These is a tax on the net incone of the firm, with interest payments on debt being tax exempt while dividend payments are not. This fiscal policy influences the relative marginal costs of debt and equity and so affects the leverage and capital budget decisions. Finally; in the general model the utility is restricted as to the maximim rate of return obtainable on the physical capital stoch, which manifests itself in the constraint that the market factor price of capital must be less than the allowed price of capital. Having developed the general model one must proceed to estimate the various relationships which form the structure.

Demand functions axe estimated for Bell Canada; British Columbia Telephone; the aggreqation of Alberta Government Telephones, Ednonton Telephones, saskatchewan Telecommanications, and Manitoba Telephone Systen, which are referred to as the public companies; and finally we aggregate Maritime Telegraph and Telephone, New Brunswick Jehephone and Newfondlant Tclephone, whinh we refer to as the private companies. For each set of carriers, we specify three types of demand equations, the linear, the double-log, and the potterdam models for different revenue categories, the most important boing totaj, local, and toll revenues. The main deteminants of demand are the price of a partioular service divided by the price index for the region in minch the carrier has the juridiotion to operate, anc jacono divided by the price, with the latter two variables being geographically specific to the operations.

The production module is the section whexe the relationships between output, inputs, and technological change are estimated for Bell Canada, British Columbia lelephone, the private companies and the public companies. We estimated Cobb--Douglas production functions and experimented with constant and variable returns to scale. In addition, two measures of technological change are defined, percentage of calls direct distance dialed, and the percentage of telephones in number five crossbar and electronic switching system.

The financial module encompasses the estimation of the determinants of the rates of return on debt, common equity, and preferred shares, for Bell Canada, R.t. Jolophone and tho private carniors. Obviousiy, due to the nature of ownership of the public companies rate of retum equations, which sumarize hypotheses concerning financial capital market structure, axe rather less important, and meaningless with regards to equity financing. We experiment with the form of the function, the maner whim debt and cumby enter the equations, and we use variables representing alternative assets such as the long-tem corporate bond rate, and the long-term government bond rate.

Finally, we integrate the general model with the estimated equations and pasameters from the demand, production and finanojal modules. This integration is performed for Bell Canada, by far the most important telephone carsicr, and simulation experiments are carried ont for the period 1955-1975. Ihese simulation experiments are in two parts; one part assumes that Bell Canada
does not have any determining influence on the average costs of its different financing instruments; the second segment allows for monopoly pover (which is clearly shown to exist in the fimancial module) or the part of Bell. to influence these financial costs.

3. Conclusions

3.1. The Meoretical Model

1. The capital constraint (the market value of the balance sheet) is an important element in the integration of real and Eingoxaj decisions.
2. Imperfections in the financial capital markets manifest themselves through the ability of the carrier to influance its average costs of financing and thus create a distinction between marginal and average costs.
3. The determination of the corporate output supply, labour, debt, and equity demands are similtancously determined.
4. The integration of the real
and financial aspects of the firm imply that the determination of the capital budget is equivalent to the detemination of the value of physical capital.
3.2 Ihe Demard Moale

Bel1 Canada
The double-log model yielded a price elasticity of
total demand equal to - 1.3 and the income elastioity is . 8. Thus Bell services can be considered a "normal necessity" from which marcinal revenues axe positive.

B.C. Tel.ephone

The double-log model yielded a price elasticity of total demand equal to -1.1 and an income elasticity of l.l. Thus 3 .C. Telephone services can be considered a "normal necessity", since the income elasti-city is close to unity. Here also the marginal revenues are positive.

The Public Carriers

The linear model yielded an average price elasticity of total demand equal to -3.1 and an average income flastinity ot L a and so these servines are monstrared a "normal iuxury", from which marginal revenues are positive.

The Private Carriers

The double-log estimates of the price elasticity of total demand is -1.4 and the income elasticity is 1.3. So, once argain, telephone services of these carriers are considered a "nomal luxury" by their customers, who at the margin contribute positivoly to the carriens' revenues.

3.3 The broduction module

Bell Canada
Che Cobn-mouglass Fmotion with capital, labour, and raw materials as inpuis and direct distance dialing as the measure of technological change, characteriae bel. as having constant. returns to scale. The labour elasticity is . 616, tho capital
elasticity is . 305 and the materials elasticity j.s . 079.
B.C. Telephone

Jine constant returns to scale Cobb-Douglas function with capital, and labour as inputs, and B.C.'s direct distance dialing as the measure of technological change, yjeld a capital elasticity of .625 and a labour elasticity of .375 .

The Public Cayriers
The carriers are characterized by decreasing returns to scale, and the two factors Cobb-Douglas production relation, gives a capital elasticity of .200 and a labour elasticity of output of 600 .

The Private Carriers

mese antiens exhibit constant returns tu socile widu. a sapital elasticity of .557 and a labous elasticity of.443.

3.4 Ihe Financial Module

Bel 1 Canada

The rate of return or debt equation was linear in the logs and both the composition and the sum of debt and equity influence this rate. In addition, although the equity rate of return equation was linear, poth the composition and the sum of debt and equity influonce the equity rate, and corporate bonds are viewod as being an alternetive to holding Bell:s shares.
B.C. relephone

The rate of return equations show us that B.C. Tolophone exhibits some degree of monopoly power in the market
for its common shares，in which the composition of debt to comon equity and the composition of preferred to common equity play the dominant role． On the other hand in the debt and preferred share markets the degree of monopoly power exerted by this carrier is insignificant．

Jihe Private Carriers

These carriers do exhjbit monopoly power in thejr common share marlet where the composjtion of debt to common equity，and preferred to common equity， along with the corporate bond rate，determine thes rate of return on common equity．In a similiar fashion the private caxriers exhibit some influence on the rate of return of their preferred shares， anul̉ on üeju．

3．5 The Simulation Module

The results of the simulations are， indeed very encouraging．The difference between the simulated and actual values for the period 1.955^{-} 1975，is generally around ．3\％．Thus，the accuracy by which are model reproduces the characteristics of Bell Canada establishes the fact that we have captured the essence of the behavioux of a privately owned regulated cammer．

4．Future research

There are avenues in our model where， data permitting，disaggregations will be feasible． These disaggrocgations can occur in the supply of the product，jnstead of total services for example，one
can use local, and toll. One can also deal with a greates refinement of the different types of financing lnstruments, along the lines of different classes of,debt, and preferred shares.

There are important forecasting and simulation experiments that can be performed with this model. We envision, at least, four important areas in which simulation exerciees are to be performed. The first pertains to the regulatory aspect. What is the impact on production, debt, equity, and the inputs when the firm faces a market rate of returr on its physical capital rather than a regulated rate. secondly, what are the effects of an exoyereous shancje in he production cajabilities of the firm, for example a change in product mity or a change in factor intensjety, such as the carrier becoming more labour-intensive. Thidrdy, what is the impact if the firms are subject to maintaining a fixed debt/equity ratio, rather than one which is self-hecermined by the decision-making of the firm. Finally, what is the effect of an institutionally fixed Ievel of investruent while the debt/equity ratio is free to vary according to the optimal behaviour of the firm.

The purpose of this study is to evaluate the interaction of the product and factor requirements with the financial needs for important carriers in the telephone industry. A model iss developed, estimated, and simalated, depjeting the interaction of the corporete, real and finanoial decision mechanisms.

In recent years the teiecommunications sector, in general, and the telephone industry, in particular, have been absorbing a significant proportion of Canada's resources. Phis phenomenon may create severe problems for telephone carriers' and policy-makers in the future development of the jncustry. Thus, a systematic analysis of financial and real needs will aid decisionmakers in the assessment of corporate performance with respect to moting pojigy, to Iabour, physical and financial oaptal noeds.

The nature of the study necessitates that we must simultanecusly investigate the determinants of revenues, production, and labour hirings, along with the financial considerations. Jndeed, demard behaviour and teohology axe integral parts in infinencing the size and composition of financial resources. Consequentiy, in Chapter 2, we develop a general model of regulated corporate activity with explicit recognition of the potentially important feedback mechanisms betweon roal and financial cons derations. Th this model, we can isolate fonee Emadantal aspeots which datermjre financial needs: the nature of demand, the charactexistics of production, and the deteminants of the rates of return on the
various financial instruments.

The study is then divided into three further Chapters, which are referred to as the Demand Module, the production Module, and the pinancial Module. In these Chapters, we isolate the three important parts of the general model, in order that we can econometrically test for the actual determinants of demand, production, and rate of return characteristics.

The general description of the sub-modules axe:

1) The determinants of the demand for telephone services, on a disaggregated (such as local, toll, etc.), as well as, aggregated levels.
2) The determinants or the production relations for telephone services, which will depend on the firn's demands for labour and capital services, in light of its technological capabjlities.
3) Jhe deteminants of the rates of return on debt and equity capital, in the context of any monopoly power exhibited by the particular carriers. These rater of return will in gencral derpera on the value of debt and eguity, issued by any carries along wh varjables which measure altornative portfolio endeavouzs for the investors.

The last Chapter of the study combines the empirical
results of Chapters 3,4 , and 5 with the general model, in order that we can simulate the corporate historical developments utilizing our model. The simulation Chapter will focus solely on Bell Canada, which by far is the most important telephone carrier in Canada. The simulation module consists of the estimated relationships from the denand, production, and financial modules, as weli as, the optimality conditions, which are derived from the general model. This system of equations is then solved and the appropriate values of the endogenous variables are determined. A flow chart inlustrates the economic feedback mechanisms that occur in our model.

1. Introdnction

In the past, researchers have focused on the elements detemining the demand and mroduction characteristics of the telecommunications industry, in general, and the telephone industry, in particular. However, the financial and regulatory aspects have not been subjected to the same degree of intensive analysis. This state of affairs persists, although the roles of finaring and regulation are now playing a crucial part in the present and (proposed) future development of the industry.

The main stumbling block to adeguately understand the complete ramifications of the financial structure upon corporate growtin, is the lack of a.model integrating the financial decisions (capitall budgeting and leverage)" with the real decisions (output supply and factor demands). Thus, the first purpose of this project is to develop a model, which permits the integration of the financial and regulatory setting wi.th the product demand (revenue) and production relations.

The model, itself, will centre around various fundamental behavioural equations, which are the demand and rates of return (on debt and equity) functions, a technological equation (the production function) and tro constadints, a capital constraint (the manket value of the balance sheet), and a regulatory con. straint. Mhese relations are then ombined into a profit maximising model of comporate behaviour. ${ }^{\text {L }}$

The derived equations fron profit maximjzation will be a stmultaneous system of equations. Jhe endocenous variables of this system will be the demand for labour, supply of debt, supply of equity and a variable describing the impact of regulation. We will observe that the form of the rate of return eguations will be the key elements in determining the interdependence and feedback mechanisms between the real and financial decisions. Conseguently, in this theoretical part, we will pay particular attention to the rate of return specifications, in order to deljmit the nature of the firancial and real decision-making interdependence.

A noted feature of this model is, that we solve for debt and equity, and given certain exogenous variables (such as net money balances, ${ }_{2}^{2}$ physical capltal. is then determined. In other words, once a firm has decided hör to finance jts physical capital, gjven the plice of the capital stock, it has simultaneously determined the quantity of physical capital. Moseover, since we can determine the debtiand equity policy for and time period, we can then compute the change in the number of units of dejt and eguity, and so therefore; compute the real investment decision for the firm.

Finally, our model alinow us to incorjorate the regulatory envjronment. the impact of this environment is manifested by the regulatory constrant and the value of the "segulatory varjable", which we gimultaneousiy ascertom, along with the other aforementioned encogenous variables. Ihus, we are able to determine the Eimancial needs of any carier, in light of regulation and the exigency to be consistent yith the state of the product and factor maxkets. ${ }^{3}$

2. The Model

Let us begin our description of the general model by introducing the production function, which is defined by equation $(1)^{4}$;

$$
\begin{equation*}
y=F(K, L) \tag{I}
\end{equation*}
$$

where y is output, K is capital services, L is labour services, F represents the technology such that the marginal products of capital and labour are positive, ${ }^{5}$ These marginal products for capital and laboux respectively are, $\frac{\partial F}{\partial \mathrm{~K}}=\mathrm{F}_{\mathrm{k}}>0, \frac{\partial \mathrm{~F}}{\partial \mathrm{~L}}=\mathrm{F}_{\ell}>0$

Demand behaviour may be sumarized by the inverse functior, represented by equation (2);

$$
\begin{equation*}
\mathrm{p}=D(\mathrm{y})_{,} \tag{2}
\end{equation*}
$$

where p is the price of the product and D is the function with $\frac{d \eta(y)}{d y}=D^{\prime}<0$. So, we are assuming that the product is a normal. commodity.

The pure profits for the firm are defined as,

$$
\begin{equation*}
T_{\underline{g}}=p y-W_{\ell} T_{i}-W_{K} K_{1} \tag{3}
\end{equation*}
$$

where ${ }^{2}$ ate gross of taxes pure protits, wh is the factox price of labour and w_{k} is the factor price of capital. We define the factor price of capital to be related to the price of capital, the depre-
ciation rate, the rate of return on physical capital, capital gains (or losses) and the corporate income tax rate, by the following formula, ${ }^{6}$

$$
\begin{equation*}
w_{k}=\left[\delta p_{k t}+r p_{k t}-\left(\rho_{k t}-p_{k t}\right] \frac{(1-u d)}{(1-u)}\right. \tag{4}
\end{equation*}
$$

where δ is the rate of deprectation, s is the nominal rate of returr on physical capital (which is often loosely referred to as the cost of capital), pkt is the price of the capital stock in period t, u is the corporate income tax rate and a is the discounted value of depreciation deductions on a unit value (dollar value) of real investment.

In regards to the factor markets, we assume that the firm
 poly power in the real capital market. ${ }^{7}$ Consequently, the following equation, which combines (1), (2), (3) and (4) summarizes the product and factor markei relations,

$$
\begin{align*}
& \left.\cdots\left(p_{k t}-p_{k t-1}\right)\right]_{(1-u d)}^{(1-u)} K . \tag{5}
\end{align*}
$$

Fhe financial structure of the fimm may be represonted by a set of relations, the first of whon is the markot value of the balance shert, and we coll thje equation the capital onstrant:

$$
\begin{equation*}
\bar{M}+p_{k} K=p_{b} B+p_{c}^{S}{ }_{c}+p_{p} S_{p} \tag{6}
\end{equation*}
$$

where \bar{M} is the exogenous net money balances, B is the numer of bonds (long-term and short-term), s_{c} is the number of common shares, S_{p} is the number of preferred shares, P_{b} is the price of debt, p_{c} is the price of common shanes, and p_{p} is the price of preferred shares. ${ }^{8}$ The capital constraint reflects the fact that the market value:or the corporation's assets must equal it's liabilities. In addition, we are using the capital stock in (6) and the flow of services from this stock in the production function. Whe dimension problem is overcome by noting that the stock-flow conversion parameter (which may be the rate of capacity utilization) is assumed to be unity. ${ }^{9}$

The nominal rate of return on physical capital in period t i.s the walue of the gapital stock in period ttl (which was contractod in period t) minus the value of the stock in t divided by this value in period t. Similar definitions hold for common and preferred shares. The rate of return on debt must take into account the fact that interest payments are tax exempt. So, the nominal rate on debt is defined as the value in thl (contracted in t) minus the value, nete of tax, in period t divided by this value in period t : Therefore, with these definitions and utilizing the capital constraint we get,

$$
\begin{equation*}
(1+x) p_{k} k=\left(1+x_{b}(1 \cdots u)\right) p_{b} E+\left(1+x_{0}\right) p_{c} c^{c}+\left(1+x_{p}\right) p_{p} s_{p} \cdots\left(1+r_{m}\right) \mathrm{B} \tag{7}
\end{equation*}
$$

Dividing (7) hy $\mathrm{F}_{\mathrm{k}} \mathrm{K}$, subtracting 1 from both sides and using equation (6) yields,
$r=(1-u) r_{b} \frac{p_{b} p_{k}}{p_{k}}+r_{c} \frac{p_{c}^{S}{ }_{c}}{p_{k}^{K}}+r_{p} \frac{p_{p} p_{p} p}{p_{k}}$
where all variables are defined in period t, and we are assuming the rate of return on rominal money balances is zero. It is important to reaine, that the fact that the nominal rate of return on physical capital, is a weighted average of the rates of return on the different types of financial capitaj, arises, not from any ad-hoc definition of r, but rather from the correct proceảure of explicitiy incorporating the capital constraint. Indeed, to specjey an equation like (8) and not utilize the capital constraint in other segments of the model, is to jmplicitly assume particular characteristics with respect to the rates of return on the financial. comodities. These particularities; centre upon the rates being fixed, or that the behaviour of the returns are such that the liability side of the capital constraint is detemined independently of the asset side. Manifestiy, these assumptions are the antithesis for any meaningfully integrated financial and real decision-making model. It seems then that the capital constraint, along with the specification of the deteminants of the rates of return equations, is fundarnental to the nature of the integration.

The various rates of return fon different comodities, need not be constant, since the rates are detined from the spot and formard prices. If the quantities of various comodities influence these spot or: formard prices, then the rato of retum may ma variable, rhis variable rate of return may be affected by the fixm's own decisions,
if the variables influencing the spot: and forward prices fall under the firm's control. If this situation arises, then the finm possesses some degree of price-setting power or monopoly power in the capital markets. In our: general model, we assume that the firm cannot influence spot prices, but only forward prices (for real and financial capital), and so there are imperfections in the financial capital markets. These imperfections are reflected in the following equations, ${ }^{10}$

$$
\begin{align*}
& r_{b}=B\left(p_{b} B, p_{c} S_{C}, p_{p} S_{p}\right) \tag{9.1}\\
& r_{c}=C\left(p_{b} B, p_{c} S_{c}, p_{p} S_{p}\right) \tag{9.2}\\
& r_{p}=P\left(p_{b}, p_{c} C_{c}, p_{p} S_{p}\right) \tag{9.3}
\end{align*}
$$

where the rates of return depend on the values of debt, common equity and preferred equity. The rationale for including the values of the financial instruments in equation set (9) is
quite obvious. The rate of return equations are inverse demand equations reflecting the outoome of the decisions by agents (individuals and firms) in their portfolio decisions, with regard to the equity and debt issued by the oarrier. Oovionsly, these inverse financial demand equations will be infiuencea by tho quantities of the other comodities that theso agents are simu?taneously demanding anc supplying. The exact composition of these other commodities will depend on the preferemces and endoments
of the individual investoms, the motivation (profit maximization, revenue maximization, etc.) and the ability of the corporate investors, and the process of aggregation. Neveitheless, the only variables that the carrier can controland theseby influence the nominal rates of returm, are aebt and equity: All other variables in the investor decision process are exogenous to the carrier. This means that, although equation set (9) is derived from a complex interaction of agents (in the same way that the inverse product demand is determined by a complicated mechanism), from a theoretical vantage point, because ve want to focus on the monopoly power of the carriex, (9) includes all the relevant variables. However, for the empirical implementation, estimation and simulation, various forms of these exogenous variables must be acountec for in tie sabe of yetman equtions.

Eguations of similar, but less general, form oar be found in the literature. It is often expressed, that the rates of return depend on the debt-guity ratio. Let us assume that common and preferred equity have an additive impact on the rates of return, so that only the total value of equity and the value of debt are in the domajn of the rates. Next, assume that the rates of return are homogeneous of degree zero in debt, and equity, which means that proportional changes in tho composition of the time's port.folio do mot affect the rates of retarn. we can then mate the equations in (9) as only depending on the ratio of debt to equitral White this proposition may be an interesting property to test cmpirically, for the theorotical formulation, we see no reason to
impose such a restriction 'a priori' on the inverse demand functions for the aifferent types of financial capital.

Thus, with ecuations (5), (6), (8), and defining $\pi_{n}=(1-v) \pi^{\prime}$, where π_{n} is the net of tax pure profits, we can summaxize the real and financial chaxacteristics by the equation set (9) and (10)

$$
\begin{align*}
& \pi_{n}=(1-u)\left[F\left(F\left(p_{b} B+p_{c} S_{c}+p_{p} S_{p}-\frac{M}{M}\right) p_{k t}^{-1} L\right)\right) F\left(\left(p_{b} B+p_{c} S_{C}\right.\right. \\
& \left.\left.\left.+p_{p} S_{p}-\bar{M}\right) p_{k t}^{-1}, J_{1}\right)-w_{b}^{L}\right]-\left[\left(I_{b}(1-1)+\delta-\theta(1-\delta)\right) p_{b} B\right. \\
& \left.+\left(r_{C}+\delta-\theta(1-\delta)\right) p_{C} S_{C}+\left(r_{p}+\delta-\theta(1-\delta)\right) p_{p} S_{p}-(\delta-\theta(1-\delta)) \bar{M}\right] \\
& (1-\mathrm{ud})(1+\theta)^{-1} \text {, } \tag{1.0}
\end{align*}
$$

where $\theta_{t}=\frac{p_{k t}-p_{k t-1}}{p_{k t \cdots 1}}$, and θ_{i} is called the rate of price inflation of the physical capital stock.

The regulatory environment is typically characterized by the constraint,

$$
\begin{equation*}
\pi_{n}+r_{p_{k}} k(1 .+\theta)^{-1}+u r p_{b} p_{b} B(1+\theta)^{-1} \leqq(1-u)(1+\theta)^{-1} i_{p_{k}} K \tag{111}
\end{equation*}
$$

where i is the before tax allowed nominal rate of return on capital net of depreciation. Using the capital constraint and equation (1.0), (11) becomes

$$
\begin{align*}
& -(\delta-0(1-\delta))(1-u d)(1+0)^{-1}\left(p_{b} \beta_{0} p_{c} a_{c}+p_{p} p_{p}-\bar{M}\right) \\
& +u d(1+\theta)^{-1}\left[r_{b}(1-u) p_{b} B+r_{c} p_{c} s_{c}+r_{p} p_{p} S_{p}\right] \\
& \because \operatorname{ur}_{b}(1+0)^{-1} p_{p} B \leqq(1-n)(1+0)^{-1} i\left(p_{b} B+p_{c} S_{c}+p_{p} S_{p}-\bar{M}\right) . \tag{12}
\end{align*}
$$

Before discussing the objective of the firm, it bears mentioning that, in our context, we view the factor prices of labour, and physical capjtal, the prices of debt and equity, and the depreciation rate, as random variahles. Thus, since the prices of debt and the two types of equity are randon, then the rates of return are also stochastic variables. Due to the presence of uncertainty, the oljective function of the firm must incorporate the manner in which the firm meximizes the expected value of profit. ${ }^{12}$ This implies that the firm is risk neutralr in that it's goal iss to maximize the expected value of profit, irrespective of the variance of the dis:tribution (or for that matter any other moments). Therefore, the firm maximizes the expected value of (10) subject to the expected value of (12) and equation sei (9),

$$
\begin{aligned}
& L=T\left[(I - u) \left[D\left(F\left(\left(p_{b} B+p_{C} S_{C}+p_{p} S_{p}-\bar{M}\right) p_{k t}^{-1}, L\right)\right)\right.\right. \\
& \left.F\left(\left(p_{b}{ }^{3}+p_{c} S_{c}+p_{p} S_{p}-\overline{1 g}\right) p_{j c} t^{\prime} I_{1}\right)-w_{e^{L_{1}}}\right]-(1+\theta)^{-1} \\
& {\left[\left(B\left(p_{b} B+p_{C} S_{C}, p_{p} S_{p}\right)(I-u)+\delta-\theta(I-\delta)\right)(I-u d) p_{b} B\right.}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(P\left(p_{b} B p_{c} B_{c} p_{p} S_{p}\right)+\delta-\theta(1-\delta)\right)(1-u d) p_{p} S_{p} \\
& -(\delta-0(1-\delta))(1-u a) M-\lambda\left[(1-u) \mid D\left(p \left(\left(p_{b} B+p_{c} S_{c}\right.\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \cdots(1-u)(1+\theta)^{\cdots l}{ }^{-1}\left(p_{b} B+p_{c} S_{c}+p_{p} S_{p}-\bar{M}\right)+\operatorname{ud}(I+\theta)^{-I}
\end{aligned}
$$

where L is the Lagrangian function. Equation (13) is a function of five variables, debt (B), common equity (S_{C}), preferred equity $\left(S_{p}\right)$, labour (L), and the regulatory variable (λ). ${ }^{13}$

The following optimality conditions, are derived by differentting (13) with respect to each of the control variables and $\lambda:$

$$
\begin{equation*}
\frac{\partial L}{\partial L}=\mathrm{F}_{\ell!}\left(D^{\prime} \mathrm{F}+D\right)-\mathrm{E}\left(\mathrm{~W}_{\ell}\right)(1-\lambda)(I-u)=0 \tag{14.1.}
\end{equation*}
$$

$$
\begin{align*}
& \frac{p_{k} \partial L}{P_{b} \partial B}=(1-\lambda)\left[(1-u)\left[F_{k}(D+F+D)\right] \cdots(\delta-\theta(1-\delta))(1-u d)(1+\theta)^{-1} p_{k t}\right] \\
& -\mathrm{F}\left(\frac{\partial B}{\partial B} \mathrm{P}_{\mathrm{b}} \mathrm{~B} \cdot(1-\mathrm{u})+\frac{\partial C}{\partial E} P_{C} S_{c}+\frac{\partial F}{\partial B} \mathrm{P}_{\mathrm{p}} S_{p}(1-u d)(1+\theta)^{-1} p_{k t}\right. \\
& \cdots E(I-u)(I+\theta)^{-1} p_{k}\left(x_{b}(I-u d)-\lambda i\right)-E \lambda u d(1+\theta)^{-1} p_{k} \int_{a} \frac{\partial \beta}{\partial B} p_{0} B(I-u) \\
& +\frac{\partial c}{\partial B} p_{c} S_{c}+\frac{\partial \partial}{\partial B} p_{p} S_{0}-E \lambda_{1}(7+\theta)^{-1} \frac{\partial B}{\partial b} p_{b} B_{B} \\
& -E \lambda p_{k}(1+0)^{-1} p_{k} x_{b} u[1+d(1-u)]=0 . \tag{14.2}
\end{align*}
$$

$$
\begin{aligned}
& \frac{p_{k} \partial I_{1}}{\mathrm{p}_{\mathrm{c}} \mathrm{~J}_{\mathrm{c}}}=(1-\lambda)\left[(1-u)\left[\mathrm{F}_{\mathrm{k}}\left(D^{t} \mathrm{~F}+D\right)\right]-\mathrm{E}(\delta-6(1-\delta))(1-v d X I+\theta)^{-1} \mathrm{p}_{\mathrm{kt}}\right] \\
& -\mathrm{E}\left(\frac{\partial B}{\partial S} p_{c} p_{b}(1-u)+\frac{\partial G}{\partial S} p_{c} S_{c}+\frac{\partial P}{\partial S} p_{c} S_{p} S_{p}(1-u d)(1+\theta)^{-1} p_{k t}\right.
\end{aligned}
$$

$$
\begin{align*}
& \frac{p_{k}}{P_{p}} \frac{\partial L}{\partial S_{p}}=(1-\lambda)\left[(1-u)\left[F_{k}\left(D^{\prime} F+D\right)\right]-E(\delta-\theta(1-\delta))(1-u d)(1+\theta)^{-1} p_{k t}\right] \\
& -\left(p_{0} \frac{\partial B}{\partial S_{p}} p_{b} B(1-u)+\frac{\partial C}{\partial S_{p}} p_{c} S_{c}+\frac{\partial P}{\partial S_{p}} p_{p} S_{p}\right)(1-u d)(1+\theta)^{-1} p_{p_{k c}} \\
& -\mathbb{E}(1-u)(1+\theta)^{-1} p_{k}\left(r_{p}(1-u d)(1-u)^{-1}-\lambda i\right)-E \lambda u d(1+\theta)^{-1} p_{k} \\
& {\left[\frac{\partial B}{\partial S_{p}} p_{b} B(1-u)+\frac{\partial C}{\partial S_{p}} p_{c} S_{c}+\frac{\partial \hat{F}}{\partial S} p_{p} S_{p}\right]-E \lambda u d(1+\theta)^{-1} p_{p_{k}} x_{p}=0 .}
\end{align*}
$$

$$
\begin{align*}
& \left.p_{k t}^{-1}, I_{1}\right)\left(-w_{\ell}^{I}-(\delta \cdots \theta(1-\delta))(1-u d)(I+\theta)^{-1}\left(p_{b}+p_{c} S_{c}+p_{p} S_{p}-\bar{M}\right)\right. \\
& -(1-u)(1+\theta)^{-1} i\left(p_{b} B+p_{C} S_{C}+p_{p} S_{p}-\vec{M}\right)+u \bar{d}(1+\theta)^{-1} \\
& \left.\left[r_{b}(1-u) p_{b} B+r_{c} p_{c} S_{c}+r_{p} p_{p} S_{p}\right]+u(1+\theta)^{-1} r_{b} p_{b} B\right]=0 . \tag{.14.5}
\end{align*}
$$

The equations in (14) tell us that the marginal revenue product of lobour equals the expected value of the wage. Also, we can relate the first order conditions for debt and both types of equity to the same kind of econonic meaning. for instance, the net of tax differential letween the maxginal revenue product of physical capital and the difference between the rate of return on debt and the ailowed rate (everything adjusted for the presence of regulation) is equal to the expected marginal cost of financing capital due to an increase in debt. Finally, we can observe that the expected marginal costs of financing capital through debt, and equity (common or preferred) are equal. In our model, there is the simultaneous determination of real and financial decisions where both the optimal capital budget and various financial variable ratios are detembned fuom the five fomamontal cquations.

It is quite clear, that the equations describing the different rates of retum play a key role in determining the corporate equilibrium. This means that changes in these functional relationships due to changes in information or maxket power will affect our results, Nevertheiess, our model is consistent with a varied array of equaw tion forms of differing degrees of generality. Therefore, once we have estimated the different equations from each of the modules (demand, production, and financial) we wisl find the relevant functional forms and parameters to be substituted into equation set (14). Mhis substifution will ocour in the simuation module, when we solve (14) for Bell Canada.

Tppendix 2.I Derivation of the Relationship Between the Rates of Return.

Suppose there is one type of equity, and the corporate tax rate is zero (or the interest on bonds is not tax exempt), then the relationship between the rates of return is denoted by,

$$
\begin{equation*}
r_{k t} p_{k t} K_{t}=r_{b t} p_{b t} B_{t}+r_{s t} p_{s t} S_{t: ~}^{\prime} \tag{A.1}
\end{equation*}
$$

where $r_{k t}$ is the nominal rate of return on physical capital, $x_{b t}$ is the rominal rate on bondis, and r ist the nominal rate on equity, all defined in period t. Also, $\mathbb{P}_{\mathrm{k} . \mathrm{t}}$ is the future price of physical capital, $p_{b t}$, and $p_{s t}$, are the future prices of bonds and equity respectively; K_{t} is the quantjty of physical capital, P_{t} the number of bonds, and st the number of shares; all defined in period t.

$$
\begin{align*}
& \text { Now any real rate of return is defined as, } \\
& \rho_{i t}=\frac{q_{i t}-q_{i t+1}}{q_{i t+1}} ; i=k, b, s, \tag{A.2}
\end{align*}
$$

where $\rho_{i t}$ is the real rate of return on in period t, and ${ }_{i}$ it is the forward price of I in fexiod t. We must note that forward prices refer to contracts in the present for future delivery of a commodity, while future psjees refer to contract fommation and delivery both in the same future period.

The connection botwon fowerd and fature prioes may be established by the following equality,

$$
\frac{p_{i t}}{p_{n t}}=\frac{q_{i t}}{q_{n t}} \quad i=k, 0, s_{r}
$$

which states that relative forward prices equal relative future prices; where n is the numeraire commodity. since commodity n is the mmeraire all of it's future prices are unity, i.e. Pont $=$. This means that,

$$
\begin{equation*}
\dot{p}_{i t}=\frac{q_{i t}}{q_{n t}}-\dot{j}=k, b, s \tag{A.4}
\end{equation*}
$$

By the capital constraint, the market value of the balance sheet, we have,

$$
\begin{equation*}
p_{k t} K_{t}=p_{b t} B_{t}+p_{s t^{\prime}} S_{t^{\prime}} \tag{A.5}
\end{equation*}
$$

we abstract from introducing money balances, whicn does not affect the procedures of the derivation irrespective of whether x_{m} is zero or mot. mheretore, with equations (A.5) and (A.3) (nsing the fact that $p_{n t}=1$) we get (by multiplying out $g_{n t}$) the following,

$$
\begin{equation*}
q_{k t} K_{t}=q_{b t} B_{t}+q_{s t} S_{t} \tag{A.6}
\end{equation*}
$$

which is the capital constraint measured in terns of forward prices. when using (A.2), equation (A. 6) is transfomed to,

$$
\begin{equation*}
\left(1+o_{k t}\right) q_{j c t+1.1} k_{t}=\left(1+\rho_{b t}\right) q_{b t+1} B_{t}+\left(1+\rho_{s t}\right) q_{s t+1} S_{t} \tag{A.7}
\end{equation*}
$$

However, from (A.3), pith $a_{i t i l}=a_{i t+1}$ and so (A.7) becomes (by dividing out $\left(I_{n t+I}\right)$

$$
\begin{equation*}
\left(1+\rho_{k t}\right) \dot{p}_{i t+1} K_{t}=\left(2+\rho_{b t}\right)^{p} p_{t+1} A_{t}+\left(1+\rho_{s t}\right) p_{s t+t^{s}} \tag{A.8}
\end{equation*}
$$

We can multiply and divjde each term in (A.B) by the appropriate future price in period t and therefore,
$\left(I+\rho_{k t}\right) \frac{p^{\prime} k t+1}{p_{k t}} p_{k t^{\prime}} K_{t}=\left(I+\rho_{b t}\right) \frac{p_{b t+I}}{P_{b t}} p_{b t} B_{t}+\left(I+p_{s t}\right) \frac{p_{s t+I} p_{s t} S_{t}}{p_{s t}}$.

The rate of inflation for any comodity in defined as
$\frac{p_{i t+1}}{p_{i t}}=\left(1+\gamma_{i t}\right)$, where $\gamma_{i t}$ is the rate of inflation of i in period t and so (A.9) becomes,
$\left(1+\rho_{k t}\right)\left(1+\gamma_{k t}\right) \rho_{b t} K_{t}=\left(1+\rho_{b t}\right)\left(1+\gamma_{b t}\right) p_{b t} B_{t}+\left(1+\rho_{s t}\right)\left(1+\gamma_{s t}\right) p_{s t} S_{t}$

Liest, the definition of one plus any nominal rate of return sternin to meplus the rete of inflation for that comodity times one plus the real rate of return of that commodity, i.e. $\left(1+r_{i t}\right)=\left(1+\gamma_{i t}\right)\left(1+\rho_{i t}\right)$. Hence,

$$
\begin{equation*}
\left(1+x_{k t}\right) P_{k t^{\prime}} K_{t}=\left(I+r_{b t}\right) p_{b t^{B} t}+\left(1+r_{s t^{\prime}}\right) p_{s t^{\prime}} S_{t} \tag{A.II}
\end{equation*}
$$

and by copital constraint) (A.5)

$$
r_{k t} P_{k t} K_{t}=r_{b t} P_{b t}^{B} t+r_{s t^{P}} s_{t} s_{t}
$$

which is the resul.t we want to dexive.
mherefore, we have established the nature of the relationshjp between the rates of retum i.e. that the rate of retum on physical capital is egual to the weighed average of the rates of return on the different types of financjal capitaly where thesh rates axe nominal ones.
lrf we postulate revenue or sales maximization the essential structure of the model is not affected, but the derived demand and supply equations need to be slightly modified.
${ }^{2}$ By net money balances, we mean cash plus accounts receivable minus accounts payable and other residual balances.
${ }^{3}$ our analysis builas on the works of Lermer and Carleton (7), Robichek and Myers (8), Turnovsky (9), and Vickers (10): (11).
${ }^{4}$ We do not include the time variable where it does not lead to confusion to omit it. But the time dependence of the variables is understood.
5_{F} also has sufficient properties in oxder that it may be used in the profit maximization problem.
$\sigma_{\text {The }}$ formula for w_{k} may be derived in an explicitly dynamic model. The fact that we Include this formula means that we are indeed including the various dynamic elements. See mall and Jorgenson (3).
$T_{\text {mbe }}$ exact nature of this monopoly power will be speafied below when we discuss the components of the nominal rate of return on physical capitaln
${ }^{8}$ For theoretical purposes there is no need to assume that in is exogenous However, for the empirical implementation of the model. we want to focus on debt and equity, rather than net money balances.
${ }^{9}$ We can let the stock-wlow parameter be some number different from 1 , as long as it is an exogenous coefficient.

IO Mhesc equations will also depend on other variables re.. flecting altarnative assets. However, these other variables are exogenous to the firm's decision process, and therefore, we do not have to include them for the theoretical specification, but only for the empirical implementation.
${ }^{2 . l}$ see, for example, the axtiole by turnovsky (9).
12 we can altematively assume, the finm maximizes the expected utility of proft. However, our ultimato purnose is to estimate the derived relationships, and since virtually nothing is known, con… cermjng the empirical implementation of corporate utility functions, we have elected to assume that $u(\pi)=\pi$, where J is the utility function.

13 According to the Averch-Johnson regulatory model; as described in Bailey (1), Bamol and Klevorick (2), and Jomson (4), 0<x<1.

1. Bailey, E., Economic Theory of Regulatory Constraint, D. C. Heath, Lexington, Massni 1973.
2. Baumol, W., and A. Kleworick, "Input Choices and Rate of Return Regulation: An Overview of the Discussion", Bell dournal of Ecomomios and Management. Soience, Vol. l., Vo. 2 ; Autumn, 1570.
3. Hall, R.E. and D. Jorgenson, "Application to the Theory of Optimum Capital Accumulation", in I'ax Incentives and Capital Spending, Chap. 2, (ed. G. Fromm), The Brookings Institution, Washington, 1971.
4. Johrsion, L., "Belaviour of the Firm Under Regulations Constraint: A Reassessment" , American Economje Revier, May, 1973.
5. Jorgenson, D., "Tnvestment Behaviour and the Production Function", Bell Journal of Economics and Management Science, Vol. 3, No. 1 , spring, 1972 .
6. Leland, H., "Regulation of Natural Monopolies and the Fair Rate of Return", The Bell Journal of Economics and Management Science, vol. 5, NO. 1, Spring, 1974.
7. Lexmex, E., and W. Carleton, "mige Trtegration of Capital pudgeting and Stock Valuation", Amexican Economic Review, September, 1964.
8. Robiehek: A. and s, Myers: Optimal Financing Decisions, PrenticeHall, Englewood Cliffs, N.J., 1965.
9. Tumoveky, S., "Financial Structure and the Theory of Production", Journal of Finance, Vol. 25, No. 5, December, 1970.
10. Vickers, D., the mpory of the fism: production, Capital and Finance, McGraw-Hill, New York. N.Y., 1968.
1.1. Vickers, D., "Cost of Capjetal and the structure of the Firm", Journal of Pinance, Vol. 25, No. 3, March, 3970.

The nature of the telephone demand module is to describe the demand characteristics for the telephone services of the mrans-Canada melephone system (rcis) companies. 1 In describing the demand, and thereby the revenve, conditions for the system, we formulate a model which estimates the historical structure. This structural specification is then utilized to forecast the future trends of the carriers' revenues.

Consequently the purpose of the demand module is twofold. Firstly, we estimate the demand aspects as a separate entity in the overall industry model. These estimated coefficients are then combjned with the relevant segments of the production and finanaial modules so that the integrated model may be implemented and the appropriate forecasting experiments carried out. Therefore, one must view the results of this section not only in isolation, but also within the context of the complete model.

The study of demand behavior for telephone services is an important indertaking, because of jes roje in detemining company revenues. Indeed, demand systems already exist depicting the Canadian telephome frodustay, in genera?, for example is. Dobell et. al. [3] an 4 . Waverman [9]. Moxeoven, other inportant works have focuser on partioulas amman aspects, as in, v. Combo [2], and I.I.Q.J. [5] - Our inmedjate jmterest is in the gencral structural form of the telephone demand relations.

Before proceeding to formulate the module, we must determine the appropriate aggregations across economic agents (in this case carriers) and commonties (jn this oase telephone services). mone demand module disaggregates camiejs into four catecories. We treat Bell C'anada and British Columbia गelephone separately; we aggregate albesta Government I'elephones, Fdmonton Telephones, Saskatchowan Telecomunications and the Manitoba Telephone system into one category called public companies; we aggregate Maxitime Telegath and Telephone, New Brunswok Telephone and Newfoundland Telephone into one category called private companies. The rationale for this aggregation js hased on the following reasons. firstly, Bell Canada is the leader, in texms of market shaxe, of the inductry
 as their name sugcests, are govemment omed while the three companies operating in the Maritimes are privately controlled. Finally, locational considerations suggest that the western carriers be separated from the eastern area , thus B.C. Telephone is dealt with separately from the Maritime private companies. Hence, our transactor disaggrecrations are derived from the market share, legal and spatial characteristice of the industry,

Whe diseggremation for the telephone services proceeds along the lines of local, toll and total revenues. However, in some casos; notobly Ben? Canda, where there exists a larcer databant on revenue art price serics, the services were further decomposed into local plus toll and locse plus toll plus diectory advertising,

The explication of the demand module is divided into four further sections. In section 2 we describe the various theoretical specifications and their rationale, in section 3 we describe the data and their Imitations, in section 4 we present the empixical results and their evaluation.

2. The Theoretical Models

The theoretical basis for the demand model which is utilized in the econometric investagations is discussed in this section. The economic theory that we draw upon is largely the analysis of the individual household and also from the firm.

In developing the model, the first question to be answered is who are the demanders of telephone services. Manifestly, both households and fixms axe the demanders, since the telephone is a consumption product to households and a factor of production (part of intermediate inputs) to firms. Ideally, then, we would desire to construct demand equations disaggregated, not only along suppliex and service catcorories, but, in adation, along demander groups. However, because of data limitations, we follow the usual. route and aggregate the household and firms' demand for each reveniue category into a single aggregate. We therefore assume that. although the motivations and constraints of consumers and producers are different the ultimate elements affecting their telemone service demand are the same.

Individuall demand behavior, according to economic theory, suggests that given the objectives of the demandens preferences for consumers and generally protits for Eims), that the guantity demanded of the $i^{\text {th }}$, service by the $k^{\text {th }}$ household in period $t\left(x_{i t}\right)$ depencts on the nominal income of the $\mathrm{k}^{\text {th }}$ houselola in period t $\left(Y_{t}^{k}\right)$, the price of tho $i^{\text {th }}$ service in period $t\left(P_{i t}\right)$, and the
price of other comnodjties demanded and supplied by the housenold (Pjt; $j=1, \ldots, n$ and $\left.j F^{\prime} i\right)$. In a Eunctional form we find that,

$$
\begin{equation*}
X_{i t}^{k}=h_{i t}^{k}\left(P_{1 t}, \ldots, P_{n t} \cdot Y_{t}^{k}\right) \tag{I}
\end{equation*}
$$

whene $h_{i t}^{k}$ is the demand function of the $i^{\text {th }}$ sexvice for the $k^{\text {th }}$ household in perjod t.

To derive the aggregate household demand for any service i, in any period t, we must sum equation (i) over all households who are demanding the service.

$$
\begin{equation*}
\sum_{k=1}^{J} x_{j, t}^{k}=\sum_{k=1}^{J} n_{i t}^{k}\left(P_{1 t}, \ldots, p_{n t}, Y_{t}^{k}\right) \tag{2}
\end{equation*}
$$

where J is the number of household demanders. So then,

$$
\begin{equation*}
x_{i t}^{n}=h_{i t} n_{1 t}, \ldots n^{2} v_{t}, \ldots, v_{t}^{\prime} \tag{3}
\end{equation*}
$$

where $x_{i t}^{H}=\sum_{k=1}^{J} x_{i t}^{k}$ and $h_{i t}\left(P_{I t}, \ldots, P_{n t}, y_{t}^{I}, \ldots, x_{t}^{J}\right)$
$=\sum_{k=1}^{J} h_{i t}^{k}\left(p_{1 t}, \ldots, p_{n t}, X_{i}^{k}\right)$ Notice that in the aggregate demand function the income terms for each household enter separately and not as an aggregate. This fact takes into consideration that the distribution of income among households is not fixed. If we assume that the distribution of income among houscirolds in any pertod of time is fixed then we can write eguation (3) as,

$$
\begin{equation*}
x_{i t}^{H}=W_{i t}\left(\mathrm{P}_{1 t}, \ldots \mathrm{P}_{\mathrm{nt}}, Y_{t}^{\mathrm{M}}\right) \tag{4}
\end{equation*}
$$

where $Y_{t}^{I I}=\sum_{k=1}^{U} Y_{t}^{k}$ is the aggregate income of the households.

Moreover, let us assune that the form of the denand function does not depend on the time period and so

$$
\begin{equation*}
X_{i t}^{\mathrm{IL}}=h_{i}\left(P_{1 t}, \ldots P_{n t}, X_{i t}^{H}\right) \tag{5}
\end{equation*}
$$

For the producers, these demands for telephone services , are derived, not from utility maximization procedures as in the case of households, but from cost minimization techniques. The quantity demanded of the $i^{\text {th }}$ telephone service by the $2^{\text {th }}$ firm in perion $\underset{3}{ }\left(X_{i t}^{\ell}\right)$ depencs on the nominal income (since output is given $)^{3}$ of the $l^{\text {th }}$ firm in period $t\left(X_{t}^{l}\right)$, the price of the $i^{\text {th }}$ service in period $t\left(P_{i t}\right)$, and the price of all other commodities
 we have

$$
\begin{equation*}
x_{i t}^{i}=g_{i t}^{i}\left(\dot{P}_{1 t}, \ldots, P_{m t} ; Y_{t}^{n}\right) \tag{6}
\end{equation*}
$$

where $g_{i t}^{\ell}$ is the $\ell^{\text {th }}$ firm's demand function for the i th service in period t. Summing over all the fixms yields,

$$
\begin{equation*}
x_{i t}^{\Gamma}=\sigma_{i t}\left(F_{I t}, \ldots, P_{m t}, Y_{t}^{I}, \ldots, Y_{t}^{I}\right) \tag{7}
\end{equation*}
$$

where I is the number of firms, $X_{i t}^{F}=\sum_{\ell=1}^{I} x_{d i t}^{\ell}$ and

$$
g_{i t}\left(P_{I t} \ldots, P_{m t}, Y_{t}^{I}, \ldots, v_{t}^{I}\right)=\sum_{l=1}^{I} q_{i t}^{\ell}\left(P_{I t}, \ldots, P_{m t}, X_{t}^{\ell}\right)
$$

Again it is not aggregate output whioh affects the aggregate producer demand function for the $i^{\text {th }}$ service irs period t, but raiher all the outputs separately which reflect the size and
composition of output levels fox firms demanding telephone services. Ey assuming that the output composition is fixed in every period and the demand functions do not change over time we get,

$$
\begin{equation*}
X_{i t}^{T}=g_{i}\left(P_{1 t}, \ldots, P_{m t}, Y_{t}^{F}\right) \tag{8}
\end{equation*}
$$

where $y_{t}^{F i}=\sum_{l=1}^{T} Y_{t}^{\ell}$.

To derive the consumer and producer demand for the $\mathrm{i}^{\text {th }}$ service in period t we must sum equations (5) and (8).

$$
\begin{equation*}
x_{i t}=H_{i}\left(P_{1 t}, \ldots, P_{r t}, Y_{t}, Y_{t}^{Y^{H}}\right) \tag{9}
\end{equation*}
$$

where $x_{i t}=X_{i t}^{H}+X_{i t}^{F}, H_{i}\left(P_{1 t}, \ldots, P_{r t^{\prime}} Y_{t}^{H}, X_{t}^{F}\right)=h_{i}\left(P_{1 t}, \ldots, P_{n t}\right.$,
 and producer) demand function for the $i^{\text {th }}$ telephone service.

Once again by assuming that the distribution of income between households and firms is fixed and by letting the prices of all commodities other than the $i^{\text {th }}$ service be represented by a price index in period $t\left(P_{t}\right)$, we can write equation (9) ass,

$$
\begin{equation*}
\mathrm{x}_{\mathrm{it}}=\mathrm{H}_{\mathrm{i}}\left(\mathrm{P}_{\mathrm{it}} \mathrm{P}_{\mathrm{t}}, \mathrm{Y}_{\mathrm{t}}\right) \tag{10}
\end{equation*}
$$

where $y_{t}=y_{t}^{H}+X_{t}^{T}$.

Now that we have aryived at the aggregate demand function For any telephone service, we are able to impose the 'a priori.' restrictions from economic theory. Economic theory does not predict
the form of the demand function (m_{i}), but the theory does impose restrictions on the pattern of price and income effects in systems of demand behavior. Fisstly, household and firill behavior is such that the demand function should be honogeneous of degree zero in the prices and income. In other worde, if there is an equiproportionate change in all prices and income then the cost minimizing producer demand and utility maximizing consumer demand do not change. Consequently, the aggregate demand is not affected. This result implies that we can write equation (10) as,

$$
\begin{equation*}
x_{i t}=u_{i}\left(p_{i t}, y_{t}\right), \tag{1.1}
\end{equation*}
$$

where $P_{i t}=P_{i t} / P_{t}$ and $Y_{t}=Y_{t} / P_{t}$. The variable $P_{i t}$ is the relative price of the $i^{\text {th }}$ service in period t and y_{t} is the real income in perjod t.

The second proposition pertains to the nature of the effects of a change in the relative price and the real income on demand. Economic theory states that if the effect.of a change in Yt is to increase the quantity demanded then it muet be true that the effect of a change in $p_{i t}$ is to decrease the quantity demanded. Therefore the negativity condition is:
if $\frac{\partial x_{i t}}{\partial y_{t}}>0$ then it mast be the case thet $\frac{\partial x_{i t}}{\partial P}<0$.
Whe last restriction, in this context, is the so-called adding-up condtion which states that the sum ot the propostions of expenditure on all commodities out of income (or output) must equal unity. This means that if $p_{i t}{ }_{i t}$ is the expenditure on the
$i^{\text {th }}$ service and there are r commonities then $\frac{\sum_{i=1}^{P_{i} t_{i t}}}{Y_{t}}=1$ This restriction, however, is not as important as the previous two because we are aggregating across houscholds and firms. The reason is that, in general, this thind condition holds for consumers, but does not do so for p̈roducers, unless their production functions exhibit constant returns to scale. Since the nature of the production functions for the producers who demand telephone services is outside the purriew of our study, we shall derelop demand models which do and do not incorporate this last condition. Moreover, whether this last condition is satisfied or not will not be a prexequisite for the acceptance or rejection of a particular functional form.

After the description of the relevant features of our specification which are derivable from the theory, for the empirioal applications of equation (11), it is necessary to specialize the general form of the demand relation and to account for stochastic 5 pheromera.

2.1. The finear Demand Model

Whe linear denand model assumes thet the form of the aggregate derand function (${ }_{i}$) is lineax, so that,

$$
\begin{equation*}
x_{y t}=\beta_{0}+\beta_{2} p_{t}+\beta_{2} y_{t}+e_{t}, \tag{12}
\end{equation*}
$$

where e e_{t} roprosents the disturbance that can ocur because if may not be strictiy linear or thene nay exist measurement errors in the dependent variable and also other minor variables may have been omitted from the equation.

Here we must find that if $\beta_{2}>0$ then it should be the case that $\beta_{1}<0$. This means that if increases in income tend to increase demand then increases in the service's price tend to decrease demand. It bears mentioming that equation (1.2) satisfies the honogeneity and negativity conditions but does not satisfy the adding-up restriction. Nevertheless, in light of the caveat stated at the end of section 2 , concerning the addingup condition, the linear model should not be dismissed outright on these grounds.

2.2 The Double--Log Demand Model

In the double-log model we begin with the general demand equation, but instead of assuming that it is lineax, we assume that it is muitiplicative,

$$
\begin{equation*}
x_{i t}=\alpha_{0} p_{i t}^{\beta_{1}} \dot{y}_{t}^{\beta_{2}} u_{t} \tag{13}
\end{equation*}
$$

where u_{t} represents the error term and α_{0} the constant. By taking Jogarithms of equation (13) we arrive at,

$$
\begin{equation*}
\log x_{i t}=\beta_{0}+\beta_{1} \log p_{i t}+\beta_{2} \log y_{t}+e_{t} \tag{1.4}
\end{equation*}
$$

where $\log \alpha_{0}=\beta_{0}$ and $\log \mu_{t}=e_{t}$.

Mhe double-log fomulation, as in the lineax case, incorporates the homogenexty condition. Moreover, if $\beta_{2}>0$ then we should expect $B_{j}<0$. Notioe that the magnjuder of $B_{0} B_{1}$, and β_{2} will be different from the limean model but the signs of the
coefficients should be the same. The reason for this is that we are specifying an alternative hypothesis concerning the true structural form and in this case β_{1} and β_{2} are partial price and partial income elasticities racher than partial rates of change. Ejnally, the double-log equation does not incorporate the addingup condition.

2.3 The Rotterdam Demand Model

The Rotterdam model, as aplied to the demand for tejephone services, imposes a more complicated set of restrictions upon the demand relations, (see H. Theil [8]).

Usjng the demand function, given by equation (1i), take total dinterentients. This yieics:

$$
d x_{i t}=\frac{\partial H_{i}}{\partial p_{i t}} d p_{i t}+\frac{\partial H_{i}}{\partial y_{t}} d y_{t}
$$

Using the equality $d z=z d \log z$, where z is any variable, we get,

$$
\begin{equation*}
x_{i \pm} d \log x_{j t}=\frac{\partial H_{i}}{\partial p_{i t}} p_{i, t} d \log p_{i, t}+\frac{\partial H_{i}}{\partial y_{t}} y_{t} d \log y_{t} \tag{.25}
\end{equation*}
$$

Next, multiplying both sides of equation (15) by $\frac{p_{i t}}{y_{t}}$ we have,

$$
\frac{P_{i t} x_{i t}}{y_{t}} d \log x_{i t}=\frac{\partial H_{i}}{\partial p_{i t}} \frac{p_{i t}^{2}}{y_{t}} d \log p_{i t}+\frac{\partial H_{i}}{\partial y_{t}} p_{i t} d \log y_{t}
$$

However because equation (16) is a finite linear approximation there is implicitely a xemainder tem in it , mhe approximation to the remainder is $1 / 2\left[\left(\frac{p_{i t} x_{i t}}{y_{t}}-\frac{p_{i t+1} x_{i t+1}}{y_{t+1}}\right) d \log x_{i t}+\alpha_{0}\right]$.

Therefore including the remainder in equation (16) yieläs,

$$
\begin{gathered}
1 / 2\left[\frac{\bar{p}_{i t} x_{i t}}{y_{t}}+\frac{p_{i t+1} x_{i t+1}}{y_{t}}\right] a \log x_{i t}=\frac{\alpha_{0}}{2}+\frac{\partial H_{i}}{\partial p_{i t}} \frac{p_{i t}^{2}}{y_{t}} a \log p_{i t} \\
\\
+\frac{\partial n_{i}}{\partial y_{t}} p_{i t} d \log y_{t}
\end{gathered}
$$

Letting $a_{i t}=\frac{p_{i t} x_{j t}}{y_{t}}, \alpha_{i t}=1 / 2\left(a_{i t}+a_{i t+1}\right), \beta_{0}=\frac{\alpha_{0}}{2}$,
$\beta_{1}=\frac{\partial \dot{H}_{i}}{\partial p_{i t}} \frac{p_{i t}^{2}}{y_{t}}$ and $\beta_{2}=\frac{\partial H_{i}}{\partial y_{t}} p_{i t}$ then equation (I7) becomes,

$$
\begin{equation*}
\alpha_{i t} \alpha \log x_{i t}=\beta_{0}+\beta_{1} d \log p_{i t}+\beta_{2} d \log y_{t} \tag{18}
\end{equation*}
$$

since $d \log z_{t}=\log z_{t}-\log z_{t-1}$ and allowing for stochastic phenomena then (18) can be written as,

$$
\begin{align*}
u_{i t}\left(\operatorname{iog} x_{i t}-\log x_{i L-1}\right) & =\hat{p}_{\hat{u}}+\hat{k}_{1}\left(\log p_{i t}-\operatorname{jog} p_{i i-1}\right) \tag{i}\\
& +\beta_{2}\left(\log y_{t}-\log y_{t-1}\right)+e_{t}
\end{align*}
$$

Equation (19) represents a variant of the Rotterdam demand model. In this model, we not only have the homogeneity and negativity conditions, we also. have the addingmup conaition beaduse of the presence of the weights in defining the dependent variable. Notice, also, that β_{1} and β_{2} do not mean the partial elasticities as they do in the double-log model. In this case to compute the partial elacticities me must divide β_{y} and β_{2} by $\alpha_{i t}$, Hence if we want to computepartial price and income elasticities we have to compare:

$$
\beta_{1}^{T} \frac{p_{i t}}{x_{j t}} \text { to } \beta_{1}^{D} \text { to } \frac{\beta_{1}^{R}}{\alpha_{i t}} \text { for the partial price elasticities, }
$$

$$
\beta_{2}^{T} \frac{Y}{X_{i t}} \text { to } \beta_{2}^{D} \text { to } \frac{\beta_{2}^{R}}{\beta_{i t}} \text { for the partial income elasticities, }
$$

where the superscripts X, D, and R stand for linear, double-log and Rotcerdam. This means that: in the linear and Rotterdam models the partial (and therefore total) elasticities will be vaxiable, while in the double-log model the partial elasticjties but not the total) ${ }^{6}$ will be constant.

3. The Data

The data in the demand module consisted of published series which had to be collected from vafious sources.

3.1 Ine Quantity Demanded

In a study of the demand for telephone services, the quanitity demanded should be measured in some homogeneous unit such as minutes of calls. Unfortunately, we do not have data at such a disaggregated level. Therefore, we used a variant of revenue deflated by it's price. We took the revenue for any service i (including uncollectibles, since they represent unpaid output) and sulostracted from it the proportion of revenue from service i out of total revenue times inuiseci taxes?

$$
S I_{i}=S R_{i}-\frac{S R_{i}}{S R} \times I N T
$$

where SI_{i} is then defined for the $i^{\text {th }}$ service, SR_{j} is the revenues from the $i^{\text {th }}$ service, $S R$ are total revenues, and Inv are indirect taxes.

For the revenue figures; we utilized the income statements of the TCIS companies and Jdmonton relephones. Thus the level of djsaggregation of revenues was limited to that which appeases in the finanoial statenonts (which are local, toll and total). However for Boll Canada, tho revanes wero more djaaggregatod from R. Minlen $[0]$ and benl Camada Rato Heanjugs manimis $[1]$,
which included local, directory, intra-Bell toll, Irans-Canada and adjacent members toll, and Uis. and overseas toll revenues. Also because we dealt with the pubidc and private carriers as seperate carriers we sumed the revenues, as previously defined, for each category and used these figures for aggregate revenues.

To convert revenue figures into output figures we need the price jindex of each revenue category for each carrier. These price indexes were only available for Bell Canada in R. Millen [I] and the previously mentionned exhibits $[6]$. The procedure for the price index was to deflate the current dollar revenues for each service (as defined) by the constant dollar revenues (which were defined in the same mannex as currente After, with this implicjet price deflator for each oftegory for fog 7 . 1 . onlwe ohtamed outrat.

$$
S O_{i}=\frac{S I_{i}}{P I_{i}}
$$

where $S O_{i}$ i.s the demand for the $i^{\text {th }}$ service and $P I_{i}$ is the price index of the $i^{\text {th }}$ service.

Having these price indexes for Bell Canada we assumed that the price indexes for any category and for any other carrier is a fixed proportion to Bell's over the sample period. If this assumption does not hold then the consequences of the error in the measurement of the price indexes are unknow, in terms of tho bias and the inconsistency in the values of the parameters obtained in the demand equations. Nevertheless, our assumption is reasonable becanse Bell is tho market leader in the industry. Thus, proceeding

With this assumption we deflated the current appropriate revenues by the relevent price index and we obtasined a measure of quantity demanded for any telephone service.

3.2 The Relative Price of Telephone Services

There is no information on price data relating to a homogeneous unit such as minutes of calls. We used the price jndexes for the revenue categories of Bell (as described in section 3.1). Moreover, we used this series for all carriers.

To define relative prices we divided the price index of any service by the consumer price index of a large metropolitin aroa, whinin the region in which the carricr has juridiction to operate. ${ }^{8}$ for bell Canada, we consiaereat the weighteu arithmedie nean of the consumer price indexes for Toronto and Montreal; for B.C. Telephone we used the consumer price index of Vancouver; for the public cariers we used the consumer price inder of Winnipeg, and for the private carriers we used the weighted arithmetic mean of the consumer pajce indexes of St. John's, st. John and Halifax.

3.3 The Real Income

The demand equations pertain to nousehoids and firms, so then the income variable must include more than consumption expenditures. Indeed, For tho income variable we used the ghoss provincial product. ${ }^{9}$ For Bell Canada we considered the sum of the Gross Provincial Products of Quebec and ontario; for B.C.

Telephone we used the Gross Provincial Product of B.C.; for the public companies we use the sum of the Gross Provincial products of Alberta, Saskatcheran and Manjtoba; for the private companies we used the sum of the Gross Provincial Products of New Brunswick, Nova Scotia and NewEound and.

Finally to deflate these nominal income variables we utilized the appropriate consumer price indexes from each of the jurisdictions, as explained in section 3.2 .
4. The Empirical Results

4.1 Bell Canada

4.1.d The Linear Demand Model

The Jinear model, in the context of Bell. Canada, may be represented by the following set of equations (the sample period for Bell is 1950-1975); ${ }^{10}$

$$
\begin{aligned}
& \operatorname{BITSO}_{t}=\beta_{0}+\beta_{1} \text { BIPDTS }_{t}+\beta_{2} \text { BLGPD }_{t} \\
& \operatorname{BLLSO}_{\mathrm{t}}=\beta_{0}+\beta_{1} \text { BLPDIS }_{\mathrm{t}}+\beta_{2} \mathrm{BIGPD}_{\mathrm{t}} \\
& \operatorname{BLTRO}_{t}=\beta_{0}+\beta_{1} \operatorname{BLPDTP}_{t}+\beta_{2} \text { BLGPD }_{t} \\
& B L I O 0_{t}=\beta_{0}+\beta_{1} B_{D P D T}^{t}+\beta_{2} \text { BLGPD }_{t} \\
& \text { BLDAO }_{t}=\beta_{0}+\beta_{1} \text { BLPDDA }_{t}+\beta_{2} \text { BLGPD }_{\tau} \\
& \text { MMSO }_{t}=\beta_{0}+\beta_{1} \text { BIRDMG }_{t}: \beta_{2} \text { BLORD }_{t} \\
& \text { BLLTO }_{t}=\beta_{0}+\beta_{1} \text { BIPDLTT }_{t}+\beta_{2} \text { ELGPD }_{t} \\
& \text { BIBMO }_{t}=\beta_{0}+\beta_{1} \text { BLPDBM }_{t}+\beta_{2} \text { BLGPD }_{t} \\
& \text { BLEDO }_{t}=\beta_{0}+\beta_{1} \text { BLPDBD }_{t}+\beta_{2} \text { BLGPD }_{t} \text {. }
\end{aligned}
$$

The results for the ordinary least squares regression, which axe found in table 4.1.1, show us that $\beta_{1}<0$, and $\beta_{2}>0$, except for the directory and miscellaneous categories but the Durbin-Watson statistio points out that positive autocorrelation is present.
mpon coraectirg for autocorrelation, we find that, ahthough the results improve, the Durbin-watson is still quite low when

Table 4.1.3
Linear Demand Model: N.L.R.
(t-values in parentheses)

Demand Category	β_{0}	β_{1}	β_{2}	ρ_{1}	ρ_{2}	D.W.	R^{2}
Toll	$\begin{aligned} & -17.485 \\ & (-1.270) \end{aligned}$	$\begin{array}{r} -134.088 \\ (-1.305) \end{array}$	$\begin{gathered} -.005 \\ (-2.222) \end{gathered}$	$\begin{aligned} & 1.062 \\ & (4.192) \end{aligned}$	$\begin{aligned} & .024 \\ & (.090) \end{aligned}$	1.946	. 999
rocal	$\begin{gathered} -3.892 \\ (-1.046) \end{gathered}$	$\begin{gathered} -35.247 \\ (-.864) \end{gathered}$	$\begin{aligned} & -.0003 \\ & (-.298) \end{aligned}$	$\begin{gathered} 1.523 \\ (6.552) \end{gathered}$	$\begin{gathered} -.473 \\ (-1.919) \end{gathered}$	2.010	. 999
Toll	$\begin{aligned} & -29.322 \\ & (-2.058) \end{aligned}$	$\begin{gathered} -110.274 \\ (-2.227) \end{gathered}$	$\begin{gathered} -.001 \\ (-.791) \end{gathered}$	$\begin{gathered} .907 \\ (3.821) \end{gathered}$	$\begin{aligned} & .249 \\ & (.954) \end{aligned}$	2.178	. 998
Toll-Misc. Toll	$\begin{aligned} & -22.017 \\ & (-2.058) \end{aligned}$	$\begin{gathered} -83.874 \\ (-2.159) \end{gathered}$	$\left(\begin{array}{c} -.001 \\ (-1.064) \end{array}\right.$	$\begin{gathered} .924 \\ (3.867) \end{gathered}$	$\begin{aligned} & .218 \\ & (.838) \end{aligned}$	2.163	. 998
Directory	$\begin{gathered} 3.188 \\ (1.429) \end{gathered}$	$\begin{array}{r} -10.237 \\ (-.568) \end{array}$	(-1.572)	$\begin{gathered} 1.348 \\ (5.503) \end{gathered}$	$\begin{gathered} -.377 \\ (-1.631) \end{gathered}$	1.634	896
Misc.	$\begin{gathered} 3.503 \\ (1.284) \end{gathered}$	$\begin{aligned} & -6.098 \\ & (-.211) \end{aligned}$	(-1.783)	$\begin{gathered} 1.397 \\ (5.74 .5) \end{gathered}$	$\begin{gathered} -.416 \\ (-1.774) \end{gathered}$	1.625	886
, ¢ocaltToll-Misc. Toll	$\begin{aligned} & -17.111 \\ & (-1.337) \end{aligned}$	$\begin{gathered} -108.323 \\ (-1.243) \end{gathered}$	$\left(\begin{array}{c}-1.003 \\ (-1.49)\end{array}\right.$	$\begin{gathered} 1.083 \\ (4.391) \end{gathered}$	$\begin{aligned} & .009 \\ & (.032) \end{aligned}$	2.035	. 999
TocaltToll+Directory	$\begin{gathered} -13.151 \\ (-1.110) \end{gathered}$	$\begin{gathered} -106.695 \\ (-1.126) \end{gathered}$	$\left(\begin{array}{c}-.004 \\ (-2.015)\end{array}\right.$	$\begin{gathered} 1.135 \\ (4.450) \end{gathered}$	$\begin{gathered} -.056 \\ (-.207) \end{gathered}$	1.929	. 999
LocaltToll	$\begin{aligned} & -23.507 \\ & (-1.536) \end{aligned}$	$\begin{array}{r} -138.817 \\ (-1.488) \end{array}$	$\begin{array}{r} -.003 \\ (-1.485) \end{array}$	$\begin{gathered} 1.000 \\ (4.118) \end{gathered}$	$\begin{aligned} & .103 \\ & (.395) \end{aligned}$	2.059	. 999

Table 4.1.1.
Linear Demand Model: O.T.S. (t-values in parentinesis)

Demand Category	B_{0}	β_{1}	8_{2}	D.W.	R^{2}
notal	$\begin{gathered} 1651.598 \\ (4.223) \end{gathered}$	$\begin{array}{r} -1379.052 \\ (-5.068) \end{array}$	$\begin{gathered} .011 \\ (3.889) \end{gathered}$. 401	. 978
Local	$\begin{array}{r} 643.238 \\ (3.424) \end{array}$	$\begin{gathered} -558.150 \\ (,-4.188) \end{gathered}$	$\begin{gathered} .008 \\ (5.733) \end{gathered}$. 362	. 981
Po. 11	$\begin{gathered} 546.127 \\ \quad(1.598) \end{gathered}$	$\begin{array}{r} -456.734 \\ (-2.165) \end{array}$	$\begin{gathered} .005 \\ (1.753) \end{gathered}$. 220	. 935
Tol. Misc. Toll	$\begin{gathered} 311.036 \\ (1.244) \end{gathered}$	$\begin{gathered} -275.093 \\ (-1.783) \end{gathered}$	$\begin{gathered} .005 \\ (2.333) \end{gathered}$. 242	. 934
Directory	$\begin{gathered} -30.123 \\ (-4.235) \end{gathered}$	$\begin{aligned} & 37.008 \\ & (5.376) \end{aligned}$	$\begin{array}{r} .0005 \\ 0.506) \end{array}$	1. 035	. 821
Mjesc.	$\begin{aligned} & -38.932 \\ & (-3.860) \end{aligned}$	$\begin{aligned} & 48.339 \\ & (4.902) \end{aligned}$	$\begin{gathered} .0005 \\ (9.221) \end{gathered}$	1.053	. 806
Hocaltroll-Misce Toll	$\begin{array}{r} 1446.241 \\ (3.545) \end{array}$	$\begin{array}{r} -1173.877 \\ (-4.230) \end{array}$	$\begin{gathered} .009 \\ (2.993) \end{gathered}$. 352	.973
Hocaltroll+Directory	$\begin{aligned} & 1399.301 \\ & (3.855) \end{aligned}$	$\begin{array}{r} -1159.831 \\ (-4.603) \end{array}$	$\begin{gathered} .010 \\ (3.935) \end{gathered}$. 383	0.77
Localtroll	$\begin{array}{r} 1738.657 \\ (3.813) \end{array}$	$\begin{aligned} & -1410.870 \\ & (-4.557) \end{aligned}$	$\begin{gathered} .009 \\ (2.671) \end{gathered}$. 350	. 973

Table 4.2.2
Iinear Demand Model: $C-0$. I. S.
(t-values in parenthesis)

Demand, Category	β_{0}	β_{1}	β_{2}	${ }^{0} 1$	D.W.	R^{2}
Total	$\begin{gathered} 2055.058 \\ (4.454) \end{gathered}$	$\begin{array}{r} -1043.557 \\ (-4.777) \end{array}$	$\begin{gathered} .006 \\ (1.267) \end{gathered}$	$\begin{gathered} .971 \\ (20.206) \end{gathered}$. 827	. 992
Iocal	$\begin{gathered} 955.353 \\ (4.770) \end{gathered}$	$\begin{array}{r} -444.680 \\ (-4.572) \end{array}$	$\begin{gathered} .004 \\ (7.823) \end{gathered}$	$\begin{gathered} .968 \\ (1.9 .209) \end{gathered}$. 713	. 994
Toll	$\begin{array}{r} 104.957 \\ \quad(1.362) \end{array}$	$\begin{gathered} -68.863 \\ (-1.299) \end{gathered}$	$\begin{gathered} -.003 \\ (-3.377) \end{gathered}$	$\begin{gathered} 1.097 \\ (18.200) \end{gathered}$	2.261	. 998
Toll-Misc. Toll	$\begin{gathered} 152.973 \\ (2.84 .7) \end{gathered}$	$\begin{array}{r} -86.921 \\ (-2.381) \end{array}$	$\begin{gathered} -.0004 \\ (-.636) \end{gathered}$	$\begin{gathered} 1.134 \\ (19.201) \end{gathered}$	2.083	. 998
Directory	$\begin{aligned} & 80.327 \\ & (3.337) \end{aligned}$	$\begin{array}{r} -11.548 \\ (\cdots .078) \end{array}$	$\begin{array}{r} -.0006 \\ (-3.004) \end{array}$	$\begin{gathered} .932 \\ (12.890) \end{gathered}$	1. 298	. 393
Mise.	$\begin{gathered} 101.224 \\ (3.038) \end{gathered}$	$\begin{gathered} -12.809 \\ (-.689) \end{gathered}$	$\begin{array}{r} -.0008 \\ (-1.971) \end{array}$	$\begin{gathered} .938 \\ (13.492) \end{gathered}$	1.161	. 878
Localtroll-Misc. Toll	$\begin{aligned} & 1741.904 \\ & (4.027) \end{aligned}$	$\begin{gathered} -834.902 \\ (-4.229) \end{gathered}$	$\begin{gathered} .006 \\ (1.323) \end{gathered}$	$\begin{gathered} .973 \\ (21.002) \end{gathered}$. 71.	. 992
-rocaltroll dis sectory	$\begin{gathered} 190.2 .555 \\ (4.436) \end{gathered}$	$\begin{aligned} & -869.403 \\ & (-4.490) \end{aligned}$	$\begin{gathered} .005 \\ (\mathrm{i} .136) \end{gathered}$	$\begin{gathered} .972 \\ (20.700) \end{gathered}$. 800	$.992$
Local +Toll	$\begin{array}{r} 2063.695 \\ \quad(3.851) \end{array}$	$\begin{array}{r} -964.032 \\ (-4.230) \end{array}$	$\begin{gathered} .006 \\ (1.226) \end{gathered}$	$\begin{gathered} .976 \\ (22.459) \end{gathered}$. 720	. 992

Table 4.1.3
Itinear Demand ModeJ: N.L.R.
(t-values in parenthesis)

we then adjust once more, we can observe from table 4.1 .3 that 6_{2} consistently has the wrong sign. Thus the linear model does not perform well for beji Canada:

4.1.2 ghe Double-mog Demand Model

For this model. we estimated the equations in the form given by the following subset of the nine regressions:

$$
\begin{aligned}
& \log \operatorname{EIDSO}_{t}=\beta_{0}+\beta_{1} \log \operatorname{BLDDTS}_{t}+\beta_{2} \log \operatorname{BIGPD}_{t} \\
& \log \text { BLJSO }_{t}=\beta_{0}+\beta_{1} \log \operatorname{BLPDLS} S_{t}+\beta_{2} \log \text { BLGPD }_{t} \\
& \log \operatorname{BLTPO}_{t}=\beta_{0}+\beta_{1} \log B L P D M_{t}+\beta_{2} \log \operatorname{BLGPD}_{t} \\
& \log \text { BLMSO}_{t}=\beta_{0}+\beta_{1} \log \operatorname{BLPDMS}_{t}+\beta_{2} \log \operatorname{BLGPD}_{t}
\end{aligned}
$$

The results for the o.t. S. regressions are presented in table 4.1.4. In most cases $\beta_{1}<0$, and $\beta_{2}>0$, however the presence of autocorrelation discounts these positive findings. Correcting once for autocorrelation signixicantly imeroves the results, ercept for the directory and miscellaneous categories. Moreover, the statistical tests show us that, from table 4.1.6, local and the last three categories perform best (in this context.) when we adjust twice for antoconrelation.

Table 4.1.4
Double-Log Demand Model: O.I.S.
(t-values in parenthesis)

Demand Category	β_{0}	B_{1}	β_{2}	D. W.	R^{2}
Total	$\begin{aligned} & -10.503 \\ & (-9.750) \end{aligned}$	$\begin{gathered} -.196 \\ (-.692) \end{gathered}$	$\begin{gathered} 1.595 \\ (15.694) \end{gathered}$. 507	. 985
Local	$\begin{aligned} & -10.333 \\ & (-0.520) \end{aligned}$	$\begin{aligned} & .054 \\ & (.9 .84) \end{aligned}$	$\begin{gathered} 1.528 \\ (1.4 .879) \end{gathered}$. 467	. 98.
Tol1	$\begin{gathered} -12.914 \\ (-9.861) \end{gathered}$	$\begin{gathered} -.743 \\ (-2.678) \end{gathered}$	$\begin{gathered} 1.728 \\ (14.098) \end{gathered}$. 547	. 992
Toll-Misc. Toll	$\frac{-11.33 .1}{(-8.186)}$	$\frac{-.691}{(-2.316)}$	$\begin{gathered} 1.562 \\ (12.079) \end{gathered}$. 512	. 989
Dixectory	$\begin{gathered} -6.468 \\ (-7-802) \end{gathered}$	$\begin{gathered} 7.562 \\ (5.424) \end{gathered}$	$\begin{gathered} .937 \\ (77.466) \end{gathered}$. 858	. 870
Misc.	$\begin{gathered} -5.402 \\ (-7.052) \end{gathered}$	$\begin{gathered} 1.552 \\ (4.961) \end{gathered}$	$\begin{gathered} .836 \\ \left(1 \mathrm{~J}_{4} .385\right) \end{gathered}$	1.005	. 864
TocaltToll Misco Toll	$\begin{gathered} -10.100 \\ (\cdot 8.549) \end{gathered}$	$\begin{gathered} -.225 \\ (-.756) \end{gathered}$	$\begin{gathered} 1.546 \\ (13.893) \end{gathered}$. 469	\% 985
Localtholl+Direotory	$\begin{gathered} -10.124 \\ (-8.860) \end{gathered}$	$\begin{gathered} -.128 \\ (-.427) \end{gathered}$	$\begin{gathered} 1.552 \\ (14.406) \end{gathered}$. 478	\%.923
LocaltToll	$\begin{gathered} -10.668 \\ (-9.260) \end{gathered}$	$\begin{gathered} -.283 \\ (-.985) \end{gathered}$	$\begin{gathered} 1.605 \\ (14.793) \end{gathered}$. 477	. 987

Table 4.1 .5
Double-Jog Demand Model: C.O.L.S.
(t-values in parenthesis)

Demand Category	β_{0}	β_{1}	β_{2}	ρ_{1}	D.W.	R^{2}
Total	$\begin{gathered} -2.156 \\ (-1.997) \end{gathered}$	$\begin{gathered} -1.325 \\ (-8.318) \end{gathered}$	$\begin{gathered} .81 .6 \\ (8.044) \end{gathered}$	$\begin{gathered} .812 \\ (6.954) \end{gathered}$	1.228	. 998
Local.	$\begin{aligned} & -1.825 \\ & (-1.742) \end{aligned}$	$\begin{gathered} -3.061 \\ (-7.021) \end{gathered}$	$\begin{gathered} .734 \\ (7.454) \end{gathered}$	$\begin{gathered} .82 i \\ (7.1 .91) \end{gathered}$	1.012	. 998
Tol.	$\begin{gathered} -7.311 \\ (-5.711) \end{gathered}$	$\begin{gathered} -1.566 \\ (-7.631) \end{gathered}$	$\begin{gathered} 1.205 \\ (10.031) \end{gathered}$	$\begin{gathered} .692 \\ (4.795) \end{gathered}$	1.600	. 998
moll-Mjsc. Toll	$\begin{gathered} -6.280 \\ (-4.720) \end{gathered}$	$\begin{gathered} -1.455 \\ (-6.586) \end{gathered}$	$\begin{gathered} 1.092 \\ (8.753) \end{gathered}$	$\begin{gathered} .673 \\ (4.55 .5) \end{gathered}$	1.448	. 997
Direatory	$\begin{aligned} & 11.817 \\ & (2.598) \end{aligned}$	$\begin{gathered} -400 \\ (-.979) \end{gathered}$	$\begin{gathered} -.770 \\ (-1.832) \end{gathered}$	$\begin{gathered} \because .854 \\ (9.954) \end{gathered}$	1.191	. 983
Misc.	$\begin{aligned} & 13.286 \\ & (2.800) \end{aligned}$	$\begin{gathered} -.454 \\ (-.941)^{\circ} \end{gathered}$	$\begin{gathered} -.887 \\ (-2.028) \end{gathered}$	$\begin{gathered} .899 \\ (1.0 .289) \end{gathered}$	1.3.62	. 929
Local.troll-Misc. Toll	$\begin{gathered} -2.787 \\ (-2.646) \end{gathered}$	$\begin{gathered} -1.291 \\ (-7.7 .19) \end{gathered}$	$\begin{gathered} .863 \\ (8.702) \end{gathered}$	$\begin{gathered} .776 \\ (6.149) \end{gathered}$	1.178	. 998
mocaltrolltbirectory	$\begin{gathered} -7.963 \\ (-1.850) \end{gathered}$	$\begin{gathered} \cdots-268 \\ (-7.879) \end{gathered}$	$\begin{gathered} .790 \\ (7.923) \end{gathered}$	$\begin{gathered} .802 \\ (6.712) \end{gathered}$	1.209	. 998%
Localtroll	$\begin{gathered} -3.390 \\ (-2.998) \end{gathered}$	$\begin{gathered} -1.343 \\ (\cdots 8.176) \end{gathered}$	$\begin{gathered} .907 \\ (9.061) \end{gathered}$	$\begin{gathered} .785 \\ (6.337) \end{gathered}$	1.234	. 998

Table 4.1.6

Double-Log" Demand Mode1: N. I.R. (t-values in parenthesis)

Demand Category	β_{0}	β_{1}	B_{2}	ρ_{1}	ρ_{2}	D. W.	n^{2}
Total	$\begin{gathered} \cdots .068 \\ (1.447) \end{gathered}$	-.420 (-2.538)	$\begin{gathered} .166 \\ (1.375) \end{gathered}$	$\begin{gathered} 1.334 \\ (10.337) \end{gathered}$	$\begin{gathered} -.339 \\ (-2.750) \end{gathered}$	2.386	.999
Iocal	$\begin{gathered} \because .053 \\ (6.407) \end{gathered}$	$\left(\begin{array}{l}-.276 \\ (-2.248)\end{array}\right.$	$(1.549$	$\begin{gathered} 1.423 \\ (13.623) \end{gathered}$	$\left(\begin{array}{c} -.427 \\ (-4.305) \end{array}\right.$	2.032	. 999
Toll	$\begin{gathered} .067 \\ (2.624) \end{gathered}$	$\begin{gathered} -.666 \\ (-2.773) \end{gathered}$	$\begin{gathered} .439 \\ (2.105) \end{gathered}$	$\begin{gathered} 1.078 \\ (5.859) \end{gathered}$	$\begin{gathered} -.082 \\ (-.458) \end{gathered}$	2.356	. 999
Toll-Misc. joll	$\begin{gathered} .055 \\ (2.024) \end{gathered}$	$\begin{gathered} -.578 \\ (-2.411) \end{gathered}$	$\begin{gathered} .364 \\ (1.599) \end{gathered}$	$\begin{gathered} 1.153 \\ (6.304) \end{gathered}$	$\begin{gathered} -.151 \\ (-.847) \end{gathered}$	2.382	. 998
Diroctory	(1. $\mathrm{C}_{\text {. } 7891 \text {) }}$	$\left(\begin{array}{c}-1.554 \\ (-130)\end{array}\right.$	$\left(\begin{array}{c}-777 \\ \cdots(.078)\end{array}\right.$	$\begin{gathered} 3.3 .8 \\ (5.862) \end{gathered}$	$\begin{gathered} -.385 \\ (-1.873) \end{gathered}$	7. 508	. 942
Missc.	$\begin{gathered} .836 \\ (1.71 .5) \end{gathered}$	$\begin{gathered} -.578 \\ (-.744) \end{gathered}$	$\left(\begin{array}{l} -1.133 \\ (-1.488) \end{array}\right.$	$\begin{gathered} 1.326 \\ (5.900) \end{gathered}$	$\begin{gathered} -.378 \\ (-1.797) \end{gathered}$	1.560	. 926
ocal. + Toll Misc, Toll	$\begin{gathered} .046 \\ (1.044) \end{gathered}$	$\left(\begin{array}{r}-.381 \\ (-2.146)\end{array}\right.$.232 (1.768)	$\begin{gathered} 1.366 \\ (1.0 .247) \end{gathered}$	-.367 (-2.835)	2.398	. 999
ocaltrolltDirectory	$\begin{gathered} .063 \\ (1.209) \end{gathered}$	$\left(\begin{array}{c} -.400 \\ (-2.269) \end{array}\right.$	$\begin{gathered} .176 \\ (1.343 ; \end{gathered}$	$\begin{gathered} 1.359 \\ (9.998) \end{gathered}$	$\begin{gathered} -.364 \\ (-2.815) \end{gathered}$	2.276	-999
Hocaltholl	$\begin{gathered} .053 \\ (1.356) \end{gathered}$	$\begin{gathered} -.431 \\ (-2.473) \end{gathered}$	$\begin{gathered} .261 \\ (2.057) \end{gathered}$	$\begin{gathered} 1.331 \\ (9.985) \end{gathered}$	$\begin{gathered} -.333 \\ (-2.615) \end{gathered}$	2.432	. 999

4.1.3 The Rotterdam Denand Model

The Rotterdan model for Bell Canada can be represented by the following subset of equations: 11

$$
\begin{aligned}
& \left.-\log \operatorname{BLPDTS}_{t \ldots 1}\right]+\beta_{2}\left[\log \mathrm{BLGPD}_{t}-\log \mathrm{BLGPD}_{t-1}\right] \\
& \alpha_{i t}\left[\log \operatorname{BLLSO}_{t}-\log \operatorname{BLLSD}_{\mathrm{t}-1}\right]=\beta_{0}+\beta_{1}\left[\log \mathrm{BLPDLS}_{t}\right. \\
& \left.-\log \operatorname{BLPDLS}_{t-1}\right]+3_{2}\left[\log \mathrm{BLGDD}_{t}-\log \mathrm{BIGPD}_{t-1}\right] \\
& \dot{\alpha}_{j . t}\left[\log \operatorname{BLMMO}_{t}-\log \operatorname{BLTMO}_{t-1}\right]=\beta_{0}+\beta_{1} \quad\left[\log \operatorname{BIPDTT}_{t}\right. \\
& \left.-\log \operatorname{BLPDJP}_{t-I}\right]+\beta_{2}\left[\log \mathrm{BLGPD}_{t}-\log \mathrm{BI}_{-} G P J_{t-1}\right] \\
& \alpha_{i t}\left[\log \text { BLMSO}_{t}-\log \text { BLMSO }_{t-1]}\right]=\beta_{0}+\beta_{1}\left[\log \text { BLDDNS }_{t}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{i t}\left[\log B L S D D_{t}-\log B L B D O_{t-1}\right]=\beta_{0}+\beta_{1}\left[\log B L P D B D_{t}\right. \\
& -\log {\left.\mathrm{BI} P D B D_{t-1}\right]}+\beta_{2}\left[\log \mathrm{BIGGD}_{t}-\log \mathrm{BLGPD}_{t-1}\right] .
\end{aligned}
$$

The results for the ordirexy least squares estimates are found in table 4.1.7. We can observe that the signs of β_{1} and B_{2} are generally correct. However, price appears to affect local services in a positive fashion and this can also account for the positive B_{1} in the local phas toll - miscellaneous toll caterrory After adjusting for the positive aucocorrelation, we see that the estimotes are generally insionificant and so we must rejeot the rotterdem model, even though in all cases β_{1} has the right sign and only for miscellancous and directory categories does β_{2} latave the wrong sign.

Table 4.1.7
Rottexdam Demand Model: O.I..S.
(t-values in parenthests)

Demand Category	β_{0}	β_{1}	B_{2}	D.W.	R^{2}
Total	$\begin{gathered} .001 \\ (7.839) \end{gathered}$	$\begin{gathered} -.004 \\ (\cdots 1.338) \end{gathered}$	$\begin{aligned} & .001 \\ & (.452) \end{aligned}$	1.135	. 079
Local	$\begin{array}{r} .0007 \\ (7.153) \end{array}$	$\begin{aligned} & .0004 \\ & (.278) \end{aligned}$	$(.0003$. 707	. 009
Toll	$\begin{gathered} .0004 \\ (4.651) \end{gathered}$	$\begin{gathered} -.004 \\ \langle-2.989\rangle \end{gathered}$	$\begin{gathered} .002 \\ (1.084) \end{gathered}$	1.644	. 302
Toll-Misco Toll	(4.00043)	$\begin{gathered} m .003 \\ (-2.309) \end{gathered}$	$\begin{gathered} .001 \\ (.828) \end{gathered}$	1.629	. 2.07
birectory	$\begin{array}{r} .0001 \\ (3.2 .44) \end{array}$	$(1.0004$	$\left(\begin{array}{c} -.00 i \\ -1.719) \end{array}\right.$	1. 245	. 269
Misc.	$\begin{gathered} .001 \\ (9.969) \end{gathered}$	$\begin{gathered} -.005 \\ (-2.781) \end{gathered}$	$\begin{gathered} .002 \\ (1.075) \end{gathered}$	2.411	. 320
Iocal+Toll-Miscaroll	$\begin{array}{r} .000 .1 \\ (3.843) \end{array}$	$\begin{array}{r} .0007 \\ (1.922) \end{array}$	$\left(\begin{array}{r} -.001 \\ (: 2.449) \end{array}\right.$	1. 174	.251
Localtholnthixectory	(6.001)	$\begin{gathered} -.003 \\ (-1.008) \end{gathered}$	$\begin{gathered} .002 \\ (.694) \end{gathered}$	1.041	8052
- Hocaltroll	$\begin{gathered} .001 \\ (6.949) \end{gathered}$	$\begin{gathered} -.002 \\ (-.795) \end{gathered}$	$\begin{aligned} & .001 \\ & (.402) \end{aligned}$	1.008	. 030

Table 4.I. 8
Rotterdam Demand Model: C-O.I.S.
(t--values in parenthesis)

Demand Category	β_{0}	β_{1}	β_{2}	ρ_{1}	D.W.	R^{2}
Total	(9.9070)	$\begin{gathered} -.005 \\ (-2.781) \end{gathered}$	$\begin{gathered} .002 \\ (1.075) \end{gathered}$	$\begin{aligned} & .158 \\ & (.765) \end{aligned}$	2.441	. 320
rocal	$\begin{gathered} .001 \\ (1.0 .580) \end{gathered}$	$\begin{gathered} -.002 \\ (-1.705) \end{gathered}$	$(1.001$	$\begin{gathered} .394 \\ (2.057) \end{gathered}$	2.135	. 432
Toll	$\begin{aligned} & .0004 \\ & (4.265) \end{aligned}$	$\begin{gathered} -.004 \\ (-2.968) \end{gathered}$	$\begin{gathered} .002 \\ (1.221) \end{gathered}$	$\begin{aligned} & .124 \\ & (.600) \end{aligned}$	1.9].5	. 351
Toll-Misce Toll	$\begin{array}{r} .0003 \\ (4.417) \end{array}$	$\begin{gathered} -.003 \\ (-2.607) \end{gathered}$	$(.001$	$\begin{gathered} .084 \\ (.407) \end{gathered}$	2.022	. 2.77
Directory	$(1.0007$	$\begin{array}{r} -.0004 \\ (-1.732) \end{array}$	-	$\begin{array}{r} 746 \\ (5.372) \end{array}$	1. 570	. 467
Misc.	$(2.0001$	$\begin{array}{r} -.0002 \\ (-.466) \end{array}$	$\begin{array}{r} -.0008 \\ (-2.381) \end{array}$	$\begin{gathered} .636 \\ (3.951) \end{gathered}$	1.617	. 463
Localtroll-Misca ?oli.	$\begin{array}{r} .0009 \\ (8.096) \end{array}$	$\begin{gathered} -.004 \\ (-2.264) \end{gathered}$	$\begin{gathered} .002 \\ (1.485) \end{gathered}$	$\begin{gathered} .222 \\ (1.094) \end{gathered}$	2, 3.52	. 284
Localtholntinectory	$(8.0001$	$\begin{gathered} \cdots .004 \\ (-2.095) \end{gathered}$	$\begin{gathered} .002 \\ (1.083) \end{gathered}$	$\begin{gathered} .238 \\ (17.176) \end{gathered}$	2.338	. 250
Localtroll	$(8.001$	$\begin{gathered} -.006 \\ (-2.966) \end{gathered}$	$\begin{gathered} .003 \\ (1.714) \end{gathered}$	$\begin{gathered} .150 \\ (.727) \end{gathered}$	2.322	. 353

4.1.4 Partial Price Elasticities of Demand

In this section we report the partial price elasticities of demand for Bell Canada. For the linear model a subset of the formulae are:

$$
\begin{aligned}
& \beta_{1} \frac{\text { BIPDIS }_{t}}{\mathrm{BJISO}_{t}} \quad \text { - paxtial price elasticity of total demand } \\
& \text { in period t. }
\end{aligned}
$$

> in period t.
> $B_{1} \overline{B L P D T P}_{t} \quad$ - partial price elasticity of toll demand in pexiod t.
> F. $\frac{\text { BIIPMMS }_{t}}{\text { BLMSO }_{t}}$ - paxidai price elasticlity of misceilaneous demand in period t.
> $\beta_{1} \frac{{\mathrm{BJ}, \mathrm{PDBD}_{t}}_{\mathrm{BiJBDO}_{t}}}{}$ - partial price elasticity of local plus toll demand in period t.

In the linear model the elasticities are variable over time, because β_{1} is just the rate of change. Indeed, we can see by the formulae that the trend of the elasticities, in the linear model, is defined by the twend of relative priees to denand.

The elasticities for the 0.t.s. eatimates ranged from --12.724 in 1950 to -.750 in 1975 fox the total demand for local demand -7.897 in 1950 to -.565 in 1975, for toll -16.899 to $\cdots .573$,
for toll minus miscellaneous toll -10.600 to -.452 for directory 4.233 to .881 , for miscellaneous 4.092 to 1.014 , for local plus toll minus miscellaneous toll -12.185 to -..733, for local plus toll plus dixectory -J1:155 to -.703, for local plus toll -14.461 to -.789. Thesefore we find that for ail the cases where $\beta_{I}<0$ the elasticities increase over the sample, and for the cases where $\beta_{I}>0$ the elasticitjes decrease over the period. Indeed, for total demand a 1% increase in the price of total services led to 12.7% decrease in demand in 1950 while only to 8% decrease in 1976.

For the Cochrane-Orcutt estimates of the linear model. the ranges of the elasticities are, for total demand -9.629 in 1950 to -.568 in 1.975 , for local demand -6.292 to -.450 , for toll
 to --143, for directory -1. 321 to -. 275 , for miscellaneous -1.084 to - - 269, for local plus toll minus miscelianeous toll -8.666 to -. 521, for local plus toll plus dinectory -8.362 to -.527 , and for local plus toll -9.882 to -.539 . In this set of elasticities the signs are all correct because β_{1} < for ajl the services under the C-O.L.S. estimates. Moreover for all the elasticities the values are monotonically increasing.

Whe monlinear regression estimates for the lincar model exhibit the same wend as in the previous oases. For tatal demand the range is - -1.237 to -.073 , for Iocal demand -.499 to $\cdots .036$, for toll -4.080 to -.138 , for toll minus miscellaneous toll demand -3.232 to -. 138, for directory -1.171 to -. 244 , for miscellaneous

> -.516 to -.128 , for local plus toll minus miscellaneous toll -1.124 to -.068 , for local plus toll plus directory -1.026 . to -.065 , for local plus toll -1.423 to -.078 .

The double--log demand model incorporates the assumption of constant price (and income) elasticities over the sample period. Thus for each category (given the estimation technique) we get a single elasticity. For the O.I.S. estimates, the elasticities are, for tocal -. 196, for local . 054 , for toll -.743, for toll minus miscellaneous toll -. 69., for directory 1.562 , for miscellaneous 1.552, for local plus toll minus miscellaneous toll -. 225, for local plus toll plus directory -. 128, for local plus toll-.283.

Whe Cochrane-orcutt estinates are, for totai - -1.3 , for local -1.1, for toll -1.6, for Eoll minus miscellaneous toil -1.5, for djrectory -. 4, for miscellaneous -.5, and for the last three categories the elasticities are all -1.3.

The nonlinear regression estinates for each category are -. 420, -. $276,-.566,-.578,-.654,-.578, \cdots .381, \cdots .400,-.431$.

The last group of elasticities pertains to the Rotterdam model and it's method of estimation: The elasticities, in this context, ane omputed by dividing the β_{1} estimates in tahes 4.1.7 and 4.I. 8 by $\alpha_{i t}$ simee $\alpha_{i t}$ (as defined in section 2 and Eootnote 11) is a variable, the partial pione elasticity of denan is variable.

For ordinary least squares the elastionties tend to
fluctuate over the samole period for each type of service. The range for total demand is -.210 to -.410 , for local demand 047 to . 102, for toll -.561 to -1.425, for toll minus miscellaneous toll -. 444 to -.931, for directory 2.454 to . 494, for miscellaneous 3.384 to .730 , for local plus toll minus miscellaneous tol. -. . 179 to -. 350, local plus toll plus directory -.143 to -. 280 , for local plus toll -. 265 to $\sim .516$.

The C-o.tis. estimates of the Rotterdam model yield the following range of values for the elasticjties in the nine demand categories, -.311 to $-.606,-.154$ to $-.330,-.575$ to $-1.460,-.484$ to $-1.014,-.490$ to $-2.430,-.183$ to $-.848,-.292$ to $-.570,-.271$ to $-.528,-.353$ to -.689.

We previousily stated that for Bell Canada the equations which generally yielded the best results were the double-log c-o.t.s. estimates. Moreover, because we ultimately will integrate the demand module into a more complex framework relating such variables as revennes, oosts and rotes of return, we are interested in the value of the price elasticity of demand. From economic theory we are aware that a monopolist (given a particulax geographical location) must always have a price elasticity smaller or equal. to -1.000 . We can see that the price elasticity for total demand given from table 4.1.5 is - 1.3 , and this ficure is consistent with economio analysis.

4.2 B.C. Te. ephone

4.2.1 The Linear Demand Model

The first equation we estimated for British Columbia Telephone was the linear model given by equation (12). gable 4. 2.1 presents the results for the linear case when we used ordinary Ieast squares and estimated the equations for the pexiod 1961-1975:

$$
\begin{aligned}
& \operatorname{BCTS}_{t}=\beta_{0}+\beta_{1} \text { BCPDIS }_{t}+\beta_{2} \text { BCGPD }_{t} \\
& \operatorname{BCDSO}_{t}=\beta_{0}+\beta_{1} \text { BCPDI }_{t}+\beta_{2} \text { BCGPD }_{t} \\
& \text { BCPMO }_{t}=\beta_{0}+\beta_{1} \text { BCPDTP }_{t}+\beta_{2} \text { BCGPD }_{t} \\
& \text { BCMSO }_{t}=\beta_{0}+\beta_{1} \text { BCPDMS }_{t}+\beta_{2} \text { ECGPD }_{t} \\
& \operatorname{BCBDO}_{t}=\beta_{0}+\beta_{1} \text { BCPDBD }_{t}+\beta_{2} \text { BCGPD }_{t}
\end{aligned}
$$

The results for the U.d.S. regressions are such that, althouch in all cases $\beta_{2}>0$ and so we should and do find $\beta_{1}<0$, there is sexial correlation, which is reflected by the low D.W. statistic.

Correcting for autocorrelation we find that the results significantly inprove. Indeed, for the toll category there is a radical change in the coofficients and thejr importance. We also find that the estimate for p_{1} in each case is significant but the serial correlation still persjsts, as fourd in table 4.2.2.

This time we estimated the innear moded using the nonifinear approach becauso we are twice correoting for antocornatation. Phege resuits appear in table 4.2.3. We can observe from table 4.2.3, that

Table 4.2.1
Iinear Demand Model: O.L.S.
(t-values in parenthesis)

Demand Category	β_{0}	β_{1}	β_{2}	D.W.	R^{2}
Motal	$\begin{array}{r} 352.602 \\ (2.096) \end{array}$	$\begin{gathered} -318.667 \\ (-2.631) \end{gathered}$	$\begin{gathered} .014 \\ (2.230) \end{gathered}$. 429	. 979
Local	$\begin{gathered} 166.888 \\ (3.488) \end{gathered}$	$\begin{array}{r} -134.175 \\ (-3.863) \end{array}$	$\begin{gathered} .005 \\ (2.482) \end{gathered}$	1.208	. 989
ToII	$\begin{aligned} & 3.166 \\ & (.033) \end{aligned}$	$\begin{array}{r} -17.920 \\ (-.723) \end{array}$	$\begin{gathered} .015 \\ (3.787) \end{gathered}$. 487	. 965
Miscellaneous	$\begin{aligned} & 23.838 \\ & (7.137) \end{aligned}$	$\begin{aligned} & -22.712 \\ & (-3.692) \end{aligned}$	$\begin{array}{r} .0005 \\ (1.014) \end{array}$. 958	. 985
Tocal + Toll	$\begin{gathered} 282.308 \\ (1.746) \end{gathered}$	$\begin{aligned} & -262.804 \\ & (-2.272) \end{aligned}$	$\begin{gathered} .015 \\ (2.402) \end{gathered}$. 471	. 978

Table 4.2 .2
Linear Demand Model: $C-O$. L. S. (t-values in parenthesis)

Demand Category	e_{0}	β_{1}	β_{2}	ρ_{1}	D.W.	R^{2}
Total	$\begin{gathered} 386.1 .42 \\ (3.624) \end{gathered}$	$\begin{array}{r} -386.848 \\ (-5.183 \end{array}$	$\begin{gathered} .016 \\ (3.352) \end{gathered}$	$\begin{gathered} .764 \\ (4.437) \end{gathered}$	1.332	. 994
Jociaj.	$\begin{array}{r} 176.676 \\ (3.582) \end{array}$	$\begin{aligned} & -144.058 \\ & (-4.061) \end{aligned}$	$\begin{gathered} .005 \\ (2.284) \end{gathered}$	$\begin{gathered} .344 \\ (1.371) \end{gathered}$	1. 805	.990
Toll	$\begin{aligned} & 11 \mathrm{~L} .444 \\ & (1.818) \end{aligned}$	$\begin{array}{r} -159.695 \\ (-3.630) \end{array}$	$\begin{gathered} .014 \\ (4.815) \end{gathered}$	$\begin{gathered} .749 \\ (4.234) \end{gathered}$	1. 198	. 991
Misuellaneous	$\begin{aligned} & 15.372 \\ & (2.663) \end{aligned}$	$\begin{aligned} & -17 \cdot 132 \\ & (-4.510) \end{aligned}$	$\begin{aligned} & .0008 \\ & (3.037) \end{aligned}$	$\begin{gathered} .700 \\ (3.666) \end{gathered}$	1.578	.390
Tocal + mona	$\begin{gathered} 365.383 \\ (3.471) \end{gathered}$	$\begin{array}{r} -364.283 \\ (-4.895) \end{array}$	$\begin{gathered} .076 \\ (3.294) \end{gathered}$	$\begin{gathered} .753 \\ (4.281) \end{gathered}$	1. 380	. 993

Table 4.2.3
Linear Demand Model: M.I.R.
(t-values in parenthesis)

mand Category	B_{0}	β_{1}	β_{2}	$\rho_{.}$	ρ_{2}	D.W.	R^{2}
Ptal	$\begin{gathered} -30.728 \\ (-1.701) \end{gathered}$	$\begin{array}{r} -116.986 \\ (-2.219) \end{array}$	$\begin{gathered} -.0007 \\ (-.116) \end{gathered}$	$\begin{gathered} 1.016 \\ (2.248) \end{gathered}$	$\begin{aligned} & .164 \\ & (.322) \end{aligned}$	1.837	. 998
Iocal	$\begin{gathered} -4.728 \\ (-.511) \end{gathered}$	$\begin{gathered} -21.542 \\ (-.585) \end{gathered}$	$\begin{gathered} (-.005 \\ (-1.050) \end{gathered}$.488 $(.960)$	$\begin{gathered} .653 \\ (1.167) \end{gathered}$	2.079	. 994
Tolı	$\begin{gathered} -18.345 \\ (-1.892) \end{gathered}$	$\begin{aligned} & -64.925 \\ & (-2.643) \end{aligned}$	$\begin{gathered} .004 \\ (1.075) \end{gathered}$	$\begin{gathered} 1.243 \\ (3.830) \end{gathered}$	$\begin{gathered} -.004 \\ (-.010) \end{gathered}$	2.120	. 998
Miscellaneous	$\begin{gathered} 4.402 \\ (1.3 .59) \end{gathered}$	$\begin{gathered} -14.356 \\ (-3.260) \end{gathered}$	$\begin{gathered} .007 \\ (3.285) \end{gathered}$	$\begin{gathered} .892 \\ (3.013) \end{gathered}$	$\begin{gathered} \cdots .286 \\ (--1.042) \end{gathered}$	2.034	. 993
Socal + Toll	$\begin{aligned} & -26.279 \\ & (-1.507) \end{aligned}$	$\begin{array}{r} -108.132 \\ (-2.033) \end{array}$	$\begin{gathered} -.001 \\ (-.252) \end{gathered}$	$\begin{gathered} 1.058 \\ (2.276) \end{gathered}$	$\begin{aligned} & .106 \\ & (.202) \end{aligned}$	1.787	. 998

using the non-linear regression in order to compute the estimates from the double correction specification, that for all categories ρ_{2} is ingignificant and so the second adjustment is inappropriate. This outcome could be due to the faot that we are using Bell's data as an approximation for the output prices.

It appears then that the C-O.L.S. approach to the linear model for B.C. Telephone yields the best results.
4.2.2 The Double-Log Demand ModeI

In this section we estimated the double-log equations, which for B.C. Telephone demand categories are:

$$
\begin{aligned}
& \log ^{\operatorname{BCTSO}} \mathrm{t}_{\mathrm{t}} \beta_{0}+\beta_{1} \log \operatorname{BCPDOS}_{t}+\beta_{2} \text { log } \mathrm{BCGPD}_{t} \\
& \log \text { BCLSO }_{t}=\beta_{0} \quad \beta_{1} \log B_{C P D L S}^{t}+\beta_{2} \log \text { BCGPD }_{t} \\
& \log \text { BCITO }_{t}=\beta_{0}+\beta_{1} \log \operatorname{BCPDIT}_{t}+\beta_{2} \log \operatorname{BCGPD}_{t} \\
& \log \operatorname{BCMSO}_{t}=\beta_{0}+\beta_{j} \log \text { BCPDMS }_{t}+\beta_{2} \log \text { PCGPD }_{t} \\
& \log \mathrm{BCBDO}_{t}=\beta_{0}+\beta_{1} \log \mathrm{BCPDBD}_{t}+\beta_{2} \log \mathrm{BCGPD}_{t}
\end{aligned}
$$

The results for the O.T.S. estimates are presented in table 4, 2. 4. We find that for all cases $\beta_{2}>0$ and $\beta_{1}<0$. In addition, the coefficients for each category are all significant while there does sem to be a minimal degree of autocorrolation; except for misoellaneous demend, because of the xesidual mature of the component the autocormelation is quite severe.

For the Cochrane-orcutt adjustment the results are found in table 4.2.5. Agajn we find that the price and income effects

Table 4.2.4 Double-Log Demand Model: 0. L.S.

(t-values in parenthesis)

Demand Category	B_{0}	B.	β_{2}	D.W.	k^{2}
Total	$\begin{gathered} -5.296 \\ (-11.072) \end{gathered}$	$\begin{aligned} & -1.077 \\ & (-8.634) \end{aligned}$	$\begin{gathered} 1.138 \\ (21.057) \end{gathered}$	1.543	. 999
Local	$\begin{gathered} -3.183 \\ (-5.255) \end{gathered}$	$\begin{gathered} -.929 \\ (-5.924) \end{gathered}$	$\begin{gathered} .826 \\ (12.037) \end{gathered}$	1.878	. 997
Toll.	$\begin{gathered} -10.5766 \\ (-15.496) \end{gathered}$	$\begin{gathered} -.873 \\ (-5.191) \end{gathered}$	$\begin{gathered} 1.641 \\ (21.384) \end{gathered}$	1. 334	. 999
Miscellaneous	$\begin{gathered} -7.000 \\ (-3.616) \end{gathered}$	$\begin{aligned} & -2.409 \\ & (-4.168) \end{aligned}$	$\begin{gathered} .950 \\ (4.324) \end{gathered}$. 809	. 944
Local + Toll	$\begin{gathered} -5.486 \\ (-12.197) \end{gathered}$	$\begin{gathered} -1.016 \\ (\cdots 8.779) \end{gathered}$	$\begin{gathered} 1.156 \\ (22.743) \end{gathered}$	1.932	. 999

Table 4.2.5

Double-Log Demand Model: C-O. I. S.
(t゙-values in parenthesis)

Demand Category	β_{0}	β_{1}	β_{2}	ρ_{1}	D.W.	R^{2}
Total.	$\begin{gathered} -5.417 \\ (-9.609) \end{gathered}$	$\begin{gathered} -1.069 \\ (-7.860) \end{gathered}$	$\begin{gathered} 1.152 \\ (18.111) \end{gathered}$	$\begin{aligned} & .180 \\ & (.686) \end{aligned}$	1.956	. 999
Local	$\begin{gathered} -3.319 \\ (-4.741 .) \end{gathered}$	$\begin{gathered} -.907 \\ (-5.288) \end{gathered}$	$\begin{gathered} .8 .81 \\ (10.628) \end{gathered}$	$(.030)$	1. 9.996	. 996
Toll	$\left(\begin{array}{c} -70.200 \\ (-13.042) \end{array}\right.$	$\begin{gathered} -.936 \\ (-.5 .104) \end{gathered}$	$\begin{gathered} 1.600 \\ (18.195) \end{gathered}$	$\begin{gathered} .336 \\ (1.333) \end{gathered}$	1.644	. 900
Miscellanoous	$\begin{gathered} -12.086 \\ (-3.048) \end{gathered}$	$\begin{gathered} -1.5 .7 \\ (-2.023) \end{gathered}$	$\begin{gathered} 1.516 \\ (3.412) \end{gathered}$	$\left(\begin{array}{c} .557 \\ (2.520) \end{array}\right.$	2.3 .36	. 969
Iocall + Moja	$\left(\begin{array}{c} -5.586 \\ (-11.593) \end{array}\right.$	$\begin{gathered} -1.000 \\ (-8.317) \end{gathered}$	$\begin{gathered} 1.167 \\ (21.462) \end{gathered}$	$\begin{gathered} \cdots .024 \\ (-.089) \end{gathered}$	1.998	. 999

Table 4.2.6

Double-Log Demand Model: N.L.R.
(t-values in parenthests)

Demand Category	β_{0}	β_{1}	B_{2}	ρ_{1}	ρ_{2}	D.W.	R^{2}
rotal	$\begin{gathered} -7.156 \\ (-2.647) \end{gathered}$	$\begin{gathered} -1.015 \\ (-6.004) \end{gathered}$	$\begin{gathered} 1.184 \\ (16.347) \end{gathered}$	$\begin{aligned} & .128 \\ & (.350) \end{aligned}$	$\begin{gathered} -3.829 \\ (-1.175) \end{gathered}$	2.134	. 999
Local	$\begin{gathered} -4.568 \\ (-2.139) \end{gathered}$	$\begin{gathered} --.958 \\ (-3.731) \end{gathered}$	$\begin{gathered} .832 \\ (7.646) \end{gathered}$	$\begin{aligned} & .083 \\ & (.212) \end{aligned}$	$\begin{gathered} -.493 \\ (-1.022) \end{gathered}$	2.173	. 996
Toll	$\begin{gathered} -9.706 \\ (-1.832) \end{gathered}$	$\begin{gathered} -1.030 \\ (-3.041) \end{gathered}$	$\begin{gathered} 1.564 \\ (9.850) \end{gathered}$	$\begin{gathered} .572 \\ (1.734) \end{gathered}$	$\begin{gathered} -.554 \\ (-1.593) \end{gathered}$	2.202	. 939.
Miscellianeous	$\frac{-12.314}{(-6.411)}$	$\begin{gathered} -.493 \\ (-1.095) \end{gathered}$	$\begin{gathered} 2.156 \\ (7.207) \end{gathered}$	$\begin{gathered} .266 \\ (1.571) \end{gathered}$	$\begin{aligned} & .042 \\ & (.296) \end{aligned}$	1.358	. 992
Local + Toll	$\begin{gathered} -8.958 \\ (-2.372) \end{gathered}$	$\frac{-.962}{(-5.706)}$	$\begin{gathered} 1.188 \\ (16.897) \end{gathered}$	$\begin{gathered} -.040 \\ (-.098) \end{gathered}$	$\frac{-.512}{(-1.347)}$	2.254	. 999

have the appropriate sign, however ρ_{1} is insignificant in all cases except the miscellaneous category. This result is what we expected, given our conclusion concerning the o.t.s. estimates.

Therefore one would have to say that, for the double-log equation, the simple ordinary least squares estimates are preferable (except for the miscellaneous category) and it is of little value to analyse the nonlinear regression, but for completeness we present the results in table 4.2 .6 .

4.2.3 The Rotterdam Demand Model

In this section we estimate equation (19) which in this context gives the following system of equations:
$\alpha_{i 4}\left[\log B C T s O_{t}-\log \operatorname{BCTSO}_{t-1}\right]=\beta_{0}+\beta_{]}\left[\log \operatorname{BCPDLS}_{t}\right.$
$\left.-\log \operatorname{BCPDTS}_{t-1}\right]+\beta_{2}\left[\log \operatorname{BCGPD}_{t}-\log \operatorname{BCGPD}_{t-1}\right]$
$\alpha_{i t}\left[\log \operatorname{BCISO}_{t}-\log \mathrm{BCH}_{2} 0_{t-1}\right]=\beta_{0}+\beta_{1}\left[\log \mathrm{BCDDLS}_{t}-\log \mathrm{BCPDLS}_{t}-1\right]$
$+\beta_{2}\left[\log B C G D_{t}-\log B C G P D t-1\right]$

$\left.-\log \mathrm{BCPDTP}_{t-1}\right]+\beta_{2}\left[\log \mathrm{BCGPD}_{t}-\log \mathrm{BCGPD}_{t-1}\right]$
$\alpha_{i t}\left[\log\right.$ BCNS $\left._{t}-\log \operatorname{BCMSO}_{t-1}\right]=\beta_{0}+\beta_{1}\left[\log\right.$ BCFDMS $_{t}$
$\left.-\log \operatorname{BCPDMS}_{t-1}\right]+\beta_{2}\left[\log \operatorname{BCGPD}_{t}-\log \mathrm{BCGPD}_{t-1}\right]$
$\alpha_{i t}\left[\log \operatorname{BCBDO}_{t}-\log \operatorname{BCBDO} t_{t-1}\right]=\beta_{0}+\beta_{1}\left[\log \operatorname{BCPDBD}_{t}\right.$
$-\log \operatorname{BCPDED} t-7]+\beta_{2}\left[\log \operatorname{BCGPD}_{t}-\log \operatorname{BCGPD} t \cdots\right]$.

The results for the ordinary least squares estimates are found in table 4.2.7. We can observe that the income (β_{2}) and

Table 4.2.7

Rotterdam Demand Model: O.I.S.
(t-values in parenthesis)

Demand Category	β_{0}	β_{1}	β_{2}	D.W.	R^{2}
Total	$(2.0008$	$\begin{array}{r} -.019 \\ (-2.743) \end{array}$	$\begin{gathered} .010 \\ (2.295) \end{gathered}$	1.940	. 496
Local	$\begin{array}{r} .0008 \\ (2.856) \end{array}$	$\begin{aligned} & -.00005 \\ & (-.002) \end{aligned}$	$\begin{gathered} -.008 \\ (-.264) \end{gathered}$	1.786	. 009
Tol1	$\begin{gathered} .004 \\ (1.465) \end{gathered}$	$\begin{gathered} -.006 \\ (-2.321) \end{gathered}$	$\begin{gathered} .003 \\ (2.613) \end{gathered}$	1.393	. 542
Miiscellaneous	$\begin{aligned} & -.0005 \\ & (-.698) \end{aligned}$	$\begin{gathered} -.002 \\ (-3.269) \end{gathered}$	$\begin{gathered} .001 \\ (1.225) \end{gathered}$	1.527	. 519
Local + Toll	(2.964)	$\begin{gathered} -.009 \\ (-2.630) \end{gathered}$	$\begin{gathered} .009 \\ (2.539) \end{gathered}$	2.030	. 505

Table 4:2.8

Rotierdam Demand Model: C-O.I.S.
(t-values in parenthesis)

Demand Category	β_{0}	β_{1}	β_{2}	ρ_{1}	D.W.	R^{2}
motal	$\begin{array}{r} .0009 \\ (2.127) \end{array}$	$(--.012)$	$\begin{gathered} .010 \\ (2.117) \end{gathered}$	$\begin{aligned} & .017 \\ & (.057) \end{aligned}$	1.671	. 495
Local	$\left(\begin{array}{r} .0008 \\ (2.757) \end{array}\right.$	$(.0004$	$\begin{aligned} & -., 00 \mathrm{i} \\ & (-.400) \end{aligned}$	$\begin{aligned} & .090 \\ & (.313) \end{aligned}$	1. 8837	. 01.8
'501.	$\begin{aligned} & .00004 \\ & (1.807) \end{aligned}$	$\begin{gathered} \cdots .008 \\ (\cdots 2.961) \end{gathered}$	$\left(\begin{array}{c} .008 \\ (2.593) \end{array}\right.$	$\begin{aligned} & .225 \\ & (.801) \end{aligned}$	1.71 .5	. 620
Mis cellaneous	$\begin{array}{r} -.0002 \\ (-2.020) \end{array}$	$\begin{gathered} -.003 \\ (-3.634) \end{gathered}$	$\begin{gathered} .002 \\ (2.340) \end{gathered}$	$\begin{gathered} .494 \\ (.1 .970) \end{gathered}$	1.317	. 604
Local + roll	$\begin{array}{r} .0009 \\ (2.899) \end{array}$	$\begin{gathered} -.009 \\ (-2.601) \end{gathered}$	$\begin{gathered} .009 \\ (2.380) \end{gathered}$	$\begin{gathered} -.044 \\ (-.754) \end{gathered}$	1.846	. 510

price (β_{1}) effects have the correct sign for all categories. In addition, for the total and local plus toll regressions, not only are all the variables significant, but there is virtually no autocorrelation. The toll category cannot be analysed due to the autocomelation, while the local resulta show us that the adding-up restrictions do not approximate the true structural characteristics. Therefore because of the generally good results for the Rotterdam model using ordinaxy least squares we adjusted for autocorrelation.

The results for the model corrected for autocorrelation are presented in table 4.2.8. We find that for total and local plus toll where the results were favourable the correction was not a factor and where the results were unfavourable as in the local. mategory there was basicaily no improvement. one must conciude then that on the whole the Rotterdam model, in particular the imposition of the adding-up constraint, does not perform well for B.C. Telephone.
A.2.A Paxtial Price Elastiotites of Demand

In this section we report the partial price elasticities of demand for B.C. Telephone. For the linear model the formulae are:

$B_{1} \frac{\operatorname{BCPDS}}{t}$	- partial price elastioity of total demand in period.t.
$B_{1} \frac{\operatorname{BCDOLSO}_{t}}{t}$	- partial price elasticjey of local demand in period t.
$\beta_{1}{\underset{B C P D T T}{t}}_{\mathrm{BCTO}_{t}}^{\mathrm{BCP}^{2}}$	- partial price elasticity of toll demana in period t.

$$
\begin{array}{ll}
B_{1} \overline{B C P D M S}_{t} \quad \text { MCMSO partial price elasticity of miscellaneous } \\
& \text { demand in period } t .
\end{array}
$$

We must notice that in the linear model the elasticities are variable over time because the estimated coefficient gives the rate of change and rot the percentage rate of change.

First we discuss the elasticities which were computed for the linear model using o.I.S. estimates. The range for the total demand was from -5.835 in 1961 to -.753 in 1975 , with monotonic inoreasing values for the figures. The local demand rumbers were also monotonically increasing with a range from -3.901 in 1961 to … 735 in 1975. The toll demand ranged from -2.855 in 1961 to a continual increase to - .222. In addition the miscellaneous and local plus toll elasticities also increased from a low of -7.451 to a high of -1.226 for miscellaneous, and -5.125 to -.655 for local plus toll. Hence the linear model restrictions yield there to be a gradual decrease in the responsiveness of demand to a change in the price of the telephone service; for example a 1% increase in the price of total telephone services cansed a 5.8% decrease in the total denand in 196π, wile a 1 p price increase for gervices only caused a 88 decrease in 1975.

When we estimated the equations using Cochrane-orcutt least squares technique we found the elasticities to monotonically increase over the sample period. Fox total demand the range was from -6.753 to - -.878 ; for local demand the range was from -4.188 to -.789: for toll Nemand the range was from -9.549 to - -740 ; for miscellaneous demand the range was from -5.621 to -.925 ; and finally for local plus toll demand the range was from -7.104 to -. 90%. Again there is a gradual diminution of the responsiveness of demand for telephome services to the prices of these services.

As in the previous two cases, for the linear model which was twice correctea for serial correlation the elasticities exhibited a decreasing demand responsiveness to price. For total denand the ciastidity ranged Erom -2.112 to - 273 ; for local demand the range was -.626 to -.118 , for toll demand -3.832 to -.301 , for miscellaneous -4.7 .10 to -.775 , and for local plus toll -2.109 to $-.269$.

In the doublenlog model we constrain the partial price elasticities to be constants. Indeed they are the coefficients called β_{1} in tables 4.2.4, .5, .6. From the ordinary least squares we have, -1. 077 for total demand, -.929 for local demand, -.873 For toll demand, -2.409 tor miscellanoous demand, and - -1.016 for local plus toll domand. From the Coobmenoroutt method the elastiotideg are - -069 for total, -.907 for local, - .936 fox toll, - -5.57 for miscellaneous, and -1.000 for local plus toll, Fimally the twice corrected estimates yield the elasticities to be -1.015 for total, -.958 for local, -1.030 for toll, -.493 for miscellaneous, and --.963 for local plus toll.

The third model estimated was the kotterdam and once more we had variable partial price elasticities of demand. In each case the Rotterdam model elasticities are the β_{1} coefficjents from tables 4.2.7 and 4.2.8 divided by $\alpha_{i t}$. Gince $\alpha_{i t}$, which is the tro year average share of the expenditure on any telephone service out of the income in the carrier's jurisdiction, is variable; then of course the elasticity is variable.

For ordinary least squares the elasticities tend to fluctuate over the sample period. Inis is aue to the impositjon of the adding-up restriction, which was described in section 2. The elasticities for total demand ranged from -.641 to -1. 254 , for local demand from -.0005 to -.001 , for toll demand from. .580 to.
 local plus toll demand from -.520 to -1.009 .

For C-O.t.S. estimates we have, a range of -.639 to -1. 250 for total, .035 to .086 for local, -.785 to -1. 534 for toll, -3.242 to -6.493 for miscellancous, -517 to -1.010 for local plis toll.

Recalling that for B.C. Ielephone the equations which yielded the best results, on average, were the double-Jog estimated by ordinary least scuares. since demand conditions determine revomes, and we are incerested (for the jntegrated model) in total revennes, and therefore total demana, the partial price olactiodty of total clemand will play a crucial role din ous simultaneous model.

Moreover from economic theory we know that a firm operating as a monopoly in its own jurisdiction must always have an elasticity of total demand smaller than -1.000 , then the price elasticity from the double-log o.j.s. specification of -1.1 is consistent with this theoretical result.

4.3 Public Carriers

In this section we estimate the demard characteristics For the aggregation of Ajberta Govermment Telephones, Edmonton Telephoncs, Saskatchewan Telecommanications, and Manitoba Telephone System.

4.3.1 The Linear Demand Model

The linear equations for the public companies are

$$
\begin{aligned}
& \operatorname{TGSO}_{t}=\beta_{0}+\beta_{1} \operatorname{TGPDPS}_{t}+\beta_{2} \operatorname{TGGPD}_{t} \\
& \operatorname{TGLSO}_{t}=\beta_{0}+\beta_{1} \operatorname{TGPDLS}_{t}+\beta_{2} \operatorname{TGGPD}_{t} \\
& \operatorname{TGIPO}_{t}=\beta_{0}+\beta_{1} \operatorname{TGPDPT}_{t}+\beta_{2} \operatorname{TGGPD}_{t} \\
& \operatorname{TGMSO}_{t}=\beta_{0}+\beta_{1} \operatorname{TGPDPS}_{t}+\beta_{2} \operatorname{TGGPD}_{t} \\
& \operatorname{TGDO}_{t}=\beta_{0}+\beta_{1} \operatorname{TGPDD}_{t}+\beta_{2} \operatorname{TGGPD}_{t}
\end{aligned}
$$

The results for the O.L.S. estimates are fourd in table 4.3.1. In all cases $\beta_{2}>0$ and $\beta_{1}<0$ (in other words all telephone services are normal commodities). The results are gene.. rally good except for the presence of antocorrelation, suggested by the low D.W. statistic, although the miscellaneous demand equation does not show an important price coefficient. This ocurs because of the residuat ature of the miscejaneone dategory. We must motice that the stomg price affects from locin and boll swamp the weak resnonse from misceltaneous denend, as depioted by the highJy significant price term in the demand equation for total telephone services. We should be careful in interpreting the t values, because of the presence of autocorrelation.

Table 4.3.t
Linear Demand Model: O.I.S.
(t-walues in parenthesis)

Demand Category	β_{0}	B_{1}	3_{2}	D.W.	x^{2}
Total	$\begin{gathered} 291.147 \\ (2.575) \end{gathered}$	$\begin{gathered} -315.392 \\ (-4.079) \end{gathered}$	$\begin{gathered} .019 \\ (5.877) \end{gathered}$	1.137	. 990
Local	$\begin{gathered} 161.665 \\ (6.074) \end{gathered}$	$\begin{array}{r} -136.732 \\ (-7.451) \end{array}$	$\begin{gathered} .005 \\ (5.891) \end{gathered}$. 652	. 995
Tol1	$\begin{gathered} 22.439 \\ (.291) \end{gathered}$	$\begin{aligned} & -96.948 \\ & (-1.913) \end{aligned}$	$\begin{gathered} .016 \\ (6.840) \end{gathered}$	1.379	. 9816
Miscellaneous	$\begin{gathered} -1.260 \\ (-.197) \end{gathered}$	$\begin{aligned} & -4.043 \\ & (-.851) \end{aligned}$	$\begin{gathered} .001 \\ (7.870) \end{gathered}$	1.753	. 981
Local + Toll	$\begin{gathered} 246.137 \\ (2.225) \end{gathered}$	$\begin{array}{r} -278.272 \\ (-3.703) \end{array}$	$\begin{gathered} .019 \\ (5.914) \end{gathered}$	1.103	. 988

Table 4.3.2
48
Linear Demand Model: C-O.I.S.
(t-values in parenthesis)

Hocal
roll

Miscellaneous

Local + MoLl

β_{0}	β_{1}	${ }^{3} 2$	ρ_{1}	D.W.	R^{2}
$\begin{gathered} 524.163 \\ (4.74 A) \end{gathered}$	$\begin{gathered} \cdots 82.839 \\ (-6.338) \end{gathered}$	$\begin{gathered} .014 \\ (4.295) \end{gathered}$	$\begin{gathered} .555 \\ (2.493) \end{gathered}$	1.541.	. 994
$\begin{aligned} & 181.542 \\ & (7.850) \end{aligned}$	$\begin{array}{r} -152.255 \\ (-9.354) \end{array}$	$\begin{gathered} .004 \\ (5.954) \end{gathered}$	$(2.587$	1. 257	.397
$\begin{array}{r} 231.8 .55 \\ (2.629) \end{array}$	$\begin{gathered} -253.830 \\ (-4.144) \end{gathered}$	$\begin{gathered} .011 . \\ (4.417) \end{gathered}$	$\begin{gathered} .469 \\ (2.000) \end{gathered}$	1.753	. 983.
$\begin{aligned} & 20.311 \\ & (2.946) \end{aligned}$	$\begin{aligned} & -. .8 .214 \\ & (-3.794) \end{aligned}$	(3.165)	$\begin{gathered} .499 \\ (2.152) \end{gathered}$	2.071	. 988
$\begin{gathered} 500.809 \\ (4.800) \end{gathered}$	$\begin{array}{r} -473.233 \\ (-6.428) \end{array}$	$\begin{array}{r} .013 \\ (4.374) \end{array}$	$\begin{gathered} .567 \\ (2.573) \end{gathered}$	1.531	. 994

Table 4.3.3
Winear Demerid Model: N. L, R.
(t-values in parenthesis)

Domand Category	β_{0}	β_{1}	β_{2}	p_{1}	ρ_{2}	1. W.	R^{2}
Total	$\begin{gathered} -77.44 .7 \\ (-3.896) \end{gathered}$	$\begin{array}{r} -260.275 \\ (-8.440) \end{array}$	$\begin{gathered} .002 \\ (1.387) \end{gathered}$	$\begin{gathered} .797 \\ (3.014) \end{gathered}$	$\begin{gathered} .428 \\ (1.386) \end{gathered}$	2.385	. 999
Cocal.	$\left(\begin{array}{l} -12.010 \\ (-1.823) \end{array}\right.$	$\begin{aligned} & -97.265 \\ & (-6.567) \end{aligned}$	$\begin{gathered} .002 \\ (3.013) \end{gathered}$	$\begin{gathered} 1.106 \\ (3.444) \end{gathered}$	$\begin{gathered} -.009 \\ (-.025) \end{gathered}$	2.109	. 999
To. 11	$\left(\begin{array}{l} -44.032 \\ (-3.166) \end{array}\right.$	$\begin{array}{r} -150.209 \\ (-6.009) \end{array}$	$\begin{aligned} & .0002 \\ & (.113) \end{aligned}$	$\begin{gathered} 1.106 \\ (5.246) \end{gathered}$	$\begin{aligned} & .109 \\ & (.426) \end{aligned}$	2.226	. 998
Miscellaneous	$(-.064)$	1.484 $(.291)$	$\begin{array}{r} -.0009 \\ (-.039) \end{array}$	$\begin{gathered} 1.069 \\ (3.076) \end{gathered}$	$\begin{aligned} & .070 \\ & (.182) \end{aligned}$	2.220	. 993
Socal + Toll	$(-72.061$	$\begin{gathered} -251.989 \\ (-8.141) \end{gathered}$	$\begin{gathered} .002 \\ (1.354) \end{gathered}$	$\begin{gathered} .926 \\ (3.721) \end{gathered}$	$\begin{aligned} & .289 \\ & (.987) \end{aligned}$	2.484	. 999

Correcting for autocorrelation we find that from table 4.3.2 the results improve over the 0.j.s. estimates. In all cases $\beta_{2}>0$ and $\beta_{1}<0$, and the t-values show that the variables are more significant, once we adjust for serial correm lation. However, in two cases, local and local plus toll the D.W. statistic suggests that we should correct for autocorrelation.

The xesults for the nonlinear regression are found in table 4.3.3. We see that ρ_{2} is insicnificant for all the demand categories, and the income effect $\left(\beta_{2}\right)$ is not significant for all services except local demand. Thus for the linear model the C-O. 5. estimetes arpear to be the hest ones.

4.3.2 The DoublewLog Demand Model

The double-log model, in this context, is represented by the following equations:

$$
\begin{aligned}
& \log \operatorname{TGSSO}_{t}=\beta_{0}+\beta_{1} \log \operatorname{TGDMS} t+\beta_{2} \log \operatorname{TGGED} t \\
& \log \operatorname{IGLsO}_{t}=\beta_{0}+\beta_{1} \log \operatorname{TGPDLs} t+\beta_{2} \log \operatorname{lag} D_{t} \\
& \log \operatorname{IGTrO}_{t}=\beta_{0}+\beta_{1} \log \operatorname{IGPDPT} t+\beta_{2} \log \operatorname{TGGPD}_{t} \\
& \text { log } \operatorname{mGMSO}=\beta_{0}+\beta_{1} \text { iog MGDDMSt }+\beta_{2} \text { J.09 9GGPD } t
\end{aligned}
$$

The results fox the ordinary least squares estimaters are found in table 4.3.4. For all the categories, except miscellaneous, the price effect is negative and for all the services β_{2}, the income effect, is positive mowever, we cannot

TabJe 4.3.4

Double-Jog Demanc Model: 0.T.S.
(t--values in parenthesis)

Demand Category	β_{0}	β_{J}	β_{2}	D.0.	3^{2}
Total	$\begin{gathered} -5.845 \\ (-2.762) \end{gathered}$	$\begin{gathered} -1.411 \\ (-2.581) \end{gathered}$	$\begin{gathered} 1.3 .8 \mathrm{t} \\ (4.057) \end{gathered}$. 454	. 982
Local	$\begin{gathered} -3.455 \\ (-1.565) \end{gathered}$	$\begin{gathered} -3.284 \\ (-2.896) \end{gathered}$	$\begin{gathered} .829 \\ (3.482) \end{gathered}$. 371	. 980
ToI1	$\begin{aligned} & -7.600 \\ & (-2.476) \end{aligned}$	$\begin{gathered} -1.754 \\ (-2.997) \end{gathered}$	$\begin{gathered} 1.303 \\ (3.958) \end{gathered}$. 594	. 983
Miscellaneous	$\begin{gathered} -17.829 \\ (-9.440) \end{gathered}$	$\begin{gathered} .842 \\ (1.885) \end{gathered}$	$\begin{array}{r} 2.147 \\ (10.520) \end{array}$	1.790	. 970
Local + Told	$\begin{gathered} -5.228 \\ (-1.963) \end{gathered}$	$\begin{gathered} -1.544 \\ (-2.907) \end{gathered}$	$\begin{gathered} 1.109 \\ (3.868) \end{gathered}$. 468	. 983

¥ajo te 4. 3 ،

Double-Log Demand Hodel: C-O.L.S.
(t-values in parenthesi.s)

Demand Category	β_{0}	β_{1}	β_{2}	ρ_{1}	D.W:	R^{2}
Jotal	$\begin{gathered} 1.800 \\ (\overline{1} .146) \end{gathered}$	$\begin{gathered} -1.103 \\ (-5.276) \end{gathered}$	$\begin{gathered} .423 \\ (2.653) \end{gathered}$	$\left(\begin{array}{c} .918 \\ (0.675) \end{array}\right.$	1.583	. 998
Local	$\begin{gathered} 1.401 \\ (1.031) \end{gathered}$	$\begin{gathered} -.921 \\ (-5.223) \end{gathered}$	$\begin{gathered} .352 \\ (2.555) \end{gathered}$	$\begin{gathered} .918 \\ (8.633) \end{gathered}$. 995	. 997
To.l1	$\begin{aligned} & .445 \\ & (.185) \end{aligned}$	$\begin{array}{r} -1.019 \\ (-3.396) \end{array}$	(2.524 ${ }_{(}^{.565}$	$\begin{gathered} .923 \\ (9.004) \end{gathered}$	1.510	.996
Miscellaneous	$\begin{gathered} -3.536 \\ (-1.765) \end{gathered}$	$\begin{gathered} -1.161 \\ (-3.737) \end{gathered}$	$\begin{gathered} .622 \\ (2.902) \end{gathered}$	$\begin{gathered} .630 \\ (3.036) \end{gathered}$	1.447	. 991
Socal + tonc	$\begin{gathered} 1.741 \\ (1.01 .7) \end{gathered}$	$\begin{gathered} -1.098 \\ (-4.790) \end{gathered}$	$\begin{gathered} .428 \\ (2.481) \end{gathered}$	$\begin{gathered} .925 \\ (9.099) \end{gathered}$	1. 418	. 997

Table 4.3 .6
Double-Log Demand Model: M.I.R.
(t-values in parenthes \dot{c} s)

9 mard Categoxy	β_{0}	β_{1}	β_{2}	${ }^{\circ} 1$	ρ_{2}	D.W.	R^{2}
Total	$\begin{gathered} .203 \\ (1.935) \end{gathered}$	$\begin{gathered} -.940 \\ (-4.118) \end{gathered}$	$\begin{gathered} .374 \\ (1.979) \end{gathered}$	$\begin{gathered} .850 \\ (2.793) \end{gathered}$	$\begin{aligned} & .091 \\ & (.306) \end{aligned}$	2.328	. 998
Local	.064 $(.782)$	-.894 (-3.284)	$\begin{gathered} .383 \\ (2.827) \end{gathered}$	$\begin{gathered} 1.381 \\ (4.337) \end{gathered}$	$\begin{gathered} -.444 \\ (-1.420) \end{gathered}$	2.375	. 998
Tol.	.146 $(.994)$	$\begin{gathered} -1.118 \\ (-3.622) \end{gathered}$	(1. .679	(3.950	$\begin{gathered} -.058 \\ (-.220) \end{gathered}$	2.452	. 997.
Mscellaneous	$\left(\begin{array}{c} .109 \\ (1.144) \end{array}\right.$	$\begin{gathered} -.382 \\ (-.828) \end{gathered}$	$\begin{aligned} & .050 \\ & (.199) \end{aligned}$	$\begin{gathered} 1.1 .39 \\ (5.480) \end{gathered}$	$\begin{gathered} -.161 \\ (-.855) \end{gathered}$	2.864	. 994
cal + Moll	(7.1742)	-.982 (-3.906)	$\begin{gathered} .332 \\ (2.027) \end{gathered}$	$\begin{gathered} .966 \\ (3.340) \end{gathered}$	-.023 $(-.080)$	2.443	. 998

take much stock in these results because of the very hjogh auto-correlation which of course biases the values of the parameters and their t-values.

Once we correct for autocorrelation, we see from
table 4:3.5, an enormous improvement in the D.W. statistics, except for the lacal services. Moreover, $B_{2}>0$ and $\beta_{1}<0$ for all of the demand categories, and the values of these coefficients are significant.

Because of the inconclusiveness of the D.W. statistic, in loca category, it appears interesting to run the nodel correcting trice for serial correlation. lhese resuits are presented in table 4.3.6. In all cases we find that ρ_{2} is insjgnifjcant and therefore we Can immediately dismiss these estimates. Conseguently, for the aouslewiug mudei the cuchiane oreatt estimetes appear to bo tho best ones.

4.3.3 The Rotterdam Demand Model

The equations of the Rotterdam nodel are:

$\alpha_{2}\left[\log ^{\operatorname{Iog} S 0_{t}} \quad-\log \operatorname{TGSO} t_{t-1}\right]=\beta_{0}+\beta_{1}\left[\log \operatorname{IGPDLS}_{t}\right.$

$-\log \operatorname{TGDPN} t-1]+\beta_{2}[\log \operatorname{rag} t-\log \operatorname{TGGED} t-1]$

$\left.\alpha_{i n}\left[\log \operatorname{HGBD} 0_{t}-\log \operatorname{TGBDO} t-\right]\right]=\beta_{0}+\beta_{1}[\log \operatorname{IGDDBD} t$

Table \&.3.7
Rotterdam Demand Model: O.S.S.
(t-values in parenthesis)

Demand Category	β_{0}	${ }^{3} 1$	β_{2}	D.W.	R^{2}
Total	$\begin{gathered} .001 \\ (4.805) \end{gathered}$	$\begin{gathered} -.014 \\ (-2.927) \end{gathered}$	$\begin{gathered} .004 \\ (1.329) \end{gathered}$	2.045	. 540
Local	$\begin{array}{r} .0004 \\ (3.859) \end{array}$	$\begin{gathered} -.005 \\ (-2.832) \end{gathered}$	$(.0008$	1.572	. 465
Tol 1	$\begin{array}{r} .0007 \\ (3.758) \end{array}$	$\begin{gathered} -.007 \\ (-2.007) \end{gathered}$	$\begin{gathered} .003 \\ (1.300) \end{gathered}$	1.768	. 423
Miscellaneous	$\begin{aligned} & .0001 \\ & (3.388) \end{aligned}$	$\begin{aligned} & .0004 \\ & (.847) \end{aligned}$	$(.0001$	1.680	. 072
Local + Toll	$\begin{gathered} .001 \\ (4.280) \end{gathered}$	$\begin{gathered} -.014 \\ (-2.815) \end{gathered}$	$\begin{gathered} .004 \\ (1.282) \end{gathered}$	1.782	.530

Itable 4.3.8

Rotterdam Demand ModeI: C-O.T.S.
(t-values in parenthesis)

Demand Category	β_{0}	β_{l}	β_{2}	ρ_{1}	D.W.	R^{2}
Total	$\begin{gathered} .001 \\ (5.788) \end{gathered}$	$\left(\begin{array}{c} -.015 \\ (-3.452) \end{array}\right.$	$\begin{gathered} .003 \\ (1.277) \end{gathered}$	$\begin{gathered} -.151 \\ (-.530) \end{gathered}$	2.164	. 62.1
Local	$\begin{array}{r} .0003 \\ (2.230) \end{array}$	$\begin{gathered} -.005 \\ (-2.483) \end{gathered}$	$\begin{gathered} .002 \\ (2.050) \end{gathered}$	$\begin{gathered} .465 \\ (1.820) \end{gathered}$	1.994	. 502
30] 1	$\begin{array}{r} .0097 \\ (4.642) \end{array}$	$\left(\begin{array}{c} -.03 .1 \\ (-3.326) \end{array}\right.$	$\begin{gathered} .003 \\ (1.366) \end{gathered}$	$\begin{aligned} & .008 \\ & (.027) \end{aligned}$	2.440	. 1.44
Miscol laneous	(6.00017)	$\begin{gathered} .0005 \\ (2.918) \end{gathered}$	$\begin{gathered} .0003 \\ (2.030) \end{gathered}$	$\begin{gathered} -.354 \\ (-1,31 \mathrm{~L}) \end{gathered}$	2.975	. 1.94
Local + Toll	$\begin{gathered} .001 \\ (5.156) \end{gathered}$	$\left(\begin{array}{c} -.015 \\ (-3.430) \end{array}\right.$	$\begin{gathered} .004 \\ (1.395) \end{gathered}$	$\begin{gathered} -.014 \\ (-.0 .53) \end{gathered}$	2.244	. 630

With respect to the Rotterdan model, the results are presented in table 4.3.7. For the total demand, there is virtually no autocorrelation and $\beta_{1}<0, \beta_{2}>0$, but the income offect is a marginal variable. The toll and local plus toll are acceptable equations but again the income effect is insignificant. The miscellaneous category, due to the random nojse from the data, is a very poor fit. When we adjust for autocorrelation there is only a marginal improvement in the demand for local services. This result is expected because the D.w. statistic.in Table 4.3.7 indicates an absence of autocorrelation.

One can then say that in general, except. for the local services: the Rotterdam model does not perform well for the public carriens.

Indeed, we find that for the total, toll, miscellaneous and local plus toll the linear model using the Cochrane-orcutt least squares yields the best results; for the total services the Rotterdam model using ordiriary least squares also does quite well, while fox local services the Rotterdam modet utilizing the c-o. i.s. estimates gives the best resuits.

4.3.4 Partjal Price Elasticjties of Demand

In the linear model the price elasticities are computod from:

$$
\begin{aligned}
& \beta_{1} \frac{\operatorname{MGDLS}_{t}}{\text { MGSO }} \text { - partial price elasticity of local demand } \\
& \text { in period } t
\end{aligned}
$$

$B_{1} \frac{\text { TGPDTP }}{T G I T}$	- partial price elasticity of toll demand in period i
$\beta_{1} \frac{\operatorname{TGPDMS}_{t}}{\operatorname{TGMSO}_{t}}$	- partial price elasticity of miscellaneous demand in period t
$\beta_{1} \frac{\mathrm{TGPDBD}_{t}}{\mathrm{TGBDO}_{t}}$	- partial price elasticity of local plus toll demand in period t

Wi.th the ordinary least squares estimates all the elasticities showed a monotonic decrease in demand responsiveness to price, because of the fact that given a constant β_{1} the ratio of relative prices to output declined over time. The range for total demand is from -4.305 to -.563 , for looal -3.670 to -. 700 , for toll
 Eor local plus toll from -4.015 to - 521.

The Cochrane-Orcuti estimates yield the ranges of the elasticjties to be, for total -6.727 to.- .879 , for local. -4.086 to -.776 , for toll -8.363 to -.767 , far miscellaneons -5.384 t. 0 -.699, for local plus toll -6.828 to -.886.

The nonlinear estimates are, for total -3.553 to -.464 , for local -2.611 to $\cdots .496$ f for toll - 4.950 to -. 454 , for miscellaneous .439 to . 057 , for local phus toll -3.636 to -.472.

The double-log elasticities are: for ordimary least squares, total -1.411, local -1.284, toll-1.754, miscellaneous .842, local plus toll -1.544; for (-o. least squares, total -1.103,
local -.920, tol1 -1.019, miscellaneous -1.1.61, local plus toll -1.098; for N.L.R. estimates, total -.940, local -.894, toll -1.118, miscellaneous $\cdot . .382$, local plus toll $\cdots .982$.

Whe rotterdam elasticities vaxy over the sample period because they are defined by β_{1} divided by ${ }_{i t}$.

The ordinary least squares results are: for total a high of -. 828 and a low of -1.077 , for local -. 717 (high) and -1.700 (low' for toll ... 661 (high) and -1.291. (low), for miscellaneous .932 (high) and .409 (low), for local plus toll -. 856 (high) and -1. 691 (Jow).

The $\mathrm{C}-\mathrm{o}$ least squares estimates are: for total - 801 (high) and -1.691 (10w): local -. 692 (high) and -1. 642 (low), toli -950 (high) and -1.859 (low), miscellaneous 1.359 (high) and .595 (low), local plus toli. -. 849 (high) and -1.785 (10w).

For the total demand servjes, it appears that the linear model corrected for autocorrelation yielded the best results and if we calculated the mean of the range of the elasticities, we find that the average partial price elasticity of total demand for the public companies is -3.1.

4.4 Private Carriers

This section deale with the estimation of the demand structure for the aggregation of the private companies, Newfoundland Tejephone, New Bxunswick Telephone, and Maxitime Telegraph and Telephone.

4.4.1 The Linear Demand Model

The linear equations which were estimated for the private companies are,

$$
\begin{aligned}
& \text { OPPSO }_{t}=\beta_{0}+\beta_{1} \text { OPPDTS }_{t}+\beta_{2} \text { OPGPD }_{t} \\
& \text { OPLSO }_{t}=\beta_{0}+\beta_{1} \text { OPPDIS }_{t}+\beta_{2} \text { OPGPD }_{t} \\
& \text { OPSTO }_{t}=\beta_{0}+\beta_{1} \text { OPPDPT }+\beta_{2} \text { OPGPD }_{t} \\
& \text { OPMSO }_{t}=\beta_{0}+\beta_{1} \text { OPPDMS }_{t}+\beta_{2} \text { OPGPD }_{t} \\
& \text { OPBDO }_{t}=\beta_{0}+\beta_{1} \text { OPPDBD }_{t}+\beta_{2} \text { OPGPD }_{t}
\end{aligned}
$$

The results for the ordinary least squares estimates are found in table 4.4.J. We can observe from this table that, although, the price and income effects have the correct sign, the problem of autocorrelation is quite severe.

Aftex adjusting for the positive autocorrelation; we see from table 4.4.2 that the signs of the coofficionts are correct and ρ_{3} js significant, whoh implies that we were oorrect in caryata out the odjustment. Homever, if we adjust once mone then f ρ_{2} ismot sjgnificant (table 4.4.3) and so we have to conclude that, in general, the linear model coes not adequately describe the private companies demand structure.

Table 4.4.1

Ifnear Domand Model: O.L.S.
(c-values in parenthesis)

Demand Cateçory	β_{0}	β_{1}	β_{2}	D.W.	n^{2}
Total	$\begin{array}{r} 235.569 \\ (1.882) \end{array}$	$\begin{aligned} & -223.778 \\ & (-2.514) \end{aligned}$	$\begin{gathered} .016 \\ (1.767) \end{gathered}$.436	. 968
Local	$\begin{aligned} & 91.779 \\ & (2.259) \end{aligned}$	$\begin{gathered} -84.054 \\ (-2.887) \end{gathered}$	$\begin{gathered} .006 \\ (2.328) \end{gathered}$. 639	. 980
Toll	$\begin{gathered} 23.544 \\ (.326) \end{gathered}$	$\begin{aligned} & -50.060 \\ & (-1.017) \end{aligned}$	$\begin{gathered} .016 \\ (2.924) \end{gathered}$. 439	. 948
Miscellaneous	$\begin{aligned} & 12.639 \\ & (5.184) \end{aligned}$	$\begin{aligned} & -12.438 \\ & (-6.555) \end{aligned}$	$\begin{array}{r} .0005 \\ (3.100) \end{array}$]. 002	، 969
mocal + Toll	$\begin{array}{r} 186.232 \\ (1.518) \end{array}$	$\begin{gathered} -185.127 \\ (-2.137) \end{gathered}$	$\begin{gathered} .018 \\ (2.016) \end{gathered}$. 429	. 967

Table 4.4.2
Linear Demand Model: C-O.I.S. (t-values in parenthesis)

Demand Category	β_{0}	β_{1}	B_{2}	ρ_{1}	D.T.	R^{2}
Jotal	$\begin{array}{r} 198.438 \\ (2.330) \end{array}$	$\begin{array}{r} -235.941 \\ (-4.148) \end{array}$	$\begin{gathered} .025 \\ (3.244) \end{gathered}$	$\begin{gathered} .760 \\ (4.379) \end{gathered}$	1.325.	. 990
foocal.	$\begin{aligned} & 79.351 \\ & (2.377) \end{aligned}$	$\begin{aligned} & -81.760 \\ & (-3.571) \end{aligned}$	$\begin{gathered} .009 \\ (3.230) \end{gathered}$	$\begin{gathered} .624 \\ (2.992) \end{gathered}$	1. 583	.950
ToLI	$\begin{aligned} & 54.779 \\ & (1.242) \end{aligned}$	$\begin{array}{r} -108.043 \\ (-3.569) \end{array}$	$\begin{gathered} .020 \\ (4.596) \end{gathered}$	$\begin{gathered} .778 \\ (4.628) \end{gathered}$	1.230	. 987
discelianenus	$\begin{aligned} & 15.270 \\ & (4.064) \end{aligned}$	$\begin{gathered} -14.188 \\ (-5.304) \end{gathered}$	$\begin{array}{r} .0003 \\ (1.039) \end{array}$	$\begin{gathered} .414 \\ (1.700) \end{gathered}$	1.463	. 976
50cal + mod.	$\begin{array}{r} 173.611 \\ (2.259) \end{array}$	$\begin{array}{r} -220.790 \\ (-4.757) \end{array}$	(3.530)	$\begin{gathered} .756 \\ (4.459) \end{gathered}$	1.356	. 991

Table 4.4 .3

Linear Demanc Podel: N.L.R.
(t-values in parenthesis)

Pmand Category	$\hat{\beta}_{0}$	B_{1}	β_{2}	ρ_{1}	ρ_{2}	D.W.	R^{2}
Tot.al	$\begin{gathered} 59.147 \\ (.632) \end{gathered}$	$\begin{gathered} -249.072 \\ (\cdots 2.759) \end{gathered}$	$\begin{gathered} .019 \\ (1.057) \end{gathered}$	$\begin{gathered} 1.1 .09 \\ (2.508) \end{gathered}$	$\begin{gathered} -.352 \\ (-.765) \end{gathered}$	1.261	. 990
Local	-.206 $(-.050)$	$\begin{aligned} & -3.770 \\ & (-.115) \end{aligned}$	$\begin{gathered} -.010 \\ (-\mathrm{J} .464) \end{gathered}$	$\begin{gathered} 1.045 \\ (1.731) \end{gathered}$	$\begin{aligned} & .039 \\ & (.060) \end{aligned}$	2.058	. 996
Toll	-1.900 $(-.216)$	$\begin{aligned} & -22.837 \\ & (-2.377) \end{aligned}$	$\begin{gathered} .013 \\ (3.386) \end{gathered}$	$\begin{gathered} 1.887 \\ (5.975) \end{gathered}$	$\begin{gathered} -.317 \\ (-.807) \end{gathered}$	2.389	. 909
wiscellaneous	$\begin{gathered} -.388 \\ (-.924) \end{gathered}$	$\begin{aligned} & .942 \\ & (.317) \end{aligned}$	$\begin{gathered} -.001 \\ (-1.506) \end{gathered}$	$\begin{gathered} 1.097 \\ (2.728) \end{gathered}$	$\begin{aligned} & .018 \\ & (.166) \end{aligned}$	2.076	. 992
bocal + Join	-9.169 (-1.245)	$\begin{gathered} -42.558 \\ (-1.1 .13) \end{gathered}$	$\begin{gathered} -.010 \\ (-.81 .1) \end{gathered}$	$\begin{gathered} 1.099 \\ (2.309) \end{gathered}$	$\begin{aligned} & .031 \\ & (.060) \end{aligned}$	2.030	. 998

4.4.2 The Double-Log Demand Model

The eruations for the double-log model, in this section, are:

$$
\begin{aligned}
& \log \operatorname{OPSSO}_{t}=\beta_{0}+\beta_{1} \log \operatorname{OPPDNS}_{t}+\beta_{2} \operatorname{IOg} \operatorname{OPGPD}_{t} \\
& \log \text { OPLSO}_{t}=\beta_{0}+\beta_{1} \log \text { OPPDLS } t+\beta_{2} \log \text { OPGPD } t . \\
& \log \text { OPITO }_{t}=\beta_{0}+\beta_{1} \log \text { OPPDPMT } t=\beta_{2} \log \text { OPGPD }_{t} \\
& \log \text { OPMSO }_{t}=\beta_{0}+\beta_{1} \log \text { OPPDMS }_{t}+\beta_{2} \log \text { OPGPD }_{t} \\
& \log \text { OPBDO }_{t}=\beta_{0}+\beta_{1} \log \text { OPPDBD }_{t}+\beta_{2} \log \text { OPGPD }_{t} \cdot
\end{aligned}
$$

The results for the double-log model, estimated by ordinary least squares arepresented in table 4.4.4. Once more, the problem of autocorrclation is severe, even though the coefficients (β_{1} and β_{2}) have the right sign. Table 4.4 .5 shows us the adjusted resul.ts and thore is an improvement : The problem of autocorrelation has beon overcome, especially in the total, local, and local plus toll categories. In addition the estimates have the right sign and are all significant for these three categories.

The second correatjon for autocorrejation (table 4.4.6) brings about a significant improvement in the results for each demand category. Indeed, it sems that for the linear and double-log models the best estimates are the double-log nondinear regression estimates.

4.4.3 The Rotterdam Demand Mode

The equations for the Rotterdam nodel are:

Table 4.4.4 Dougle-Log Demana Model: 0.I.S.
(t-values in parenthesis)

Demand Category	β_{0}	β_{2}	β_{2}	D. W.	R^{2}
Total	$\begin{gathered} -5.777 \\ (-9.396) \end{gathered}$	$\begin{gathered} -1.293 \\ (-6.798) \end{gathered}$	$\begin{gathered} 1.327 \\ (15.215) \end{gathered}$	1.381	. 998
Local	$\begin{gathered} -5.433 \\ (-5.108) \end{gathered}$	$\begin{gathered} \cdots 1.1 .71 \\ (-4.210) \end{gathered}$	$\begin{gathered} 1.077 \\ (8.359) \end{gathered}$. 914	. 992
modi.	$\left\lvert\, \begin{gathered} -10.101 \\ (-12.589) \end{gathered}\right.$	$\begin{gathered} -] .239 \\ (-6.215) \end{gathered}$	$\begin{gathered} 1.639 \\ (1.6 .989) \end{gathered}$	1.529	. 998
Miscellaneous	$\begin{gathered} -9.560 \\ (-9.675) \end{gathered}$	$\begin{gathered} -2.01 .3 \\ (-6.723) \end{gathered}$	$\begin{gathered} 1.2 .44 \\ (1.0 .377) \end{gathered}$. 858	. 984
Local + Toll	$\begin{gathered} -6.910 \\ (-9.136) \end{gathered}$	$\begin{gathered} -1.25 .1 \\ (-6.363) \end{gathered}$	$\begin{gathered} 1.339 \\ (14.649) \end{gathered}$	1.374	. 998

mable 4. 1.5
Double-Log Demana model: C-O.J.S. (t-waluas in parenthesis)

Demand Category	β_{0}	β_{1}	β_{2}	ρ_{1}	D.W.	R^{2}
Total	$\begin{gathered} -7.514 \\ (-10.439) \end{gathered}$	$\begin{gathered} -1.182 \\ (-6.809) \end{gathered}$	$\begin{gathered} 1.415 \\ (1.6 .294) \end{gathered}$	$\begin{aligned} & .178 \\ & (.675) \end{aligned}$	1.91 .1	. 998
Locall	$\begin{gathered} -6.938 \\ (-5.309) \end{gathered}$	$\frac{-.941}{(-3.422)}$	$\begin{gathered} 1.257 \\ (7.983) \end{gathered}$	$\begin{gathered} .440 \\ (1.831) \end{gathered}$	1.71 .2	. 995
To.li	$\begin{gathered} -10.333 \\ (-12.617) \end{gathered}$	$\begin{gathered} -1.238 \\ (-6.291) \end{gathered}$	$\begin{gathered} 1.667 \\ (16.332) \end{gathered}$	$\begin{aligned} & .150 \\ & (.566) \end{aligned}$	1.240	. 998
Miscoll fanecons	$\begin{gathered} -9.177 \\ (-3.662) \end{gathered}$	$\begin{gathered} -1.387 \\ (-4.384) \end{gathered}$	$\begin{gathered} 1.200 \\ (4.000) \end{gathered}$	$\begin{gathered} .569 \\ (2.598) \end{gathered}$	1.100	. 998
Local + moly	$\begin{gathered} -7.626 \\ (-10.616) \end{gathered}$	$\begin{gathered} \cdots, 149 \\ (-6.654) \end{gathered}$	$\begin{gathered} 3.424 \\ (16.440) \end{gathered}$	$\begin{aligned} & .1 .67 \\ & (.637) \end{aligned}$	1.906	.998

Table 4.4.6

Double-Log Demand Mode1: N. I.R.
(t-values in parenthesis)

Demand Category	β_{0}	β_{2}	β_{2}	p_{2}	ρ_{2}	D.W.	R^{2}
Total	$\left\lvert\, \begin{gathered} -8.566 \\ (-3.266) \end{gathered}\right.$	$\begin{gathered} -1.347 \\ (-5.744) \end{gathered}$	$\begin{gathered} 1.329 \\ (12.239) \end{gathered}$	$\begin{gathered} .325 \\ (1.003) \end{gathered}$	$\begin{array}{r} -.585 \\ (-2.316) \end{array}$	1.994	. 999
Local	$\begin{aligned} & -5.087 \\ & (-2.280) \end{aligned}$	$\begin{gathered} -1.233 \\ (-2.700) \end{gathered}$	$\begin{gathered} 1.104 \\ (4.951) \end{gathered}$	$\begin{gathered} .683 \\ (1.945) \end{gathered}$	$\begin{gathered} -.582 \\ (-1.754) \end{gathered}$	1.880	. 996
Tol].	$\left(\begin{array}{l} -9.880 \\ (-3.551 .) \end{array}\right.$	$\begin{gathered} -1.457 \\ (-6.831) \end{gathered}$	$\begin{gathered} 1.530 \\ (14.667) \end{gathered}$	$\begin{gathered} .461 \\ (1.997) \end{gathered}$	$\begin{gathered} -.536 \\ (-2.471) \end{gathered}$	2.311	. 999
Miscellaneous	$\begin{gathered} -6.833 \\ (-3.656) \end{gathered}$	$\begin{gathered} -2.558 \\ (-7.279) \end{gathered}$	$\begin{gathered} 1.087 \\ (7.679) \end{gathered}$	$\begin{array}{r} .989 \\ (4.825) \end{array}$	$\begin{gathered} -.814 \\ (-3.827) \end{gathered}$	2.012	. 995
Local + Toll	$\left\lvert\, \begin{gathered} -8.746 \\ (-3.272) \end{gathered}\right.$	$\begin{gathered} -1.301 \\ (-5.616) \end{gathered}$	$\begin{gathered} 1.343 \\ (12.351) \end{gathered}$	$\begin{aligned} & .312 \\ & (.970) \end{aligned}$	$\begin{array}{r} -.571 \\ (-2.354) \end{array}$	2.083	. 999

$$
\begin{aligned}
& \alpha_{\text {it }}\left[\log \text { OPTSO }_{t}-\log \text { OPTSO }_{t-1}\right]=\beta_{0}+\beta_{1}\left[\log \text { OPPDTS }_{t}\right. \\
& -\log \text { OPPDRS } t-1]+\beta_{2}\left[\log O P G P D_{t}-\log O P G P D t-1\right] \\
& \alpha_{i t}\left[\log \text { OPLSO }_{t}-\log \text { OPLSO }_{t-1}\right]=\beta_{0}+\beta_{I}\left[\log \text { OPPDI }_{t}\right. \\
& \left.-\log \operatorname{OPPDL}_{t-1}\right]+\beta_{2}\left[\operatorname{Iog} \operatorname{OPGPD}_{t}-\log O P G P D_{t \ldots l}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.{ }^{-} \log \text { OPPDTY }{ }_{t-1}\right]+\beta_{2}\left[\log \text { OPGPD }_{t}-\log \operatorname{OPGPD}_{t-1}\right] \\
& \alpha_{i t}\left[\log \text { OPMSO }_{t}-\log \text { OPMSO }_{t-I}\right]=\beta_{0}+\beta_{1}\left[\log \text { OPPDMS }_{t}\right. \\
& \left.-\log \text { OPPDMS }_{t-1}\right]+\beta_{2}\left[\log \operatorname{OPGPD}_{t}-\log \operatorname{OPGPD}_{t-\ldots, t}\right] \\
& \alpha_{\text {it. }}\left[\log \text { OPBDO }_{t}-\log \text { OPBDO }_{t-1}\right]=\beta_{0}+\beta_{1}\left[\log O P P D D_{t}\right. \\
& \left.-\log O P P D B D_{t-1}\right]+\beta_{2}\left[\log O P G P D_{t}-\log O P G P D_{t-1}\right] \text {. }
\end{aligned}
$$

The results for the ordinary least squares estimates for the Rotterdam model (table 4.4.7) are not very promising; for
 demand the price effect is also signed incorrectly. In addition the Cochrane-orcutt results, for the correction of the problem of autocorrelation, do not improve the explanatory power of the model.

Consequentiy, the nonjineax resression estimetes fox tho double-log model, in general, are the best results.

4.4.4 The Partiaj. Price Plasticities of Demand

T.n the linear model the price elaticities are computed from:

$\beta_{1} \frac{\text { oppiss }}{\text { Opso }_{t}}$ - partial pxice elasticity of local demand

Table 4.4.7

Rotterdam Demand Model: 0. I. S. (t-values in parenthesis)

Demana Category	β_{0}	β_{1}	β_{2}	D. W.	F^{2}
Total.	$\begin{gathered} .003 \\ (2.11 .2) \end{gathered}$	$\begin{gathered} -.007 \\ (-.970) \end{gathered}$	$\begin{gathered} -.021 \\ (-1.122) \end{gathered}$	1.430	. 299
Jocal	$\begin{gathered} .002 \\ (3.439) \end{gathered}$	$\begin{aligned} & .001 \\ & (.416) \end{aligned}$	$\begin{gathered} -.023 \\ (-2.419) \end{gathered}$	1.996	. 423
Tol.	$\begin{gathered} .001 \\ (1.534) \end{gathered}$	$\begin{gathered} -.005 \\ (-1.442) \end{gathered}$	$\begin{gathered} -.002 \\ (-.173) \end{gathered}$. 878	. 182
Miscellaneous	$(.0001$	$\begin{array}{r} -.0001 \\ (-1.895) \end{array}$	$\begin{gathered} -.0002 \\ (-.095) \end{gathered}$	1.118	. 350
Tocal + Tol.	$\begin{gathered} .003 \\ (2.515) \end{gathered}$	$\begin{gathered} -.006 \\ (-.896) \end{gathered}$	$\begin{gathered} -.021 \\ (-1.159) \end{gathered}$	1.41 .6	. 283

Table 4.4.8
Rotterdam Demand Model: Cwo. L. S.
(t-values in pacenthesis)

Demand Category	β_{0}	B_{3}	β_{2}	ρ_{1}	D.W.	R^{2}
rotal	$\begin{gathered} .002 \\ (1.793) \end{gathered}$	$\begin{gathered} -.010 \\ (-1.326) \end{gathered}$	$\begin{gathered} -.008 \\ (-.426) \end{gathered}$	$\begin{aligned} & .226 \\ & (.765) \end{aligned}$	1.770	. 332
Local	$\begin{gathered} .002 \\ (3.21 .3) \end{gathered}$	$\begin{aligned} & .002 \\ & (.433) \end{aligned}$	$\begin{gathered} -.022 \\ (-2.200) \end{gathered}$	$\begin{gathered} -.035 \\ (-.122) \end{gathered}$	2.004	. 385
Toll	(.7905	$\begin{gathered} -.006 \\ (-2.105) \end{gathered}$	$(1.011$	$\begin{array}{r} .523 \\ (2.3 .25) \end{array}$	12. 390	. 547
Miscellameous	$\begin{array}{r} .0001 \\ (.744) \end{array}$	$\cdots .0003$ (-2.129)	$\begin{gathered} -.0004 \\ (-.263) \end{gathered}$	$\begin{gathered} .4 .12 \\ (1.561) \end{gathered}$	1. 540	. 494
Tocal + doll	$\begin{gathered} .002 \\ (2.857) \end{gathered}$	$\begin{gathered} -.009 \\ (--1.31 .8) \end{gathered}$	$\begin{gathered} -.003 \\ (-.4 .23) \end{gathered}$	$\begin{aligned} & .215 \\ & (.762) \end{aligned}$	1. 1.790	. 323

in period t

> demand in period t
> $B_{1} \begin{gathered}\text { OPPDBD }_{t} \\ \mathrm{OPBDO}_{t}\end{gathered} \quad-\quad$ partial price elasticity of local plus toll demand

The price elasticities for the O.I.S. estimates in the linear case monotonically incxease since the ratio of the relative price to output for each service declines. The ranges are: for total -7.324 to -.832 , for local -4.766 to -.786 , for toll -4.546 to -. 373, for miscellaneous -10.075 to -1.217 , for local plus toll -6.375 to - . 761 . The C-O. L. 5 . estimates are: for total -7.722 to -.930, for local -4.636 to --.755", for toll -9. 811 to -. 805 , for miscellaneous -11.494 to -1.389, for local plus toll -7.604 to -. 308. The N.T.R. estimates are: For total -8.152 to -.982, for local -. 214 to -. 035, for toll -2.074 to -.170 , for miscellaneous .092 to .763, and for 10001 pJus toll ...1.466 to -. 175.

Whe double-log elasticities are: For 0.L.s., total -1.293, local. -1.171, toll -1.239, miscellaneous -2.018, local plus toll -1.251; C-O.I.G., total -1.182, Iocal -.342, toll-1.238, miscellancous
 toll -.1.45\%, miscellameons -2.558, looal plue toll - - . 301.

The Rotterdam O.J.S estimater vary over the sample, for total -.347 (high) to -.672 (low), for local . 320 (high) to . 159 (Iom), for toll - . A 70 (high) to -905 (low), for miscellancous -1.083 (high) to -2.025 (low), and for local plus tol.j -. 331 (hjog) to - .603 (low) The C-O.J.S. estimates also vary and they are: for total -. 468 (high) to -9.905 (low), for local . 345 (high) to .171 (low) for toll -. 550 (hjgh) to -1.059 (low), for miscellaneous -1.175 (high) to -2.198 (low), and for local plus toll -.446 (high) to -.864 (Iow).

It has been stated that the best results for the cotal demand sexvices axe the double-log $1.1, R$ estimates. In this case the partial price elasticity is -1.4 which is indeed lomer

Appendix 3.1 Demand Module Symbols

1. Provinces and Country

QU Quebed	
ON	Ontario

NS Nova Scotia
PE Prince Edward Island $\because \%$
NF Newfoundl.and
NB New Brunswick

MiN Manitoba
SK Saskatchewan
AT Alberta

BC British Columbia

CA Canada
2. Cities

ML Montreaj
TR Moronto

HI Halifax
JF St. John's
JB St. John
CL Therlottetom

Wh Wimipeg
ST Saskatcon
RG Regira
ED Edmontion

Vancouver
3.

Companies
B.t Eell Canada

BC British Columbia Telephone Company

MT Maritime Telegraph \& Telephone Compuny
NF : Newfoundland Telephone Company
NB New Brunswick Telephone Company

AG Alberta Government Telephones
MN Manitoba Telephone System
sk Saskatchewan Teiecommanations
ED Rdmoriton lelephones

OP Private telephone companies other than $B L$ and $B C$ $(M T+N F+N B)$

ID Fotal telephone industry
4. Revenues

TSR Total Revenue
ISR Local Revenue
TTR Total Toll Revenue (including miscell. Toll Rev.)
TOR Toll Revenue (excluding miscell. toll Revenue)
DAR Dixoctory Advertising Reveruc
MSR - Misccllaneous Revenue (TGR - LSR - TMR)
JTSR LSR + TOR
BWR HEP + JOR + DAR (AIL revenue but miscell.)
BDR LSR + TRR (All revenue but directory advertisement and miscel.,)

TST	dSik	minus	Indirect	Tayes
LSI	LSR	"	"	"
TTI	'TTR	"	"	"
J!ou	MOR	"	"	"
DMI	DAR	"	1	"
MSI	MGR	${ }^{11}$	"	".
LTIT	LTR	"	"	"
BMT	BMR	"	"	\cdots
BSI	BDR	"	"	

5. Price Indices

PTrs	Price	Index	(of the	first rev	nue	category	TSI/TSO
PITS	"	"	("	second	")	LSI/TSO
PJTrs	"	"	(${ }^{\text {] }}$	third	")	ITI/
PITO	"	"	$($ "	fourth	")	TOI/TOO
PTDA	"	"	(${ }^{\prime}$	fixth	1	,	DAI/DAO
PTMS	"	*	1	sj.xth	")	MSI/MSO
PTHT	${ }^{\prime \prime}$	"	$($	seventh	"	")	LTT/LTO
PIBA	"	"	1	ejuith	1)	BMI / BMO
Pri31)	"	1	1	nineth	")	$\mathrm{BDI} / \mathrm{BDO}$

PDIM	PIIT deflated by the consumer price index					
PDBM	PIBM	$"$	$"$	$"$	$"$	$"$
PDBD	PIBD	$"$	$"$	$"$	$"$	$"$

CPI Consumex Pxjce index
GPI Gross Provincial proauct price index
6. Gross Provincial Product
$\begin{array}{cccc}\text { GPp } & \text { Gross Provincial Product (current prices) } \\ \text { GPD } & " & " & " \\ \text { (deflated) }\end{array}$

Footnotes

1. Along with the T.C.T.S. carriers, we include Edmonton Telephones because of itts large share of the locai revenues from the telephone services in the province of Alberta.
2. There are an arbitrary mumer (n) of comnodities in each household's decision process.
3. Since we are only dealing with the telephone industry and not the Canadian economy we are using partial equilibrium analysis. Hence, we are assuming the outputs (and revenie) of all nontelephone producing firms are given.
4. Thexe is no reason for the type and muber (n) of commodities, in any one tim's decision, should be the same as the type and number (n) in the housenold's choice problem.
5. Of course we have tried other variables in the aggregate demand function such as population, and the percentage of direct distance calls, as a measure of technological change, but they created problems of multicollinearity, or had the wrong sign. or were insignificant.
6. Whe partial price elasticity of demand is $\frac{\partial \log x_{i t}}{\partial \log P_{i t}}$, whereas the total price elasticity is $\frac{d \log x_{i t}}{d \log p i t}$, and for the jncome elasticities replace p jt by y_{t}.
7. The need for thjs procedure arises because we do not have information on indrect taxes by the type of revene semvoes.
B. The data source for the consumer price indexes is Cansim.
8. The data source for the gross provincial products is Cansim.
9. The list of memonjes is given in Appendix 1 of the demand module The first iwo jetters pertain to the comeny and the remaining letters refer to the particular type of variable.
10. a_{i} xefers to the average valut (between two periods) of the shtre of expenditure on the i sexvice ont of total expenditure in period t. Fhus H_{i} chateres for any service over timo and it: olanges acxoss difiterent services.
11. Bell Canada, Rate Hearings, Exhihit No's. B-73-61, B-73-62, December 1973.
12. Corbo, V., "Iaterprovincial Flows of Telephone Services", Report to Departmeni of Communjations, 1974.
13. Dobell, A.R., et al., "Telephone Communications in Canada: Demand, Froduction, and Investment Decisions", Bell. Journal of ficonomics and Management Science, Vol. 3r No. 1. p. 175-219.
14. Houthekker, H.S. and I.D: Taylor, Comsumer Demand in the finited States, (2nd ed.) Cambridge, Mass.: Harvard University Press, 1970.
15. International Institute of Ouantitative Economjcs, "Canadian Intejnational Telecommunications Demand Model", Department of Communications, nttawa, ont.: I973.
16. Nillen, R. "Automatic Rate Adjustments and Short Term Productivity Objectives for Bell Canada", Unpublished Ph.D. Thesis, Concordia university; 1974.
17. Phlips, L., Applied Consumption Analysis, New York, N. y.; North-Holland pubisihing Co., 2974.
18. Thej, H., Mheory and Measurement of Consumer Demand vol: $\frac{1}{\text { New York, N.Y. North Holland Publishing Co. } 1975 .}$
19. Waverman, L. Demand for Telephone Services in Great Britain and Canada, presented at the Canadjan Economics Association reetings, 1973.

1. Introduction

The purpose of the production module is to investigate the structural chaxactexistics of both the technology and the factors of production of telephone services for the TCTS companies and Ednonton Telephones.

In this module we estimate functional forms which describe production relationships such as the marginal products and the degree of returns to scale. These relevant estimated parameters are then integrated with the demand and financial modules, so that the overall model can be solved and the various forecasting experiments carried out.

The analysis of the modurtimencrigutione for telephone services has generally been studied at two levels of carrier aggregation. One level is at the industry, where production functions are estimated for all the important carriers combined; as is found in the study by R. Dobell et. al, [7].

The other level is at the firm level, but for a particular firm, which is Bell. Canada; as is found in the studjes by the I.A.E.R. [10], J. Caxr [5] and R. Millen [13].. In this study, we estimate production functions not: only for Dell Canada, but aiso for eritsah Cohumia Telephone Company tho aggregation of Maritime Ielegraph and felemone Company, New Brunswjek Telephone and Newfoundand Telephone Conpany. Finally, ve estimate tunctions for the aggregation of Alberta Government

Telephones, EAmonton Telephones, Manitoba lelephone system and saskatchewan relecommunjocations.

In addition to the types of carriers usually studied, there is generally ondy an aggregate production relationship specified. This arises because of the detailed data which is needed in order to estimate sets of disaggregated (by services) functions. In particular, one would need the contribution of copjtal, labour, and any other factors to each service category. Because we do not have such "micro" data, we follow the route of previous authors, and utilize an aggregate production function for each set of carriers under consideration.

The production module is divided into four sections, where each section pertains to a aifferent seta of carriors in the incustry.

2. Bell Canada

The production function for Bell Canada, as fox all the other corriers, is a variant oE the Cobb-Douglas specification. Basically, we have

$$
\begin{equation*}
y_{t}=A K_{t}^{\alpha_{1}} L_{t}^{\alpha_{2}} c^{\alpha_{3} I_{t}} t u_{t} \tag{I}
\end{equation*}
$$

where y_{t} is output, A is a constant (representing the transformation of inputs into the output), K_{t} is capital, I_{t} is Jabour, I_{t} is technological change, u is the random error. By taking natural logarithms of (1) we get,

$$
\begin{equation*}
\ln y_{t}=\alpha_{0}+\alpha_{1} \ln K_{t}+\alpha_{2} \ln L+\alpha_{3} I_{t}+v_{t} \tag{2.}
\end{equation*}
$$

 that α_{1} is the elasticity of output with respect to capital, α_{2} is the elasticity of output with respect to labour, and a_{3} is the average effect of a change in output with respect to a change in the technology.

An immedjate question arises as to the appropriatcness of the Cobb-Douglas function as a representation of the technology for fell Canada, or for that mater, any other carrier in the telephone industry. Indeed, this question bas been Eested by hypothestaing a more general modnction function, called the trans. logarithmio procuction function. Thas so-callod transiog function can be considered as a second order approximation to any production function around a point in which the logarithms of each of the inputs axe made equal to zero. ${ }^{1}$

We write the translog function as,

$$
\begin{align*}
\ln y_{t}= & \alpha_{0}+\alpha_{1} \ln K_{t}+\alpha_{2} \ln _{t}+\frac{\gamma_{11}\left(\ln I_{t}\right)^{2}}{} \\
& +\gamma_{2} \gamma_{22}\left(\ln K_{t}\right)^{2}+\gamma_{12}\left(\ln K_{t} \ln I_{t}\right)+ \\
& \alpha_{3} I_{t}+v_{t} \tag{3}
\end{align*}
$$

The essential ingredient of the above relationship is that it allows for a non-unitary elasticity of substitution between capital and laboux, besides non-eonstant returns to scale. Thjs function was estimated for Bell Canada in [10] and it was founci "that we could not reject the hypothesis that the technology was Cobb-Douglas. This essentially means that $\gamma_{11}=\gamma_{22}=\gamma_{12}=0$, and with this restriction we see that equations (2) and (3) are identical. We should remark that we still have not imposed con. stant returns to scale, we have only claimed that the production function exhibits a particular form of separability.
2.3. The Data

The data series that we used to estimate equation (2) came from two sources, the Beil Rate Hearings $[3]$ and R. Minlen [13]. The outrut variable we used was defined as total telephone service revenus minus indinect tames (but inciuding uncoibectibles) deftated by the price intox fom total services, as in the bell Rate Hearings [3].

The labour input in production was defined in terms of manhouxs worked (excluding hours spent in construction) rather
than by the number of employees. In addition, we adjusted the manhours for differences in the quality of work among different types of labour. A complete cescription of the method of adjustant for differences in skills can be fomd in Bell Rate Hearjngs [3] . It does bear mentioning that differences in nominal wages reflected the differences in skills and these weights were computed for 1967 and assumed to be constant over the sample period. Moreover, the definition of the payment to laboux to compute the weights included not only wages but also other forms of remuneration, such as fringe benefits.

The physical capital input is defined to be the net capital stock as defined in R. Millen [13] . The capital stock is comprised of plant and equipment, including plant undex construction. The rate of depreciation is economic depreciation computed from the life expectancy curves for the different vintages of capital.

For a measure of technological change, we used two difierent varjables; the percentage of calls direct distance dialed, and the percentage of telephones in numjer five orossber and electronic switching system. ${ }^{2}$
2.2 The Empitical Results

We have three different spectifications for Bely Canada. Two cquations include technologiond change and one does not. We also estimated the equations using ordinary least sgliares and the

Cochraneworcutt adjustment for autocorrelation. The equations that we estimated for 1950-1975 were the following: ${ }^{3}$

$$
\begin{aligned}
& \operatorname{lnBHSSO} O_{t}=a_{0}+\alpha_{1} \operatorname{srBL} K_{t}+\alpha_{2} \operatorname{lnBLI}_{t} \\
& \operatorname{lnBLPSO} t=\alpha_{0}+{ }^{C_{1}} \operatorname{lnBLR}_{t}+\alpha_{2} \operatorname{lnBI}_{1} I_{t}+\alpha_{3} B \operatorname{LDD}_{t} \\
& \operatorname{lnBLTSO}_{t}=\alpha_{0}+\alpha_{1} \operatorname{lnBLK} K_{t}+\alpha_{2} \operatorname{lnBLL_{t}}+\alpha_{3} \text { BLX }_{t} .
\end{aligned}
$$

The O.J.S. estimates are found in Table 2.1, and the C-O.I.G estimates are presented in Table 2.2.

We can observe from Table 2.1 that the equation without technological change shows that α_{2} (the labour coefficient) is not significantly difforent from zewo and that N_{i} is not significantly diffexent from one. Indeed, when we introduce technological change, whether through a direct distance dialed variable - or number. five crossbar, the labour coefficient becomes signifirant. The problem is, \therefore not only autocorrelation as the Dumbin-Watson statistics point out, but also we must restaict α_{2} to be equal to $1-\alpha_{J}$. In other words, we must impose constant returns to scale. These results are presented in Tables 2.3 and 2.4. If we test for constant returns to scale for the no technical. change o. I. s eguetion, we find that the computed p statistio is 7.59 and the tobulated $y, 23$ at the 18 levej of significance js 7.88 and sc, we acoppt the exjetence of constant returns to scale for this equation. ${ }^{4}$ The computed values of n for the other

Cobb-Douglas Production Punction Variable Returns to Scele: O.I.S. (t-values in parentiesis)

Technological Change variabie	α_{0}	α_{1}	α_{2}	α_{3}	D.W.	R^{2}
. None	$\begin{aligned} & -1.519 \\ & (-.783) \end{aligned}$	$(3.556$	$\begin{gathered} .134 \\ (1.205) \end{gathered}$		1.553	. 929
Direct Distance Dialed (Beli)	$\begin{gathered} -1.752 \\ (-4.434) \end{gathered}$	$\begin{gathered} .404 \\ (7.881) \end{gathered}$	$\begin{gathered} 1.143 \\ (7.214) \end{gathered}$	$\begin{gathered} .957 \\ (13.446) \end{gathered}$. 830	. 997
Nunber Sive Crossbar (Bell)	$\begin{gathered} -1.040 \\ (-2.517) \end{gathered}$	$\begin{gathered} .530 \\ (17.594) \end{gathered}$	$\begin{gathered} .743 \\ (4.915) \end{gathered}$	$\begin{gathered} 1.648 \\ (12.772) \end{gathered}$. 749	. 997

TABLE 2.2
Cobb-Douglas Production Eunction
Vartable Returns to Scale: C-O.J.S. (t-values in parenthesis)

Technolegical Change Variable	α_{0}	α_{1}	α_{2}	${ }^{2}$	ρ	D.W.	R^{2}
None	$\begin{aligned} & -1.298 \\ & (-.471) \end{aligned}$	$\begin{gathered} .968 \\ (7.131) \end{gathered}$	$\begin{aligned} & .057 \\ & (.064) \end{aligned}$.189 $(.964)$	1.935	. 319
Direct Distance Dialed (Beli)	$\begin{aligned} & .253 \\ & (.679) \end{aligned}$	$\begin{gathered} .328 \\ (8.335) \end{gathered}$.773 (6.792)	$\begin{gathered} 1.118 \\ (19.404) \end{gathered}$.494 (2.842)	1. 493	. 999
Number Pive Crossbar (Beli)	$\begin{gathered} 1.513 \\ (4.850) \end{gathered}$	$\begin{gathered} .436 \\ (15.453) \end{gathered}$	(3.144)	$\begin{gathered} 2.045 \\ (25.187) \end{gathered}$	(3.542)	1.619	. 999

Cobb-Dougias Production Function Constant Returns to Scale: O.I.S (t-values in parenthesis)

Technological Cnange Variable	${ }^{\infty} 0$	Ci_{2}	α_{3}	D.W.	R^{2}
- Nore	$\begin{gathered} -1.210 \\ (-5.430) \end{gathered}$	$\begin{gathered} .970 \\ (15.078) \end{gathered}$		1.549	. 905
Direct Distance Dialea (Bely)	$\begin{gathered} -.040 \\ (-.255) \end{gathered}$	$\begin{gathered} .552 \\ (10.254) \end{gathered}$	$\begin{gathered} .849 \\ (9.315) \end{gathered}$. 484	. 993
Number Eive Crossbar (Bell)	$\begin{gathered} -.142 \\ (-1.203) \end{gathered}$	$\begin{gathered} .587 \\ (14.461) \end{gathered}$	$\begin{gathered} 1.597 \\ (11.586) \end{gathered}$. 623	. 995

TABLE 2.4
Cobb-Douglas Production Function
Constant Returns to scale: C-O.I.S. (t-values in perenthesis)

Technological Change Variable	${ }^{\alpha} 0$	0_{1}	α_{3}	ρ	D. Wi .	R^{2}
None	$\left(\begin{array}{c} -1.210 \\ (-4.044) \end{array}\right.$.971 $(1.1 .401)$		$\begin{aligned} & .190 \\ & (.966) \end{aligned}$	2.935	. 896
Direct Distance Dialed (Eeli)	$\begin{gathered} .691 \\ (5.627) \end{gathered}$	$\begin{gathered} .315 \\ (7.678) \end{gathered}$	$\begin{gathered} 1.144 \\ (18.626) \end{gathered}$	$\begin{gathered} .540 \\ (3.205) \end{gathered}$	1.523	. 999
Number Pive Crossbar (Bell)	$\begin{gathered} .257 \\ (3.427) \end{gathered}$.460 (18.189)	1.903 (24.457)	$\begin{gathered} .409 \\ (2.243) \end{gathered}$	1. 3.46	. 999

two equations found in Tabies 2.2 and 2.4.also tell us that we should accept constant returns to scale. Since it appears that autocorrelation is particularly strong we need only carry out our tests using Tables 2.2 and 2.4. From these Tables we see that by single equation criteria, the direct distance dialed measure of technological change yielas the best results, so we accept contant returns to scale for Bell Canada. We compute that $\hat{\dot{\alpha}}_{1}=.32$ and $\hat{\alpha}_{2}=.68$ so that $\hat{\alpha}_{1}+\hat{\alpha}_{2}=1$. Given that we are interested in a complete integrated model the final acceptance or rejection of a particulax: equation will be determined by the equation's performance in tracking the actual data in the sample period; when we simultaneously solve the modules.

The production functions which we have estimated contain equipnent and labour as inputs, and revenues in constant dollars as the output. Consequently, because we have excluded materials as an input, we are assuming that materials affects output through a fixed coefficient technological process. This process may be represented by

$$
y \doteq \min . \quad \underbrace{(F, L)}_{\mu}, \frac{R}{V}) ;
$$

where \bar{K} represenis materiais ana μ anã are positive constants. The preceeding equation implies that

$$
y=\frac{F(K, L)}{\mu}=\frac{R}{V} \cdot
$$

Since we have already estimated the relationship $y=I(X ; L)$ we now need to find the estimated value of v. We ran regressions of the form $f=v y$ usjng the ordinary least squares and cochrane Oroutt adjusinent and found that,

$$
\begin{aligned}
& \text { D.W. }=2.421 \\
& R^{2}=.989^{\circ}
\end{aligned}
$$

whexe $\hat{v}=.14$ which is the estimated share (or average product) of materials to output.

Ihere also exists the possibility that the fixed coefficient assumption is not valid and that the actual technological process of bell is

$$
y=E(K ; L ; R)
$$

where R, materials, is included, with equipment and labour, in the group of factoxs which are potentially subtitutable.

It. should be mentioned here that the figures of materials series also incilude services rent and suppijes and it has been taken directly from the Memorandum on Productivity, Exhibit No. B-73-62, by Bell Canada.

Ihe results from the estimation, when we included materials in the cobb-Douglas production function, are presented in tables 2.5 .- 2.8. For the variable returns to scale model we utilized the ordinary and Cochrane-orcutt least squares methods, while for the constant returns to sale formulation we used the restricted least sgares estimation tochniche. In the following tables ou roprements the materials elasticity of output.

It is elear from the variable and constant returns to scaje results that tochnological change must be included in the production relationship. Moreover, we find when we perform our f-test

TABLE 2.5
Cobb-Douglas Production Function Variable Returns to Scale: O.t.S. (t-values in paremthesis)

Technclogicas Change Variable	${ }^{a_{0}}$	${ }^{\alpha} 1$	α_{2}	α_{3}	${ }_{4}$	D.T.	R^{2}
None	$\begin{gathered} -7.982 \\ (-2.260) \end{gathered}$	$\begin{gathered} .335 \\ (2.9: 96) \end{gathered}$	$\begin{gathered} -.689 \\ (-2.659) \end{gathered}$		$\begin{gathered} .998 \\ (6.499) \end{gathered}$. 555	. 991
Pirect Distance Dialed (Bell)	$\begin{gathered} -.973 \\ (-1.570) \end{gathered}$	$\begin{gathered} .345 \\ (5.531) \end{gathered}$	$\begin{gathered} .830 \\ (3.339) \end{gathered}$	$\begin{gathered} .818 \\ (7.386) \end{gathered}$	$\begin{gathered} .216 \\ (1.596) \end{gathered}$. 919	. 998
Number Five Crossbar (Bell)	$\begin{gathered} -.236 \\ (-.410) \end{gathered}$	$\begin{gathered} .437 \\ (6.736) \end{gathered}$	$\begin{gathered} .442 \\ (2.072) \end{gathered}$	$\begin{gathered} 1.368 \\ (7.150) \end{gathered}$	$\begin{gathered} .256 \\ (1.904) \end{gathered}$. 810	. 998

TABLE 2.6
Cobb--Douglas Production Function
Variable Returns to Scale: C-O. I.S.
(t-values in parenthesis)

Technological Change Varibble	${ }^{\alpha} 0$	${ }^{1}$.	α_{2}	${ }_{3}$	α_{4}	\bigcirc	D.W.	R^{2}
None	$\begin{gathered} 7.316 \\ (1.647) \end{gathered}$	$\begin{gathered} -.121 \\ (-.253) \end{gathered}$	$\begin{gathered} .016 \\ (.057) \end{gathered}$		$\left(\begin{array}{r} .277 \\ (2.000) \end{array}\right.$	$\begin{array}{r} .952 \\ 15: 512) \end{array}$. 873	. 998
Direct Distance Dialed (Beil)	$\begin{aligned} & .329 \\ & (.750) \end{aligned}$	$\left(\begin{array}{r} .317 \\ (7.560) \end{array}\right.$	$\begin{gathered} .688 \\ (4.613) \end{gathered}$	$\begin{aligned} & 1.043 \\ & 3.574) \end{aligned}$	$\left(\begin{array}{c} .082 \\ (1.100) \end{array}\right.$	$\begin{gathered} .457 \\ (2.570) \end{gathered}$	1.619	. 999
Number Five Crossbar (Bell)	$\begin{gathered} 1.600 \\ (5.510) \end{gathered}$	$\begin{gathered} .406 \\ (14.035) \end{gathered}$	$\begin{gathered} .172 \\ (1.939) \end{gathered}$	$\begin{gathered} 1.850 \\ (2.500) \end{gathered}$	$\left(\begin{array}{c} .123 \\ (2.000) \end{array}\right.$	$\begin{array}{r} .501 \\ (2.891) \end{array}$	11.827	. 999

(for constant returns), and indeed solely by adding $\alpha_{1}, \alpha_{2} \alpha_{4}$ in tables 2.5 and 2.6 , that Bell exhibits constant returns to scale This means that we estimate α_{1}, and α_{2} but α_{4} is defined from $1-\alpha_{1}-\alpha_{2}$. The constant returns resuits are presented in tables 2.7 and 2.8. Prom these tables we can observe that the direct distance dialed measure of technological change in table 2.8 seems to perform best, with a capital elasticity of output equal to .303 , a labour elasticity of ontpot equal to . 616, and a materials elasticity of output equal to. 1-. 616-. $305=.079$.

TABLE 2.7
Cobb-Douglas Prodetion Function
Variable Returns =o Scale: R.I.S. (t-values in pareathesis)

Technological Change Variable	${ }_{0} 0$	\cdots	α_{2}	03	D.W.	R^{2}
None	$\begin{gathered} .565 \\ (1.620) \end{gathered}$	$\begin{gathered} .343 \\ (2.835) \end{gathered}$	$\begin{array}{r} -.270 \\ (-5.489 \end{array}$. 471	. 988
Direct Distance Dialed (Beli)	$\begin{gathered} .640 \\ (6.270) \end{gathered}$	$\begin{gathered} .324 \\ (9.285) \end{gathered}$	(9.112)	$\begin{gathered} .906 \\ (15.049) \end{gathered}$	1.084	. 939
Number Five Crossbar (Beli)	$\begin{gathered} .300 \\ (3.653) \end{gathered}$	$\begin{gathered} .402 \\ (15.500) \end{gathered}$	(11.545)	$\begin{gathered} 1.725 \\ (13.250) \end{gathered}$	1.004	. 999

TABLE 2,8
Cobb-Douglas Prodirction Function
Variable Returns to Scale: A.R.I.S.
(t-values in pacenthesis)

Technological Change Variable	α_{0}	${ }^{*}{ }_{1}$	α_{2}	α_{3}	p	D.W.	R^{2}
None	$\left(\begin{array}{c} -.326 \\ (-1.533) \end{array}\right.$	$\begin{gathered} .533 \\ (34.375) \end{gathered}$	$\begin{gathered} .469 \\ (3.143) \end{gathered}$		$\begin{gathered} 1.061 \\ (34.375) \end{gathered}$	1.244	. 990
Direct Distance Dialed (Bell)	$\begin{gathered} .716 \\ (3.618) \end{gathered}$	$\begin{gathered} .305 \\ (4.318) \end{gathered}$	$\begin{gathered} .616 \\ (5.366) \end{gathered}$	$\frac{1.071}{(8.130)}$	$\begin{gathered} .519 \\ (3.225) \end{gathered}$	1.673	. 999
Numbew Five Crossbar (Beil)	$\begin{gathered} .338 \\ (3.306) \end{gathered}$	$\begin{gathered} .130 \\ (12.351) \end{gathered}$	$\begin{gathered} .480 \\ (9.005) \end{gathered}$	$\begin{array}{r} 1.782 \\ (14.537) \end{array}$	$\begin{gathered} .362 \\ (2.348) \end{gathered}$	1. 1.132	. 999

3. British Colunbia Telephone

We estinated variants of the Cobb-Dougias production function for B.C. Telephone under both variable and constant returns to scale.

3.1 The Data

The output measure was defined as total revenue minus indjrect taxes plus uncollectibles (ihese were obtained from the income statements) deflated by the price index of Bell Canada for total services. This variable was defined and described in the demand module of the study. ${ }^{5}$
 terms of weighted manhours. We had data in the number of employees (obtained from the Annual Reports of bic. Telephone [4]. We then converted employee data to manhours by assuming seven hours of work per day, 5 work--days per week; and 50 work-weeks. Thus 1750 hours wexe womed per year per employee times the munber of employees gives total manhours. Moreover, we utilized the weights of Bell Canada to convert manhours to weighted manhours in order to account for quality differences of workers. Therefore, we assumed the weights were not only constant in a temporal sense, but also constant across different carriexs.

The capital input was computed from the book values of the net capital stock reported in the balance sheets. We computed the
ratio of net. capital stock (for Bell) in constant 1967 prices. obtained from R. Millen [13] to it's net book value in current prjces. We then mulciplied this number by the net book value in current prices of B.C. Telephone. This computed value is net capital stock fox B.C. Telephone in 1967 prices. We are assuming that the proportion of the market value of net capital to book value is the same for all companies and that the price of capital for Bell Canada js identical to all other carriers, There are two advantages to thje appuoach Firstly, the Jonger a unit of capital (plant, equipment, eto.) remains in the production process, the more obsolete becomes it's book value. Hence, our method uses a measure of the market value of capital. Secondly, our method shows the manner that one can move from book values to market vaiues tor capital or riom market to book values, depending on one's jmmediate interest. 6

The technological change variable that we used was the percentage of calls direct distance dialed for B.C: Telephone. ${ }^{7}$

3.2 The Empirical Results".

We have two different specifications for the cobo-Douglas production functions, and two methods of estimation. The eguations we estinated fox 1961-1975 were:

$$
\begin{aligned}
& \operatorname{lnBCDSO_{t}}=\alpha_{0}+\alpha_{1}{\ln B C K_{t}}^{\ln _{t} \alpha_{2}{\ln B C L_{t}}} \begin{array}{l}
\operatorname{lnDCPSO} \\
t
\end{array}=\alpha_{0} \pm \alpha_{1} \operatorname{lnBCK}_{t}+\alpha_{2}{\ln B C L_{t}}^{+} \cdot \alpha_{3} B_{t D P}
\end{aligned}
$$

The results for the variable returns to scale equations (i.e. $\alpha_{1}+\alpha_{2} \gtreqless$) are presented in tables 3.1 and 3.2: The constant returns to scale equations (i.e. $\alpha_{1}+\alpha_{2}=1$) are found in tables 3.3. and 3.4. After performing our tests, we found that we could not accept constant returns to scale for Bxitish Columbia lelephone. However, it seems quite implausible that B.C. Melephone should exhibit increasing returns to scale soleiy from capital., as shown in tables 3.1 and 3.2. This is true, especiajuly in jight of the relatively old machinery and Iittle tecnnological innovation by the carrier. This leacis us to the conclusion that for an appropriate specification of the production relations one needs an exact measure of physical capital fox B.C. Telephone itself. In any event the results which seem most credible are found in the second equation of table 3.4. In this case we estimate $\hat{\alpha}_{1}=.63$ and $\hat{\alpha}_{2}=.37$.

Table 3.1

Cobb-Douglas production punction Varjable meturns to scale: O.J.s. (t. - values jn parenthesis)

Table 3.2
Cobb-Douglas Production Function Variable Returns to Scale: C-O.L.S. (t - values in paxenthesis)

Mechnological Change Variab	le α_{0}	${ }^{\alpha}{ }_{1}$	${ }^{\circ}{ }_{2}$	α_{3}	ρ.	D.W.	R^{2}
None	$\begin{gathered} 4.402 \\ (7.972) \end{gathered}$	$\begin{gathered} 1.049 \\ (5.352) \end{gathered}$	$\left(\begin{array}{c} .444 \\ (2.772) \end{array}\right.$		(1.694)	1.400	99
Direct Distance Dialed B.C.	$\begin{gathered} 4.321 \\ (7.431) \end{gathered}$	$\begin{gathered} 1.027 \\ (4.965) \end{gathered}$	$\begin{gathered} .402 \\ (2.400) \end{gathered}$	$\begin{gathered} .217 \\ (.647) \end{gathered}$	$\begin{gathered} .501 \\ (2.165) \end{gathered}$	1.534	. 99

Cobb-Douglas Production Function Constant Returns to scale: o.t.s. (t. - values in parenthesis)

Table 3.4

Cobb-Douglas prodiuction Function
Constant Returns to Scale: c-o.t.S.
(t - values in parenthesis)

4. The Public Carriers

Tn this section we estimated Cobb-Douglas production functions For the aggregation of Alberta Government Telephones Edmonton Telephores, Saskatchewan Tejecommmications and Mani-toba Telephone System.

4:1 The Data
'Ihe output measure, as for Bell Canada and B.C. Telephone was the total service demanc variabie which was defined and described in the demand module. The labour and capital factors of production were derived in the same fashion as those for B.C. Telephone. For techological change, we tried three different measures, the percentage of calls direct distance dialed for Bell, for B.C., and the number five crossbar variable For Bell. These measures were used as proxies for the public compenies, Nevertheless, it is a reasonable assumpion to use Bell's data given that it is the jndustrial leader in innovation and the public companies would tend, with a lag, to adopt the now tecinnology of the largost carrier.
4.2 rhe rmprigal Besults

The ecuations which we estimated for $1961-1975$ wexe:

$$
\begin{aligned}
& \ln \operatorname{TGTSO}_{t} \dot{=} \alpha_{0}+\alpha_{1} \ln \operatorname{lGK}_{t}+\alpha_{2} \operatorname{lnTGL} t \\
& \ln \operatorname{TGTSO}=\alpha_{0}+\alpha_{1} \operatorname{lnTGK}_{t}+\alpha_{2} \operatorname{lnTGL_{t}}+\alpha_{3} \operatorname{BIDD}_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{lnTGTS} O_{t}=\alpha_{0}+\alpha_{1} \ln \operatorname{lGK}_{t}+\alpha_{2} \operatorname{lnTGK}_{t}+\alpha_{3} \operatorname{BLX}_{t}
\end{aligned}
$$

The results for the variable returns to scale equations are presented in tables 4.1 and 4.2. The constant returns equetions are presented in tables 4.3 and 4.4. Clearly, from. table $4: 1$ there is no significant autocorrelation. Next when we performed the tests for the acceptance of rejection of constant returns we concluded that we must reject the hypothesjis of conthat retums. Fow the equation which perfoms redatively better than any of the others for the public carriers, we accept decreasjing returns to scale. We compute that $\hat{\alpha}_{1}=.2, \hat{\alpha}_{2}=.6$, and so $\hat{\alpha}_{1}+\hat{\alpha}_{2}=.8<1$, This equation is the one in table 4.1 with number five crossbar as the measure of temnological change. Here .2 is the capital elestiotty of output and 6 is the labous elasticity of output:

Cobb-Douglas Production Function Variable Returns to Scale : O.I.S. (t - values in parenthesis)

Mable 4.3.

Cobb-rpouglas production runction Constant Returns to Scale : O.I.s. (t m values in parenthesis)

Technological Change Vaxiable	${ }_{0}$	${ }_{1}$	${ }_{0}{ }_{3}$	D.W.	R^{2}
None	$\begin{gathered} 8.785 \\ (7.132) \end{gathered}$	$\begin{gathered} 1.894 \\ (5.438) \end{gathered}$. 404	. 71.1
Direct Distance Dialed (Bell)	$\begin{gathered} 2.006 \\ (4.557) \end{gathered}$	$\begin{gathered} .169 \\ (1.165) \end{gathered}$	$\begin{gathered} .011 \\ (18.109) \end{gathered}$	2.139	. 991
Direct Distance Dialed (B.C.)	$\begin{gathered} .36 .6 \\ (.253) \end{gathered}$	$\begin{aligned} & .015 \\ & (.044) \end{aligned}$	$\begin{gathered} 2.120 \\ (6.383) \end{gathered}$	1.490	. 939
Number Five Crossinar (Bell)	$\begin{gathered} 2.163 \\ (5.30 .4) \end{gathered}$	$\begin{gathered} .191 \\ (1.770) \end{gathered}$	$\begin{gathered} .021 \\ (19.231) \end{gathered}$	2.308	. 992

Table: 4.4

Cobb-Douglas Production Function Constant Returns to scale : Coo.tes. (t - values in parenthesis)

fechnological Change Variable	${ }^{0} 0$	α_{1}	${ }^{C}{ }_{3}$	ρ	D.W.	
None	$\left(\begin{array}{c} 2.721 \\ (2.918) \end{array}\right.$	$\begin{gathered} -.1 .02 \\ (-.361) \end{gathered}$		$\begin{array}{r} .942 \\ (1.0 .079) \end{array}$	2.366	. 976
Dirsct Distance Dialoa (Bell)	$\begin{gathered} 2.037 \\ (4.964) \end{gathered}$.1 .180 (1.667)	$\begin{gathered} .0 .12 \\ (19.466) \end{gathered}$	$\begin{gathered} -.133 \\ (-.434) \end{gathered}$	2.1 .83	989
minect Distance Dialed (B.C.)	$\begin{array}{r} 2.142 \\ 2.164 \end{array}$	$\begin{gathered} -.318 \\ (-.381) \end{gathered}$	$\begin{aligned} & .002 \\ & (.004) \end{aligned}$	$\begin{gathered} .927 \\ (8.925) \end{gathered}$	2.203	. 975
Number Five Crossbat (Bell)	$\begin{array}{r} 2.174 \\ (6.117) \end{array}$	$\left(\begin{array}{c} .196 \\ (2.078) \end{array}\right.$	$(22.027$	$\begin{gathered} -.233 \\ (-.862) \end{gathered}$	2.302	. 931

5. The Private Carriers

In this section we estimated cobb-Douglas production functions for the aggregation of wewfondand relephone, New Brunswick Telephone, and mastime Telegreph ant Telenhone companies.

5:1 The Data

The data, with respect to output, labour, capital, and technological change are defined in the identical manner as for the public carriers.

5.2 Whe Empirical Results

The regression estimates are found in tables 5.1 through 5.4 for the private companies. The equations we estimated were;

$$
\begin{aligned}
& \operatorname{RnOPTSO}{ }_{t}=\alpha_{0}+\alpha_{1} \quad \operatorname{lnOPK} t+\alpha_{2} \operatorname{lnOPL} L_{t} \\
& \operatorname{lnOPISO}{ }_{t}=\alpha_{0}+\alpha_{1} \operatorname{lnOPK}_{t}+\alpha_{2} \operatorname{lnOPL}_{t}+\alpha_{3} \operatorname{BLLD}_{t} . \\
& \ell \text { nOPNSO }_{t}=\alpha_{0}+\alpha_{1} \operatorname{lnOPK_{t}}+\alpha_{2} \operatorname{lnOPT}_{t}+\alpha_{3} \text { BCDD }_{t}
\end{aligned}
$$

We inmediatoly observe from table 5. 1 the severe problem of serial comalation. This problem is subsequently alleviated by
the Cochrane-Orcutt adjustinent undej variable returns to scale. In addition for constant returns to scale we must also deal with the $0-0.1 . S$. estimates fron table 5.4. When we pexform the tests whether to accept or reject constent returns, between the equations found in tables 5.2 and 5.4 , we find that we can accept constant returns. With the hypothesis of constant returns to scale, we see that the equation in taile 5.4 with the number five crossbar yields the best results. In this case we have a capital elastioity of output of . 55 and a labour elasticity of output of. 45.

6. Conclusion

Therefore we accept constant returns to scale for
 accept decreasing returns to scale for the public carriers. Comparing the companies by capital elasticities of output we find, writing the highest to the lowest carrier gives, a rankjng of 33.C., Bell, private, public. Comparing the companies by labour elasticities gives a ranking of highest to lowest oariser which js pulic, private, Bell and B.C. The fact that each ranking is the converse of the other is not surprising, given that we accepted constant retums to scale for three out of four sets of carmiers.

Table 5.1

Cobb-bouglas Production Function Variahle Returns to Scale : O. H. S. (t - values in parenthesis)

Technological:Change Variable

None

Direct Distance Dialed (Bell)

Direct Distance Diāled (B.C.)

Number Five Crossbar (Bell)

α_{0}	α_{1}	α_{2}	α_{3}	D.W	R^{2}
3.553	1.013	.915		.612	.984
(3.302)	(4.368)	(2.622)			
3.159	.168	.118	.020	1.163	.993
(7.415)	$(1.21 .7)$	$(.700)$	(8.156)		
1.443	.4 .34	1.136	1.071	1.021	.988
(1.037)	(1.254)	(3.481)	(2.080)		
3.376	.119	.015	.039	1.258	.999
(11.639)	(1.253)	$(.123)$	(12.430)		

Table 5.2

Cobb--Douglas Production Function
Variable Returns to Scale : C-O.L.S. (t -. values in parenthesis)

Technological Change Variable

None

Direct Distance Jialed (Bell)

Direct Distance rialed (B.C.)

Number Five Crossbar (Beld)

α_{0}	${ }_{1}$	α_{2}	α_{3}	ρ	D.W.	R^{2}
3.954	1.1 .26	. 791		. 602	1. 865	. 991
(3.408)	(3.932)	(2.1.56)		(2.813)		
3.497	. 3.365	+.138	(6.017	-436	1.771	. 998
(6.778)	(2.3.44)	(.74.5)	(6.644)	(1. 814)		
2.359	. 708	. 894	$1 . .020$. 319	1.977	. 996
(2.062)	(2.534)	(3.040)	(2.556)	(1.260)		
3.563 $(1.0 .694)$	(2.159)	$\begin{gathered} .041 \\ (.333) \end{gathered}$	(10.756)	$\left(\begin{array}{r}.354 \\ (1.418)\end{array}\right.$	1.8 .22	. 996
(J.0.694)	(2.15)		(J.0.756)	(.1.418)		

Table 5.3

Cobn-Douglas Production Function Constent peturns to Scale: O.J.s. ($t-$ values in parenthesis)

Technological Change Varjable	α_{0}	${ }_{1}$	α_{3}	D.W.	R^{2}
None	$\begin{gathered} 9.820 \\ (8.790) \end{gathered}$	$\begin{gathered} 2.194 \\ (6.933) \end{gathered}$		$\therefore 415$. 787
Dircct Distance Dialed (Bell)	$\begin{gathered} 2.990 \\ (5.134) \end{gathered}$	$\begin{gathered} .449 \\ (2.934) \end{gathered}$	(13.505)	. 672	. 987
Direct Distance Dialed (B.C.)	$\begin{aligned} & .506 \\ & (.304) \end{aligned}$	$\begin{aligned} & .065 \\ & (.166) \end{aligned}$	$\begin{gathered} 2.203 \\ (5.980) \end{gathered}$	I. 529	. 947
Number Five Crossbar (Bell)	$\begin{gathered} 3.091 \\ (5.597) \end{gathered}$	$\begin{gathered} .455 \\ (3.112) \end{gathered}$	$\begin{gathered} .021 \\ (14.096) \end{gathered}$. 611	. 988

Table 5.4

Cobb-Dougias Production Function Constant Returns to Scale : C- O.L.S. (t - values in parenthesi.s)

Technological Charge vaxiable	α_{0}	0_{1}	α_{3}	p	D.W.	R^{2}
None	$\begin{gathered} 4.642 \\ (7.351) \end{gathered}$	$\left(\begin{array}{c} .434 \\ (2.168) \end{array}\right.$		$\begin{array}{r} .951 \\ (11.452) \end{array}$	1. 1.66	. 986
Disect Distance Dialed (Bell)	$\begin{gathered} 3.437 \\ (5.580) \end{gathered}$	(3.583)	(12.367)	(2.530)	1.887	. 993
Diseot Distance Dialed (B.C.)	$\begin{gathered} .752 \\ (.612) \end{gathered}$	$\begin{aligned} & .776 \\ & (.507) \end{aligned}$	$\begin{gathered} 2.352 \\ (8.456) \end{gathered}$	$\begin{gathered} -.029 \\ (-.109) \end{gathered}$	1.746	. 666
Number Five Crossioar (Bell)	$\begin{gathered} 3.415 \\ (5.975) \end{gathered}$	$\begin{gathered} .557 \\ 3.578) \end{gathered}$	$\left(\begin{array}{c} .022 \\ (13.004) \end{array}\right.$	$\begin{gathered} .588 \\ (2.718) \end{gathered}$	1.792	. 994

Now that we have estimated the production functions we can determine the capital - libour ratios for any given ratio of factor prices. E'rom optimality conditions of corporate bahaviour we know that the ratio of the marginal products of the two factors equals the factor price ratio. Ihis means that,

$$
\frac{\alpha_{2} \frac{T S O}{L_{t}}}{\alpha_{1} \frac{T S O}{K}}=\frac{Q^{\prime}}{W_{k}}
$$

where W_{ℓ}, is the factor price of labour, W_{k} the factor price of capital, α_{1} is the capital elasticity of output, α_{2} the labour elasticity of output. Therefore

$$
\frac{\underline{W}}{L}=\frac{\alpha_{1} W^{n}}{\alpha_{2} W_{k}}
$$

and so given the factor price ratio for each carrier, we can determine the capital intensity. This implies that for the same factor price ratio we can rank the capital intensity of firms by the ratio of $\frac{\alpha}{\alpha_{2}}$, which we have estimated. For Bel.1 Canada the ratio is . 50, for B.C. Telophone it is 2.70, for the public companies it is . 33 and for the private carriers the ratio is 1.22. these ratios tell us the number of anits of capital per unit of labour for any level of output, when the ratio of factor prices is unity.

Appendix 4:l Production Module Symbols

i. Provinces and Country

ou Quehec

OIV Ontario
NS Nova Scotia
PE Prince Edward Tsland
Ne Newsourdland
NB New Brunswick
MN Maritoba
SK . Saskatchewan
AT: Alberta
BC British Columbia

CA Canada
2. Factors of Production and Oucput
$K \quad$ Physical Capital
L. Tabour

DD Percentage of Calls Direct Distance Dialed
X Percentage of Relephones in Number five Crossbax and Electronio switching System

R Materials
TSO Output of botal Sexvices

Footnotes

1. See for example Christensen, Torgenson, and Iuau [6].
2. See the thesis by R. Mixien [[J3].
3. See appendix l for the definition of the symbols.
4.

The test. is $F=\frac{\frac{S S R}{V n}-S_{R R}}{\frac{S S R_{C n}}{23}}$
Where F is the computed F - statistic for the O.L.S. equation without technological change, $S_{\text {d }}$ th is the regression sum of squares for the variable returns to scale with no technological change equation, ssRon is the regression sum of squares for constant returns and no technological change. An equivalent fommula is

$$
\mathrm{F}=\frac{\left(\mathrm{K}_{\mathrm{v} \eta \mathrm{n}}^{2}-R_{\mathrm{Cn}}^{2}\right)}{\left(1-R_{\mathrm{Yn}}^{2}\right)}
$$

5. As in the demand module, we utilized Bell's price index for total services; because as long as the price indexes for, the other carriers are in a fixed proportion to Bell's there will not be any bias in the estimated values of the parameters.
6. We do not have access to Bell's computation methods for the market values of net capital and thejr capital price index. We axe, consequently, assuming that the vintages of capital are identical for Bell, and B.C. (and also identical to the other carriers under consideration).
7. The onJy measures of tochological change available to us are Bell and B.C.'s direot distance dialed and Bell's numer five crossbas.

Reperences

2. Aberta Goverment Telephones, Anmus'report, various issues.
3. Pelit Canada, hmonal Report, Vaxious issues.
4. Bell Canda, Bate Mearincs, Emibit No's. B-73-61, B-73-62, Decembex 1973.
5. British Columbia Telephone Company. Ammal Report, various issues.
6. Caxi, J.,"Domand and Cost: An Empixicol Study of Belf molephone of Canada", in folequmaujoations for canada, ed., ix magisin, Mechem, Tomone TST3:
7. Christensen, L., Jorgenson, D. and Lau, I., "Transcedental. Logarithmic production Prontiexs", The Review of Economics and Statistics, May 1973.
8. Dobeln, R., Taylor, I.D. Waveman, t., Liu, T. H. and Copeland. M.D.G., "Telepione Commanication in Canada: Demanci
 of Scomunios ana vanacement soience, vol. 1 il, Epinng 1972.
9. Jdmonton Telephones, Annusi Report, vastious issues.
10. Departmert of Commuications, Financial statistios on - Canadian Telecommuncation Common Carriers, Ottawa, 1974.
11. Tnstitute of Mppliec mconomic Recearch (T.A.E.R.), "pate Adjesment Guicelines Eox Reguiated Iroustriesir A suay For: the Department of Commintations, ottawa, May 1976.
12. Manitoba Ielephone system, Ammal report, vaxious issues.
13. Matitime Tolegnaph and melophone Company, Anval Report, various issues.

 miona, Concordia univotedty, $19 / 4$.
1.4. New Brunswick Telephone Company, Anmual Report, various issues.
14. Newfoundland Telephore Company, Anmual Report, various issues.
15. Sasfatchewan Telecommuncations, Amnual Report, various issues.

CHAPMER 5

1. Introduction

Whe financial module describes the relationships which determine the rates of return on the various financing instruments for the different chasses of telephone carriers. The formalation of such a system, which estimates the past structure, enables us to determine the impact of a firm's financing and factor hiring decisions on the rates of return. In fact, if these impacts exist, then we have found empirical evidence which shows that the carrier has monopsony power in its capital markets. This monopsony power is maniferted by the significant coefficients which arise out of our estimation.

An immediate question concerns the types of financing Anstruments. Aithough thers axe many instruments, we can abinne three broad classes, debt (both long and short term), common equity and preferred equity. These different types of financial commodities hold relatively diffexent position of importance in the portfolios of the various companies. ${ }^{1}$

Due to our aggregation over financial commodities we must compute the rates of return on Rejt, common, and preferred equity, mhese rates of return play an important role in the jntegrated model, of whon this model is one segment. The rates are pare of the computation of the manginal oosts associated with a particulat financial comodity Conequentiy, difforences in both the return and the functions which detexmine them, will cause differences in
the marginal financial costs, and thereby, affect the attractiveness of the alternative instruments.

The financial module is divided into three broad sections. Each section describes the equations and results for a different carrier; the first is Belj, the second is b. C. Telephone, and the third is the private carriers. Because the nature of the financial characteristics depenof, not only on the market structure contronting any carrier, but also on its internal ownership structure, we feel that it is inapropriate to develop the financial module for the puhlicly-owned companies. This justification stems from the fact that it is completely meanjngless to analyse equity and in most cases bond debt for crown corporations. Whereas, with regards to demand characteristice, which depend on product market structures, and production redations, whoh depend on techonocgy, the nature of the ormership of a particular carrier is completely irrelevant and so demand and production functions were estimated for the crown corporations.

2. Bell Canada

2.1 Iniroduction

Tn the case of Bell Canado the three types of finanotal instmuments, comon equity, porermed equicy, and dobt, play distinct roles. Dobt and common equity ano my far the mosimportant, since the company just began to issue preferred shares in 1970 . We
discuss the data which was used for the Bell Conada financial module.

2.2 The Data

Finstly we needed to calculate the rates of return. ${ }^{2}$ The rate of return on debt for any time period is defined as the interest payments and other fixed charges, on debt during the period, divided by the value of outstanding debt. This definition is sufficiently general in that it is sensitive to changes in the maturity composition of debt. The data on interest payments and outstanding debtwere obtained from the financial statements of Bell.
line rate of return on combor eudity was derived in
terms of a more complicated formula. Investors who purchase common shares must expect some minimum level or return to induce them to invest. This compensation, which may be in the form of income (dividends) or capital gains (or both), when related to the market price of common shares is the rate of return. With this conception of the rate of return we can apply the aiscounted cash flow formula to find the rate. This formula is,

$$
x_{c t}=\frac{D_{c t+1}}{r_{c t}}+T_{t^{\prime}}
$$

where $r_{c t}$ is the rate of return in period $t, D_{c t+1}$ is the value of dividends per common share at the end of period t (or the beginning of period $t+1$), $p_{c t}$ is the market price in period t, and g_{t} is the rate of growth of dividends per share in period t. Obviously $D_{c t+1}$ and $p_{c t}$ can be obtained from the balance sheets. In addition, we adjusted the issue price for any premiums or discounts. The rate of growth, however, reflects investor's expectations and so cannot be directly measured. Io arrive at a plausible estimate of g_{t} for every time period, the mean of the log-linear least squares growth rates of dividends per share was compuied for the past ten years. The growth rate (i.e. the regression coefficient) was significant for the years 1957, 1958, 1964, ard 1971-1975. Thus we used g_{t} in the $x_{c t}$ formula for hase yeario and for the ohen yeurs we took yt to be equal to zero. ${ }^{3}$

The rate of return on preferred shares was calculated according to the same type of formula we used for common shares. However, because Bell has only issued preferred shares since le70, we took g_{t} to be a constant and therefore it does not enter into the method of measuring the return. The preferred issues for Bell. have various distinct classes. Therefore to determine the rate of return on prefermed shares we woighted the returns on the different series by the proportjor of each sexies ont of the total outstanding value of wreEerred shares For each year acoording to the data described in Jefins bolance sheets.

2.3. The Empirical Results

We estimated relationships for the rates of return, in other words inverse investor demand functions, which depended on the value of debt, equity, incone, long-tem government bond yield, and a long-term corporate bond yield. l'he rationale for this selection of regressors rested on the grounds that the values of debt and equity influence the rates of return. In other words we want to test for the existence of monopsony power on the part of Bell. In addition, the government ard corporate bond yjeld represent the alternative forms of investment available to the bondholders and shareholders, while income stands for the aggregate measure of economic activity which facjlitates investors attempts to increase thesm tnvestibic funde. ${ }^{4}$ in generat, then, wo ran write the funtional specification of the rates of return as depending on the financial commodities of Bell, the returns on alternative assets and the genexal level of economic activity.

Before we proceed to the estimation of the rate of return equations, let us recall the fact that Bell has only begun to jssue preferred shares in 1970. Therefore we believe that any results obtained from the rate of return on preferred shares equation vial not be sufficicutly robust. lhenefore, after computing the rates of return on common and preferred shares we formed a weigined average rotura on equity such that
$r_{s t}=r_{c t} \frac{\left(v a l u e ~ o f ~ c o m o n ~ e q u i t y_{t}\right)}{\text { value of equity }}+r_{p} \frac{\text { (value of preferred equity }{ }_{t} \text {) }}{\text { value of equity }{ }_{t}}$
where $r_{\text {st }}$ is the rate of return on equity, rot is the return on common shares and $r_{p t}$ is the return on preferred, all defined jn period t.

The equations that we estimated were

$$
\begin{array}{r}
x_{b t}=Q\left(p_{b t} B_{t}, p_{s t} S_{t}, r_{a t}, Y_{t}\right) \\
r_{s t}=S\left(p_{b t} F_{t}, p_{s t} s_{t}, r_{a t}, Y_{t}\right) \tag{2.2}
\end{array}
$$

where rbt iss the rate of return on debt, 0 and \mathcal{B} are the functions for debt and equity respectively, $p_{b t}$ is the price of bonds, $p_{s t}$ is the price of shares, r at is the return on the alternative asset, and Y_{t} is income, with all the variables defined in period t. We estimated equations (2.1) and (2.2) in linear and log-Iinear forms. The linear form can be represented by

$$
\begin{align*}
& r_{b t}=\gamma_{0}+\gamma_{1} p_{b t} B_{t}+\gamma_{2} p_{s t} S_{t}+\gamma_{3} r_{a t}+\gamma_{4} \gamma_{t} \tag{2.3}\\
& r_{s t}=\gamma_{0}+\gamma_{1} p_{b t} B_{t}+\gamma_{2} p_{s t} s_{t}+\gamma_{3} r_{a t}+\gamma_{4} y_{t} \tag{2.4}
\end{align*}
$$

while the log-linear or double--log equations can be expressed as

$$
\begin{align*}
& \log r_{b t}:=\gamma_{0}+\gamma_{1} \log p_{b t} B_{t}+\gamma_{2} \log p_{s t} s_{t}+\gamma_{3} \log r_{a t}+\gamma_{4} \log Y_{t} \tag{2,5}\\
& \log r_{s t}=\gamma_{0}+\gamma_{1} \log p_{b t}{ }^{B}+\gamma_{2} \log p_{s t} s_{t}+\gamma_{3} \log r_{a t}+\gamma_{4} \log \gamma_{t} . \tag{2,6}
\end{align*}
$$

We al.so estimated equations using the ratio of the valne of deot to the value of equity, but these resuits wese not quite as
robust as the ones we accepted when debt and equity were not constrained to be in ratio form.

For $I_{s t}$, we can ohserve that when we assume that the alternative asset's rate of return does not affect the return on equity then the equations suffer from a high degree of positive autocorrelation. Moreover, once we adjust for autocorrelation; we find that the income variable is insignificant and that the equations. still do not perform well. We feel, then, that the rate of return on longnterm corperate bonds, should be included as representatives of substitutable or complementary choices for the investor. From Tables 2.1 and 2.2 we find that the corporate bond rate is a somewhat better explanatory variable than the government bond rate. Once again, income is not a significant variable, and by the DuxbinWeteon statistio, there ie no autocorrciation for tho last tivo regressions in rable 2.1. It does bear mentioning, that the values of the estimated coefficients are remarkably stable; that is, for example, for all the regressions in Table 2.1 and 2.2 , the estimates of Y are . 0001. A word should be said concerning the values of R^{2}. We can observe that from the following tables the R^{2} 's are remarkably high for rate of return equations. Giving us one more indication that we are on the right track towards an adequate representation of the determinants for the rate of return on equaty.

Rate of Return on Equity
Linear Model: O.L.S.
(t - value in parenthesis)

Altemative Asset	${ }^{Y}$	γ_{1}	Y_{2}	γ_{3}	$\gamma_{\underline{4}}$	D.W.	R^{2}
None	$\binom{.057}{(1.5 .54}$	$\begin{gathered} .0001 \\ (2.902) \end{gathered}$	$\begin{gathered} \cdots .0001 \\ (-2.333) \end{gathered}$			1.070	. 783
None	$\begin{gathered} .048 \\ (6.283) \end{gathered}$	$\begin{array}{r} .0001 \\ (1.379) \end{array}$	$\begin{gathered} -.0001 \\ (-2.469) \end{gathered}$		$\left(\begin{array}{c} .000001 \\ (1.531) \end{array}\right.$	1.44	. 805
Government Bond	$\begin{gathered} .073 \\ (7.516) \end{gathered}$	$\begin{array}{r} .0001 \\ (3.246) \end{array}$	$\begin{aligned} & -.00005 \\ & (-2.373) \end{aligned}$	$\begin{gathered} -.478 \\ (-1.853) \end{gathered}$		1.305	. 81.2
Government Eonã	$\begin{gathered} .065 \\ (3.764) \end{gathered}$	(1.742)	$\begin{gathered} -.00005 \\ (-2.380) \end{gathered}$	$\begin{gathered} -.358 \\ (-1.083) \end{gathered}$	$\begin{aligned} & .000001 \\ & (.600) \end{aligned}$	1.242	. 815
Corporate Bond	$\begin{gathered} .080 \\ (7.845) \end{gathered}$	$\begin{array}{r} .0001 \\ (3.755) \end{array}$	$\begin{gathered} -.00006 \\ (-2.853) \end{gathered}$	$\begin{gathered} -.548 \\ (-2.479) \end{gathered}$		1.467	. 830
Corporate 3ond	$\begin{gathered} .073 \\ (4.816) \end{gathered}$	$\begin{array}{r} .0001 \\ (2.297) \end{array}$	$\begin{array}{r} -.0001 \\ (-2.802) \end{array}$	$\begin{array}{r} -.477 \\ (-1.887) \end{array}$	$\begin{aligned} & .00001 \\ & (.616) \end{aligned}$	1. 400	. 833

TABLE 2.2
Rate of Return on Equity
Iinear Model: C-O.I.s.
(t - values in parenthesis)

Alternative Asset	γ_{0}	γ_{1}	γ_{2}	γ_{3}	\dddot{Y}_{4}	ρ	D. ${ }^{\text {F }}$.	R^{2}
None	$\begin{gathered} .049 \\ (5.812) \end{gathered}$	$\begin{array}{r} .0001 \\ (. .885) \end{array}$	$\begin{aligned} & -.00002 \\ & (-.882) \end{aligned}$			$\begin{gathered} .546 \\ (3.260) \end{gathered}$	1.686	. 843
None	$\begin{gathered} .047 \\ (5.414) \end{gathered}$	$\begin{array}{r} .0001 \\ (1.082) \end{array}$	$\begin{gathered} -.00003 \\ (-1.184) \end{gathered}$		$\begin{aligned} & .00000 I \\ & (.660) \end{aligned}$	$\begin{gathered} .482 \\ (2.749) \end{gathered}$	1.687	. 846
Govemment Bond	$\begin{gathered} .059 \\ (4.668) \end{gathered}$	$\begin{array}{r} .0001 \\ (1.649) \end{array}$	$\begin{aligned} & -.00002 \\ & (-.924) \end{aligned}$	$\begin{gathered} -.267 \\ (-.850) \end{gathered}$.	$\begin{gathered} .486 \\ (2.782) \end{gathered}$	1.674	. 348
Goverrment Bond.	$\begin{gathered} .056 \\ (3.573) \end{gathered}$	$(1.000 I$	$\begin{gathered} -.00003 \\ (-\overline{2} .074) \end{gathered}$	$\begin{gathered} -.235 \\ (-.707) \end{gathered}$	$\begin{aligned} & .000001 \\ & (.467) \end{aligned}$	$(2.455$	2. 2.674	. 849
Corporate Bonc.	$\begin{gathered} .065 \\ (5.250) \end{gathered}$	$\begin{array}{r} .0001 \\ (1.878) \end{array}$	$\begin{gathered} -.00002 \\ (-1.054) \end{gathered}$	$\begin{gathered} -.383 \\ (-I .433) \end{gathered}$		$\begin{gathered} .457 \\ (2.560) \end{gathered}$	1.704	. 856
Corporate Bond	$\begin{gathered} .063 \\ (4.198) \end{gathered}$	$\begin{array}{r} .0001 \\ (1.416) \end{array}$	$\begin{gathered} -.00003 \\ (-1.233) \end{gathered}$	$\begin{gathered} -.362 \\ (-1.306) \end{gathered}$	$\begin{aligned} & -.000001 \\ & (.480) \end{aligned}$	$\begin{gathered} .423 \\ (2.332) \end{gathered}$	1.693	. 857

proceeding to the double-log model, we find that from Table 2.3 the comporate bond rate performs quite well as the explanatory variable representing the alternative asset. Although, in this case income is significant, it becomes so at the expense of the t-values of γ_{1} and γ_{3}, which are the coefficients of the xates of return on debt and the corporate bond rate. In Tables 2.3 and 2.4 we also observe that adjusting for autocorrelation does not adequately improve the results, and indeed, for the last equation in Table 2.3, which seems the best for the double-log model, that the D.W. statistic is in the acceptable region and so the Cochraneorcutt adjustment is not.really necessary.

Again, one should notice that the values of R^{2} for the double-log are not as high as for the linear model. Suggesting, among other oriteria, that the linear specification performs better than the log-linear.

Rate of Retuxi on Equity
Doubie-Log Mcdel: O.L.S.
(i - values ir parenthesis)

Elternative Asset	γ_{0}	γ_{1}	γ_{2}	γ_{3}	γ_{4}	D.T.	R^{2}
None	$\begin{gathered} -2.421 \\ (-2.874) \end{gathered}$	$\begin{gathered} 1.175 \\ (2.455) \end{gathered}$	$\begin{gathered} -1.094 \\ (-2.036) \end{gathered}$. 991	. 560
None	$\begin{gathered} -8.221 \\ (-4.476) \end{gathered}$	$\begin{gathered} .498 \\ (1.217) \end{gathered}$	$\begin{gathered} -1.134 \\ (-2.538) \end{gathered}$		$\begin{gathered} 1.007 \\ (3.352) \end{gathered}$	1. 225	. 709
Government Bond	$\begin{gathered} -2.750 \\ (-1.367) \end{gathered}$	$\begin{gathered} 1.230 \\ (2.137) \end{gathered}$	$\begin{gathered} -1.127 \\ (-1.947) \end{gathered}$	$\begin{gathered} -.072 \\ (-.1 .81) \end{gathered}$		1.028	. 560
Government bona	$\begin{gathered} -8.710 \\ (-3.510) \end{gathered}$	$\begin{gathered} .575 \\ (1.121) \end{gathered}$	$\begin{gathered} -j .182 \\ (-2.456) \end{gathered}$	$\begin{gathered} -.104 \\ (-.313) \end{gathered}$	$\begin{gathered} 1.010 \\ (3.300) \end{gathered}$	1.269	. 71.0
Corporate Eona	$\begin{aligned} & -2.711 \\ & (-1.588) \end{aligned}$	$\begin{gathered} 1.230 \\ (2.276) \end{gathered}$	$\begin{gathered} -1.130 \\ (-1.950) \end{gathered}$	$\begin{gathered} -.070 \\ (-.092) \end{gathered}$		1.015	. 560
Corporate Eond	$\left(\begin{array}{c} -10.814 \\ (-1.180) \end{array}\right.$	$\begin{gathered} .740 \\ (1.530) \end{gathered}$	$\begin{gathered} -1.359 \\ (-2.922) \end{gathered}$	$\begin{gathered} -.430 \\ (-1.411) \end{gathered}$	$\begin{gathered} 1.746 \\ (3.708) \end{gathered}$	1.446	. 734

TABLE 2.4

Ra亡e of Return on Equity Dovble-Iog Modei: C-O.I.S: (t - Values ir parenthesis)

Alternative Esset	γ_{0}	γ_{i}	Y_{2}	γ_{3}	γ_{4}	ρ	D. $\mathrm{W}^{\text {d }}$	p^{2}
None	$\left(\begin{array}{c}-4.522 \\ (-4.562)\end{array}\right.$	$\begin{aligned} & .298 \\ & (.824) \end{aligned}$	$\begin{gathered} -.009 \\ (-.022) \end{gathered}$			$\begin{gathered} .664 \\ (4.438) \end{gathered}$	1.735	. 742
None	$\left(\begin{array}{c}-8.346 \\ (-3.346)\end{array}\right.$	$\begin{aligned} & .194 \\ & (.479) \end{aligned}$	$\begin{gathered} -.690 \\ (-1.384) \end{gathered}$		$\begin{gathered} .900 \\ (1.830) \end{gathered}$	$\begin{gathered} .456 \\ (2.559) \end{gathered}$	1.635	. 761
Govarnment Bonci	$\left(\begin{array}{l}-2.876 \\ (-2.884)\end{array}\right.$	$\begin{gathered} .298 \\ (.306) \end{gathered}$	$\begin{aligned} & .009 \\ & (.020) \end{aligned}$	$\begin{gathered} -.040 \\ (-.101) \end{gathered}$		$\begin{gathered} .664 \\ (4.442) \end{gathered}$	1.737	. 742
Govemment Bond	$\left(\begin{array}{c}-8.490 \\ -2.585)\end{array}\right.$.299 $(.473)$	$\begin{gathered} -.685 \\ (-1.323) \end{gathered}$	$\begin{gathered} -.026 \\ (-.068) \end{gathered}$	$\begin{gathered} .900 \\ (1.787) \end{gathered}$	$\begin{gathered} .455 \\ (2.556) \end{gathered}$	i. 636	. 751
Coveorate Eona	$\left(\begin{array}{l}-6.818 \\ -2.830\end{array}\right.$	$\begin{aligned} & .305 \\ & (.853) \end{aligned}$	$\begin{aligned} & .145 \\ & (.334) \end{aligned}$	$\begin{gathered} -.367 \\ (-.986) \end{gathered}$		$\begin{gathered} .586 \\ (4.711) \end{gathered}$	1. 761	. 754
Corporate Bond	$\left\lvert\, \begin{aligned} & -10.780 \\ & (-3.210) \end{aligned}\right.$	$\begin{aligned} & .250 \\ & (.614) \end{aligned}$	$\begin{gathered} -.689 \\ (-1.396) \end{gathered}$	-.370 (-. F	$\begin{gathered} .997 \\ (2.050) \end{gathered}$	$\begin{gathered} .442 \\ (2.464) \end{gathered}$	1.658	. 773

Rate of Retara on Debt
Linear Modell: O.I.S.
(t - values ini parenthesis)

Alternative Asset	Yo	r_{2}	γ_{2}	γ_{3}	γ_{4}	D.W.	k^{2}
None	$\left(\begin{array}{c} .030 \\ (25.261) \end{array}\right.$	$\begin{aligned} & -.000003 \\ & (-.308) \end{aligned}$	$(2.00001$			I. 497	. 969
None	$\begin{gathered} .031 \\ (25.205) \end{gathered}$	$\begin{aligned} & .000002 \\ & (.150) \end{aligned}$	$\begin{gathered} .00001 \\ (2.036) \end{gathered}$		$\begin{aligned} & -.000001 \\ & (-.629) \end{aligned}$	1.534	. 969
Covernment Bond	$\left(\begin{array}{c} .027 \\ (1.344) \end{array}\right.$	$\begin{aligned} & -.000004 \\ & (-.447) \end{aligned}$	$(2.0000 \mathrm{E}$	$\begin{gathered} .076 \\ (1.192) \end{gathered}$		1.503	. 970
Government mona	$\begin{aligned} & .027 \\ & (6.286) \end{aligned}$	$\frac{-.00001}{(-.372)}$	$\begin{gathered} .00001 \\ (1.946) \end{gathered}$	$\begin{aligned} & .081 \\ & (.986) \end{aligned}$	$\begin{aligned} & .000003 \\ & (.102) \end{aligned}$	1.481	. 970
Corporate Bond	$\left(\begin{array}{c} .029 \\ (10.491) \end{array}\right.$	$\begin{aligned} & -.000004 \\ & (-.423) \end{aligned}$	$\begin{gathered} .00000^{\circ} \\ (2.050) \end{gathered}$	$\begin{gathered} .029 \\ (.491) \end{gathered}$		1.470	. 969
Corporate Bona	$\begin{gathered} .030 \\ (7.338) \end{gathered}$	$\begin{aligned} & .000003 \\ & (.017) \end{aligned}$	$(2.0000:$	$\begin{aligned} & .015 \\ & (.224) \end{aligned}$	$\begin{aligned} & -.000001 \\ & (-.443) \end{aligned}$	1.589	. 969

TABLE 2.6
Rate of Return on Debt
Linear Model: C-O.I.S.
(t - values ir parenthesis)

Alternative Asset	Yo	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0	D. $\mathrm{T}^{\text {. }}$	R^{2}
Sone	$\begin{gathered} .028 \\ (10.846) \end{gathered}$	(-1.745)	$\begin{gathered} .00002 \\ (3.413) \end{gathered}$			$\begin{gathered} .345 \\ (1.835) \end{gathered}$	2.668	. 974
None	$\begin{gathered} .028 \\ (14.124) \end{gathered}$	$\begin{gathered} -.00002 \\ (-1.297) \end{gathered}$	$\begin{aligned} & .00002 \\ & (3.185) \end{aligned}$		$\left(\begin{array}{l} -.000007 \\ (-.252) \end{array}\right.$	$\begin{gathered} .323 \\ (1.705) \end{gathered}$	1.708	. 974
Government Bond	$\begin{gathered} .025 \\ (8.829) \end{gathered}$	$\begin{gathered} -.00002 \\ (-1.893) \end{gathered}$	$\begin{aligned} & .00002 \\ & (3.387) \end{aligned}$	$\begin{gathered} .090 \\ (1.267) \end{gathered}$	-	$\begin{gathered} .345 \\ (1.839) \end{gathered}$	3.737	. 976
Government Eond	$\begin{gathered} .024 \\ (6.202) \end{gathered}$	$\begin{gathered} -.00002 \\ (-1.754) \end{gathered}$	$\begin{gathered} .00002 \\ (2.918) \end{gathered}$	$\left(\begin{array}{c} .101 \\ (1.270) \end{array}\right.$	$\begin{aligned} & .00001 . \\ & (.33 .3) \end{aligned}$	$\begin{gathered} .357 \\ (1.911) \end{gathered}$	1.702	. 976
Corporate Bonc	$\begin{gathered} .026 \\ (8.497) \end{gathered}$	$\begin{gathered} -.00002 \\ (-1.247) \end{gathered}$	$\begin{aligned} & .00002 \\ & (3.414) \end{aligned}$	$\begin{aligned} & .044 \\ & (.674) \end{aligned}$		$\begin{gathered} .355 \\ (1.897) \end{gathered}$	1.684	. 975
Corporate Eond	$\begin{gathered} .026 \\ (6.729) \end{gathered}$	$\begin{gathered} -.00002 \\ (-1.510) \end{gathered}$	$\begin{aligned} & .00002 \\ & (3.093) \end{aligned}$	$\begin{aligned} & .043 \\ & (.627) \end{aligned}$	$\begin{aligned} & -.00001 \\ & (-.002) \end{aligned}$	$\begin{gathered} .354 \\ (1.894) \end{gathered}$	1.684	. 975

TRELE 2.7
Rate of Retum on Debt
Double-Iog Mocel: O.T:S.
(t - values in parenthesis)

Aiternative Asset	To	γ_{1}	γ_{2}	Y_{3}	${ }^{\gamma_{4}}$	D. 7 \%	R^{2}
None	$\begin{gathered} -4.805 \\ (-14.666) \end{gathered}$	$\begin{gathered} .250 \\ (1.344) \end{gathered}$	$\frac{.311}{(.354)}$			1. 134	. 921
None	$\left(\begin{array}{c} -7.131 \\ (-10.013) \end{array}\right.$	$\begin{gathered} -.021 \\ (-.125) \end{gathered}$	$\begin{gathered} -.005 \\ (-.027) \end{gathered}$		$\begin{gathered} .404 \\ (3.526) \end{gathered}$	I. 260	. 950
Government Enne	$\begin{aligned} & -4.010 \\ & (-5.272) \end{aligned}$	$\begin{gathered} .117 \\ (.539) \end{gathered}$	$\begin{aligned} & .292 \\ & (.418) \end{aligned}$	$\begin{gathered} .174 \\ (1.155) \end{gathered}$. 045	. 925
Goverment Bond	$\begin{gathered} -6.369 \\ (-7.026) \end{gathered}$	$\begin{aligned} & -.142 \\ & (.743) \end{aligned}$	$\begin{aligned} & .370 \\ & (.395) \end{aligned}$	$\begin{gathered} .161 \\ (1.324) \end{gathered}$	$\begin{gathered} .400 \\ (3.546) \end{gathered}$	i. 087	. 954
Corporate Bond	$\begin{aligned} & -4.142 \\ & (5.298) \end{aligned}$	$\begin{aligned} & . I 25 \\ & (.550) \end{aligned}$	$\begin{aligned} & .993 \\ & (.124) \end{aligned}$	$\left(\begin{array}{c} .159 \\ (1.160) \end{array}\right.$. 934	. 926
Corporate Bond	$\begin{gathered} -6.915 \\ (-6.992) \end{gathered}$	$\begin{gathered} -.042 \\ (-.222) \end{gathered}$	$\frac{.314}{(.275)}$	$\begin{aligned} & .036 \\ & (.294) \end{aligned}$	$\begin{gathered} .392 \\ (3.178) \end{gathered}$	1.210	. 950

TABLE 2.3
Rate of Return on Debt
Doubie-Iog Moacl: C-O.I.S.
(t - values in parenthesis)

AIternative Asse亡	Y	${ }_{\text {Y }}$	γ_{2}	γ_{3}	γ_{4}	0	D. $\mathrm{F}^{\text {. }}$	R^{2}
None	$\begin{array}{r} -5.403 \\ -20.432) \end{array}$	$\begin{gathered} -.300 \\ (-2.933) \end{gathered}$	$\begin{gathered} .720 \\ (6.082) \end{gathered}$			$\begin{aligned} & .696 \\ & (.485 I) \end{aligned}$	3.591	. 974
None	$\left(\begin{array}{c} -6.783 \\ (-7.014) \end{array}\right.$	$\begin{gathered} -.317 \\ (-2.737) \end{gathered}$	$\begin{gathered} .634 \\ (3.563) \end{gathered}$		$\begin{aligned} & .108 \\ & (.519) \end{aligned}$	$\begin{gathered} .659 \\ (4.384) \end{gathered}$	1.508	. 974
Government Bond	$\begin{gathered} -5.090 \\ (-3.061) \end{gathered}$	$\begin{gathered} -.302 \\ (-2.800) \end{gathered}$	$\begin{gathered} .700 \\ (5.455) \end{gathered}$	$\begin{aligned} & .052 \\ & (.46 I) \end{aligned}$		$\begin{gathered} .698 \\ (4.878) \end{gathered}$	1.717	. 974
Government Bond	$\begin{gathered} -6.479 \\ (-5.432) \end{gathered}$	$\begin{gathered} -.321 \\ (-2.708) \end{gathered}$	$\begin{gathered} .614 \\ (3.277) \end{gathered}$	$\begin{aligned} & .052 \\ & (.452) \end{aligned}$	$\begin{aligned} & .109 \\ & (.516) \end{aligned}$	$\begin{gathered} .660 \\ (4.388) \end{gathered}$	1.631	. 974
Corporate Bond	$\begin{gathered} -6.472 \\ (-9.025) \end{gathered}$	$\begin{gathered} -.299 \\ (-2.83 I) \end{gathered}$	$\begin{gathered} .723 \\ (5.657) \end{gathered}$	$\begin{gathered} -.013 \\ (-.122) \end{gathered}$		$\begin{gathered} .695 \\ (4.832) \end{gathered}$	1. 689	. 974
Corporate Eond	$\begin{aligned} & -5.895 \\ & (-5.571) \end{aligned}$	$\begin{gathered} -.317 \\ (-2.650) \end{gathered}$	$\begin{gathered} .633 \\ (3.464) \end{gathered}$	$\begin{gathered} -.017 \\ (-.150) \end{gathered}$	$(.111$	$\begin{gathered} .659 \\ (5.384) \end{gathered}$	1. 1.608	. 974

The rate of return on debt equations are presented in Tables 2.5 to 2.8 . Table 2.5 and 2.6 refer to the linear model. These results ghow us that from the investor's point of view the government bond rate is not much more adequate as an altexnative rate of return compared to the corporate bond rate, although we must observe that both rates do not perform exceptionally well. Moreover, from economic theory we should expect that an increase in the value of debt tends to increase the rate of return on debt. In other words, we expect to find that $\gamma_{1}>0$; and $\gamma_{2}<0$. on these grourdsp; we can reject all the regressions in Table 2.6 and most in 2.5 . For the other equations in Table 2.5 the value of γ_{1}, although positive, is insignificant and so the linear model as it appears in these drables, is inadequate..

In tables 2.7 and 2.8, we find the double-log model for $r_{\text {bt }}$. We reach the same conclusions as in the linear model, that is, the alternative rates of return do not perform well. One must also say that in genexal, in Tables 2.7 and 2.8 , that γ_{1} has the wrong sign, and when γ_{i} is positive, it is insignificant. Inus, all the equations in Tables 2.5 to 2.8 have limitations. The problem may be that the depercient variables do not properly show the investors: preferences towards the different types of capital utilized by bell Canada. We are sayinc that, not only should the prices of debt and equity be inciduded, alro the price of physical capital should be one of the regresnoxs:

Moreover, we also tested for an alternative definition of the rate of return on equity. Because equity includes, not only common and preferred shares but also capital surpluses, retained earnings etc., we can define the rate of retan as net income divided by equity for any time period. We then ran regressions including the price of physical capital in the returns on debt and equity equations', along with the new definition of $r_{\text {st }}$. The best results are
where $\hat{\gamma}_{7}=.618>0$ and $\hat{\gamma}_{2}=-.358<0$ (the $t-$ values are in parenthesis). the rate of return on equity equation is,

$$
\begin{aligned}
r_{s t} & =.054(1+.051)+.00005\left(p_{b t} B_{t}\right. \\
& +.051 \frac{\left(p_{b t-1} B_{t-1}\right.}{p_{1}-1}-.00002 \frac{\left(p_{s t} S_{t}\right.}{p_{k}} \\
& +.051 \frac{\left.p_{s t-1} S_{t-1}\right)}{p_{k t \cdots 1}}-.290\left(x_{a t}+.051 r_{a t-1}\right) \\
& \ldots .051 r_{s t-1}
\end{aligned}
$$

$$
\text { D.W. }=3.650 \quad \mathrm{R}^{2}=.500
$$

where $\hat{P}_{1}=.00005>0$ and $\hat{\gamma}_{2}=-.0002<0$, with r defined as the corporate bond rate of acturn.

$$
\begin{aligned}
& \log x_{b t}=\frac{-4.521}{(-9.806)(2.700)}+\frac{.618}{} \quad \log \frac{p_{b} B_{t}-.358}{p_{k t}} \cdot(-1.370) \quad \log \frac{p_{\mathrm{st}} \mathrm{~S}_{t}}{\mathrm{pk}_{\mathrm{t}}} \\
& \text { D.W. }=1.200 \quad \mathrm{R}^{2}=.853
\end{aligned}
$$

3. : British Columbia Telephone

3.1 Introduction

In this section we discuss the results for the rate of return equation which are appiicable to B.C. Teleghone.

3.2 The Data

The data for the dividends per share (common and preferred) were obtained from the companies financial statements, as were interest paymente and the value of debt. Moreover, from the accompanying financial data, we were able to obtain market prices of the different classes of shares. With this data, we computed the rates of return on common equity, preferred shares, and debt in the omp fabhion as for poly Conada.

3.3 Tine Empiri.cal Results

The equations that we estimated tested for the form of the function i.e. Iinear, double-log, semi-log etc., and the manner in which the regressors entered the function i.e. in ratio form, additively etce The results which we present in Tables 3.1 to 3.8 arise from the equations of the form
where the subscript i :- b refers to debt, $j=c$ reiers to commor equity, and $i=p$ refers to preferred shares. The equations which we present are for comon eguity, and debt in linear and double-log form. These wables illustrate B.C. I'el.'s position in financial markets.

Upon inspection of the rate of return on common equity equations (Tables 3.1 to 3.4), that the linear equation with $\gamma_{3}=\gamma_{4}=0$ in Tables 3.2 is the best one in terms of the values of the t - stotistics, D.W., and R^{2} which is 98.5\%..Indeed, we see that $\gamma_{1}>0$ and $\gamma_{2}>0$ which should be the case, for as the debt to common equity and preferred sharesto common equity ratios increase, the holders of common shares require a higher rate of return. We see then, that B.C. Tel. exhibits monopoly power in the common share market.

Turning to Tables 3.5 to 3.8 , the rate of return on debt equations, we observe by the values of the t - statistics, that in the cases where there is no autocorrelation the degree of monopoly power in the debt market is minimal. We see that the motivating varidole determining the investors required return on debt, is not the variables which B.C. rel. have direct control over, namely debt and equity, but rather income.

Finally, the preferred rate of return equations (which are not presented here) : showed that the carrier has no rate determining power in the preferred shares market. In other words, the more semior the securjity or asset (from the investor's viewpoint:) the smaller the degree of monopaly power exhibited by B.C. Tel. in that particular markec.

Rate of Return on Common Equity
 Iinear Modaj: O.I.S.
 (t-values in parenthesis)

Alternative Assec	${ }^{\gamma} 0$	γ_{1}	γ_{2}	γ_{3}	Y_{4}^{4}	D. W.	R^{2}
None	$\begin{aligned} & .018 \\ & (.280) \end{aligned}$	$\begin{gathered} .178 \\ (2.126) \end{gathered}$	$\begin{gathered} -.375 \\ (-3.147) \end{gathered}$. 716	. 459
None	$\begin{gathered} -.143 \\ (-7.802) \end{gathered}$	$\begin{aligned} & .020 \\ & (.896) \end{aligned}$	$\begin{gathered} .263 \\ (5.172) \end{gathered}$		$\begin{gathered} .00001 \\ (14.846) \end{gathered}$	2.400	. 974
Government zond.	$\begin{gathered} -.045 \\ (-.226) \end{gathered}$	$\left(\begin{array}{c} .176 \\ (2.014) \end{array}\right.$	$\begin{gathered} -.296 \\ (-1.128) \end{gathered}$	$\begin{aligned} & .628 \\ & (.339) \end{aligned}$. 664	. 464
Governmert Bond	$\left(\begin{array}{c}-.704 \\ (-2.392)\end{array}\right.$	$\begin{aligned} & .019 \\ & (.900) \end{aligned}$	$\begin{gathered} .21 \varepsilon \\ (3.248) \end{gathered}$	$\begin{gathered} -.47 .5 \\ (-1.008) \end{gathered}$	$\begin{gathered} .00001 \\ (14.811) \end{gathered}$	2.212	. 977
Corporate Bonc.	$\begin{aligned} & .039 \\ & (.198) \end{aligned}$	$\begin{gathered} .179 \\ (2.035) \end{gathered}$	$\begin{gathered} -.405 \\ (-1.390) \end{gathered}$	$\begin{gathered} -.179 \\ (-.113) \end{gathered}$. 740	. 460
Conporate Bozd.	-.095 (-2.193)	$\begin{gathered} .022 \\ (1.010) \end{gathered}$	$\begin{gathered} .197 \\ (2.666) \end{gathered}$	$\left(\begin{array}{c} -.041 \\ (-1.207) \end{array}\right.$	(15.191)	2.132	$.978$

Rate of Return on Common Equity
Iinear Nicdel: C-O.L.S: (t-values in Ferenthesis)

Alternative Asset	γ_{0}	i_{1}	r_{2}	γ_{3}	$\cdots \gamma_{4}$	ρ	D.W.	R^{2}
None	$\begin{gathered} .240 \\ (2.634) \end{gathered}$	$\begin{aligned} & .026 \\ & (.725) \end{aligned}$	$\begin{gathered} .126 \\ (1.089) \end{gathered}$			$\begin{gathered} .964 \\ (13.480) \end{gathered}$. 822	. 900
None	$\left(\begin{array}{c} -.177 \\ (-13.617) \end{array}\right.$	$\begin{gathered} .046 \\ (2.617) \end{gathered}$	$\begin{gathered} .287 \\ (8.8 .81) \end{gathered}$		$\begin{gathered} .00001 \\ (23.873) \end{gathered}$	$\begin{gathered} -.551 \\ (-2.473) \end{gathered}$	2.099	. 985
Government Eona	$\begin{gathered} .270 \\ (2.027) \end{gathered}$	$\begin{aligned} & .026 \\ & (.690) \end{aligned}$	$\begin{gathered} .126 \\ (1.039) \end{gathered}$	$\begin{gathered} -.271 \\ (-.295) \end{gathered}$		$\begin{gathered} .964 \\ (13.522) \end{gathered}$. 856	. 897
Government Bond	$\begin{array}{r} -.200 \\ (-5.302) \end{array}$	$\begin{gathered} .048 \\ (2.634) \end{gathered}$	$(6.311$	$(.200)$	$\begin{gathered} .00001 \\ (23.21 I) \end{gathered}$	$\begin{gathered} -.576 \\ (-2.634) \end{gathered}$	2. 324	. 986
Comporate Bona	$\begin{gathered} .279 \\ (2.137) \end{gathered}$	$\begin{aligned} & .029 \\ & (.755) \end{aligned}$	$\begin{gathered} .176 \\ (.947) \end{gathered}$	$\begin{gathered} -.442 \\ (-.530) \end{gathered}$		$\begin{array}{r} .962 \\ (13.157) \end{array}$. 897	. 898
Corporate Bena	$\begin{gathered} -.203 \\ (-5.095) \end{gathered}$	$\begin{gathered} .048 \\ (2.656) \end{gathered}$	(5.314)	$\begin{aligned} & .184 \\ & (.700) \end{aligned}$	$\begin{gathered} .00001 \\ (23.600) \end{gathered}$	$\begin{gathered} -.584 \\ (-2.690) \end{gathered}$	2.352	. 986

Rate of Return on Common Equity Double-tog ivadel: O.L.S. (t-values in parenthsis)

AlEemative Asset	γ_{0}	γ_{I}	$\%$	γ_{3}	γ_{4}	D. W.	R^{2}
None	$\begin{gathered} -4.508 \\ (-9.939) \end{gathered}$	$\begin{gathered} 2.151 \\ (2.501) \end{gathered}$	$\begin{gathered} -1.625 \\ (-3.918) \end{gathered}$. 850	. 569
None	$\begin{aligned} & -14.131 \\ & (-9.715) \end{aligned}$	$\begin{gathered} 1.233 \\ (2.898) \end{gathered}$	$\begin{gathered} 1.034 \\ (2.219) \end{gathered}$		$\begin{gathered} 1.398 \\ (6.621) \end{gathered}$	1.575	. 914
Government End	$\begin{aligned} & -1.694 \\ & (-.349) \end{aligned}$	$\left(\begin{array}{c}2.184 \\ (2.466)\end{array}\right.$.	$\begin{aligned} & -1 . \therefore 02 \\ & (-1 . .43) \end{aligned}$	$\begin{aligned} & .829 \\ & \langle .604\rangle \end{aligned}$. 773	. 583
Govermment Bona	$\begin{aligned} & -15.629 \\ & (-4.913) \end{aligned}$	$\begin{gathered} 1.1 .96 \\ (2.685) \end{gathered}$	$\begin{gathered} .372 \\ (1.530) \end{gathered}$	$\begin{gathered} -.360 \\ (-.550) \end{gathered}$	$\begin{gathered} 1.432 \\ (6.295) \end{gathered}$	1.453	. 316
Corporate Bond	$\begin{aligned} & -4.205 \\ & (-.903) \end{aligned}$	2.153 (2.396)	$\begin{gathered} -1.539 \\ (-1.430) \end{gathered}$	$\begin{aligned} & .114 \\ & (.087) \end{aligned}$. 833	. 570
Corporate Bone	$\begin{aligned} & -16.425 \\ & (-5.908) \end{aligned}$	$\begin{aligned} & 1.193 \\ & (2.798) \end{aligned}$	$\begin{gathered} .668 \\ (1.845) \end{gathered}$	$\begin{gathered} -.578 \\ (-1.000) \end{gathered}$	$\begin{gathered} 1.434 \\ (6.671) \end{gathered}$	1.352	. 921

TABLE 3.4

Rate of Return on Common Equity Double-Ioc Modei: C - O.L.S. (i - values in pacenthesis)

Alternative Asset	${ }^{\gamma} 0$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	p	D.W.	R^{2}
None	$\begin{aligned} & .290 \\ & (.225) \end{aligned}$	$\begin{gathered} .422 \\ (1.175) \end{gathered}$	$\begin{gathered} .432 \\ (1.044) \end{gathered}$			$\begin{gathered} .953 \\ (13.424) \end{gathered}$. 850	. 921
None	$\begin{gathered} -18.335 \\ (-6.427) \end{gathered}$	$\begin{aligned} & .139 \\ & (.505) \end{aligned}$	$\begin{gathered} .373 \\ (1.282) \end{gathered}$		$\frac{1.719}{(5.728)}$	$\begin{gathered} .824 \\ (5.441) \end{gathered}$	1.604	. 968
Govermment Bona	$\begin{aligned} & .861 \\ & (.41 I) \end{aligned}$	$\begin{gathered} .410 \\ (1.106) \end{gathered}$	$\begin{gathered} .438 \\ (1.027) \end{gathered}$	$\begin{gathered} -.007 \\ (-.011) \end{gathered}$		$\begin{gathered} .959 \\ (14.669) \end{gathered}$. 870	. 923
Government Bond	$\begin{aligned} & -18.393 \\ & (-5.089) \end{aligned}$	$(.141$	$\begin{aligned} & .369 \\ & (1.225) \end{aligned}$	$\begin{aligned} & -.062 \\ & (.200) \end{aligned}$	$\begin{gathered} 1.739 \\ (5.253) \end{gathered}$	(5.803)	1.580	. 958
Corporate Bono	$(.111$	$\begin{gathered} .423 \\ (1.140) \end{gathered}$	$\begin{gathered} .014 \\ (1.000) \end{gathered}$	$\begin{gathered} -.181 \\ (-.255) \end{gathered}$		$\begin{gathered} .965 \\ (13.847) \end{gathered}$. 893	. 922
Corporate Bond	$\begin{aligned} & -18.435 \\ & (-5.377) \end{aligned}$	$\begin{aligned} & .145 \\ & (.495) \end{aligned}$	$\begin{gathered} .361 \\ (1.143) \end{gathered}$	$\begin{gathered} -.107 \\ (-.222) \end{gathered}$	$\begin{gathered} 1.707 \\ (5.478) \end{gathered}$	$\begin{gathered} .816 \\ (5.273) \end{gathered}$	1.665	. 958

TABLE 3.5
Rate of Returin on Debt Iinear Model: O.I.S.
(t - vaiues in pareniliesis)

Al亡ernative asset	γ_{0}	γ_{1}	γ	γ_{3}	γ_{4}	D.W.	R^{2}
None	$\begin{gathered} .067 \\ (4.025) \end{gathered}$	$\begin{gathered} .029 \\ (1.360) \end{gathered}$	$\begin{gathered} -.111 \\ (-3.651) \end{gathered}$			1.119	$\underset{\sim}{.535}$
None	$\begin{gathered} .030 \\ (2.850) \end{gathered}$	$\begin{gathered} -.007 \\ (-.587) \end{gathered}$	$\begin{array}{r} .035 \\ 1 . .205 \end{array}$		$\begin{aligned} & .000003 \\ & (5.956) \end{aligned}$	2.629	. 900
Government Bond	$\begin{gathered} .061 \\ (1.220) \end{gathered}$	$\begin{gathered} .029 \\ (1.285) \end{gathered}$	$\begin{gathered} -104 \\ (-1 ., 553) \end{gathered}$	$\begin{aligned} & .050 \\ & (.106) \end{aligned}$		1.1221	. 536
Govermment bond	$\begin{gathered} .048 \\ (1.911) \end{gathered}$	$\begin{gathered} -.007 \\ (-.590) \end{gathered}$	$\begin{array}{r} 014 \\ (\because 69) \end{array}$	$\begin{gathered} -.190 \\ (-.799) \end{gathered}$	$\begin{aligned} & .000003 \\ & (5.903) \end{aligned}$	2.128	. 897
Corporate Eond	$\begin{gathered} .079 \\ (1.554) \end{gathered}$	$\begin{gathered} .029 \\ (1.319) \end{gathered}$	$\begin{gathered} -\mathrm{F} 28 \\ (-\mathrm{I} . \mathrm{7} 724) \end{gathered}$	$\begin{gathered} -.102 \\ (-.255) \end{gathered}$		1.157	. 538
Corporate Bond	$\begin{gathered} .048 \\ (1.86 I) \end{gathered}$	$\begin{gathered} -.006 \\ (-.5 I 0) \end{gathered}$	$(.010$	$\begin{gathered} -.154 \\ (-.744) \end{gathered}$	$\begin{aligned} & .000003 \\ & (5.875) \end{aligned}$	2.175	. 896

TABLE 3.6
Rate of Return on Debt
Iineaz Mocel: C-O.E.S.
(t - values in parenthesis)

AIternative Asset	γ_{0}	γ_{1}	${ }^{\gamma}$	γ_{3}	Y_{4}	0	D.W.	R^{2}
None	$\begin{gathered} .210 \\ (3.396) \end{gathered}$	$\begin{gathered} -.018 \\ (-1.163) \end{gathered}$	$\begin{gathered} -.002 \\ (-.045) \end{gathered}$			(11.950)	2.067	. 731
None	(1.815)	$\begin{aligned} & .007 \\ & (.500) \end{aligned}$	$\begin{gathered} .037 \\ (1 . .776) \end{gathered}$		$\begin{aligned} & .000003 \\ & (8.439) \end{aligned}$	$\begin{aligned} & -.562 \\ & (-2.542) \end{aligned}$	2.246	. 907
Government bond	$\begin{array}{r} .165 \\ (3.530) \end{array}$	$\begin{gathered} -.018 \\ (-I .256) \end{gathered}$	$\begin{gathered} -.003 \\ (-.070) \end{gathered}$	$\begin{gathered} -.550 \\ (-I .559) \end{gathered}$		$\begin{gathered} .958 \\ (12.544) \end{gathered}$	1.667	. 784
Governmert Eond	$\begin{gathered} -.002 \\ (-.182) \end{gathered}$	$\begin{aligned} & .009 \\ & (.804) \end{aligned}$	$\begin{aligned} & .: 059 \\ & (1.500) \end{aligned}$	$\begin{gathered} .169 \\ (.877) \end{gathered}$	$\begin{aligned} & .000003 \\ & (8.595) \end{aligned}$	$\begin{gathered} -.548 \\ (-3.180) \end{gathered}$	2.651	. 914
Corporate Eond	$\begin{gathered} .160 \\ (3.356) \end{gathered}$	$\begin{gathered} -.016 \\ (-1.070) \end{gathered}$	$\begin{aligned} & -.013 \\ & (-.268) \end{aligned}$	$\begin{gathered} -.456 \\ (-1.385) \end{gathered}$		(12.240)	1.789	. 774
Corporate Eona	$\begin{gathered} -.006 \\ (-.262) \end{gathered}$	$\begin{aligned} & .008 \\ & (.760) \end{aligned}$	$\begin{gathered} .066 \\ (1.806) \end{gathered}$	$(.151$	$\begin{aligned} & .000003 \\ & (8.805) \end{aligned}$	$\left(\begin{array}{c} -.65 I \\ (-3.208) \end{array}\right.$	2.635	. 914

Rate of Return on Debt
Doubie-Loc Model: O.I.S.
(t - values in parenthesis)

Alternative Esset	γ_{0}	γ_{1}	Y_{2}	γ_{3}	γ_{4}	D. ${ }^{\text {W }}$.	R^{2}
None	$\left(\begin{array}{c} -3.512 \\ (-21.162) \end{array}\right.$	$\begin{gathered} .364 \\ (1.181) \end{gathered}$	$\begin{gathered} -.579 \\ (-3.899) \end{gathered}$			1.215	. 569
None	$\begin{gathered} -6.388 \\ (-8.366) \end{gathered}$	$\begin{aligned} & .087 \\ & (.388) \end{aligned}$	$\begin{aligned} & .224 \\ & (.957) \end{aligned}$		$\begin{gathered} .422 \\ (3.809) \end{gathered}$	2.248	. 814
Corernment Eone	$\begin{gathered} -3.209 \\ (-1.870! \end{gathered}$	$\begin{gathered} .366 \\ (1.137) \end{gathered}$	$(-7.541$	$\begin{aligned} & .061 \\ & (.122) \end{aligned}$		1. 22.8	. 569
Government Rond	$\begin{gathered} -7.696 \\ (-4.730) \end{gathered}$	$\begin{aligned} & .054 \\ & (.239) \end{aligned}$	$\begin{gathered} -.083 \\ (.292) \end{gathered}$	$\begin{gathered} -.314 \\ (-.913) \end{gathered}$	$\begin{gathered} .452 \\ (3.884) \end{gathered}$	1. 903	. 828
Coroorate Bond	$\begin{gathered} -3.943 \\ (-2.373) \end{gathered}$	$\begin{gathered} .361 \\ (1.127) \end{gathered}$	$\begin{gathered} -.670 \\ (-1.745) \end{gathered}$	$\begin{gathered} -.121 \\ (-.260) \end{gathered}$		1.212	. 571
Corporate Eond	$\begin{gathered} -7.719 \\ (-5.345) \end{gathered}$	$\begin{aligned} & .066 \\ & (.298) \end{aligned}$	$(.013$	$\begin{gathered} -.335 \\ (-1.082) \end{gathered}$	$\begin{gathered} .443 \\ (3.968) \end{gathered}$	1.920	. 834

TABLA 3.8
Rate of Return on Debt
Double-Lor Model: C-O.I.S.
(t - values in parenthesis)

Alternative Asset	${ }^{\gamma} 0$	γ_{1}	γ_{2}	γ_{3}	γ_{4}	0	D.W.	R^{2}
None	$\begin{gathered} -2.656 \\ (-4.424) \end{gathered}$	$\begin{gathered} -.266 \\ (-1.061) \end{gathered}$	$\begin{gathered} -.090 \\ (-.311) \end{gathered}$			$\left(\begin{array}{c}.929 \\ (9.371)\end{array}\right.$	2.165	. 681
None	$\left(\begin{array}{c} -6.619 \\ (-10.361) \end{array}\right.$	$\begin{gathered} .362 \\ (1.630) \end{gathered}$	$\left(\begin{array}{c} .277 \\ (1.429) \end{array}\right.$		$\begin{gathered} .459 \\ (4.920) \end{gathered}$	$\begin{gathered} -.447 \\ (-1.970) \end{gathered}$	1.982	. 822
Government Bond	$\begin{gathered} -4.019 \\ (-3.307) \end{gathered}$	$\left(\begin{array}{c} -.281 \\ (-1.213) \end{array}\right.$	$\begin{gathered} -.075 \\ (-.281) \end{gathered}$	$\left(\begin{array}{c} -.682 \\ (-1.579) \end{array}\right.$		$\begin{gathered} .953 \\ (11.780) \end{gathered}$	I. 802	. 746
Government Bond	$\begin{aligned} & -9.561 \\ & (-4.612) \end{aligned}$	$\begin{gathered} -.377 \\ (-i .371) \end{gathered}$	$\begin{gathered} -.079 \\ (-.309) \end{gathered}$	$\begin{gathered} -.656 \\ (-1.794) \end{gathered}$	$\begin{gathered} .525 \\ (3.436) \end{gathered}$	$\begin{gathered} .494 \\ (2.127) \end{gathered}$	I. 923	. 838
Corporate Bond	$\begin{aligned} & -3.995 \\ & (-3.170) \end{aligned}$	$\begin{gathered} -.235 \\ (-.986) \end{gathered}$	$\frac{-.551}{(-.545)}$	$\begin{gathered} -.548 \\ (-1.442) \end{gathered}$		$\begin{gathered} .951 \\ (11.491) \end{gathered}$	1.905	. 737
corporate sona	$\begin{aligned} & -9.290 \\ & (-4.776) . \end{aligned}$	$\begin{gathered} -.325 \\ (-1.159) \end{gathered}$	$\begin{gathered} -.157 \\ (-.560) \end{gathered}$	$\begin{gathered} -.622 \\ (-1.790) \end{gathered}$	$\begin{gathered} .504 \\ (3.498) \end{gathered}$	$\begin{gathered} .438 \\ (\mathrm{~J} .82 \mathrm{~J}) \end{gathered}$	1.967	. 838

4. The Private Carrjers

4.1 Introduction

In this section of the financial module we estimate the rate of return equations for the aggregation of Newfoundand Telephone, New Brunswick Telephone, and Maxitime Telegraph and Telephone.

4. 2 The Data

We calculated the rates of return in the same fashion as for Bell Canada. However, in this case, we are dealing with three distinct carriers. Consequently, after computing the rates of return on debt: common equity, and preferred shares for each individual company, we then formed the various rates of return for the private carrjex by taking the weighted average of the appropriate rates. In other words for example, with regards. to common equity, we computed the rate of return for each carriex by finding dividenas per share divided by the price per shore and adding this latter ratio to the expected growth rate of dividends per share. Where the growth rate was computed in the same fashion as that for Bell Canada, and these rates were set equal to zero for the years in mhich their values were statistioally insignifiont. We then computed the ratio of each carmer's comon equity to the total ommon aquity of the three compranes and used these values as the weights for each carider's rate and then sumed these weighted rates of return. This sum we refer to as the rate
of return on common equity for the private companies. The same procedure was utilized in computing the rates of return on debt and preferred shares for the private carriers.

4.3 Ihe Empirical Resultes

We find, upon observing the balance sheets for the companies comprising the private carriers that preferred shares played an important role in their financial picture. This is contrary to the role of preferred shates in the case of Bell Canada. Indeed, we observed from the balance sheets that the proportion of preferred shares to total equity is roughly 30% for Newfoundland Telephone for 1961, 1962, and 1963 and 10% for 1972 to 1975.

> The data fro the computation of the rates of retum
were obtained from the financial statements of the carriers in question and the methods of computing the rates were identical to those for Bell Canada.

We tested mary functional forms for the rates of return equation and we found that the equations which are homogeneous of degree zefo in cominon equity, preferred shares and debt, performed best. rimus, we have,

$$
\begin{align*}
& x_{c t}=C\left(\hat{p}_{\mathrm{ct}}{ }^{\mathrm{B}}, \mathrm{p}_{\mathrm{ct}} \mathrm{p}_{\mathrm{ct}}{ }^{\mathrm{B}} \mathrm{ct}, r_{\mathrm{ct}}, y_{t}\right) \tag{4.2}\\
& r_{p t}=p\left(\frac{p_{p t} t^{B} t}{p_{c t^{S}},}, \frac{p_{p t} S_{p t}}{P_{c t^{S} c t}}, r_{a t^{\prime}} Y_{t}\right) \tag{4,3}
\end{align*}
$$

Specializing these functions to the double-log form we get,

$\log r_{c t}=\gamma_{0}+\gamma_{1} \log \frac{p_{b t} t^{B}}{p_{c t^{S}}+}+\gamma_{2} \log \frac{p_{p t^{S}} p_{c t}}{p_{c t^{S}} c t}+\gamma_{3} \log r_{a t}+\gamma_{4} \log Y_{t}$.

The results for the estimation of equations (4.4) to (4.6) are presented in Tables 4.1. to 4.6.

We would expect 'a priori ' that $\gamma_{1}>0$, and $\gamma_{2}>0$ for the common equity rate of return equation. Indeed, as debt to common equity increases, and preferred shares to common equity also increases the sharehoiders would desire a larger rate of return on common equity because of the Fact thet preferred shares and debt are more senior financial commodities, in terms of the payment obligations by the suppliers. We find that in Tables 4.1 and 4.2 that income does not affect the rate of return when γ_{1} and γ_{2} have the right sign and when there is no autocorrelation Niso, the corporate bond sate is a more approryiate varialle to represent alternative somaes of investment to the common sharoholdors. Fherefore we feei that the equation, with the corporate bond rate being rat and $\gamma_{4}=0$, which was estimated using ordinary least squares provides the best description for $r_{c t}$ expraining 94% of the variance.

Table 4.J.

Rate of Return on Cominon Eouitey Doubje-Log Modej: O.L.S. (t-values in parenthesis)

Alternative Asset	γ_{0}	γ_{1}	γ_{2}	γ_{3}	γ_{4}	D.W.	R^{2}
None	$\left\lvert\, \begin{aligned} & -1.166 \\ & (-3.695) \end{aligned}\right.$	$\begin{gathered} 2.684 \\ (4.820) \end{gathered}$	(-1.182)			. 977	. 682
None	$\left(\begin{array}{l} -9 \cdot 568 \\ (-4 \cdot 359) \end{array}\right.$	$\begin{gathered} -.043 \\ (-.053) \end{gathered}$	$\begin{gathered} .016 \\ (.346) \end{gathered}$		$\begin{gathered} .828 \\ (3.855) \end{gathered}$. 539	. 865
Government Bond	$\begin{gathered} 2.869 \\ (4.757) \end{gathered}$	$\begin{gathered} .741 \\ (1.956) \end{gathered}$	$\begin{gathered} .053 \\ (1.604) \end{gathered}$	$\begin{gathered} 1.742 \\ (6.886) \end{gathered}$		3. 383	. 940
Government Bond	$\begin{aligned} & 1.173 \\ & (.353) \end{aligned}$	$\begin{aligned} & .522 \\ & (.910) \end{aligned}$	$\begin{gathered} .053 \\ (1.571) \end{gathered}$	$\begin{gathered} 1.563 \\ (3.633) \end{gathered}$	$\begin{aligned} & .127 \\ & (.521) \end{aligned}$	1.279	. 942
Corporate Bond	$\begin{gathered} 2.122 \\ (4.336) \end{gathered}$	$\begin{gathered} .654 \\ (1.715) \end{gathered}$	$\begin{gathered} .068 \\ (2.036) \end{gathered}$	$\begin{gathered} 1.535 \\ (7.015) \end{gathered}$		1.305	. 942
Comporate Dond	$\begin{gathered} .619 \\ (.199) \end{gathered}$	$\begin{aligned} & .450 \\ & (.818) \end{aligned}$	$\begin{gathered} .0 .68 \\ (1.941) \end{gathered}$	$\begin{gathered} 7.390 \\ (3.720) \end{gathered}$	$(.117$	2. 221	. 343

Alternative Asset	γ_{0}	γ_{1}	γ_{2}	γ_{3}	γ_{4}	ρ.	D. F_{1}.	R^{2}
jone	$\left(\begin{array}{c}-1.330 \\ (-1.988)\end{array}\right.$	$\begin{aligned} & .185 \\ & (.405) \end{aligned}$	$\begin{gathered} -.002 \\ (-.065) \end{gathered}$			(12.458)	1.063	. 923
Dne	$\left(\begin{array}{l} -1.4 .759 \\ (-5.298) \end{array}\right.$	$\left\lvert\, \begin{gathered} -.556 \\ (-1.209) \end{gathered}\right.$	$\begin{gathered} -.057 \\ (-1.641) \end{gathered}$		1.353 (4.681)	$\begin{gathered} .677 \\ (3.441) \end{gathered}$	1.106	. 961
-pvernmenti Bond	$\begin{gathered} 2.668 \\ (3.391) \end{gathered}$	$\begin{gathered} .856 \\ (2.347) \end{gathered}$	$\begin{aligned} & .025 \\ & (.740) \end{aligned}$	$\begin{gathered} 1.662 \\ (5.362) \end{gathered}$		$\begin{gathered} .401 \\ (1.636) \end{gathered}$	1.682	. 947
Government Bond	$\left(\begin{array}{c} -10.137 \\ (-3.199) \end{array}\right.$	(-1.376	$\stackrel{-}{-.052}(-1.867)$	(2.925)	1.3 .17 (3.880)	$\begin{gathered} .743 \\ (4.151) \end{gathered}$	1. 019	$\because 980$
Corporate Bond	1.969 (2.795)	.704 (1. 903	(1.0412)	1.506 $(5.11 .7)$		(1.4672)	1.658	. 949
Corporate Bond	$(-10.738$	$\left(\begin{array}{c}-.467 \\ (-1.304)\end{array}\right.$	$\begin{gathered} -.044 \\ (-1.545) \end{gathered}$	$\begin{gathered} .927 \\ (3.028) \end{gathered}$	$\left(\begin{array}{c} 1.166 \\ (3.751) \end{array}\right.$	$\begin{array}{r} .775 \\ (4.581) \end{array}$. 933	.9880

The results for the return on preferred shares are presented in Tables 4.3 and 4.4. Again, we believe that γ_{1}, mist be greater than zero but γ_{2} may be negative. Decause as the preferred shares to common equity ratio jncreases, all other things bejng equal, the riskiness of the carrier has not increased, but rather decxeased and so preferred shareholders may be satisfied with a lower rate of return. Once again, income is not a meaningful. determinant of rpt, while the corporate bond rate performs marginally bettex than the government bond rate. Conseguently, the second to last equation in Table 4.3, statistically and in an economic sense is the best equation.

Finally, for the rate of return on debt, we refer to Tables 4.5 and 4.6. Obviously an increase in the debito common equity ratio must iead to an increase in the rate of return to the demanders of this delot. On the other hand, an increase in the ratio of preferred shares to common equity should, in general., l.ead to an increase in $r_{b t}$, if the debtholders are acutely aware of other competing senior Einancial instruments in the corporate pontfolio. Hence, because of the lack of autocorrelation and by the signs of $\gamma_{1}: \gamma_{2}$, and the values of the twistatistics for the regressors, the equation with $\gamma_{4}=0$ and the corporate rate as $r_{\text {at }}$ in Table 4.5 is the best equation in explaining 84% of the variance.

Table 4.3

Rate of Return on Proferred Shares
Double-fog Model: O. I. S.

Altemative Asset	γ_{0}	Y_{1}	γ_{2}	γ_{3}	Y_{4}	D. W.	R^{2}
Jone	-2.416 (-31.984)	$\begin{gathered} .793 \\ (5.944) \end{gathered}$	$\left(-\frac{-.061}{(-4.201)}\right.$			1.054	. 755
Tone	$\begin{gathered} -2.032 \\ (-2.551) \end{gathered}$	$\begin{gathered} .917 \\ (3.145) \end{gathered}$	$\begin{gathered} -.065 \\ (-3.790) \end{gathered}$		$\begin{gathered} -.038 \\ (-.485) \end{gathered}$	1.160	. 760
Fovernment Bond	$\begin{gathered} -2.846 \\ (-9.335) \end{gathered}$	$\begin{aligned} & 1.000 \\ & (5.224) \end{aligned}$	$\begin{gathered} -.074 \\ (-4.465) \end{gathered}$	$\left(\begin{array}{c} -.186 \\ (-1.452) \end{array}\right.$		1.483	. 794
Government Bond	-4.494 (-2.782)	.788 (2.819)	-.073 (-4.433)	$\left(\begin{array}{c}-.358 \\ (-1.711)\end{array}\right.$	$\begin{gathered} .123 \\ (1.039) \end{gathered}$	1.443	. 814
Corporate Bond	$\begin{gathered} -2.793 \\ (-11.298) \end{gathered}$	$\begin{gathered} 1.025 \\ (5.320) \end{gathered}$	(-4.532)	$\left(\begin{array}{c} -.176 \\ (-1.590) \end{array}\right.$		1.509	. 801
Comporate Bond	$\begin{gathered} -4.601 \\ (-3.100) \end{gathered}$	$\begin{gathered} .791 \\ (2.956) \end{gathered}$	$\begin{gathered} -.078 \\ (-4.689) \end{gathered}$	$\left(\begin{array}{c} -.350 \\ (-1.969) \end{array}\right.$	$\begin{gathered} .141 \\ (1.235) \end{gathered}$	1.432	. 827

Table 4.4

Rate of Return on Preferred Shares $\frac{\text { Double- iog model: } \frac{c-0 . L .5}{(t-v a l u e s ~ i n ~ p a r e n t h e s ~ i s) ~}}{\text { (}}$

Itemative Asset	γ_{0}	γ_{1}	γ_{2}	γ_{3}	γ_{4}	$?$	D.W.	R^{2}
sne	-2.383 (-22.840)	$(4.801$	$\begin{gathered} -.056 \\ (-3.132) \end{gathered}$			$\begin{gathered} .741 \\ (2.015) \end{gathered}$	1.668	. 763
one	$\begin{aligned} & -2.316 \\ & (-1.937) \end{aligned}$	(2.889)	$\begin{gathered} -.056 \\ (-2.859) \end{gathered}$		$\begin{gathered} -.007 \\ (-.056) \end{gathered}$	$\begin{gathered} .463 \\ (. .956) \end{gathered}$	1.666	. 763
Jvernment Bond	$\left(\begin{array}{l} -2.760 \\ (-7.052) \end{array}\right.$	(4.632)	$\begin{gathered} -.059 \\ (-3.321 .) \end{gathered}$	$\begin{gathered} -.152 \\ (-.968) \end{gathered}$		$\begin{gathered} .344 \\ (1.370) \end{gathered}$	1.676	. 779
Jvernment Bond	$\begin{gathered} -4.453 \\ (-2.051) \end{gathered}$	$(2.715$	$\begin{gathered} -.065 \\ (-3.350) \end{gathered}$	$\begin{gathered} -.316 \\ (-1.218) \end{gathered}$	$\begin{aligned} & .131 \\ & (.792) \end{aligned}$	$(1.331$	1.645	. 794
Irporate Bond.	$\begin{gathered} -2.731 \\ (-8.468) \end{gathered}$	$\left(\begin{array}{c}.915 \\ (4.659)\end{array}\right.$	$\begin{gathered} -.062 \\ (-3.420) \end{gathered}$	$\begin{gathered} -.15 .1 \\ (-7.0100) \end{gathered}$		(1-338 (1.344)	1.688	. 784
mporate Bond	$\begin{gathered} -4.955 \\ (-2.334) \end{gathered}$	$\begin{gathered} .695 \\ (2.4 .33) \end{gathered}$	$\begin{gathered} -.072 \\ (-3.547) \end{gathered}$	$\begin{gathered} -.353 \\ (-1.507) \end{gathered}$	$\left(\begin{array}{c} .178 \\ (1.059) \end{array}\right.$	$\begin{gathered} .329 \\ (1.305) \end{gathered}$	1.669	. 808

Table 4.5

$$
\frac{\text { Rate of Return on Debt }}{\text { Donde-fog Model }} \text { (E-values in parenthecis) }
$$

Alternative Asset	γ_{0}	γ_{1}	γ_{2}	γ_{3}	γ_{4}	D.W.	R^{2}
None	$\left(\left.\begin{array}{c} -2.220 \\ (-13.782) \end{array} \right\rvert\,\right.$	$\begin{gathered} 1.223 \\ (4.302) \end{gathered}$	$\begin{gathered} -.023 \\ (-.745) \end{gathered}$			1.487	. 643
None	$\begin{gathered} -7.157 \\ (-7.711) \end{gathered}$	$\begin{gathered} -.333 \\ (-1.000) \end{gathered}$	$\begin{gathered} .027 \\ (1.091) \end{gathered}$		$\begin{gathered} .473 \\ (5.297) \end{gathered}$	1. 227	. 900
Government Bond	$\begin{gathered} -.573 \\ (-1.163) \end{gathered}$	$\begin{gathered} .430 \\ (1.391) \end{gathered}$	$\begin{gathered} .028 \\ (1.036) \end{gathered}$	$\begin{gathered} .711 \\ (3.445) \end{gathered}$		1.820	. 829
Govermment Bond	$\begin{aligned} & -6.144 \\ & (-2.958) \end{aligned}$	$\begin{gathered} -.288 \\ (-.800) \end{gathered}$	$\begin{gathered} .030 \\ (1.421) \end{gathered}$	$\begin{aligned} & .127 \\ & (.471) \end{aligned}$	$\begin{gathered} .416 \\ (2.731) \end{gathered}$	1. 4.43	. 902
Corporate Bond	$\begin{gathered} -.853 \\ (-2.157) \end{gathered}$	$\begin{gathered} .379 \\ (1.230) \end{gathered}$	$\begin{gathered} .035 \\ (1.208) \end{gathered}$	$\begin{gathered} .638 \\ (3.609) \end{gathered}$		1. 772	. 837
Corporate Bond	$\begin{aligned} & -5.934 \\ & (-3.026) \end{aligned}$	$\begin{gathered} -.280 \\ (-.792) \end{gathered}$	$\begin{array}{r} .033 \\ (-.792) \end{array}$	$\begin{gathered} .148 \\ (1.491) \end{gathered}$	$\begin{gathered} . .397 \\ (2.626) \end{gathered}$	1. 450	.,903

Table 4.6

Rate of Return on Debt

l.termatj.ve Assef	γ_{0}	γ_{1}.	γ_{2}	Y_{3}	γ_{4}	ρ	D.W.	i^{2}
me	$\left(\begin{array}{l} -2.073 \\ (-4.660) \end{array}\right.$	$\begin{gathered} -.364 \\ (-1.227) \end{gathered}$	$\begin{gathered} .01 .4 \\ (.561) \end{gathered}$			$\begin{array}{r} .959 \\ (12.579) \end{array}$	1.319	. 865
sne	$\left\lvert\, \begin{aligned} & -11.524 \\ & (-5.378) \end{aligned}\right.$	$\begin{gathered} -.802 \\ (-.2 .703) \end{gathered}$	$\begin{gathered} -.018 \\ (-.799) \end{gathered}$		$\stackrel{.937}{(4.1 .77)}$	$\begin{gathered} .749 \\ (4.235) \end{gathered}$	1.704	. 930
svernment Bond	$\begin{gathered} -.621 \\ (-1.179) \end{gathered}$	$\begin{gathered} .403 \\ (1.242) \end{gathered}$	$\begin{gathered} .032 \\ (1.107) \end{gathered}$	$\begin{gathered} .692 \\ (3.152) \end{gathered}$		$(.042)$	1. 342	. 818
vernment Bond	$\begin{aligned} & -13.325 \\ & (-5.491) \end{aligned}$	$\begin{gathered} -.864 \\ (-3.019) \end{gathered}$	$\begin{gathered} -.020 \\ (-.918) \end{gathered}$	$\begin{gathered} -.380 \\ (-1.514) \end{gathered}$	$\begin{gathered} 1.023 \\ (4.742) \end{gathered}$	$\begin{gathered} .715 \\ (3.828) \end{gathered}$	1.411	. 944
rporate Bond	$\left(\begin{array}{c}-8.89 \\ (-2.101)\end{array}\right.$	$\left(\begin{array}{c}.337 \\ (1.044)\end{array}\right.$	$\begin{gathered} .041 \\ (1.407) \end{gathered}$	(3.524)		$(.061)$	1.820	. 329
orporate Bond	$\left\lvert\, \begin{aligned} & -12.803 \\ & (-5.121) \end{aligned}\right.$	$\begin{gathered} -.819 \\ (-2.791) \end{gathered}$	$\begin{aligned} & -.022 \\ & (-.955) \end{aligned}$	$\begin{gathered} -.319 \\ (-1.272) \end{gathered}$	$\begin{gathered} .990 \\ (4.467) \end{gathered}$	$\begin{gathered} .693 \\ (3.598) \end{gathered}$	1.493	. 940

FOOTNOTES

1. One might want to distinguish between short term and long . term debt but for our purposer we were interested in the relative benefits and costs of debt versus equity financing.
2. In this module we are discussing rates of return which are unadjusted for the existence of tares.
3. We adopted this procedure because, even though gt was not equal to zero in many years it was also not statistically different from zero.
4. Of course, we used other variables such $2 s$ population and the price index of services, but none of them performed as well as the variables we mentioned in the text.

REPERENCES

1. Alberta Government Irelephones, Annual peport, various issues.
2. Bank of Canada, Statistical Review, vaxious issues.
3. Bell Canada, Annual Report, variolis issues.
4. British Columbia Telephone Company, Anmual Report, various issues.
5. Edmonton Telephones, Annual Peport, various issues.
6. Manitoba Telephone System, Annual Report, various issues.
7. Maritime Telegraph and Telephone Company. Annual Repoxt, varjous issues.
8... New Brunswick Telephone Company, Annual Report, various issues.
8. Newfoundland Telephone Company, Annual Report, various issues.
9. Saskatchewan Telecommunications, Annual Report, various issues.
10. Statictics Canade, Statistical Pevipw, varions iscuss

CHAPTER 6

STMULAIION MODULE

1. The. Structure

The simulation module integrates the general theoretical model with the three estimation modules. In this part of the study we bring forth the demand for total services, the production function, the rates of return equations, that we accepted for eell Canada, and combine them with the first order conditions, regulatory and capital constraints.

The first set of equations we estimated were the demand equations. In the demand module we stated that the double-log demand equation estimated by the Cochrane-orcutt method performed quite well. This equation is:

$$
\begin{equation*}
y_{t}=\frac{.116-188 p_{t}^{-1.325} y_{t}^{.816} y_{t-1}^{.812} p_{t-1}^{-.413}}{p_{t}^{-.519} p_{t-1}^{-1.076} Y_{t-1}^{.663}} \tag{1}
\end{equation*}
$$

where y_{t} is output (which is the same as demand in equilibrium), p_{t} is the price index of output, P_{t} is the consumer price index, y_{t} is the provincial product. From equation (I) we get that the price elasticity of demand is -1.325 and we can solve for p_{t}

$$
\begin{equation*}
p_{t}=\frac{p_{t}^{.384} x_{t}^{.616} y_{t-1}^{.613} p_{t-1}^{.812}}{1.358 Y_{t-1}^{.500} y_{t}^{.755} p_{t-1}^{312}} \tag{2}
\end{equation*}
$$

this equation determines the price indey of total teiephone services. ${ }^{\text {l }}$

The prodaction function we seiected for bell was the constant retums to scale Cobb-Doubjas one with direct distance dialing as the measure of teomological change, and materials
explicitely included as an input. The estimated equation is,

$$
\begin{equation*}
y_{t}=\frac{1.411 K_{t}^{.305} J_{t}^{.616} R_{t}^{0.079} e^{1.0711 D D} t Y_{t-1}^{.519}}{K_{t}^{.158} I_{t-1}^{320} R_{t \cdots 1}^{.041} e^{.556 D D} t \cdots 1} \tag{3}
\end{equation*}
$$

where K is oaptal, is labour, D is direct distence dialing, and R is materials. The production function yields marginal. products of capital and labour which are $\frac{\partial y}{\partial K}=.305 \frac{Y}{K}, \frac{\partial y}{\partial I_{1}}=.616 \frac{Y}{L}$. We see that the marginal product of capital is .305 times the average product of capital, and the marginal product of labour js . 616 times its average product.

> The rate of return on debt equation is

$$
\begin{equation*}
r_{\mathrm{DL}}=\frac{.011 \mathrm{D}_{\mathrm{t}}^{.618}}{\mathrm{p}_{\mathrm{kt}}^{.260} \mathrm{~m}_{\mathrm{t}}^{356}} \tag{4}
\end{equation*}
$$

where $p_{k t}$ is the price index of physical capital, $D_{t}=p_{b t} B_{t}$ is the value of debt, and $E_{t}=p_{s t} s_{t}$ is the value of equity. With equation (4), we can compute that;

$$
\frac{\partial r_{j t}}{\partial D_{t}}=.618 \frac{r_{b t}}{D_{t}}, \frac{\partial r_{b t}}{\partial E_{t}}=-.3585_{b t}
$$

The rate of return on equity equation is,

$$
\begin{align*}
& r_{s t}=.057+.00005\left(\frac{D_{t}}{p_{k t}}+.051 \frac{D_{t-1}}{\mathrm{P}_{k t-1}}\right)-.00002 \frac{\mathrm{E}_{t}}{\left(\mathrm{p}_{\mathrm{kt}}\right.} \\
& \left.+.051 \frac{\mathrm{E}_{t-1}}{\mathrm{p}_{k t-1}}\right)-.290\left(r_{a t}+.051 r_{a t-1}\right)-.051 r_{s t-1} \tag{5}
\end{align*}
$$

where r at is the rate of return on long-term corporate bonds.

Equation (5) implies that

$$
\frac{\partial x_{s t}}{\partial D_{t}}=\frac{.00005}{\mathrm{P}_{\mathrm{kt}}}, \frac{\partial r_{\mathrm{st}}}{\partial \mathrm{E}_{\mathrm{t}}}=\frac{-.00002}{\mathrm{p}_{\mathrm{Kt}}} .
$$

These are then the equations and the important derivatives, which are obtained from the three estimation modules. The next step is to integrate the preceeding equations with the first order conditions in the general model. Before doing so; we must modify these conditions, in view of our aggregation of common and preferred equity, and the faot that we detemine the value of acht and equity. ${ }^{2}$ In addition we tested for the actual regulatory constraint in the context of Beli Canda and found it to be

$$
\begin{align*}
& (I-u)\left(p y-w^{H}-w_{r}^{R}\right)-\delta(I-u a) p_{k} K \\
& +u d r p_{k} K+r_{b} u(D-M) \leq i(I-u) p_{k} K \tag{6}
\end{align*}
$$

where w_{r} is the price index of materials and r_{b} is now also the rate of return on the exogeneous variable M. We must note that changes in the price of equipmert are not considered by either the tax or the regulatory authorities and therefore for the simulation we amit θ_{t} from the regulatory constrainte.

The teat for the constraint was carried out by noting that from the thoory of regulation we must have

$$
\begin{equation*}
\frac{\text { py }-w_{Q} y-w_{y} R}{L_{1}}=\mathrm{S} \tag{7}
\end{equation*}
$$

where s is called the allowea factor price of capital. Also, in the context of our mociel the first order conditions imply an equation for S (the allowed factor price).

This derived equation for S :must be consistent with (7) and With equation (6), and we computed s to be

$$
\begin{equation*}
s=\frac{P_{y}}{(I-u)}\left[\delta(1-u d)+i(I-u)-u \operatorname{ur}-u_{b}\left(\frac{D-M}{P_{5}} \bar{K}\right)\right] \tag{8}
\end{equation*}
$$

Indeed the values of 5 implied by equations (7) and (8) are identical. Consequentiy, with the manner in which the authorities treat ohanges in the price of equipment, and aggregating the values of common and preferred eguity me can rewsite the net profit equations as, ${ }^{3}$

$$
\Pi_{n}=\left(p y-w^{I-w_{X}} R\right)(I-u)+\frac{\theta}{(1+\theta)} p_{k} K-\delta(I-u d) p_{k} K-r p_{k} K(1-u d)
$$

and recalling the capital oonstraint, the regulatory consiraint, and roting that R and its price are exogeneous, the first order conditions now become

$$
\begin{align*}
& \frac{\partial \Omega}{\partial I}=F_{\ell}\left(\varrho^{\prime} F+Q^{\prime}\right)-W_{\ell}=0 \tag{9.1}
\end{align*}
$$

$$
\begin{align*}
& \cdots p_{K}\left(1-u d(1-\lambda)\left[\frac{\partial r_{b}}{\partial D}(D-M)(1-u)\right.\right. \\
& \left.+\frac{\partial r_{s}}{\partial E_{j}}\right]-\lambda u \frac{\partial r_{b}}{\partial D} p_{1 k}(D-M)-p_{k} x_{b}(1-1) \quad[1-u d(1-\lambda)] \\
& -\lambda P_{k}{ }^{w I_{b}}+\lambda(1-u)_{k}=0 \tag{9.2}\\
& \frac{\partial S}{\partial \mathrm{~B}}=\mathrm{F}_{\mathrm{K}}\left(\hat{d}^{\prime} \mathrm{F}+(\mathrm{a}) \quad \cdots(1-\lambda) \delta(1-\mathrm{ud}) \mathrm{P}_{\mathrm{K}}\right. \\
& \left.+\frac{\theta}{1+Q^{n}}\right]_{k}-p_{k}(1-u d(I-\lambda)) \quad\left[\frac{\partial r_{b}}{\partial E}(D-M)(1-u)\right.
\end{align*}
$$

$\left.+\frac{\partial r_{S S}}{\partial \mathbb{S}}[]^{\prime}\right]-\lambda u_{b} \frac{\partial r_{b}}{\partial E} \rho_{k}(D-M)-p_{k} r_{S}(1-u)[1-u d(1-\lambda)]$
$+\lambda i(1-u) p_{k}=0$
To implement equation set (\because) for simulation we must substitute the values of the various estimated terms. We can rewrite equation (9.1) as, $F_{\ell}\left(B^{\prime} E^{-1}+1\right.$) which is $F_{\ell P}\left(\theta^{\prime} X_{p}^{+1}\right)$. Given that the price elasticity of demand is -1.3 , we can write,

$$
F_{\ell} p\left(Q^{1} \frac{Z^{+}}{p}=P_{i}\left(-\frac{1}{1.3}+1\right)=.23 F_{i} p\right.
$$

Also, from our computations on the marginal product of labour, we have

$$
\mathrm{F}_{2} p(.23)=(.616)(.23) \frac{\mathrm{PY}}{\bar{I}}=.142 \frac{\mathrm{py}}{\mathrm{~L}}
$$

Thus equation (9.1) beecomes

$$
\begin{equation*}
.142 P_{t} Y_{t}-W_{\ell}^{I_{1}^{*}}{ }_{t}=0, \tag{10}
\end{equation*}
$$

where I^{*} is the equilibrium quantity of labour. Because the carrier may not be in equilibrium in the labour market, we mot incoxporate an equation which depicts the labour input aynamic adjustment process. This process is denoted by the following difference equation,

$$
\begin{equation*}
x_{t} m x_{t-1}=\mu\left(\Sigma_{t}^{*}-I_{t-1}\right) \tag{11}
\end{equation*}
$$

Thus with the values of L^{*} t we can estimate H and then we have an equation fox the computed value of labour. Upon estimating equation (II) we found that,
$J_{t}=1.703 L_{t--1}-.015 L_{t}^{*}-.693 J_{t-2}+.010 I_{t}{ }_{t--1}$,
where (12) will be used to determine the simulated quantity of labour.

Next equation (9.2) becomes,

$$
\begin{align*}
& (1-\lambda)(1-u)(.070) \frac{y P_{t}}{K_{t}}-(1-\lambda) \delta(1-u d) p_{k} \\
& \left.+\frac{\theta}{(1+\theta)} p_{k}-(1-u d)(1 \cdots)\right)\left[.618 \frac{p_{k}}{D^{*}} r_{b t}\left(D_{t}-M\right)(1-u)\right. \\
& \left.+.00005 E_{t}^{*}\right]-\lambda u(.618) \frac{F_{k} r_{b t}}{D^{*}}\left(D_{t}^{*}-M\right) \\
& -p_{k} r_{b t}(1-u)[1-u d(1-\lambda)]-\lambda p_{k} u r_{b t}+\lambda i(1-u) p_{k}=0 \tag{1.3}
\end{align*}
$$

and equation (9.3) becomes

$$
\begin{aligned}
& (1 \cdots \lambda)(1-u)(.070) \frac{y_{t} p_{t}}{F_{t}}-(1-\lambda) 6(1 \cdots u d) p_{k} \\
& +\frac{\theta}{(1+\theta)} P_{k}-(1-u d(1-\lambda))\left[-.358 \frac{p_{k_{k}} b t}{J^{k} t}\left(D * t^{-M}\right)(1-u)\right.
\end{aligned}
$$

$$
\begin{align*}
& -P_{k}{ }^{r} s t[1-u d(l-\lambda)]+\lambda i(1-u) p_{k}=0, \tag{1.A}
\end{align*}
$$

where j was computed by moking. (6) an egnality. Th the same fashion that we provided a dyamio adjustment equation for labour wo also specify one for debt and one for mutty. the equtions are

$$
\begin{aligned}
& D_{t}-D_{t-1}=\phi\left(D^{*} t^{-D_{t-1}}\right) \\
& E_{t}-D_{t-1}=\Psi\left(E^{*} t^{-B_{t-1}}\right)
\end{aligned}
$$

and with the values of D^{*} and E^{*} which are found by simultaneously solving equations (13) and (14) for these variables, we get;

$$
\begin{equation*}
D_{t}=1.113 D_{t-1}-.113 D_{t} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{t}=1.431 \mathrm{E}_{t-1}-.343 \mathrm{E}_{t-2}-.131 \mathrm{E}_{t}+.040 \mathrm{E}^{*}{ }_{t-1} \tag{16}
\end{equation*}
$$

fo close the system we include the rate of return on physical capital equation, the factor prise equation, and the capital constraint,

$$
\begin{align*}
& r_{t}=r_{b t} \frac{\left(D_{t}-M\right)}{\bar{p}_{k} K_{t}}(1-u)+r_{s t} \frac{E_{t}}{p_{k} K_{t}} \tag{1.7}\\
& w_{k t}=p_{k}\left(\delta+r_{t}\right) \frac{(1-u d)}{(1-u)}-\frac{\theta}{(1+\theta)} \frac{p_{k}}{(1-u)} \tag{18}\\
& k_{t}=\frac{p_{t}}{p_{k}}+\frac{E_{t}}{p_{k}}-\frac{p_{1}}{p_{k}} \tag{19}
\end{align*}
$$

Therefore the set of equations; (2), (3), (4), (5), (6), (10), (12), (13), (14), (15), (1.6), (17), (18), (19), gives us fourteen equations in fourteen unknowns, $p, y, x_{b} r_{s}, \lambda, L *, ~ L, ~ D *, E *$, $D, E r x, W_{k} r K$. In adaition the exogenous variables are; the consumer price index (P), the provincial product (Y), techological change (DD), the ware rate (w_{ℓ}), the price of physical oapital (p_{k}), the omporate incone tax rate (u), the depreatation rate (b), the before tax rominal allowed rate of return (i) net nonmopital assets (M), the corporate bond rate (a), ara also the constant $(d=.51079)$, which is the discounted value of depreciation deducm tions on a dollar value of investment in physical capital.

Ihis constant was computed from

$$
d=\left[\frac{1}{(1-u) \rho T}\right]\left[1-e^{-(J-u) \rho T}\right]
$$

for the continuous case and as a discrete approximation,

$$
d=\left[\frac{1}{(1-u) \rho^{T}}\right]\left[2-\left(\frac{1}{(1+(1-u) \rho}\right)\right],
$$

where ρ is the before tax rate of returr and T is the lifetime of the asset. The average value of T for Bell Canada was obtained by dividing the average capital by the depreciation rate for tax purposes which is 5.3% so $T=18.863$ years. For u (the corporate tax rate) we used the average, and for ρ we used 15% which was close to the average before tax allowed rate of return. ${ }^{4}$

2. Simulation Within the Sampie Period

The tests of the adequacy of multiple eguation aimulation models are performed in two stages. The first stage pertajns to the selection of the appropriate equations from the estimation process. This selection is based on two criteria; the first.being consistency with economic propositions and the second being statistical analysis. Indeed, we have completed the first stage in the previous parts of the study dealing with the demand, production and financiai motules. me second stage encompasses the simulation of the equation system within the estimation time perioa. This equation system was explicitly derived in section 1 of this module. We are now ready to specify the form in which the equations have been pjaced into the omputer and to observe the values of the endogenous variables, which have been calculated using our model in order to compare them with the actual data.

The simulation was performed in two parts. The first part: pertaired to a model which assuned that Bell Canada aid not possess any monopoly power in its financing ability, while the second part allowed for monopoly power. As it turns cut, the model without monopoly power is a subset of the model. with monopoly power, and so we are able to compara both sets of results and in that way test for the ability of our model to integrate the real and financial characteristios of isell.

2.1 Simulation rithout Monopoly Pover

Whe assumed absence of monopoly power for Bell in the capital markets implies that the caxxier cannot affect the rates
of return on its. financing instruments. Thus the equations determining r_{b} and r_{s} are dropped and these variables as well as r and also w_{k} become exogenous. This means that the share of debt co physical capttal, and equity to physical capital is fixed but the capital budget (debt plus equity) is still an endogenous variable. Hence, because these later shares are fixed the first order conditions for debt and equity collapse into one equation for physical capital. The equation iss,

$$
\begin{equation*}
(.070) \mathrm{Py}(1-\lambda)-\left(\mathrm{w}_{\mathrm{K}}-\lambda \mathrm{s}\right) \mathrm{K}^{*}=0 \tag{20}
\end{equation*}
$$

Then with the value of $K *$ obtaineă from (20) we astimated the dynamic adjustment equation for physical capital and obtained,

$$
\begin{equation*}
\mathrm{K}_{t}=1.105 \mathrm{~K}_{\mathrm{t}-1}-.1 .05 \mathrm{~K}_{\mathrm{t}} \tag{2I}
\end{equation*}
$$

Finally, instead of solving the Lagrangian multiplier λ from the system of equations by including the constraint as a separate equation, we can estimate λ from equation (20). By letting $K=K *$ (which is the case in steady-state equilibrium) and then scluing for $M_{K}=\frac{w_{K} K}{p H}$ we gei,

$$
M_{K}=.070(1-\lambda)+\lambda \frac{s K}{P Y}
$$

Due to the nature of technological innovations and other structural changes we split the sampe period into thee sections of eight years, nine years, and nine geams. whe estimated value of fiof the fisct samne period was 339 , fox the accond .672 and for the thirc. 707 . We can observe then that, as λ increases, the impact
of regulatory policies on the output, input, and financing requirements has tended to become much more intensified. One can also say that, because of the movement of λ over the sample period, by taking a single estimate of the maltiplier the results would tend to be quite distorted, for purposes other than looking at average behavourai characteristics of Bell. In adajion, by observing the ratio $\frac{W_{k}}{s}$, which is the market price of physical capital services over the allowed price, (λ must be less than this ratio for reguiation to be effective) we can detect evidence of regulatory lag; especially in 1951, 1952, 1953, 1953: 1965, 1970, 1974. Therefore the values of λ, found in appendix 1 of this chapter, have been adjusted for nine and twelve month regulatory lags. We also took the price of telephone services as exogenous for this part of the similation and so the system is comprised of equatjons (3), (10), (12), (20), (21) and equation (19). This means we can solve for Y, $\mathrm{L}^{*}, \mathrm{I}_{\mathrm{i}}, \mathrm{K} *, \mathrm{~K},(\mathrm{DrE})$. Equation (19), in this case, determines the capital budget ($\mathrm{D}+\mathrm{F}$) , and not physicai capitel. The simulated values of these endogenous variables are compared with the actual values in appendix 2. We can observe that this model performs extromely well, in that the simutated values are very close to the actuals. Indeed we can conclude that our model reproduces the behovious of Beli Canada over the sample period, quite accucately, mine remaning tent is whethen the inclusion of the financiol segment wild reproduce these fine results. 5

2.2 Simulation With Monopoly Fower

For the simulation in this part we endogenized the rates of return on capital and so also the factor price of physical capjtal. We retajned the values of the Jagrangian maltiplier which we calculated in section 2.1. Thus our system of equations is (2), $(3),(4),(5),(10),(12),(13),(14),(15),(16),(17),(18),(19)$, in the thjirteen unknoyns (excluding λ).

The volues of the endogenous variables are compared with the actual values in appendix 3 of this chapter. We can observe once more that the results are very good. Starting with the price for total services, we compute that the average proportional difference between the simulated and actual values is . 003 . the average proportional difference for the output variable is -.002 , for labour -..001, for physjcal capital -.003, for debt -.0004 , for equity .004 , for the rate of return on debt -.008 , for the rate of return on equity . 008, for the rate of return on physical capital . 0002, for the factor price of physical darital -. 006 .

Therefore we can conclude that oux model successfully integrates the real and financial characteristics of Bell Canada and this simulation model, as a whole, can be utilized to forecast the impoxant aggrecrates of ontput, labour, phosioal copital, debt and equity requirmentis (as well as othex variables) for this regulated carrion.

Appendis 6.j. Bxogenous variables for the Monopoly Systam

CPI	Consumer Price Index of Montreal and Toronto
Y	Gross Provincial Product of Quebec and Ontario in Current Dollars
BL.R	Raw Materials for Bel?
BLDD	Percentage of Calls Direct Distance Dialed for Bell
Bri:WJ,	Wage Rate for Bell
PI	Price Index of Sinvestment Products
BIPTK	Price Index of Physical Gapjtal Eor Bell
BLM	Net Non-Capital Assets in Current Dollars for Bell
RBUS	Long-Term Corporate Bond Rate of Return
BL, 2 R	Allowed Rate of Return of Capital for Bell
PLDJSL	Rate of Depreciation for Bell
TLIAM	Regulatory Constraint Multiplier for Bell
MHEMEA	Rate of Price Inflation for Investment Products
U	Corporate Tax Rate

\qquad

1955.00	.730545	18171.0	53.3500	0.00000	5.56800
1350.00	． 800772	20431.0	62.5100	－600000E－32	2.00700
105788	．823745	2208208	62.9400	－230000－83	2.69500
4956.01	－854858	22575：10	69.2800	05300005032	2 2 21000
1959．01	－ 356521	23927． 6	72.8300	－ 910000 E－${ }^{\text {a }}$	2.31700
1950．80	． 855385	2498500	76． 1303	0259006	2.46330
1931， 0 a	－ 972320	26105．0	79．3700	－226000	2．8．590
198？${ }^{\text {a }}$	－231529	2794500	84.9800	－253000	2.72200
1963．62	， 895567	30327．	89.6600	0311009	2.81290
1964－03	－ 910725	3324598	89．8100	－ 373000	2888500
1985000	． 931549	36581．0	97.9500	0.333000	$2=97500$
1965．04	－967554	410550	101．880	－ 675100	3．353翟
1.967 .30	S． 000090	44153：3	98．710	－ 507608	2040400
1363．05	1.33848	47692.0	1036967	－ 568000	3 E 59400
198098	$\underline{+27519}$	52325.6	123.780	0533800	3.99810
1973.00	1．1．659	56591.6	123.180	0678000	44.42200
2971.63	1.11974	6473508	133．500	． 721000	$4=83300$
1972．06	3．16488	68171.0	153．003	． 768006	5.32500
1973000	1.24450	74546． 8	158.520	－ 825000	508370
197400	1．37699	8144800	182.036	\％ 865000	6， 41601
397508	去52603	89175.0	2018700	－64．670．	7 2043他

4
$?$
3
4
5
6

i
2
3
4
5

BLTSO	Total Services for Bell
BLI	Labour far•Bell
BL_K	Physical Capital for Bell
BLDE	Debt Plus Equity Capital for Bell

The simulated values have the same symbole but with an ss at the ená.

YEAP
ETTSO
ELTSOS \qquad 82
stls

BLPITS	Price Index of total Services for Bell
BLTSO	Total Services ior Bell
BLIL	Labour for Bell
BI.K	Physical Capital for Bell
BLD	Debt in Current Dollars for Bell.
RTE	Eruity in Current Dollers for Beli
BLRD	Rate of Return on Debt for Bell
BLRE	Rate of Return on Equity for Bell
BLRK	Rate of Return on physical Capital for Bell
BLWK	Factor Price of Physical Capital for Bell

The simulated values have the same symbols but with an S at the end.

1955.00	. 961587	1.20479	246.010	2350409
1955.00	- 953289	2001684	274.850	265.257
1957.06	$=952319$	1.81749	303.320	291. 428
4958.15	-968797	-951476	\%27.210	326.829
1959.50	1002595	-989354	3540180	34.5 .243
195805	2.03125	-998331.	377.000	353.020
1961.00	1.02919	2.01574	4040530	459.532
1962.0t	1.05393	2.044499	4.460520	425.818
1953.20	1.91759	10.01914	4,75,290	675.197
195%-20	1.01755	2.0115?	5150090	520.540
5955000	1.01543	1. 00324	561.820	573.287
1966.05	1.054 .34	1.95337	615,310	6120474
1357.04	1.00000	1.001734	669.830	670.315
9965.32	. 9964.44	2.01246	725.712	724.392
1053.08	-998717	1.018496	802.550	773.651
1570.20	$1=02393$	1.01501	875.350	872.393
5971:20	1.05217	A.3324x	923.111	948.747
1972.02	1.07243	2.06003	1002.88	987.143
1973.00	1.09253	1.05962	1103.19	1385.21
\$974:00	1.21707	1.11891	1220.4 ?	12210.86
1975.10	1.14165	1×12541	1375.19	13520:49

\qquad ELS

3LK
OLKS

1955.00	51.8898	49.8131	355.650	790.253
1356.06	55.6520	54.6163	973.310	892.715
195705	57.7982	58.4566	1159.15	1127.89
1953.07	57.5959	59.4522	1259.98	4269834
1959.0	56.5290	57.6009	1405,65	1328.37
196000	54.5973	55.9293	1554.70	2493.51
1561.00	52.4420	53.3837	1693.41	1556.9\%
1962006	32.2790	51.0711	1827.35	1505085
1983.15	53.5180	52,291,5	1071.57	4939.29
1964.05	54.4270	54.4999	2116.69	2437.76
± 965080	55.7993	5501602	2241.63	2239.92
$1365=00$	57.4700	55.8778	2384.18	2320.11
1967: 06	55.5737	55.7677	2538.85	2549,60
4968.10	55.4883	56.0854	2634.91	2537043
1969.3	55,5933	5408556	2635.90	2725.34
197593	57=3350	5704959	2984.12	3035.17
$1071=10$	58.1250	58.8229.	3147016	3182057
197209	53.9981	58.4629	3312.24	3173091
1973:	59.9070	59.7395	3490.75	3304035
1974.00	60.7580	60.6656	3676.50	3723,89
1975×3	65.5050	61,4752	3B7307	3939.21

1
2
....... 3

3 4
4 \qquad 5. \qquad

1

2
3
4
5

FOOTNOTES

${ }^{1}$ In this chapter we have rounded the numbers to the third and fourth decimal place. In the actual simulation we did not round the numbers because of the errors this would have cansed.
${ }^{2}$ Given the fact that we have aggregated the financial instruments of Bell Canada into two categories, it is simplex, from the viewpoint of forming agguegate price inaices of debt and equity, to treat the values of debt and equity as the corrier's dectsion variables. Given our assumption that the prices of bonds and egnity are fxogenous variabias; the two treatments are essentially identical.

3 We drop the expectations operator for ease of notation.

AThe values of θ were obtained from an eight year moving average of the Canadian prioe inder of investment products. Whis also means that the price by which we multiply θ is not ph, but rather the former price index. The justification fox this procedure stems'from the fact that θ is the expected rate of price inflation of physical capital and these expectations are captured by the Canadian index.
${ }^{5}$ It should be recaliad that most of our data series for Bell Canada were from 1952-1972 and we extrapolated to 1950 and to 1975. Therefore ane should focme on the simulation results for the period 1.955-1972.

A STUDY OF THE PRODUCTIVE FACTOR AND FINANCIAL CHARACTERISTICS OF...

P
91
C655
S89
1977
c. 1

