
•
University of
Waterloo Research Institute

A SHARED SPOOL SYSTEM

FOR A

COMPUTER NETWORK

CANADA-DEPARTMENT OF COMMUNICATIONS

1

THE UNIVERSITY OF WATERLOO RESEARCH INSTITUTE

...—
,,-- . / p

(91
C655

K`--___ 	

sti.871.-
1972

--

Industny Cana-d-i.à
• LIEIRAMY 	t

1,`-u"LE 2 0 1998

A SHARED SPOOL SYSTEM

FORA

COMPUTER.NETWORK

OTHEQUE
Industrie Canada'

1.

eedinglKidt

13 let-,
I .July 13 . , 1972.

COMMUNICATWIS CMADA . 	.

•
1.11191tY - NUN

•

lIE Q (it

WRI Project 101.3

1 CANADAHDEPRTMENT'OF COMMUNICATIONS

... 	 • 	 .. 	 , 	 • 	 „ „, 1.„

p
n

/

6

8

II

14 •

16

28

: 34

36

WRI Project*-1013

'TABLE 'OF 'CONTENTS

'PAGE

LIST OF FIGURES

	

1. 	INTRODUCTION

I. 	Spool Services

	

11. 	SPOOL FILE MANAGEMENT AND ORGANIZATION

I. 	Spool Organization

2. Spool File Administration

3. File Queue Movement

4. Error Precautions and Recovery

5. Accounting Method

Ill. - 	THE NETWORK 	 , 	18

I. 	Spool's Eye View of the Network 	: 18

IV. 	INPUT OUTPUT. SERVICES

V. 	COMMUNICATIONS PROCESSOR 	. 	• 	26

1. File-Control Commands 	 • 96

2. File Status Enquiries and Status Changes 	.

3, 	Status Reports on Queues and FI le

4. 	File Disposition Commands- 	27

	

VI. 	SCHEDULING AND 1NTER-PROCESS.COMMUNICATION

. CONCLUSIONS

	

VIII. 	REFERENCES AND BIBLIOGRAPHY

' 22

27

WRI Project 10.13

:*TABLE . OF . CONTENTS . (dôhte'd).

APPENDIX A

Netspool File Management Processor

A Short Description of the Spool Algorithms

Netspool Master Scheduler

Netspool Necleus

Dia.gram. for Interpretation of Codes

WRI Project .1013

'LIST OF FIGURES

. 	. PAGE.

•FIGURE 2.1 	FILE TABLES -FILE QUEUES 	13 '

FIGURE 6.1 , . SYSTEM TABLES 	 -31

FIGURE 6.2 	• INTER-PROCESS COMMUNICATIONS 	32

FIGURE 6.3 	: SYSTEM PROCESSOR HIERARCHY . 	•

WRI Project 1013

I. INTRODUCTION

This document •esibi-iles a spooling system for shared use •

among computers on a Computer Network. The questions that first arise

when .considering.sudh a task - are what services does this shared

spool offer and why should a subscriber use it rather than or as vèll

as a spooLof'his oWn? What special requirements does a . .shared spool

place on the network, if any . What computing equipment is required to

to run a shared spooling system and at what cost?

Before answering 'these questions we must examine. the .present

Computer Network. Early examples of Computing Machines linked to Com-

munications gear are the SAGE . (1) . and SABRE (2) systems -which were

.dedicated to a specific service. Later networks'vere formed for ser-

vice and file sharing'such - as the Livermore Ootoy.us(3) system-with 	.

central file system and time shared services. In these cases . specific.

machines and equipment.have been linked together. The next step was to

develop a general communications system for data transpertation - onto -

which many types and varieties of computing machins could be linked,

hopefully with ease. These . various machines would provide the services

that prior networks had, plus a more flexible system which is . easily

expanded. The ARPA Network .(4) and a system being developed. by NPL'in

England (5) and a communications network being designed by Fraser at

Bell Labs' (6) are examples of. research in this area 	• .

,Considering the more flexible communications networks of •ARPA,•

NPL and Pell Labs what services can 0a shared spool offer other sub-

scribers on the network? The NFL and Fraser syStems are conceived as

- 2—
WR1 Project 1013

having both local and trunk networks although the concentration has

been en the local networks to date. In a local network shere there may

he smaller special purpose computers and large powerful computers -

linked to the same network cue machine may- wish.to queue sonie of his

work for a more specialized machine to run at its lesiure 	Per-

ipheral sharin g . is a probability in a local network for economic

reasons.Large file transfers to take place at a later time convenient

to the destination is another . demand on the.network.•Some.networks

spool all messages. atitomatically however this places the network under

an undesirable burden.: If we accept the principle that spooling . •

should be provided on demand . then-this and the other duties can . be pro-

vided by.a .shared• spool and mere .importantly the spool system its- • .

self need not then be duplicated . In a trunk network such as 	P/i,

which is geared to . linking powerful coMputers and perhaps local. • 	-

networks over large distances, a shared •speol is perhaps not.so ob-

vious. The . problem of shipping large files •(e.g an operating sys- -

tem) over the network.at . peak . time howeve r ,. can be.overcome.by .

- local spool to local,spool transfers at less loaded network

hours, Perhaps then the overall view should be one of local net- 	•

works having shared spooling systems to handle local spooling chores , H

and forward low priority files over the trunk network during off

• - hourS,

1:Spool'SerVites

- To he mbre specific.we muSt na w examine the services that these

- 3 -
WR1 Project 1013

concepts demand cf a spool-The spocil described in this document

offers the following - serVices:

. Thé spool accepts and places on disk storage. Sequential

. data files. It:does not distinguish between what is

data and what,may he a process awaiting CPU, time in

another machine<

2. The spool forwards these'files to destinations. If any

file 'description is needed at the destination it is

• 	expected that the sender -receiver protocol - will.set.•

this.up as the .first.few records of the file, for ex- . 	.

ample commands in a command language. Some information, .

in the form of a short file descriptor provided by the

Origin, ds available to allow queue management., • 	•

The spool provides priority queùeing for each destination.

although a - mechanism is provided for a physical.destin- • .

aticn to look like more than one destination if desired.

4. Certain peripheral services are run -by,the spool such

as card - readers, and printers', and a subsCriber may

operate a queue to his own periPheral through the

spool if.he . so desires-, . 	.

5. Status reports 'are available. on demand at varions levels

The status.of the-spool, - thestatUs of a queue or the

status of a particular file may be investigated.

.6. Although not obvious to the user, certain error pre-

cautions - are taken and error. recoVery . is provided for.

'

7. An accounting scheme is provided .so that subscribers

- 4 7.

way be appropriately charged.

1

1

1

1

IH

WRI Pro jec. 1- 013

These. are the—Services'which any individual syStem nigh -Ude-

manirof its-spooling service . The 'problem :then of turning a.spooliug.

system into'a - shared spooling system is to.assume tbat the spool 	.

'knows nothing about its senders andreceivers This implies isolating

	

funetions'and controlling them bv . messages tà and from external 	•

and internal processes. This is preciselY the way•Hansen.(7) sug-

gests we look at any opperating system and indeed the philosophy

of this. design ha s been influenced by his writings. 	.

The spooling System . divides logically into several parts—The -

file organiiatiou'and management routines are necessary for keep-, .

ing track of files and where they are, where. they just-be delivered,

- and the order in which they should be delivered» There must also ,

be error precautions and . error recovery routines to guard against

and recover from internal and - external systems crashes ,fron a: file

 point of veiw».There .must be:a set of file queue scanning . rou

tines for collecting status reguests when reguired. This is all i_11-7

cluded nnder the file management processor. - 	•

'There are two other main process areas,.the communications and

Input Output procesScrs. Input output to alldevices including the

network:and spool pack looks logically the same:to most of the

spôol'however certain devices have special characteristics there- 	.

for there-are seme routines.which.only these devices:use, however it

is essentially one .I/0 package. There is , a communications processor

for communicating with subscribers and the network . (for switching

reelests» There is a . master schedular anà.a Nucleus-to'the

WR1 „Project 1013

cf

D -

system These areas.are all relatively independant and commun— .

icate in an.orderly fashion so that a change in one precess does

not destroy its relationship uith another.

WR1 Project 1013'

H. SPOOL FILE MANAGEMENT AND ORGANIZATION

, 	Perhaps the logical place to start describing the system is

with the most central part, in this.case . the file organization

and management. the 113N HASP (8) system provided the-starting

point for the following organization although the similarities

between HASP and the final system are less - obvious°

,.

	

• 1. SpoorOrgantion 	. 	. _ 	 .

Al spooling system demands several things of its local stôr-
.

age and we must .choose an organizaticn compatible witb

. ' , •these denands. 	. 	 . . „ 	,

a) Disk head movement - (if a moving:head disk'is . used) and

-CPU time. should be .minimized when allocating storage or-

forwarding a file. -

b) The system should not require large amounts of main

. 	memory storage for filin q .

c):Most important there should,te. no serious internal or

external fragmentation on the spool'

In return for these.demands we have several features which,we

may use to our - advantage.

.a), We khow that all files are sequential.

b) .Me can block. these files as'we yish providing we for-.

ward them with some specific blocksize (either a net-

work or some other.device demand).

7
WL Project 1013

II
', ..›..

' Since a direct access device must be-used I have chosen the

 disk "unit but the saMe organization'principles apply - to most

access devices used. Intact the. actual, choiceof device iS One.of...

the factors which à system simulation must determine, It is not clear

" that moving head•disks-would•.be suitable and fixed head devices may

be. required. "

• We will use a uniform record size and chain the records to- .

gether sequentially by using the last word of each record às an

address of the next record. We will.only write a .record after es-

tablishing what . the neYA record".is and where it will go0 llow we

must format the spool-pack in terms of these records and find a

scheme for allocatinq'space. .

- Let a record be the fixed length (in words) of an I/O transfer -

and an allocation block . (some internal.number of records) b' the

minimum space allocated in the device. 2he.problem.now is to choose

the proper lengthof - record and allocation block. A large alloca-

tion block costs fragmentation but is paid'for by fewer,lookups;

large records:cost in memory buffer space but require fewer I/O

operations0 I suggest that thé problem of an optimum cheice depends

on the network being served and the nature of the transfer load.,

T do not attempt to answer this question but keep record and allo-

cation blocks logically distinct so that.they may be yaried as

the system is tuned.

The disk pack is now divided(couceptually)•into allodation 	.

blocks and a bit map is'kept • one bit for each block. Realistically

an allocation block should bear sonie relationship to the physical

•
device and

WR1 Project 1013
. 	- 8 -

a track would,Probably be the.smallest block cne would

choose. The bit map then will be a Matrix 	cne row for each cyline

der,. one-column for each>track. 14 the . spool I/O •package the prese:

ent head address is . noted and when allocation is• necessary the bit

map is searched from the present head address for the closest block

with respect to head movement. The proper bit is switched (say to 0) -

to indicate the • space is used Corresponding to the Master bit map

is a File bit map for each file. When space is allocated to this

 file the appropiate.bit is set on (say to one). When space is freed .

an "or" operation is performed between the File bit .map and the

Master bit ma P to Froduce the new Master bit.map.

2. Spool File Administration

Now that wellave planned the spool pack layout we must look at

what informatiom . is needed to describe the file. and its status at

• • .any time.

The basic description of the file will.be - in its Profile Table.

There will be-one Profile Table for each file with the following •

format: 	• 	 •

1. File identification
•

2. Origin

3. Number of file elements referencing it, (discussed in

next paragraph)

4. File bit pap as explained

5, Address of files first record

6, address of files last record so,that the file may be

9 WR1 Project 1013 _ 	_ 	•

-extended if desired.

7.:Accounting fields .

8 File descriptor for priority allocation (specified by .

the origin and obeying some origin destination protocol).

I `,.-.•;',..b

The profile table is stored on the spool disk with the file,

and its space is noted in the bit map.It is created when the file

isreceived, and remains in core whenever a file is active. There . .

is also a file element created, one for each destination. The ref-

erence counter in the Profile Table indicates the number of these .

existant-at any moment and no file maybe deleted unless-this counter

is zero. The file element - remains in core (although copies are

. - bccassionaly Written cut on disk) and is moved from gueùe to queue

: depending 011 the status of the file. It has the following format: -

1. File identification

•2. Destination . •

	

.._ 	 .
•

3. Priority 	.

. 	Status 	• 	•

- 5. Control. processor 	. 	. 	• _

6. Pointer te - Profile Table

70 Chain to link files togetherefor shipment as one file

. 	to the destination f so desired

8. Pointer te next element in queue

9 0 AcCounting information

I file element is considered to be in one of three states

a) active

• b) awaiting action

- 10
WR1 Pro ject 1013

1

•1 •
1

1

1

1

1

C) inactive . 	.

This state pins information, as to what ip taking place (file

inbound or outbound) or - waiting to take place is recorded in the

status field. There is'a queue for each state and movement between

the queues will be discussed later in this section 	•

The control processor is the processor to whom messages are •

sent and from whom they arereceived for queue control. ,Normally

it is the destination who controls its queue. Perhaps there is 	•

more than one queue fora destination. Cccassionally, as.1n the case

of a device such as the . printer, the control processor cannot • '

be the destination; in which case, it is - a processor deSignated

• as control fot the device. If the device is'under Spool control 	_

-then the processor is in the spool..The control ,processor-is the

 only one with permission to change disposition of a,file element' • .

once it has been created , or - to change its queueing order.

A file identification is assigned in yarious ways when a file

arrives at the spool. The origin supplied identification and -a unique ,

spool identification are concatenated and placed in the 'profile table

as the profile table , s 	The destination is concatenated to this •

•and.becomes the file element I.D. which is forwarded to the destination

- or control processor. There can be no conflict within the spool,

however if an origin forwards two files with the. saine 'I.D..to-the'.

same destination the origin will no, longer be able tc

between them. Protection ov:er file elements Is .maintained by -requiring .

the various destinations to gnote their own version of the 10 D0

There are three basic queues corresponding ta the three pos-
•

I 	I
WR I PrOject 1013

•

11 	

sible states. An element is placed in the active queue whenever

' it is being transfered and at no othertime, At this time the file

. 	.

11 	
Is open and its Profile. ',table is in core.

An element is in the awaiting action queue when a required . 	.

II: 	.action has been noted and it has been queued to have that function,

• performed. If an elements disposition is uncertain, either because

an action bas been completed and it awaits acknowledgement, or -

II''... 	. ' because the control processor has not given a disposition, .it is

: • placed on the inactive queue..
. 	.. 	.

.11 - . 	. 	 .
3. Fi le Queue flovernenl -

An element can be moved to the active queue if it.Jias just been

. created for an inbound file, or taken from the awaiting action queue

II

provided certain requirements are satisfied. Firstly, the I/O pro- . 	.

cessor must indicate it cn find buffers for I/O and can gain

II • access to the required data paths. The I/O processor is described - • •

-- • 	, later. Secondly, the communication controller must ascertain

OR
is 	whether the destination is willing toreceive the file. The ,

,

:

 I 	

highest priority file element which satisfies these requirements

(if any) .will become active . 1.qlen a file transfer has been completed .

II then the'élement is placed in the inactive queue. 	.

11 '
• two fold. What destination should be• given priority, and which of

The problem of.Choosing the next . eleMent to be activated is

1 its eleMents2 The proble m. of choosing-the next destinatiOn is .

correctly handled by the Spool processor ; the queuing for that

•destination shoUld be a function cf the processor controling de-

- 12 -
WR1 Project 1013

, liveries to the.destination•in question, hence the Control

processOr.

Io.acheive this, access to the awaiting action queue is through

an ordered list cf destinations elements, containing a pointer.to

the first elements in the awaiting action queue, the number of •

people with that destination, and the Control processor for the

queue. Elements in the.awaiting action queue with a common . destin-

ation will be chained together. The destination elements are

created dynamically as a • file bound for the destination appears

in the spool, and disappearing when there are no files left.for

that'destination.

A destination element is assigned an initial priority and'

then moves np and down in the, queue depending on its responses.

If it often blocks the dispatch of a file its priority will be

decremented and it will move down if it always accepts then it -

- will move up in•the queue. The destinations at the top will be

polled : more frequently for service than those at - the bottom, and

hence a slow user (such as a printer) would be busy quite frequently„

and would be polled less often as it dropped in the list. The precise•

formula for . increasing.and decreasing priorities will be easily-changed

'so that the system can be tuned without difficulty.

• The priority within a destination .queue is maintained by the

processor:designated as control for the destination. Figure 20

gives a diagramatical representation of, these file queues.,

diskn/e'hee ,

Is ele -hvE.--

le 1 Pro ect . 1013

elêroefils .

one -Pot-'ecti

de sio?cifio. ri 	-

r e s 	in -hie

man cé 6)77eg74 C/aee/9 5

In cote

proiiIe

table_

F i le Tcl_j, e

• - 13 -

FIGURE 2.1

Pile • QuEuEs

ACT1V

• r-÷ riii

•

Lot- 	t- s

r i 1 e E'en/ex

1\1 /I Csr Iv E .

1 	• • 1
-

A WAIT FILE cnificiE'

HTTh •

I 	I

I

- f

1 	I

:

"DE ST, ELErl'ENTS

• F.1. L15 EL E MENYS

•

WR1 Proje t 1013
- 14 -

. Error Precautions and Recovery

.The scheme for error handling and. recovery is quite'simple..

An externalerror, one - that happens to someone else during : the'

course of transmitting a file, - is handled in one of two Ways. If

the file is inceming then the spool assumes that it has never

heard,. of-it before. It merely.discards its file element,

deallocates any spool space allocated and continues. If it . 'is'a

filebeing transmitted .the file element'is- simply returned .to the.

awaiting action queue..:

Some .weans'of recovery must be provided against internal errors.

or.systemS crashes. To allow error recovery, a recovery file•is

written each time a file'element is removed from•the active file

list.

• 'iThe recovery file contains a copy of the Master bit map and

the file element queues. The version of these is slightly differ-

ent from that in core and reflects the state . that the system

should return to in the.event of a crash. The philosophy again

is that 'anything active will look as though it had not begun. The

routine scans the list of active file elements and places output'

• active file elements in the,recovery version of the awaiting

queue. Input active files are not queued but an "or" operation

is perforned.between their file bit table and the master bit table,

to indicate their space'is free; •then the •awaitng action and the

inactive queues as • ell as the master bit map are written out as

the recovery file. If thesystem , goes down while writing this

WRI Proiect 1013
- 15-

. .file .me cry a great deal and look for the previous copy-

While its is possible to be More sophisticated about - keeping

track of what stage of activity a file was in and then trying to

restart at this point, occasional records will be lost:the recovery

therefore - mill net be reliable and the overhead reguired - increases

The simpler.philosophy is reliable and. cheap, and at worst will

encourage users to pack off smaller files (at least in electrical

storms) to the sPcol;

1

1

1

11 -
•

5. Accounting Method

WR1 Project 1013
16 -

The accounting formula is not specified but chargeout - should

be a function of the following parameters:

. a) Space used in terms of spool records

b) The length of time the space was used •

c) 'The peripheral services rendered, if any

d) I/O to the netuork

•Other items should also be noted such as the number of des-

tinations for which a file is bound So that the cost may be spread

among them. Since time spent waiting may be due to the spool,.

for instance if a spool supplied peripheral causes a long wait, -

this time should te recorded. An attempt is made to provide all

this information.

The size of a file in terms of spool records is collected

in the file profile table by having the spool interpreter buMp

a counter in the appropriate profile table each time it•writes

record. The profile table will also contain the tin e of the file

creation,.and themaximum number of destinations'that the file

has so far been addressed for. The file element 'contains informa-

tion aPpropiate to its destination. It contains the time it was

created (which may diÏfer from the profile table), the time it

entered the destination-gueue (it may have been inactive), the

number cf I/O operations to any peripheral it may have used and•

the number of times it wasreceiyed or shipped out over the net-

WR1 Pro ject 1013
- 17-

work0 This I/O information is collected by the device interpreter,

first in the appropriate Device Control Talle and after I/O com-

pletion in the • file element. The device, control table and device

interpreters are explained in the I/O Section.

When a file element is being destroyed a record is.written

on an acconnting file against the account of the appropriate

destination, or origin in the case of delivery to a spool rut

peripheral. The accounting record consists cf the information

previously mentioned and provides the paramenters to a charge7-

out policy which would be the responsibility of the spool man-

agement.

18 -

WR1 Project 1013

1
HI

1

II III. THE NETWORK

Before discussing the communications and I/O processors me must

be more specific . about the netiîork to which the system is interfacing

and what services it provides. Starting with the premise that a net- 	•

workauser , in this case the Spool, would , like to know as little as.is

possible about the actual network, we need not be concerned with the

problems of communications technology .. What the Spool must be concerned

with is the network interface and how to best use the network. In AMU

and other networks the user is shielded by a network interface from •

these problems. Fraser has given a relatively complete description

of his his network and how to interface 1:0 it I mill put forth a

users point of view of Frasers network and assume the spool is

interfacing to it. 	 •

1. Spool's Eye View of the Network

o 	- . 	.

The spool will view the network as offering a number of distinct

transmission paths, saine of which will be used for data transfer and

others for signal transmission to control the data transfer. In

particular the user maY have many paths open at once and can

distinguish'logically between data transfer and signal information. One

of the transmission lines will terminate at the central office of-the

network.tc be used for requesting sWitching services.

Fraser. ,presents his concept of "full service' to the networ k .

subscriber as embodying three central notions. First is the concept

^ - 19
WRL Project 1013

of device independant I/O so that while one subscriber will have his

own communications procedure it will be relativelleindependant of those

adopted by other subscribers. The second notion - is that of a "central

office" to whom'all requests for switching services may be directed by

the user. The third idea is that of ah interface between the subscriber

and the communications system to provide for the local needs of the

subscriber and shield him from the network. -

.The interface should demand very little in the way of special

hardware cr software. The network Should accept the burden of

transmission speed control, protecting thereceiver, via the interface

from overloads by holding back incoming information untill thereceive r

is ready for it. For a network with limited storage capacity this

implies reflecting thereceiver capabilities back to the sender.

The interface unit looks the same, to all subseribers. It offers

aenumber of full duplex communications channels each independant of

the others except that they go-through the saine interface» At any

given instant only one channel .may be accessed however another is

easily selected enabling many communications to be carried on at

once. Each channel has four data paths which are closely linked

and switched in upison:- One channel may be chosen to transmit signals

which supervise data transmission on the others. Path 0 is used for

communications with the local switch and all requests to the local

switch are made over this path of any channel. Channel 0 is reServed

for communications with the central office. To originate a • call a user -

requests, over data path 0 of the channel he subsequently intends to

use, the switch to link him tc another subscriber. The interface passes

WR1 Pro iecl- 1013
- 20 -

this request to the central office down data path 0 and the central

office in turn passes the reguest to the receipient over path° of •

channel O. He replies over path 0 of the channel he intends to use

and a full duplex connection is formed. The protocol cn the various

data paths is the responsibility of the subscribers.

The interface appears as two asynchronous devices, the Sender

for output and the Receiver for input. Both handle data one 8 bit

byte at a time. There are commands for communicating with'the Sender. •

and the Receiver; Read/Write one byte of data, Read/Write last byte

of message, Select/Read channel and data path, error recovery

commands. The I/O .controller or a combination af the controller and

resident programs must be able to handle these commands. Except for .

the error recovery commands thes e. are standard I/O initiatives •typical

of many controllers. To take care of error recevery problems

such as restarting transmission of a record after an error or

a complete file retransmission there must • be some error routines

residing . within the spool interpreter of the I/O package. It

may be desirable to run a powerful programmable controller as a

front end to the system to further•separate the I/0 requirements

from the _rest of the spool.

• Althongh the interface deals with data in 8 bit bytes,these bits

may be assembled into steams and so in no way restrict the user excep t .

that he must he able toreceive these bits. He may of course choose

to .discard some of them. Protocol between user may involve some

restrictions. If someone wishes to sond a message to the spool for

example he should send the correct number and configuration of bits

- 21 -
WR1 Project 1013

no matter how he groups them in his machine.

The spool I/O processor multiprocesses its I/O to the network

on the buffer level since the interface can bereceiving and'

transmitting.to one channel at any given 'instant. The I/O processor

issues a read or write to the I/G controller specifying a buffer,

its length.and the channel to which it should be written or read. .

when this action is completed the next buffet transaction is initiated.

The network (Frasers).is a very high speed, device with a maximum

effective transmission • rate of over 1 mega baud and hence it must be

connected . to a high sFeed data highway. Delays due to thereceivers

inability to accept data will - be filled with I/O to multiplexed -

peripherals and to and from ihe spool storage. • 	.

WR I Project 1013 - 22 -

1

SI

IV. INPUT OUTPUT SERVICES

Data files will be just bit strings as far as the spool pro- .

cessor is concerned (with the exception of unit record device in-

terpreters to be described later). This stream approach to the file •

implies that bufferin g . is the choice of the spool. All buffers will

be in terms of the spool records. The buffe t need • ot be filled

but the buffer pool will contain only one size buffer. Messages

will also be sent from these although they will be multiples of

256 bits long since messages of this length can be most efficiently -

transported over the network.

A buffet pool is kept consisting of a chain cf free buffers

and a pointer in the buffer pool control block pointing .to the

first buffer. When Spooling to or from the network the buffers

are allocated, filled, transfered, and freed with only the data

in • the message buffers being examined. In the case of unit record

devices, however, the spool must be sheilded from the necessary'

protocal.,In this case the spool deals with the unit record device

interpreters who do all'the necessary blocking and deblocking.

• Any subscriber using unit record peripherals •(card readers, .

printers, punches, etc.) .from- the spool will obey the following

protocal. The first-byte of a record mustspecify its length,

the seccnd is a control character . for the device interpreter.

For example, the printer interpreter examines the data in-the.file

and using the record length deblocks it for the printer.and in-

terprets the control character•for the carriage control. The

1

8

WRI Project 1013
- 23 -

reader interpreter assembles card iffiages, with trailing blanks

removed, in this fashion and assembles a full buffer before•no-

tifying the spool it has'a full buffer for it. The reader interpret-

er would also send the first record as a message to the speol

giving the destination and a file description. If the command

interpreter cannot interpret the message an error message is sent

back, via the reader interpreter and the file is not accepted.

Each device is controlled by a Device Control Table Each

channel of the network-will also have one of these. The number of

channels up to the network maximum of 64 is a system parameter. The

device control tables are linked together and contain - information

concerning; the device type, .the device 'name, the device status,

a field fer control•information peculiar to the device, a pointer

to the Control table, .and a pointer to the PCE in the present

control.

A Device,Control Table is permanently .associated with the

 device it controls and'is associated with the file it controls

as long as the file element is active. The only devices•mhich are 	-

net locked on to an active file are the direct access , devices

Before each record can be written on the spool pack the device

must te obtained again, however, since this is sequential a de-

vice will have just. been released by the filereceiving attention

just before the present one. There is a device controletable for

the operators console and a console .interpreter which makes the

operator appear to the . system like any other subscriber. The operator

receives notice from the System of all file arrivals and departures

lA/R1 Project 1013

- 24 -

as well as their I.D.es thus giving . him access to all files..

The spool I/O interpreter is'in control of all spool direct access

devices and writes buffers of data on a spool when passed the buf-

. fer address and a pointer to its profile table..

• The Input Output processing is done on two levels. The main

processcr locates buffers, checks device control tables, and •

passes tuffered informaticn or accepts it to and from other pro-

cessors. It passes this buffered information to its own . device

interpreters or to the command processors. The device interpreters

deal'with their cwn device types and their own individual proto-.

cals. diagramatical representation of the I/O processor is shown in

figure 4010

As an example suppose me examine the details of an input ser-

vice. Uponreceiving notice from the I/O controller to open service

on a particular type of device the • nitialization routine

called. The initialization routine attempts to aquire a device .

of the correct type via. a•device control table. If no device is

available it asks the command processor to assemble a wait message .

which it can then return, If a device is• available get a buffer

and ask the correct type of .device interpreter to fill it and

indicate whether it is a message or data. The device interpreter

calls the I/O controller to write the buffer and then assembles

the data if necessary. 	 •

The buffer is then marked as data for the spoo l. file or as a .

message for the communications package. The first buffer should be

meSsage, either assembled by •a reader interpreter orreceived from

1

a
1

,. s:

1

WRI Project 1013'

a subscriber via the network. If it is not, a file element will

not exist, a *profile table will•not exist g and the spool I/O in-

. terpreter will not be able to write the record•and an error mes-

' • sage-will be returned. •

The Output. process is essentialy the reverseprocedure. Now

however, the file . dispatcher initiates the search for a device

control table, then asks'the communications package to assemble

a message for the destination (control processor). Then the re-

verse procedure for forwarding•.data is initiated.

- 25

1

1

1

- 26 -
WR1 Project 1013

V. COMMUNICATIONS PROCESSOR

The communications•processor consists of a set of routines for

encoding and decoding messages to and from the network and placing

requests for appropriate actions on the appropriate queues. These

command interpreter tantines will reside in an expandable library of • '

such routines so that new functions may beconveniently added. The

spool-will dictate to its .subscribers the protocol that messages to the -

spool should be communicated on data path 1 of the established channel

and data transfers over paths 2 and 3. 	•

The spool commands will fall into two categories:

A. Commands to and from the network over data path 0.

These commands will of course be dictated by the network

but will contain at least commands to connect via a specific

channel te a specified subscriber and toreceive network reguests

over channel 0 for a channel for communication with a subscriber.

. 	.
B. Commands to and . from the subscriber. 	•

- 1. File Control Commands

,a) Will you accept file x

b) here comes file x

c) Have youreceived file -x

• Provision to both send andreceive these messages are providech -

The designation file x means a file referred to by its subscriber.

identification or by its place in a subscribers queue.'

WR1 Project 1013

- 27 -

2.. File Status Enquiries and Status Changes

• Commands.to the spool

a) What priority is file x

b) send the descriptor of file x

c) Change the priority of. file X to y

d) Where is file x

Answers to these enquiries are provided by the spoo.L.

•Commands from the spool.

a) Specify a priority for file x (the file

descriptor is included with this command)

3. Status Reports on Queues and Files

a) How many are in my destination queue

b) How many files are on the queue

c) Flow many files are awaiting dispatch

d) How many files are inactive

4. File Disposition Commands
. 	.

Commands .to the spool

a) Delete file x

b) Forward file x

,• c) Chain file x to file y (send it as one file

when its turn arrives)

d) send file x to destination y (only the origin

or the destination may legally issue this command)

Commands from the spool

a) Specify a disposition for file x. (the present

disposition iS forwarded along with this message)

- 28 -
WR1 Pro ject 1013

VI. SCHEDULI NG AND I NTER-PROCESS COMMUNICATION •

The three main areas of the spool processor are, as just

described, the input cutput processor, the communications processor

and the file management - processor. There is also a master schedular

and a nucleus to provide communication between the processors; This

communication takes place in a . manner similar to that described by

Hansen (7) and the technique used on the Titan computer - at Cambridge(9).

Messages are passed between processors via the nucleus by reguestipg

the nucleus to place a message for one of the three main processors -

in the appropriate message queue. Then as that processor

receives CPU attention the , top message from his message queue

is acted upon. That processor in turn may request that the nucleus

engueue a message for another processor based on the results of his' • •

action. • 	 •

One of the distinctions between a spool system and a more general •

system is that no object process ever requires CPU attention for

execution of its own code. 1ln object process simply mc‘kes system

requests. All spool activities therefore are system activities and •

deserve equal attention. Messages then have no priority and are

 serviced on a first come : first served basis. The saine philosophy is

extended to the scheduling of the main processors apd the master

schedular parcels cut CPU time in a round robin fashion.

Interrupts are all natural break.Systems routines volutarily give -

up control after they have performed a task or if the activity is -

lengthly they may place a message on the message queue and Continue

. 	,
WR1 Project 1013

• - - 29

when their turn °courts. again. Since ail activities • are system« ones

there is never the problem of an.unkind user taking control of .the 'CPU

and not returning.

Acre . must now be said about what• defines •a process and - what

defines an inter process message. The system is essentialy a special

purpose time sharing System with one time shared subscriber process

for each subscriber who is logged in'to the system. A subscriber is

considered logged in to the system if there is an open communication

with the subscriber whether the subscriber initiated the conversation

.or the spool initiated it. There are also certain independant system

processes, such as a routine to seek new files for dispatch purposes

which remain permanently alive in the system. These independant

•system processes correctly belong in one •of the three main spool

processor areas and request.services of the other processors, by

the normal message requests.

Each subscriber and system process is described by a Process

Control Element which .Contains pointers to its various assosciated

tables, 'inforuaticn concerning• the process status, the subscriber or

independant system process it is responsible to and a work space to

store various control information required for the net time it

receives attention from some Processor (see figure 6.1). - 	.

. 	There is a list of process control elements kept with a pointer .

to each and its current status. Each process is in one of four states.

Running,. in which case it isreceiving service, Halted if it is

waiting for attention and wàuld be running.if it wasreceiving

the attention, Hait.state if it is awaiting the completion of some

- 30 -
WR1 Project 1013

activity (for example I/0), and Stopped if it may not proceed even

though - it has work to do.

Messages are passed between processers in special message•buffers

which are gueued in the appropriate queue by the nucleus upon request.

They contain a'service request, pointer to the process 'control element

it is associated with, a pointer to the next message buffer.in its

queue and a pointer to any data buffer associated with it. Data in •

this case could be a message from an external process waiting to

be translated by the communications processor..Actually while the

message buffer is logically distinct from the process control element

they are'in one to one correspondance since the system does not allow

more than one service reguest from à process at any one timei:and

may be-implemented as one table to cut down on pointers and searching.,

diagramatical representation of the system, its.tables and

inter-process communications are presented in figures 6.1,6.2,and603.-

.WR I Pro ject 1013

Pre 7- 0 p.cE

p re To it e 	mes.5t.Lsic

Hp-rg_ ri) 	Arb
refeue.rea.

eet,?1•:-

rnessaciE:
P-r- e 	.

PTIZ. ronexT

.Pi' r PCLE

col a

f

-1- a l n e

- 31 -

FIGURE 6 . I

Pr& 	To ' 	ç.) c T 	.,..........._........
P Te To rues5,1t;a-
2,Iî. To 	1.-: .! ie E femeeF

ll'i, 0 E.:4(T 0 pi- iicE iii Pi.--.. List-

5

SC113C1Z1bER 	oe 	5y51-en/

f' g 0 Cess 	N"--)/%1P

	

, 	•

	

liv Om i< 	5 PA (/- 	c on

C 0 il 1-7-01 	- 1 ilie- Or pla -1•I'en

Pro cE sç C Dint ro E emea

(oIl e or C d:JI process

•

Pe vic C t yi) e

D e .,/ ic C: 	ri 0 M e
..L 	1

Pevice 	staiv

P r E. 	.

P T 12. 1- D tt Cid. 0 C f

De vt cc 	Coal-rot

inAr m cri 16,1 	'

Pe. v/ce Cot? fro/ fa É le

SYSTEM - TABLES

- 32 -

FIGURE 6 .2

WRI Pro ject I 0 I 3

F7 1 le
M a 17 (le Pi &rib

Pr

o mmc1 flI Gill 011,5

Proces5.'., DIP"

1

Pro cessor's remove m essle5_

J!rOr7 	1ieji messaqe citleues

1
1
1
1

1

1
1

Pi- 0 CSç-

I NTER-PROCESS COMMUN I CAT IONS

queue s c9,

• In+ei-na messcipe

bu Hers

(Inked 	('s-1-)

1

. - 33 -
WR1 Project 1013

11 si-e,
e_hecimLar

I.
m 4 t n 1.10

Pr 	5S or ,

Fi 1 c rn an aye 'well)

c 9S

ommu

Pr-acess.o r- 	•

etc,

\
e eq-c

ji tg IT
o evice

ji it4ré pPecuél,

sotel

s1oét.»6.1'

SN

1

Console

nterpr Her

V fl P-10

COMM (Ind

1011-er-1)1'e:1"C

queuf

SC (too er
C) iSi...›ull`Ceer
„ i 	/

FIGURE 6.3

ôuide vv or Id

: - "SYSTEMTROCESSOR . HIERARCHY •

1
1':,.>

1

1

1

• 1

WRI Project 1013
- 34 -

V I I . CONCLUS IONS

In setting down a system design for a shared spooling service •

for a local network 1 have answered only some of the questions

originaly posed. Some of -the others could be answered by a system

simulation and still others (such as whether you could sell - the

services) could be answered only by offering such a service. 	.

Concerning the system demands on the network we have discovered

at least that the system-is not particularly unusual and except for

increased traffic, demands no extra network services. The increased

traffic problem is one that can be answered by network simulation.

It is clear that we may indeed build and operate a shared speoling

system and provide the services outlined in the introduction. - It is

 also clear that these services are desirable on a network - (though to

what extent we cannot tell). Merely .designing the system however cannot

answer the most.important questions concerning equipment, cost and

hence feasability.

A simulation of the system. could perhaps answer the following

questions. What hardware and hardware configuration is necessary to

support the system? More specifically can moving arm disks provide

the spool storage facilities and under what loads or must we use more

expensive fixed head devices? How does the very high network .

 transmission rate effect this problem? Should•the 1/0 functions rest

mostly in a large and -more powerful . CUÙ or,should they be separated

off into an independant.programmable front end control unit? How many

subscribers could the system'support logged in at any - one time given

1

WR I Proj ect 1013 - 35 -

certain transmission rates?

Only after answering the above questions via a system simulatiou

can.any attempt be made to estimate the cost and.feasability-of this

type of spool service°

- 36 -
.WRI Project 1013

VIII. REFERENCES AND BIBLIOGRAPHY

1. Everett,E.R., Zraket, C.A. - and Benington, H.D.,

"Sage a:Data Processing System for Air- Defense",

Proc.EJCC, 1957.

2. Evans, J. "Experience Gained from the American Airlines

SABRE System Control Program", Ptoc. ACM National Meeting

August 1967.

3. Fletcher, j.G. "PDP 6 System at JAL, Livermore", Report

No 70185,November 1966 Univ. of Calif.,Lawrence Eadiation Lab.

Roberts,L."Computer Network Development to Achieve Resource

Sharing", Proc. AFIPS SJCC,vol 36,1970,P543-550 . 9

Heart, F. kahn,R.,Ornstein S.,Crowther,M.,Walden D.,

"The Interface message Processor for the AEPA Computer

• Network" as above, p551-568

Kleinrock L., "Analytic and Simulation Methods in Computer

Network design", as ahove, p569-580

Frank H., Frisch, Chou W., "Topological considerations

in the Design of the AEPA Computer Network",as abovepp581-588

Carr S.,Crocker S.,Cerf . V. "Host-Host Communications Protocol

in the AEPh Network" as above,p589-5960

5. Davies, 'D.W.,"Communications Networks to serve Rapid Response

Computers",-IFIP Conf. Proc.,IFIP'Congress Edinburgh, Aug. 1968.

(also various other papers in the same - proceedings)

6. Fraser A.G."A Communications Network_for Computers"

Bell Labs'. Technical Memo. • , March 1970 .

1

1

1

WRt Pro ject 1013
- 37 -

7. Hansen B., "7he Nucleus of a Multiprogramming System",

CACM,Vol 13,number 	april 1970 p238-241,250

8. "The IBM Hasp System", IBM Hasp Manual,August 1969.

9. Hartley,D.E., Landy, B. - and Needham,B.M. "the

Structure of a Multi-..Programming Supervisor", Computer

Journal Vol 11,number 3, Nov 1968. -

10. Farmer,W.D. and Newhall, E.E. ,"An Experimental Distributed

Switching System to Handle Bursty Computer Traffic",Bell

Tel.. Labs. ,Holmdel, New Jersey

11. Fraser A. G.,"Coordination of Communicating Processes"', Bell

Tel. Labs technical memo, Jan 1970.

1

1

1

1
I .

1

WR1 Project 1013

APPEND! X A.

IIACKFIL:mov
MOV
BNE
Mov

111 	CLR

@6(RO)pR1
4(R1)pR1
ERR1
#2 	(+R0)
3(RO)

00370000 I
00380000 —
00390000
0040.0000
00410000
00420000 ;
00430000
00440000
00450000
00460000
00470000 H

. 00/480000
00490000 .
00.500000
00510000
00520000.
00530000
00540000-
00550009-
00560000

II4*&* ':f** 	- 00010000

;* * 00020000 •
00030000

e* . 	NETSP -OOL 	COMM 	PROCESSOR * 00040000 .
,

, 11;ei * 00050000
. 	

-
1111 F* 	 ' • * 00060000

	

. 	 .

• 7* PATE:MAY 24TH r 1972 	 'e . 00070000.. -
III* AUTHOR: MARC. DUFRESNE 	 * 0 0080000 '
11;* VERSION: 1 	LEVEL: 0 	LAST UPDATE: MAY 24THp1972 	. 	. 	* 00090000

* 00100000
* 00110000

•11: * *** 00120000

;REGISTER 1 ' WORK REGn 	
-00150000 ,
.00160000 .

00140000 .
e

. 	.
R1=%1 	

;REGISTER Op WORK REG, •
•ii 	. 	

R0=7.0 ., 	-

. R2r:%2 • 	;REGISTER 2 'WORK REG n 	00 1 70000 H

• R/4R/4//4
, 	R343

: 	g 	
.;REGISTER 3 pNOT USED 	. 	. 00180000 .

. 	;REGISTER 4 'NOT USED 	. 	. 	00190000 '-
. 	R5e..%5 	 ;REGISTER 5 pNOT USED 	00200000

I
SP -e.%6
PCr:%7 	

;REGISTER 6p STACK POINTER
;REGISTER 7p PROGRAM COUNTER 	

002,10000 ..i,
00220000 t

7
• 	

-00230000
. 	- 	 00240000

Il 	

: f 	
ri C SECT 	 00250000.

. 	9 TITLE CMPR" 	 00260000 '

; 	 00270000 —
MOV 	CMOHED0R0 	;LOAD HEAD OF MESSAGE QUEUE :• . - 	00280000

' 11 	. -: MOVB 	8(R0),R1 - 	;LOAD REQUEST TYPE 	00290000:
MOVB 	9(RO)pR2 	- ;LOAD ACTUAL REQUEST 	• 00300000

1 II 	• 	. JMP 	JTABL3(R1) • 	;JUMP TO REQUEST TYPE HANDLER • 	00310000 :

DECODEgJSR 	
00320000H

PC,JTABL2(RM - ;CALL TO THE SUITABLE . COMMAND DECODER 	00330000 '
RTS 	PC 00340000 -

ili** ****-A.ACCEPT FILE DECODER ROUTINE 00360000
. . ' 00350000 r

0013000-0

;LOAD PTR TO PCE . AND ACCESS IT.
;GET ADDR OF FILE ELEMENT
;IF NOT EQUAL TO NULL g ERROR
;LOAD ID OF FILE MANAGER IN REQUEST
;SET REQUEST TYPE & ACTUAL REQUEST
F(REQTYPn0pACTREW:0)
;AND -RETURN 	. . RTS 	PC . 	 ..

IIERR 1g

	

	NOV 	#2,p(R0) 	;SET ADDR OF I/O PROCESSOR
F

MOV 	4(R 0)pR1 	;GET ADDR OF MSG BUFFER

- I
	4 I 	' 	• MOV 	#25,, 0 (R1) 	;PUT NAK IN MSG BUFFER

RTS 	PC

;AND RETURN
F 	 ,

-. 	HERE COMES FILE DECODER ROUTINE 	. I.; 	 .

COMFILrMOV 	# 4 0f(R0) 	;MOVE I/O PROC ID TO MSO BUFFER
CLRB 	e(RO) 	;SET REQUEST TYPE TO 0 	.

I. 	• 	MOVB P2 n p9(R0) 	;SET ACTUAL REQUEST-TO 2
RTS 	PC

	•
;AND RETURN

I.

. 	005/0000
f****rn HAVE YOU RECEIVED FILE DECODER ROUTINE 	 '00580000

• " 	• 	00590000

11[

	

	

n •

. 	t 	 .

	

RÈC'FILuMOV 	: fi4,0(RO) • 	;MOVE FILE MAN, PROC ID TO MSG BUFFER 	00600000 -

	

. CLRB 	8(RO) 	;SET REQUEST TYPE TO 0 	00610000
. 	• MOVB• 	fi4

	

- 	,09(R0).. 	• SET ACTUAL REQUEST TYPE TO 0 	00620000

I ; 	

. RT$

•
PC 	• 	• 	; & RETURN 	• 	' 	- 	. 	. 	00630000,

0060000Q
y******* GIVE PRIORITY OF.FILE DECODER ROUT I NE 	 _ 	00650000

II ; 	 . 	 00660000-

	

PRIFIUMOV 	#4,0(R0) 	;MOVE FILE MAN, PROC ID TO MSG BUFFER 	00670000

	

CLRB 	8(R0) 	ySET REQUEST TYPE TO 0 	00680000.
di • 	MOVB 	*6,r9(R0) - 	;SET ACTUAL REQUEST TO 6 	00690000

3 	
RTS 	PC 	; &. RETURN 	. 	-

. 	
.00700000_

•..; 	 00710000 ..
;******›% SEND DESCRIPTOR DECODER ROUTINE 	 00720000

	

IlSND DEStMOV 	#4 p0(RO) 	;MOVE FILE MAN,- PROC ID TO MSG BUFFER • 00740000 •
r 	• 	 . 	00730000

	

. • CLRB 	8(RO) 	• ;SET REQUEST TYPE TO 0 	00750000

II 	RTS

	

MOVB 	*10 F 9(RO) 	• 	eSET ACTUAL REQUEST TO 8
PC 	• 	.

r
;&RETURN 	, 	

00760000•
00770000 •

' 	Y 	 . 	. 	 • 	00780000.
.- ;*:;**** CHANGE PRIORITY OF FILE DECODER ROUTINE 	00790000

	

IICHGPRIMOV 	fi4,0(R0)- 	;MOVE FILE MAN, PROC ID TO MSG BUFFER 	00800000 .
. 	CLRB 	8(R 0) 	;SET - REQUEST TYPE TO 0. 	00810000H

	

MOVB 	*12,09(R0) 	. 	;SET ACTUAL TYPE TO 10 	. 	00820000

II; - 	. 	

RT S 	.PC 	;&RETURN 	. 00830000

. 	 - 	0084000 , 0
. 1****›,:** WHERE IS FILE (STATUS) DECODER ROUTINE 	 00850000

11 	
00860000

; -

	

WHLFILeMOV 	. #4,0(R0). 	;MOVE ,FILE MAN, PROC ID TO MSG BUFFER 	00870000

	

CLRB 	8(R 0) 	;SET REQUEST TYPE TO 0 	00880000
.. 	MOVB 	#14,p9(R0): 	. 	;SET ACTUAL REQUEST TO 12 	• 	00890000

	

, II . RTS 	PC 	;& RETURN 	 00900000
, , 	.

e 	. 	 .00910000
• ;****** (; IVE fi OF FILES IN DESTINATION DECODER ROUTINE 	'•00920000

	

IrUMOST:MOV 	#4,0(RU) 	;MOVE FILE MAN, PROC ID TO MSG BUFFER 	00900000
00930000

• '• 	: 	' 	CLRB 	8(R 0) 	;SET REQUEST TYPE TO 0 	' 	00950000

	

. MOVB 	#16qt 9 CR0) 	;SET ACTUAL REQUEST 70 14 	- 	00960000,

e 	• . 	 . 	
. RTS 	PC 	- 	;&:RETURN .

• '00980000
00970000

e****** GIVE fi OF FILES ON ALL QUEUES DECODER ROUTINE 	00990000
01000000

	

IIUMQUEgMOV 	#4,;0001) 	;MOVE- FILE MAN, PROC ID TO MSG BUFFER 	01010000

	

CLRB 	8(R 0) 	;SET REQUEST TYPE TO 0 	(- 	01.020000

	

MOVB 	fi20,p9(RO) 	;SET ACTUAL REQUEST TO 16 	. 	01030000
II 	. RTS . 	PC 	. ;&.RETURN 	 oioa0000
Y 	 01050000
dr***** . GIVE e OF FILES IN WAIT QUEUE DECODER ROUTINE 	• . 	01060000

01070000

	

IMIGeMOV 	#4,p (RO) 	;MOVE FILE MAN, PROC ID TO MSG BUFFER • .01080000 :

	

CLRB 	8(R 0) 	'SET REQUEST TYPE TO 0 	-- 	' 	01090000
I
	

• 	MOVB 	fi22,p9(RO) 	;SET ACTUAL REQUEST TO 18 	 • • 	. - 01100000
ii 	- 	RTS 	PC 	• . 	. 	p& RETURN 	. • 	 - 	01110000
F • 	 01120000
• :***.i:),e GIVE e OF FILE IN•INACTIVE QUEUE DECODER ROUTINE 	• .-- 	• 	01130000
11

	

)INCNOV. MO 	fi4,0(RO) 	
01100000

;MOVE FILE MAN, PROC ID TO IISG .BUFFER • 01150000

	

CLRB 	8(R/) 	• 	: pSET REQUEST TYPE TO 9 	01160000

II 	 -• 	e 	•

	

NOVO 	fi24„09(R0) 	pS ET ACTUAL TYPE 70.20 	01170000

	

RIS 	PC •. 	a RETURN 	• 	• r 	 - 	0118000,0

..., 	.. 	_ 	. 	, 	, 	_,_ 	—
	

.._. 	_,, 	, 	,
; 	. 	- 	 011900.00' .

Ir ee.-we** DELETE FILE DECODER ROUTINE 	 • 	• 01200000 '
1 	 01210000

' .DELFILt.MOV 	#4ne(R0) 	• 	;MOVE FILE MAN, PROC ID 10 MSG BUFFER 	01220000 -

II 	• 	
CLRB 	8

• MOVB 	
ROI 	;SET REQUEST TYPE TO 0 	01230000 (,

#26,r9(R0) ;SET ACTUAL REQUEST TO 22.

	•

01240000

RTS 	PC • 	• 	 ;8, RETURN 	 01250000

* 	- 	• 	

' 	

. 	01260000

, e****** FORWARD FILE•DECODER ROUTINE I i • 	 01270000

• F . 	 . 	 . 	 01280000

iiFORLFIUMOV 	#4 0, (RO) 	. 	;MOVE FILE MAN PROC ID TO MSG BUFFER 	01290000

I 	
CLRB

B 	

8(R0) ,
M.p9(R0) 	

.SET REQUEST TYPE TO 0 	 .01300000

;SET ACTUAL REQUEST TO 24 MOV 	30 01310000.

. 	 RTS 	PC 	 ;& RETURN 	 . 	01.32000 . 0

F******* SEND 	 DE 	D FILE 10 	S1INAON y DECODER ROU1INE
. 	e 	_. 	• 	. 	, 	• 	.. 	. , _ 	 01330000
I

01340000

;_ 	 01350000

C R

Ir7ENFI LT
B 	

#4,p(R0)

8CRO) 	

yMOVE FILE MAN, PROC ID TO MSG BUFFER 	01360000

'i SET REQUEST TYPE TO 0 	 01370000

	

MOVB. 	#32,p9(R0)- 	;SET ACTUAL REQUEST TO. 26 	 01380000

RTS 	PC 	 fflETURN 	 01390000 -

IIi 01400000

JT -ABL3;,,WORD DECOPE . ;ADDR OF DECODER ROUTINE HANDLER 01410000
e , • - -. 01420000

ÙTABL2,WORD 	ACKFIL 	• ' ;ADDR OF tACCEPT FILE?! DECODER . 	 01430000

• - 	,WORD 	COMFIL 	 ;ADDR OF tHFRE COME FILE! DECODER - 	01440000

	

,WORD 	RECFIL 	 ;MAR OF !RECIEVED FILE?! DECODER 	01450000

	

,WORD 	PRIFIL 	 .;ADDR OF !GIVE PRIORITY!-DECODER 	. 	01460000

II 	
,WORD 	SNDDES 	, 	, • 	;ADDR OF 'SEND DESCRIPTOR! DECODER 01470000

	

,WORD 	CHGPRI 	;ADDR OF !CHANGE PRIORITY! DECODER

01480000

	

,WORD 	WHEFIL 	;ADM: OF !WHERE FILE! DECODER 	. • 	'.- 	01490000 —

II
,W0RD 	NUMDST ii

	

„WORD 	NUMQUE 	

;ADDR OF t 	IN DEST, QUEUE' DECODER 	01500000

. 	;ADDR OF t# •IN QUEUE(TOTAL) 	DECO • ER

01510000

	

,WORD 	NOWDIS 	 ;ADDR OF t# IN WAIT QUEUE! DECODER 	.0152000.0

WORD • NOINAC 	. 	;ADDR OF 1 11 IN INACTIVE 0 1 DECODER . 	. 	01530000

I , 	' 	: WORD 	DELFIL' 	 ;ADDR OF !DELETE FILE! DECODER .. 	. 	01540000'

	

NORD 	FORFIL 	 ;ADDR OF !FORWARD FILE! DECODER 	— 	' 	01550000

. 	• 	,WORD. 	SENFIL 	 ;ADDR OF 1 SEND FILE 1 DECODER 	 01560000

11' .
.01570000

. ,END 01580000 .,

,

k 00 01 0000
0.0020000

• ...;* 	 * 00030000 r * 	NE TSPOOL 	FILE 	MANAGEMENT 	k000 140000
PROCESSOR 	. 	 * 00050000 :

;* 	 * 00060000
* 00070000 :

1.: DATE:MAY 24THe1972 	 * 00080.000

- Y* AUTHOR: MARC DUFRESNE . 	 * 00090000
e* VERSION: 1 	LEVEL: 0 	LAST UPDATE: JUNE 11TH e 1972 	* 00100000 ,

I
	00110000 	.

g* 	 * 00120000 	:
F*** 00130000

Ir . 00140000

t 	. 	 00150000 .
'R 0 :lc/.0 - 	;REGISTER OF WORK REG„ 	001600.00 '

.1 	-. 	R1r.%1 	 ;REGISTER 1 ' WORK REG, 	.. 	. 	00170000
R 2 =%2 	1REGISTER 2 eWORK REG, 	• 	00180000 -
R3=%3 	 ;REGISTER 3 F NOT USED 	00190000
R4=%4 	• ;REGISTER 4 FNOT USED 	' 	•- 	00200000

R5=45 	 ;REGISTER 5 eNOT USED 	00210000 .
I 	. SP--;7,6 	-eREGISTER 6e STACK POINTER 	00220000

PCm%7 	. 	;REGISTER 7f PROGRAM COUNTER 	' 	.. 	00230000

IL 	. 	

. 	00240000
00250000

.,,CSECT 	 00260000
,

,TITLE FMPROC 	 00270000 1

I Y 	 0028000.0
, 	NOV 	FMOHEDeR0 	;LOAD HEAD OF MESSAGE QUEUE 	00290000
, 	MOVB 	9(R0) R1 	;LOAD ACTUAL REQUEST 	00300000

' II. 	
JSR 	PCF-JTABL4(R1) 	;& PROCESS IT, 	 00310000

00320000 : R;
GETSPC:MOV 	@6(R0)eR1 	eACCES PCE 	 ' 00330'000 -

I MOV 4(R1)iR1 - ;LOAD ADDR OF FE 00340000
- ' NOV DSKHEDFR2 ;LOAD DISK HEAD ADDR ' « '00350000

MOV BITMAPFR3 ;LOAD ADDR OF MASTER BIT MAP 00360000

MOV l(R2)FR4 ;LOAD CYLINDER ADDR 003700.00

I NOV 2(R2)eR2 ; LOAD TRACK ADDR 00380000
f 00390000

• F 	BIT MAP SEARCH ROUTINE TO BE CONTINUED LATER 	' 	00400000

I 004,10000

'
IIGIVDES:MOV

MOV
MOV
MOV

F
II DESRCH:CMP

111 	
BED
MOV
CMP
BFQ

• BR

II FESRCH:MOV LOOP1: CMP
BNE
CMP
BNE
MOV
BMI
MOV
ADD
MOV

IILOOP2 mov
DEC
BNE
MO \'
CLR
RiS

@4(RO)PR1
10(R1)pR2
DESTHEDFR3
DESTHDpR4

R2 f R3
FESRCH
(R3)pR3
R304
NOFIND
DESRCH

@2(R3),R3 .
4(R2)1.(R3)
NEXTFE
6(R2)F2.(R 3)
NEXTFE
12(R3)pR2
ACTVFE
PTNDEX(R2),R2
e4,,R1
DESLENpR3
(4, R2)e(+R1)
R3
LOOP2
#2,0CRO)
8(RO)
PC .

1

1

IINFXTFE:MOV
BEQ

,BR

Ir OFIND:MOV
CLR
MOV

I.
. ACTVFE:MOV 	-R2 1,4(R1)

MOV 	#2 	(RO)
CLRB 	8(RO)
MOVB 	01,p(9(RO)
RTS C PC

16(R3),R3
NOFIND
LOOP2

fi2,p(RO)
6(RO)

• #25F4(R1)
RTS 	PC

0042000
„01

00430000
00440000 ,
00450000
00460000 .

 00470000
00480000
00490000
00500000
00510000
00520000
00530000
00540000
00550000
00560000
00570000 .
00580000
00590000
00600000
00610000
00620000
00630000
00640000
00650000
00660000

;ACCESS DATA BUFFER
;ACCESS DESTINATION
;GET A DESTINATION ELEMENT
y•LOAD PTR FOR END OF DE LIST

	

.FSEE IF WE HAVE SAME DESTINATION 	-
;YS?: THEN LOOK FOR F,E,
ÎNO?u THEN ACCESS NEXT
y HAVE ME GONE AROUND THE LIST
;VS?: THE WE HAVE AN ERROR
;NO?: THEN COONTINUE THE SEARCH

•
;ACCESS F.,Ep
;TEST FILE ID (1ST PART)
;WRONG ONE?: THEN GET NEXT FE 0
y TEST FILE ID (-2ND PART)
;WRONG ONE?: THEN GET NEXT FpE,,
;GET ADDR OF PROFILE TABLE
;IF ADDR MEG:PROFILE TABLE MOT IN CORE
;LOAD BEGINING OF DESCRIPTOR TEBALE
;SET ADDR OF DATA AREA 	.
;NOV •DESCRIPTOR TABLE LENGTH
; MOVE DESCRIPTOR TABLE TO DATA AREA
;DECREMENT COUNTER
;AND , LOOP UNTIL EQUAL TO 0
;SET ADDR OF I/O PROC 	00670000
; SET REQUEST TYPE & ACTUAL REQUEST TO 000680000
;& RETURN 	• 	- 	00690000

00700000
00710000
00720000
00730000
00740000. ..
007500 .00 —i

;LOAD ADDR OF NEXT FE
;PTR m NULL?: THEN. EN D OF LIST•
;OTHERWISE WE TEST AGAIN FOR FILE ID,

;SET-ADDR OF I/O PROC
;SET RREQUEST TYPE & ACTUAL REQUEST T00000760000.
;MOVE NACK TO DATA BUUFFER 	00770000
;AND•RETURN 	 0078'0000

00790000

-71.OAD ADDR OF PROFILE TABLE IN DATA BUF00800000
00810000
00820000.:
00630000
008 4 0000 H

;SET: ADDR OF I/O PROC
;SET REQUEST TYPE TO - ZERO
;SET ACTUAL -REQUEST TO 4

& RETURN

. 	 , 	 , 	 . 	 . 	
- 	 ..., 	 - 	 •• 	 .. 	 . 	 • 	

: 	 .! 1
. 	 . 	 • 	 ,

- 	 - 	 . 	 - 	 - 	 . 	 - 	 - 	 • 	 . 	 • 	 •I , 	 	— 	 	_.. 	.. 	_.. .., 	_.

	

.- 	 0085.0000

	

.11EOFTSTMOV 	8(RO)pR1 	. ;LOAD REQUEST TYPE 	• 	- 	 . 	00860000 .'

. - 	• 	JSR 	JTABL5(R1) 	AND EXECUTE APPROPRIATE ROUTINE- 	. • 	00870000

	

US 	• PC 	
.

.- 	00880000 -

1

	

FEACTV:MOV 	' e6(RO)eR1 	;ACCESS PCE 	

.

•. 	• 	0090-0000
00890000

	

mov 	.. e'4(R1)R1 . 	;ACCESS FE 	 0 - 0910000

	

11- •

MOV 	e4(R0),R2 - pACCESS 	,B ‘DATAUFFER •

;TEST FILE ID (1ST PART) 	 • 	

00920000

	

CMP 	4(R2)p(R1) 	

-

00930000

. • 	• 	BNE 	SEARCH 	 ;IF NOT EQUAL THEN SEARCH FE LIsTs 	00940000 f 11
	•
	 CMP 	• 6(R2)f2CR1) 	. ;TEST FILE ID (ND PART)

	

BNE 	SEARCH 	 ;IF NOT EQUAL THEN SEARCH FE LISTS' 	
00950000.

00960000

	

LOOP: 	MOV 	10(R1)pR3 	;LOA[) ADDR OF PROFILE TABLE' 	. 	.00970000

II •

BMI 	SETMSG 	 IF NEG SET - MSG TO ACTIVATE FILE . 	00980000
le 	AP IT,r'2WR3),R3 	;LOAD 1 5 T BYTE OF DESCRIPTOR TABLE

• IF FOS FILE IS COMPLETE •

	

	

- 00990000

0/000000

	

FINRTN:MOV 	. t2,p(R0) 	 ;SET ADDR OF I/O PROC 	 -01010000 '

	

IIIRETURN2RTS 	PC 	.- 	. 	' 	;& RETURN 	 . 	• 	. 01030000.

	

CLR 	. 8(R 0) 	 • ;SET REQUEST TYPE & ACTUAL REQUEST TO 0 01020000

	

ALL.01“MOV 	' t7„e4(R2) 	-pMAVE ACK TO DATA BUFFER 	• • 	' 	• • 010400.00

II BR FINRTN ;& RETURN • • . 01.050000
SEARCH:MOV •-t4,,INDEX - • pSET UP INDEX FOR SEARCH - 01060000

.- MOV - . FELISTpR4 ;LOAD LIST OF FE LISTS HEAD POINTERS 01070000
L00P2: MOV .INDEX(R4),R1 • ;LOAD ADDR OF FIRST LIST - 01080000.

	

ILOOP1:-. CMP 	4(R2)pCR1) - 	;TEST FIRST PART OF FILE ID 	01090.000

. •BNE 	-. RESET 	' 	' • 	• ;IE NOT EQUAL IHEN GET NEXT ONE ' 	01100000..
• • 	' 	. 	CMP 	6(R2)r2(R1) 	. ;TEST FILE ID (2ND PART) 	• • 	01110000

II. 	
BNE
BR 	

RESET • 	. - 	• •.;IF NOR•EQUA; THEN›GET NEXT ONE 	01120000
LOOP 	;WE HAVE III- END 	. 0,11300•00

	

RESET: MOV 	16(R1)R1 	• 	•FGET FIR TO NEXT LIST 	- 01140000 .
I . 	, 	BEC}

BR
 NXTLST

•
;IF 7:.NULL THEN WE GET NEXT LIST 	. 	- 01150000

LOOP'. 	pOTHERWISE RESUME SEARCH - . •
	1

• - 	011b0000
• NXTLST -g- BUB 	#2,pINDEX 	• ;DECREMENT INDEX 	 01170000

	

BMI 	NOFIND 	• ;IF NEG NE FOUND FILE: ERROR - 	- 	01180000
Il • 	BR. 	LOOP2 	. 7 OTHERNISE CONTINUE SEACH ON. NEXT LIST 01190000.'

	

mUOFINDIMOV 	e25pp4(R2) 	;MOVE NAcK IN DATA BuFFER 	. 	. • 	• 0-1200000 .
HR 	FINRTN 	..o, RETURN 	 01210000..

•I 	
BUFFER 	 • 01230000

fETMSG:MOV 	R3p1O(R2)
. 	;

;MOVE AADDR OF PROFILE TABLE TO DATA 01220000

	

MOV 	t2,p(RO) 	;SET ADDR OF I/O PROC 	' ' 01240000 .

I
CLRB 	.. 8(R0). 	. 	;SET REQUEST TYPE TO 0 	01250000

. 	
te . i,p9(RO) 	;SET - ACTUAL REQUEST TO 4 	01260000

p& RETURN . 	 . 	01270000 '•

. p 	 01280000
IFITABL,NORD 	FEACTV . 	. 	. ;FILE ELEMENT. ACTIVATE 	.. - :- . 	• 	01290000

„WORD 	TEST 	•- 	• 	;TEST (FE ALREADY ACTIVE) 	. ' • 	01300000

•
01310000
01320000 -

- 	01330000

- 	01340000

0135.0000
01360000 .
01370000
01380000
01390000
014000.00
01410000
01420000
01430000
01440000
01450000
01460000
01470000
01480000

TO 001490000
01500000
01510000
01520000
01530000
01540000 	,
01550000

pACCESS DATA BUFFER
;GET DESTINATION OF FILE
;GET A PEST ELEMENT
;SET PTR TO END OF LIST
pFTEST IF NE HAVE DESTINATION
;YS?: THEN LOOK FOR FILE ELEMENT
;NO?: THEN GET -NEU DE e
;BACK TO BEGINNING?
;VS?: THEN WRONG DESTINATION
;NO?: THEN CONTINUE TESTING
;ACCES F,E.
TEST FIRST PART Of FILE ID
IF NOT EQUAL THEN GET NEXT F 9 F,
;TEST 2ND PART OF FILE ID
;IF NOT EQUAL THEN GE1 NEXT F v E,
;MOVE PRIORITY TO DATA BUFFER
J SET APPR OF I/O PROC
;SET RREQUEST TYPE a ACTUAL REQUEST

RETURN
;GET PTR TO NEXT FE
IF NULL END OF LIST
pOTHERNISE CONTINUE SEARCH
;MOVE NACK TO DATA BUFFER

I 7 	. ,

	

FILP,RI :MOV 	°M(R0),R1

	

MOV 	10(R1)R2

• ' 	• MOV 	DESTHDrR3

	

MOV 	DESTHD,R4

I/LOOPg 	CMP• 	R1rR3 	•

	

BEQ 	FESRGH 	.

11 	
NOV 	(R3)R3

	

CMP 	- 	R3FR4

	

BEQ 	' NOFIND

" II BR 	LOOP

	

FESRCHgMOV 	@ 2 (R3)cR3
LOOP1 	CMP 	4(R1),(W3)

	

BNE 	NEXTFE

	

ICMP 	6(R1)r2(R3)

	

. BNE 	NEXTFE
. MOVB 	' 2(R3)r4(R2)

	

IIFINRTfflOV 	#2(R0

	

CLR 	• 8(R0)

	

PIS 	PC

	

IINEXTFEzMOV 	16(R3)R3

	

BEO 	NOFIND
BR 	LOOP1

	

im NOFINDuMOV 	if25,f4(R2)

11 	BR 	FINRTN

PRICHG:MOV
MOV
MOV
MOV

LOOP: CMP
BEU
MOV
CMP

• BEQ
'BR

IIFESRCH:MOV
LOOP1: CMP

BNE
CMP
BNE

I 	

MOVB
MOV

• FINRTN:MOV
CLR
RTS

IINEXTFEiMOV
BUJ
BR

:11N0FINDgM0V
BR

1

1

1

1

LI
'01560000 I

@4(R0)01 	• 	;ACCESS DATA'BUFFER • 	01570000 1
10(R1)eR2 	pGET DESTINATION 	' 	• 	01560000 '
DESTHDeR3 	• •• ;GET A DESTINATION ELEMENT 	01590000 I•
DESTHDeR4 	;S (. T UP PTR FOR END OF LIST 	: 	• 	• 01600000 ,
R2eR3 • • 	• 	;SEE IF SAME DESTINATION 	• 	01610000 -
FESRCH 	;VS?: THEN LOO FOR FE „ 	01620000 •
(R3) R3 	• 	;NO?: THEN ACCESS NEXT DE Ç 	• 	• 	01630000
R3 Rh 	 • 	 • 	;GONE AROUND LIST? 	01640000 .
NOFIND 	OS?: THEN ERROR 	 01650000 .•

LOOP 	:NO?: • THEN CONTINUE 	01660000
e2(R3)eR3 	• 	;ACCESS F,E, 	 01670000•
4(R2)e(R3) 	, P TEST FILE ID (1ST PART) • 	' 	- 	01680000
NEXTFE 	OF NOT EQUAL THEN GET NEXT ONE 	• 	01690000 -
6(R2)e2(R3) 	';TEST FILE ID (2ND PART) 	 • 	 01700000

NEXTFE 	;IF. NOT EQUAL THE GET NEXT ONE • 	01710000
13(R1)r7(R3) 	;SET NEW PRIORITY 	 • 	01720000 ;

#7,e4(P1) 	;MOVE ACK TO DATA BUFFER 	• 	• 01730000,••
#2„e(R0) 	;SET ADDR OF I/O PROÇ 	01740000 ,
8(R0) 	;SET RREQUEST TYPE & ACTUAL REQUEST TO 001750000 I
PC ;8(RETURN 	 01760000 I
16(R3)eR3- 	;LOAD ADDR OF NEXT F,E, 	01770000 '•

NOFIND 	;IF = NULL THEN END OF LIST • • 	• 	01780000 I
LOOP1 	' 	;OTHERWISE CONTINUE 01790000
#25„e4(R2) 	;MOVE NACK TO DATA BUFFER • 	• 	01800000 '
FINRTN 	• 	;& RETURN 01810000• .

--t
'WHEFILOIOV

NOV
NOV

LOOP: NOV
MOV

LOOPIg CMP
BNE
CMP
BNE
MOV
ADD

INEXTFE:MOV
BEQ
BR

IrIXTLST:SUB
BMI
BR

END: 	MOV
CLR
RTS

- 	01820000

	

'4(R0) Ri 	yACCES DATA BUFFER 	. . . 01830000 -
ett u fINDEX 	p SET INDEX 	 01840000 •
FELI5TÛR2 	pACCESS HEADS OF F,E, LISTS 	01850000
INDEX(R3)fR4 	. pACCES A LIST DEPENDING Of INDEX 	• 	01860000
e6,fiNDEX1• 	;SET INDEX FOR DATA BUFFER 	01870000
,4(RI)1(R3) 	;TEST FILE ID ('1ST PART) 	01880000
NEXTFE 	IF NT EQUAL *THEN GET NEXT ONE . 	01890000
4(R1), (R3) . 	;TEST FILE ID (2ND PART) 	01900000 •
NEXTFE 	. 	. 	;IF NOT EQUAL THEN GET NEXT ONE 	01910000 '
6(R3)eINDEX1(R1);MOVE STATUS &PRIORITY TO DATA BUFFER 	01920000
e2,fINDEX1 	ÎINCREMENT INDEX FOR NEXT TIME 	01930000 •
16(R3)fR3 	;ACCESS NEXT F,E. 	 -01940000- •
NXTLST 	. 	.. FIF =NULL END OF LIST GET NEXT ONE 	01950000'
LOOP1 	;OTHERWISE CONTINUE SEARCH 	01960000
#2,fINDEX 	DECREMENT INDEX TO ACCESS NEXT LIST- 	0 1 970000
END 	;IF NEG THE NE ARE DONE 	01980000
LOOP', 	;OTHERWISE WE CONTINUE ON NEXT LIST 	01990000 -
2 #2 	(RO) 	;SET ADDR OF I/O.PROC 	02000000 -

;SET REQUEST TYPE & ACTUAL REQUEST TO 0 02010000:
PC 	f 	;& RETURN 	 02020000

I.

@4(R0),R1
•MOV 	•10(R1)eR2

	

MOV 	DESTHOrR3

	

LOOP: 'GNP 	R203
• NOV 	DESTMD,R4

. 	BEO 	SETNUM

•

	

 NOV 	. • 	(R3)pR3.
CMP R3oR4.: 	•

	

BED 	NOFIND .

I .

BR 	LOOP

	

SETNUM:MOV 	4R3),A(R2)

	

FINRTN:MOV 	#2„p(ROY
• CLR 	8(R0)

	

INOFINDtMOV 	•, #25,f(4(R2)

	

RTS 	PC

BR 	FINRTN

II tSTNU IM :MO V
02030000

;ACCESS DATA BUFFER 	02040000
;GET DESTINATION 	 02050000
;GET A DESTINATION ELEMENT 	. 	0 2060000
;SET PTR FOR END OF L 1 8 1 	— 02070000
;TEST FOR DEST 	 0208000.0
;IF EQUAL THEN DONE 	02090000
-;GET NEXT DESTINATION 	. 	02100000
;BACK TO BEGINNING?. 	. 	02110000
;YS?g THEN BAD DEST ID, 	02120000
; NO? THEN COMTINUE 	 02130000
;MOVE 	OF FE TO DATA BUFFER 	02140000
;SET ADDR OF I/O PROC 	 02150000
;SET ACTUAL REQUEST 8, REQUEST TYPE TO 0 02160000
78, RETURN 	 02170000
;MOVE MACK TO DATA BUFFER 	02180000
;8, RETURN 	 02190000

QUENuM;MOV
MOV
NOV
NOV

I •
MOV
CLR
RTS

1

Hi
H I

1

eil(RO)eR1
N0NAITe(tR1)
N0INACe(1-R1)
NOACIVe(.ffll)

#2, (RU)
 8(R0)

PC

0220.0000
;ACCESS DATA BUFFER 	. 	02210000

;MOVE e OF F,E, IN HAIT QUEUE 	'02220000
;MOVE eoF F,E,IN INACTIVE QUEUE 	02230000

;MOVE il OF F,E, IN ACTIVE QUEUE 	02240000
?TO DATA BUFFE 	 02250000
F SET ADD.R OF I/O PROC 	02260000

• ;SET REQUEST TYPE & ACTUAL REQUEST TO 0 02270000
;& RETURN 	 02280000

g 	•
•iNolaAIT imov

•mov

MOV

CLR

RTS

@LI (RO)pR1

NONATQF (+ Ri)

#2, e• (R0)

8 CRO)

PC

- •

S.

022900O0
;ACCESS DATA BUFFER 	 02300000.

;MOVE # OF F,E, - IN NAIT — QUEUE TO DATA 	02310000 -

g BUFFER 	 02320000

;SET ADDR OF I/O PROC 	 • 	023.30000

;SET RQUEST TYPE e, ACTUAL REQUEST TC) 0 02340000 .

RF--TURN 	 02350000 1.

•

' 	 ;

@4(R O)tR1
NOINA 0p (1 , R1)

#2 	(RO)
8(R0) 	-
PC

I NOIN AC fJMOV
NOV

MOV
CLR
RT.S

'02360000
;ACCESS DATA BUFFER 	02370000
;MOVE # OF F,E, IN INACTIVE QUEUE TO 	02380000
DATA BUFFER 	 02390000
;SET ADDR OF I/O PROC 	 02000000
;SET REQUEST .TYPE t% ACTUAL REQUEST TO 0 02010000
pg, RETURN 	 02420000

1

TILDELeMOVB

dMP
FIRSTe MOV

MOV
MOV
CMP
BNE
CMP
BNE
MOV
BNI
ADD

• MOV
MOV

ILOOPe BIS
DEC

• BMI
BR
SUB
MOV
JSR
MOV

FREPT JSR
IISEARCHeMOV

MOV
• MOV
LOOPle CMP

BNE
CMP
.BNE
MOV
BMI
MOV
J SR
MOV
jSR
TST
BEQ
BR

FEACTVeMOV

MOV
CLRB
MOVB

II RIS
 NEXTFEeMOV

BEQ
II . 	BR
IINXTLSTeSUB

BMI
BR

IIDONEe CLR
RTS

SECONDeMOV

'IF • 	

NOV.
BR

1ÎTABL6teWORD
,WORD

8(RO)fR1

JTABL6(R1)
tzel(RO)fRI
@600) R2
04(R2) ,R3
4(R1)f(R2)
SEARCH
6(R1)p(R2) •
SEARCH
12(R2)rR3
FEACTV

(R3) 	-
MAPLENpR5
BITMAPpR4
(.1, R3)p (+ R4)
R5
DONE
LO U P
MAPLEN1, 4fR3
R2f(1-SP)
PC,FREEFE
'R3f(rSP) •
PCpFREEPT
ii4pINDEX
FELISTfR2
INDEX(R2),R3.
4(R1)f(R3) .

 MEXTFE
6 (R1)1,2 (R 3)
NEXTFE
12(R3)pR4
FEACTV
R4p(+SP)
PCpFREEPT
R3p(i-SP)
PCpFREEFE
R3
NXILST

LOOP1
P3,14 (RI)

g2,p(R0)
8(RO)
g6 u p9(R0)
PC 	•
12(R3)pR3
WXTLST.
LOOP1
#2,pINDEX
CONE
LOOP1
(R,O)
PC
e4(RO) r R1
1,0(R1)e(I- SP)
FREPT

FIRST
-SECOle .

•pLOAD REQUEST TYPE (O. 1ST PASSer.- 2 pT
p IN CORE)

pACOESS DATA BUFFER
;ACCESS PCE
pACCESS'FE 	• 	'
;TEST FILE ID (1ST 'PART)
;IF NOT EQUAL FILE NOT ATTACHED -
;TEST FILE ID (2ND PART)
y IF NOT EQUAL FILE NOT ATTACHED
1GET ADDR TO PROFILE TABLE

. ;IF NEGe TABLE NOT IN CORE
;ACCESS FILE BIT MAP
•;LOAD LENGTH OF BIT MAP 	 •

;LOAD ADDR OF MASTER BIT MAP
pOR BOTH MAPS TOGETHER
-;DECREMENT LENGTH LEFT TO DO 	 •

;IF NEG THEN NE ARE PONE
;OTHERWISE ME CONTINUE 	 •

. ;GO BACK TO BEGINNING OF P,T e

;STACK ADDR OF FE.
l&CALL ROUTINE TO FREE FILE ELEMENT
;STACK IT'S ADDR

;&•CALL ROUTINE TO FREE PROFILE TABLE
;LOAD INDEX LOCATION
;LOAD ADDR OF HEADS OF F,E, LISTS
;GO TO FIRST LIST
;TEST FILE ID (1 81 PART)
;IF.NOT SAME THEN GET NEXT ONE
;TEST FILE ID (2ND PART)
p FI NOT SAME THEN GET NEXT ONE
;LOAD ADDR OF p,T,
;IF ADDR IS NEGeF,T 1 IS NOT IN CORE •
;STACK ADDR OF PROFILE TABLE

• ;CALL ROUTINE TO FREEIT
eSTACK ADDR OF FE,,
;CALL.ROUTINE TU FREE F e E„
;TEST ADDR OF F e E,

.NEGe GET NEXT LIST
;OTHERWISE CONTINUE
;MOVE ADDR OF PROFILE TABLE TO DATA
;BUFFER
;SET ADDR OF I/O PROC 	•

pSET.REQUEST TYPE TO 0, 	•

;SET REQUEST TYPE TO 6 	•

y& RETURN
AGET ADDR OF NEXT F„E e 	. • • •

IF rz NULLe GET NEXTLIST 	• 	• 	-- 	•
;OTHERWISE WE CONTINUE
;DECREMENT INEDX
yIF NEGe ALL DONE
;OTHERWISE WE SEARCH NEXT LIST

•;SET DUMMY MSG
p& RETURN
;ACCESS DATA BUFFER

• ;STACK ADDR OF P„T,

• ;FREE PORFILE TABLE & SEARCH FOR NEXT

11 51 PASS THROUGH. THE ROUTINE
;SECOND PASS THROUGHeP e T, IN CORE.

02430000
02440000
02450.000
02460000
02470000
02480000
02490000
02500000
02510000
02520.000
02530000
02540000
02550000
02560000
02570000
02580000
02590000
02600000
02610000
02620000
02630000
02640000
02650000-

.02660000.
02670000
02680000
026900,00
02700000 -
02710000
02720000
02730000
02740000
02750000
02760000
02770000 .
02780000
02790000
02800000
02810000
02020000
02830000
02840000
02850000
02860000

02870000 .
02080000
02890000
02900000
02910000
02920000
02930000
029400w
02950000
02960000
02970000
02980000.H
02990000
03000000
03010000
03020000 i
03030000 . -±

• 03040000

, FORF1Lt!MOV Ir 	. ..' ' 	

. 	, 	
030 0000

8(RO) 	

, 	: . .

• • ;LOAD REQUEST TYPE 	

.. ._. ,......,... ,_
5 	;

03060000 ..
- . s 	 JMP 	JTABL7(R1) 	• 	;AND PROCESS ACCORDINGLY 	• 030.70000

	

IIFILFOR:MOV 	e4(RO) e R1 	• 	;ACCESS DATA BUFFER 	03080000'

	

MOV - 	• 10(R1R1)FR2 	;ACCESS DESTINATION 	03090000
• ' MOV 	• DESTHDeR3 	;ACCESS A DEST, ELEMENT 	- 	• 	03100000 ,

I 	
03120000

	

MOV 	.•DESTHDFR4 	;SET PTR FOR -END OF LIST 	03110000 .

	

LOOP: CMP 	R2 F R3 	;SEE IF SAME DESTINATION 03130000 .»

	

BEQ 	FESRCH 	;YST:' THEN GET THE FgE, 	 i . 	.031400004

	

MOV 	(R3) 4'R3• 	;NO?: THEN GET NEXT DE e 	 03150000 /»1 II - 	' . CMP 	R3 F R4 	. 	;TEST IF BACK TO BEGINNING 	• 	- 	03160000 •
. 	

BEQ 	NOFIND 	;YS?:• THEN WE HAVE AN ERROR 	03170000 ,

lir 	

. 	BR • 	LOOP 	;NO?: THEN CONTINUE SEARCH 	03180000 1
• 03190000 .

	

FESRCHIMOV 	'.. @2(R3)R3 	• 	;ACCESS F,E, 	. 	 03200000

	

miLOOP1: CMP 	4(R2)e(R3) 	;TEST FILE ID (1ST PART). 	03210000 •

11 	
BNE 	• NEXTFE

. . 	
-PIF NOT SAME: GET NEXT ONE
;TEST FILE ID (2ND PART) 	

• 03220000

	

CMP 	6(R2)e2(R3) 03230000
• BNE 	NEXTFE 	;IF NOT SAME: GET NEDÇT F,E 	03240000

	

NOV 	12(R3)1R2 	;LOAD ADDR OF PROFILE TABLE 	03250000
•ILOOP2: BMI 	ACTVFE 	;IF NEC,: TABLE NOT IN CORE 	03260000

	

NOV 	. R214(R2) 	;MOVE P,T, TO DATA BUFFER 	03270000 '

CLRB 	(RO) 11 	

NOV ie 2pr(R0)
-8 	

;SET ADDR OF I/O FRO C
;SET REQUEST TYPE .10 0 	

. 03280000—
03290000

MOVB• 	#10 0 F9(R 0) 	;SET ACTUALTREQUEST TO 8 	03300000 f

	

RIS 	PC 	y& RETURN 	 03310000 :

II :

	

	 03320000

	

ACTVFE:MOV 	• R24(R1) 	;LOAD ADDR OF- P g T, INTO DATA BUFFER 	03330000 '
. 	' NOV 	#2„e(R0) 	;SET ADDR OF I/O PROC 	.03340000

#28(RO) 	;SET RQUEST TYPE TO 2 	03350000

II 	
MOVB' 	,e

' MOVB - - #10,9(R0) ;SET ACTUAL REQUEST TO 8 03360000
. 	RTS 	PC 	;& RETURN 	 . 	03370000

7 	 03380000 :

	

11MEXTFE:MOV 	16(R3)eR3; 	;GET ADDR OF NEXT FE 	.03390000

	

BEQ 	NOFIND 	;IF e NULL THEN END OF LIST 	03400000 •
. 	BR 	LOOP1 	• 	; OTHERWISE CONTINUE - SEARCH . 	03410000.'

	

IN0FIND:MOV 	. #2,e(R0) 	;SET •ADDR OF I/0 PROC 	03420000 •

	

CLR 	8(R 0) 	;SET REQUEST TYPE & ACTUA: REQUEST—TO 0 . 0343000 0 '-

	

. MOV 	! #25,! e4(R1) 	. 	;MOVE NACK TO DATA BUFFER 	03440000 .;

IL 	
. 	RIS 	PC 	;& RETURN 	 - 	03450000

03460000

	

: FELINKtMOV 	@4(R0)eR17ACCESS DATA BUFFER 	 . 03470000',

	

NOV 	4(R1)FR2 	;GET PTR TO FpEv 	 03480000.!

11. 	
MOV;14(RI.

)e R?
	eGET LINK TO NEXT-FILE 	' 	. 	03490000

	

BEQ 	iSOE (' 	;IF r: muLL0q0 OTHER FILE 	
: 	- 	;

03500000. :

	

' MOV 	• P12(R2)02 	;OTHERWISE GET THE F,E: 	' 	03510000 - y

II; 	
BR 	LOOP2; 	;AND RESUME PROCEDURE 	03520000 ;

03530000 :
•• JTA3L7g,WORD 	FILFOR 	P MAIN ROUTINE TO FORNARD FILE 	' 	03540000 .;

,WORD 	FELINK 	• ;ROUTINE FOR FORNADING LINKED FILES 	03550000 :
,

il

A SHORT DESCRIPTION OF THE SPOOL ALGORITHMS ,‘

I- FILE CONTROL

*'**-ACCEPT FILE X ?
Data -buffer contains File Id Ti File Descriptor.
Implementation: only one file dan be sent per virtual sign-on

"-Ask File Management processor for some space on disk(1 logidal
block).

-
-If none available :END

-Otherwise send addr of block to I/O processor, along with addr of
File Element Er addr of Profile Table.

-I/O processor sends ACK to suscriber,write Profile Table on file
& puts the File Element on the wait queue.

-END.

***-HERE COMES FILE X !

-File Management processor puts File element on the active queue
(if it is not already there).

-I/O processor gets a D.A.D Device Control Table and 'opens the •
file.

-It then reads the Profile Table & chains it to the File Element-
-Does it need a new block?
LOOP: -.No: then write data

-Jes: then ash File management processor for one
& put File Element on the wait queue

- File.Manager• tries. to-get a block of storage
-Got it? 	 •

1es:then return to I/O processor
NO: • delete the file and send ABORT msg to suscriber

-Return to I/o processor
-go to IOW

-Data road done:
-Deallocate Device Control Table
-Send ACK to suscriber

-Write Profile Table onto file
-Set itis addr. in File Element..
-Put File Element on inactive queue

-END.

***-HAVE .YOU - RECEIVED FILE X ?

-File.Element active ?
LOOP:YES7-Access Profile fable

-Get Descriptor Table .
:-EOF tag on?

-YES?: Send ACK to suscriber
-NO 7:Send NACK to suscriber

NO 7.1-Give addr of Profile Table to I/O processor
-It reads Profile Table from disk and returns it's addr*
to the File Manager.

-Go to 1,00J.)0

-END.

-END.

iI FILE STATUS ENQUIRIES AND STATUS CHANGES

***-PRIORITY OF FILE X ?

-File Manager: .
-1£ given destination of file: Scan Destination>Element queue .
for File Element.

-If not givendestination: Search all queues (active, inactive,.

or - wait) for file.
> • -If file not found: send NACK,to suscriber

• -If file is found: send priority to Suscriber

***-SEND DESCRIPTOR OF PILE X.

•-File Manager:
-Scan Destination Element queue then the File Element
queue for file

-File . active ?: -Yes:-Get ptr to Profile Table -
-Get Descriptor Table
-Give • t to the I/O processor

• for send off

-No>:-Get addr of Profile Table-on disk

• - .Have I/O processor read it into core
• -On return, get decriptor Table

• -Give it to I/O processor-for send
off

-END,

***-CHANGE PRIORITY OF FILE X TO Y.

-File Manager:
-,Scan Destination Element queue then the File Element
queue for file.

-Change priority of File Element.
• -Send ACK to susoriber

-END.

***-WHERE IS FILE X (STATUS REPORT ON .FILE)

-File Manager:
, 	-Scan Destination Element queue then the File Element

queue for file.
-If not found: END , send NACK to suscriber
-Ie found: put status in data. buffer

,-END., •

III- STATUS _REPORTS ON QUEUES AND FILES.

***-HOW EANY.FILES ON 'DESTINATION QUEUE 7

-File

-END»

Manager:
-Search for Destination Element. .

- -If not found: send NACK to suscriber
fpund : Get File Element count

Glve it to. I/O processor for send. off

-HOW MANI FILES ON QUEUES

-File Manager: .
-Nove _number of elements on -inactive queue

-active queue
•

.
-wait queue

• to data buffer.
-Have I/O processor send it off to . Suscriber

.***-HOW MANI FILES ON WAIT QUEUE

Manager:
-Move-number of File Elements on wait queue : to data
data buffer

-Have i/O processor send it off to suscriber.

**-HOW MANY FILES ON TWE INACTIVE QUEUE

-File .Manager',:
-Move Number of File Elements on inactive queue-to

data buffet
' -Have I/O processor send it off to suscriber.

-END.

IV- FILE DISPOSITION COMMANDS.

94 e- -DELETE FILE X.

-This.a/gorithm is in the process of being redesigned 11!

***-FORWARD FILE X.

-Search ,Destination Element queue and File element queue for

file. .

-if not fàund: send NACK to suscriber

-if found :-File active? 	,
.LOOP z-YES?:-Get addr of file through Profile Table

-Give it to I/O processor for send off
• 	 .--Put File Element on wait queue on return

-NO ?:Give addr of Profile Table to I/O processor.
 -It-activates file by reading Profile Table

into core. Returns addr of Profile Table .
 to File Manager. •

-Go to LOOP.

-File link .eq4 null ?

. -YES?: -END.
-Update ptr to next File Element
-Go to LOOP

***-ROUTE FILE X TO DESTINATION X.

-Given old destination.

-Search Destination element queue and File Bleuie-nt queue for old -

destination

-If not found : Send NACK to suscriber.

-If found -Put it on new destination element queue
-Generate a , FORWARD FILE' msg

-EN D

'a

. 	
• 	 ' 	 : i.. . 	.

I 	. 	: 	
,
I

y**********************:•k********.H-e.A*.A**ink*******%- ,;*****./e************** 	00010000 ;

*.. 000200_00

y*. 	 . 	. 	* 	00030000'
P* 	NE TSP 001,, 	MASTER 	SCHEDULE.R 	* 00040000

iy er 	 * 00050000
00060000

F* DATEMAY 15THp1972 	
,J. ,, 	00070000

Ille*AUTHORi; MARC DUFRESNE 	 * 00080000:

Ilf* VERSIONi 1 	LEVEL8 0 	-LAST UPDATE; MAY 15THr1972 	
. 	-,, 	00090000:

e*)'; 	00100000•
f 	. Q.1.. 	 : 	00110000 ,

Ilr
0"
 '***********************t*****************edç*****i'i************** 00120000 -

P 00130000. ,.
F 	

. 	
. 	00140. 000

II 	R0m%0 	. ;REGISTER Or WORK REG, 	00150000

RP:M. 	.;REGISTER 1 ê NOT USED 	00160000r

- R2e:g2 	 ;REGISTER 2 e NOT USED 	00170000 '
R3%3 	 ;REGISTER 3 rNOT USED 	- 	. 	00180000

11 	R47,4 	• 	;REGISTER 4 eNOT USED 	• 	00190'000 ,
. 	R55 	FREGISTER 5 eNOT USED 	00200000 '

SPg%6 	 ;REGISTER 6- STACK POINTER 	00210000

P 	

,

8, - 	c- . 7 	 ;REGISTER 7, PROGRAM COUNTER 	00220000

`er 	 00230000

P 	 • 	. 	00240000 :
II 	,CSECT 	• 	 • 00250000

,TITLE MASTER 	 00260000

- MASTERI:MOV 	LSTONEeR0 	• 	;LOAD LAST PROCESSOR SCHEDULED - 	00270000

COP 	#6,RO 	 -
II 	

ADD #2 ,R0
, 	

;SCHEDULE THE NEXT ONE
FTEST IF IT IS INVALID ID 	

00280000 •
 00290000 :

RESET 	OF ID > 4 THEN RESET 	' 00300000 1

F 	 00310000

11 BACKt, 	NOV 	ROr., (SP) 	. 	;OTHERWISE PUSH ID ON STACK 	- 	00320000

' NOV 	ROrLSTONE 	;AND UPDATE THE CHECK 	00330000;
. 	• 	RTS 	PC 	;AND RETURN 	 00340000:

II « é 	 00350000

RESETg CLR 	RO 	;CLEAR THE RESULT 	 00360000:

BR 	• 	BACK 	;AND GO TO THE END ROUTINE 	' 	00370000,

; 	
. 	

0038000 0

IILSTONEU 5,WORD 	0, 	• 	 003900001

,END . 	 00400000 i

•1
I .

•1

N E T S P 0 0 L NUCLEUS
*

P

F
r CSECT
,TI1LE NUCLUS
,GLOBL 	TOOPIRplOPROC
,GLOBL FUETR,FMPROC
r GLOBL CMOPTR F CMPROC
,GLOBL MASTER

I SCHDUL:JSR 	PC,MASTER

(i-SP)pRO
PCpJTABLOCRO)

(i-SP)pRŒ I
(RO) Ri
EREMSG 	-
JTABL12(R1)

II SETIOQ:MOV
MOV
MOV
OR

MISETFMQ:MOV
111 	MOV

MOV
BR

IOOPTReR1

ROFIOOPTR
.(R0) 4,(1-R1)
SCHDUL

FMOPTR,R1
RO F FMOPTR•
(R0)9(i- R1)'
SCHDUL -

CMQPT H F R1
RU, cmoPTR
(R0),(tR1)
SCHDUL

111 • SETCMQgMOV
MOV
MOV
BR

1 MOV
JSR

•MOV
MOV
BEQ
dMP

00010000
* 00020000
* 00030.000
* 00040000
* . • 0000000
* 00060000
* 00070000
* 00080000,
* 00090000
* 00100000
* 00110000

e* PATE:MAY 131111, 1972
-Ile* AUTHOR; MARC DUFRESNE

p* VERSION 1 	LEVELI 2
. 	e* 	•

Il f
11;:*** 00120000 '

, 	; 	• 	' 	, 	. 	 00130000 	;
00140000•

IIP 	•ROL-1%0 	« 	• • 	;REGISTER 0 	 . 00150000 -

	

.•R1mX.1 	 ;REGISTER 1 	 00160000 '

	

R2=%2 1 	;REGISTER 2 	 - 00170000. •

	

R3=%3 	• 	iREGISTER 3 	 00180000 :

• R4;e%4 	 ;REGISTER 4 	 00190000 H
• R5=7.5 	 ;REGISTER 5 	 • 	00200000 .

	

SP76 	 ;REGISTER 60 STACK POINTER 	002100 0 0 :

	

PC=g7 	 ;REGISTER 7, PROGRAM COUNTER 	00220000
00230000 '

LAST UPDATE; MAY 15THe1972.

00240000 —

00250000 ,
00260000 ,
00270000
00280000
00290000
.00300000
00310000
00320000
00330000
00340000
00350000
00360000

;GLOBAL DECLARATIONS

;CALL MASTER SCHEDULER TO
;SCHEDULE NEXT PROCESSOR
;PICK UP IT'S. ID OF THE STACK
AND CALL IT (0 .:JI/0-PROCe 2=FILE
;MANGEMENT PROC e 4C0M1UNICATION
0:)Roc) 	 • 	 00370000
;GET ADDR OF- MSG RETURNED BY PROCESSOR 00380000

AND SAVE THE PROC ID IN R1 	00390000

yIF ID 7:2 RETURN TO THE FREE MSG POOL. • 00400000
;OTHERWISE WE BRANCH TO THE 	 • • 	00410000

;SUITABLE ROUTINE TO PLACE THE ••00420000
;MESSAGE ON THE RIGHT REQUEST QUEUE 	 • 00430000 .

00440000
;MOVE ADDR OF LAST ELEMENT IN QUEUE TO 00450000 -
01 • 	 00460000•
AND RESET THE CHAIN POINTER 	00470090

p AND CHAIN THE MSG TO IT(2ND WORD IN)MSG00480000
AND WE RESCHEDULE OURSELVES 	, 	00490000•

• -• 	• 	0050000.0
;LAST ELEMENT OT FILE MAN QUEUE LOADED 00510000

AND RESET . THE CHAIN POINTER" 	• 	00520000-
;CHAIN MESSAGE TO IT(2ND WRD IN MSG) 	0 0530000 I
;AND RESCHEDULE 	 00540000

00550000 .
;LAST ELEMENT OF COMM QUEUE LOADED• 	00560000

'AN RESET CHAIN,POINTER 	00570000 •
;WE CHAIN THE MSG TO IT(2ND MORD IN MSG)00580000 -
AND WE RESCHEDLUE 	 00590000

_

FRQPTR g WORD
I ,WORD
EMOPTR:,WORD
CMQPTR.1 , WORD

' ,TABLOr)0WORQ
JIABL1GW0RD

,END

1

1

1

1

00600000
FUMED 	iPTR TO HEAD OF FREE MSG, BUFFER QUEUE 00610000 •
IDOTL 	iPTR g TO TAIL OF I/O PROC. MSG QUEUE 	00620000 -
FMQTL • 	• 	;PTRQ TO TAIL OF FILE MAN. PROC MSG OUEU00630000
CMQTL 	;FUR TO TAIL OF COMM g PROC, QUEUE 	• 	00640000

00650000
IOPROCeFMPROCFCMPROC 	;JMP TABL TO ACCESS MASTER 8CHE,00660000
SETIOO F SETEMOpSETCMQ 	;JMP TABL FOR MSG PROCESSING 	00670000
SCHPUL 	;BEGIN EXEC AT SCHDUL, 	00680000 .

0069000n.

1

f* 	e.er
	cw)

*-P-i-- V. 	-1"

,47 5Y)-r
Dcre. ,»

t\Virr{. L.

"•-:••• 	e.ve.,Lo)

\.....__..._.__,j\,*z,"7 	• 	• 	•
C T'

E te . Z -a 	tÀc

-r,•\,e2> fe

•.• 	.

D I AGRAM FOR I NTERPRETAT ION OF CODES

• • 	: 	u\se 	.

ç-> T k, -(. 	wc.-.- 	m, sze

_
,..P-ra.-,z•o 	9
if..;:é ivets7.3 çi,:ciL .4.-L-

e
•

e.

(I&

rb
./ 	.,..,
ri2 1 t. a 	'' 	(.. 	• 	

(111b1+

'
-,,j 	n:. %. e......e...c.410„A

e.pz, 	0 / 	r-, -fa S. 	(,...,)

..,••n•• 	7 	•

	 i(.,..1)
i•c. c's.te tnl• 	* Lere-..t.. 	(2 ,4)

(.?....))

q cet • 	1.../s-L:ce=i 	r L., xL,Ji

F.: Z ,.î.: el.4.e' 	ee e (r‹-e e• .

1.,,v.x.tAi

me % 	LK.LD tw•-- •ce

•
tr...s...PA •

1..u..$)1 •

py -ce 	 Pcrua 	s r • . 	rikz

2.4)

e 	

.e

7:›ca

<-) 	G

tLr p

F *E

(.u.)

91

C655

1972

Date Due

tept

A SHARED SPOOL SYSTEM FOR A

CO.IPUTER NETWORK.

MAR Z 198Z
MAY 1985_

FOR19 109

d
1

1

1

1

1

1

1

1

à

1
1
1
1
1
1
1
1

1

