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SUMMARY

i

o Damping is a critical phenomenoﬁ in the control of large
flexible épace structures. Just because it is "small" does not mean it
is. "unimportant". Section 4 of this report shows, using several con-
texts, that v1rtua11y every important output from a flexible structure
subject to excitation is modulated by the factor 1/z, where ¢ ,is a |
characteristic damping factor. Therefore, to assume z = 0.001 when

it is in reality 0.01 is to introduce an error of = 1000% in all sub-
sequent calculations, design, and simulations. Such a profound error
is quite unnecessary. The physical principles of energy dissipation
are known; the numerical methods (chiéf]y the finite element method)

. for undamped structures exist; the computer power is available. Al

that appears to be lacking is a zeal for the detailed calculation of
damping characteristics to match the current zeal for calculating
natural frequencies. A fruitful approach would involve both analysis
and test results. Current practice is often to eschew both of these
in favour of mere specu1at1on '

The one fact about structural d1ss1pat1on that is. agreed
to by all concerned is that the damping effect is not pronounced, but
'Tight'. In th1s report it is shown that this important qua11tat1ve
characteristic can lead to a number of quantitative conclusions of
pract1ca1 significance. These include the following:

(i) The differences between the mode shapes (eigenvectors);of“
b an undamped structure and those of the same structure when
1ightly damped are insignificant for practical purposes.

(i1) The differences betweeﬁ\the eigenvalues for an undamped
structure and those of the same structure when 1ightly
damped are crucially.significant for practical purposes.

) \

(i11) The crucial differences just mentioned are accounted for
in a natural way by the "linear-viscous modal damping fac-
~ tors" ¢, inserted in the modal equations of motion. The
"off-diagonal", "damping coupling" terms are not important,
and such terms can justifiably be omitted for most purposes.

(vi)



(iv) A "Tinear-viscous damping.factor" added to each modal equa-
tion of motion does not imply the assumption of Tlinear-vis
viscous damping. Provided)the damping is "1ight", both hy-

- steretic and viscoelastic damping (and presumeably other
reasonable damping models) also lead to an effective 1linear-
viscous damping factor. '

a2

A

(v) | For "1ight" damping, the only remaining.problem is therefore
"~ to calculate the effective Tlinear-viscous damping factors.
This requires that-the appropriate local structural dissipa-
"tion parameters be known, and that an effective technique
(e.g., the finite element method) be available to calculate
“the overall structural modal damping factors from these lo-
cal parameters. A1though work. 1is current]y proceeding apace
to this objective, much remains to be done.

If the damp1ng is not "1ight", the detajls of the dissipation
model become more. apparent. Cross-coupling terms cannot be neglected, and
the inclusion of "equivalent Tinear-viscous damping factors" is no longer
adequate. Indeed, as the damping becomes more substantial, the undamped
modes” (and their associated coordinates) become less relevant. "Damped
modal coord1nates" Tead to a more efficient formulation in the sense that
a lesser number of "damped modal coordinates" is required to represent the
structure.to a given degree of acéuracy. ‘One approach to such coordinates
is derived in this report. -

The last main theme to be noted, in some respects the most
1mportant one, is this: not only should structural damping be calculated
accurate]y, it should be desﬁgned adequately. "Structural damping" is
virtua]]y as importént as "structural stiffness". It is easier to control
a well-damped structure than to control an inadequately damped structure
that is slightly stiffer. Yet the proper: compromise between damping and
stiffness is seldom made. Anqther tradeoff seldom broached exists bet-
ween "passive" damping (i.e., structural damping) and "active" “damping.
Most control strategies for large space structures boil down to simple
rate-feedback control. Why this is often considered to be a more "ad-

} (Vii)"h
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vancéd" approach is not altogether clear. It is especially ironic that
virtually all the structural disturbances being "controlled" are in fact
caused by the control system itself. One/wonders if "passive rate feed-
back" (structural damping) might not be an important part of the solu-
tion to the problem of "controlling" large space structures. It is

reliable and failure proof, requires neither on-board control nor ground
-control, consumes no power; dedicates no microprocessors, ‘and does not,
“cause "modal spillover". In fact, it tends to remove spillover. Discrete

damping devices, judiciously located, could remove energy from sejected
troublesome modes, and distributed damping (composite materials?) would add
damping to all modes, thereby simplifying the control system and elimin-

~ating spillover.

(viii)'
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TABLE OF PRINCIPAL SYMBOLS

Symbols used only 1oca11y are defined when introduced.

- residue at p-th pole in viscoelastic damping model
- p-th pole in viscoelastic damping model
- input distribution matrix

- covar1ance matrix between x(t) andy(t); =
<x(t+1)yl(t)>

- element of D - .

N

- e1emeht of f?_

- damping matrix (for all coordinates)
- damping matrix (for elastic coord1nates)
T

T
- E DEE

- undamped eigenvector (mode shape) for mode o

- EDE

- total mechanical enerqy

- undamped modal matrix (columns are eﬂ) for all coordinates

- undamped modal matrix for elastic coordinates

- force

- column of f

- generalized force associated with physical coordinate a,
- response of coordinate o to impulse at coordinate B '
- element of H .

- element of'ﬁ

'~ hysteretic damping matrix (all physfca] coordinates)

- hysteretic damping metrix (elastic physical coordinates)

- ETHE .

T
- E HEE




s = = = |- It r})?:

= I35 4o o o 2 o

< <

no
>

= 4 o wun

-

Greek Symbols
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stiffness matrix (associated with physical coordinates)
stiffness matrix (elastic coordinates only)

left eigenvectors (i=1,...,2n)

-rows of L are Z?

number of substructures

mass matrix (as%ociated W1th physical coordinates)
mass matrix (ejastic coordinates only)

number of physical coordinates (degrees of freedom)
number of state variables

number of poles in viscoelastic model -

a physical coordinate (displacement) |

a matfik of coordinates'(disp]acements)

rigid-body (absolute) displacements

elastic (relative) displacements

riéht eigen§ectors (i =i,...,2n)

columns of R are r. ;

;
Laplace variable (complex)

time

kinetic energy
column of input variables

potential energy

generalized force associated with mode o
column of vy \
unity if i=3 ; zero if 1%

(or Sup)
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s(t) -.zero if t$0; ,. Sf(t)s(t)dt = £(0)
Ty | - viscous damping factor associated with mode «
[ ~ equivalent viscous damping factor associated with mode o \
c‘ | - in the Common Theory, all L, = ¢
'na ' - coordinate associated With undamped mode: o
n - column of Ny,
A o - eigenvalue
A ~ diagonal matrix of ‘the A
u - material staticstiffness parameter
T ‘ - time delay in random-variable correlation
T ; dummy time variable in integration
lgxy' | - spectra} density functioﬁ:‘ gxy(w) = Jmé'ijQXy(r)dr ' ,
w - frequency of sinusoida]‘exéitatibn
o, - - natural frequency of vibfation mode ‘o
Q ~ diagonal métrix of the w, ‘ ~ \

Subscripts

N

i,d - on state variables; range 1 to 2n
oy B - - on modal coordinates; rangg Iton - o N
p -

on poles in-viscoelastic model; range 1 to p

Special Notations o 1 j‘l .

- unit matrix (dimension should be clear from context)

1
la - = column matrix of 0's (whose length should be clear
from context) except for a 1 in the a-th position

(-)H ' - Hermitian of (-); = (-)*T = (-)T*

(xi)
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first variation in (-) |

expected value of (+); ensemble average of (-)
complex conjugate: (x+3Jy)* = x-3Jy |
Ix| /%, x % 0; undefined for x = 0
Laplace transform of (-)

eigenvalue(s) of the matrix A
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1. INTRODUCTION

The modeling of energy dissipation in dynamical systems of
éngineering interest has .recedived much Tess attention historically 3
than it deserves. One might cite fluid mechanics as an example. A
large and elegant theory of fluid mechanics has been evolved based on
the inviscid (zero dissipation) approximation. - This theory permits
the 'potential flow' assumption with all the mathematical benefits con-
ferred by that assumption. Unfortunate1y, inviscid theory cannot be
used to make one of the most fundamentally important calculations in
fluid mechanics--the drag on a body immersed in a fluid flow. Further-
more, without the seemingly arbitrary Kutta hypothesis (zero velocity
difference between the upper and lower surfaces at-a sharp trailing
edge--a hypothesis that is, in fact, valid because of viscosity!) one

" cannot calculate Tift e1ther A totally inviscid flow (i.e., no vis-

cosity and no Kutta hypothesis) mathematically predicts zero 1ift and
zero drag on an airfoil at an angle of attack. Th1s is hard]y a stun-
ning achievement for a fluid mechanical theory.

. An example that is 11ke1y to be of greater interest to
readers of this report concerns the stability of rigid-body rotat1ons
Euler's celebrated result is that a rigid body spinning about either -
its major or minor axis of inertia is stable; an intermediate-axis spin
is unstable. It took dynamicists more than a century and the stunning
object lesson provided by the first U.S. satellite, Explorer I, before
it was realized that Euler's theory does not apply to real bodies. The
thedry is mathematically exact, of course, but omits a critical charac-
teristic of physical bodies—-energy diséipation. With dissipation taken
into account,;the minor-axis spin is in fact unstable.

History appears to be repeating itself yet again 1n\the

- modeling of flexible space structures. Control systems for flexible

spacecraft have in. the past been designed with a great deal of attention
to the modeling of vibration modes (the‘irresist1b1e attraction of a con-
servation-based theory again) and with virtually no attention given to
the modeling of energy dissipation. This weakness was overcome in the

Hermes program by a ground-testing program to determine experimentally
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the damping characteristics of the Hermes solar array. However, as flex-

ible space structures become larger and larger, ground testing may become

~virtua1]y 3mpraética1. There is therefore an urgent need for reliable ‘

and practical methods of modeling damping in large space structures.

This technical report attempts to review, in a succinct

fashion, the most important facts about damping in space structures and
to offer a brief review of the practical analytical techniques that are

already available for dealing with this problem. The current 'theory'

most often used is caricatured in Section 2. This ‘'analytical cartoon' -
might be humorous were it not for the serious deficiencies underlying .

this 'theory'; indeed, it is to highlight these.deficiencies that

.Section 2 dis written, Section 3 then focuses on the 'light damping'

assumptibn. It is explained that all the 'e]éStic mode' calculations
that neglect damping are not in vain, provided a proper damping model

is ‘subsequently incorporated. [Parenthetically, the same is true of

the inviscid (potential) theory of fluid flow referred to a moment ago. -
Inviécid theory is still universally used.to calculate important quan-
tities in fluid dynamics,‘inc1uding 1ift (when the dissipation-motivated
Kutta  condition is imposed!); all the same, inviscid theory cannot be
used to calculate drag; Extensive eXperiencé with aerodynamic calcu-
lations seems to indicate that\it is important for the analyst to know

when to include dissipation and when to ignore it. Also indicated is

this maxim: when>inc1uding dissipation, take it setious1y and model it
accurately.]

Section 4 is a technical éssay on. why damping is important

for large space structures and why those responsible for the design of
control systems for flexible spacecraft shou]d take structural damping

.serious1y. Some popular misconceptions are also identified. Section 5

provides a treatment of IZnear viscous damping4-the most common type
(more precisely, the type most commonly assumed). Sections 6 and 7 go
on to deal with Zinear hysteretic damping and linear viscoelastic damp-
ing. The régort concludes with some summarizing remarks in Section 8.
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2. : THE COMMON 'THEORY'

- The‘remarks made in this section are intended to create the
impression that the mathematical modeling of dissipative mechanisms in
space structures has been inadequate in the past. In view of the history |
of dissipation modeling in engineering mechanics, alluded to briéfly in
the introduction, this state of affairs should not be surprising. Part
of the problem is that the task of modeling damping is not easy. Viewed -
from a sufficiently distant perspective, the current modeling of flex-
ible structures as linear-elastic systems requires 0n1}

(i) one outstanding constitutive assumption--strain proportional
“to stress;. : , _ ‘

(i1) | one outstanding geometrical assumption--deflections are first-
order infinitesimals; N

(iij) - one outstanding numerical method--the 'finite element' method.
The rest is details. \

.The first twd assumptionsware made to facilitate a ‘linear
theory. The finite element method enables the analyst to extract numeri-

.cal data from his theory in spite of spatially varying constitutive para-

meters, complex substructural interconnections, and. arbitrary structural
boundaries. Energy dissipation is an unwelcome intruderﬂbecause it vio-
lates assumption (i) and thereby eliminates the applicability of a sub-

' Stantial body of mathematical, physical, and numerical theoﬁy.

. To obtain a deeper understanding of energy dissipatibn, one
must refer to the science of-materials. Within material science, a great
deal is known about energy dissipation. However, most designers of con-

’ trol systems for modern spacecraft are not conversant with the germane

particulars from material .science. (This may well be true of most space-
craft structural analysts as well.) A more profound problem is that the
models used by material scientists are cumbersome or intractable when
applied, not to an element dV of uniform material, but to a typical space
structure. It is probably fair to say that any methodology that is not
amenable to treatment by some reasonably straightforward modification to
the finite element method is doomed to obscurity as far as sﬁacecraft
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modeling is concerned

These barriers to accurate structural mode11ng may be sur-
mounted in the 1980's, but only with considerable effort and imagina-

tive thinking. It is interesting to note that Graham (Ref. 1); in an
extensive review in 1973 that attempted to bridge the gap between
material science and structural modeling practice, stated: "A fairly.

general opinion among engineering\dynamicists.today'is that a greater

effort must be made to place the treatment of‘material damping on a
more substantial analytic basis". In spite of this "general opinion"
in 1973, the last decade has hardly seen a quantum improvement. In
fact, to judge from the recent technical literature, the only theory
currently being applied is the Common Theory described in the re-
mainder of this.section.

We choose as our undamned system the 11near, time-
invariant d1fferent1a1 system represented by '

S T (2.1)

where

M_T

=_M_>O; KT

If rigid-body modes'are exc]uded by physical constraints, then K > 0.
A gyroscopic matrix term could also be included in (2.1), and this

would enhance the applicability of the following discussion to certain .
- flexible spacecraft. Such a term will be omitted in this report be-
cause it makes more extensive some of the details to follow and thereby

detracts from the princjpa1‘points to be made. It can be stated, however,

that the ideas expressed below are applicable to flemible gyroscopic
systems. The system matrices M, K and § are typically calculated with
the aid of finite element methods, although other procednres are also
sensible in particular situations. o

2.1 . Phase 1 - The Elusive 'Damping Matrix', D

"The first phase of the Common Theorylis to observe that the

=K>0 L (2.2)
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dissipation-free system (2 1) can be converted to a dissipative system
by the addition of a _g_term, as follows:

Mg + D3 + K= § T (2.3)

~ where

o'

—_—

=D 0 | , (2.4)

The Theory is much simplified by the assumption that D > 0, but unless

the spacecraft is damped with respect to an inertial reference{frame

this assumption is not valid. [Exceptibns Eddy- current damping and
magnetic-hysteresis damping are examples of weak externa] damp1ng, 1f these
were included, D > 0 for the attitude mot1on equations.] In any case,

the system energy '

= 541 + 3a'kg | | (2.5)

is reduced, in the absence of external influences (4 = 0), at the rate .

=403 <0 o (2.6)
and upon thTS fact rests the success of the hg_term in (2.3).

In spite of the notoriety of the Dq term, it is exceed-
ingly rare for anyone to actually calculate D for flexible structures.
Textbooks (and too many research papers) observe sagely that 'if D is
proportional either to M or to K, the transformation that simultaneously
diagonalizes M and K will also diagonalize 25‘ Let E be the matrix of
(undamped) eigenvectors that simultaneously diagonalizes M and K. Then

EME = 1; ETKE = 9% - (2.7)

- where 2 is the diagonal matrix of natural frequencies (rigid-body modes

included). Then, if
D= e+ ek - \ (2.8)

it follows that
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will be discussed in Section 5.

EDE = ;1 + ¢ ~ | (2.9)
In fact, one can wrfte

E'DE = diag{2zu se..s28 0} C (2.10)
4where

t, ke fu + e ) . (e=leenn) o (2411)

with W, the natural frequency of vibration of mode o, and n the numbér

of degrees of freedom (the number of coordinates in q). The diagonaliz-
ation of D indicated by (2.9) is much to be desired because the trans-
formation | ‘
9==En
which converts the undamped system (2.1) to
) .

il

+ N
nOL' wOL nOL o

Y » ~ (o=1,...,n) (2'12),

where

v=Ef | - - (2.13)

‘converts the damped system (2.3) to

n, * 2Cawdﬁd + wsna =Y, (a=1,...,n) - (2.14)

Now virtually all the benefits of modal analysis that make (2.12)

attractive apply still to (2.14).

\ These benefits are, however, based on the proportionality
assumption (2.8) and this assumption is not based on any rigorous -theory
of structural damping. An impertant exception--discrete viscous dampers--

|

2.2 | - The Critical Role of the 'Knowledgable Person'

The second phase of the Common Theory is to dispense with
D altogether and proceed directly to the real objective--the modal co-

- ordinate motion equations (2.14). After a detailed and sophisticated
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calculation of M and K, one arrives at thé undamped equations (2.12).
Then a damping term,.anmaﬁd, is arbitrarily added to each equation to
produce the form (2.14). (This procedure is not applied to modal equa-

)

tions for rigid-body modes; they are left intact, in the form N, = Yy

Now comes the swindle: the moda} damping factors g, are
not caleulated. Their values are simply assigned by a Knowledgeable
Person. This is not to criticize the K.P., who is usually reluctant
to make these numerical assignments, especially in the amount of time
allocated. Reliable damping-factor information on structures is hard
to come by, especia11§?§pace structures (see, however, Section 2.4).

‘Not only is theory avoided; there is no handbook either. In the end,

the Knowledgeable Person must simply make a Guess.

Ve

2.3 The-'Know1edgeab1e Pefsdn"Mékes His 'Guess'

After realizing that there is no way to escape his desig-
nation as Knowledgeable Person, the K.P. goes through a thought pro-
cess that is essentially as follows. First, since:-he does not know
what any of the 2y actually are, he has no basis for choosing them to

bé different. Thus he makes \

Decision No. 1 - All the modal damping faétors are equal:

. = : (a=1;..;.,n) , (2.15) -

}

With this assumption, one on which he can hardly be faulted,
his task has been reduced by a factor of 1/n., It remains to pick the
value of g. "This is not easy. A1l he knows for certain is that t is
positive, but 'small'. He knows ¢ is positive because to assume other-
wise would be to violate the second Taw of thermodynamicé; he knows it
is 'small' because all observations of space structures (and of similar
ground-based structures) confirm that the damping is 'small (see Section
2.5). It might then seem that anyv'sma11’ number could be chosen with

. essentially equivalent validity. But this is not so. The Knowledgeable
_Person is aware (or should be aware) of the points made in Section 4 of

this report. To pick £ = 0.005 is to pick ¢ 400% greater than ¢ = 0.001,

.’ and if ¢ is really 0.001, the K.P. does not wish to be guilty of a 400%
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error in his Guess. In fact, the K.P. is in a bind. If he chooses ¢

to be too small, he is placing a much greater load on the control system
designer to provide the missing rate feedback, a challenge that those
who earn their Tiving designing contfo] systems are eager fo accept,

(He also--almost with a wave of his hand--makes necessary perhaps

hundreds of thousands of dollars worth of additional computation to
confirm the control system design by simulation. - Better perhaps to
spend a few thousand dollars to model passive damping!) On, the ofher
hand, if the K.P. assumes cAto be too large, an even more unwelcome
consequence is possible: the attitude controT\system may not be
capable of stabilizing the spacecraft and a mu1ti-m111ion-do11ar
miSsion may be lost. On balance, the K.P. is forced to be 'conserva-
tive', that is, he is forced to choose ¢ somewhat smaller that he
really thinks it is 11ké1y to be. Thus the Knowledgeable Person makes

Dectston No. 2 - The value of ¢ is

z = 0.005 , (2.16)
The K.P. knows that damping,factorsvin space tend to\be in the range
0.01 < ¢t < 0.02

and the value chosen, ¢ = 0.005, gives him a certain safety margin. A
larger safety margin would be available by choosing z = 0.001; but the

© K.P. knows that no freely vibrating space structure has ever been ob-
served to take 1000/2w periods to damp down to 1l/e of its initial vi-

bration amplitude and so, rather than be replaced by a More Knowledge-
able Person, he chooses ¢ = 0.005. /

2.4 ‘ Reflections on_the 'Common Theory'

o It is evident that the Common Theory of damping for flex-
ible space structures is not a 'theory'.at all. It is instead an ex-
ercise in basic engineering judgment. The author has on file dozens

_ (perhaps hundreds) of papers and company reports by leading organiza-

tions in which the above procedure is followed, although never with
such candor. No justification whatever is given for the selection of
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the g5 they are simply assigned.

An 1ntekesting mental experiment s the following: choose

' a structural vibrations specialist and show him an engineering drawing

of the structure. Tell him the materials from which the structure is.
made and give him, 1n addition, only the following numer1ca1 data:

(1) - the mass of the structure;

(i) the characteristic length of the structure.

‘Now ask him to estimate all the natural frequéncies for the important

modes of the structure as accurately as possible. If this situation
sounds absurd, it should be realized that this is precisely analogous

to the position in which the Knowledgeable Person of Sections. 2.2 and

3.3 finds h1mse1f when asked to estimate the modal damp1ng factors.
0bv1ous1y, th1s procedure for natural frequenc1es wou1d not be toler-

~ ated.

Why, then, 1is the'analogouS'procedure so widespread for
damping factors? Some argue that damping factors are not all that
important, provided they are small. This point of view is attacked in
Section 4. Others may say that they are virtually impossible to calcu-
late. This assertion will probably not stand up to careful scrutiny.
In the opinion of the author, if the effort over the last fifteen years
to calculate the Ty, had been as intense as the effort to calculate the
w,> a substantial_body of engineering practice would by this time. have
evolved, permitting the calculation of the ¢  to within (say) 10%, in-
stead of the current Guess to w1th1n 900%.

The real obstacles to the development of such procedures
appear to include the following ones.

Obstacle 1 - There is a widely held beZzef that ¢ does not matter be-

‘cause it 1s 'small'.

Obstacle 2 - Controls engineers are happy to see ¢ remazn small, because

it elevates the criticality of their discipline.
(Hundreds of papers on control of. flexible spacecraft assume the struc-
tural damping to be zero, thus virtually guaranteeing that sp11]over
from the neglected modes will be a problem.)



|
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Obstacle 3 - While natural frequencies can be caleulated solely on the
basis of static test data--mass properties and stiffness
properties--damping factors inherently require data fro

N .

- dynamic tests.

The first two obstacles are rather artificial and can be’
eliminated through an increased awareness of the nature and function

_ of!passive structural damping. ‘The third obstacle is more fundamenta]

and can be overcome only through major research and deve]obment pro-- .
grams. '

2.5 Flight Results on Structural Damping

Not only is there no comprehensive engineering procedure
for modeling structural dampihgé there is very little data available.
from flight results either. Some data is available for the FRUSA
solar array (Ref. 2) indicating a damping factor of about’2% in the
primary mode. For the Hermes satellite (Ref. 3), which had a some-
what similar solar array, the damping factors were about 1% - 2%
depending on the mode. Recent on-orbit results for 0S0-9 (Ref. 4)

~also imﬁ]y damping factors < 1%. It shou]d be noted that these damp-

ing factors, already greater than 1%, were occurying naturally in

the structure; no attempt was made to design damp1ng\into them. In
the case of Hermes, it is also noteworthy that the values measured in
Space‘were often significantly greater than those measured in dround"
tests in vacuum. It is suspected that joint freeplay, much reduced .
in ground tests by gravity-induced tension, may have contribute extra
damping under the free-fall conditions of space.

3. +*  THE 'LIGHT DAMPING' ASSUMPTION

It has been observed that the level of energy dissipation
naturally occurring in space structures is 'small'. This fact can be

used to advantage in obtaining basic analytical results. Specifically,
it will be shown in this section that, provided the Tevel of damping is

sufficiently low (less than a few pefcent), the eigenvectors of the
damped. system are, for all practical pruposes, the:eigenvectqrs of the

10
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undamped system (the vibration modes). The only really important effect
of Tight damping is the sTlow exponential decay of vibration amplitude,
and this will be shown to depend on]y on the d1agona1 e]ements of the

modal damp1ng matr1x

3.1 Jacobi's Formula for Perturbation of Eigenvalues
and Eigenvectors o

One point of departure is Jacobi's formu]és'for the first-
order perturbations in the eigenvalues and eigenvectors of a general '
real matrix A due to first-order change in A. ' The Tatter change in A .
is denoted SA. Let the eigenvalues and eigenvectors of A be denoted

C (aary) O i=l,e...en ‘ ©(3.1)
B R

(The reason for the notation ry for the eigénvector Ty will become’tlegr
presently. ) In general, (A R r) may be complex. For the application in
mind, we prefer to. let A be a 2nx2n matrix and to let n denote, as be-
fore, the number of coordinates -in the problem. If the number of co-

ordinates in a structural model is n, the number of state variables is

‘2n. Then

Ary = Ayry (i=1,...2n) (3.2)

This set of equations can be combined into a single 2nx 2n matrix equa-
tion ‘ '

R=R ' ‘ (3.3)
where ' |
R="Irj...ryl ‘ (3.4)

is the modal matrix or eigenmatriz for A, and A is the diagonal matrix
of eigenvalues
4

A = diaglag,e.arp : o (3.5)

The foﬁm (3,3)-(3.5) implies the assumption of 2n linearly independent
eigenvectors, a valid assumption for structures except in the trivial

11
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There is no difficulty about whether R

‘case of uncoup]ed structures.

The moda] re1at1onsh1p (3.3) can be rewritten
L‘=' L - o (3.6)
where -
(3.7)
-1 exists because it has already

been assumed that the eigenvectorsAgi,...,gén_are Tinearly independent.
If, now, we let the rows of L be Ly "

then (3.6) can be decomposed into the 2n relations:

2a = A.z’.*

£3A (i=1,...2n) (3.9)

.The significance of the symbols r; and ﬂ can now be discerned: ry

is the "right eigenvector"” of A, and Z 1s the "Teft e1genvector" of A.
The right and left eigenvectors sat1sfy “the orthonorma11ty conditions

H. - e |
fﬁ!ﬁ = 61j~ . .(193, 1,...2n) | (3.10)

"as is obvious from (3.7), When written as LR = 1.

The way is now prepared. to cons1der the "e1genconsequences
of small perturbations 6A in A. From (3.2),

(A + SA)(r, +6rs) = (hg + 83, (ry + 6ry) (3.11)

To first order, this relationship can'be written

Ar, + _@_53«_1; + (AP = Airs * A{SLT 47 (84;)r (3.12)

=i il

When (3.2) is subtracted, one arrives at the fo11ow1ng\f1rst-order result:

L=1| « . (3.8) .

L
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Asr, + (8A)r; = Ay6r. + (825)r; (i=1,...,2n) (3.13)

—1

On the basis of this equation we can find the small changes in A; and r,
due to small changes in A. ' '

First, premultiply (3.13) by gg. Upon noting (3.9) and

(3.10), we have

2,(sR)r; = 0 (143) o (3.18)
sry = £ (sA)r, (i=1,...,2n)  (3.15)

The Tatter equation exprésses the change in fhe eigenvalue Ai caused

by the,change in the matrix A.

Next, we find the change ¢r; in the eigenvectors rs-
With no Toss in generality, the condition B ‘

dlsr, = 0 (i=1,...,2n) O (3.16)

is imposed on 634. This condition may seem arbitrary, or even wrong, at
first glance. It is needed, however, to make SEi[unambiguous. Suppose

ry * 634 is an eigenvector of A + &A. “Then (24 + 8a.)w is also an eigen--

i .
vector of A + 8A, ‘where w is any complex constant. The condition (3.16)

resolves the ambiguity of the factor w. Thus
| 8y = (rj&+ §gﬁ)w - ri (3.17)
and. (3.16) fixes w to be
W= (1+ &?631-)'1 | \ | (3.18)

To derive the desired expression for 8rss note that

2n H'

A_=kzlxkgwgk ~ . (3.19)
This relation simply expresses A in terms of its .eigenvalues and
eigenvectors, and clearly satisfies (3.2) and (3.9). Then (3.13) can

be rewritten‘thus:_

13
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2n R o
X xk_k_kar t (SA)ry = Ag6ry + (82))r, | (3.20)

Now, premu1t1p1y by £H +1), and note the orthonorma11ty conditions

(3.10), to obtain

H | ,
- L3 (8A)r, -
Heo o J° = ‘s
&y0ry = oAy (143) (3.21\)

If (3.21) is premu1t1p11ed by r and summed over all j (except j = 1),
the result is
| 2n .21l - | | |
Cerg = | T (sM)ry o (=1,...,20) o (3.22)
J=1a; AJ ] ,

J+1

because from RL = 1 we Tearn that

2n H ‘
-j,Zlijéj ‘“_1_ _ - , (3.23)

S o  the e
- and gﬁari y agreement. Equation (3.22) is the relationship sought; it

expresses the change in the right eigenvector ry caused by the change in
the matrix A. Note also that distinet eigenvalues have been assumed.

For the sake of completeness, it is remarked that the
change in the left eigenvectors due to 8A can be shown to be

oo rd ] | |
st = 2(sn) .z J 5’ (i=1,...2n) (3.24)
J:
a‘éh J
using a similar derivation.

3.2 Perturbations in System Eigenvalues Due to Light Damping

~ With the above results in hand, we turn now to the real.

objective--finding the pérturbations in the undamped modal parameters

caused by small structuré]'damping. The undamped\vibrating system re-
presented by ' '

A)




! . ] - . . -

. M§;+ ES.=:Q. : : | (3.25)

can a1solbe~represeﬁted by
_ | . _ _ ,
q(t) = En(t) = ] e n (t). (3.26)

where

') 2 ,
n, tugn, = 0 (a=1,...,0) | (3.27)

and e, the columns of 'E;are the undamped_moda] vectors. They satisfy

the orthonormality relations

T ] T .
gocM—e—B 6ozB’ —e-ocﬁgﬁ afB

“which is just another way‘of‘writing‘(2.7). In this section, we con- -

sider the elastic modes only, ms > 0.

1

Now, (3.29) can be rewritten . .

n o 1 n

. = ) . (3.29)
n e 9 n “

and so we have the following correspondences to the theory of Section

3.1: _
A {: o 'l:l ‘ | (3.30)
c o Le? ol - o

o

- 1 1
- =0 0
ro=1 : Pove = | - (3.31)
Jow 1 )
o0 e
Aepanl  ostills oAl epal wglln 0 6
A= du s AL = =ju \ 1 (3.33)

for a=1,...,n. Here, ;a'is a nx1 column of 0's, except for a 1 in
position a. ‘

15
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, ‘Now we consider the damp%ng terms to be perturbations to
the above (undamped) system. The damped system is

Mg + D4 +Kq =0 (3.34)

where D is 'small'. The undamped eigenvectors e 'are still a vector
basis in which to express g(t). Thus we still use (3.29), except that
n, MO longer satisfies (3.27), but ' ‘

n .
. PN . 2 - )
qa'F Z daBnB togn, T 0 (3.35)
g=1 """ »
instead, where a&s are the elements of‘@P and
0 = ET_E - ~ (3.36)

- Furthermore, we define

t =%d /v . (3.37)

Q ac” O

as the damping factor for -mode o. Note, howe?er, that we are not
assuming that d_, = 0 for o T B ) ’

What are the changes in the eigenvalues due to D?
According to (3.15), we can use (3.30)-(3.33) above, provided we ob-

o n+ao o a

~ serve that
o 9 0
A = R (3.38)
: 1o -2 ST
in order to be consistent with (3.35). The result is
SA. = 8A = <z | (0=1,...,n) (3.39)

From this simple result we can come td the following important con-
clusions. -~ O |

Conclusion 1 - For lightly damped structures, the change to the un-

damped eigenvalue jm& caused by damping depends only
on the diagonal elements of D, not on the of f-diagonal

elements.

16



' Conelusion & - For lightly damped structures, the change to the undamped

eigenvalues jma caused by damping is a small shift into
the left plane, of magﬁitude.t&wa. There is no change

in the itmaginary part of the eigenvalue.

3.3 Perturbations in System Eigenvectors Due to Light Damping

‘ Next, we consider the change in the eigenvectors caused by
light damping. We write (3.22) as '

H oH Ho | ‘ :
lr £ n r L r o, L :
opg = | Sty | BB SHENT a0 (3.40)
1 Ta Tnito B=1 | "a- "B "o "N :
: B+u

* N . \ :
for u==1;f..,n, and §r, = (Gga). Us1ng»(3.31)_ (3.33) and (3.38),
one finds - ’

‘ " la U aaB le -
R . , )
5_‘:& 2JCu + Jma Z 5 7 N (3-4_1)
. g=1 W, =g i ‘
Gl ok ol

for uf=1,...,n.ﬁ There is the suggestion in (3.41) that theé damping must
be especially 1ight when the frequencies are clustered (nearly indistinct)
if our 'light damping‘ theory is to remain valid.

3.4 i Perturbations to Undampéd Motion Due to Light Damping

In the absence of damping, the general free motion of the
structure consists of a Tinear superposition of the (undamped) vibration

"modes, as shown in (3.26):

. n ‘ _

q(t) = ¢Z1§“n“(t) , (3.42)

where |
”a(t) = ¢y, cosu t + Cp,Sinu t (3.43)

and the constants ¢, and ¢, are determined from initial conditions.-

17




- where g are the eigenvectors in physical coordinates, A are the

To find the effect of Tight damping on this solution, we re-examine |
the undamped solution (3.42) - (3.43) in another light by setting

q(t) = [ Y ¢ gﬁe :[ - | | ’(3.44)

eigenvalues and c, area set of complex constants determined from
initial conditions. Although we allow Cys 4, and Aa to be complex,

‘ gjt) itself is, of course, real.

" The eigenvector in physical coordinates, 9y is re-
lated to the eigenvector in undamped modal coordinates,'na, by

~

a, = En i . 1(3.45)
However, from (3.31), ;A
.so that ( ,
9, =, . _ (3.47)

Also, A . jm . So (3.44) is 1dent1ca1 to (3.42) - (3.43), with the -

: 1dent1f1cat1on that

cC =¢, = jc2a : (3.48)

o lo

For the 1ightly damped system- we can still write the
solution as a sum of modes, as given in (3.44). ‘But now

\
~

: n- d
= = oL aB
9, =En, =E |1 -%jc 1l * ) -5 1,
" B

—a =1 w_-w

: Bta ¢

as indicated in (3.41). In other words the'lightly-damped mode shapes'’
9, can be expressed in terms of the undamped mode shapes ga as follows:




B K . . ; X
.

" n d
- . . : oaf - -
9, = (1 -4z )e, + Ju, le 7.2 g, 1(3.49)_
Bfa 8

Speaking loosly, a 1% damping results in a 1% change in the(undamped eigen-
vector, at 90° phase.

The genera] free motion of ‘a 1ightly damped structure is
then of the form (3. 44), with q, given by (3.49), and

A = dw - o | - (3.50)

as indicated in (3.39). It follows that

A

t, _ Lot | noode | "
Re{gae o’} = e "aa |e cosu t + .2§ e, = U, 821 m2-m2 gg [sinu,t (3.51)
Bto o« B
The expression for Im{gaéxat} is the same except for
{COSwat,Sinmat} > {sinmat,  -cdswatf ’_(3.52)

/

‘The following two conC]Usionéxconcerning the effect of Tight structural

damping on the free motion are now clear:

Conclusion 3 - The motion is no longer purely oscillatory, but is slowly

damped. .The.envelope for mode o is exp(—;awat).

\

Conclusion 4 - The damped mode shapes are essentially the same as the un-
‘ damped mode shapes, but with small, 90°~phase components
proportional to the damping.

From a practical standpoint, the sTow expoential dampjng
action is crucially important, while the small change in eigenvector is
unimportant. So long as the structural damping is of the order of 1% or
less, there seems Tittle justification for keeping the 1% out-of-phase
term in (3.51). In other words, for all practical purposes, the general
free motion of a lightly damped structure is given by

=3 ga(claCOSmat + czdsinm&t)e'cawat (3.53)

/
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where the e, are the undamped v1brat1on mode shapes, the w, are the un-=

damped v1brat1on frequencies, and the ¢, are calculated from
ot w =d = epe | (3.54)
o o oo -0 .

A

The: following conclusions also follow:

Conelusion 5 - Effort spent in caleulating undamped mode shapes and fre-

quencies is entirvely valid. It is these modal quantities
that are used in (3.53). ‘

Conelusion 6 - Only the diagonal eZements of the modal ddmpzng matrie D
have an important effect on the lightly ddmped motion.

3.5 - . A Criterion for Diagonal Dominance

In connection w1th (3.51), a criterion for d1agona1 dominance
in the modal damping matrix D can be inferred. If

n: wz*
4]
=1 w
B¥ao

2 dyple << dyo8y
g

(a=1,...,n)( “ (3.55)

N

a AN

o

" then the effects of the off damped elements in D on the (small) change

in the eigenvector are neg11g1b1e. Diagonal dom1nance perm1ts us to write
(3.51) as ‘

Re{gaexat} 2 ga(COSwat + %casinwat)e-cawat . (3.56)

Which_has the attraction of simplicity.

However, the main thrust of this section is not the 'diagona]u

: dominance assumption, but the 'Tight damping' assumption. ‘With 1ight

damp1ng, the mot1on depends, for all practical purposes, only on the dia-

‘gonal elements of D whether D is d1agona11y dominant or not.

4. ~ IMPORTANCE OF STRUCTURAL DAMPING

The objective of this section is to demonstrate the following
two assertions:

20
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Assertion 1 - Even though structural damping is 'small', it is very im-

portant.

Assertion 2 - In comparing values of the modal damping factor t for

lightly damped structures, it is the value of & com-
pared to 0 that is important, not the balue of ¢ com-
pared to 1.

There are several relatively simple ways to verify these assertions.
In this section, we shall consider the following situations:

i) ‘resonant response to sinusoidal inputs; »
i

i .sfeady—staté response to random inputs; |

v

(

(i)

(iii) bounded responsé to bounded inputs;
(iv) open=-loop modal cost analysis;

(v

) , stabi]ity‘regions for a selected control system. -

In all cases the importance of the damping factor is quite evident.

4,1 ) Response to Sinusoidal Inputs -

One of the most obVious demonstrations of the importance of ¢
is the well-known result that the response to a sinusoidal input, whose .

frequency coincides with a natural frequency of vibration, is propor-
1 _

tional ~ ~to .tz ~. That is, the resonant'response amplitude goes
as c"l. For mode o, '
T e BRRCEY
Mo ooy o o Yo . ‘
and, if
Yy = Yo COStt = Re{y eJmt} - (4.2)

then the steady-state response may be written
] jot, |
n,(t) = Refn  (w)e”""} _ | | (4.3)

where Nao is complex.

Substitution of (4.3) into (4.1) shows that
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_ . Yuo ‘
‘nuo(w) - ( 2 _ .2) + 27 : (4.4)
w, = ) Jg w,w

The amplitude of response is R

T2 zYuo T | (4.5)
[(wu-w ) -F4c w w“]2

In, (w)] =

As is well-known, this function is largest at resonance, i.e., when
W= W At resonance, ‘

(a)] = —22 (4.6)
'2§awa'

If T, is’ assumed to be 0.001 when it is in reality 0.01, the resonant
response w111 be: overest1mated by 900%.

| For 1ightly damped structures the‘response of the other -
modal coordinates (nS’ B o) will be dwarfed by the mode in resonance.
Hence - '

n (t) | : (4.7)

and the amplitudes of vibration of the phys1ca1 coord1nates are also
determined by 1/; '

4,2 ~ Response to Random Inputs

Lest it be thought that the above conclusion‘depends on the.

assumpt1on of sinusoidal exc1tat1on the analysis will now be genera11zed
to include stationary random inputs.

Let Ya(t)’ o=l,...,n, be a set of stationary random inputs
with zero mean: ‘

<y (t)> = O- \ -(u=1,...,n) : (4.8)

-~

where <-> means expected value of (+). These inputs are characterized
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by their covariance matrix

¢ (%) = <y(t+ oy (t)> (4.9)
The-assumptions of stationarity and ergodicity permit us to relate ex-
pected values to time averages: '

. T .
. lim 1 : T
¢ ()= 15 j_Tl(t s )yl (£)dt | (4.10)

An equivalent representation is through the spectral density matriz

o defined.as the Fourier transform of C :
Yy ‘ ) =YY

2, (w) = [m gw(r)e_jm\dr S (4.11)

-0 ,

We denote by has(“) the frequency response of mode o to a sinusoidal

input to mode 8. Thus

' ' 1 ‘
h (w) . (4.12)
. c_m (wga - mz) + Zquwuw \

H]
[en]

hye(®) (Bte) o (a13)

[A]ternativeTy, huu(w) ban be regarded'as the Fourier transform of the
impulse response. The response of (4.1) to
3

v, () = a(t)
is . |
nu(t) =(ie'ca“atf-'sinw&t ' \ (4.14)\

for 'light"' damping (i.e., dropping-cd? terms). The Fourier transform

" of (4.14) s indeed (4.12) within the 'Tight' damping -approximation.]

Let , )
Hw) = {h,g(w)} o (4.15)

a diagonal matrix of freqdency response functions. Then, from Tinear




system theory, the spectral density matrix for the outputs, gﬂn,
is related to the spectral density matrix for the inputs, gyy, by |
the following relation: )

2. (0) = Hw)e (o) (0) (4.16)

where (-)H denotes the Hermitian operation (complex-conjugate transpose).

_ The elements of & _ are
=nn.

{® = h h

*
L =z ¢ ¢ " (4.17)
-nn"of nanB ‘ o0 BB YQYB

wheﬁe\(:)*'denotes the complex congugate.

The basic results are now in place to calculate the average
energy of the system. The total energy is the sum of the kinetic energy
and the potential energy: '

/

E(t) =%3'M3 +%a'Kg '+ (4.18)
Or, in terms of modal coordinates, with g = En,

E(t) = %n'n + %n'en (4.19)

Thus the mean (expected) value of the energy is

n\ ) N .
<E(t)> =% ] [<ie> + 02en2>] (4.20)

o=1

Fdrtunate]y, there is a simple relationship between the mean of ni'
and spectral density for Ny~ According to Ref. 5, p. 338,

<n§> =2lTr J b (w)do ' (4.21)
we OO a a
and, from the same reference, p.339,

2 1 [T 2. , '
<> = o f_mw ¢n n (u)\)dw . ) | (4.22);

o o
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By'inserting (4.17) in (4.21) and (4.22), and the Tatter two equations in’
(4.20), one can express the mean energy of the system in terms of gYY

a=l 4 YuYu

n ) , : N . ,
E(t)> = £ L ] (W2 + D) n ()] %, (w)du (4.23)
Or, from (4.12),
N 2., .2

1n (D+(£)
E(t)> 4—2

(w)dw
w1 J_m (wi-—wz)z + 4C2 2 2 Y Yy

(4.24)

In general, these integrals would need to be integrated by numerical
techniques. ' "

However, even without 1ntegrat1nq, it is clear that the
denominators in (4.24) are singular when w = Wy, » (a=1,...,n), and that

" the energy mean wi11 be very sensitive to the values of the modal damp-

ing factors Ly This is not surprising in-view of the fact that the

role of damp1ng is to remove energy from the system.

4.3 Bounded Response to Bounded Inpiits

v Another means of shdwing the critical roles of the damping
factors L, is to. show their function in relating the bbunded response to
a ‘bounded disturbance. We begin again with (4.1), and assume that the
input has a known limit on its magnitude: ' ’

)
/

(4.25) \

[y, (£)] < You,max
The modal coordinate ”a(t) is known to have the solution
. ’t ‘ N ‘
na(t) = w;l f exp[fcawa(t -'T)]Sin[wa(t -IT)]YQ(T)dT (4.26)

after transients have died away. The integral solution (4.26) is based
on the well-known convolution property of the input Yd(t) with the im-
pulse response function (4.14). It should also be pointed out that the
expression (4.26) assumes 1light-damping.

After transients have died out, we have, from (4.25) and
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(4.26), the following bound on na(t):

I8 < o

-1
v

1A

1A

2
;ama

Abcording to this bound, if Ly~
an order of magnitude more than if T, = 0.

{ A bound
follows: -

(1) lali®=4dg
(2)
(3)

(4)

Yo, ,max

W
o ‘o,max

t :
L [T exp 150, (t = I sinla (8- D111, ()| e

t . _
f exp[-z v (t-1)]ldr

001.

(4.27)

0.01 the modal coordinate is restricted

on each physical coordinate can be obtained as

tA ]

—

<

nA_

(22

nX
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awa min

-1
min{M}
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o o’‘min

-1
Mmax
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(9), | '( 5 4) 11402,

o min A

A few words of explanation should be helpful:

(i), the notation A{A} means "an eigenvalue of A".
(i1) max{A} means "the maximum eigenvalue of A", and A . {A}
means "the minimum eigenvalue of A".

(iii) at line (2) it was recognized that the eigenvalues of ETE

satisfy

0

det[E'E - 1]
det[E'(1 - AETE)E]

det E'det[1 - A(EE)” ]detE

]

det E'det[1 - MldetE

(4.28)

(4.29)

T,

, because M= (E T) -1 follows™ from ETME = 1 . However, detE =

—r

'.detE=f0, whence the e1genva1ues of E'E satisfy

©
f

det[1 - AM]

det M ldet M - AL

(4.30)

Or, since detﬁi;l + 0, the eigenvalues of ETg_are the eigenvalues
of'Mfl,'i.e.‘they are the reciprocals of the-eigenvalues of M.

(iv) at line (4), the bound (4.2) was inserted.

“(v) at line (6), the fact that

vy = ETOTED = ¢TeeTg = g

was observed.

(4.31)

(vi) at line (8), it was noted that, since the eigenvalues of Mfl

are the reciprocals of the eigenvalues of M, the maximum eigen-
value of Mfl is the reciprbca] of the minimum eigenvalue of M.

Thus if the input §(t) is bounded,



. - .

A I < fay - | (4.32)

N

the response, in physical coordinaieé, will be bounded according to

| W 7l |
Nale) Il < n[ﬂl’{{%‘”a}} frax | o (4.33)

In particular, if the conventional assumption

] %o % e T L, 50 .

is made [see "Decision No. 1", Equation (2.15) of the Common Theory],

!

- 2
Gwy

ng :
lat) 1| < 5 o (4.34).

The critical nature of ¢ is readily ahparent from (4.34).

4.4 Open-Loop Modal Cost Analysis

+ In Ref. 6, Appendix E, it is shown that the relative im-

portance of a mode can be assessed on.a quantitative basis of the fol-

lowing is known:

(1) the natural frequency W, of the hode;

(i1) the damping factor ¢ of the mode;

(ii1) . the degree to which the mode is excited;

(iv) the degree to which the mode matters to the quadratic, perfor-
mance function. '

mde e
-de  ad

Some elucidation of the latter two ideas is required.
'To determine how much mode o is excited, it is assﬁmed,that
Mg + 03 +Kq = f=Bu - - O (4.39)
Then, if the ith component of u. contains only an impulsive signal,

u(t) = §(t - t.) (t; > 0) | (4.36)

1° 1

the response of mode o is
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ng(t) = (b_:/u )expl-z o (t - ts)Isinfu, (t-t;)] ‘ (4.37)

o
where,Eai is the ith element in the row

BT = o'B . " (4.38)
.-a N ~

—le—

(The expression (4.37) assumes 'Tight damping'.)

_ Then, to determine how much this modal excitation matters, we
assume a vector of outputs to be regulated has been defined:

y(t) = Pa(t) = Pu(t) | C (a.39)

whene.i = PE. These outputs are then combined in a weighted sum-pr

~squares to produce a single scalar measure of the seriousness of the

perturbations at time t:

y5(t) = ¥’ B (4.40)
‘\ . Gy )
Finally, it is assumed that the objective of the control system is to
minimize ' B

e f:yg(t)dt S (4.81)

It is shown in Ref. 6, Appendix E, that

n ‘ _
v =azlva 4 (4.42)
where ( ~ )&2 _ \
e Qe . :
Va = _:Eééi%?iil (4.43)
4z w
o o

where\g.= ETQB. The formula (4.43) assumes that an impulse is appiied
(at t='ti>»0) only to the ith input U If impulses are applied to all

the inputs, b2, must be replaced by

af

A2 m A2 ‘ . -
bai > izlb“i , ‘ (4.44)
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where m is the humber of inputs (the dimension of-u).. However, we note
that the sum on the right side of (4.44) can be written ‘

b2, =

; T T . : (4.45)
1 oi = - ,

= g BB e
0 0

4=

He~3

.i

and thus the expression for the modal cost.V&,Afrdm'(4.43), becomes
Tanl ) " '

(e]de ) (e,B8'e_

v = | (4.46)

o 3
4Cawa

Once again we see that, "other things being equa]"--where by "other =

-things" we'mean the modal natura] frequency, the modal excitation, and

the importance.of the mode in the error criterion yQ(t)--the "cost" as-
sociated with mode o is inversely proportional to Lot

4.5 ¢ ..~ Closed-Loop Sfability

When the control feedback loops are closed it is 1ntuitive1y

" obvious that the distances of the open-loop poles from the imaginary axis

(the stab1l1ty boundary) are critical. These d1stances are ¢ uw,

(w=1,...4n). Even if the contro] -system des1gner has comp1ete confidence

1n his ‘design, and has ng worries that the "controlled modes" might get
dangerously close to, or even cross, the imaginary axis, the problem of
'spillover! is still present--what does the control éystem do to the 'un-
modeled' modés, i.e., to the poles at -z, & -Fjw , a > n? The stability
margin for these poles is directly proport1ona1 to Ly

In Ref. 7 a stra1ghtforward but relat1ve1y rea11st1c control

problem was ana1yzed As shown in F1g 4.1, the attitude of a 'f1ex1b1e

spacecraft' is contro11ed by

(i) a sensor with a time lag:
| _ | k < ) .
8 (s) =-S_+ws e(;) (4.47)

~ where 6(t) is the actual attitude angle andAeS(t) is the attitude
~. reported by the sensor;

30




. -

~

Ta(S)

8 B | V — < s ¥ s 1 B
Ba(s) -0 Bl ook g VS kS T l(‘; ) Fign 091 ,

Y | S Stwm| - -

COMPENSATOR ~ ACTUATOR DYNAMICS
| ks |
S+wg

- SENSOR
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For this 'spacecraft', the unconstrained-modal parameters (ma,ca,

{i1) a (reaction-wheel) motor with transfer function

ks . _
/Tc(s) = sﬁPQ v(s) - ’ (4.48)
m : .

. where‘TC(t) is the motor torque generated by the command vol-

tage w(t);

(iii) a control Tlaw (or 'compensator') whose transfer function is

W(s) = ~(kp + kps + kp/s)B (s) (4.49)

correéponding to proportional, derivative, and integral feed-
( back. '

(iv) the 'flexible satellite' is represented by the transfer function -

5(s) = 5 T (s)
s Ie(s)
where ' i - A
* n (k/D) =
. 1 . L+ ] 52— (4.50) -
s°I (s) Is 0=l s+2zcw s+w :
e oo o

and I is the moment of inertia of'the satellite. The 'moda]f
gain' kd applies to (unconstrained) mode o. See Fig. 4.2.

k,)

[¢
were calculated from their constrained-modal counterparts (Qa,Za,Kd).

R It is kndwn (Ref. 8) that

\

LK, = I/l

a=1

where If is the moment of inertia of the elestic portion of the space-

craft. The constrained-moda] parameters were chosen to be

A\
!

o
Qa—OLQl‘

K g independent of o
o o

K, = 90(13/1)/(a**)

31




Al Bl BN T B b BN B B BN AN BN B A BN BE BE E .
. i . . -
t . N
. : . . 3 N Y

- Fig. 4.2:

S2K, |
e - e
.824_222328*-9%\ .
2
PUE— 5 S i<| 4
| S‘-l-ZZ,.('l,S-a-\QFl |
. . _ o Y (8) A
== =N
| ]
(a) Constrained Appenﬂage Modes
—_—— - _1
: |
' |
’Szkg
—T 3
Sz+2§aw__gS+w§_
2, :
| 2 sk' 3 > ;
S™*+2f, w, Stw .
e I P P
; A ~ 1 , 9(8)
T e

\(b)'Unconstrained Spacecraft Modes

Two Equivalent Dynamical Representations




. P . -

- cases where. @ < w, are unstable. When Z

7 =7, (all a)

o 1

Thus Ql'is a measure of the degree of flexibility, f/I is a measure of -
the size of the flexible appendage (If/I < 1), and Z is a measure of the
degree of passive dissipation. ‘

Other details of the subject study\can be found in Ref. 7.

Some results are shown in Fig. 4.3. This stability diagram shows the signi-
ficance of structural flexibility relative to control system bandwidth, as
measured by @;/w., where w. 1s the 'phasé-éfossgver',frequency (i.e., the
value of o for which the phase angle for the open-Toop transfer function

is -1809). For the particular control system’chosen’ the system is always

stable for Qq > o, Also shown in Fig. 4.3 are the effects of If/I (size
of flexible appendaqe) and Z (degree of pass1ve damping). As might be
expgcted as If/I increases, matters get worse.

The main point of this d1scuss1on, however, is the effect
of passive damp1ng, as measured by the size of Z1 When Z1 = 0, all
= 0.001, many of these unstable

1 1
cases disappear. When Z1 = 0.01, many more disappéar; only the 1argest
most flexible appendages now Tead to instability. Finally, for Z O 05,
no unstable cases exist. 0bv1ous]y the stability of the.closed- 1oop sy-

stem is strongly dependent on the level of passive damping.

4.6 ‘ Summary

In summary, the two assertions made at the'beginning of this
section have been demonstrated-in several waysl Damping, even though small,
is critically important. Furthermore, the occurrence again and again of
the factor 1/Ca in the expressions derived above--for example, in (4.6),

(4.24), (8.27), (4.34), and (4.46)--shows that it is not a matter of in-

difference whether z, is 0.01 or 0.001. Quite simply, there is an order-
of-magnitude error in assuming one of.these values if the other is the

true value. \

‘ Would any project manager accept an estimate of wq that was
accurate to within only a factor of 10? Of course not. Yet project
managers do accept estimates-of Zq that are accurate to within only'a
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~ factor of 10. Whatever the explanation of this intonsistency, it does not

constitute sound engineering practice. Damping factors may always be more
elusive than natural frequenc1es, but proper analytical procedures can be
expected to make substantial reduct1ons in their factor-of-10 uncertainty.
Such procedures can be expected to require considerable time and effort to
be evolved. It is hoped that the discussion presented in the remainder of
this report will at least be a step in the right direction. '

5. - LINEAR VISCOUS DAMPING °

No aspect of structural modeling is exactly linear and the

‘'same can be said of energy dissipation. mechan1sms We assume the stress-

strain law of the mater1a1 to be Tinear; we assume displacements to be
small with respect to characteristic vehicle dimensions; we assume that
'small angles remain small', and_so on. The strong motivation for these
1inearizing'assumptions is that analysis is possible; the strong justifi-

~ cation for them is that they are valid within the usual operating regimes

of normal spacecraft. We shall assume in this report that damping is also
Tinear.

For a Systeﬁ with one degree ofbfreedom represenfed by the
coordinate q(t) and possessing mass m, let the damping force be f (t).
To assume Tinear damping is to assume a reTat1onsh1p between Fd( ) and
q(t) of the form ;

A ) t . .} .
f4(t) = = [ hy(t-)a(r)dr (5.1)

Or,’fn the domain of .the Laplace variable s, -
fy(s) = -shy(s)d(s) | | (5.2)

where an overbar denotes a Laplace-transformed variable, and ﬁd(s) is the
Laplace transform of hd(t), The kinetic energy of the system is, of course,
T =?2m62, so the rate of change in T due‘to the force fd is

T maq = éfd ' .- ©(5.3)
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5.1

Energy is extracted whenever

afy < 0 ‘ o (5.4)
One special case of linear damping is (so-called) linear

viscous damping, in which

hd(s) = c4 = constant ' \ (5.5)
In ofher words »
hd(t) = cda(t) - | '(576)
and | \
fq = -c4d o fy = seyd (5.7)

It is with this type of linear damping that this section (Section 5)
is concerned.

’

Discrete Linear-Viscous Dampers

Many types of mechanical devices -have been deve]oﬁed that

" have the Tinear-viscous characteristic mentioned above in (5.7). Al- =~

though an extensive review of sugh devices is beyond the scope of this
report, the following comments should be helpful: ’

(1) Because the device has been deéigned to have the linear-viscous
characteristic (5.7), the use of (5.7) is especially accurate.
In particular, the objections to (5.7) that apply when (5.7) is

used as a model for material damping (see Section 6.1 below) do
not apply to such devices. ‘ : o

(i1) There is a rich history of. the use of such devices in spacecraft
attitude stabilization‘and control.. A1l gravity-gradient satel-
1ites, all spin-stabilized satellites, and all due]—spin satel-
Tites flown to date have included a 'damper' as an essential
piece of attitude control hardware. '

(iii)_ It may seem surprising in view of the last remark, but the develop-

ment of passive dampers in connection with the control of 'large

~

\
3
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flexible spacecraft’' has been vahishing]y small. Most persons
apparently assume that the extraction of unwanted mechanical
energy must be accqmp1ished‘almost exclusively with active con-
trol methods. '

(iv) Discrete Tinear-viscous dampers provide a design option that is
attractive in the following respects: a wide variety of damper
designs is possible; they can be placed at crucial points in the
structure (i.e., to selectively damp the most important modes);
and the damping strength can be selected at will. '

(v) When control analysts speak (as they often.do) of 'co-located -
sensors and actuators' the sensors usually turn out to be rate ~
sensors. This means that these analysts are implementing, by
active feedback control, the‘linear-yisCOUS damping character-
istic (5.7). VYet, for some reason; the passive-damper alterna-
tive is not considered. It is not‘c1ear (at least to this

'writer) why this is the case. In the end, it may simply reflect
the experience of the analyst. ' :

The importance of the development in this section (éection 5) rests par-
tially on the credibility of discrete dampers as an important possibility
for large space structure control. However,. the modeling of genera1'

- structural damping by a viscous model is also the motivation for much of

the sequel.

. ) - v ’
5.2 Absolute and Relative Displacements

. Let us assume that a model for the undamﬁed flexible space-
craft is available in the form
Mg +Kq = § o , (5.8)
{

The most powerful current method for constructing such a model 1is the

finite element method, which assumes that the elements of g--the coor-

dinates of the model--are absolute disp]acements, i.e., displacements
with respect to.an inertial reference frame. They may be translational
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displacements, or rotational displacements. or, in some cases, higher-brder
displacements that a rigid body cannot have [e.g., q1 = Zo’ a'trans]ationa]"
displacement; q, = (dz/dx)o, a 'slope', and thus a 'rotational' displace-
ment; 43 = (dzz/dx )o’ a coordinate associated with a"h1gher order dis-
placement for a flexible body]_ The point is that {ql,qz,qB, .} are as

seen by an inertial observer.

However, in a discussion of internal damping, it is much
more convenient to use reiatiue displacements wherever possible, because
it is ‘these relative d1sp]acements that are directly damped. Thus we'parti-
tion q with . o

q-= . - (5.9)
Je | -

where [ denotes the displacements that are absolute and associated with
rigid-body mot1on and 9 denotes relative d1§p1acements that could not.
exist unless the vehicle were flexible. For a vehicle consisting of a
single elastic body there are 6 coordinates in 9s 3 for absolute trans-
lation and 3 for absolute rotation. If the vehicle has internal r1g1d-
body degrees of freedom, there are extra degrees of freedom in [ that
are relative (not absolute) coordinates but that do .not create any strain
energy. The gimbal angles at the reflector constitute an example of such
coordinates for MSAT. .

Although it is not proved here, it is important to note
that it is always possible to replace a set of absolute coordinates (as
may naturally occur in a finite element model) by a set of coordinates
of the form (5.9), where g, contains 6 (absolute) rigid coordinates and

" possibly other (relative) rigid coordinates associated with articulation,

and 9 contains the (relative) elastic coordinates. Thus we may with no
Toss in generality assume that | )

M, M Jo o ,
M= 7T T K=1]"— (5.10)
Mre :Me . o K

The partitions in (5.10) correspond to those in (5.9). The consequence
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* of using relative coordinates wherever possible that K has the much simpli-

fied form shown in (5.10) and, moreover,

Ky >0 | (5.11)

because only 'elastic' coordinates have been included in 9g-

—

"The simplification in the form of K evident in (5.10) ap-

' plies also to linear viscous damping. Assuming the only form of damping
. present is caused by internal relative motion, the most general linear

viscous damping term that can be added to (5.8) is a Dq term, where

- | | (5.12)
D= . 5.12

Thus the damped system has the form
Hlg + 04 +Kq = (5.13)

- where D is of the form (5.12). If D is based on discrete linear yiScous

dampers, then Qe has the form

a’ s

where discrete dampers are Tocated at the points corresponding to cer-
tain internal relative coordinates. The D, is positive semi-definite,
D > 0, and {da’db"“} are the damping constants of the discrete dampers.
In spite of the fact that Qe is only semi-definite, it is possible to -
have (indeed it would be singular not to have) pervasive damping of the
internal coordinates 9- [The Sondition for pervasiveness is that the
outputs gege make the system M g, + K g, = O observable.]

N

If, however, Qe is to‘represent structural damping as well,

D, > 0 | 4 S (5a9)

since no internal motion can occur within a structure without causing

energy dissipation.
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~ To-return to‘discreté dampers, as represented by the damping
matrix (5.12) and (5.14), one important point “so.. obvious it may be over-
Tooked is that D is aécurately known. Thus, in addition to providing an
adequate level of damping, discrete dampers remove uncerta1nty as to what

~ the damping properties of the system in fact are. If the discrete dampers

are not too large, the '1ight damping' theory of Section 3 can be applied.
If one or more of the discrete dampers is sufficiently large, the damping
will no longer be 'light' in all modes,. ‘ '

5.3 : 'Damped' Modes

If the damping is not 'light', as considered in Sectionvs,

“the.alternative of .'damped’' modes should be considered. In these modes ,
,théfeigenvectors of the damped system are used as the set of basis func-

tions. in which to expand the physical displacements, rather than the:
eigenvectors of the undamped system (the 'vibration modes'). A brief
treatment of 'damped modes' is now given.

We begin with the system
_q +Dq + Kq = 4(t) o (5.16)

with K > 0 to exclude rigid-body modes. Following the c]ass1c paper of
Foss (Ref. 9), one can re-organize (5.16) thus:

Az = Bz +w(t) © | (5.17)

where

O

=
=
|O

o o
2= w=| | (5.19)
. |

Note that A = A, B' = B. The eigenvalue- e1genvector problem associated
with the homogeneous version of (5.17) is [set g.= giexp(xit) :

1=
[
|0
1
=
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~multiply by z . the Hermitian of z

AAz, = B_z1. , (i=1,...,2n) | (5.20)

In general, (A oZ; ) may be real or complex. If a particuiar (A 1,21) is
complex, there must be another (s ’33) that is the complex conjugate of

'(A o2 ). - If the damp1ng were zero, of course, the damped modes would re-

vert to undamped modes :

Ay = ‘jwoz; Mt = -jwa (a=1,...,0) (5.21)
jma‘eﬂ ‘ ’ -Jwa—-oc
z, = ; Zpgy T (¢=1,..,n) (5.22 )
L& | | e,

[Compare with (3.30) - (3.33).] As it is, with Q:>'0, the special forms
(5.21) - (5.22) no Tonger obtain. What ¢s true, however, is that the eigen-
vectors Z; must be of the form

= (1'= l,...,2n) (5.23)

in order to satisfy (5.20).

The orthogonality conditiensefor the 'damped' modes z,
are found 1in the following manner. First, let i = j in (5.20) and pre-

]

H o Hoo -
(Actually, Foss in Ref. 9 uses simple transposition on Z; instead of the
Hermitian operation; the present writer is of the op1n1on that a better

formulation results in the latter case. ) Next form the Hermitian of

-(5.20) and post-multiply by 24!

H _ H ‘ ‘
Ajzihzs = z;Bz; - (5.25)
Now, substract (5.25) from'(5.24)i

by - 0 (s2)
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We shall assume the A; occur in complex conjugate pairs (although it re-
quires only a modest extension to the theory to include real Ai). It is
unlikely that any form of passive damping will be so intense that a mode
is 'overdamped'’ (ti > 1). The Ai can be ordered as follows:

g = Oar, ) (i=1,...,20)  (a=1,....n) (5.27)
where .
: Lk . g :
Mta = Ao - \ (5.28)

and all the A, (i=1,...,n) have positive imaginary parts. (And therefore
*
all the An+a = Aa have negative imaginary parts.) Similarly, from (5.20),
\ \ .

* A P
Zovy = Zy (a=1,...5n) K (5.29)
The 4n2 equations (5.26) then_reduce to the 2n2'equations
*  Hao o L ,
(Ag = 2 )z Az, = 0 , (5.30)
. T o |
| (AB - )gagg18 —.0‘ . (5.31)

.

N .
for a,8 = 1,...,n. Now AB can never be equal to Au since they are on N

opposite sides of the real axis. Therefore : NN
. H B N ) N ]
ngﬂ—-O | m,e—ln.?n) | (5.32)

Furthermore, from (5.31), for diétiﬁct‘eigenvalués we have

T oy

z Az, =0 (ot 8) (5.33)

These last two equations are the basic orthogonality conditions.
Furthermore, it follows from (5.24) that

oz =0 (@,8=1,...,0) | (5.34)

Zy2g
z)Bz, = 0 (o= 8) | (5.35)

These are the auxiliary orthogonality conditions.
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In spite of their compact from, (5.32) - (5.35) are not as

“informative to the structural dynamicist as the expénded form available

by substitution of (5.18) and (5.23). The orthogonality conditions in
terms of the damped mode shapes g, are then

{

(Ag + XB)QEMQB + 92296 =0 ' (u,é= 1y...50) | (5.36)
Oy Agdaiha, + g.0q, = 0 (ct8) (5.37)
and the auxiliary orthogonality conditions are |
g, - kg,  (esB=1,eeen) (5.38)
Mrodila, = alka, (atB) (5.39)

It is not difficult to show that, when D = O, and thus A = ju,,
q, = &, the above orthogonality conditions are in accord with

T T,
eMe, =0 = e Ke, ; (a7 B) ‘ (5.40)

\ . . (

as they should be.

The normality conditions for the g, are now chosen. Moti-
vated by the undamped case, for which gl@gd-= 1 is the natural normality

condition, we choose
C

aMg = 1 (@=1,..0,n) (5.41)
to be-the normality conditions. It is interesting to note from (5.36)
and (5.38), when o = B, that

Y

'ggyga = -2Refr } , (5.42)
kg, = A% | (5.43)

The whole point of this exercise, of course, is to, develop

a set of damped modes in terms of which the geﬁera] forced motion governed
by (5.13) can be expanded. To this end, we set ‘
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(t)} | (5.44)

in (5.17), premultiply by gl, and use the orthogonality conditions.

The result is

T, ve o (T T
(z Az ), = (z,Bz )& +zw | (5.45)
"Now, from (5.20),
2Bz = A 2 Az : (5.46)
-0 a—0——0 . _

and,"from (5.19) and (5.23),
T _ T
ZW =94

Theréfore. the modal equations of motion are

. T, Tay \. \ '
£, = A8, +9,8/(zAz) (5.47)
for a=1,...,n. Note that £, is complex, and that

T

For numerical work, it may be necessary to write the single complex
equation (5.47) as a pair of real differential equations by -setting

gon = EOLR + jgaI:

_ : cTy0,T
EaR T %05aR T Yobal * Re‘{ﬂaﬁ/ (Z-aA—Za)}

(5.49)
Eoswe o +o g o+ Inqg/(z Az )}
al “aaR - Ta”al 9,4/ V2 A2
and Ay = 9, f»jwa. \Then |
n \ o
q(t) = B_X_l[gBRESR(‘t) - QaqEap(t)] | (5.50)

is the final expression for the forced motion in terms of damped modes.
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~ When the)stfucture is only 'liéhtly' damped, the complexity
of damped modes can be avoided. To a very good approximation, the theory

, of Se¢tion'3 can be used and the undamped mode shapes suffice.

5.4 = Damping Synthesis from Substructues

+ In many spacecraft the 'structure' can be decomposed into
'substructures' in a natural way. In the case of MSAT, for example, such
substructures are the antenna reflector, the support tower and the solar
array. We assume that the elastic coordinates 9% are internal, re]ative
coordinates, and. that g, can be further partitioned into substructura1
contr1but1ons thus:

5

M -

9 = co1{g},g?,...,g;} (5.51)

The coordinates g_ are associated with substructure m, m = 1,...,M. By
an appropr1ate choice of coordinates it can be arranged that

ge block diagtk',k%,. ...k} (5.52)

. with the partitions in (5.52) matching the partitions in (5.51).

We now choose the e]astic!damping matrix Qe'to be

D, = block diag(p},0%,...,0" (5.53)
[See (5.12) and (5.13).] In other words, s is chosen to be block dia-
gonal, with each block being proportional to the corresponding stiffness
block. The rationale for this choice runs as follows: an element of
the stiffness matrix, kij is nonzero if the stiffness of structure offers
a resistance at coordinate q to a force in the direction of Q33 if the
structure offers zero static res1stance at q to a force at 9 » how can
it offer any dynamie (i.e., damping) res1stance at a to a force at q;?
If we agree that the answer to this question is "It can't", then the form

(5.53) follows immediately.

Perhaps a simple examp]é Will help to clarify this concept.

In Fig. 5.1 is shown a straightforward physical system whose coordinates
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Fig. 5.1: Simple "Vehicle" Consisting of a "Main Bus" m
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are chosen to be {w,qel,qez} as shown. -Note that w is an absolute coordin- \
ate, while oy @ and q, are relative (internal) coordinates. The 'main

structure' is m, (rigid for s1mp11c1ty here), and m, and ma represent

1
%ubstructures It is e1ementary to der1ve the fo]]oW1ng mot1on equa-’

t1ons for the system of F1g 5.1

Mﬂ*ﬁ.*‘@fﬁ ‘ ' (5.54)
where

et o o

M= D= (5.55)
T
el o 2
0 0 h

K=" " 15 4= r IS b ~ (5.56)
o & ©ls |k

In this case g, is a single coordinate, w, and 9 consists of a1 and
Ago- Also, Mr isalxl matrix, '

N M, =m +m, +mg ‘ (5.57)
and ﬁr,is a 1x1 force input,

fp = fp ¥yt fy i (5.58)
The momentum matrix is
Moo = [my +my Mgl ' (5.59)

-te

because the (re]ative) momentum associated with .the coordinates 9a1

and Ao is
(m2 * m3)ae1 * m3ée2

To continue with the findings of the 'elementary derivation', we can make
the following identifications: \ -

/
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g o= |2
—€ m
M
_
Cc
2, 1
0

The stiffnéss Matrix

K,

(LR

k, 0 |
(5.60)
0k
£, 4,
+
23 (5.61)
T3 |

is in the partitioned form (5.52); there are
two substructures, each with one coordinate. ’

The point of this simple example is to note that D
automat1ca11y partitioned to match. K

A\

there were elements Cqo and- Coq

= c12 off the diagonal in D

Suppose, on the contrary, that

Do~ This

would imply that the motion of m, relative.to m; causes a force 'Clzéel

on ms;-even more mysterious is the force -Clg(qez h

acting on m,.

ael) implied to be

These forces simply do not exist, and we conclude that

Cip = 0. More generally, when Ee_partitions in the form (5.52) by sub-
structure, Dg partitions in the same manner into the form (5. 53).

N\ On the surface, this idea may not seem too exciting be-
cause all that has been done is to show that many of the elements of

Qe are 0's.

However,

if ‘{nitially

none of the e]ements‘of Qe are

known, a determination that many of these &lements are (exactly) zero

is in fact a major step forward.
10 substructures, each with 20 elastic coordinates.
200 and has 40,000 elements.
20?100 of the;e elements are independent.
informs us that 18,000 of these elements are 0's.

To be specific, suppose there were

Because of symmetry only %

Then D is 200 x
(200)(201) =
The partitioned form (5.53)
- About 90% of the

D matrix has thus been determined exact]y'

,If D
modal damping matrjx

7

1s indeed partitioned according to (5.53), the

Q_has a much more explicit form than just

A=

=E

(5.62)

The modal matrix E can also be part1t1oned in accordance with (5.55) -

) (5 56)

llO _erl

(erl _jsrn

(5.63)




(The O partition occurs because the elastic coordinates 9 cannot. parti-
cipate in the rigid-body modes.) Thus, from (5.62),

. o o : \
0 = A (5.64)
o 1,
where \ ’
A—.T . .
‘ Qe_- EDE \ | (5.65)

Next, we further partition

ge to match the substructural coordinates,
as in (5.51) ‘
1
Ee |
Ee = ﬁ (5.66)
e
.-e

A

\

The co1umhs,of gg indicate the participation of the coordinates in sub-
structure'm in the eigenvectors for the spacecraft modes. Finally, from
(5.53) and (5.66), '

mT pmgm ’ ‘  (5.67)
" |

1Ee“e

nes~1=

b

Equations (5.64) and (5.67) constitute. the special form of the space- .
craft modal damping matrix in terms of substructural damping matrices.
There remains, of course, the vexing question of what the
substructural damping matrices Q},...,Q” might be. Three possibi]itjes
are considered here. The first of these is to carry out substructure
tests to determine the QW experimentally. The second is for the know-
ledgeable Person of Section 2 to make a Guess at wha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>