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ADAPTIVE ESTIMATION OF THE STATES OF A SYNCHRONOUS-ORBIT 

SATELLITE WITH UNKNOWN PRIOR STATISTICS 

Abstract  

A sequential estimator for suboptimal adaptive estimation of the 

unknown a priori state and observation noise statistics simultaneously 

_ 	. 
with the system state, is applied to the estimation of the sta.tes of 

synchronous orbit satellite. 

Some tracking data supplied by the CRC have been used as real 

observations. Results of simulation are presented, using this approach 

with Altman's unified state model of the orbital trajectory and the 

corresponding obervation model. 

Introduction 

A well-known limitation of the application: of .  the,Kalman.-Buoy 

filter to real world problem .  is the assumption of known a priori 

statistics for the stochastic errors in both the state and observation 

process [1]. This approach leads to a nonadaptive filter and although 

estimation performance may be satisfactory over some global operating 

region, it will be inferior to that obtained when a priori statistics 

are'known locally as a function of time. Therefore, in the presence of 

unknown system disturbance it may be desirable to adaptively estimate 

the a priori statistics simultaneously with the system state [2]. 

Often it is desirable to estimate the prior statistics from actual 

operating records and use these statistics in implementation of the 

optimum estimation algorithm. 

A sequential estimator was derived for suboptimal adaptive 
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estimation of the state and observation noise statistics simultaneously 

with the system-state [3]. 

Results of simülation indicate that the adaptive sequential 

estimator gives fairly accurate estimates of the states. 

Suboptimum discrete adaptive estimation algorithm 

The .procééé is aséumed to bé presented by  the linbar:Vedtor 

difference equation 

x(k) = cb(k, k-1) x(k-1) + r(k-1) w(k-1) 	(1) 

Also, linear measurements are assumed to be available in the form 

z(k) = H(k) x(k) + v(k) (2) 

The stochastic processes are uncorrelated with one another and assumed 

to be gaussian sequences with means and covariance matrices 

E{w(k)} = q(k) 	E{v(k)} = r(k) 

cov {w(j), w(k)] = Q(k)
jk 

cov {v(j), v(k)} = R(k)
jk 	 (3) 

The filtered estimate x(kIk) which results from minimization of a 

loss function 

E{11x(k) 	x(kI)11 2  1 z(1), z(2), 	z(k)} 	(4) 

may be determined from sequential solution of 

x(k1k) = [I - K(k) H(k)] x(klk-1) + K(k) [z(k) 	r(k)] 	(5) 

x(kIk-1) = cp(k,k-1) x(k-1Ik-1) + r(k-1) q(k-1) 	(6) 

K(k) = P(kik-1) H'(k) [H(k) P(kik-1) Ht(k) 	R(k)]-1 	(7) 

To determine the error covariance matrix 

P(klk-1) = (1) (k,k-1) P(k-1Ik-1) (p'(k,k-1) + r(k-1) Q(k-1)  r' (k-1) .  (8) 

• 	
P(kIk) = [I - K(k) H(k)] P(klk-1) 	 (9) 

This is the well known •Kalman filter for the discrete case. 
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If . the prior means and variances for noise r(k) and R(k) and plant 

noise q(k) and Q(k) are constant but unknown or random, there are many 

circumstances in which estimation or identification of these variances 

may result in great reduction in estimation error •variance over that 

which result form some guessed incorrect value. 

An algorithm to implement the adaptive filter is given by "Sage & 

Husa" in [3]. This algorithn was applied to the linearized system for 

state estimation of the synchronous orbit satellite. 

Simulation Results  

Some tracking data supplied by the CRC on a magnetic tape include 

range plus az-el information. 

The tape was read on a CDC/6400 computer, it includes 2 files, each 

consisting of 39 records. Only the second file gives the range and 

az-el readings. After transforming these readings into engineering 

units, they were used as data with the SAF algorithm (suboptimum 

adaptive filter). 

Keeping in mind that the system is nonlinear and the algorithm is 

for linear systems only, the extended Kalman filter is employed to 

reduce the effects of nonlinearities which requires that the a priori 

state error estimation x(k lk-1) be set to zero. 

Also the matrices (1)(k,k-1) and H(k) consist of partial derivatives 

which are evaluated on the current estimate of the state derived from 

the nonlinear equations of motion. Finally z(k) is the difference 

between the nonlinear true and predicted observation vectors. 

Using the data given we can generate the coloured noise v from 

x(k+1) = (1)x(k) 	w(k) 
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statistics the results obtained prove 

z(k) = Hx(k) 	v(k) 

and then calculate the variance R 

Starting with the true noise 

the convergence of the filter. 

5 

The error in the state estimates are -very small and decreasing for 

156 iterations. Also we notice that the trace of [P] is almost 

.The number -  of 'points read from one data -  file (39 records) 

was 156 data points. 	So for 156 iterations the estimator give the 

following results. 

The trace of [P] was constant and trace [P] = -2.3877. 

The following is the error in state estimation written every 20 

iterations: 

STATE .  ERROR ESTIMATES  

(c-c) 

-0.410x10-5  

-0.716x10-6  

-0.180x10-7  

0.328x10-7  

0.133x10-7  

0.479x10-8  

0.192x10 8-  

0.449x10 -1°  

(Rfl -Rfl ) 

-0.755x10-8  

-0.1319x10-8  

-0.331x10-1° 

 0.601x10-1° 

 0.237x10-1° 

 0.786x10-11 

 0.250x10-11 

 -0.942x10-12  

(Rf2-Rf2) (e 

	

-0.410x10-5 	0 

	

-0.716x10 -8 	0 

	

-0.180x10-7 	0 

	

0.329x10-7 	0 

0.133x10-7 

 0.479x10-8  

	

0.192x10-8 	0 

	

0.468x10- 10 	0  

(e 3-e3 )  

0 	.-0.101x10-8-  0.127x10-5  

• 0 • 	-0.176x10-9 

0 	-0.443x10- 11  

O 	0.809x10-11  -0.102x10-7  

0 	0.327x10-11  -0.415x10-8  

0 	0.118x10-11  -0.149x10-8  

0 	0.472x10-12  -0.597x10-9•  

0 	0.113x10-13  -0.145x10-1° 

0 

0.223x10
-6 

0.562x10-8  
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STATE ESTIMATION FOR NONLINEAR SYSTEMS 

The research and results obtained in the area of nonlinear 

filtering have been growing during the past few years. The first 

definitive contributions were those of Kalman and Duey [1], [2] which 

dealt with the optimal estimation of the state variables of a linear 

dynamical system. These ideas - were later extended to  the estimation of 

the states of nonlinear dynamical systems using the so-called 

first-order filter, or extended Kalman filter [3], [4], [5]. In all of 

these papers (and many others) different techniques (ie.g. 

least-squares, maximum-likelihood, etc.) have been used for deriving 

filter equations. Most of these techniques, at one stage or another 

anploy a Taylor series expansion, neglect second and higher order terms, 

and use linearized equations to compute the conditional error covariance 

matrix and the filter gain. 

Another method of approach is based on the determination of the 

exact equations satisfied by the conditional probability density 

functions and conditional expectations. This approach uses the 

stochastic It
o 

calculus and the results indicate that the optimal filter 

cannot be realized by a finite-dimensional system. However, the exact 

equations can be approximated to derive suboptimal finite dimensional 

filters [6], [7], [8]. Some references (orbit estimation) claim 

considerable improvement in the performance of second-order filters. 

The extended Kalman filter was applied to the problem of state 

estimation for synchronous-orbit satellites and the present research 

aims to developing a realistic mathematical model for optimal nonlinear 

estimation. 
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x(t0 ) = xo  (state eq.) 

(output eq.) 

These approaches are now under investigation. 

1. Suboptimal finite dimensional filter by retaining second-Order 

ternis.  

2. Use of high-order weighting functions via invariant imbedding. 

3. Innovations approach to nonlienar filtering. 

Mainly two problems are considered here. 	First a suboptimal 

filter for continuous-time nonlinear system was suggested by Athans,•  

Wishner and Bertolini [9]. The primary motivation for this work was 

provided by problems arising in the estimation of the state variables 

from discrete-time radar observations. In this approach the state and 

output nonlinearities are taken into account by simply retaining 

second-order terms in the usual Taylor series expansions. The 

of this approach are summarized below. 

Plant: 

x(t) = f(x(t)) 

y(t) = h(x(t)) 

Observations: 

Zk  = h(x1 ) 	vk  

State Estimate at Observation Time: t 	x 
k 	k 

results 

. ek  = xk  - xk  
• 

/k = E{ek 

State Estimate  at  t:, tk  < t < tk+1  = w(t) 

e(t) = x(t) 	w(t) 

S(t) = Ele(t)e t (t)} 
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k+1 

Baste Assumption: 

e and e(t) gaussion, zero-mean 

Starttng Condj.tioM: 

Xo = w(to ).= Eixo }  = xo 

E
o = 5(t0 ) = E{(x 	x )(x - x ) t } 

o 	oo 	o 

Continuous Time Filter:  t < . < t 	tk+1 

1 
Kt) = f(w(t)) + 	E 4). tr [F.(w(t))S(t)] 

2.i 1=1 

w(tk ) = xk 

S(t) = A(w(t))S(t) + S(t)A'(w(/)) 

Sak) = 1k 

Update et  t 
= k+1 

xk+1 = wk+1 	Gk+1 f zk+1 	h(wk+1 )]  

1 
= 	

Gk1 j1 
 

k+1 	2 	+ 	j. 	k+1 k+1 
=1 

Gk+1 = 3k+1 G ' (wk+1 ) [G(wk+1 ) 8k+1 G ' (wk+1 ) 	Rk+1 
-1 

Lk+1] 

= 	- 	 L 	]- Ik+1 	Sk+1 	Sk+1 Cl( wk+1 )[C( wk+1 )Sk+1 Cqwk+1 ) 	Rk+1 	k+1 

C(wk+1 )Sk+1 

1 
(Lk+1 ). 
	tr [D. 

(wk+1 
 ) S

k+1 
 D. (wk+ 
	S..] 

	

- 2 	j 	1 

Where 

[A(u)] (15 

af 
à 

Du 

à 	-  
u a  u e  

A 
%a 

[C(u)] 	= 
003 	Du 
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2
h. 

A 	 
[D .(u)] 	= 

J 	a 	Du Du a e 

cov [V • V.] = R S k' 	k kj 

It has been demonstrated by a specific example [9] that the use of 

second order filter yields on the average superior performance whenever 

the nOnlinearities are_significant. 

The second algorithm was  suggested by Mahalanabis [10]. This is 

for noisy nonlinear discrete time systems and is based on a statistical 

quadrization of the nonlinear functions. 

First the functions f(xk) and h(xk) are approximated by second 

order polynomials where 

xk+1 = f(x1) 	uk 

Yk  = h(xk ) + vk  

and E{uk tr.'11 
j -kkj 

E{Vk  Vj  I] = Rk  6ki  

E{xo } = ;0  

E{(x - ; )(x - ; ) 11  = o 	oo 
P
o 

Assume that the function f(xk) is expanded in the form 

1 T 	i
- n 

f( x)
= ak Bk xk/k 	2 . 

e
i 

x
k/k 

C
k
x
k/k 

where e(xk
) = error of approximation. 

Now the vector ak  and the matrices Bk  and q*.c  are selected so as to 

minimiD3 Ek {ET (xk) e(xk)} for the best quadratic approximation of f(xk )  

in the statistical sense. 

Similarly  h(x1 ) is given by 

i=1 



Q 
Pk/k-1 

= B
k-1 	

B
T 

P
k-1/k-1 k 	

+
-1 	k-1 

P 	Ci  P 
k-1 k-1/k-1 k-1 k-1/k-1

) 

i,j=1 

e.e tr 
13  

1 

2 
+ 

- 1 1 - 

1 	M.  
h(xk ) = d

k 
+ M

k xk/k-1 	2 	
e.x

T 

kik-1 
NJ 
k xk/k-1 	"(Xk )  

The sequential filter derived in [10] is given by: 

A 

xk/k-1 Kk Yk/k-1 

1 n  

xk/k-1 	ak-1 	2 
ir-1-1 

ei  tr (e
x

. 
_ Pk-1/k-1) 

1 	A  
Ek-1 (Yk' = lc 	

2 E e. tr ( 
Nk Pk/k-1 /  

j=1 

K
k 	k/k-1 

T 	. T. 
Pk/k-1 

M + 	ee 
k 	2 	j 

i,j=1 

- 
tr (1q.c 

-Pk/k71  Nj k/k-1 	
11 

) 

Pk/k 	
(I - Kk  M-) 

	

K 		k/k-1 . 

given 

x
o/-1 = xo Po/-1 	Po 

with given numerical examples it was shown that this algorithm leads to 

better estimates than either the Taylor's series based second order 

filter or the first order filter. 

2. A Nonlinear Filter with Higher-order Weighting Functions via  

Invariant Imbedding [1] 

The approach chosen here gives a sequential higher-order 

approximated optimal non-linear'filter Which estimates the state 

variables of a continuous-time noisy non-linear dynamical system from 

hoisy non-linear observations. No.Statistical assumptions .  are required. 
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concerning both the input and measurement noise. 

The system is represented by the nonlinear differential equation 

;(t) = f(x(t),t) 	w(t) 

and the observations are 

z(t) 	h(x(t),t) 	v(t) 

The problem is to estimate the current state at t 

• 

using the least 

uares critéricin so_ that the following integral is minimized 

t
f 

J 	fk i (t)(z(t) 	h(x(t) ,t)) 2 	k2(t) (x(t) - f(x(t),t)) 2 1 dt 

to 

The result is an approximate solution for the optimal filtering 

'where three terms are retained in an infinite expansion of a nonlinear 

function. Details are given in reference [11]. • • 

By giving . examples simulated results indicate the effectiveness of 

this filter compared to the first and second order filters. 

3. 	Innovations Approach  

This approach was reported several years ago in a series of papers 

by Kailath [12], Frost and Kailath [13] and Fugisaki et al. [14]. 

The innovations method resolves the problem into two parts: 

• (i) The data process y is transformed into a white noise process v 

called the innovations process. 	 • 

(ii) The optimal estimator is determined as a functional of the 

innovations process. 

Despite the advantages of this method it does not immediately yield 

any simpler and practically usable nonlinear estimator. 

The formula for the optimal nonlinear estimate is given by: 



;(t/ ) =E{ x(t ) 1 v(s ), 	0 < s < 4} 	.• 

‘) ( a ), 0 < . a  <• s 
v
(s)] ds 

Using the innovations theory with the stochastic approximation 

techniques an algorithm is derived for numerical coMputation of the 

innovations processes and consequently the system state of the nonlinear 

dynamical systems [15]. 

This concept will be applied to the orbit determination problem for 

the first time. 

Now we are in the process of applying these three approaches to the 

unified state model for satellite orbit detenmination and in the near 

future we will develop a new nonlinear filtering approach based on the 

invariant imbedding technique combined with stochastic approximations. 
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A NON-LINEAR FILTER WITH HIGHER-ORDER 

FUNCTIONS VIA INVARIANT IMBEDDING 

1. 	Introduction  

In engineering and physical sciences there occur many two-point or 

multipoint boundary-value 'problems. Since these problems usually are 

nonlinear, they are accompanied by various analytical and numerical 

difficulties. Analytically there is no general proof for the existence 

and uniqueness of the solutions. Numerically we possess no convenient 

technique for obtaining the numerical solutions on modern digital 

computers. These numerical difficulties are caused by the fact that not 

all the conditions are given at one point. To obtain the missing 

condition a trial and error iterative procedure is generally used. But 

this procedure is not suited to modern digital computers. Furthermore 

r a - large nimber of problems (e.g., orbit determination) the starting 

or guessed missing condition must be very close to the correct and yet 

unknown condition before the procedure will converge. 

The invariant imbedding approach is a useful technique for solving 

such problems. 

2. 	Invariant imbedding and nonlinear filterine  

The invariant imbedding concept is used to derive some useful 

results in nonlinear filtering and state estimation problems. 	Since 

Wiener's pioneering work [1] on the theory of optimal filtering and 

prediction, many extensions and new developments have been made in this 

field. 

First the work of. Kalman and Bucy [2] is concerned with the 
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estimation of state variables for linear systems. Later Cox [3] treated 

the estimation problem by dynamic programming. Bryson and Frazier [4] 

treated the nonlinear version of this problem. Detchmendy and Sridhar 

[5] applied the invariant imbedding approach to nonlinear filtering 

problems. 

Since the invariant imbedding approach is different from the usual 

classical approach, several advantages have been gained. First., the 

present approach is applicable to a wide variety of nonlinear problems. 

•Second, a sequential estimation scheme is obtained which makes it 

suitable for on-line or real time simulations. Also, no statistical 

assumptions will be made concerning the noise or disturbances, which is 

more often the case in practice. The commonly used least squares 

criterion is employed to obtain the optimal estimates. 

Formulation of the estimation problem 

Consider a system whose dynamic behavior  can  be represented by the 

differential equation 

dx 

(377t: = f(>;, 

The state, x, is being observed starting at an initial time to  = 0 and 

continuing to the present time tf . Owing to the presence of noise or 

measurement errors, the observed state, z, of the system does not 

represent the true state. Let - 

z(t) = x(t) 	(meas. or observation errors) 	(2) 

The problem is to estimate the current state of the system at t f , using 

the classical least squares criterion, so that the following integral is 

minimized: 

(1) 
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J = 	(x(t) 	z(t)) 2  dt 

t
o 

The problem can be stated differently as follows: On the basis of the 

observation z(t), 0 < t < t
f' 

estimate the unknown condition 

so that J is minimized. 

4. The Invariant Imbedding Approach 

Define the new variable 

y(t) 	ir (x(t) - z(t)) 2  dt 

(3) 

dy 

(x(t) - z(t)) 2 	 (5) 

(6) 

Consider now the general problem 

dx 
f(x, 

dt 

dy 

= (x(t) 	z(t» 2  

with the'given condition 

x(a) = c 	 (7) 

y(t1) = J 



r(c, a) = y(a) ; (8) 

da - 	r (e, a) 
cc 

(12) 

-  19 - 

with 0 .<t < a. In other words, the missing final condition y(t r) is to 

be obtained by considering a family of processes with different final 

points a. 

Define 

by invàrinat imbedding, an expression for r in terms of c and a is 

obtained and called the "Invariant Imbedding equation" 

ar(o,a) 	2 
f(c,a) 	

e 	a 	
= (c - z(a)) 	(9) 

D 	D 

The derivation is in reference [6] and is based on Taylor's series 

expansion up to the second order-. 

This equation (9) gives y(t
f

) but is not easy to solve as the 

initial r(c,o) or y(0) is not known, but the aim of the estimation 

problem is to minimize y(tf' ) so we do not need to solve (9) directly. 

. 	The optimal estimates  

The problem is to obtain a series of values of c which minimize the 

cost function r(c,a) for a series of final terminal points, a. 

Let these minimizing values be denoted by e(a) which are the 

optimal estimates of x, so 

Dr(e,a) 
= re (e, a) =0 	(10) 

The total differential of (10) is 	. 

De 

r
cc

(e
' 
a) de 	r

ca 

r (e, a) 
de 	' ea 	_ 

, a) da = 0 	(11) 

or 



f(c,a) r
c
(co.) + r%(e,a) = (e - z(a))

2 

(13)  

(14)  

(16)  

(17)  

-20- 

Once the function r, r
cc' 

r
ca 

are determined, eqn. (12) can be solved 

knowing the initial condition 

e(0) = best estimate of the x(0) ; 

however the computational procedure is not simple. It involves the 

solution of the partial differential equation (9) which : is 

Differentiating (9) w.r.t. c, we obtain 

fr +rf+ r 	= 2(c - z(a)) 
ce 	c  C 	ac  

or 

r
ac 	

r
e 	2(z(a) - c) 

- — = f + — f + 
c r 	r 	r 

cc 	cc 	cc 

Substituting (10) into (14); we obtain 

Combining (12) and (15) 

de 
f(e,a) 	r (e,a) da 

cc 

or 

"de 
= f(e,a) 	q(a) (z(a) - e) 

where 

2 -  • 
q(a) = 	 

r 
cc

(e,a) - 

2(z(a) 	e) 

Equation (16) gives the desired optimal estimate. The function q(a) is 

considered as a weighting function and should be obtained. 



dq 
-d—a• = 2 fc  (e,a) q(a) - q

2
(
a

) (23) 

negligible and 
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6., Equation for the weighting function  

Differentiate equation (17) 

r 	(de/da) + r a 
dq 	ccc 	ec 

= - 2 
da 

r
2 
cc 

Using (16) and (18) 

(18) 

Differentiate (13) w.r.t. c 

fr 	+r f +r 	= 2(1 -1 r ) 
cce 	c cc 	ace 	c cc 

(20 ). 

Substitute (18) and (17) into (20) we obtain 

2 
r 	= 2 (1 -f) - f 
ace 	q c 	rcee 

.so equation . (19) becomes 

3 dq 
—
da 

= 2 f
c 

q - q
2 

- —
2 

(z(a) - e)  r00 

. For many practical situations, the function r(c,a) can be approximated 

by the equation 

r(c,a) = P o (a) + P 1 (a) c + P2(a) c
2 

in the neighborhood of the optimal estimate e(a). In this case r 	is 
cce 

(21)  

(22)  
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7. ..Summarv  

The least squares filter with first weighting function (seCond- 

• order filter) is given by 

•de 

f(e,a) + (z(a) 	e) q(a) 

with initial conditions 

e(0) and q(0) given. 

8. Generalization for the multivariable system  

The above results can be generalized to systems with dynamics 

represented by M differential equations 

dx 
- f(x

' 
 t) 

dt  

where x and f are M-dimensional vectors.  •  The observation model is 

z(t) = h(x,t) + measurement errors; 

z and h are m-dimensional vectors. 

Following the same derivations as for a scalar case, the filter is 

given by the following equations 

de 
= f(e,t) + q(t) hTe (e,t) [z(t) - h(e,t)] 

fe (e,t) ci(t) + cl(t) Ef e (e,t)3 r  

+ q(t) ihee (e,t) [z(t) - h(e,t)]} q 

- q(t) [he (e,t)] T  he (e,t) q(t) 

dq 

dt = 



f
e 

= 

Df 
1 

e 1 

• 
ar 

a f 1 

 Dem  

at' 

[h

•  

.:1 	(z-h) 
eM 1 

hT 
	(

z-h) 
e
M
e 
M 
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The. first equation represents M diff. equations. The second represents 

M2  diff. equations where 

is an (M x M) matrix • 
• ) 

h
T 

(z-h) 	h
T 

(z-h)' ... h 	(z-h) 
e

1
e

1 	
e

1
e
2 1 eM 

[z-h] = 
ee 

is an (M x M) matrix Where the elements are scalar or inner products of 

—thevectorsand [z-h]. h — elej 

9. 	Orbit determination of eynchronous-orbit satellite using the second 

order filter 

Using the U.S.M. (unified state model) to represent the orbital 

trajectory dynamics [7] 



d 

dt 
R

1  

R 2  j 

dt 

d • -.: 

e3  

e
l 

2 

3 

sin X = 2 e e /(e
2 	

e
2

) 
_ 	_ 

12 R
2 

J 
dC 
	 C5 v3 (e e - e e )(e e + e e ) 

3 • 	. 	e2 	1 3 	2 4 	2 3 	1 4 

0 

cos X 

sin X 

r 0 
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-P 

-(1+p)sin X 

(1+p)cos X 

0 	w
i  

a
e 

1 

a e
2 

-w
1 

0 	w3  

L -w 1  
0 	-w

3 	
0 

71 Le 11  

where 

v
e2 

- - sin X R + cos X R ve2 	1 	2 

cos X = 2 	2 2 	2 4  - e 3/(e3  + 

w
1 

= a/v 
e3 e2 

w
3 
 = C va

e2 
 /p 

and a. are the perturbing accelerations [a] = E a. 
1 - 	• 

Taking into account only zonal and tesseral harmonics for 

perturbations, the dynamic state equation 

dx 

dt 
f(x, t) 

is given by the following first differential equations. 



	

dR 	R
2 

	

1 	e 
= 	 

dt 	3 

	

4 	4 

	

C 	ve2  [24(e 1 e 3  - e2 e4 )(e2 e3 	e 1 e4 ) e3e4 
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1 	 1.5  v
e2 	

1 3 2 4 	4 3 

dR 	R2 J 
- 2 	... 	e 	 .. 	. 

C: ve2 1-12( 1 	e2 e4 )(e 2eee l e 4 )(e ll-e) 
P j  

2 
1 	- 3(1 -12(e l e3  -e2e)) ) 

 22 e360/(e3...e4) 

2 
de

1 	-3 R
e 

J 

dt " 	S C
4 

v
3 

 

e2 	1 3 2 4 	1 	2 4 

de
2 

3 R
2 

J 

3 = 	 C e 3  v  
1 	2 

2 
1 ve2 

' 	1 

211 

de
3 

-3 R
2 

J 

dt 
=

3 
22  

e2 v
3 

 e2 (e 1  e3 
 -e

2  e 4 
 )(1-2e

1 
 -2e

2 
 ) 

1 

-17t 	
C  

2 

e4 ve2 



2 2 
dt - 	3 e1 

v
e2 
3 (e1 e

3 -2 

 -e-e 4 )(1-2e 1 -2e2 ) 

de
4 
	-3 R2 J. 

e 

the  states. 

The observation model in this case is given as 

sin
-1  

h 

2 	2 	2 1/2 
(x + y + z ) 

tan 
 -1 2E 

Y 
n•n•n 

h 

A 
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1 
- 717 

C e2 

These equations give the 7 order vector [8] as a nonlinear function of 

where (x, y, z) are the cartesian coordinates and (Y.,.'11, A) are the 

polar -coordinates giving (elevation, range, Azimuth) . as observations. 

To transform this nonlinear vector as a function of the states we 

obtained (x,y,z) as functions of (C, R 1 , R2 , e l , e2 , e3 , 

x=  P 
4_ _ 22\  

(e2eee1e4) / C ve2  

y = 	4e2+e2 ) (e e -e e )'/ C v  
4 3 	1 3 2 4 	e2 	1 2 

Z  = R
e 

where 

= Earth's radius. 

Now having the model in the form 

x(t) = f(x, t) 

z(t) = h(x, t) + (meas. errors) 
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to apply the nonlinear second order filter previously derived we 

obtained the first and second derivatives required for the filter. 

Mathematical details are not given here, .but after several manipulations 

the matrices f
e

, h
e

, h
ee 

are derived to use for the filter. 

10.  Simulation  Results  

The  'SeCOnd Ordèl; 	the'fihVarlant imbédding 

approach was applied to the unified state model for orbit determination. 

The initial conditions of the states [x(1) ... x(7)] are given by: 

C = 3.074656 km/sec 

R
fl 

= R
f2 = 

0 km/sec 

e l , e2 , e3 , e4  are calculated using 

1 =0.9
o  

n 24o°  
_ 

and  

The data [z] are provided by the CRC. The file containing the data 

covers 24 hours of tracking data. The range h is provided at the rate 

of 6 samples/min., elevation and azimuth vary at a slower rate every 40 

or 80 sec. sampling interval. 

Data included in 4 records of the tape were chosen for simulation. 

The program used for integration of nonlinear differential 

equations is DVOGER based on Gear's subroutine [8]. 

The results shown on the following page are the estimated states C, 

R
fl' 	

e
4. 

We note that C, e
1
, e

3' 
e
4 

are almost the initial or 

 and optimalestimates,
e 	

e2 , there is an error in the 
r 

estimation that increases slightly during this period of time (750 sec. 

for the 3 records considered). 



Initial Estimate 

a = 11/(C
2 	

R
2

) 

2 	2 1/2 
where:. R 

a 	4.216 km 

120 e 
 

= 4.216 km 

= 120
o  
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Transformation,from USM State Vector to Classical Elements •  

Euler angles i and R are given as: 

22 
cos i = 1-2(e 1 	e

2
) 

cos n = (e
1  e4 - e2  e3 

 )/ (e
2 	

e
2 
 )(e

2 	
e2) 

1 	3 	4 

The orbit is defined by 

e = R/C 

and 	4) = X_ x 

2 	2 	2 	2 
where cos X 	- e3 )/(e3  

cos x = R
f2

/R 

Using these equations we get the following results. 

Final Estimate 

.89 

St 	2400 	240.12
o 

0 	2.186x10
-6 

We can see that the classical elements hardly vary during this 

simulation as the error in the estimation is almost negligible. 

This case gives almost optimal state estimation-because the system 

input noise is assumed to be zero, and no assumption is made about the 

observation noise, which is included with the data. Further examples 

are being tried with different initial conditions to ascertain whether 

this method will work equally well in all cases. 


