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SUMMARY 

Damping is a critical phenomenon in the control of large 

flexible space structures. Just because it is "small" does not mean it 

is "unimportant". Section 4 of this report shows, using several con-

texts, that virtually every important output from a flexible structure 

subject to excitation is modulated by the factor 1h, where ,is a 

characteristic damping factor. Therefore, to assume = 0.001 when 

it is in reality 0.01 is to introduce an error of = 1000% in all sub-

sequent calculations, design, and simulations. Such a profound error 

is quite unnecessary. The physical principles of energy dissipation 

are known; the numerical methods (chiefly the finite element method) 

for undamped structures exist; the computer power is available. All 

that appears to be lacking is a zeal for the detailed calculation of 

damping characteristics to match the current zeal for calculating 

natural frequencies. A fruitful approach would involve both analysis 

and test results. Current practice is often to eschew both of these 

in favour of mere speculation. 

The one fact about structural dissipation that is agreed 

to by all concerned is that the damping effect is not pronounced, but 

'light'. In this report it is Shown that this important qualitative 

characteristic can lead to a number of quantitative conclusions of 

practical significance. These include the following: 

The differences between the mode shapes (eigenvectors)-of 

an undamped structure and those, of the same structure when 

lightly damped are insignificant for practical purposes. 

The differences between the eigenvalues for an undamped 

structure and those of the same structure when lightly 

damped are crucially significant for practical pùrposes. 

(iii) 	The crucial differences just mentioned are accounted for 

in a natural way by the "linear-viscous modal damping fac-

tors" ca  inserted in the modal equations of motion. The 

"off-diagonal", "damping coupling" terms are not important, 

and such terms can justifiably be omitted for most purposes. 

) 
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(iv)  

(v)  

A "linear-viscous damping factor" added to each modal equa-

tion of motion does not imply the assumption of linear-vis 

viscous damping. Provided the damping is "light", both hy-

steretic and viscoelastic damping (and presumeably other 

reasonable damping models) also lead to an effective linear-

viscous damping factor. 

For "light" damping, the only remaining problem is therefore 

to calculate the effective linear-viscous damping factors. 

This requires that the appropriate local structural dissipa-

tion parameters be known, and that an effective technique 

(e.g., the finite element method) be available to calculate 

'the overall structural modal damping factors from these lo-

cal parameters. Although work is currently proceeding apace 

to this objective, much remains to be done. 

If the damping is not "light", the details of the dissipation 

model become more apparent. Cross-coupling terms cannot be neglected, and 

the inclusion of "equivalent linear-viscous damping factors" is no longer 

adequate. Indeed, as the damping becomes more substantial, the undamped 

modes . (and their associated coordinates) become less relevant. "Damped 

modal coordinates" lead to a more efficient formulation in the sense that 

a lesser number of "damped modal coordinates" is required to represent the 

structure to a given degree of accuracy. One approach to such coordinates 

is derived in this report. 

The last main theme to be noted, in some respects the most 

important one, is this: not only should structural damping be calculated 

accurately, it should be designed adequately. "Structural damping" is 

virtually as important as "structural stiffness". It is easier to control 

a well-damped structure than to control an inadequately damped structure 

that is slightly stiffer. Yet the proper compromise Otween damping and 

stiffness is seldom made. Another tradeoff seldom broached exists bet-

ween "passive" damping (i.e., structural damping) and "active" damping. 

Most control strategies for large space structures boil down to simple 

rate-feedback control. Why this is often considered to be a more "ad- 



vanced" approach is not altogether clear. It is especially ironic that 

virtually all the structural disturbances being "controlled" are in fact 

caused by the control system itself. One/wonders if "passive rate feed-

back" (structural damping) might not be an important part of the solu-

tion to the problem of "controlling" large space structures. It is 

reliable and failure proof, requires neither on-board control nor ground 

control, consumes no poweri dedicates no microprocessors,'and does not 

cause "modal spillover". In fact, it tends to remove spillover. Discrete 

damping devices, judiciously located,cotild remove energy from selected 

troublesome modes, and distributed damping (composite materials?) would add 

damping to all modes, thereby simplifying the control system and elimin-

ating spillover. 
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TABLE OF PRINCIPAL SYMBOLS 	. 

Note: 	Symbols used only locally are defined when introduced. 

Roman Symbols  

a 	- residue at p-th pole in viscoelastic damping model 
A 

b 	, 	- p-th pole in viscoelastic damping model 
A ' 

8 	- input distribution matrix 

C 	- covariance matrix between x(t) andly(t); 
 

-«y 	<x(t-i-T)ir(t)> 	
- 

d
af3 	

- element of V 	 , _ 
21ae 	

,, 
- element of V 	

. 

V 

	

	- damping matrix (for all coordinates) 
, 

V 	' - damping matrix (for elastic coordinates) 
-e 

- ETDE D 
( -- 

- ETD E 	
, 

V 
-e 	-e-e-e 

e 	- undamped eigenvector (mode shape) for mode a 
-a 

E 	- total mechanical energy 

E 	- undamped modal matrix (columns are e ) for all coordinates -a 
E , 	- undamped modal matrix for elastic coordinates 
-e 

f 	- force 

1 	- column of é a  
44  . 	- generalized force associate« with physical coordinate q a 

h 	- response of coordinate a to impulse at coordinate a af3 
h 	- element of H ae 	- 

h
cffl 	

- element of H _ 

H 	S - hysteretic damping matrix (all physical coordinates) 

H 	- hysteretic damping matrix (elastic physical coordinates) 
-e 

H 	- ETHE 

- ETH E H 
-e 	e-e-e 



.2 
j = -1 

- stiffness matrix (associated with physical coordinates) 

- stiffness matrix (elastic coordinates only) 
--e 

- left eigenvectors 	= 1,...,2n) 

- rows of L are Z
H
. 

- number of substructures 

1 

V 

Greek Symbols  

a 

- potential energy 

- generalized force associated with mode a 

- column of y a 

ij 	
- (or 

(3effl) 
 unity if i=j zero if i j 

--e 

2n 

9. 

ne 

- mass matrix (associated with physical coordinates) 

- mass matrix (elastic coordinates only) 

- number of physical coordinates (degrees of freedom) 

- number of state variables 

- number of poles' in viscoelastic model 

- a physical coordinate (displacement) 

- a matrix of coordinates (displacements) 

- rigid-body (absolute) displacements 

- elastic (relative) displacements 

r. 	- right eigenvectors 	(i = 1,...,2n) 

- columns of R are r. 
-1 

- Laplace variable (complex) 

- time 

- kinetic energy 

- column of input variables 



( t) 	- zero if t + 0; 	if(t)(5(t)dt = f(0) 

- viscous damping factor associated with mode a 

ccx 

a 

r equivalent viscous damping factor associated with mode a 

- in the Common Theory, all  ca  = 

	

a 	
- coordinate associated with undamped mode a 

	

ri 	- column of na  

	

x. 	eigenvalue 

	

A 	- diagonal matrix of the X i  

- material staticstiffness parameter 

- time delay in random-variable correlation 

- dummy time variable in integration 

1) 	- spectral density function: (1,  (w) = f e-JwT-xyC  (T)dT 
-xy 	 -xy  

-oe 

w 	- frequency of sinusoidal excitation 

w 	- natural frequency of vibration mode 'cc  
a 

s2 	- diagonal matrix of the wa  

Subscripts  

i,j 	
- on state variables; range 1 to 2n 

ce,f3 	- on modal coordinates; range 1 to n • , 

— on poles in-viscoelastic model; range 1 to p 

Special Notations  

1 	- unit matrix (dimension Should be clear fromcontext) 

1 	- column matrix of O's (whose length should be clear 
-ce 

from,context) except for al. in the cc-th  position 

- Hermitian of (.); E (e)*T  

nn. 

) 

(x i) 



M.) 	first variation in (.) 

- expected value of -(.); ensemble average of ( < • > 

M* 	- complex conjugate: 	(x+jy)* E X -jy 

sgn(x) 	- 'xi 	, 	x t 0 ; undefined for x = 0 

(;) 	- Laplace transform of (•) 

X{A} 	- eigenvalue(s) of the matrix A 



1. 	INTRODUCTION 

The modeling of energy dissipation in dynamical systems of 

engineering interest has received much less attention historically 

than it deserves. One might cite fluid mechanics as an example. A 

large and elegant theory of fluid mechanics has been evolved based on 

the inviscid (zero dissipation) approximation. This theory permits 

the 'potential flow' assumption with all the mathematical benefits con-

ferred by that assumption. Unfortunately, inviscid theory cannot be 

used to make one of the most fundamentally important calculations in 

fluid mechanics--the drag on a body immersed in a fluid flow. Further-

more, without the seemingly arbitrary Kutta hypothesis (zero velocity 

difference between the upper and lower surfaces at a sharp trailing 

edge--a hypothesis that is, in fact, valid because of viscosity!) one 

cannot calculate lift either. A totally inviscid flow (i.e., no vis-

cosity and no Kutta hypothesis) mathematically predicts zero lift and 

zero drag on an airfoil at an angle of attack. This is hardly a stun-

ning achievement for a fluid mechanical theory. 

An example that is likely to be of greater interest to 

readers of this report concerns the stability of rigid-body rotations. 

Euler's celebrated result is that a rigid body spinning about either 

its major or minor axis of inertià is stable; an intermediate-axis spin 

is unstable. It took dynamicists more than a century and the stunning 

object lesson provided by the first U.S. satellite, Explorer I, before 

it was realized that Euler's theory does not apply to real bodies. The 

theory is mathematically exact, of course, but omits a critical charac- 

teristic of physical bodies--energy dissipation. With dissipation taken 

into account, the minor-axis spin is in fact unstable. 

History appears to be repeating itself yet again in the 

modeling of flexible space structures. Control systems for flexible 

spacecraft have in the past been designed with a great deal of attention 

to the modeling of vibration modes (the irresistible attraction of a con-

servation-based theory again) and with virtually no attention given to 

the modeling of energy dissipation. This weakness was overcome in the 

Hermes program by a ground-testing program to determine experimentally 



the damping characteristics of the Hermes solar array. However, as flex-

ible space structures become larger and larger, ground testing may become 

virtually impractical. There is therefore an urgent need for reliable 

and practical methods of modeling damping in large space structures. 

This technical report attempts to review, in a succinct 

fashion, the most important facts about damping in space structures and 

to offer a brief review of the practical analytical techniques that are 

already available for dealing with this problem. The current 'theory' 

most often used is caricatured in Section 2. This 'analytical cartoon' ' 

might be humorous were it not for the serious deficiencies underlying 

this 'theory'; indeed, it is to highlight these.deficiencies that 

Section 2 is written, Section 3 then focuses on the 'light damping' 

assumption. It is explained that all the 'elastic mode' calculations 

that neglect damping are not in vain, provided a proper damping model 

is subsequently incorporated. [Parenthetically, the same is true of 

the inviscid (potential) theory of fluid  flow  referred to a moment ago. 

Inviscid theory is still universally used to calculate important quan- 

tities in fluid dynamics, including lift (when the dissipation-motivated 

Kutta condition is imposedl); all the same, inviscid theory cannot be 

used to calculate drag. Extensive experience with aerodynamic calcu-

lations seems to indicate that it is important for the analyst to know 

when to include dissipation and when to ignore it. Also indicated is 

this maxim: when including dissipation, take it seriously and model it 

accurately.] 

Section 4 is a technical essay on why damping is important 

for large space structures and why those responsible for the design of 

control systems for flexible spacecraft should take structural damping 

seriously. Some popular misconceptions are also identified. Section 5 

provides a treatment of linear viscous damping—the most common type 

(more precisely, the type most commonly assumed). Sections 6 and 7 go 

on to deal with linear hysteretic damping and linear viscoelastic damp- 

ing. The report concludes with some summarizing remarks in Section 8. 

2 
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2. 	THE COMMON 'THEORY' 

The remarks made in this section are intended to create the 

impression that the mathematical modeling of dissipative mechanisms in 

space structures has been inadequate in the past. In view of the history 

of dissipation modeling in engineering mechanics, alluded to briefly in 

the introduction, this . state of affairs should not be surprising. Part 

of the problem is that the task of modeling damping is not easy. Viewed 

from a sufficiently distant perspective, the current modeling of flex- 
, 

ible structures as linear-elastic systems requires only 

one outstanding constitutive assumption--strain proportional 

to stress; ,  

one outstanding geometrical assumption--deflections are first-' 

order infinitesimals; 

(iii) 	one outstanding numerical method--the 'finite element' method. 

The rest is details. 

The first two assumptions are made to facilitate a linear 

theory. The finite element method enables the analyst to extract numeri-

cal data from his theory in spite of spatiallS,  varying constitutive para-

meters, complex substructural interconnections, and arbitrary structural 

boundarie. Energy'dissipation is an unwelcome intruder because it vio-

lates assumption (i) and thereby eliminates the applicability of a sub-

stantial body of mathematical, physical, and numerical theory. 

To obtain a deeper understanding of energy dissipation, one 

must refer to the science of materials. Within material science, a great 

deal is known,about energy dissipation. However, most designers of con-

trol systems for modern spacecraft are not conversant with the germane 

particulars from material science. (This may well be true of most space-

craft structural analysts as well.) A more profound problem is that the 

models used by material scientists are cumbersome or intractable when 

applied, not to an element dV of uniform material, but to a typical space 

structure. It is probably fair to say that any methodology that is not 

amenable to treatment by some reasonably straightforward modification to 

the finite element method is doomed to obscurity as far as spacecraft 



modeling is concerned. 

These barriers to accurate structural modeling may be sur-

mounted in the 1980's, but only with considerable effort and imagina-

tive thinking. It is interesting to noie that Graham (Ref. 1), in an 

extensive review in 1973 that attempted to bridge the gap between 

material science and structural modeling practice, stated: "A fairly 

general opinion among engineering deamicists today is that a greater 

effort must be made to place the treatment of material damping on a 

more substantial analytic basis". In spite of this "general opinion" 

in 1973, the last decade has hardly seen a quantum improvement. In 

fact, to judge from the recent technical literature, the only theory 

currently being applied is the Common Theory described in,the re-

mainder of this section. 

We choose as our 'undamped systel!1'.:the linear, time- . 	. 

invariant differential * system represented by 

= _é. 	 (2.1) 

where 

MT = M > 0  ; 
KT  = K 	0 	(2.2) 

If rigid-body modes are excluded by physical constraints, then K >  0. 

A gyroscopic matrix term could also be included in (2.1), and this 

would enhance the applicability of the following discussion to certain 

flexible spaCecraft. Such a term will be omitted in this report be- 

cause it makes more extensive some of the details to follow and thereby 

detracts from the principal points to be made. It can be stated, however, 

that the ideas expressed below are applicable to flexible gyroscopic 

systems. The system matrices M, K and 1.  are typically calculated with 

the aid of finite element methods, although other procedures are also 

sensible in particular situations. 

2.1 	Phase 1 - The Elusive 'Damping Matrix', '0 

"The first phase of the Common Theory is to observe that the 



•T •  
E = 	+ T  (2.5) 

dissipation-free system (2.1) can be converted to a dissipative system 

by the addition of a g.  term,,as follows: 

- 	. 

where 

(2.4) 

The Theory is much simplified by the assumption that D > 0, but unless 

the spacecraft is damped with respect to an inertial reference( frame 

this assumption is not valid. [Exceptions: Eddy-current damping and 

magnetic-hysteresis damping are examples of weak external damping; if these 

were included, D > 0 for the attitude motion equations.] In any case, 

the system energy 

(2.3) 

is reduced, in the absence of external influences (j .  E 0), at the rate 

• • 
-1/2

T
.g_Dq< 0 	 (2.6) 

and upon this fact rests the success of the g.  term in (2.3). 

In spite of the notoriety of the 17(1  term, it is exceed-

ingly rare for anyone to actually calculate D for flexible structures. 

Textbooks (and too many research papers) observe sagely that 'if D is 

proportional either to M or to K, the transformation that simultaneously 

diagonalizes M and K will also diagonalize D.' Let E be the matrix of 

(undamped) eigenvectors that simultaneously diagonalizes M and K. Then 

• 
'E

T  ME = 1 ; 
- 

ETKE = n2  - 	 (2.7) 

where n is the diagonal matrix of natural frequencies (rigid-body modes 

included). Then, if 

= c iM 	c 2 K 	 (2.8) 

it follows that 



w
n
} (2.10) 

ETDE = c
1-
1 + c

2— 
 s22  

In fact, one can write 

ETDE = 

(2.9) 

where 

a 
=1/2(C

1
/0)

a 	c 2 Œ ) (2.11) 

with w the natural frequencj,  of vibration of mode ce, and n the number 
a 

of degrees of freedom (the number of coordinates in g). The diagonaliz-

ation of D indicated by (2.9) is much to be desired because the trans-

formation 

= En 

which converts the undaMped system (2.1) to 

2 ' 
n 	wa na = a 	1Œ 

where 

ET 

(a=1,...,n) 	(2.12) 

(2.13) 

converts the dàmped system (2.3) to 

n 	i'w
2

n =y 	 (2.14) 
a 	et OE 04 	Ct 

Now virtually all the benefits of modal analysis that make (2.12) 

attractive apply still to (2.14). 

These benefits are, however, based on the proportionality 

assumption (2.8) and this assumption is not based on any rigorous theory 

of structural damping. An important exception--discrete viscous dampers-- 

will be discussed in Section 5. 

2.2 	The Critical Role of the 'Knowledgable Person' 

The second phase of the Common Theory is to dispense with 

D altogether and proceed directly to the real objective--the modal co-

ordinate motion equations (2.14). After a detailed and sophisticated 



calculation of M and K, one arrives at the undamped equations (2.12). 

Then a damping term, 2c(1w
a

1.1
a' 

is arbitrarily added to each equation to 

produce the form (2.14). (This procedure is not applied to modal equa-

tions for rigid-body modes; they are left intact, in the form n = y .) 
CG 

Now comes the swindle: the modal damping factors c are 
a 

not calculated. Their values are simply assigned by a Knowledgeable 

Person. This is not to criticize the K.P., who is usually reluctant 

to make these numerical assignments, especially in the amount of time 

allocated. Reliable damping-factor information on structures is hard 
for 

to come by, especially,space structures (see, however, Section 2.4). 

Not only is theory avoi ided; there is no handbook either. In the end, 

the Knowledgeable Person must simply make a Guess. 

2.3 	The 'Knowledgeable Per'sOn' Makes His 'Guess' 

After realizing that there is no way to escape his desig-

nation as Knowledgeable Person, the K.P. goes through a thought pro-

cess that is essentially as follows., First, since he does not know 

what any of the c actually are, he has no basis for choosing them to 
a 

be different. Thus he makes 

Decision No. 1  - All the modal damping factors are equal: 

(Œ=1,...,n) 	(2.15) 

With this assumption, one on whiéh he can hardly be faulted, - 

his task has been reduced by a factor of 1/n. It remains to pick the 

value of c. This is not easy. All he knows for certain is that c is 

positive, but 'small'. He knows c is positive because to assume other-

wise would be to violate the second law of thermodynamics; he knows it 

is 'small' because all observations of space structures (and of similar 

ground-based structures) confirm that the damping is 'small' (see Section 

2.5). It might then seem that any 'small' number could, be chosen with 

essentially equivalent validity. But this is not so. The Knowledgeable 

Person is aware (or should be aware) of the points made in Section 4 of 

this report. To pick c = 0.005 is to pick c 400% greater than c = 0.001, 

and if c is really 0.001, the K.P. does not wish'to be guilty of a 400% 

a = 

7 



error in his Guess. In fact, the K.P. is in a bind. If he chooses 

to be too small, he is placing a much greater load on the control system 

designer to provide the missing rate feedback, a challenge that those 

who earn theirliving designing control systems are eager to accept. 

(He also--almost with a wave of his hand--makes necessary perhaps 

hundreds of thousands of dollars worth of additional computation to , 

donfirm the control system design by simulation. Better perhaps to 

spend a few thousand dollars to model passive damping!) On,the other 

hand, if the K.P. assumes 	to be too large, an even more unwelcome 

consequence is possible: the attitude control system may not be 

capable of stabilizing the spacecraft and a multi-million-dollar 

mission may be lost. On balance, the K.P. is forced to be 'conserva-

tive', that is, he is forced to choose c somewhat smaller that he 

really thinks it is likely to be. Thus the Knowledgeable Person makes 

Decision No. 2  - The value of c is 

7 0.005 	 (2.16) 

The K.P. knows that damping factors in space tend to be in the range 

0.01< 	< 0.02 

and the value chosen, 	= 0.005, gives him a certain safety margin. A 

larger safety margin would be available by choosing 	= 0.001; but the 

K.P. knows that no freely vibrating space structure has ever been ob-

served to take 1000/2u periods to damp down to 1/e of its initial vi-

bration amplitude and so, rather than be replaced by a More Knowledge-

able Person, he chooses = 0.005. 

2.4 	Reflections on the 'Common Theory' 

It is evident that the Common Theory of damping for flex-

ible space structures is not a 'theory' at all. It is instead an ex-

ercise in basic engineering judgment. The author has on file dozens 

(perhaps hundreds) of papers and company reports by leading organiza-

tions in which the above procedure is followed, although never with 

such candor. No justification whatever, is given for the selection of 



the 	; they are simply assigned. 
a 

An interesting mental experiment is the following: choose 

a structural vibrations specialist and show him an engineering drawing 

of the structure. Tell him the materials from which the structure is 

made and give him, in addition, only the following numerical data: 

the mass of the structure; 

(ii) 	the characteristic length of the structure. 

Now ask him to estimate all the natural frequencies for the important 

modes of the structure as accurately as possible. If this situation 

sounds absurd, it should be realized that this is precisely analogous 

to the position in which the Knowledgeable Person of Sections 2.2 and 

3.3 finds himself when asked to estimate the modal damping factors. 

Obviously, this procedure for natural frequencies would not be toler-

ated. 

Why, then, is the analogous procedure so widespread for 

damping factors? Some argue that damping factors are not all that 

important, provided they are small. This point of view is attacked in 

Section 4. Others may say that they are virtually ireossible to calcu-

late. This assertion will probably not stand up to careful scrutiny. 

In the opinion of the author, if the effort over the last fifteen years 

to calculate the r  had been as intense as the effort to calculate the 
a 

w , a substantial body of engineering practice would by this time have 
a 

evolved, permitting the calculation of the c to within (say) 10%, in- 
a 

stead of the current Guess to within 900%. 

The real obstacles to the development of such procedures 

appear to include the following ones. 

Obstacle 1  - There is a widely held belief that does not matter be-

cause it is 'small'. 

Obstacle 2  - Controls engineers are happy to see remain small, because 

it elevates the criticality  of  their discipline. 

(Hundreds of papers on control of flexible spacecraft assume the struc-

tural damping to be zero, thus virtually guaranteeing that 'spillover' 

from the neglected modes will be a problem.) 
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Obstacle 3 - While natural frequencies can be calculated solely on the 

basis of static  test data--mass properties and stiffness 

properties--damping factors inherently require data from 

dynamic tests. 

The first two obstacles are rather artificial and can be 

eliminated through an increased awareness of the nature and function 

of passive structural damping. 'The third obstacle is more fundamental 

and can be overcome only through major research and development pro- , 

grams. 

II 2.5 	Flight Results on Structural Damping  

, 

II Not only is there no comprehensive engineering Procedure 

for modeling structural damping; there is very little data available 

1 	from flight results either. Some data is available for the solar array (Ref. 2) indicating a dâmping factor of about 2% in the 
, 	FRUSA 

	

ir 	primary mode. For the Hermes satellite (Ref. 3), which had a some- 

	

," 	what similar solar array, the damping factors were about 1% - 2% 

	

II 	

depending on the mode. Recent on-orbit results for OS0-9 (Ref. 4) 

also imply damping factors < 1%. It should be noted that these damp-

ing factors, already greater than 1%, were occurflng naturally in 

I the structure; no attempt was made to design damping\into them. In 

the case of Hermes, it is also noteworthy that the values measured in 

	

I  II 	
space were often significantly greater than those measured in ground 

tests in vacuum. It is suspected that joint freeplay, much reduced 

	

I II 	
in ground tests by gravity-induced tension, may have contribute extra , 

	

It 	damping under the free-fall conditions of space. 
1 

	

11 	3. 	' THE 'LIGHT DAMPING' ASSUMPTION  
1  

imi 
II

It has been observed that the level of energy dissipation 

naturally occurring in space structures is 'small'. This fact can be 

	

II 	

used to advantage in obtaining basic analytical results. Specifically, 
I 

it will be shown in this  section  that, provided the level of damping is 

	

, 	sufficiently low (less than a few percent), the eigenvectors of the 

IF 
.1 

damped system are, for all practical pruposes, the eigenvectors of the 



(x.,r.) (3.1) 

(3.4) 

undamped system (the vibration modes). The only really important effect 

of light damping is the slow exponential decay of vibration amplitude, 

and this will be shown to depend only on the diagonal elements of the 

modal damping matrix. 

3.1 	Jacobi's Formula for Perturbation of Eigenvalues  

and Eigenvectors  

One point of departure is Jacobi's formulas for the first-

order perturbations in the eigenvalues and eigenvectors of a general 

real matrix A due to first-order change in A. The latter change in A 

is denoted SA. Let the eigenvalues and eigenvectors of A be denoted 

(The reason for the notation r 1  for the eigenvector r. will become clear -1 
presently.) In general, (x i , r) may be complex. For the application in 

mind, we prefer to let A be a 2n x 2n matrix and to let n denote, as be-

fore, the number of coordinates in the problem. If the number of co-

ordinates in a structural model is n, the number of state variables is 

2n. Then 

Ar. = Xi r. (i=1,.. .2n) 	( 3 . 2 ) 

This set of equations can be combined into a single 2n x 2n matrix equa-

tion 

AR = RA 	 (3.3) 

where 

is the modal matrix or eigenmatrix for A, and A is the diagonal matrix 

of eigenvalues 
• 

A=  diag{ xl"'"x2n} 	
(3.5) 

The form (3,3)-(3.5) implies the assumption of 2n linearly independent 

eigenvectors, a valid assumption for structures except in the trivial 

1 1 



(3.6) 

(3.7) 

H 
=. S..

ij
. 

-1-i  = 	 (3.10) 

case of uncoupled structures. 

, 	The modal relationship (3.3) can be rewritten 

LA = AL 

where 

There is no difficulty about whether R
-1 

exists because it has already 

been assumed that the eigenvectors r„...,r 11  are linearly independent. 
H 1 

 If, now, we let the rows of L be Z. 
— 

H 
Z. 

(3.8) 

L—H2n 

then (3.6) can be decomposed into the 2n relations 

H 	H 
t.A = x.

1
Z. 	(i=1,...2n) 	"(3.9) 
—1 

The significance of the symbols r i  and Zi  can now be discerned:  

is the "right eigenvector" of A, and t. is the "left eigenvector" of A. 
-1 

The right and left eigenvectors satisfy the orthonormality conditions 

as is obvious from (3.7), when written as LR = 1. 

The way is now prepared to consider the "eigenconsequences" 

of small perturbations SA in A. From (3.2), 

(3.11) • 	(A +— SA)(r. + sr..) = (x. + sx
i1 

+ 

To first order, this relationship can be written 

Ar. + Aâr. + 	= x.r. + x.(3r. 4-'( i
)r 

- 	- 	• 1-1 	-I 
(3.12) 

When (3.2) is subtracted, one arrives at the following,first-order result: 

12, 



ASr i  + (A)r. = x i sri  + (sx i )r i 	(i=1,...,2n) 	(3.13) 

On the basis of this equation we can find the small changes in x. and r 1 

 due to small changes in A. 

First, premultiply (3.13) by /. Upon noting (3.9) and 

(3.10), we have 

= 0 
- -J 

H SX. =  
- 

(3.14) 

(i=1,...,2n) 	(3.15) 

The latter equation expresses the change in the eigenvalue x i  caused 

by the change in the matrix A. 

Next, we find the change Sr i  in the eigenvectors r i . 

With no loss in generality, the condition 

(i=1,...,2n) 	(3.16) 

is imposed on sr i . This condition may seem arbitrary, or even wrong, at 

first glance. It is needed, however, to make srunambiguous. Suppose 

r. + sa. is an eigenvector of A+ SA. Then (r. + Sa.)w is also an eigen-_ _ 

vector of A+ SA, where w is any complex constant. The condition (3.16) _ _ 

resolves the ambiguity of the factor w. Thus 

Sr. = -1 (r. + Sa.)w - r. 	 (3.17) 
-I 	-I 

and (3.16) fixes w to be 

H 
-1 

H 	-1 
w =  (1+ 

Toderivethedesiredexpressionforsr i  .note that , 

2n 
H 

A = 
k=1 , 

(3.18) 

(3.19) 

This relation simply expresses A in terms of its e-igenvalues and 

eigenvectors, and clearly satisfies (3.2) and (3.9). Then (3.13) can 

be rewritten thus: 

13 



2n 	-T  

i=i x. 
_iti ' 

r. = (6A)r i 	(i=1,...,2n) 	(3.22) 

(3.23) 

2n 
î X r ,e8r. +(6A)r. = X•sr. + (dx.)r. k-k-k 	1 	-1 k=1 

(3.20) 

Now, premultiply by 4(j+i), and note the orthonormality conditions 

(3.10), to obtain 	--- 

Z.(sA)r. 
- 	.

•

- x -1 	 (3.21) 
--J ---1 	X 

1 	J 

If (3.21) is premultiplied by ri  and summed over all j (except j = i), 

the result is 

because from RL = 1 we learn that 

2n 	
H 

Mand ZI.ISY agreement. Equation (3.22) is the relationship sought; it 

expresses the change in the right eigenvector r i  caused by the change in 

the matrix A. Note also that distinct eigenvaZues have been assumed. 

For the -sake of completeness, it is remarked that the 

change in the left eigenvectors due to sA can be shown to be 

-- 	Fl 2n r 4t4  1 
= --1 	-1 - 	j=1 •i 1 j 

(i=1,...2n) 	(3.24) 

using a similar derivation. 

3.2 	Perturbations in Syste Eigenvalues Due to Light Damping  

With the above results in hand, we turn  no  w to the real 

objective--finding the perturbations in the undamped modal parameters 

caused by small structurà1 damping. The undamped vibrating system re-

presented by 

14 



1 
1 
1 

(3.25) 

(3.26) 

where 

1 
1 

1 
1 
1  

n 	w
2n = 0 

a 	a a 
(a=1,...,n) 	(3.27) 

They satisfy 

(3-28) 

(3.29) 

n•n 

In1nnn nn•• 

0 	1 

-0
2 

0 

(3.30) A 
-n2 

r = 
_jto 1 	

; 	

= 	jw 1 

7-Q4  _I ar-ct 	

-, 

1 	 "1 
(3.31) 

1 
1 

= 0 

can also be represented by 

n(t)'= En(t) = 	e n_(t), 

and e , the columns of E are the undamped modal vectors. 

the orthonormality relations 

e
T
Me, = 	,; 	e

T
Ke,
--110 

= w
2
(3 , 

--a--16 	up 	—a- 	a cep 

which is just another way of writing '(2.7). In this section, we con- 

sider the elastic modes only, w > 0. 

Now, (3.29) can be rewritten 

and so we have the following correspondences to the theory of Section 

3.1: 

X = jw ;
n+a , 	a 

= _j w  

H - 	T 	-1 T • 	H 
,= [1/21 	siti)ct 	' 

--C4 	--C4 

[1, 1T 1,4w-liT] 	
(3.32) 

a 

(3.33) 

for a= 1,...,n. Here, 1 is a nxl column of O's, except for a 1 in 
--C4 

position a. 



(3.37) = 1/2dOEOE / 

o o 

o 
SA = 

( 

ir  
• 	' 	 . , 

II 	 . 

. 	 . 

II

Sow we consider the damping terms to be perturbations to 

the above (undamped) system. The. dàmped system is 

(3.34) 

where  Vis  'small'. The undamped eigenvectors e are still a vector 	' —a 
basis in which to express g(t). Thus we still use (3.29), except that 

n no longer satisfies (3.27), but 
a 

n 
î 	1-1 	4.  2 

wŒnOE 	° (3.35) 
s=1 ae-e 	'er   

instead, where da  are the elements  of V, and 

D = E
T  DE 

- Furthermore, we define 

(3.36) 

as the damping factor for mode a. Note, however, that we are not 

assuming that da  = 0 for a 

What are the changes in the eigenvalues'due to D? 

According to (3.15), we can use (3.30)-(3.33) above, provided we ob-

serve that 

(3.38) 

in order to be consistent with (3.35). The result is 

(a=1,...,n) 	(3.39) 

From this Simple result we can come td the following important con-

clusions. 	• 

Conclusion 1  - For lightly damped structures, the change to 'the un-

damped eigenvalue jw
a 
caused by damping depends only 

on the diagonal elements of 2„ not on the off-diagonal 

elements. 

SX
a 
 = SXn+a 

= 
a a 



r s„,
H w  

X - X 
n+a 	r3=1 

13+ct 

—e—f3—n+e—ni- r3  
X -X 

+
X -X 
Œ 	n-l-f3 

(sA)ra 	(3.40) Sr ,—= 
—a . 

Sr' = 
—d 	a 

-13 
(3.41) 

Conclusion 2  - For lightty damped structures, the change to the undamped 

eigenvalues jwa  caused by damping is a small shift into 

the left plane, of magnitude ,ot toct . There is no change 

in the imaginary part of the eigenvalue. 

3.3 	Perturbations in System Eigenvectors Due to Light Damping  

Next, we consider the change in the eigenvectors caused by 

light damping. We write (3.22) as 

for a= 	and Srn+a  . (S! c) 	Using (3.31)—(3.33) and (3.38), 

one finds'-  

-jwctla i 

n 	d 

	

+ jw 	
22 a 

13--4 w -03 

	

' 	+ct a  

for a= 1,...,n. There is the suggestion irC(3.41) that the damping must 

be especially light when the frequencies are clustered (nearly indistinct) 

if our 'light damping' theory is to remain valid. 

3.4 	Perturbations to Undamped Motion Due to Light Damping  

In the absence of damping, the general free motion of the 

structure consists of a linear superposition of the (undamped) vibration 

modes, as shown in (3.26): 

g(t) = 	e n (t) 	 (3.42) 
a=1"-c" 

where 

(3.43) n (t) = c cosw t 	c2asinwt a 	a 	a l  

and the constants c 	and c 	are determined from initial conditions. 
la 	2a 

17 



got  = En = E 

To find the effect of light damping on this solution, we re-examine 

the undamped solution (3.42)-(3.43) in another light by setting , 

g(t) = Re )îcoe a
t
] 

ce-ia 
a=1 — . 

3.44) 

where got  are the eigenvectors in physical coordinates, X a  are the 

eigenvalues and c  a set of complex constants determined from 

initial conditions. Although we allow c a , got  and X  to be complex, 
a 

g(t) itself is, of course,real. 

The eigenvector in physical coordinates, g ot , is re- , 

lated to the eigenvector in undamped modal coordinates, n , by 

- 
got  = En 	 (3.45) 

However, from (3.31), 

n = 1 	 (3.46) 
—a —a 

so that 

aet, e 	
(3.47) 

Also, Xa  = jwa . So (3.44) is identical to (3.42) - (3.43), with the 

identification that 

cŒ  = c la 
-  3 c

2a 	
(3.48) 

For the lightly damped system we can still write the 

solution as a sum of modes, as given in (3.44). But now 

••••nn 

n 

1 - 	î 2 2 	le f3=1 	-to,, 
13ta 	P  

as indicated in (3.41). In other words the'lightly-damped mode shapes' 

got  can be expressed in terms of the undamped mode shapes e as follows: 

18 



n 	d 

)ejw 	OEP  e a -c4 	a (3=1  22 —(3 w -w  

(3éa a  

9-a e  
(3.49) 

(3.51) sinw
a
t 

n••n 

n 	d 
e - w   e 

ar-Ot (3. 1 to2 ..w2 
a 

• 	, 	 f3Ta  

Re{gae Àat}eawat e cosw t + 
—ty, 	a- 

Speaking loosly, a 1% damping results in a 1% change in the undamped eigen-

vector, at 900  phase. 

The general free motion of a lightly damped structure is 

then of the form (3.44), with got  given by (3.49), and 

(3.50) A = jw - w 
a Œ 	et a, 

as indicated in (3.39). It follows that 

The expression for im{p e Xat l is the same except for 

{cosw t,sinw tl 	{sinw t, -cosw t }  
a 	a 	a 	a 

, The following two conclusion.s'concerning the effect of light structural 

damping on the free motion are now clear: 

Conclusion 3  - The motion is‘no longer purely oscillatory, but is slowly 

damped. The envelope for mode a is exp(-c w a
t). 

a  

Conclusion 4  - The damped mode shapes are essentially the same as the un-

damped mode shapes, but with small, 90°-phase components 

proportional to the damping. 

From a practical standpoint, the slow expoential damping 

action is crucially important, while the small change in eigenvector is 

unimportant. So long as the structural damping is of the order of 1% or 

less, there seems little justification for keeping the 1% out-of-phase 

term in (3.51). In other words, for all practical purposes, the general 

free motion of a lightly damped structure is given by 

(3.52) 

g(t) = 	ea(cla 	a 	2a  coswt + csinw' t)e - awat 
 a=1 	a 

(3.53) 
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1 
1 

1 
1 

1 
1 

where the e are the undamped vibration mode shapes, the w are the un-
-a 	 a 

damped Vibration frequencies, and the 	are calculated from 
a 

2
a 
 w .. d

act 
 E e

T
De 

cu. 	-a --a 
(3.54) 

1 

1 

The following conclusions also follow: 

Conclusion 5  - Effort spent in calculating undamped mode shapes and fre-

quencies is entirely valid. It is these modal quantities 

that are used in (3.53). 

Conclusion 6  - Only the diagonal  elements of the modal damping matrix 

have an important effect on the lightly daMped motion. 

3.5 	A Criterion for Diagonal Dominance  

In connection with (3.51), a criterion for diagonal dominance 

in the modal damping matrix  V  can be inferred. If 

2 

4 ^  
Œ 
  de«de 	(a=1,...,n) 	(3.55) 

2 2 Œe—e 	aa-a 
a e 

n•n 

' then the effects of the off-damped elements in V on the (small) change 
- 

in the eigenvector are negligible. Diagonal dominance permits us to write 

(3.51) as 

- 
Re{qae

X
a
t
} A e (coswat 1/2yinwat)e c'twat  

-ci 

which has the attraction of simplicity. 

However, the main thrust of this section is not the 'diagonal 

dominance' assumption, but the 'light damping' assumption. With light 

damping, the motion depends, for all practical purposes, only on the dia-
. 

gonal elements of V, whether  V  is diagonally dominant or not. - 

4. 	IMPORTANCE OF STRUCTURAL DAMPING 

The objective of this section is to demonstrate the following 

two assertions: 

(3.56) 

1 



Assertion 1 - Even though structural damping is 'small', it is very im-

portant. 

Assertion 2 - In comparing values of the modal damping factor for 

lightly damped structures, it is the value of c com-

pared to 0 that is important, not the value of c com-

pared to 1. 

There are several relatively simple ways to verify these assertions. 

In this section, we shall consider the following situations: 

(i) resonant response to sinusoidal inputs; 

(ii) steady-state response to random inputs; 

(iii) bounded response to bounded inputs; 

(iv) open-loop modal cost analysis; 

(v) stability regions for a selected control system. 

In all cases the importance of the damping factor is quite evident. 

4.1 	Response to Sindsoidal Inputs  

One of the most obvious demonstrations of the importance of 

is the well-known result that the response to a sinusoidal input, whose 

frequency coincides with a natural frequency of vibration, is propor-

tional 	- to
-1
. That is, the resonant response amplitude goes 

as 	For For mode a, 

• 
na 

2 wn +w a a 
2
n =y 

a
(t) 

a a a  

and, if 

ya  = ya000SU E Re{yao eitet l 

(4.1) 

(4.2) 

then the steady-state response may be written 

n (t) =Re{n (w)eiwt } 
a 	ao 

where nao  is complex. 

Substitution of (4.3) into (4.1) shows that 

(4. 3) 
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1 

In (w )1 - 	
ao  

ao a 	w2 , 
a a 

( 	 • 

(4,6) 

<ya (t)> = 0 (a=1,...,n) 	(4.8) 

Ya0 

(e. '•e) awaw a 

( 4.4) 

The amplitude of response is 	• , 

I nao (w) I - 	2 • 
[(wot  -03 

cto 
2 A 2 2 2,1/2 

+zg w w j 	. 
a  

(4.5) 

As is well-known, this function is largest at resonance, i.e., when 

w w . At resonance, 
a 

1 

If 	is assumed to be 0.001 when it is in reality 0.01, the resonant 

response will be overestimated by 900%. 

For lightly damped structures the response of the other 

modal coordinates ( ne' s 	et) will be dwarfed by the mode in resonance. 
Hece 

g(t) 	e na (t) 	 ' (4.7) 

and the, amplitudes of vibration of the physical coordinates are also 

determined by 1ha . 

4.2 	Response to Random Inputs  

Lest it be thought that the above conclusion depends on the 

assumption of sinusoidal excitation, the analysis will now be generalized 

to include stationary random inputs. 

Let ya (t), a=1,...,n , be a set of stationary random inputs 

with zero mean: 

where <•> means expected value - of 	These.inputs are characterized 



• 

h  a (w)  - 	
1  

2 	2  
- w ) 	w 

a 	cc  

(4.12) 

a) 	 (4.13) h
cffl

(w) = 0 

is 
1 —C 	t . 

-n ( t) = — e a a 'sinw 
a 	a a 

(4.14) 

by their covariance matrix 

C (T) = <y(t 	)T(  t) >  
--yy 

(4.9) 

The.-assumptions of stationarity and ergodicity permit us to relate ex-

pected values to time averages: 

1 
C (T) 

 
- T  2T 	

/(t + -r)y
T
(t)dt 

---yy 	4.09  
-T 

(4.10) 

An equivalent representation is through the spectral density matrix 

defineà as the Fourier transform of C : 
—YY' 

(4.11) 0 (a)) = 

co 	
Y 

C (T)edT 

— . 

We denote by ha (w) the frequency responsè of mode a to a sinusoidal 

input to mode 13. Thus 

[Alternatively,  h(w) can be regarded as the Fourier transform of the 

impulse response. The response of (4.1) to 

ya (t) = ( t) 

for 'light' damping (i.e., dropping c 'dt2  terms). The Fourier transform 

of (4.14) is indeed (4.12) within the 'light' damping , approximation.] 

Let 

H(w) = aa (01 (4.15) 

a diagonal matrix of frequency response functions. Then, from linear 

23 
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(4.20) 

2 
a 

system theory, the spectral density matrix for the outputs, o , 

is related to the spectral density matrix for the inputs, o 	by , 

the following relation: 

) = H( w ).4y ( w )H H (w) 	 (4.16) 

where (-) H denotes the Hermitian operation (complex-conjugate transpose). 

. Thé elements'of o 	are 

d), 

(4.17) {o } 	E (I) 	= h h (
Y Y 

I) 
-fin ar3 	ii 	Œceta f3P.  a 

wher;e-(,)* denotes the complex congugate. 

The basic results are now in place to calculate the average 

energy of the system. The total energy is the sum of the kinetic energy 

and the potential energy: 

E(t)= 	+ 1/2g:1<g_ , 	 (4.18) 

Or, in terms of modal coordinates, with çL = En, 

E(t) = 1/2;1 1-Ti + 1/2nTo2n 

Thus the mean (expected) value of the energy is 

, 	- 	2 	2 <E(t)> 	2 > + 
a=1  Œ 	a a 

FOrtunately, there is a simple relationship between the mean 

and spectral density for na . According to Ref. 5, p. 338, 
Co 

<n 2, . 	f .A (0(6 
Œ 	2w j 	n 

and, from the same reference, p.339, 

-2 _ 1 r 2 
<na> 	w (1)11 n  (w)dw 

-w 	a 

(4.19) 

(4.21) 

(4.22) 
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a (tfl 	Ya,màx  (4.25) 

By inserting (4.17) in (4.21) and (4.22), and the latter  two equations in 

(4.20), one can express the mean energy of the system in terms of .* : 
—YY 

17  (w- 	
2 

w )Ih (' w)1 2 (1S 	(w)dw 
2 

a=1 •
a aa 	Y Y ci 

CO 

Or, from (4.12), 
; 

	

2 + 2 	- \ 
w 

1 ?. I 	(w)dw . °3 	
w 

	

OE 	4) <E(t)>= 4171-1. L 	2 	2 2 	222  y Y 	• 

	

a=1 -. (Loa  - w ) 4. 4 ciwaw. 	a a 

(4.23) 

(4.24) 

In general, these integrals would need to be integrated by numerical 

technique.  

However, even without integrating, it is clear that the 

denominators in (4.24) are singular when w = wa , (a.1,...,n), and that 

the energy mean will be very sensitive to the values of the modal damp-

ing factors, c a . This is not surprising in view of the fact that the 

role of damping is to remove energy from the system. 	. 

4.3 	Bounded Response to Bounded Inputs  

Another means of showing the critical roles of the damping 

factors ca  is to show their function in relating the bounded response to 

a bounded disturbance. We begin again with (4.1), and assume that the 

input has a known limit on its magnitude: 

The modal coordinate n (t) is known to have the solution 
a 

n (t)= w
-1 

f exp[ - w (t - T)]sih[w (t - T)]y CL (T)d.r 	(4.26) 
a 	a 	Ci OL  

1Y 

after transients have died away. The integral solution (4.26) is based 

on the well-known convolution property of the input ya (t) with the im-

pulse response function (4.14). It should also be pointed out that the 

expression (4.26) assumes light damping. 

After transients have died out, we have, from (4.25) and 
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(1) 

(2) 

(3)  

(4) 

(5)  

(6)  

(7) 

(8)  

26 

(4.26), the  following bound on  

I %MI  <w-1  f I exP [- ci.wet (t - T)]11 sin D.da (t - T)] I I YOE  , 	a 
)1d -r 

< w-1v 	
ft 

exp[- 	(t-TMCIT - a 'a,max 	a a 

Ya,max  
- 2  

a a 

(4.27) 

According to this bound, if a  = 0.01 the modal coordinate is restricted 

an order of magnitude more than if 	= 0.001. a 

A bound on each physical coordinate can be obtained as 

follows: 

112  E 	= nT (ETE)n  

Xmax{ETE1 	112  

xmln { ^4‘ 	11_2  

-1 
E {M}n_n -min ---- 

2 
-1 	n ya,max  < X 	{M} 

a=1w 

-1 
nX
min {I}  

'11-) max 
v'awaimin 

-1 -rm. 

	

nX • imf 	T - 	- 

	

min — 	
M 1 2 4\ 

`awaimin 

nx-1 {M} 
< 	x 	WImax f  -,2_4 \ 	max {m 1 
(w)mi n  
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( r 	) . 	max 
"ct. a i M111 

(9) (4.28) 

0 = det[l - AM] 

= det M-1det[M-1 - X1] (4:30) 

1 

A few words of explanation should be helpful: 

(i) thé notation X{A} means "an eigenvalue of A". 	, 

(ii) )1/4 	{Al means "the maximum eigenvalue of A", and xmin{A} 
mnell "the minimum eigenvalue of A". 

(iii) 	at line (2) it was recogniZed that the eigenvalues of ETE 

' satisfy 

0 = det[ETE - Al]  

= det[ET (1 - ÀE-TE-1 )f] 

= det ETdet[l - X(EET ) -1]detE 

det ETdet[1 - ÂM]detE 	- - 	(4'.29) 

because-  M = (EET ) -1  follows' f:rom ETM' E = 1. However, det ET  = 
det E 0, whence the eigenvalues of ETE satisfy 

Or, since detM -1 	0; the eigenvalues of ETE are the eigenvalues 
-1 

of M,  i.e. they are the reciprocals of the eigenvalues of M. 

(iv) at line (4), the bound (4.2) was inserted. 

(v) at line (6), the fact that 

y  Ty  = ( ET. ) T ( ET_i) 	/TEET/.. 	(4.31) 

was observed. 

(vi) 	at line (8), it was noted that, since the eigenvalues of M-1 

are the reciprocals of the eigenvalues of M, the maximum eigen- 
-1 

value of M 	is the reciprocal of the minimum eigenvalue of M. 

Thus if the input .et) is bounded, 



I. 

(4.32) 

4.33) 

(4.35) 

(t i  > 0) 	(4.36) 

I I i(t) II 	timax  

the response, in physical coordinates, will be bounded according to 
-1 

min{ w} I 
a=1 " 	4  max 

In particular, if the conventional assumption 

1 = 2 	n e  

is made [see "Decision No. 1", Equation (2 .15) of the Common Theory], 

II(t)  II 
né 

< 	 
cw i  

The critical nature of 	is readily apparent from (4.34). 

4.4 	Open-Loop Modal Cost Analysi  

/ In Ref. 6, Appendix E, it is shown that the relative im-

portance of a mode can be assessed on.a quantitative basis of the fol-

lowing is known: 

the natural frequency w of the mode; 
a 

(ii) the damping factor 	of the mode; 

(iii) the degree to which the mode is excited; 

(iv) the degree to which the mode matters to the quadratic, perfor-

mance function. 

Some elucidation of the latter two ideas is required. 

To determine how much mode ais eXcited, it is assumed that 

11.9.(t) II 	n 

(4.34) 

Then, if the ith component of u contains only an impulsive signal, 

u 1 (t) = Mt - t.) 

the response of mode a is 



(4.38) 

2 
y(t) (4.40) 

	

-2 	m -2 

	

b. 	b 
= 

	

Œ1 	.- ai 
11 

(4.44) 

n& ( t) = cdexp[-cect (t- t i )]sin[wa (t- t i )] 	(4.37) 

where bai is the ith element in the row 

-T 	T 
b =  e 8 

 —a —a— 

(The expression (4.37) assumes 'light damping'.) 

Then, to determine how much this modal excitation matters, we 

assume a vector of outputs to be regulated has been defined: 

y(t) = pg(t) E 'n(t) 	 (4.39) 

where P =  PE. These  outputs are then coffibined in a weighted sum-of-_ 
squares to produce a single scalar measure of the seriousness of the 

perturbatigns at time t: 

Finally, it is assumed that the objective of the control system is to 

Minimize 

ry(?1 (t)dt 
0 

It is shown in Ref. 6, Appendix E, that 

V = V 
a=1 

where ' 	T- 	-2 
(e Qejd

ai  v  
a 	A 	3 

LK w 
ŒŒ  a 

(4.41) 

(4.42) 

(4.43) 

where Q = P QP• The formula (4.43) assumes that an impulse is applied 

(at >0) only to the ith input u i . If impulses are applied to cal 

the inputs,  b 1  must be replaced by 
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g2 	beTssTe  
a i --a--a —a-- —a 

(4.45) 

s
(s) - 	s 	U( s +ws

s) 
 

(4.47) 

where m is the humber  of inputs  (the dimension of.u). However, we note 

that the sum on the right side of (4.44) can be written 

and thus the expression for the mode cost V , from (4.43), becomes 

T - 	T 
(e 9.e.)(e 88

T  e ) 
v  _ 	 
a 	3 w 

a a 

(4.46) 

Once again we see that, "other things being equal"--where by "other 

thingà" wetmean the modal natural frequency, the modal excitation, and 

the importance of the mode in the error criterion y (t)--the "cost" as-

sociated with mode a is inversely proportional to c . 

4.5 	Closed-Loop Stability  

When the control feedback loops are closed it is intuitively 

obvious that the distances of the open-loop poles from the imaginary axis 

(the stability boundary) are critical. These distances are 	w a ce 

(a= 1,...,n). Even if the control-system designer has complete confidence 

in his design, and has no worries that the "controlled modes" might get 

dangerously close to, or even cross, the imaginary axis, the problem of 

'spillover' is still present--what does the control system do to the 'un-

modeled' modes, i.e., to the poles at -szcce +jwa , a > n? The stability 

margin for these poles is directly proportional to 	. a 

In Ref. 7 a straightforward but relatively realistic control 

problem was analyzed. As shown in Fig. 4.1, the attitude of a 'flexible 

spacecraft' is controlled by 

(i) 	a sensor with a time lag: 

,where 0(t) is the actual attitude angle and 0 5 (t) is the attitude 

reported by the sensor; 
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(ii) 	a (reaction-wheel) motor with transfer function 

Kns 
,T
c
(s) - 	 n-/(s) S + wm  

(4.48) 

where T
c
(t) is the motor torque generated by the command vol-

tage 'v(t); 

(iii) a control law (or 'compensator') whose transfer function is 

n;(s) = -(k P 
+ k

D
s + k

I
/s)5

s
(s) 	(4.49) 

corresponding to proportional, derivative, and integral feed-

back. 

(iv) the 'flexible satellite' is represented by the transfer function 

where 

5(s)  - '5 2 1
1 (s)  T-c (s)  

(ka/I) 1 	1 
- 	2 

	

s
2

I
e
(s) I

2 
 s 	a=1 s +2 w s +to

2 
et Cl 

(4.50) 

and I is the moment of inertia of'the satellite. The 'modal' 

gain' ka  applies to (unconstrained) mode 	See Fig. 4.2. 

For this 'spacecraft', the unconstrained-modal parameters 

were calculated from their constrained-modal counterparts 

(wa ,%,ka ) 

(Sta ,Za ,Ka ). 

It is known (Ref. 8) that 

' 	Ka = I f/I 
a=1 

where I is the moment of inertia of the elestic portion of the space-

cràft. The constrained-modal parameters were chosen to be 

2 n = a 
a 	1 • 

K n 	independent of a 
a a 

K = 900-/I)/(a
4

Tr
4

) 
a 	f 
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Z =Z
1 	

(all a) 
a 	- 

Thus n i  is a measure of the degree of flexibility, I f/I is a measure of 

the size of the flexible appendage (I f/I < 1), and Zl  is a measure of the 

degree of passive dissipation. 

Other details of the subject study can be found in Ref. 7. 

Some results are shown in Fig. 4.3. This stability diagram shows the signi-

ficance of structural flexibility relative to control system bandwidth, as 

measured by n i/wc , where wc  is the 'phase-crossover' frequency (i.e., the 

value of w for which the phase angle for the open-loop transfer function 

is -1800 ). For the particular control system chosen, the system is always 

stable for n
1 

>
c' 

Also shown in Fig. 4.3 are the effects of I
f
/I (size 

of flexible appendage) and Z l  (degree of passive damping). As might be 

expected, as I f/I increases, matters get worse. 

' 	The main point of this discussion, however, is the effect 

of passive damping, as measured by the size of Z
1' 

When Z
1 

= 0, all 

cases where
1 

< w
c 

are unstable. When Z
1 
= 0.001, many of these unstable 

cases disappear. When Z l  = 0.01, many more disappear; only the largest, 

most flexible appendages now lead to instability. Finally, , for  •Z l  = 0.05, 

no unstabie cases exist. ObviOuly the stability of the closed-loop sy-

stem is strongly dependent on the level of passive damping. 

4.6 	Summary  

In summary, the two assertions made at the beginning of this 

section have been demonstrated , in several ways. Damping, even though small, 

is critically important. Furthermore, the occurrence again and again of 

the factor 1ha  in the expressions  derived above--for example, in (4.6), 

(4.24), (4.27), (4.34), and (4.46)--shows that it is not a matter of in-

difference whether scx  is 0.01 or 0.001. Quite simply, there is an order-

of-magnitude error in assuming one of these values if the other is the 

true value. 

Would any project manager accept an estimate of wl  that was 

accurate to within only a factor of 10? Of course not. Yet project 

managers do accept estimates of c l  that are accurate to within only a 
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factor of 10. Whatever the explanation of this inconsistency, it does not 

II constitute sound engineering practice. Damping factors may always be more 

elusive than natural frequencies,,  but proper analytical procedures can be 

II expected to make substantial reductions in their factor-of-10 uncertainty. 

Such procedures can be expected to require considerable time and effort to 

II be evolved. It is hoped that the discussion presented in the remainder of 

this report will at least be a step in the right direction. 

II ' 	5. 	LINEAR VISCOUS DAMPING\ 

II 	
, 

No aspect of structural modeling is exactly linear and the 

same can be said of energy dissipation mechanisms. We assume the stress- 

! 	
_ 	strain law of the material to be linear; we assume displacements to be 

small with respect to characteristic vehicle dimensions; we assume that 
' 

'small angles remain small', and so on. The strong motivation for these , 
II 	, 	linearizing assumptions is that analysis is possible; the strong justifi- 

II 

	

	

cation for  'them  is that they are vâlid within the usual operating regimes 

of normal spacecraft. We shall assume in this report that damping is also 

II 	

linear. 
. 	, 

For a system with one degree of freedom represented by the 

coordinate q(t) and posessing mass m, let the damping force be fd (t). 

II To assume linear damping is to assume a relationship between fd (t) and 

él(t) of the form 	 • 

II 	 t 
f
d
(t) = - f

-.  hd
(t-T)Ci(T)d-r 	(5.1) 

II 	
, 

Or,'in the domain of the Laplace variable s, 

II 	
, 

d
(s) = -srl

d
(
s
)q(s) 	 (5.2)  

II where an overbar denotes a Laplace-transformed variable, and hd (s) is the 

Laplace transform of hd (t). The kinetic energy of the system is, of course, 

II 	
.2 

T = 1/2mq , so the rate of change in T due to the force fd  is 

••• 	• 
( 5.3 ) 

II 	

T = mqq . qfd 



11 "fd < ° (5.4) 

5.7) -scd EI 

Energy is extracted whenever 

One special case of linear damping is (sorcalled) linear 

viscous damping, in which 

- 
h
d
(s) E c

d 
= constant 

In other Words 

h
d
(t) = c

d
s(t) 

and 

f
d 
	-coq 

(5.5) 

(5.6) 

It is with this type of linear damping that this section (Section 5) 

is concerned. 

5.1 	' 	Discrete Linear-Viscous Dampers  

Many types of mechanical devices have been developed that 

have the linear-viscous characteristic mentioned above in (5.7). Al-

though an extensive review of such devices is beyond the scope of this 

report, the following comments should be helpful: 

(i) 	Because the device has beeri designed t6 have the linear-viscous 

characteristic (5.7), the use of (5.7) is especially accurate. 

In particular, the objections to (5.7) that apply when (5.7) is 

used as a model for material damping (see Section 6.1 below) do 

not apply to such devices. 3  

There is a rich history  of  the use of such devices in spacecraft 

attitude stabilization ( and control. All gravity-gradient satel-

lites, all spin-stabilized satellites, and all duel-spin satel- 

lites flown to date have included a 'damper' as an essential 

piece of attitude control hardware.' 

(iii) 	It rmay seem surprising in view of the last remark, but the develop- 

ment of passive dampers in connection with the control of 'large 
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flexible spacecraft' has been vanishingly small. Most persons 

apparently assume that the extraction of unwanted mechanical 

energy must be accomplished almost exclusively with active con-

trol methods. 

(iv) Discrete linear-viscous dampers provide a design option that is 

attractive in the following respects: a wide variety of damper 

designs is possible; they can be placed at crucial points in the 

structure (i.e., to selectively damp the most important modes); 

and the damping strength can be selected at will. 

(v) When control analysts speak (as they often do) of 'co-located 

sensors and actuators' the sensors usually turn out to be rate 

sensors. This means that these analysts are implementing, by 

active feedback control, the linear-viscous damping character-

istic (5.7). Yet, for some reason, the passive-damper alterna-

tive is not considered. It is not clear (at least to this 

writer) why this is the case. In the end, it may simply reflect 

the experience of the analyst. 

The importance of the development in this section (Section 5) rests par-

tially on the credibility of :discrete dampers as an important possibility 

•for large space structure control. However, the modeling of general 

structural damping by a viscous model is also the motivation for much of 

the sequel. 

5.2 	Absolute and Relative Displacements 

Let us assume that a model for the undamped flexible space-

craft is available in the form 

Mq + 	= 	 (5.8) 

The most powerful current method for constructing such a model is the 

finite element method, which assumes that the elements of 27-the coor-

dinates of the model--are absolute displacements, i.e., displacements 

with respect to an inertial reference frame. They may be translational 
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9. = (5.9) 

(5.10) 
0 0 

o 	K _e  

Mr Mre 

M
T M 

_.—re -7e 

displacements, or rotational displacements or, in some cases, higher-Order 

displacements that a rigid body cannot have [e.g., q l  = z0 , a'translational' 

displacement; q 9  = (dz/dx) 0 , a 'slope', and thus a 'rotational' displace- 
2 ' 2 

ment; q 3  = (d z/dx ) 0 , a coordinate associated with .a 'higher-order' dis- 

placement for a flexible body]. The point is that (q 1 ,q 2 ,q 3 ,...1 are as 

seen by an inertial observer. 

However, in a discussion of internal damping, it is much 

more convenient to use relative displacements wherever possible, because 

it is these relative displacements that are directly damped. Thus we parti-

tion n with 

where gr  denotes the displacements that are absolute and associated with 

rigid-body motion, and ge  denotes relative displacements that could not 

exist unless the vehicle were flexible. For a vehicle consisting of a 

single elastic body there are 6 coordinates in gr , 3 for absolute trans-

lation and 3 for absolute rotation. If the vehicle has internal rigid-

body degrees of freedom, there are extra  degrees of freedom in gr  that 

are relative (not absolute) coordinates but that do not create any strain 

energy. The gimbal angles at the reflector constitute an example of such 

coordinates for MSAT. 	, 

Although it is not proved here, it is important to note 

that it is caways possible to replace a set of absolute coordinates (as 

may naturally occur in a finite element model) by a set of coordinates 

of the form (5.9), where gr  contains 6 (absolute) rigid codrdinates and 

possibly other (relative) rigid coordinates associated with articulation, 

and ge  contains the (relative) elastic coordinates. Thus we may with no 

loss in generality assume that 

The partitions in (5.10) correspond to those in (5.9). / The consequence 
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K > 0 
—e 

(5.11) 

> 0 —e 
(5.15) 

of using relative coordinates wherever possible that K has the much simpli-

fied form shown in (5.10) and, moreover, 

because only 'elastic' coordinates have been included in ge . 

The simplification in the form of K evident in (5.10) ap-

plies also to linear viscous damping. Assuming the only form of damping 

present is caused by internal relative motion, the ffnst general linear 

viscous damping term that can be added to (5.8) is a 12à.  term, where 

[0". 	9-D 

Thus the damped system has the form 

D= (5.12) 

(5.13) 

where D is of the form (5.12). If V  is based on discrete linear viscous 

daMpers, then pe  has the form 

(5.14) 
—e 

where discrete dampers are located at the points corresponding to cer- 

tain internal relative coordinates. The D is positive semi-definite, 
--e 

>.0, and {d
a'

db'—.1  are the damping constants of the discrete dampers. 

In spite of the fact that Die  is only semi7definite, it is possible to 

hwie (indeed it would be singular not to have) pervasive damping of the 

internal coordinates ge . [The condition for pervasiveness is that the 

outputs Deàe  make the system Mege  Kcqc  = 0 observable.] 

If, however, De  is to represent structural damping as well, 

since no internal motion can occur within a structure without causing 

energy dissipation. 
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We begin with the system 

( 5 .1 6) 

•••••• n•n ,,nn• ••n••• 

0 9. 
(5.19) W = z =  

9. 
n•nn• 

n••n nn••nn••• 

o 
A 

o 
•nnn••n 

o M 
(5.18) 

( 

To return to discrete dampers, as represented by the damping 

matrix (5.12) and (5.14), one important point so 	obvious it may be over- 

looked is that D is accurately .  known. Thus, in addition to providing an 

adeqûate level of damping, discrete dampers remove uncertainty as to whàt 

the damping properties of the system in fact are. If the discrete dampers 

are not too large, the 'light damping' theory of Section 3 can be applied. 

If one or more of the discrete dampers is sufficiently large, the damping 

will no longer be 'light' in all modes. 

5.3 	'Damped' Modes  

If the damping is not 'light', as considered in Section 3, 

the,alternative of . 1 damped' modes should be Considered. In these modes, 

the eigenvectors of the damped system are used as the set of basis func-

tions in  which to expand the physical displacements, rather than  the  

eigenvectors of the undamped system (the 'vibration modes'). A brief 

treatment of 'damped modes' is now given. 

with K > 0 to exclude rigid-body modes. Following the classic paper of 

Foss (Ref. 9), one can re'-organize (5.16) thUs: 

Ai = Bz 	w(t) 	 (5.17) 

where 

Note that AT  = A, BT  = B. The eigenvalue-eigenvector problem assàciated _ _ 

with the homogeneous  version of (5.17) is [set i= z i exp(x i t)]: 
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Z 
-s Wa9-a jw e 

ce-a (522 ) 
--11+a 

e  e  

z. 
x .g. 

q. 

H 
X.z.Az. = 
J-1--1 -1--O 

(5.24) 

x.Az. = Bz. 	(i= 1,...,2n) 	(5.20) 
1-1 

In general, (x
i

) may be real or complex. If a particular (Xp z i ) is 

complex, there must be another (x.,z.) that is the complex conjugate of 
J 

(x.,z.). - If the damping were zero, of course, the damped modes would re-

vert to undamped modes: 

X = jwa
; 	X

n+a 
= -jw 	 (a = 	 (5.21) 

a 	 a 

• 	[Compare with (3.30)-(3.33).] As it is, with D > 0, the special forms 

(5.21)-(5.22) no longer obtain. What is true, however, is that the eigen- 

vectors z.
1 
 must be of the form 

- 
nn•n 

(i= 1,...,2n) 	(5.23) 

in order to satisfy (5.20). 

The orthogonality conditions for the 'damped' modes z 

are found in the following manner. First, let i 	j in (5.20) and pre- 

multiplY by 2: 1 , the Hermitian of z.: 

(Actually, Foss in Ref. 9 uses simple transposition on z i  instead of the 

Hermitian operation; the present writer is  of the opinion that a better 

formulation results in the latter case.) Next, form the Hermitian of 

(5.20) and post-multiply by 
-1 

* H 	H 
x.z.Az. = z.Bz. 
1-1-0 -1 ---j 

Now, substract (5.25) from (5.24): 

*  
(x. - x.)z

R
Az. - 0 

j 

(5.25) 

(5.26) 
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where 

A
n-Fa 	a 

(5.28) 

, = Z -n,a (a= 	 (5.29) 

(5.30) 

(5.31) 

H 
z Az = 0 (5.32) 

z
T
Az, = 0 ( t ) (6.3.3) 

zH Bzr, = 0 
--a-p • 

z
T
Bz, = 0 (a= e ) 

(5.34) 

(5.35) 

We shall assume the X. occur in complex conjugate pairs (although it re-

quires only a modest extension to the theory to include real x i ). .It is 

unlikely that any form of passive damping will be so intense that a mode 

is 'overdamped' > 1). The X i  can be ordered as follows: 

= 	xn+a (i = 1,...,2n) 	(a= 1,...,n) 	(5.27) {x1 	(x,1 

and all the X (i= 1,...,n) have positive imaginary parts. (And therefore 

all the A 	= 
* 

have negative imaginary parts.) Similarly, from (5.20), 
n-1-OE 	a 

The 4n
2 
equations (5.26) then reduce to the 2n

2.
equations 

(X -
*
)z

H
Az 	0 

(3 	a 

(k 13  - XJZTAZ 	0 

for 04(3 = 1,...,n. Now k can never be equal to x a  since they are on 

opposite sides of the real axis. Therefore 	 , 

Furthermore, from (5.31), for distinct eigenvalues we have 

These last two equations are the basic orthogonality conditions. 

Furthermore, it follows from (5.24) that 

These are the auxiliary orthogonality conditions. 
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(5.42) 

(5.43) 

In spite of their compact from, (5.32)-(5.35) are not as 

informative to the structural  dynamicist as the expanded form available 

by substitution of (5.18) and (5.23). The orthogonality conditions in 

terms of the damped mode shapes at.4  are then 

H (X(*t 	Xe ).g.aMq r3    = 0 	(a,f3 = 	,n) 	(5.36) 

(xa  4- yguMq e,  4- gee  = 0 (at ) 	 (5.37) 

and the auxiliary orthogonality conditions are 	. 

H 
 ' 	
(a-,13 = 1, . . . ,n) 	(5.38) 

XaX0ege 9'.04qe  

T 	T ' 
x ci. X ectMq 	U2e 	(à+ i3) 	(5.39) 

It is not difficult to'show that,  when D = 0, and thus.  Âa,  

e,  thé abbve orthogonality conditions are in accord with 

( a e ) 	 (5.40) 

as they should be. 

The normality  conditions for the act  are now chosen. Moti-

vated by the undamped case, for which eTMe' = 1 is the natural normality 

condition, we'choose 

H 
Segg  = 1  (a. = 	. . . ,n) 	 (5.41) 

to be the normality conditions. It is interesting to note from (5.36) 

and (5.38), when a = , that 

• 	H 	. gjact  = -2Re{Xa } 

H 
neu  Ixa l

2 

The whole point of this exercise, of course, is to,develop 

a set of damped modes in terms of which the general forced motion governed 

by (5.13) can be expanded. To this end, we set 
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z(t) = Re{ î z E (t)} (5.44) 

in (5.17), premultiply by  z1 , and use the orthogbnality conditions. 

The result is 

T 	• 
(z Az )E = (zTBz )g 	zTw 

—a--a a --a- 

Now, from (5.20), 

zTBz = x z
T
Az 

—a--a 	a—a--a 

and,.7from (5.19) and (5.23), 

z
T
w = gui 

Theréfore,the modal equations of motion are 

T 

 

G. 
 = 	+ qj/(zT  Az )' 

(5.45) 

(5.46) 

(5.47) 

for a= 1,...,n. Note that 	is complex, and that 

, T 	T 	 ' 	1 , , ' z
T
Az =2X q_Mq_ 	 (5.48) + geta  

For numerical work, it may be necessary to write the single complex 

equation (5.47) as a pair of real differential equations by setting 

= 
a 	aR 	aI 

ketR  =act EŒR  - Wa%, 	Re{gT04/(zTAz )} 

ked = wee5ŒR 0-04%, 	Im{g:y(zTAz )} 

and X = a +-jai . Then 
G. 	a 	a 

.9_(t) = 
 1
Lalee(t) - gfdi(t)] 

f3= 

(5.49) 

(5.50) 

is the final expression for the forced motion in terms of damped modes. 
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(5.51) ge.  = 

When  the structure  is only 'lightly' damped, the complexity 

of damped modes can be avoided. To a very good approximation, the theory 

of Section 3 can be used and the undamped mode shapes suffice. 

5.4 	- 	Damping Synthe§is fram Substructues  

, In many spacecraft the 'structure' can be decomposed into 

'substructures' in a natural way. In the case of MSAT, for example, such - 

substructures are the antenna reflector, the support tower and the solar 

array. We assume that the elastic coordinates ge  are internal, relative 

coordinates, and that ge  can be further partitioned into substructural 

contributions thus: 

The coordinates ql:11  are associated with substructure m, m = 1,...,M. By 

an appropriate choice of coordinates it can be arranged that 

K 	block diag{K1 ,K2 ,....,K
M } 	(5.52) 

--e 	-- 

with the partitions in (5.52) matchina the partitions in (5.51). 

We now choose the elastic damping matrix D to be 
--e 

D = block diag{D 1  ,D2 	(5.53) 
--e 

[See (5.12) and (5.13).] In other words, 2e  is chosen to be block dia-

gonal, with each block being proportional to the corresponding stiffness 

block. The rationale for this choice runs as follows: an element of 

the stiffness matrix, k is nonzero if the stiffness of structure offers ii  

a resistance at coordinate q. to a force in the direction of q.; if the 

structure offers zero static resistance at q. to a force at q., how can 

it offer any dynamic (i.e., damping) resistance at qi  to a force at q i ? 

If we agree that the answer to this question is "It can't", then the form 

(5.53) follows immediately. 

Perhaps a simple example will help to clarify this concept. 

In Fig. 5.1 is shown a straightforward physical system whose coordinates 
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Fig. 5.1: Simple."Véhiclen Consisting of a "Main Bus" m i  and Two 

"Substructures",:m2  and m3. 



n•n•• 

—r 	--re 

—re —e 

0 	0 

0 —e 

(5.55) 

.9. 
Jie  

(5.56) 
o 	o 

Ke  
K = 

are chosen to be Cw ' qe1,qe21 as shown. Note that w is an absolute coordin-

ate, while qel and qe2 are relative (internal) coordinates. The 'main 

structure' is m1 (rigid for simplicity here), and m2 and m3 represent 

'substructures'. It is elementary to derive the following motion equa-' 

tions for the system of Fig. 5.1: 

*-* 
(5.54) 

where 

In this case gr  is a single coordinate, w, and ge  consists of q 

5Ie2' Also, Mr is  a 1x1  matrix, 

(5.57) M = m +m +m —r 	1 	2 	3 

is a 1x1 force input, 

= f1 f2 f3 

The momentum matrix is 

M = [m + m 	m 
--re 	2 	3 	3 

and 

(5.58) 

5.59) 

because the (relative) Momentum associated with the coordinates gel  

and q  

(m2 m3 ) %1 m3%2 

To continue with the findings of the 'elementary derivation', we can make 

the following identifications: 

44 



n•n••• 

m2 m3 m3 

m
3 	

m
3 

M = 
--e 

K = 
--e 

1( 1 	0 

0 	k2 

(5.60) 

n•••nn•• 

(5.61) 
--e 

nn• 

0 
1 

0 	c2 

Lf2 f3 

f3 	J. 

The stiffness matrix K is in the partitioned form (5.52); there are 
—e 

two substructures, each with one coordinate. 

The point of this simple examOe is to note that 14 is 

automatically partitioned to  match,. Suppose, on the contrary, that 

there were elements c
12 

and c
21 = c 12 

off the diagonal in D . This 
--e 

would imply that the motion of m2  relative.to m 1  causes a force -c 

on m3 ; even more mysterious is the force -c.—iz
(

e2 	e1 )  8 	implied to be 
— 	(71   

acting on m2 . These forces simply do not exist, and we conclude that 

c
12 

= O. More generally, when K partitions in the form (5.52) by  sub-

structure, 
—e 

 D. partitions in the same manner into the form (5.53). 

On the surface, this idea' may not seem too exciting be-

cause all that has been done iS to show that many of the elements of 

are O's. However, if initially none of the elements of '0 are 
—e 
known, a determination that many of these èlements are (exactly) zero 

is in fact a major step forward. To be specific, suppose there were 

10 substructures, each with 20 elastic coordinates. Then pe  is 200 x 
200 and has 40,000 elements. Because of symmetry only 1/2(200)(201) = 

20,100 of these elements are independent. The partitioned form (5.53) 

informs us that 18,000 of these elements are O's. About 90% of the 

'0 matrix has thus been determined exactly! 
—e 

If D is indeed partitioned according to (5.53), the 

modal damping matrix 	has a much more explicit form than just 

= ETDE 	 (5.62) 

•  The modal matrix E can also be petitioned in accordance with (5.55) - 

s (5.56): 
E 	E 

o 	E 
— 	--e 

nn••• 

1A1 

(5.63) 
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n•n•• 
0 o 

p_e  
(5.64) 

where 

=
T E  
c e c 

(5.65) 

D = 	EmTmE
m 

—e 	— --e 
m=1 

(5.67) 

= E 0 

gr  
2 	m-1 	ell 

' 	' 	= .9. 
(5.68) , 

(The 0 partition occurs because the elastic coordinates ge  cannot,parti-

cipate in the rigid-body modes.) Thus,. from (5.62), 

Next, we further partition ge  to match the substructural coordinates, 

as in (5.51) 

E l 
 —e 

E = 	• --e 

--e 

(5.66) 

The columns of E
m 

indicate the 'participation of the coordinates in sub-

structurem in the eigenvectors for the spacecraft modes. Finally, from 

(5.53) and (5.66), 

Equations (5.64) and (5.67) constitute the special form of the space-

craft modal damping matrix in terms of substructural damping matrices. 

There remains, of course, the vexing question of what the 

substructural damping matrices D 1
,...,DM  might be. Three possibilities 

are considered here. The first of these is to carry out substructure 

tests to determine the D experimentally. The second is for the know-

ledgeable Person of Section 2 to make a Guess at what the substructural 

modal damping factors are. In these 'substructure modes', all coordin-

ates are constrained except for the 21.11  cjf the structure in question. 

Thus, for the modes of substructure m, 



The equations of motion for these modes are, 

mme DMAIT1 Ky = 5.69) 

where M
m 

is the appropriate block partition on the diagonal of M . -e 
Let the modal matrix for these modes be Em . This modal matrix contains 

only the coordinates 2M, and must be distinguished from the 41  used in 

(5.66); the latter gives the participation of the coordinates e in the 

overall spacecraft modes. If the modal damiing factors for the substruc-

ture modes in substructure m are denoted 	let 

m 	m 
4 = 	 (5.70) 

Then- 

2eEmenmEemm 

I where 

(5.71) 

= diag{w111 ,...4} 	 (5.72) 

is the diagonal matrix of natural frequencies of vibration for the 

(constrained) substructure m. Equation(5.71) is correct because 

E 
mTmE 	2Zm 	mm  n 

as it shàuld be (recall that EmTeEm  = 1). On this basis, 15 becomes, -e 
according, to (5.67), 

M T mmm mT m m  

e = 2 î 	 (5.74) 
- 	m=1-e 	 

(5.73) 

The matrix multiplications are straightforward on a computer. 

The third and final possibility is to choose 

Dm  = a Km  m-- 
(5.75) 

The reasoning behind this assumption is to apply the same logic coor-

dinate-by-coordinate as was applied substructure-by-substructure in 

(5.52) and (5.53); see also the simple example of Fig. 5.1. Only one 

damping parameter is needed per substructure, namely am . This is the 
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5.76) 

5.77) 

(5.78) 

(5.79) 

method used by Dynacon in earlier MSAT modeling work (Ref. 6). The ad-

vantage of (5.75) is that it gives a good deal of 'structure' to pe  with 

only a few parameters needed. The disadvantage is that it probably tends 

to over-estimate the damping of the highest modes. The latter statement 

can be explained . by  letting all the substructural damping parameters be 

equal: a l  = a2  = 	= am  . ad . Then, from (5.6) 

mT.:m m 
—e --e 

m=1 

M
rnT m 

= cinterM 

d m=lEe 

(The diagonal elements of st are the overall spacecraft natural fre-

quencies.) Comparing this to 

--e — 

where Z is a diagonal matrix of spacecraft mode damping factors, we 

see that 

Z = 1/2ad S2 

That is 

OE = 1/2adwa 

and so the damping factors tend to increase with frequency. s 

6. 	LINEAR HYSTERETIC DAMPING 

Let us return briefly to the elementary discussion at the 

beginning of Section 5. A 'system' that has a single degree of freedom 

with coordinate q(t),  was considered. The rate'of energy decrease is 

T = qfd , where fd  is the damping force. If fd  is strictly viscous 

damping, i.e., fd  = -cdq, then 

t = -c de (6.1) 
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q = qdcoswt (6.2) 

HI  

1 
1 

Now, suppose  q is forced by some external agency to execute simple har-

monic motion at frequency w: 

The energy extracted by>the damper in one cycle is 

2111w 
= - 	tdt 

' 	0 

' 	>2 
= (Tr/ )c

d
wq

o 

As expected, the loss is proportional to the damping factor cd  and, as 

with all energy-related quantities, it is proportional to the square 

of the amplitude. Attention is specificall drawn here to the presence 

of the coefficient w in (6.3): the energy lost per cycle with linear 

viscous damping is proportional to the frequency of oscillation. 

Unfortunately, the loss factors  for  materials (and joints 

as well) are not experimentally fbund to be proportional to frequency. 

6.1 	The Linear Hysteretic Damping Law  

The dependence of loss factor on frequency for real materials 

and real joints, as experimentally determined, is not simple, but a reason-

ably accurate model is Lthat the loss factor is independent of frequency. 

While not exact, this simple model iS much more realistic than the viscous-

damping alternative which leads, as we have seen above, to a frequency-

proportional loss factor characteristic. 

How should the damping law be changed to provide a frequency-

independent loss factor? In the frequency domain, the linear-viscous 

characteristic is 

?d(s) = -cds,i(s ) 

where overbars denote Laplace transforms. In particular, the frequency 

response function is 

--id (jw) = -ice ii (jw) 	 (6.5) 

(6.3) 

, (6.4) 
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+1,• 	w > 0 

undefined for w = 0 
sgn(w) = 6.7) 

5.13) from ( 

(6 .8) 

(6.9 

1 HT  = H > 0 (6.10) 

50 

(6.11) 

To remove the frequency-proportional characteristic, we replace w in 

this manner: 

(6.6) c
d
w h sgn (w) 

where the sgn function is 

The proportionality to w is thus removed, although the sgn(w) is re-

tained to ensure that the force is in fact dissipative. 'Equation (6.6) 

is the elementary linear-hysteretic damping law. 

For struCtures represented by not one coordinate, but 

many, the same ideas apply. With linear viscous damping, we have, 

2 	. 	-/. 	,/, 
[K - w M + JwDgLtiw) = Auw) 

where as, with linear hysteretic damping, 

2 
[K 	w M 	j sgn(w) 	co) 7 i(jw) 

The hysteretic damping matrix H is symmetric and positive semi-definite, 

It is important to note that the hysteretic damping law is formulated 

in the w-domain, not the time domain. It is, strictly speaking, valid 

only for sinusoidal oscillations and its usefulness in the time domain 

is therefore limited. On the other hand, it is especially appropriate 

to frequency-domain techniques (e.g., Nyquist analysis). 

For flexible spacecraft, we also know that H can be parti-

Maned into its 'rigid' and 'elastic' partitions: 



H >. O 
—e 

i.e., ye  is positive definite. 

(6.12) 1 
1 

1. 

1 
1 
1 

(6.15) 

(6.16) 

1 
1 

This is identical to the partitioning pointed out in (5.12) for I), the 

viscous damping matrix. Since all deforming structures dissipate energy, 

6.2 	'Light' Hysteretic Damping  

We shall for the remainder of this section dispense with 

the rigid-body modes (which are undamped anyway), and consider the system 

[K - w2M jsgn(W)Lejw) = 	 (6.13) 

with K > 0, H > O. If undamped modal coordinates n(t) are introduced 

into (6.13), 	' 

= En 	 (6.14) 

we have 
' 	2 	2" 

' 	[0 - w.1 	j sgn(w)H171(iw) = 7r(sit4 

where n contains the undamped natural frequencies, y = E% and 

= ETHE 

is the hysteretic damping matrix for modal cobrdinates. 

The model (6.15) has two disadvantages: 

It is in the frequency domain and does not lend itself to a time-

domain interpretation. How, for example, would one carry out 

numerical  simulations  with this model? 

The modal ëguations for n are coupled by H. This does not present 
a 

a problem for numerical simulation work but does prohibit many 

analytical techniques that are.useful in the design process. 

Both of these disadvantages can be removed with the . aid of the qight' 

damping assumption. 

If the system is lightly damped,' we know that the system 
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a -- a  
jw d 

Œ ctet 

(jw ) ) _ 	„, 41 

(jw ) 
.7ia (jwci ) - 	a  

jh 
act 

(6.22) 

response is essentially the undamped system response, except at the reson-

ances. Therefore, except in the neighbOurhood of w = wa , a 1,...,n, it 

matters not whether the damping is viscous, hysteretic, or even present 

at all--so long as it is 'light' damping. With viscous damping, 

71(iw) = [s.2 2  — 1 + jwis) 1 -1  ..,-((jw) 	
k 	

(6.17) 

and, for light viscous damping, we know from Section 3.2 (Conclusion 1) 

• that only the diagonal elements of 'V influence the motion. In fact, with 

the light damping assumption, (6.17) becomes 

Ya (j(0) 

71a (jw)  - ((i)2 _ w2 ) 	ituâ 
a 	aa 

(6.18) 

[Compare with Equation (4.4).] When w is not near w (including, in 
a 

particular, when w is near other resonances, w
f3, 
 + e4), 

. Sf.  (jw) 	. 

2- 	
(w nôt near  w)  

w 	w
2  
	. 

04 

(6.19) 

and, at w = et  9  

(6.20) 

Now, consider light hysteretic damping, as governed by 

(6.15): 

- w2 1 + sgn(w) 111 -1 ;r (iw) (6.21) 

Since H is sMall, (6.21) will  automatically 'produce (6.19) when w is -

not near w . At w. w , (6.21) - becomes 
.(x 	- 

(The sgn function is not necessary here because wa  > 0 by convention.) 
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â = h e) aa aub  a 
(6.23) 

2 
a 

= 1/2h.  Lw 
aa a 

(6.24) 

eTHe /w2 (6.25) 

. m 
H = E el  

m-- 
( 6 . 27 ) 

A comparison of (6.20) and (6.23) leads to the following 

two important conclusions: 

Conclusion 1  - There is no important difference between (light) viscous 

damping and (light) hysteretic damping provided 

Conclusion 2  - 'Effective linear viscous damping coefficients' 	can a 
be used in the modal motion equations, even when the 

damping is hysteretic, provided the damping is light and 

provided the 	are chosen to be ce 

On the basis of these conclusions, the advantages of mo-

dal uncoupling and a time-domain representation can be retained even 

with hysteretic damping. If the hysteretic damping matrix H is known. 

H is found from (6.16), and the equivalent viscous damping factors a 
' computed from (6.24 ).. ,  Another version of (6.24) is' 

where e are the undamped vibration mode shapes. If 	« 1, a= 1,..,n, 
—u 	 a 

then the hysteretic damping is indeed 'light'. The modal motion equations 

are 

• 	2 
n
a 

2wn+wn=y(t) 
a a a 	a 

in the time domain, with 	calculated from (6.25 

(6.26) 

6.3 	Biggs' Method  

Biggs' 'method does for hysteretic damping what (5.75) 

does for viscous damping. Hysteretic damping matrices for each  sub-

structure, Hm (mi = are selected based on 
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and 

Then 

' H = block diag{H1 ,...HM } —e 
(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

/ emVma = p  m=1  
2 	ri 

Vm  

(6.34) 

mT m m 
H = YE HE 

m=1 

which is analogous to (5.67) for viscous damping and, in view of 

(6.25), this becomes 

H = 	E EmTKmEm  

One specjal case is to pick 

= 	= 	= E = c 
- 1 	-2 	M 	-d 

for which (6.30) becomes 

r rmTerm _ 
H_ = 	L 	 - ccin 

' m=1, 

The equivalent viscous damping factors in this special case are, from 

(6.24), 

c)c = 1/2cd (a= 1,...,n) 	(6.33) 

From this we learn that assuming all v.iscous damping factors to be equal 

is equivalent to assuming a hystertic damping matrix Lie  proportional to 

the stiffness matrix Ke . 

An alternative representation to (2.12) is (Ref. 10): 

where V 	is the maximum stored strain potential energy in the mth  sub- 

structure when oscillatina in mode Œ.  



ernTina  
, m=1 m  

sot  

M=1 
TMa 

(6.35) 

I  

M 
2 

Tm  = î V = a 
M=1 met  M=1 Ma  

(6.36) 

6.37) Tmce + 

II 

6.4 	Kana's Method  

Kana's method is similar to Biggs' method except that sub-

structure kinetic energies are used in place of substructure potential 

energies in (6.34): 

where T
ma 

is the maximum kinetic energy in the m-th substructure when 

oscillating in mode a. 

In comparing Biggs' formula (6.34) with Kana's formula 

(6.35), one should note that 

However, 

in general, so the two formulas do not give the same answer. It is not 

clear which formula is preferrable. 

7. 	LINEAR VISCOELASTIC DAMPING 

To introduce lineai" viscoelastic damping we return to the 

simple one-coordinate model at the beginning of Section 5. For viscous 

damping, the transfer function between the speed q and the damping force 

f
d 
was just -c

d. 
That is, 

d = 
-c

d
si71 

7.1 	Linear Viscoelastic Damping Law  

For viscoelastic damping, we take, 

(7.1) 
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I 
(7.2) 

(7.3) 

a  I expj-b (t- -r)]ei(T)d-r] 
co 

(7. 6) fd (t) = -11 

+n.= 

we now write as 

The basic, undamped structural model 

(7.7) 

+ 	-6- 

(7 .8) 

fd  = -ri d (s)sel 

and let 171d (s) be a more complicated relation than I-
d 

 -; = cd . As sug-

gested in Ref. 11, we take 

[- c -1 p=1 	P I 

-- - 

Po 

where po  is a static stiffness parameter (e.g., Young's modulus). Clearly 

viscous damping is a special case of (7.3) with cd  = lio c and the a p  all 

zero. 

There is no difficulty in transforming (7.2) and (7.3) to 

the time domain. In fact, the damping force is 

fd (t) = 	f hd(t- T)iii(T)d-r 	(7.4) 
CO 

where 

hd (t) = 0 {c(t) 	a exp(-b t)] 
p=1 P  

. In other words, 

(7.5) 

However, this integral expression is not as useful as the 'augmented' 

set of differential equations given below. 

7.2 	Viscoelastic Damping in Structures  

where p o  represents a structural stiffness parameter (Young's modulus 

say). 	If there is more than one such parameter, the relation K = p o K 
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(7.9) 

(7.10) 

(7.11) u(s) = P o  

I where  a p s 
1 +  Cs  + p s 	+b 

1 

J1  

1 + w (7.13) 
P R (w)  

a 
2  I 	2 	2 P=1 b 4-to 

The 'loss factor' is defined as 

- 	 
PR(w) 

can be extended acçordingly. This may be especially necessary for struc-
tura fabricated from composite materials. 

Laplace transformed, (7.8) becomes 

[s 2M +  ii  K](s) = i(s) 0— 

Now, for viscoelastic damping, we amend (7.9) to the form 

[s
2M + p(s)K]à-(s) = f(s) 

This is consistent with (7.3). In particular, for sinusoidal excita-

tion; let 

li(jw) = P R (w ) 	 jP i (w) 	 (7.12) 

where 

Pi(w) = Pow 

p 	abp  
c+  ï 	 

p=1 b
2
+w

2  (7.14) 

(7.15) 

For the sake of comparison, note that for simple viscous damping, 

L.F.(w) = cw 	 (7.16) 
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- 	- 
[s2 1 	fil(s)/11 0 M

2 
 ]n(s) = y(s) (7.18) 

x = coUna ,na,%1 ,...,% 13 1 

and for hysteretic damping 

L.F.(w) = (h/p o )sgn(w) 	 (7.17) 

[Compare with (6.6).] For viscoelastic damping, p R (w) is called the 

storage modulus (an even function of,w)and u 1 (w) is called the losS 

modulus (an odd'function of w). By measuring the loss factor over 

the frequency range of interest, a quite accurate damping model can 

be constructed (i.e., the coefficientsa b and c determined). p , p  

7.3 	Viscoelastic Damping in the Time Domain  

By defining auxiliary state variables it is possible to 

convert the viscoelastic damping model (7.10) & (7.11) to a time-domain 

representation. First, transform (7.10) to undamped modal coordinates 

by setting g . En: 

Because of our simplifying assumption that there is only one stiffness 

parameter, po , these equations are uncoupled. For more complicated 

'situations there might be one or more stiffness parameters for each 

finite element. To develop a theory for that Case is obviously a major 

task; although beyond the scope of this report, such a develbpmentshould 

be made. In any case, (7.18) consists of the following n.uncoupled equa-

tions 

+ {p(s)/po }w!)71a (s) = .)-,u (s) 	(a= 1,...,n) 	(7.19) 

The usual state variables {n,nŒ }  must be augmented to include the states 

associated with viscoelastic damping. As with any set of state variables, 

the choice of these extra state variables is not unique, so long as there 

are p of them. We choose as our set of state variables for mode a the set , 

where 
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b 	= a 
ŒP 	P ceP 	p OE  

(7.21) 

a sn 
P a  - 

ap 	S + b 
(7.22) 

•k =Ax +ry• –ce 	–c.--c 	–a a 
(7.24) 

(7.25) 

and a = 1,...,n. Then 

and (7.19) can be re-written 

2 	, 2 
+ cw

2
s + w 	+ 	w2 " = ap 	ce 

p=1 
(7.23) 

The extra viscoelastic terms are clearly evident 

To write these equations in state form in the time domain, 

one needs merelY to combine the time-domain equivalents of (7.20) - (7.2à): 

where 

1n•n 

0 	1 	0 ' ... 	0 
2 	,2 	2 	2 

-wa  -cwa 
-w 	... -w 

a 	' -a 

0 	a1
,  

-1)
1 — -0 

• • 

• • 

• • 

0 	a 	0 

n••••••• 

= [ 0 O 	o  l 	(7.26) 

jt is evident that the number of state variables in the.model has been 

substantially increased, from 2n to (2 + p)n. However, modern computer 

capacity and recently developed techniques for model reduction can be 

expected to Tiroduce tractable models. 

1 
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a 
1 + 

p=1 1 + (b /w ) 2 ] 
P a 

(7.32) 

,Inn• 

= wa,eff -a 

7.4 	Eigenvalue Perturbations  

The characteristic equation for mode a is, from (7.19), 

x
2 
+fli(X)/lw

2 
= 0 

a 0 a a 

where, from (7.11), 

a À 
P  

11 (X VP0 = 1 	(2C /w )x
a aa 	X+ b p=1 a 	p 

(7...27) 

(7.28) 

and we have set 

= 2Vcoot 	 (7.29) 

If C  = 0 and a = 0 	(p= 1,.. .,p), i.e., if there were no damping, 
a 	P 

X = jw . To find the small perturbation SÀ due to the small para-
(1 	a 	 a 

	

meters  C and a 	(p=1,...,p), we set 
a 	P 

= jw 4- SX 

in (7.27) and keep only first-order terms in small qUantities. The 

result is 

a  SÀ
a 

= 	w 	2 	b + j w 
a a p=1 	p 	a 

Note that both the real and imaginary parts of x are perturbed by 
a 

viscoelastic damping. 

• 	Another way to state the result (7.30) is that the 

effective viscous damping factor iS 	" 

a p bp  

OE,eff' =  Ca 	15.wa 2. 	2 	2 
o=1 b +0) 

P 

and that the effective natural frequency is 

7.30) 

(7.31) 
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These equations provide handy design formulas for the ( ct ,w,a ) parameters 

used in the Common Theory of Section 2, provided the physical parameters 

c , a , b are known. 
P 

8 	. 	CONCLUDING REMARKS 

An attempt has been made to review the analytical concepts 

that underlie the màdeling of energy dissipation for large space struc-

tures. It has been repeatedly argued that the modeling of structural 

damping should be given the same priority as the modeling of structural 

stiffness. Up to now, damping has not been given this priority by the 

designers of spacecraft attitude control systems, and Section 4 was de-

voted to arguing that there is no justification whatever for such neglect; 

Loosely speaking, the damping factors ca  should be known with the same 

accuracy as the natural frequencies  w. 
a 

The Common Theory (a sarcastic appellation) was described 

in Section 2. Briefly, one assumes the structure is altogether undamped 

until the very last line in the dynamical analysis, and then a single 

linear viscous damping term is added to each modal differential equation 

of motion; moreover, the value of the modal damping factors are all taken 

to be equal to the same value, a value Guessed At by a Knowledgeable Per-

son. In spite of its apparent naivete; however, much of the subsequent 

analysis in this report shows that the Common Theory can in fact be quan-

titatively defended in several respects. Specifically, it has been shown 

that, provided the structural damping is light, 

nonviscous damping models can be used to produce equivalent vis-

cous damping coefficients. Thus the addition of a term 2 awct li ct  

to a modal equation does not mean that one is nécessarily assum-

ing the structural damping mechanism to be viscous. One may be 

assuming hysteretic 'damping and using the equivalent viscous 

damping  factors  given by (6.24). Or, one may be assuming visco- 

' elastic damping and using the equivalent viscous damping factors 

given by (7.31). 

1 
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(ii) 	off-diagonal damping coupling terms in the modal motion equations, 

_even if present, make no first-order contribution to the systeM 

eigenvalues and their small contribution to the system eigenvectors 

is not  of  practical significance. 

Therefore, assuming light structural damping, the inclusion of a 'linear 

viscous damping term' in each modal equation cannot really be faulted. 

The off-diagonal terms do not really matter, and the 'viscous damping' 

may just refer to an 'equivalent viscous damping'. 

Where the Common Theory deserves to be attacked is in the 

assignment of the equivalent viscous damping factors 	Instead of 

being Guessed At, they should be Calculated. )  Such calculation requires 

at least the following two things: 

(i) that fundamental material damping parameters be known (in the 

same way that Young's modulus is known). For example, the visco- 

elastic parameters c, a
e 
 b must be numerically'available if 

P 	P 
viscoelastic damping is to be used. 

(ii) a methodology for incorporating damping calculations within the 

finite element method. Otherwise damping will always be an 'add-

On' of lesser accuracy. 

If the damping is not judged to be 'light', then the Modal-damping-

factor viewpoint should be abandoned, as should the attention paid to un-

damped modes, which cease to be relevant. Many of the considerations in 

this report are still useable, however. The hysteretic damping model in 

(6.9) still applies, as does the viscoelastic damping model in (7.10). If 

viscous damping is defensible, the 'damped modes' of Section 5.3 can be 

used. 

Last but not least, the opportunity to design damping into the sy- , 

stem should not be ignored. This may take the form either of discree, 

dampers, see (5.14), or distributed material damping. The former are parti-

cularly valuable when aimed at a few troublesome modes; the latter affects 

all modes and is an effective prescription for avoiding 'spillover' problems> 

associated with the higher, unmodeled, uncontrolled modes. 
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