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PREFACE 

This document constitutes the first of two parts of the 
final report on the work performed by Spar Aerospace Limited 
under DSS Contract No. 15ST.36100-1-0102, Serial No. OST81- 
00137. 
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ABSTRACT  

This report describes a method for simultaneously control-
ling the attitude and orbital position of a flexible space-
craft by means of a combination of thrusters and gimbal 
actuation. The control algorithm is designed to minimize a 
quadratic measure of the total control energy and the attit-
ude and position errors. 

The dynamical model hierarchy originates from a 73-coordin-
ate model of the spacecraft structural conglomerate. 
Following model reduction, only 8 rigid modes and 11 elastic 
modes are retained in the evaluation model; the elastic 
modes account for up to 99% of the total modal cost. Of the 
11 elastic modes, only the four most critical ones, together 
with the eight rigid modes, are included in the design 
model. 

All the physical coordinates are assumed to be measurable; 
they comprise the translational and rotational motion of the 
main bus, the two gimbal angles at the reflector hub, and 
the relative translation and rotation of the tower tip from 
the main bus. The thrusters are configured in a way that 
cross-coupling of control forces and torques is inevitable. 

The controller takes the form of linear feedback with 
constant gains. The gains are calculated off-line from the 
steady-state solution of a set of Riccati-type equations. 
The control algorithm sets the gimbal torques and thruster 
impulses at discrete times. 

The variables required for control feedback are obtained via 
a state estimator. A full-order observer is chosen in lieu 
of a reduced-order observer in order to minimize the effects 
of dynamic spillover from the residual modes truncated from 
the design model. In the case of M-SAT, the 24th-order 
observer may be decomposed into a 16th-order observer for 
the rigid modes and a separate 8th-order observer for the 
elastic modes. The rigid modal observer may be further 
decoupled into 8 second-order observers, one for each of the 
rigid modes. Observer complexity is thus greatly reduced. 
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Finally, the compensator design is modified to accommodate 
the effects of dynamic spillover from the known residual 
modes. Control spillover is compensated by appending an 
additional penalty term to the quadratic performance index. 
Observation spillover from selected residual modes can be 
actively suppressed in the elastic modal observer through 
judicious selection of the observer gains. 

The performance of the compensator design will be evaluated 
via computer simulation in a sequel to this report. 
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1.0 	INTRODUCTION 

Satellites in geosynchronous orbit will gradually 
drift from a stationary position with respect to 
an earth-fixed reference frame. Station drift is 
mainly caused by minor gravitational perturbation 
of the orbit exerted by the sun and the moon, the 
oblateness of the earth, and solar radiation pres-
sure acting on large surface areas of the satel-
lite. In spacecraft with momentum storage 
devices, the use of thrusters for momentum dump 
could be another cause of station drift. Finally, 
the actuation of reaction jets during normal mode 
operations may also induce disturbance accelera- 
tion resulting in the spacecraft drifting away 
from its nominal position. 

In conventional satellites, station adjustment - 
stationkeep - is carried out whenever the drift 
exceeds a prespecified deadzone defined in terms 
oE latitudinal and longitudinal limits about the 
nominal position. Typically, thrusters are fired 
to create linear acceleration in the desired 
direction to counteract the drift motion. How-
ever, due to asymmetric thrusting, plume impinge-
ment, and depending on the thruster configuration, 
thruster actuation is almost always accompanied by 
torque components which cause rotational motion of 
the spacecraft. As these thruster-induced 
disturbance levels are usually very high compared 
to the environmental disturbances, the attitude 
control loops must be modified in order to main-
tain the same pointing accuracy as in the normal 
mode. 

In spacecraft with momentum or reaction wheels, 
the need to accommodate the stationkeep disturb- 
ance torques calls for heavier wheels with the 
attendant weight penalties. Otherwise, additional 
thruster actuation may be required in order to 
maintain the attitude errors within acceptable 
limits. For the reasons cited earlier, these 
thruster firings in turn can cause further station 
drift. 

1-1 
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Hence, it can be reasoned that the conventional 
stationkeep manoeuvre, in which translational 
motion control is decoupled from attitude control, 
is probably not the most fuel-efficient approach 
particularly for spacecraft with a severe thruster 
asymmetry problem. The primary objective of this 
study is to investigate a thruster control method- 
ology which simultaneously adjusts the orbital 
position and controls the attitude of the space-
craft in a fuel-efficient manner. 
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2.0 	SPACECRAFT CONFIGURATION 

The spacecraft configuration selected for this 
study is the Mobile Communications Satellite 
(M-SAT) shown in Figure 2-1. The main body 
consists of a bus structure on which is located 
the bulk of the communications payload as well as 
various payload support subsystems and a solar 
array. The boom and tower masts are taken to be 
Astromasts of appropriate dimensions. The mast 
hinges at the main body/boom and boom/tower inter-
faces are assumed to be fixed once the spacecraft 
is deployed. The possibility of actuating these 
joint hinges for attitude control will not be 
considered here. 

Antenna orientation can be adjusted with a two 
degree-of-freedom gimballing mechanism located at 
the tower/reflector interface. A set of momentum 
wheels, either skewed or gimballed, serve as actu-
ators during normal mode operations. The antenna 
gimbal mechanism may be brought in to augment the 
beam pointing capability, if necessary. 

Bipropellant thrusters will be used for momentum 
dump and stationkeep manoeuvres. An appropriate 
thruster complement for M-SAT has been selected in 
Reference 1. Figure 2-2 displays the thruster 
locations and the directions of thrust acting on 
the spacecraft, neither of which can be claimed to 
be optimal in a dynamical sense. Table 2-1 
describes the conventional logic for thruster 
firing during momentum dump and stationkeep 
manoeuvres. Also displayed in the table are the 
coupled control torques and translational acceler-
ations generated by the thruster firings. Clearly, 
from the control dynamical point of view, much of 
the coupling can be reduced by locating the reflector 
thrusters at the 'elbow joint' of the boom structure 
rather than at the hub. However, there are deployment 
and installation problems attendant with this confi-
guration which are still unresolved at the moment. 
Hence, we shall adopt the layout in Figure 2-2 as the 
baseline configuration for our study. 

2-1 
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AVERAGE TORQUE/D 	AV. LIN. ACCELERATION/D 
CONTROL MODE 	THRUSTER 

COMPLEMENT (DUTY CYCLE RATIOS) 	(N-m) 	(m/s2 )  

	

ROLL 	PITCH 	YAW 	N-S 	E-W 	RADIAL 

STATIONKEEP  

North/South 	f2,f3,f6,f7 (D/D/0.183D/0.183D) 	0.452 	0 	0 	0.0128 	0 	0 

East/West 	fl,f2,f5,f6 (D/D/0.183D/0.183D) 	-0.261 	80.32 	0 	0.00736 	0 

MOMENTUM DUMP 

+ Roll 	f6,17 (D/D) 	• 	1407.98 	0 	0 	0.0108 	0 

- Roll 	f5,f8 (D/D) 	-1407.98 	0 	0 	-0.0108 	0 	0 

+ Pitch 	11 1 f8 (D/0.183D) 	-0.226 	148.63 	61.4 	-0.00638 	o 	0 

- Pitch 	f4,±'5 (D/0.183D) 	-0.226 -148.63 -61.4 	-0.00638 	0 	0 

+ Yaw 	fl,f5 (D/0.183D) 	-0.226 	-0.13 	154.5 	-0.00638 0.00368 	0 

- Yaw 	f4,f8 (D/0.183D) 	-0.226 	0.13 	-154,4 	-0.00638 -0.00368 0 
,- 

D: Nominal duty cycle 

.ASSUMPTIONS:- 22-N thrusters 

- Spacecraft mass 3535 Kg 
- All dimensions based on SPAR-R.1113 

- Perfect thruster alignment & synchronized firing 

- All torques referred to nominal centre-of-mass of spacecraft. 

TABLE 2-1 	AVERAGE TORQUES AND LINEAR ACCELERATIONS GENERATED BY THRUSTERS 
DURING CONVENTIONAL STATIONKEEP AND MOMENTUM DUMP MANOEUVRES 
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As an illustration, let us consider north-south 
stationkeep. The thrust impulse required to bring 
about a change of Se deg in the orbit inclination 
is given approximately by 

F St = R PL S 
We/ 

where m is the mass of the spacecraft, R is the 
orbit radius and 6,),, is the orbital rate. In the 
case of M-SAT, m = 3535 Kg and we have 

FJt 	le?5 It •é 	N-s 

From the data in Table 2-1, the perturbation in 
angular momentum about the roll axis is given by 

(0.452) (le9s1  I  - (7.6) 
 Se AFel œ s 

 (o.o128) ( 3535 ) 

=  1893.'!  SB N-m-s 	 (2-2) 

Typically, t;#9 is 0.1 deg so that the momentum 
perturbation is about 189 N-m-s, which exceeds the 
total angular momentum capacity (150 N-m-s) sized 
for normal mode operations (cf. Reference 2). 

The situation during east-west stationkeep is 
considerably more drastic. Suppose due to the 
earth oblateness, there is a constant transverse 
acceleration of ao  deg/s 2  acting  •to drive the 
spacecraft in the westward direction. Let the 
longitudinal deadband be defined as + ciodeg about 
the nominal longitude. When the spa-c-ecraft 
reaches the western edge of the deadband, the 
conventional stationkeep strategy is to introduce 
an initial drift rate (say, et. deg/s) in the east-
erly direction whose magnitude is just large 
enough to cause the spacecraft to drift to a halt 
at the eastern edge of the deadband. During the 
remaining half of the stationkeep cycle, the 

(2-1) 

I 231  

2-5 
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environmental acceleration is left to drive the 
spacecraft back to the western edge at which point 
the next stationkeep manoeuvre is initiated. 

The position of the spacecraft, as measured from 
the nominal longitude, at any time after its 
departure from the western edge of the deadband is 
given by 

et) = oe. -é ;cot 	ii,„t2/z de9 (2- 3) 

It is easily shown that in order for the space-
craft to drift to a halt after T seconds, the 
initial drift rate must be 

•• 
oc. 	oco T 	degis 

Furthermore, T is given by 

T = 2I/d0 s 	• 	 ( 2-4) 

so that, 

2i at. ;X. eiêlfs 	 (2-5) 

The spacecraft will thus be drifting at a rate of 
ic o  in the westward direction when it returns to 
the western edge of the deadband after 2T 
seconds. In order to cause a net drift rate of 
et., in the easterly direction, the thruster firings 
must be timed to cause a net change in the drift 
rate of magnitude 

ot L.-, 2 oto  re 4 leve, deg/s 	(2-6) 
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2-7 

Some typical values for 04 and oto  are 

el() 	O. o 5 deg 

ge 5 x 	 day 2  

Thus, the east-west stationkeep cycle time is 
given by (2-4) as 

2-r le. 40 days 

From (2-6), the required change in drift rate is 

(;‘= .o 	deg May 

Based on the information in Table 2-1, this 
corresponds to momentum perturbations about the 
pitch and yaw axes of the following magnitudes: 

I 4 	=z (o.261) etei, 	
(o

' 

02) (42238) (/ 0
3
) 	7r. 

(z4) (36,0)(0.00 736) 18o 

= (0. 2d e 	( zs.19 ) 	s 

5Z  N-m-s 

I 44  y die I 	( 80.32 ) 23.19) Al_ m _s  

= 1842.4, g-m-s 

The momentum perturbation about the yaw axis is 
clearly unacceptable. 



3/MCL678/15 
SPAR-R.1134 
ISSUE A 

It is now obvious that the conventional station- 
keep strategy will not be feasible for a space-
craft with the configuration of M-SAT. In the 
remainder of this report we shall develop a 
control strategy which automatically selects the 
optimal thruster combination and duty cycles to 
achieve simultaneous stationkeep and attitude 
control. Optimality here is defined in terms of 
fuel consumption (i.e., total thrust impulse) as 
well as attitude and position errors. Momentum 
dump could be treated in a similar fashion but 
will not be addressed in this study. 
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DYNAMIC MODEL 

3.1 	.1‘.1_21q1-JILL211 

The dynamical model of the spacecraft based on 
which the control system will be designed origin-
ated from the 'pre-design' model discussed in 
Reference 3. The preliminary model carried the 
following assumptions: 

(a) The spacecraft is composed of three flexible 
structures: a reflector, a solar array and a 
boom/tower structure, configured with respect 
to an earth-fixed reference frame as in 
Figure 3-1. 

(b) The reflector is modelled by one (first 
torsional) mode. 

(c) The solar array is modelled by three struc-
tural modes: first in-plane, out-of-plane 
and torsional. 

(d) The boom/tower structure is modelled only by 
its stiffness, although the mass is included 
in the overall mass matrix of the space-
craft. The structural deformation is 
characterized by the relative displacement 
and orientation of the tower tip from the 
main bus. 

Since the appearance of Reference 3, major revi-
sions to the pre-design model have occurred, culm-
inating in the model described in Reference 4 
which greatly exceeds the pre-design model in both 
complexity and fidelity. Among the improvements 
to the early model are the following: 

(a) The tower supporting the reflector is no 
longer required to be perpendicular to the 
boom attachment on the main bus (cf. Figure 
3-2). In fact, the latter can now lie at an 
arbitrary angle to the orbital plane. 

3.0 

3-1 
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(b) The reflector model is taken from the Jet 
Propulsion Laboratory's version of a Lockheed 
wrap-rib reflector which contains data for 
the first 42 modes of a model with 26,000 
degrees of freedom. 

(c) The solar array model is essentially Spar's 
L-SAT array model with 38 modes. 

(d) Two models for the boom/tower structure are 
now available depending on whether one or two 
elements are used to model each of the tower 
and boom segments. The more elaborate two-
element (four elements for the boom/tower 
combination) model contains 14 internal 
elastic coordinates. 

Thus, the complete dynamical model for the space-
craft consists of 14 physical coordinates and 94 
modal coordinates for a total of 108 degrees of 
freedom. These coordinates are distributed as 
follows: 

(a) Physical coordinates 

% teern 	..,,,.. translation .. 
absolute 	_..of main bus ..,. 

-"' 
et.4 9$ ge'- 	rotation  

97  ies  __gimbal angles at the reflector hub 

99 to SI 	 translation 
relative \of bower tip 

eeic qrs eet+-- 	N-rotation /from main bus 

These are known as physical coordinates 
because they represent variables which are, 
in principle, physically measurable. Only 

'41 represent the rigid body coordin-
ates of the spacecraft. 



a 
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1 
(b) Modal coordinates 

	

(in  : 	A 38-dimensional vector containing 	11 
the elastic coordinates of the 
solar array 

	

•
. : 	A 14-dimensional vector containing 

the elastic coordination of the 
boom/tower structure 	 11 

A 42-dimensional vector containing 
the elastic coordinates of the 
reflector 

These represent the internal elastic coordin-
ates of the spacecraft. 

r 

3.2 	Model Truncation 1 I 
1 

ct 	 (3-1) 

The dynamical equations for the spacecraft  cari  be 
written in the familiar form 

where M is the mass matrix, C is the damping 
matrix, K is the stiffness matrix and B is the 
input distribution matrix. Any gyroscopic damping 11 terms may be appended into the C matrix if neces- 
sary, but will be ignored in this study. 

The coordinates are represented in the vector q as 
follows: 

T ( 	
•-• 

9 
°Ît 	

q

rr 
) 	( 3-2) 	 I/ 

The control input vector u contains the two gimbal 
torques as well as the eight force terms from the 
thrusters. 

3-5 
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For the purpose of control design and evaluation, 
a model with such a high degree of fidelity is 
not warranted. In practice, a majority of the 
modes will lie beyond the bandwidths of the 
sensors, the actuators and the compensators, and 
are therefore 'invisible' as far as the control 
system is concerned. The dynamical model should 
then be truncated to retain only the 'important' 
modes; these could be selected, for instance, on 
the basis of their contributions to a predefined 
measurement index. One such idea, the modal 
penalty index, was used in Reference 3 as a 
criterion for modal truncation. 

As outlined in Reference 5, the model was reduced 
in two stages. From modal momentum and frequency 
considerations, the number of the elastic coordin- 
ates in the reflector and the array were first 
reduced from 42 and 38 to 18 and 27,  respective-
'y. The model now has a total of 73 coordinates. 

Next the q-coordinates are transformed into space-
craft modal (/) coordinates via the transforma-
tion 

where the matrix E satisfies the relationships 

E T M  E = E K E = (3-4) 

Here I denotes the identity matrix, and IL is a 
diagonal matrix whose diagonal elements (except 
the first eight zeros) are the squares of the 
natural modal frequencies. Equation (3-1) is now 
transformed into 

e 	,c2.2 	é; (3-5) 



vir  ea" 	 eirT  (3-6) 

0 0 

o  ee (3-8) 
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in which the coordinates can be partitioned as 

The vector /r contains the eight rigid body modes 
of the spacecraft, while vie  is a 65-vector of the 
elastic.modes. The new damping and input matrices 
have been transformed as follows 

A
T C 	E

T
C E 	 E 	(3-7) 

where C now has the form 

Finally, with the aid of modal cost analysis, the 
65 modes in ie were further reduced to include 
only the 11 modes with the highest modal costs 
(cf. Reference 5). Together with the eight rigid 
body modes, these elastic modes form a 19-mode 
model which will be used for control evaluation in 
this study. For control design, only the four 
modes with the highest modal costs in qe will be 
retained. Thus, the design model is now left with 
a total of 12 modes. Figure 3-3 contains a 
summary of the truncation process just described. 

The numerical values for the matrices E, B, C and 
Se for the 'Operational' M-SAT (cf. Reference 1), 
are listed in Table 3-1. 

The equations for the control design and evalua-
tion models will now be stated explicitly. We 
begin with the evaluation model where, as in 
(3-6), the modal coordinates are partitioned as 

3.3 
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SELECTED 
MODES <RAD/SEC) 

FREOUENCY 
(HZ) 

1 
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3 
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6 
7 
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14 

16 
17 
le 
19 

00  

6 ROW \ COL 1 3 	4 

1 21 
3 

El 6 ryr 
9 

10 

ROW \ COL 10 

EJ  

6 
-71 
O 

lo 
1 1 

a) Diagonal Elements of rl. 
*** RETAINED FREOUENC/ES *** 

0.0000000000000000D-01 
0.0000000000000000D-01 
0.0000000000000000D-01 
0.0000000000000000D-01 
0.00000000000000005-01 
0.00000000000000000-01 
0.00000000000000005-01 
0.0000000000000000D-01 
1.2434952868889490D-01 
1.5117997270041770D-01 
2.39524890019953000-01 
5.5629553169353050D-01 
6.9020123559092970D-01 
7.7963639163821000D-01 
1.55328152578219105 00 
3.13688296304826900 00 
3.95720995690165900 00 
9.9489251639172970D 00 
1.40083157756005105 01 

'0.0000000000000000 0-01 
0.00000000000000000-01 
0.00000000000000000-01 
0.00000000000000000-01 
0.00000000000000000-01 
0.00000000000000000-01 
0.0000000000000000D-01 
0.00000000000000000-01 
1.97908421619850700-02 
2.40610399517692700-02 
3.8121570240218110D-02 
8.85371836889595000-02 
1.09848938372430200-01 
1.24082985543549900-01 
2.4721243284155700D-01 
4.99250429469883200-01 
6.29009366338422000-01 
1.5834206182807820D 00 
2.22949270007899900 00 

El MODES MUMCAIUSD FROM DESIGN MODEL 

h) Elastic Component of Damping Matrix 

..** RETAINED MODAL DAMPING MATRIX *** 

1.846D-03 -5.5090-06 
-5.5090-06 1.7060-03 
2.51911-06 3.6440-04 
-1.7000-03 2.2460-05 
1.2370-03 -1.4460-05 
3.2550-03 -2.7710-05 
4.71130-05 -3.210D-03 
1.500D-03 -1.4950-05 
1.0570-05 2•151D-03 

-1.173D-03 1.3300-05 
-2.6070-03 2.564D-05 

2.5190-06 
3.6440-04 
3.4090-03 

-6.90011-06 
5.243D-06 
1.146D-05 

-8.921D-03 
7.907D-08 

6.3510-03 
-7.4600-06 
-3.086D-05  

-1.700D-03 
2.246D-05 

-6.900D-06 
1.711D-02 

-6.647D-03 
-4.585D-03 
-2.7640-05 
-1.707D-03 
-2.617D-05 
4.837D-03 
8.0770-03 

1.2370-03 
-1.4460-05 
5.243D-06 

-6.647D-03 
1.109D-02 
5.880D-03 
7.188D-05 
2.124D-03 
2.508D-05 

-2.683D-04 
-1.308D-03 

3.255D-03 
-2.771D-05 
1.146D-05 

-4.5850-03 
5.880D-03 
4.2150-02 
6.4260-04 
1.163D-02 
7.4700-05 
2.760D-02 
3.694D-02 

4.71BD-05 
-3.210D-03 
-8.9210-03 
-2.7640-05 
7.188D-05 
6.426D-04 
1.501D-01 
3.174D-04 
-0.721D-02 
5.814D-04 
6.1310-04 

1.5000-03 1.0570-05 
-1.495D-05 2.1510-03 
7.9070-08 6.35111-03 
-1.707D-03 -2.6170-05 
2.1241'-03 2.5080-05 
1.1630-02 7.4701-05 
3.17411-04 -8.7210-02 
5.610D-02 -2.36011-05 

-2.3601i-05 1.0560-01 
-1.2290-01 6.32511-05 
-1.8960-01 -1.32211-04  

-1.173D-03 
1.3300-05 

-7.460D-06 
4.837D-03 

-2.683D-04 
2.7600-02 
5.8140-04 

-1.229D-01 
6,325D-05 
1.0551' 00 
1.4460 00 

-2.6070-03 
2.5640-05 
-3.086D-05 
8.077D-03 

-1.308D-03 
3.6940-02 
6.131D-04 

-1.8960-01 
-1.3220-04 
1.4461' 00 
2.3421' 00 

MODES TRUNCATED FROM DESIGN MODEL 

TABLE 3-1 

EVALUATION MODEL PARAMETERS FOR OPERATIONAL M-SAT 
(TANEN FROM REF. 5) 

"2 	(2 



Gimbal torque input matrix: 

g • 

Thruster force input matrices: 

r!:] 
11 . 

 12 
113 1 

16 
17 
18 

c) Control Distribution Matrix B 

t 
= tlig  

*** RETAINED MODAL CONTROL DISTRIBUTION MATRIX 
*** 

ROW \ COL 

^ 
B 	thrusters on bus 

1 	0.000D-01 0.000D-01 
2 	0.000D-01 0.00011-01 
3 	0.000D-01 0.000D-01 
.4 	0.000D-01 0.000D-01 
5 	0.0001l-01 0.000D-01 
6 	0.000 11"01 0.000D-01 
7 	6.944D-03 0.000D-01 
• 6.7910 -08 6.921D-03 

"5.553D-04 "2.19913-06 
5.403D-06 "6.851 13-04 

-.-1.500D"06 "2.577 13-03 
8.518 13-04 1.731 13-06 
2 .688 13-05 "8.184 13-07 

14 4.83813-03 "2.422E1-.06 
8.906D"05 "2.665 13-03 
-1.641D-02 -3.707 13.-06 
9.8900-06 "5.304 11-03 
1.19711-01 .-9.102 13-07 
1.803 13-01 2.451 13-04 

ROW \ COL 

1 	8.410 13-03 8.410 13-03 "8.41011.-03 -8.410 13-03 
2 	.-1.45713-02 1.4570"02 1.457 11-02 -1.457 13-02 
3 	0.000D-01 0.00011-02 .0.00011-01 0.000 13-01 
4 	5.7290-03 "5.729 13-03 -5.72913-03 5.7290-03 
5 	3.80613-03 3.811 11-03 "3.806 13-03 -3.811 13-03 
6 	1.022 13-02 -7.0780-03 7.1330-03 -1.0270-02 
7 	1.289D-03 4.539D-05,"4:112D-05 -1.293 11-03 

"8.075 13-04 8.081 11-04 8.094 13-04 ^8.100 13-04 
6.530 13"03 "3.47813-03 3.488 11-03 "6.539 11-03 
1.044 13-03 "1.05513.-03 "1.175 11-03 1.186 11-03 
-3.368D-03 3.370 13-03 3.419 13-03 -3.421 11-03 
-2.485 11-02 2.63911.-02 "2.653 11-02 2.499 13-02 
1.3588-02 "1.328 13-02 1.3368.-02 .-1.365 11-02 

"6.475 13-04 ^3.014 13-03 3.0250-03 6.3580-04 
4.183 13-03 "4.251 13-03 "4.594 13-03 4.662 13-03 
"1.505 13-03 9.903 13-04 -1.007 13..-03 1.521 11-03 
"1.833 13-03 1.826 13-03 2.06213-03 .-2.055 1'-03 
"5.342 13-04 6.24313-04 -6.283 11-04 5.3030-04 
3.438 13-04 -3.0290-04 4.3340704 -3.9430-04 

25 
16 
17 
18 

LMU 

1-±1 
11 

^ 
B - thrusters at hub 

ROW \ COL 

1 	8.41011.-03 8.410 13-03 "8.41011-03 
2 - "1.457D-02 1.457 1 -02 1.457 11-02 
3 	0.000 33-01 0.000 11-01 0.00013-.01 
4 	-2.869D-02 2.869 11-02 2.869 13-02 
5 	•-1.9060-02 -1.9080-02 1.9060"02 
6 	9.299D-03 9.284D-03 -9.29911-.03 
7 	-2.675D"04 .-2.7020-04 2.675004 
• 9.735 13-04 "9.72511-04 -9.735 13"04 

"4.8260-.02 "4.78311-02 4.826 114•02 
"5.105 13-02 5.1780-02 5.105 13--02 
"1.0870-01 1.085 13-01 1.087 11-01 
5.095 13-02 5.07911-02 .-.5.095D-02 

..-4.92511-02 "4.909 11-02 4.92511-02 
-2.41813-01 -2.413 11-01 2.418 13-01 
2.639 11-01 .-2.724 0-01 -2.639D-01 
3.4030-01 3.40311-.01 -3.4038-01 

-4.154 1u-01 4.144 11-01 4.154 11-01 
-2.861 11  00 .-2.062 1'  00 2.861 13  00 
-4.259 1t  00 -4.278 13  00 4.259 1'  00 

"8.410D-03 
"1.457/102 
0.000D-01 

"2.069D-02 
1.908D-02 

"9.28411-03 
2.702D-04 
9.725D-04 
4:7030.-02 

-5.178D-02 
..-1.0850-01 
.-5.07913-02 

4.909D-02 
2.413D-01 
2.72411.-01 

..-3.40311-01 
•4.14411-01 
2.8621'  00 
4,27813  00 

E] MODES TRUNCATED FROM DESIGN MODEL 

TABLE 3-1 	--CONTINUED 
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10 9 11 	12 ROW \ COL 7 

13 ROW \  COL!  I 	14 16  17  

d) First 14 Rows of Coordinate Transformation Matrix 

..t.* RETAINED EIOENVECTORS *** 

ROW \ COL 1 	2  3 	4 5 	6 

1 	1.682D-02 
2 	0.000D-01 
3 	0.0005-01 
4 	0.000 11-01 
5 	0.000D-01 
6 	0.000D-01 
7 	0.0005-01 
8 	0.0005-01 
9 	0.0000-01 

10 	0.0005-01 
11 	0.0000-01 
12 	0.0000-01 
13 	0.00011-01 
14 	0.0000-01 

0.0000-01 0.000 11-01 0.000 11-01 7.6175-03 3.1390-03 
1,682 11-02 0.000 11-01 -6.6155-03 2.807 11-06 3.1720-05 
0.0000-01 1.682 11-02 9.961 11-04 -1.348 11-05 -1.0161P-05 

• 0.000 11-01 0.00011-01 9.094D-04'.-3.859D-07 -9.2570-07 
0.0000-.01 0.0000-01 0.000 5-01 1.0470-03 7.331D-04 
0.0000-01 0.000 11-01 0.0000 -01 0.00011-01 2.00311-03 
0.0000-01 0.0005-01 0.0000-01 0.000 11-01 0.0001101 
0.0000-01 0.000 11-01 0.000 11-01 0.000 11-01 0.0000-01 
0.000 11-01 0.0005-01 0.0000-01 0.0000-01 0.0000-01 
0.000 11-01 0.0005-01 0.00011-01 0.0000-01 0.000 11 -01 
0.0000-01 0.0005-01 0.000 11-el 0.000 11-01 0.0005-01 
0.000 11-01 0.0000-01 0.000 11-01 0.000 11-01 0.0000-01 
0.0000-01 0.0005-01 0.0005-01 0.000 11-01 0.00011.-01 
0.00011.-01 0.0000-01 0.000 11-01 0.000 11-01 0.000 11-01 

1 	1.3340-03 5.7775-07 3.051 5-03 -1.1350-05 1.986 11-06 1.541 0-03 
2 	2.4640-06 9.338 1f-04 5.39311-06 -1.2870-03 3.920 11-03 -8.289 11-05 
3 	-1.6095-06 .-2.016 11-04 3.738 11-05 5.5270-03 4.209 5-03 -5.2525-06 
4 	-9.174D-08 -4.709 5-05 -8.282D-07 .-3.625D-04 .-9.880 5-04 8.8590-07 
5 	1,2105-04 1.1190-07 -5.0560-04 3.9055-06 2.133 11-07 -3.9640-04 
6 	1.4415-04 2.213 11-07 1.157D-03 -1.5150-05 5.812 11-06 -5.9320-03 

6.944 11-03 6.791 11-08 -5.553 11-04 5.4035-06 -1.500 11-06, 8.518 11-01 
5 	0.0000-01 6.921 11-03 -2.199 11-06 -6.8515-04 -2.577 11-03 1.731 11-06 

0.000 11-01 0.000 11-01 -7.6725-02 6.5745-04 -1.356 11-04 1.218 11-01 
10 	0.000 11-01 0.000 11-01 -1.05711-04 -2.6160-02 -2.193 11-02 -5.3740-05 
11 	0.0005-01 0.000 11-01 9.6478-05 2.7280-02 7.066 1.1-02 .-4.218 11-05 

0.0000-01 0.0008-01 4.200 11-06 1.2115-03 3.425 11-03 -2.497 11-06 
13 	0.000 11-01 0,000 11-01 5.7368-05 -2.2870-06 1.776 11-06 •-1.050 0-03 
1.1 	0.00011-01 0.0005-01 3.335 11-03 -.3.0710-05 8.0021J-04 -6.323 11-03 

	

1 	2.93311-.04 ^3.6610-03 ^6.865 11-05 •-5.1475-04 -7.681 5-06 9.00911.-05 

	

2 	4.1520-05 6.760 11-06 .-5.1075-03 •-9.54011-06 2.2450-03 -2.352 0-06 

	

3 	1.0375-.05 6.49611 05 -6.5235-04 7.6055-06 5.0775-04 1.0960-06 

	

4 	.-1.4075-06 -4.3290-06 9.6505-03 3.582 11-06 -6.0855-03 1.8170-06 

	

5 	.-3.74311-0A -5.9180-03 -1.270 11-04 -2.4590-03 2.7120-06 •-5.308 5-04 

	

6 	3.1100-03 2.746 11-04 -4.7460-05 -2.9000-04 2.6440-05 -1.342 11-04 

	

7 	1.6885-05 4.838 11-03 8.9065-05 ^1.6415-02 9.8905-06 1.1975-01 

	

8 	-8.184 0^07 .-2.422 11-06 .-2.6655-03 -3.7070-06 .-5.3045-03 -9.1020-07 

	

9 	.-9.0700-02 -2.7090-01 -4.3181P-03 .-1.008 5-01 -5.008 0-04 -2.1170-02 

	

10 	..-2.0320-05 .1.934 0-04 4.341 5-01 1.5530-04 •-2.65211-01 7.903 0 -05 

	

11 	4.595D-05 1.590 11-04 .-2.0465-01 6 .8285-05 1.33711-01 ••3:8000-05 

	

12 	2.2090-06 6.7960-06 ••7.0905-03 9.1750-08 1.134 5-02 .43.9275-07 

	

13 	.-5.2490-04 -1.114 5-02 .-2.1045-04 1.3675-02 .-8.302 11-06 .-1.178 5-01 

	

14 	3.2070-03 ."6.59211-04 -3.270 5-05 .-3.4665-03 2.8470-05 2.3520-02 

ROW \ COL 19  

1 	-3.9265-05  
2 	2.9165 -05 
3 	5.20211-06 
4 	1.8540-06 
5 	3.1780-04 

	

6 	8.9740-05  

	

7 	1,8030-01 

	

8 	2.451 0-04 

	

9 	1.4705-02 

	

10 	.-1.0730.-05 

	

11 	6.639D-05 

	

12 	.-2.431 0-04 

	

13 	-.4.7695-01 

	

14 	3.3075-02 El] MODES TRUNCATED FROM DESIGN MODEL 

TABLE 3-1 --CONTINUED 
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43.  17  191 [14 

Output Weighting Matrix Q for Modal Cost Analysis 

e 

-***•BET010#82HODÀL OUTPUr.WEIGHTiB0 

4 	 5 	.. 	6 

' - :i. - ..... 0.000D701' •0.000D-01 0.000D-.01•• 0.000D-01' . . 0.00011=01 0.000›01 • 0000D-01 • • 
' 2:... -.0:000D701 o:000p-ol'e.000ll-qt. o.00m-ol,.o.000n-ol 0.000D-01 0.000D-01'. 
: 3. ..,.0.0000-01):..0.000D....01. .0.000 11-01  •0.000D701 0.000D-01 0.000=01 0.0000.-01. ., 

: 4  ' .0.000D701 4).000n-01 • o.000p•-in :. 1.654D-06 • =7.01911-10, ..-1.684D-09 .-1.669D710' -• 
5:-• .'. OÏ000D-01.0.00011.-01... 0.8000-01-7.619D-10 - . 2.193D-06:. 1.5350706 -1.388D.-05 -  

::6' :,...0.000D701. 0.000D701. -  0.000D01 :-1.6843_09'.1.535D-06 .  5.891D.-06 =9.374›.06 -. 
,'. -7 :. : ..-0.000D-01•••0.000D.-01. M00D...01 =1.669D...10.-1:3880-05 =9.374D..06' 1.791W-04 
Hp --co.opoti-ol 0:000D-01 0.000E1.4)1 -  1.2811>05 ..5.342D709..-1.244D-00 -9.717D-40 
:' 	-...• 0.0001'401 :0.0008=01 0.000D701 -4.9231>10 73.452D-07 2.539D-06.3.295D-06 •:- 

0 
.- • .0.000D701 0.00011701,..0.000›.01 ..2.820/>07 :2.10711.-09 =3:467D-08 2.5298-C8 • .. 
- - -o.epop-ol. 0.000D-010.000D-.01 71.237E1.-06 -  1.- 122>-.09 . 1.565D-08 =3.6201.4.09 ..  • IL • ' : ., 0.000-'01 ] 0.0001101. 0:000D-01,=3.7371>10 =7.123›.07 =1.476D=05 2.724D-06 ' 

11.3j '. 0.000D=01.• 0000D-01 oi000p-01  ...7.363D-10 =2.59811-.07 .7:2958-06 =1.197D-06 • • 
,j_t_: . - 2.0.000D-61 0.000D=01:'0.000D-01.-4.531D49 -6;014D706 .44500...06 -0.0010.-06 • 
15 • ..,0.000D01:'.0.060D701' .0.00011-01 0.7911>06 .-1260›.07..2.157›.07 -3.3351>OB. '. 

• 1 6  ,,, 0.0001401„0.000D.'01 0:0000-01 •3:1031>09 ...3.532D-06 ...3.170D-06 4.19084D5 	• 
17 . ."0:0001>01, 0.00011=01.0.000D701 '75.64211.-06 '7.196D709 - 7,2610+98 
10 :'' 0.000›.01 - 0.00015-.010.,000›.01 1.6660.-09 ''$.9830706 - 3.066B=06 

• 19. ...:.0.000D-011A.0008-01 0.000D..el -6.046D-10. 1.010E1705 .7.206f>06 .--.... • 	 . 	. 	 . 	. 	_ 	. 	. 
. 	 ....... 	. 

.BOU.N, COL' 	8  '. 	-, 	. . 9 :•.-.:' 	• 	10 ' ..-' • 11 	• 	12 .. 	, ....Ell 	. 14 . 	. 
• 

o.000P7o1.. 0.060D-01.. 0 • 09011-91 ' 9 . 9900701  
0;0000-01 0.00011.01» 0.0000-01 -0.00011..01. ' 

15 
. 	. . 	. 

'''.'1:'' : .0.0000.-01: 0.000 0-01' 0.0000-01' 0.0001101 	0.0000-61 
, '.2- •:• :• 0..000D01 -:: 0.006D-01 '0:0001>=01' .0.000 0-01 - 0.0000-01 
:-. 3- : ' .0.0000-01:0.0000701 - 0:000D-01 0.0000-01 ' 0.0000..01 
''.4- ''.  8.7918-06 3.103D-09.-5.642D-06 1.6660-09 =.6.0460-10. • 
.: :5 :.•,=1.3600.-.07‘.-3.5320-06 .  7.1960..09 5.9830-06.- 1.0100-05 
.6  ... =2.1570-07 .-3.1700-06. 7:2670-08 2.8660-06 ' 7.2060-06 • 
.. ..7, ' =3.335D-08 '1.1000-05 =1.960-08 =8,3640-05 .-1.24711-.04' :. 

8*: - -2.11.161107 .-2.9090...09 =1.4021406 791.2290-11:. '1.6770-08 : 
• ::' 6.772D-10' 8.0330-07. 4.0600=08' 1.723 0-06 .  2.3250-06 . ' 

e 
• :, ....2:498D-06 3.7460-09 :2.2120-06 =1.3080-08 =.1.80811-02 . 

..'',...-9.5481>06 .-6.353 0-09 6:06111-06 .-6.1870-10' 5.420D-09 : 
..12 •• ''.• 3.9660-07 ,3.299D-06 =1.951 0.-07 =6 .067›.07, .-3.4120...06., ' 

=1:4310-07 2.7740707 : :;.1.0640-07 4.860D-07 -1.39311.-06 
. .6.9430.-07 1:4290-05 1:9410-08 4.1860-06 - -2.25611=07 ..• 

15 

-] 

	

. . • 	' '. 9:3140.-05 .3:6200-07 . =5.872›.05 9.6750.-00 -5.7150-00' • 

	

16 • 	.3.6200707 - 6.9820-06.....3.936›.60 ...4.3560^06' =9.3370706 
17 - .•=5.8720-0573.9361>08 370411.7-05 -5.049 0-09 3.233›:.08, 
18 . : ',-9.675D-08..-4.356D06. n5.049D709 0.9300-.05 'e.son7on . 
19 • . • •=5.715e700'=9.33711-'06. 3:233/1=08 5.806D05 • 8.7090-05 - - ' . 	. 	. 	. 

MODES TRUNOATED FROM  DES IGN  MODEL 

1.961D-08. _ 
.-0.364D-05, • •  

=1.247D704... 

- 
; 	0:0008-01 0:00011.701•

. 	. 

•0..000D701 $p.000p-01'0.0000 .01 .  
• ' 0G 0000,01 -15.0008-0100011.-01 0.0000-01•'0.0000-01 - • 0.0008-01 0:0000-01 

1..2810705  -4,9230-10-3.8200-07.-.1,2370-06 ..3.737D-10-7.363D-10 -4.5310-09 
:=5.342Drie• .3.452D=07 . . 2.107D-09 • 1.1228-07.-7.1230-07 .  .-2.5980-07 , =.6.01411-06 • 

	

.•..1:244D082.5390706...-3.467D-08 4.5650-.08 =1.4760-05 . 7.2950-06-3.5508-06 	• 
.«.3.6288707 2.720-06 71:197D-06. -.3.001006 

1..9990=04 '463310.'09 ...7.973 0..07.+5.198›.06.=1.999D-0B.9.2900 -09 ^9.6300-09 ' • 

	

- 4.331D-09 2.0140=06-  .-2:35611-00 .8.7460-09 70.07511706 4.569D-06 2.891D-06 	• 
1121'. 	 .-2.3560708 , 1.3500-07 2.7970-07 • 1.0660-07=5.7790 .-00 .-2.6050-00 

11 	:..5.19811...06. . 8.7461109 .3.7970-07 .1.1150-06 -4.1950-08 2.2830-08 -  5.237D-09 

Ei •: =1.9990700 =0.075D-06 1.(566D-07 -4.195 008 4.2470.-05 72.2030-05 3.417D-07 . 
, .:9.2900,09 . '4.569D-06.,-5.779D-08. 2.2838700 -2.2030-05 .  1.176005 :2.2620-06 • 

7-9:630D-09 '3.09111-0672.6858...00 5.2370-09 3:4178-07. -3:262›..06 3.5140-05. 
15 -- .-2.116D707 .  6.772D-10 -3.4980-06 .-9.5400-06. 3.96i...D=07.+1.431›.07 6.94311-07 
16 .--=2:90911-09.,8.033D-07 -3,746D-0ÿ-6.30-09 2.299>06 =2.774D..07 - 1.42911-05 
17 	• -1.40214.06' 4.0601108'.2.2120-06 -6.061B-0 ...-1.9518-07Y1.064D -07 1.9410-08 • 
18 	=9.22911=11 '1.723Dr06 . .-1.:4088708-=6.187D-10 =6:067807. 4.860 0-07 - 4.186D-06 • 
19 - • 1.47711.-08 2.2258706 .-.1.8080-00;. 5.420›..09 =3.41211-06. 1.3930-06 -2.256D-07 . 	. 

131 

. 	. 	. 	• . 

r.;(:).N14.1,..!i:Igp,, TABLE: 3 ,-1 
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3/MCL678/21 
SPAR-R.1134 
ISSUE A 

f  
; 	(tir ) ,--- 8 , 	 II  ( 3 - 9 ) 

Henceforth, the notation d(.) will be used to 
denote vector dimension. As stated earlier, only 
a subset of the elastic modes will be incorporated 
in the design model. Thus, we can further parti-
tion vie as 

.4 I' 	/ T 
( 	 ; d(7e)5  4 I  erleg ) 	7 (3-10) 

where 9ec denotes the critical elastic modes and 
leg contains the residual elastic modes. The 
dynamical equation for the evaluation model takes 
the form of Equation (3-5). We leave the selec-
tion of the critical modes to be discussed in the 
next section. 

For the design model, we assume the damping matrix ^ 
C of (3-8) to be diagonal and can be written as 

A  = 
{: 	 :re  fie  (3-11) 

where 	and ne are both diagonal matrices 
containing respectively the damping ratios and 
natural frequencies of the modes in le  . 
Furthermore, they are partitioned as 

= d'a1  

ctiag .0„ .ag 
(3-12) 

to correspond to the modal partition specified in 
(3-10). The input matrix B is likewise partition-
ed as 



r g 7 (3-15) 
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A 

(3-13) 

Taking the above partitioning into account, we may 
now write equation (3-5) as 

A • 

&p.m. 	(3-14a) 
A 

÷ 2 	eke- 	elec 	geit u 	(3-14b) 

leR 4- 2 ftrz 	tux  4 ne 	Lg ti (3-14c) 

All the elastic modes are now decoupled from one 
another. Only equations (3-14a) and (3-14b) are 
used for control design. 

Finally, we assume all the physical coordinates 
(i.e., q, to eil.sin (3-2)) are measurable."'" The 
measured outputs are thus related to the modal 
coordinates via the expression (3-3): 

where #K contains the first 14 rows of the trans-
formation matrix E in (3-3). 

The question of sensor selection, though a 
non-trivial one, will not be dealt with in 
this study. Suffice it to note that both 
inertial and proximity sensors will be 
required in addition to the standard attitude 
sensors. 
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I)  Y 
Yr. 1 
Ye  

Yr = CY vir 	Ceec tlec 

cec 

(3-16a) 

(3-16b)  

Upon close examination of the data given for E in 
Table 3-1, one can further infer that the outputs 
comprise two groups 

where 

›Ir = (31 	
;5r  ; 	Ye  =. 4.9  	) 

Furthermore, the output matrix É can be partition-
ed so that the output Equation (3-15) can also be 
written as 

- Ct-eft leg.  

- Ce z  ele z  

We can now group together the equations for the 
evaluation model as follows: 

(a) Spacecraft dynamics: Equations (3- 5) 

(b) Outputs: Equations (3-16a)-(3-16b) 

For control design, we ignore the residual modes 
and assume all the elastic modes to be decoupled: 

(a) Spacecraft dynamics: Equations (3-14a), 
(3-14b) 

(b) Outputs: Equations (3-16a), (3-,,16b) without 
the terms containing % 

leg° 

3-15 
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(3-17b) 
• 
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3 0 4 	Selection of Critical Modes  

We return now to the question of deciding which of 
the elastic modes are to be included in the design 
model. Conventionally, modal frequency has been 
the chief criterion used for model selection: the 
idea is to include only those modes with frequ-
encies reasonably close to the control system 
bandwidth. There are serious drawbacks to this 
approach as we shall illustrate by the following 
example. 

Consider a system with two modes, one rigid and 
the other elastic, modelled by the following 
equations: 

Here we and fe denote the natural frequency and 
damping ratio, respectively, of the elastic mode. 
Let the output be a linear combination of the 
rigid and elastic modes: 

= Ir 	c la 	(3-18) 

Assume further that the same Output can be differ-
entiated to yield a rate output as 

Y ' 	c. 	 (3-19) 

The terms bm and Cep, in (3-17b) and (3-18) 
describe the control excitation of the elastic 
mode and its contribution to the observed output. 
In control jargon , they are known as 'control 
spillover and 'observation spillover', respect-
ively. 



vie 
( 3 - 20a ) 

(3-20b) 

(3-20c) teat 	

• 
n••• 

etie. <  (3- 23) 
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A typical design model ignoring the elastic mode 
would take the form 

Suppose the control objective is to cause the 
rigid mode to respond with natural frequency and 
damping ratio given by tÂ4  and er , • respective-
ly. The feedback control is then given by 

64 = - (44 — 2 	y 

However, upon applying this control to the evalua-
tion model (3-17) - (3-19), the closed-loop system 
is now described by the equations 

cle  ÷ 2  et-Ajr el.r 	 (3-22a)r 	r r 

2(V'e freerbe) 1.7e (4);* beer) 	-e-r 17  le- -  2  fifur b  ?t. (3-22b) 

It can be shown that for stability, one of the 
necessary (but not sufficient) conditions is 

(3-2 1) 

This condition simply states that when the term 
(1 4-  bc) is negative, there is a constraint (upper 
bound) on the control bandwidth beyond which the 
closed-loop system (3-22) becomes unstable. 
Furthermore, this bound is not just a function of 
the elastic modal frequency as the conventional 
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frequency-based modal truncation criterion seems 
to suggest, but is also a function of damping 
factors and spillover coefficients. 

The rationale for the selection of the critical 
modes q«. in (3-10) is based on the modal penalty 
indices defined in Reference 3. Each elastic mode 
is ranked according to a penalty index represent-
ing a quantitative measure of the four principal 
modal characteristics: 

(a) Modal damping 
(b) Modal frequency 
(c) Modal excitation by control inputs 
(d) Modal contribution to measured outputs 

Note that all these four parameters are present in 
the condition (3-23) of our example above. 

Properties (a) and (b) are defined by the struc- 	1 
tural characteristics of the spacecraft. Modal 
excitation is measured by the amplitude of the 
unit impulse response of each mode and is depend-
ent on the actuator configuration. The modal 
contributions at the outputs are measured by the 
contribution of each mode towards a predefined 
performance measure. In control problems, such a 
measure is typically a quadratic function of the 
outputs: 

YGI 	Q 

Here y is related to the modal coordinates via 
(3-15). In general, it also depends on the sensor 
configuration. Following transformation, we get 

1 

	

"‘" 	 T 

YQ en 	E GE 	- 	e 1 	(3-24) 

The contribution of each mode is then simply 
measured by the corresponding diagonal element in 
the weighting matrix a (cf. Table 3-1). More will 
be said about the measure function (3-24) later on 
when we formulate the control problem. 

3-18 
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CONTROL PROBLEM FORMULATION 

As stated before, the general objective is to 
achieve simultaneous stationkeep and attitude 
control with minimal fuel expenditure. In the 
case of a flexible spacecraft, one must also stip-
ulate that the above goal be accomplished with no 
adverse interference from the flexural modes. In 
other words, the dynamic spillover must not 
severely deteriorate the responses of the rigid 
modes and the critical elastic modes. In this 
section, we shall cast this objective in more 
precise mathematical terms. 

4.1 	Control 01:ie.çti .ons 

In the framework of optimal control, a quantitat-
ive measure of the operational success of station- 
keep and attitude control is given by the quad-
ratic expression 

T, 

t7p, cmi 	Qe. às?,) 	 (4-1) 

where glr denotes the deviation of the rigid 
modes from a desired trajectory over the time 
period ( teit ). The weighting matrix er deter-
mines the relative importance of the error in each 
mode and apart from being positive-semi-definite 
symmetric, is entirely arbitrary at this point. 

Since the equation describing the motion of 
eb- 	is linear (cf. Equation 3-14a), there is no 
loss of generality in replacing Stir by le in 
(4-1). Thus, the modal cost function becomes 

4.0 

In a similar manner, we can measure the total 
excitation of the critical elastic modes by 

z r  

= 	(le 	lee.) ck- 0 	e 
(4-3 ) 

4-1 
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The weighting matrix aee can again be chosen to 
reflect the degree of importance attached to each 
of the critical modes. Alogical choice is the 
modal weighting matrix ce. (3-24) used in the 
selection of the critical modes. 

Finally, an appropriate measure of the total 
control energy is given by 

- a 

We are dealing here with bao types of control 
inputs: gimbal torques ele and thruster forces 
Mt . For gimbal torques, a cost function such 
as (4-4) will be adequate: 

(tie g M 	(4-5) 
- 	 e 

In the case of thruster actuation, an appropriate 
measure of fuel consumption is the total thrust 
impulse. 

Suppose the thrusters are fired at the discrete 
times 	where 

o< 	<  t ,  < • • • 

The control thrust input may then be represented 
as 

(4-4) 

• < r 
I — 

K- I 

t (t) — 	u  S(t) 
0 

(4-6) 
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where S6) is the (Dirac) impulse function and 
Uti, are the control impulses. The weighted total 
thrust impulse is therefore 

k-I 
te m 	 (4-7) 

lea 

The total control energy is measured by summing 
the terms (4-5) and (4-7). 

4.2 	State Variable Model Representation 

In order to formulate the combined stationkeep and 
attitude control problem in the context of multi-
variable optimal control we define the following 
state vectors: 

(a) Rigid States 
. 	. T 

	

ke 	= I-  lie  61e  - - - • 	1'8 ele8•] 

	

r 	/ 	/ 

(4-8a) 

(b) Elastic States 

(Critical) 	xl= 	/de; 	(4-8b) 

r AT (Residual) 	K; = L 71q 	';ie; J 	(4-8c) 
where dOc0= 16 , d(x) I. 8 amd d bit ') 

	PI . 

Then for the rigid states, Equation (3-14a) 
becomes 

(4-9a) 



7 A r T 
K m 	x r 	KT  ) (4-10) 

ic e« cre} {x n-1 
o e e  

Ora. 
ameaTO y p.  (4-12) 
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where 
o 1 

Lo o , 
; 	 [ 	T 	iel j ••, 8  

6 	P. 	01 r  t 

The row vectors evi are the corresponding rows of 
g r 	in Equation (3-14a). Next, the equations for 
the elastic states (Equations (3-14b and c)) are 
written as 

[

° 	1 	I Xe + [ : I v .4 A, x e_i.  teL kl. 	• (4,9 1 ) 

...n: -2 t. s71 	¼ 
, 

[ 

1-‹,e, , 	0 	7- 	xR  4. 	° 	± 

	

l u  ..._ 	4e, 	 , &iz  (A. (4790 

--(); -2  Çgng 	
gee 	

p leg 

 

For ease of notation, we group the rigid states 
and the critical elastic states in the design 
model as a 'controlled' state vector: 

Thus, Equations (4-9a) and (4-9b) may be jointly 
written as 

— 	 F. 
A 

x 	er I IA. .4 	)( 	ec., et 	(4-11) 
1<c>. 

e  r 	ge.  

Finally, the output equations (3-16a and b) 

become 



Given the system model 

+ 	ti 

Alz  

Y  

o  

(4-11) 

(4-9c) 

(4-12) 
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Here the coefficient matrices are defined as 
follows: 

Cr  = [ ce ° 

cc 
 

(re  = [Ce, o 

Cria  0 ] 

Zree 	Cre£  O 	 (4-12a) 

eel 	= 	Ce te ° 
The vectors cei  are the corresponding columns of 
the matrix cr  in (3-16a). 

In terms of the state variables just defined, the 
cost functions (4-2) and (4-3) can be expressed 
jointly as 

= 
ô
(Xjac  Xc,) 	(4-13) 

where the weighting matrix elL is derived direct-
ly from the modal weighting matrices er and 
Goc. . Note that slnce yc contains both 
( Tr , 	) and ( le , /ec_ ), rate penalties may 
easily be incorporated into the cost function. 

4 0 3 	Statement of Control Problem  

The combined stationkeep and attitude control 
problem can now be stated in the framework of 
optimal control as follows: 

4-5 
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where the control input bt. is partitioned as 

/ Y 
(.4
r  
	(. GL Y  

t )  

Find the gimbal torque input m e  and the thruster 
impulse sequence 

K-1 

with 

e, < 	< r i  < • • - 	< 

so as to minimize the cost function 
7  

L (c'e31 xfs  4. /A47  e.1  /À5  )6u- Ycf-c) )(Jr) (4-1 1-1-) 

e i== e I  

The last term is a penalty function of the termin-
al condition of lee- . Furthermore, to be admiss-
ible, the control inputs must be functions only of 
the oututs in y 

The control problem just stated is a variation of 
the standard linear optimal regulator problem 
(see, e.g., Reference 6), the variation being the 
presence of both discrete and continuous-time 
variables in the cost function (4-14). The 
general solution is given in the linear feedback 
form as 

A 

Mee  FXdr., 	 (4-15) 

A 
where let: denotes an estimate of the controlled 
variables )(e_ obtained from the outputs y . 
Figure 4-1 depicts the overall configuration of 
the modal compensator for design and evaluation. 
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The rest of this report will be devoted to separ-
ate investigations of the controller and observer 
designs. In particular, we shall discuss such 
topics as: 

(a) Controllability and observability conditions 

(b) Controller design with (control) spillover 
compensation 

(c) Observer design with (observation) spillover 
compensation 

(d) Full-order versus reduced-order observer. 



sett) k. 	(Vie') (5-2c) 

3/MCL678/34 
SPAR-R.1134 
ISSUE A 

5.0 	CONTROLLER DESIGN 

5.1 

One of the first requirements for control design 
is that the system model must be completely 
controllable. In a qualitative sense, this means 
that all the controlled variables can be independ-
ently driven to arbitrary values with appropriate-
ly designed control inputs. In the case of linear 
optimal control, controllability also ensures the 
stability of the closed-loop system. 

For linear systems such as Equation (4-11), the 
condition for controllability is well documented 
in the literature. Essentially, the so-called 
controllability matrix 

{6, Aeg, Az,6e. 	ec..  J 	(5-1) 

must have rank N, the number of controlled vari- 
ables in Ke.. . In the case of flexible space-
craft, this condition can be simplified consider-
ably once it is realized that Equation (4-11) in 
fact originates from the second-order modal equa-
tions (3-14). In terms of the parameters of the 
modal equations, the controllability conditions 
are as follows (see Reference 7): 

A 

(a) rank gr 	ed(1 )  fe 8 	(5- 2a) 

(b) When all the elastic moal frequencies are 
distinct, each row of Sec  must contain at 
least one non-zero element. 	(5-2b) 

It is interesting to note that Condition ( 5-2a) 
also imposes a lower bound on the number of actu-
ators required, viz 

5-1 
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From the data listed in Table 3-1, it is seen that 
( „5-2b) is easily satisfied. However, the matrix 
Be, has at most a rank of 7, since the third row 
is identically zero. This is due to the obviouS 
fact that the given thruster configuration(Figure 
2-2) is unable to cause any motion in the radial 
(i.e., altitudinal) direction of the orbit. How-
ever, since stationkeep normally does not involve 
adjustment of the orbital radius, there is no need 
to include the radial motion equation in the 
system model. Thus, following the omission of 
/vs and /e3  from the controlled variables )(c.. 
the system represented by Equation (4-11) is now 
completely controllable. 

5.2 	Optimal Feedback Control Algorithm 

We shall first obtain the standard solution to the 
optimal control problem posed in Section 4.3. The 
control algorithm will be modified later on to 
incorporate spillover compensation, a major 
feature in the control of flexible spacecraft. 

Let us first collect the system equations from 
Section 4.0: 

= 	„ x, .1- 8, u = ALe‹,, 4- 8,e,.e  1-11, 

(xit  =. /ion 	stz 	Aetue  gel  01  4- gee  tile  

cc ;(c_ 	cg 

where 

Cq .  
and 

cl (x)  2 a 	6(0 14 01 040 e 	6161.1-) eg  8  

(4-11) 

(4-9c) 

(4-12) 

5-2 
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< 	< 

K-1 

5-3 

The terms in the parentheses are omitted from the 
design model. 

We make the following assumptions about the 
control input ldt . The thruster inputs are defin-
ed by the impulse sequence 

K-I 
,t(t) 	14. S(v) 	. (4-6) 

The gimbal torques are taken to be constant over 
each sampling interval so that 

ufe.i 	, 	.4‘ 	< Tit I 	o,  • 	( 

Furthermore, we assume the sampling interval to be 
constant with 

o  to  < — 

and 

 At  

The design objective is to find the control 
sequences 

(At, 	u9i I 
which minimize a cost function given by 

KI 
ga  Ma ) ett 4- Z.  (41-,etut. 4- )à)aee  Kir) 

i 	
ieo 

All the weighting matrices here are taken to be 
symmetric and positive semi-definite; in addition, 
the matrices g 	and e 	are positive definite. 

eâ. 
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1 
(5-4) 

(5-5) 

Y k 	F
c k (5-6) 

The optimal control solution can be obtained using 
a classical dynamic programming technique (Refer-
ence 8). We shall quote only the result here; the 
interested reader is referred to Appendix A for 
details. First define the following matrices (cf. 
(A-7)): 

a .4. f .,'«c (e.4 4 - 	c, ehe.t 

vt) e [

t 

 —Ace,i  g 
ee 

	

e 	e  

f3 	f (e )e-e  )7Gt, (e eet  &A) 
o 

	

e  die9 r feet 	 ec(eA4ti.))7e (e4'2-410) di- ° 
- 

A A k At 4e, tt  r14 	 c 

Then one can show that the cost function (4-14) is 
discretized as 

3- 	(xeka 
)(

4k 	2 xceT  r3; uk  1. trk_T Pit ) + ierKack ee K 

keo 

where the control vector is defined by 

is  

 /A eket 	1tk J 
Here and below, the subscript k will be used to 
denote the value of a variable at the sample time 

The optimal control sequence is given by 

in which the feedback gain matrix is computed from 
the following recursive equations (solved back-
wards): 

5-4 
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—I 

	

" c,7.62 	r•P & %sic 

nt, = 	+ Kr6 kpt 	ITc7e ftfi 	Fk 

et( Ce 

(5-7) 

The value of the cost function (5-5) with this 
control law is given by 

Although the control algorithm (5-6), (5-7) can be 
conveniently implemented on a digital computer, it 
is still too complicated to be practical, since 
on-line computation will be required at each 
sampling interval. Fortunately, there is a stan-
dard control theorem which says that if the system 
(4-11) is completely controllable and 'reconst-
ructible 1 +, then the matrix sequence fOk) will 
converge (as it approaches zero) to the same 
constant steady state solution A from any terminal 
condition 	Atsg 	and for sufficiently large K. 
The steady state control law thus has the simple 
form 

We shall not be too concerned with the latter 
concept here; suffice it to say that the 
system is reconstructible if the weighting 
matrix Oc is diagonal and has a positive 
value associated with each of the position 
variables in xe 
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(5-11a) 

(5 -11b) 

; 	e 4c" 

where 

/lc  4' 

where the constant feedback gain matrix is given 
by 

- œÊ ri,:a L 	g4,1 	(5-10) 

The optimal cost is given by 

teeLM 	
;(4) 

Thus, to obtain the constant feedback gain, it is 
only necessary to calculate the steady state solu-
tion of the recursive equation (5-7) for a suffi-
ciently large value of K. 

Finally, and most important of all, the same 
theorem also asserts that the closed-loop system 
with (5-9) applied to (4-11) will be asymptotical- 
ly stable. This stability property will be 
explored further in the next section. 

5.3 	nql.IL1Lt:L.21.1I212La..q, 

Following the approach taken in Appendix A, we can 
discretize the system equations (4-11), (4-9c) and 
(4-12) as 

'fete, •ek  -11- 

m ;,Xgm  A' 	nk 

Ce„ 	Cç  (g 	 ( 5-11 c ) 

ff),. er" 
AA  e-) -gn 	f --k e 015 gg 	gee 

a 
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With the steady state control law (5-9) in place, 
the closed-loop system dynamics are described by 
the equation 

	

I 	- 	 (5-12) 

	

Xg
t2.1 	g,F A 	)(g 

k 

As pointed out earlier, controllability ensures 
that Equation (5-11a) remains stable in closed 
loop; that is, all the eigenvalues of the matrix 
( 	) have magnitudes less than unity. The 
residual states Ke are inherently stable since 
they represent elastic modes of the spacecraft. 
Hence, the closed-loop system (5-12) remains 
dynamically stable despite the presence of the 
control spillover term -0-'11 f 

The above stability analysis hinges on the assump-
tion that all the controlled states X c. are 
available for feedback, which is almost never the 
case. In practice, only estimates of Q.  are at 
best available from observing the outputs, which, 
from (5-11c), are clearly influenced by both the 
residual and the controlled state variables. 
Hence, even though the control spillover by itself 
will not destabilize the closed-loop system, it is 
advisable to avoid exciting the residual modes too 
much if only to preserve the integrity of the 
state estimates. 

5.4 	Optimal Control with Spillover Compensation 

Many ways have been suggested in the literature 
for the removal or suppression of control spill-
over. . Within the framework of optimal control, an 
obvious approach (cf. Reference 9) is to include 
an extra term in the cost function which directly 
penalizes the control spillover. To do this, it 
is only necessary to replace the control weighting 
matrices in the cost function of (4-14) by the 
following: 

5-7 
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'à" 	e 	eT w 6 
5 - 	5. 

g' W 
re-t- 

(5- 13) 

Here the positive-definite matrices W.  and 
V/t  are used to penalize the control inputs 
causing the spillover: 

g vt, 	 le4 !A 

The same control algorithm of Section 5.2 now 
applies. 
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e r,:ir CAg, ced  I 	(6-1) 

[Cre C.  

c ec.  (6-2b) 

6.0 	OBSERVER DESIGN 

6.1 	J:1!°]!_r.L212.1).j1Yq22:111-i.cin 

Consider the system model given by the equations 

(4-11) 

ik ce  t=e- Alt  Kg 	 " 	

(4-9c) 

y -J..- 	Xe, 	Cg XR, 	 (4-12) 

A dual property to controllability is the ability 
to reconstruct the state variables from the 
observed outputs. In this case, we are concerned 
only with the observability of the controlled 
state vector xe  

The classical condition for observability is that 
the so-called observability matrix 

must have a rank equal to the number of variables 
in Kc  (i.e., N). Duality to controllability is 
evident when (6-1) is compared to the controll-
ability matrix in (5-1). 

In the case of flexible spacecraft, this observ-
ability condition can be expressed in terms of the 
parameters oE the second order equations (3-14) 
and (3-16) (cf. Reference 7): 

(a) nude Ce 	WV) 7 

(b) When all the modal frequencies are distinct 
each column of 

(6-2a) 

Henceforth, we shall omit the radial trans-
lation mode lei  from Ir  
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1 

1 

must contain at least one non-zero element. 

From the data provided in Table 3-1, we note that 
(6-2b) is readily satisfied. Furthermore, Cm,  is 
a triangular matrix with full rank. Therefore, we 
conclude that all the variables in X . 

observable from the outputs in y . 

As a corollary, a necessary condition to (6-2a) is 
that (cf. (3-16a)) 

6,17 	eir) 	 (6-3) 

In other words, there should be at least as many 
independent measurements of the rigid states as 
there are of the rigid modes. 

6.2 	Full-Order Versus Reduced-Order Observers 

Before we proceed with design, the issue of the 
size oE the observer must be resolved. Classical 
observer theory asserts that given a completely 
observable system, such as (4-11) and (4-12), the 
observer may be of the same order as the system 
(i.e., 	(cc)  ) or of a lower order given by 
(6•e' 	(y) 	). This is because part of the 
information needed for state reconstruction is 
already present in the output y . 

Reduced-Order observers have the obvious advantage 
of being less complex in comparison to full-order 
observers. As illustration, we have here 

6-2 
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Thus, a reduced-order observer contains only 
9 states, whereas a full-order observer would 
require 22 state variables. 

The major drawback of reduced-order observers is 
that when the observer is imbedded in a control 
loop, the dynamics of the closed-loop system could 
be severely altered by the presence of spillover 
from the unmodelled modes. A trade-off between 
observer complexity and performance sensitivity is 
fully discussed in Appendix B. The recommendation 
there is that in the case of flexible spacecraft, 
it is preferable to use full-order observers 
augmented with appropriate spillover compensation 
schemes. 

6.3 	12t2.9.9.11].21_(.21.11,i21.1!-Lb12 

In the case of flexible spacecraft, the configura-
tion of the full-order observer can be simplified 
considerably by taking advantage of the decoupled 
modal characteristics as demonstrated by the modal 
equations (3-14) and (3-16). In particular, the 
elastic modes are completely decoupled from the 
rigid modes both in the dynamical equations (3-14) 
and in the outputs (3-16). This is a clear indic-
ation that these modes may be observed independ- 
ently of the rigid modes, provided, of course, 
that appropriate observability conditions are 
satisfied. 
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= 	,ty  (6-4a) 

(6-4b) 

1 

I 

As in Section 4.2, we separate the rigid and the 
elastic state variables in the model (cf. (4-9)) 

Similarly, the outputs are given by 

Ye 	er  ÷ Cre ee 	en'g 12R 

	

(re  )(e 	Cee leg  

where all the matrices have been defined in 
(4-12a). 

Consider first the elastic state equations (6-4b) 
and (6-5b) 0  If all the elastic state variables in 
X'a are to be observable from ye alone, then a 
condition similar to (6-2b) must be satisfied; 
viz, there must be no zero column in Cec. , the 
output matrix imbedded in ee (cf. (4-12a))0 
That this is indeed the case is evident from the 
data provided in Table 3-1. 

A full-order observer for Xe  is given by 

A 

>re 	 (r(2))çe 	ge u -fr ea. Y« 

The estimation error is described by the 
equations 

A A 

e- eece) 	eke rieg 	(6-7) 

(6-5a) 

(6-5b) 

(6-6) 

6-4 



ey Cratel 
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Consider next the rigid state equations (6-4a) and 
(6-5a). Satisfaction of the condition (6-2a) 
guarantees the observability of 'eer. from ym 
alone. An observer for the rigid state vector is 
thus given by 

/ 	 A 

(A r- Œr) xr 	gr in. 	(yr - (cr. ge ) 	(6-8) 

The estimation error dynamics are described by the 
equations 

r 

gr 	r - ere Cr)Etr 	1 r Œr  e E2. +  r cree  iez 	(6-9) 

Further simplification of the rigid state observer 
(6-8) is possible if one recognizes the fact (cf. 
Table 3-1) that the output matrix  C. in Cr  is 
triangular with full rank. Since A fr., is block 
diagonal (cf. (4-9a)), the gain Kt. can also be 
chosen to be block diagonal without affecting the 
stability properties of ( A r  -- 	er). Thus, the 
full-order observer (6-8) may be further decoupled 
into a bank of second-order observers, one for 
each of the rigid modes. 

Combining the error equations (6-7) and (6-9), we 
get 

[ ém

eCr- eper) -1Cm Cr 

= 	

.& 

4, 	
o 	C4ê - Œe) , 

Observability implies that the gain matrices 
Kr and Ke may be separately chosen to stabil-
ize the matrices ( A r 	Kr a= r  ) and 

6-5 
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), respectively. As a consequ-
ence, the estimation errors will be bounded 
provided the observation spillover terms from 
/ee are bounded. The configuration for the 
decoupled observers is depicted in Figure 6-1. 

6.4 	Observer with 	Spillover Compensation 

As demonstrated in Appendix B, it is entirely 
possible for the spillover terms to destabilize 
the system once the observer is included in the 
control loop. In this section, we shall seek ways 
of compensating for the spillover effects.  • 

It is apparent from (6-10) that the observer in 
fact also acts as a low-pass filter on the resid-
ual modes; the filter dynamics being determined by 
the observer gains. When all the residual modes 
in tlek  lie well outside of the observer band-
width, the spillover effects should be minimal. 
Hence, an obvious approach is to constrain the 
observer bandwidth to be well below the lowest 
frequency of the residual modes. Unfortunately, 
this also restricts the response speed of the 
observer to a rate which may not be acceptable for 
control purposes. In this case, active suppres-
sion of the spillover terms may be necessary. 

A method of active spillover compensation is, 
presented in Appendix C. We shall now apply this 
technique to the decoupled observers. Consider 
first the elastic modal observer ((6-6) and 
(6-7)). From Appendix C, the design conditions 
for the gain Ke  are 

(a) 	KeLCkp. 	o 	-, 

	

,L 	 (6-11a) 

(b) 	(Ae-Ke (re) 
a llocation 0  

is stable with arbitrary pole (6-11b) 

Here we have chosen to suppress spillover from a 
subset of the residual modes in vieg . The number 
of suppressed modes ( p ) must be less than the 
number of elastic modal measurements in 
(6-5b); viz, 
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Assume all the columns 

COg. ,  

are linearly independent. Then a matrix Ke  is 
bound to exist such that 

Here Ke. is a ( 61 60 - r) X a(ye) Matrix with full 
rank. Furthermore, any matrix k% satisfying 
(6-11a) must be of the form 

(6-14) 

Hence, the problem of finding  K.  to satisfy 
(6-11) is reduced to_;that of finding /\ to 
stabilize ( 	Ktee ). This is possible if 
and only if the pair ( ge(re,Aç . ) is observ-
able. Using an approach similar to Appendix C, it 
can be shown that (  K 	, bte  ) is observable if 
and only if the matrix product c 	contains no e zero column. 	 ec 

 

We can now summarize the design algorithm for 
Içe 	as follows: 

(a) Select up to ( el(Ye.)— 1 	) modes from leg 
whose frequencies fall within the desired 
bandwidth of the observer. 

(b) Ascertain that the corresponding columns in 
Ceps  are linearly independent. 

(c) Solve for Fo such that 
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Ke c,erz  =e) 

(Standard procedures can be found in any 
textbook on Linear Algebra). 

(d) Check that r<leCec. contains  no zero column; 
if not, return to (a) for a new selection of 
suppressed modes. 

(e) Find A to set the eigenvalues - of 
(  A — A Ke Ce  ) to match the desired 
observer bandwidth. 

(f) Calculate the observer gain from 

= 

We consider next the rigid state observer (6-8). 
It is now required to choose the gain g r  so 
that 

Cveg i, 	, 	 (6-15a) 

(b) ( Ay -- 	44:r 	) is stable with arbit- (6-15b) 
rary pole allocation. 

Here, the columns of eirQn must correspond to the 
columns of Ceig  selected earlier in (6-11a). 

'Suppose for the moment that a full rank matrix 
-7; can be found such that Nr 

(a) 

' 

Note that for to exist, it is necessary that 

< eyr ) 

Typically, this condition holds generically (i.e., 
for almost any parameter set). 

6-9 



.3/MCL678/50 
SPAR-R.1134 
ISSUE A 

Since we have assumed Cr to have full rank, this 
is equivalent to 

.‹ 6((t/r) 

As before, we argue that the conditions in (6-15) 
are now reduced to choosing A to stabilize the 
matrix ( 	Ar - A (cle C 	). For this, the 
matrix product  ?Cr  must have a rank of 
ef (>) . However, nee. only has ( d(e/r) — 	) 

rows and thus obviously cannot have a rank of 
d(171, •) . This shows that the pair ( -erCr , Ar ) is 
not completely observable. As a consequence, we 
conclude that the same residual modes suppressed 
in the elastic modal observer cannot be entirely 
suppressed in the rigid modal observer. In order 
to do so, one may use the fully coupled observer 
configuration as demonstrated in Appendix C. 

(6- 1 6 ) 
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7.0 	PRACTICAL CONSIDERATIONS 

With the observer discussion of Section 6.0, we 
have essentially completed the theoretical 
development of the compensator design. This 
section deals with some of the practical aspects 
pertaining to either the implementation or the 
limitations of the design accomplished so far. 

7.1 	Implementation of Negative Control Thrusts  

With the thruster configuration given in Figure 
2-2, negative control thrusts are inadmissible 
since the thrusters would be firing directly into 
the spacecraft. To overcome this deficiency, each 
negative thrust demand must be replaced by a set 
of positive thrust commands for the remaining 
thrusters so as to generate the equivalent amount 
of control torque on the spacecraft. Furthermore, 
this must be accomplished with minimal expenditure 
of additional fuel. 

The control torque vector generated by the 
thrusters are given by 

A 	8 
t5,t  (At  

;e1 	t 

where 4i, are the corresponding columns in the 
thruster input distribution matrix of (3-13); 
their numerical values are listed in Table 3-1. 
From the thruster configuration of Figure 2-2, it 
is clear that the thrusters at the reflector hub 
are aligned in a diagonally opposite manner so 
that 

.(7 - 1 ) 
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In terms of the data for the input distribution 
matrix of (7-1), this simply means that 

1 

Hence, negative thrust commands for any of the 
thrusters on the reflector hub may be replaced by 
positive thrust commands of the same magnitudes 
for the diagonally opposite thruster. 

In the case of the thrusters on the main bus, one 
observes from the data in Table 3-1 that 

4. 
(7-4) 

This means a negative thrust applied at any of the 
thrusters on the bus will produce the equivalent 
control torque of a positive thrust of the same 
magnitude applied simultaneously at each of the 
remaining thrusters on the bus. 

The logic for implementing negative control 
thrusts can thus be summarized as follows: 

For thrusters on the main bus:  

<0. 	 NA.t. I 	j -1? 
t, 	 J 

	

ut 	0 (7-5a) 

For thrusters at the reflector hub:  



3/MCL678/53 

SPAR-R.1134 
ISSUE A 

«) ot. 	u 	,  (,< (7-8) 

bits. < 0  4=> 647 	 el te ee o  

• (41-6 	<<=. 	ti.e • 	e 	Ut-6 	o 

U*7  < 	e<=> Ute  5-- cit.., 1, 41  e- 

ite  < ° <:=> 	, 	" ° 

( 7 - 5b) 

We shall next show that the above algorithm is in 
fact a minimal-fuel implementation of negative 
control thrusts. In the case of the thrusters at 
the hub (7-5b), it is clear that the fuel consump-
tion remains unchanged. However, with the 
thrusters at the bus ; (7-5a), there is a three-fold 
increase in fuel consumption. We shall show that 
this increase is indeed the minimum required. 

Suppose a negative thrust demand occurs at 
thruster i at the bus. The problem is to find 
the positive coefficients W. for the expression 

4 

19é. t4 t. 	1?-t»c'e; 	
•

(7-6) 
J 

where each 	represents the thrust required 
•of the corresponding thruster at the bus so that 
the total control torque is the same as that 
produced by the negative thrust alone. Substitu-
tion of (7-4) into (7-6) yields 

mt.)= 
j ., 
j*t 

Provided the vectors 	f 6tj , 	t I 	are linear- 
ly independent for each i (cf. Table 3-1), we get 

(7-7) 

7-3 
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Clearly, there are an infinite number of solutions 
to this equation for each Veg.  . Also, when 
ut 1  is negative, there always exist positive 
values of IcV) that satisfy (7-8). But the solu-
tion that minimizes the total fuel requirement is 
given by 

ut i  I , 

This completes the proof of our claim. 

7.2 	Parameter Uncertainties  

Uncertainties in the design parameters arise from 
various sources ranging from model infidelity to 
thruster misbehaviour. The following are some of 
the major causes. 

(a) Modal Data Uncertainties 

For spacecraft of modest dimensions, such as 
Hermes, it has been possible to verify the 
modal data by ground testing prior to final-
ization of the controller parameters. How-
ever, due to the sizes of third-generation 
spacecraft, it is unlikely that ground-based 
testing facilities will be available. 
Experience in the past has revealed that 
errors of up to an order of magnitude are 
possible between design and flight data (see 
Reference 11). This is especially a problem 
for some parameters, such as damping factor, 
which are based at best on vguesstimation l . 
Although the situation can be ameliorated to 
a certain extent by post-launch modification 
of the control software, a healthy stability 
margin must be built into the compensator 
design. 
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(b) Unmodelled Dynamics 

Unmodelled sensor and actuator dynamics could 
present stability problems if their transfer 
lags significantly affect the bandwidth of 
the closed-loop system. For instance, 
experience (References 12 and 13) has shown 
that the performance of the observer is part-
icularly sensitive to variations in thruster 
dynamics and unmodelled external disturb-
ances. In addition, sensor and actuator 
noises also cause performance deterioration 
although closed-loop stability will not like-
ly be affected. 

Inclusion of sensor or actuator dynamics in 
the compensator model will no doubt increase 
the design complexity but may be unavoidable 
in certain cases. External disturbances may 
be compensated in a feedforward manner 
provided reliable estimates are available. 
Finally, noise filters are admissible in the 
control loop as long as the compensator 
dynamics are not severely disturbed. Only 
experimentation with hardware complemented by 
extensive computer simulation can provide 
sufficient reassurance of the robustness of 
the compensator design. 

(c) In-Flight Parameter Variation 

There are many causes for the variation of 
control system parameters during the lifetime 
of a spacecraft; the major ones are fuel 
depletion, structural deformation, material 
deterioration and failure of deployment mech-
anisms. This could present a serious problem 
in large spacecraft with distributed masses 
and flexible structures where, for instance, 
any movement of the centre-of-mass can great-
ly affect the control and disturbance 
torques. 

7-5 
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With the growing use of on-board microproces-
sors, re-programming of the control software 
during flight may be considered as an opera-
tional option provided the parametric varia-
tions can be successfully identified and 
monitored on-line. Nevertheless, it is 
advisable that such measures should be 
attempted only if supplemented by thorough 
verification procedures on the ground. The 
ability to transfer control into a reliable 
back-up mode is essential. 

7 0 3 	Spillover from Unknown Modes 

Since flexible structures are described by partial 
differential equations, there are, in principle, 
an infinite number of vibration modes. The model 
hierarchy we have considered (Figure 3-3) origin-
ated from a finite-dimensional model with a total 
of 73 coordinates. Following truncation, only 
eight rigid modes and 11 elastic modes were 
retained in the evaluation model. Of these 
elastic modes, only four were used in the compen- 
sator design. It was nevertheless assumed that 
all the remaining seven residual modes were known 
so that appropriate compensation schemes could be 
incorporated into the control design to suppress 
the spillover effects from these modes. 

However, the modes omitted from the evaluation 
model, as well as any unmodelled modes excluded 
from the original collection of 73 coordinates, 
will also cause dynamic spillover in the same 
manner as the residual modes. The compensator 
therefore must also have the ability to withstand 
the spillover from these modes without suffering 
severe performance degradation. 

In practice, since the frequencies of the omit-
ted and unmodelled modes are well beyond the 
control system bandwidth, most of these modes will 
be virtually °invisible ° to the compensator. Pre- 
or post-processing of the sensor and actuator 
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signals by notch filters should minimize spillover 
from the modes close to or interlaced with the 
modelled modes, provided their frequency bands can 
be identified with reasonable accuracy. 

Finally, hardware experimentation will provide the 
only reliable assessment of the robustness of the 
compensator design with respect to the unmodelled 
modes. 
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8.0 	CONCLUDING REMARKS 

We have discussed a strategy for simultaneous 
stationkeep and attitude control of flexible 
spacecraft. The method is particularly applicable 
to spacecraft with a constrained actuator config-
uration which may result in unavoidable coupling 
of control forces and torques. The M-SAT example 
considered here clearly helongs to this category, 
as will many third generation spacecraft with 
distributed sensing and actuation capabilities. 
Other applicable cases include large platform 
structures in which the actuator locations are 
determined more by installational constraints than 
by any dynamical considerations. 

It has been assumed in this study that all the 
physical coordinates are directly measurable. 
These include both translational and rotational 
variables as well as inertial and proximity 
measurements. The realization of these sensor 
data has not been addressed in this report, and is 
not a problem to be lightly dismissed. 

Finally, control robustness provides a critical 
link between theory and practice in flexible 
spacecraft. In Part II of this report, the 
control methodology presented here will be put to 
test through sensitivity analysis and computer 
simulation. The robustness of the compensator 
design will be quantitatively evaluated with 
respect to a range of parametric variations. 
However, it should be noted that no computer 
simulation can substitute for experimentation with 
hardware in establishing confidence in the robust-
ness of the compensator design. 

8-1 
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X°c, = Acx, + 

+ geel. 4 get  tit (  A-  1 ) 

• 

A-1 

This appendix is a self-contained dissertation on a solution 
to the optimal control problem posed in Section 4.3. We 
shall invoke dynamic programming (Reference 8) to derive a 
control algorithm for the following problem: 

Given the system equation 

where the control inputs are defined by 

(At- (t) = ttÎâ.--ei) 
imo 

tA 1ft) 	 ( 

(A-2a) 

(A-2b) 

over the time sequence 

o to  4 z i  < 	< "C K1  4 'fic= z 

AT, 
 j 	i 0, • • K -1. 

Theobjectiveis'tofindthecontrolsequencesand b  ' fu,t, to'minimize the cost function t, 
L UO 

,t 
 

T 	7 	i l'etT  g ett + 	ec.)  

cr = j (Ye OcKc + C41 g5 "Oett -  4- 	. -t- i 	cx  
V 	 il".20 	e  

where all the weighting matrices are symmetric and positive 
semi-definite; the control weighting matrices e., and 
et . are positive definite.  

Over eaclvsampling period, the state vector )(c  can be 
solved. from (A-1) as 
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vete  
Act 	Jetet [  

kc (ries÷ t) e Kirk) e 	e, de 15 	eed u 

for O  .1* en. Using the subscript k to simplify the 
notation, we can write the above equation as 

et (riti- 	 eAe  )(el 	e4  Rtt (t)  t4 	, o< te itt 

where 

eeA  (t) --Ac5  

	

J 	de e 	5 

	

[ 6 	e  

Thus, Equation (A-1) can now be discretized as 

Ye met  = ;4:c. X9t 	ietit 

with 

c'Îc 	" 	g 	gm. (6.c) 

e„ 

A-4)  

(A- 5) 

Furthermore, it can be shown that the cost function (A-3) 
may also be discretized and written in the form 

	

K- -1 	 7 	 — / 7 

:17. 	t 	 1.  2 xek ? 	g ra it  ) 	xe 	xe 
g 

kse. 
where 

(A-6) 

fo  (eAtt)ree (eAct aft. 

(4:c(ehet)1,(e')e (t) dt 

el 

dr6t5feet, 	(eA'è- tgbit))Tec 

( A-7 ) 

teesergt,(11) dt 
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Let us now define the following sequence of scalar 
functions: 

K-I 	 Y 

. el; vl 	 f Z_ (ji g Kci  ÷ 2 ee  15' M i  -f- liir  e M 1) -t- Yeet lecg.1 I.  
11 ,14k-er—e'el P ek  16(ce k.) el t 

Ke;cue,xce. 	, 	i< 
(A- 8) 

Thus, .16(e. , le) represents the optimal value of J.  over the -g 
period  1t 1  *.+41 	, K) • 

Next consider the period 	-.1) k, 	' e< / over which the 
control sequence fule , ukfl  ,••etk-ti has been optimally select-
ed. Then, according to the Principle of Optimality in 
dynamic programming (Reference 8), in order to obtain the 
optimal input at k-1 1  we must compute 

T 
 i>re 	 T 7-17 0114 	 Xt,, 4.2 	Pu * 	U 	l(kt/  k) el 	g-1 	e4k-, 	k-1 	etiel 	 (A-9) 

141e-1 
Furthermore, with t'e k...1 thus computed, the control sequence 
iu k.1  ttk, 	, ue.. /  ] is indeed the optimal solution 
over the entire period tré-4 k,- --. é+ 7 . Hence the expres- 
sion in (A-9) in fact yields ierek..1 , 	• The sequence of 
scalar functions defined in (A-8) can  no  w be computed from 
the recursive formula (solved backwards): 

r 	 1" 	 I (A-10) r. 
(Yet 	= 	; 	›evk 	txety tte  Mk,  Me. 	(Kei4  

) te 

with the terminal condition 

z ( Kee  ,K) 	*KeTr e-e.  XeK  

This sequence will then enable us to compute the optimal 
control sequence as we shall presently show. 

(A-11) 

Judging from the terminal condition (A-11), one can conjec- 
ture that the sequence r (Kek  ) has the general form 

A-3 



F g (A-14) 
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r 
(42,it 	Kek. b<k *it  

where 4 is symmetric with 
nfr 

(A-12 ) 

The recursive equation (A-10) now becomes 

y'r  èrZ X(7 -  if h 	ee 	ec Yeêf t 	get,/,:ib 	et, 	Iv/. 2 ece  k 	 k#1 kfl 

Substitution of (A-5) for ecyields 

Kck,eyoceie  
tth  

T 7 	— 1 	 Ckel 	lz 14 	t 84  'KZ 	ee-J xek 

2  'eel( 73 	3 u Ée 

The optimal solution on the right hand side is clearly given 
by 

k 4- 	3-1 	71.Z;e1  & JT c&  

(A- 13) 

The matrix inverse exists since it is symmetric and positive 
definite. Also, balancing the terms on each side of (A-13) 
with the optimal control (A-14) inserted, we get 

— r 	 r— 	';; I 
Cie  m a + A6 Qtel, he• 	L P 	e..6 	J Fif?, 

with 

(A-15)  

(A-16)  



by 
v  -r /ID y  
"eo `-‘0 (A-17) 
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Given a4 is symmetric, it can easily be shown that every 
other eQk is also symmetric. Equation (A-14) to (A-16) 
thus provide the recursive expressions for computing the 
optimal feedback gain matrix Pic  . 

We can now summarize the optimal control algorithm as 
follows: 

(a) Begin at 'i:=K , set 

Cce  

(b) For each  *.-I  -'  

i) Compute Fi 	from ifik#1 as given in (A-14) 

ii) Update ÉDel from 	Fjk, and ex  as given in (A-15) 
(except at kr.o ). 

(c) The optimal value of the cost function (A-6) is given 

This algorithm can be conveniently implemented on a digital 
computer. 
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APPENDIX B 

A COMPARISON OF FULL-ORDER AND REDUCED-ORDER OBSERVERS 



t/t. = (B-2) 
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We present here a trade-off study of full-order versus 
reduced-order observers with respect to dynamic spillover 
effects. Consider the following system 

)(c, = 	&CA. 	 (B-la) 

gn. 	XK 	elt U 	 (B-1b) 

y = 	Cg Yg 	 (B-1c) 

where xc and KA are the controlled and residual states, 
respectively. Only Xc is to be estimated from the output 

V which is a linear combination of Xc and ,‹R . We 
further assume that the system (B-1) is completely controll-
able and completely observable. 

Suppose the control law is given in the linear feedback 
form 

A 

where ec is an estimate of 	. Denote the estimation 
error as 

4. A E = Ye. 

Then (B-2) is equivalent to 

1.1 = F 	g 	 (B-3) 

The closed-loop system is thus described by the equations 

= 	ge,F) 	ge.F.  g 	 (B-4a) 

)*(K 	4gxg  -t- 	x, 	gg  F E (B-41)) 



(B-6) 

gef 
O 	 e 	tc ce  

ete  F 	AR, 

f. 1 	f 
(B-7) 

j 
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Controllability ensures that all 'the leigenvaltieb of 
( 	SF ) are freely assignable.by  a suitable ChOice of , 

F to stabilize the controlled states 	. • BOwever, ab we - 
shall show presently, the estimation error will also influ-
ence system stability. 

• 
Cnsider first the full7order obserVer. which is given in the 
classical form (Reference 10) by 

(4e.. —  i: ç)  />\‘' 	gejtk 	y 

It is not difficult to show that the error dynamics are 
governed by the equation 

E 	(1,4c. - Kee-) 

Observability guarantees that all the eigenvalues of 
( 	K Cc. ) are freely assignable by the choice of 
an appropriate gain matrix le; to stabilize the error 
dynamics. 

The closed-loop system with the full-order observer (B-5) in 
the loop is now described by the following equations, 

(B-5) 

Notice that stability is no longer assured due to the 
presence of the spillover terms 80. and k cg . 

On the other hand, in order to restore system stability, it 
suffices to remove either one of the spillover terms, that 
is 

- K C g.  = o 	 r r. 	 (B78a) 
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' 

Y 

eyF e 0 	 (p -8b) 

Thus, Conditions (B-8) represent additional design const-
raints on the gain matrices F *and K • 

We now consider the reduced-,order observer. Ignore  the 
 residual State KR for the maMent and let the output be 

given simply as 

Y =  

Also assume Cc  has full rank and that•  

remk Cc_ 	01(y) 	of ()cc) 

whiçh is•usually the case in practice. We can augment 
another metrix C, to 

 •
cc_ so that the square matrix 

Cc. 
M 	...'„ 

Cal  

now has a r.1-ik of eleç) and is invertible. We can now 
define a set of artificial outputs 

yet 	Cc xc,• 

so that 

(B- 9) 

j 	{5 	xe_  
[

c 

 
M g, 

Sinçe M is invertible, we can now estimate X c. by 

(B-10) 



a. Y 
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provided,ah estimate of y, is also available. The,problem 
is thus reduced to finçling an eatator,.•  for, Ye. 
order for such ah observer i.a . 	. 	_ _ 

(yA.) 	 c«y) 

The details of the design of, a re.duceorder 0. 10,aerVer can bq 
found in most standard control theory teXtbOoka, 4'14 will" 
not be repeated here.. We simply list the equationS  as  • 	- 

e, ,U7 

l< A m) (7- 4. r(ev2,-,r, 	(A?, n.:77,:l. 

(B  -lia)  

(B-11b). 

where the indexed matrices are derived from the following 
partitioned matrices 

A II 

[ 
= — 

A A2,2,,  

0 
[ --g—tt - 

( B- 12) MA,,M 

If we define the estimation error for 
e A 

e = v y 	/A, 

then it can be sllown that  thé  qrror dynamics  are deScribed , 	.• 	• 	, 	„. 	•• 	. 	, 	,•. 
by the 'equation 

(A -KA pa + [Kcit  A z 	 YK.
• 

Çde 4 

Once again, observability enaures that the observer gain _ 
matrix te„, may be freely chosen to stabilize  the  matrix 

A2.2. 	A , ) . 

(B-13) 
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The feedback control (B-2) is now given by 

F)Cc, = FA4-1  [Li re Fivq[.9.1xa + 
9c; 	ee Y 

= F 	F 	'< It I • 
-I r 

Y 
Partition FM-I  as 

(B-14) 

-1 
F =  II F J 

Substituting (B-13) and (B-14) into the system equations 
(B-1 , we get the following closed-loop system equations 

;gt I 
=

rt 
•

/CCRee AJ2r"It teeg eg Ft 

;egt 	ggF 	8g Fl  

gc.fi cr. 	 Xe, 
Kce(40. geFicg)+(A24--k A iô cft 

Ag.t ggFiC-g. 

1 In comparison to Equation (B-7) for the full-order observer 
case, it is clear that there is now a much higher degree oE 
dynamic interaction from the spillover terms. In fact, the 
removal of observation spillover ( ICg  ) alone is no longer 
sufficient to guarantee closed-loop stability. 

In conclusion, there is a definite trade-off between 
observer complexity and performance sensitivity. In the 
case of flexible spacecraft, many of the design parameters 
are highly uncertain to begin with, while others could vary 
considerably over the life of the spacecraft. Robustness in 
the compensator has become an important design criterion. 
However, with the declining cost of microprocessor technol-
ogy, design complexity, while still a major concern, is no 
longer as critical an issue as it was before. It is there-
fore recommended that only full-order observers be consider-
ed for flexible spacecraft. 

1:35 
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APPENDIX C 

DESIGN OF OBSERVER WITH SELECTIVE SPILLOVER COMPENSATION 

I  

1 



(0-1e. 

(C-1b) 
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In this appendix, we discuss a method for extending the 
observer bandwidth through active spillover compensation. 

Consider the following system equations 

k 	 f c tÀ.  

y = Sc  	cUy) vvi  

where Xe and Kg denote the controlled and residual 
states, respectively; y is the output vector. Assume the 
system is completely observable. Then a full-order observer 
is given by 

A 
f3e. (A 	K 	 (C-2) 

where the error dynamics are described by the equations 

E = X:— >Cc 

= 	 cg  g tz 	 (C-3) 

Observability 'ensures that the gain .  n may be freely chosen 
to stabilize the matrix ( 	Ca ) SO that the estima- 
tion error remains bounded so long as xR is boundèd. 	. 

Still, for the sake of closed-loop stability, it is desir-
able to prevent as much of the contents of Xg, from leaking 
through the observer as possible. A .  simple method to 
achieve this is to limit the bandwidth of the observer to 
exclude the dominant frequencies present in Xg. 	However,' 
the observer response that results may not be acceptable to 
the overall control objective. In this case, the dynamic 	. 
spillover must be actively compensated in order to allow - 
extension of the observer bandwidth. 

For complete elimination of the observation spillover, it is 
not difficult to see that the gain lc must be selected so 
that 

C-1 
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(C.;-.4a1 

(Ç 41-b)  

( a ) 	tez 

(b) ( 	(CC 
 ) is stabilized 

A necessary condition for (C-4a) i s 

VY1 > 

that is, the number of outputs must exceed the number of 
residual states. Due to the usually Large number of resid-
ual states present in a flexible spacecraft, this condition 
would demand an excessive number of sensors and thus becomes 
practically infeasible. 

On the other hand, suppose that only the spillover contribu-
tions from certain specific residual states are to be supp-
ressed, say 

Ygo 	kfi,  

where 

fr 	n141 • evl, rig 	 (c-5) 

Then, from the control point of view, it may be sufficient 
that only the corresponding columns in KC12.  : 

ecgI ) 

be nulled. In the case of flexible spacecraft, all the 
known residual states are identifiable by their frequ-
encies. One can therefore simply pick out those modes whose 
frequencies fall within the observer bandwidth. 

The conditions (C-4)  cari  now be modified as 

(C-6a) 

(C-6b) 

(a) 1<c:et = 0 , 	p 

(b) ( 	e_. 	cc. 	) is stabilizec3. 



0 1 
0 ° 

I 0 

qn- 
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By virtue of (C-5) and assuming the columns Ce i  are linear-
ly independent, we know that there exists an 	ô(PI-1,)x. ni 
matrix g with  full rank ( el- p )such that 

. -KC K  = 0 , tr-q,--.,(2 	• 	. 	(C-7) 

Furthermore, any K satisfying (C-6a) will necessarily be of 
the form 

where the elements of A express the rows of I< as linear 
combinations of the rows in g . Condition (C-6b) is thus 
reduced to the problem of . finding A to stabilize the 
matrix ( 	Ac 	ECc ). This can be done if and only 
if ( 

 •
ZCc 	 ) is observable. 

Note that the matrix -12Ce has effectively replaced the 
original output matrix CC . Adso, since eCe. now has only 
( 04- p ) rows, one would expect the system to be somewhat 
'less observable' than before. This will be reflected in an 
additional constraint on 12 , the number of suppressed 
residual states, as we shall demonstrate next. 

As illustration, consider the case where the controlled 
states comprise both rigid and elastic variables, i.e., 

r  
xr 

and 

Assume that the output vector can he separated into two 
groups: 

C-3 



glen«, Fe  
( Er 

 

[ a, 	c, nn•••• 
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= 	Le--  
O, 	1<e 

Yr 

where  'te.  consists of only elastic modal measurements. 
Assume further that only the position variables in the rigid 
states are measureable so that 

o [Cy i 

where ark is a square matrix with full rank, i.e., 

raht Cr = ey ) 	e(Oc r) 
p 	r 	z 

The above assumptions clearly fit the system model used 
earlier in this report (cf. Table 3-1). 

Now partition the matrix g. of (C-7) as 

Thus 

It can be shown that ( TCCe  , A 
if 

) is observable if and only 

(a) re/AL 	= 	er) = dlyo 	• 	 (c78à) F 

(b) kCe  contains no zero column. 	(C-8b) 

Clearly, a neceàsary condition for (C.7.8a) is 

r)  a 
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Since 

d(ye) 	o(eye) 

The above condition becomes 

p< eye) 

In other words, the number of suppressed residual states 
cannot be more than the number of elastic modal measure-
ments. 
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