
I

I

I

I

I

I

I

I

I

I

I

:

I-I

I]

-

r"-'

r 	 1

A Fault-tolerant
on-board computer

system for

spacecraft applications

/ T. Gomi, M. Inwood

•

P
-

-

91
C655

G641

1982

UMUWATIONS CANMA
.

•
..

ze‘ lee Hgt1

réfiCARY — R1'LLe;T1.1

qt. Government Gouvernement
7" of Canada 	du Canada

Departrnent of Communications

91

C655

G641

1982

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

DOC-CR-SP-82-50 DOC CONTRACTOR REPORT

II

1

1

1

1

1

1

1

1

IJ hrr, ni Queen

L 'Wit- 2 0 1998 JUL

ndustrie Canada

Bibliotheaue Queen

CI

TITLE: A Fault-Tolerant On-Board Computer System For

Spacecraft Applications

AUTHOR(S): T. Gomi, M. Inwood

i

ISSUED BY CONTRACTOR AS REPORT NO: 82-002

PREPARED BY: Eidetic Systems Corporation

P.O. Box 13440

Kanata, Ontario

K2K 1X7

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 3ER.36100-1-0274

SN: OER81-03138

DOC SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: Unclassified

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: March 31, 1982

A FAULT-TOLERANT ON-BOARD COMPUTER SYSTEM
FOR SPACECRAFT APPLICATIONS/

Technical Report No. 82-002

)

(

T.Cgomi /
1/ M. Inwood

Eidetic Systems Corporation

March 31, 1982.

?).„(:„

(>\ n 	œrD

Goe-qt'dce) -,---3 0c9

(_(p5

Gle\-

CONTENTS

Page

Acknowledgements

Acronyms

1. Summary 	 1-1

2. Introduction 	 2-1

3. The ASM Requirements 	 3-1

4. Additional ASM Requirements 	 4-1

4.0 General 	 4-1
4.1 Advanced Control Theory 	4-1
4.2 Artificial Intelligence 	4-2
4.3 Software Fault-Tolerance 	4-6

5. System Structure 	 5-1

• 5.0 General 	 5-1
5.1 The Network Based Architecture 	5-1
5.2 Hardware Redundancy 	 5-1
5.3 The Inter-Cluster Bus 	 5-1
5.4 The Cluster 	 5-4

5.4.1 The NIU 	 5-4
5.4.2 The PCU 	 5-4
5.4.3 The IIU 	 5-7

5.5 Software 	 5-7

6. Operating System 	 6-1

6.0 General Characteristics 	6-1
6.1 Separation of Policy from Mechanism 	6-2
6.2 Ada Packages 	 6-3
6.3 Operating System Dynamism 	6-4
6.4 Packaging Criteria 	 6-4
6.5 Operating System Extensions 	6-5
6.6 Process and Data Protection 	6-5

7. Networking 	 7-1

7.1 Subsystem Network Interface 	7-1
7.2 Network Monitor/Control Software 	7-3
7.3 Flexibility of Networking 	7-4

7.4 Cluster Isolation 	 7-4
7.5 Standard Methodology 	 7-4
7.6 Layered Protocol Structure 	7-6
7.7 Gateways 	 7-7

8. Processor Cluster Unit 	 8-1

8.0 General 	 8-1
8.1 System Packet Bus 	 8-1
8.2 MCU Features 	 8-2
8.3 Processor Module 	 8-3
8.4 Fault-Tolerant Aspects 	 8-3

8.4.1 Detection 	 8-4
8.4.2 Error Confinement 	8-4

8.4.2.1 GDP Confinement Area 	8-7
8.4.2.2 IP Confinement Area 	8-7
8.4.2.3 Memory Confinement Area 	8-7
8.4.2.4 System Packet Bus

Confinement Area 	8-7
8.4.3 Reporting and Logging Network 	8-7
8.4.4 Error Response 	 8-11
8.4.5 Redundancy 	 8-13
8.4.6 Module Shadowing 	8-13
8.4.7 Latent Faults 	 8-13
8.4.8 System Configuration 	8-16

9. Application Interface 	 9-1

9.0 General 	 9-1
9.1 Hierarchical Control Structure Interface 	9-1
9.2 Operating System Interface 	9-3
9.3 Network Protocol 	 9-3
9.4 Subsystem I/O Protocol 	 9-4
9.5 Physical Connections 	 9-6

10. Conclusion 	 10-1

11. Recommendations for Follow-on Work11-1

ReferenOes 	 12-1

Appendix A - The ASM Enhanced System 	A-1

Appendix B - The FTC Rules 	 B-1

ACKNOWLEDGEMENTS

This report is the second in a two part study of the fu-
ture application of microcomputers in a fault-tolerant
spacecraft environment. It was undertaken under DSS Con-
tract OER 81-03138, at the Communications Research Centre,
Shirley Bay, Ottawa.

Assistance was sought from Dr. George C. Gilley of The
Aerospace Corporation, Los Angeles, California, on
Fault-Tolerant Design and Autonomous Spacecraft; Drs. J.S.
Albus and E.W. Kent, National Bureau of Standards, Wash-
ington, D.C., on the theory of hierarchical control
systems; and also from Tony Anderson and John Beaston, of
Special Systems Operations, Intel Corporation, Aloha, Ore-
gon on the fault-tolerant aspects of the iAPX 432 series
computer. Appreciation is expressed for this assistance.
The authors also wish to acknowledge the guidance and sup-
port of Robert Millar, of Communications Research Centre,
Ottawa.

ACRONYMS

AASC 	Advanced Autonomous Spacecraft Computer (AASC)
Ada 	DoD defined Ada programming language•
AI 	Artificial Intelligence
ALU 	Arithmetic Logic Unit
AP 	Attached Processor (AASC/NIU/AP)
ASM 	Autonomous Spacecraft Maintenance
BERL 	Bus Error Report Line (AASC/PCU/BERL)
BIU 	Bus Interface Unit (AASC/PCU/BIU)
CPU 	Central Processing Unit
CRC 	Cyclic Redundancy Check
DMA 	Direct Memory Access
DRAM 	Dynamic Random Access Memory
ECC 	Error Correcting Code
FRC 	Functional Redundancy Checking (AASC/FRC)
FTBBC 	Fault-Tolerant Building Block Computer
FTC 	Fault-Tolerant Computing
GDP 	General Data Processor (AASC/PCU/GDP)

IIU 	Subsystem I/O Interface Unit (AASC/IIU)
IP 	Interface Processor (AASC/NIU/IIU/IP)
IPL 	Interface Processor Link (AASC/PCU/IPL)

LAN 	Local Area Network
LSI 	Large Scale Integration
MCU 	Memory Control Unit (AASC/PCU/MCU)
MERL 	Memory Error Report Line (AASC/PCU/MERL)

MIPS 	Mega Instructions Per Second
MTBF 	Mean-Time-Between-Failures
NBS 	National Bureau of Standards
NC 	Network Controller (AASC/NIU/NC)
NIU 	Subsystem Network Interface Unit (AASC/NIU)

PCU 	Subsystem Processor Complex Unit (AASC/PCU)

PPB 	Processor Packet Bus (AASC/PCU/PPB)
QMR 	Quadruple Modular Redundancy
RAM 	Random Access Memory
ROM 	Read Only Memory
SPB 	System Packet Bus (AASC/PCU/SPB)

SRAM 	Static Random Access Memory
VLSI 	Very Large Scale Integration

I.

1-1

1. SUMMARY

A typical set of requirements for future unmanned space-
craft is given. This has been supplemented by an additional set
of requirements which arose from the general trend towards au-
tomation based on computer technology and sophisticated system
control studies. The introduction of Artificial Intelligence
(AI) concepts in the context of space applications is of par-
ticular importance at this time, as the products of this tech-
nology are expected to affect almost all aspects of
computer-related technologies in the relatively near future.
Also discussed are a realistic introduction of the concept of
software fault-tolerance, and examples of approaches taken by
studies in this field. A set of design criteria to assure a
high degree of fault-tolerance has also been determined and is
described.

An on-board computer system that has a strong potential
for meeting these functional requirements and design criteria
is then introduced. Its global structure, probable hardware im-
plementation and software peculiarities are discussed. The pro-
posed system is designed around a local networking model and
possesses a strong fault-tolerance that depends on the system-
atic management of non-dedicated, as well as some dedicated,
redundancies distributed in the system. In particular, the Pro-
cessor Cluster Unit, which achieves its extreme stability, high
throughput, and tight protection through entirely new architec-
tural and hardware component concepts, is described in detail.

Requirements for a control software that regulate active
processes within a cluster are depicted. This is followed by a
description of a method to properly inter-connect these clus-
ters, each of which represents a spacecraft subsystem in a lo-
cal networking scheme, and then establishes communication links
between the on-board facility and the external world.

Finally, an explanation is given of the interface between
the proposed computer system and its users, these being the ap-
plication software and hardware which occupy a cluster and con-
stitute a spacecraft subsystem.

2. INTRODUCTION

This report outlines a conceptual design for an Advanced
Autonomous Spacecraft Computer (AASC). It is the second part of
a study begun in 1981 in a search for a fault-tolerant computer
suitable for future on-board spacecraft processing require-
ments. In the report on the first stage, "A Review of Space-
craft Fault-Tolerant Computer Design Concepts" (Ref.1), the Jet
Propulsion Lab's Fault-Tolerant Building Block Computer (FTBBC)
was studied as a possible candidate for meeting future needs.
The results of the study showed, however, that innovative as it
was in many respects, advantage had not been taken in the FTBBC
design of important developments in several highly relevant
fields. The report concluded that considération of these devel-
opments would be necessary in designing a system capable of
meeting future on-board processing requirements.

On-board processing is being required to further the con-
cept of spacecraft autonomy to a greater degree than has so far
been achieved in conventional spacecraft. Reliance on ground
support is placing an increasingly heavy work load on ground
support staff in addition to being time consuming, vulnerable
and costly. The aim is, therefore, towards bringing control and
maintenance on board spacecraft. A United States Air Force (U-
SAF) study (Ref.2) points to the need for the development of
technology in the field of highly reliant fault-tolerant com-
puting systems if spacecraft autonomy is to be achieved. They
have published a list of Design Requirements (Appendix A) to be
applied to future developments and have recommended that it is
both feasible and necessary for ASM to be an integral part of
all U.S. spacecraft becoming operational from March 1989. These
Design Requirements have been taken as terms of reference for
this present study, which is concerned with the definition of
an Advanced Autonomous Spacecraft Computer (AASC).

The ability of a spacecraft to survive for lengthy periods
of time and under adverse conditions implies that control must
be reliable and immediate. Reference to a ground-based authori-
ty may be too time consuming for survival under some contingen-
cies and the implications are that this control should be im-
plemented in an on-board, intelligent fashion. These implica-
tions have led to the inclusion of additional ASM requirements
further to those already proposed by the ASM study group.

Another set of references used has been the FTC Design
Rules, drawn up during the first stage of this study, and are
considered essential principles in the achievement of system
reliability. These are contained in Appendix B.

2-1

The concept of the AASC has been designed to take advan-
tage of state-of-the-art developments in hardware and software
philosophy, system architecture, fault-tolerance, and network-
ing. It also reflects the increase in understanding of future
spacecraft design needs which has been acquired during the cur-
rent study. Indications are that the scope of such projected
needs will go even further than the current work of the ASM
Study Group.

.3. THE ASM REQUIREMENTS

In 1980, the USAF initiated a study (hereafter referred to
as the ASM study) of the means needed to achieve a greater de-
gree of satellite autonomy, i.e. to increase space system sur-
vivability while reducing the ground station work load, vulner-
ability and related expenses. (Ref.3). Maintenance of a space-
craft can be divided into two categories:

a) welfare, which is concerned with satellite upkeep such
as thermal control, battery charging, solar array orien-
tation and sensor calibration, and

b) health, which is responsible for the detection, correc-
tion of, and recovery from malfunctions and other un-
planned events.

Although health maintenance is generally far less under-
stood than welfare, a study of the state-of-the-art technology
substantiates its feasibility. An effective approach, Autono-
mous Spacecraft Maintenance (ASM) is seen as the fully
fault-tolerant design of the entire spacecraft with a highly
reliable fault-tolerant data processing subsystem at its core.
It is intended that this computer should extend its
fault-tolerance to all spacecraft subsystems and act as an "au-
tomated repairman" to them.

In order to consolidate and increase the knowledge of
fault-tolerant technology, which is seen as a relatively imma-
ture field, a study group (the ASM study group) was formed of
experts from industry, academia and NASA. After studying cur-
rent spacecraft capabilities and the requirements for ASM, this
group produced a Final Report (Ref.2) including an Implementa-
tion Plan and a list of ASM Design Requirements (Appendix A).
They recommended that the USAF proceed with plans to implement
ASM in operational spacecraft by March 1989. Under these re-
quirements, the spacecraft is initially responsible for its own
maintenance. Ground support would act in a supervisory role
with the ultimate ability to override ASM functions. The incre-
ased complexity needed in the space segment to handle onboard
navigation, fault detection, isolation and recovery will re-
quire the development of an autonomous navigation subsystem and
a fault-tolerant data processing subsystem. It is the latter,
considered in the context of autonomous spacecraft maintenance,
which is the subject of this report.

3-1

1.4, ADDITIONAL ASM REQUIREMENTS

4,0 General

The ASM study group highlighted several areas of research
which it deemed essential to future ASM development. Of these
it is felt that three, in particular, should be considered
within the scope of this study and should be considered as ad-
ditional requirements in view of their importance.

The complexity inherent in an autonomous system should be
viewed from a hierarchical viewpoint and would be best dealt
with by the application of an integrated advanced control theo-
ry.

The concept of an on-board system acting as an "automated
repairman" (Ref.3) leads to the issue of unanticipated faults.
"Recovery by problem solving" implies some degree of intelli-
gence and, therefore, the application of Artificial Intelli-
gence (AI) is felt to be a necessary requirement in this con-
text.

The third area to be considered is that of software
fault-tolerance, in which progress has not been as rapid as in•
the hardware field but which is beginning to attract more study
and attention.

4.1 Advanced Control Theory

The ASM study is among the first few to recognize that
faults in a system form a hierarchical phenomenum. In addition,
it successfully pointed out the need for a layered
fault-protection or fault-handling scheme (Ref.2, p.2). The
study also mentioned, as research• agenda to be carried out in
current and future phases of the ASM study, the importance of
architectural revision of spacecraft control systems, software
fault-tolerance, system modelling, and system verification
methods, among others. The fault-tolerance mechanism, viewed as
a hierarchical system, calls for a new unified theory that de-
als with the issues related to the design, implementation and
optimized performance of hierarchical control systems.

One successful undertaking in this area is a Model devel-
oped by ' Dr. J. Albus and his grouP at the National Bureau of
Standards (NBS) (Ref.4,5). A theorStiçaily clearcut model re-

4-1

presents a layer in a multi-layered "intelligence hierarchy".
Layers can be created using the model as a building block and
the depth of the intelligence is, at least in principle, arbi-
trarily definable. The building block takes the form of a sym-
bolized servomechanism which constitutes a closed loop
feed-back system with a mechanism to store learned experience
about its operating environment as detailed in Figure 4.1. Dr.
Albus has produced an impressive demonstration of the applica-
tion of this theory in the area of robotics. It consists of
several layers and exists as a lab model. The theory is broad
enough to be applied to the solution of far more abstract prob-
lems such as the establishment of a hierarchical fault-tolerant
capability onboard a spacecraft.

Compared to this "organic" approach, a conventional adap-
tive control system lacks flexibility. System responses are
calculated mechanically and they tend not to be a highly or in-
telligently optimized answer to a given situation. On the con-
trary, a learning control system, of which the NBS model is an
example, develops a type of knowledge-base during its opération
and learns to improve its response even to an identical set of
environmental and control inputs. It is clearly recognized here
that such an advanced control theory is essential to formulate
a truly useful autonomy onboard a spacecraft. A system equipped
with theory of a lesser, deterministic nature would constantly
require undesirable human intervention.

4.2 Artificial Intelligence

In early 1980, the NASA Langley Research Center conducted
a study to address topics in Artificial Intelligence (AI).
These included operations research, and advanced control theory
in the context of automated decision making; problem solving in
relation to space mission-oriented machine intelligence; and
robotics technology (Refs.4,5). A diagram of these relation-
ships is given in Figure 4.2. Of these topics, advanced control
theory was addressed in the study described in the previous
subsection. Operations research deals mainly with the modelling
of various control algorithms and spacecraft design, and hence
will not directly affect on-board computing. NASA's aim is to
provide a general direction for technological development ac-
tivities in the space community for the period 1990 to 1999.
The study addressed three major application areas for such new
technologies: global services such as geostationary service
satellites; deep space exploration; and space industrializa-
tion. The AI technology developed will be applied to both the
space and ground segments of the operation with an emphasis to-

4-2

A cross-coupled processing-generating hierarchy. The M. modules
remember sensory experiences which occur in association With specific
activity in the generating hierarchy (P.) and other - sensory mod-
alities (X.). 	The M. modules thus leaL a set of internal expect-
ations (£71". a predichve model) of the external world as seen
through the sensory input channels.

Figure 4.1

4-3

AUTO
DECISION

, MAKING

1

FEATURE

EXTRACTION
LEARNING

lirMANIPULA-

TION
MOBILITY

CZ)
C.,

PERCEPTION
F-

=3
CO
•c:C

O-
ct
C—)

LEVEL

MACHINE
INTELL.

LEVEL II
MACHINE
INTEL.

AUTO.
.MISSION

OPS.

AUTO.
EXPERIM:
CONTROL ,

E XAPUETR°I 	1:01.

, CONTROL 	INTERP.

AUTO.
MANUFAC-

TURE

FU
 AUTO.

PROGRAM

AUTO.
:\ 	(MONITOR
\ 	TEST &

RECONFIG.

AUTO
SPACE-
CRAFT

'INTELL
OUTER
10 OP

 FOR G&C

AUTO.
ROVERS

1

NMI MI VIII MI ME 111111 	as eft et I Me tK1
OM NM an Mai Mt •

Rai- BASE PROGRAM

j:-

Figure 4.2 Automated decision making . and problém solving in relation to space mission-
oriented machine intelligence and robotics technology.

wards on-board use. Through this study NASA has clearly comMit-
ted itself to the development of AI capability.

The NASA study group singled out the difficulty of devel-
oping software to realize algorithms that support machine in-
telligence as an expected bottleneck in the pursuit of the
above technological objectives. The concentration of program
objectives, first on activities leading to an "increased level
of machine intelligence and perception, and then on those which
enable automated manipulation and robotics" was thus justified.
In practice, automated decision making, relational
knowledge-base structuring, feature extraction, and learning,
are the targets of immediate study. This explains NASA's strong
interest in the Fifth Generation Computer project by the Japan-
ese. The NASA study, it is hoped, will eventually lead to the
establishment of in-house capabilities focussing on areas of
advanced AI technology with a high expected payoff.

According to the NASA report (Ref.2), it is expected to
see several versions of highly autonomous robots in space that
would communicate with earth only when contacted or when a sig-
nificant event occurs requiring immediate attention on earth.
The similarity of this to the thinking of the ASM study group
is obvious, although the NASA study addresses issues beyond
those of ASM. A degree of continuity, accidental or not, is
seen between the ASM study and NASA's AI approach: ASM ad-
dresses problems to be solved by 1990. NASA aims at solving the
problems foreseeable during the period 1990-1999. One can con-
clude from this that the ASM capability is a prerequisite to
the introduction of sophisticated on-board intelligence.

The trend towards implementation of space-borne intelli-
gence seems logical from the standpoint of increased system
level reliability and improved economy in space operation. The
cost of operating any space program has long been exceedingly
high. It also makes sense to acquire the capability to cope
with ever increasing system complexities in monitoring and con-
trolling activities in space. Interpreted in the context of the
present study, this amounts to an additional set of require-
ments to be placed on the structure and capability of future
on-board processing facilities. Among those already recognized
are the following:

- high 	CPU 	throughput: 	AI computations are highly
CPU-intensive

- large and hierarchical memory space: memory accesses are
extensive in the execution of AI programs. They call for

4-5

a large memory space, most of which will be formulated
into a hierarchical structure in terms of their size and
access time, from the fastest but smallest (e.g., regis-
ter sets, cache memories) to the slowest but largest
(e.g., mass storage for an on-board knowledge base,
ground-based archiving system).

- effective internal (on-board) and 'external communication
-links

- operating 	system 	software that supports efficient
multi-tasking and multi- processing •

- AI-oriented operating system extensions that coordinate
various on-board AI activities and an AI protocol to be
used among AI subsystems.

4.3 Software Fault-Tolerance

As demonstrated in Section 8 on the fault-tolerance capa-
bility of the PCU, a methodology to cope with basic computer
hardware has been achieved at the manufacturers' level. One can
now safely say that, within the foreseeable •future, commonly
used computer hardware components can be made.to survive a ser-
ies of incidents normally to be expected in space applications
that could cause faults of considerable magnitude. The FTC
technology exists in the form of a collection of theories, ide-
as, implementation techniques, and knowledge concerning materi-
als, space environment, and ground operational needs. The stage
is clearly set to enhance this technology by addressing
fault-tolerance at higher levels of abstraction, while solving
and improving the implementational aspects of the basic
hardware fault-tolerance.

The higher level fault-tolerance issues that are now visi-
ble include stable operation, general networking welfare, and
other communication methods, distributed operating systems, and
application software. In these areas, signs of system-level
fault-tolerance studies have just started to appear. The fol-
lowing are examples of topics that need to be entertained dur-
ing the course of the detailed design of the AASC:

- the study of a diagnostic model that will be used to es-
tablish system-level fault profile, such as that sug-
gested by J. Kuhl and S. Reddy of the University of Iowa
(Ref.6). 	The implications of the third FTC Rule call

4-6

for distributed or non-fixed capability to perform fault
diagnosis. Such a task often involves solving complicat-
ed logical issues and highly theoretical treatment.

- fault-tolerant data structures. It is now known that
some data structures are more robust than others, thanks
to efforts by J. Black et al of the University of Water-
loo (Ref.7). Error detection and recovery algorithms of-
ten depend on the type of data structures used by the
process. A formal study is necessary to axiomatize these
relationships and apply them to on-board software.

- system level fault-tolerance in distributed processing
also needs to be viewed in relation to networking. A
large scale project that involves this area of study is
in progress in France (Ref.8) and others are in the
planning stage at other centres in Europe.

- theoretical study of recovery. The study of the forma-
tion of algorithms to handle system level recovery using
advanced hardware components supported by non-dedicated
redundancy concepts makes the issues related to a safe
recovery of interprocess relationships become increas-
ingly obvious. The majority of the FTC community is
still not aware of the problem, as these are highly the-
oretical issues. Study topics will include the defini-
tion of requirements for fault-tolerant interprocess
protocol, for example the studies by W.G. Wood of Un-
iversity of Newcastle-upon-Tyne, England (Ref.9); and
ways to establish proper check- pointing in processes as
presented by F. Schneider et al. of Cornell University
(Ref.10).

5. SYSTEM STRUCTURE

5.0 General

The definition of the structure of the AASC consists of
functional descriptions of a set of components, the size and
number of which depends largely on the individual application.
Those components that are expected to be implemented in
hardware are described in this section. Discussions of issues
related mainly to software components are contained in a part
of this section and the following sections. Detailed descrip-
tions of the Funtional Redundancy Checking (FRC) version of the
processor complex are described in detail in Section 8.

5.1 The Network Based Architecture

The proposed AASC hardware consists of clusters (subsys-
tems) of highly fault-tolerant computer complexes, each sup-
porting a satellite subsystem, distributed along inter-cluster
buses or Local Area Networks (LANs), which are shown in Figure
5.1. Local area networking is introduced to ensure the readi-
ness of computer systems for the advent of large scale space
structures as evidenced in recent post-shuttle space activities
(Ref.11). A cluster interfaces the LAN(s) at one end and, nor-
mally, i/o subsystem(s) at the other, as shown in Figure 5.2.

5.2 Hardware Redundancy

Hardware redundancy is provided at several levels within
the system hierarchy: every element of the system may exist in
multiple copies to provide dedicated or non-dedicated redundan-
cy 	at the hardware level. These include the following:
clusters; LANs; LAN to cluster interfaces; 	intra-cluster
processors; intra-cluster buses and bus controllers;
intra-cluster memory control units; and local and global memory
modules.

5.3 The Inter-Cluster Bus

The inter-cluster bus or LAN is not specified in detail at
the present •time as its design is, to a greater degree, intend-
ed to be independent of currently available technology.
However, a fully distributed architecture is assumed, i.e. no
dedicated controllers on the bus 'and no polling scheme enforced

5-1

1111111 	 IIIII 	MI 	 AMP 	 111111 	MI

Subsystems

<> 	LLW

ilean•••n••n•••••••

LAN 1
LAN 2

LAN 3

PACKET I ZED MESSAGE

EXCHANGE

(1O --'150 MHZ)

Subsystems

Fig. 5.1 Adivanced'Autonomous Spacecraft Computer '
Various onboard subsystems are hosted in clusters, each of which has access to one or more ohboard local

area networks.

D

SubSystem

Network

Interface

•
1

Subsystem Processor 	1

Cluster Unit (PCU)

Subsystem

I/0

Interface

Unit (IIU)

I 	•
5 79 6 BO

VR MS UM MU MI MI • MI • 111•111 sy1111111.

XCVR
system bus

ItCT "lb 	

n j

Subsystem

Network Interface

Unit (NIU)

1 Subsystem

8 I/0

' Interface 1
1 Unit (IIU)

DIO

' 117
to/from.

'sensors/actuators

1

air

-MCU

- mcu

.111CU

- MOU '
1

(PCU) 	-

ri-

PL

IBIWs
- a--
1

1

L--.-

••• nn•n ••• 	MU' «I

a

1

V
to/from

T. and C. link

SPOS 4

L . n•••n•

--

t

1

1 	•

1

1 DIO

Subsystem Processor Cluster Unit j
• — • — 	• 	• — • ---. • 	• 	•

tErC Qb 6LeS

••n• MM../

Li

AP

_ _7r

EJ
. 	I 	,

ItPLI

••••

IP

••••n•n • a••n• • ••n•••• • •••••• mom • ••••••• man • ••••• • •••••••

FRC'd pair

•
(NIU)

t

- - 	 •

1GDpi

tO

I RAM I

MCIP
o I

b

a".

•

[ii ,„

Figure 5.2 AASC/Breadboard - hardware configuration

A cluster consists of an NIU, PCU, and III.]. 	The , number and Size of the Nil.] and IIU can change according

to the need as well as the coMplexity of the PCU. 	All units are built using several building blocks.

over the bus, but a multi-drop scheme on plural LANs tapped-on •

by fully independent clusters or subsystems which are operating
asynchronously.

5.4 The Cluster

A cluster consists of three units; the Subsystem Network
Interface Unit (NIU), the Subsystem Processor Complexa Unit
(PCU), and the Subsystem I/O Interface Unit (IIU). An example
of a typical cluster is shown in Figure 5.3.

5.4.1 The NIU

The Subsystem Network Interface Unit (NIU) establishes
contacts between a subsystem and the rest of the system. Each
of the multi-drop connections to the inter-cluster bus is achi-
eved by a Network Controller (NC). The Network Controller han-
dles at least the first two layers of a multi-layer intercon-
nect protocol. The NIU contains an Attached Processor (AP)
which processes and deals with the issues associated with the
interconnect protocol in Layers 3 and above. The other end of
the AP is connected to an Interface Processor Link (IPL) which
is a part of the PCU. The IPL is responsible .for mapping ad-
dress windows between the operating environments of the PCU and
NIU.

5.4.2 The PCU

The Processor Complex Unit (PCU) is based on the Function-
al Redundancy Checking (FRC) version of Intel's iAPX 432 com-
puter. The selection was made after a series of comparative
studies including most of the modern microprocessors. The
fault-tolerant featureS of the iAPX 432 out-scored any competi-
tors even before other advanced features of the basic design of
the computer were considered. The indication that the entire
iAPX 432 itself will be space-qualified by the end of 1986 en-
hanced confidence in the decision.

The PCU, shown in detail in Figure 5.4, will be used to
house the upper layers of local intelligence required for a
subsystem and provides most of the computing power needed by
the subsystem. It consists of a mesh of packet oriented buses
which connect processors and controllers. The System Packet Bus
(SPB) handles the inter-processor communication, while the Pro-
cessor Packet Bus (PPB) controls distribution of information

5-4:

Zit? .qZ«

• n••••n•-n 	•n • •n•n ..n •n •n•.1. 	•ar. 	 • 	• mul

1

• • • 	 • •n11....

1

t— n

Figure 5:3 A Typical AASC «Cluster,

5-5

I 	
• 	1

V

ee4;v4
Pe. ectd

ree";
e • 4'4

ITiil

II iAPX432 IPL

iAPX432 MCU

1

1
NIU

RAM

I 	1

LAN

bus

1

1

1

1

1
KEY

iAPX432 GIDP

iAPX432 BIU

[711

IrgpOnents 11U 	---•—•—•—

Packet bu

 • Z2ZMUZE=

. Terminatôl 	'

1

L.

MCU

RA}III R»
JL
mcu
3 	 L.7„,

A

RAM

MCU

SPB

LBI

RAM

1_23i nru 	mcu

Figure 5.4 	Processor Complex Unit

The PCU consists of.processors (either GDP or IPL), two types of

packet oriented buses (system packet bus and processor packet bus),

Bus Interface Units (BIU), Memory Control Units (MCU), and Memory

Arrays (RAM).

between a processor and a number of System Packet Buses. The
former is supported jointly by all processors in the complex,
while the latter is sponsored by a single processor - either a
General Data Processor (GDP) or an Interface Processor Link
(IPL). At the intersection of the two packet buses is a Bus In-
terface Unit (BIU), which controls information transfer between
the two packet buses. •The Memory Control Unit (MCU) attaches a
memory module (RAM or ROM) to the System Packet Bus. The intel-
ligent memory controller converts logical address spaces im-
plied on the packet bus into physical addresses in the memory
module.

The capability of the fault-tolerance mechanism embedded
in the PCU hardware far surpasses that of any known computer
system. The currently available version of the GDP provides a
throughput of approximately 0.2 MIPS (Mega Instructions Per
Second), or the capability of a typical minicomputer. The mul-
tiprocessing is performed in a manner completely transparent to
the overlaying software structure and, hence, the user. The
over-all computing power of the cluster is determined as a
function mainly by the number of GDPs and System Packet Buses.

5.4.3 The IIU

The I/O Interface Unit (IIU) handles all non-network i/o
to and from the PCU, as shown in Figure 5.3. It employs the
same IPL-AP structure as in the MU. In place of network con-
trollers, however, the AP is connected to a structure that con-
trols subsystem i/o. The subsystem i/o in this application
would be an i/o section of a satellite subsystem such as an
AOCS, •a temperature control subsystem, an uplink/downlink chan-
nel, an on-board power management subsystem, etc. The
fault-tolerance within the subsystem IIU will be provided using
known FTC techniques, including the use of redundant copies of
such a unit.

5.5 Software

The software will consist of three major module groups:
the operating system and its support, the fault-tolerance man-
agement software, and the application software. They will be
developed as Ada packages to take advantage of the excellent
software engineering features of the language, and will remain
highly configurable to permit intense customization by the ap-
plication system designer. Together, modules from these three
groups will establish and support a hierarchical process struc-

5-7

ture which may dynamically change its profile and infrastruc-
ture during its life, according to changes in operation envi-
ronment and needs of the system.

6. OPERATING SYSTEM

6.0 General Characteristics

The operating system and, to a large extent, other (appli-
cation) software to be used in the AASC should possess those
characteristics normally attributed to modern real-time operat-
ing software for a sophisticated embedded application. These
include the following:

- multi-tasking

- transparent multiprocessing

- queued inter-processor message exchange and control

- queued resource request handling

- generic device

- device independence

- layered communication access method

- capability-based access control.

The operating system itself shall be layered, or have a
concentric "pie structure". The relationship between the com-
puter hardware and the operating system must be "friendly": the
operating system should be an extension of the basic computer
hardware and maintain a partnership with it. Together they sup-
port the bottom layers of a hierarchically-defined system func-
tion.

Since a hardware/software distinction is not considered
essential, portions of the operating system may be implemented
in hardware as occurs, for example, in the iMAX 432 operating
system (Ref.12). The reasons for the delegation of the operat-
ing system functions to hardware may vary: for example,
cost-effectiveness, structural security, extreme complexity,
and a tight response requirement. As many operating system
functions become standardized, the implementation of higher
level functions will be placed in hardware. In this respect, it
is important that an understanding of the continuous evolution-
ary process exists in the operating system-hardware partner-
ship. The basic hardware, even now, must include appropriate

6-1

1

1

1

support for some of the operating system primitives such as
message exchange, process dispatch, interprocess control, i/o
channel control, memory management, etc. In other words, the
operating system software should not be directly involved in
instructing processor hardware at a basic instruction level; it
should issue instructions in a far more abstract fashion stich
as, "create process", "send message to process", "terminate
process", "obtain buffer°, etc. This trend will continue to in-
clude, eventually, even more abstract "instructions" in
hardware.

The creation of CPUs with an elevated level of functional-
ity may appear costly. However, a venture of this nature is
justified by the ability of the operating system to cope with
the greatly increased level of sophistication and complexity
demanded by application software. One would constantly be en-
couraged to put as many routine functions of an operating sys-
tem as possible into the hardware, since this would result in
stabilization of those functions and an increased level of ab-
straction of the hardware machine which forms the basis of the
system structure. The level of reliability demanded in the op-
eration of the AASC and the expected complexity of the applica-
tion software could certainly justify such effort. The operat-
ing system working in the AASC environment would then be able
to devote its code to improved monitoring of the overall sys-
tem, or cope with such higher level issues as the upper level
fault handling and requests related to the continuous monitor-
ing of spacecraft subsystems.

6.1 Separation of Policy from Mechanism

Another important characteristic demanded of the operating
system used in the AASC environment will be the separation of
control policies from the mechanisms that support such poli-
cies. For example, transparent multiprocessing support is a me-
chanism, while assignment of processors 1 to 5 as subsystem
monitors and processors 6 to 12 as "blank spares" is a policy.
Provision of structured filing is a mechanism, while a struc-
tured file tree depicting the relationship between on-board
telemetry data belongs to the policy domain. Yet another exam-
ple is process scheduling. A process dispatch port and its sur-
rounding facilities are mechanisms, while the implementation of
a specific scheduling scheme is a policy. In addition to stan-
dard multi-priority round-robin scheduling, the operating sys-
tem should be capable of accepting such process dispatching
policies as °last in, first out" or "random dispatch°, since
such scheduling schemes do exist in nature and real life.

6-2

Traditionally, policy and mechanisms have been confused
and implemented as a tightly interwoven entity within an oper-
ating system. Since it is expected that the AASC will be used
repeatedly in various versions and configurations, a clear dis-
tinction between the two will be of particular importance as
the system will be expected to provide application (spacecraft)
designers with tools with which to fulfill his/her functional
requirements. An operating system should merely provide a me-
chanism on which policies can be implemented and enforced by
the application designers, whose chief concern is the realiza-
tion of an efficient and reliable operational environment in
the spacecraft.

Again, the underlying rule is that the system structure is
hierarchical. The operating system would only address issues
that belong close to the bottom of the hierarchy. However, as a
unified hierarchical structure, the completed system should not
see any clear boundary between the operating system and appli-
cation software. They should only represent different layers of
the hierarchy, each layer being served by "tools" or mechanisms
made available by the layer below it. The decision to use these
tools always belongs to the current layer. This relationship
must be universally true throughout a hierarchy.

6.2 Ada Packages

Further to the issue of optimization of operating systems,
functional modules within an operating system should be sup-
ported and represented in the form of such clear-cut encapsula-
tion and labelling mechanisms as the package concept in the Ada
programming language. This is not to be confused with the often
used "software package" concept, since an Ada "package" ad-
dresses more precise and unique concepts. Combined with the li-
brary concept also defined in Ada, the use of "packages" would
allow the application designer a wider and finer range of con-
figurability.

In fact, as the library and package concepts are such a
rational means of building software structures, it is antici-
pated that many software products, operating systems or other-
wise, will be implemented in these terms. This will contribute
greatly towards the eventual widespread standardization of
software products for various applications. Manufacturers will
be forced to conform to such standards. The tremendous improve-
ments in quality and in software productivity which are implied
in the Ada package concept, should not be overlooked. An exam-
ple of this is the ability to compose an application software

6-3

structure using readily available software components),

6.3 Operating System Dynamism

Another strong reason for the use of Ada packages and oth-
er related concepts in the design and implementation of an op-
erating system is their ability to contribute to the current
trend towards more dynamic operating systems. An operating sys-
tem should not only be configurable at "sysgen" time but also
remain configurable in a major way throughout its deployment in
an application's operational environment. This means an operat-
ing system which can reconfigure itself in operation. Such re-
configurability within an operating system is essential when
there is a need for a highly modifiable system. Logical shape
and functionality must conform to changes in the mission pro-
file and changes in the operational environment, many of which
could be caused by faults of various origins and significance.
The hierarchy of encapsulation methods provided in the Ada
language (package, task and procedure) will permit the operat-
ing system designer to meet the demand for a higher level of
dynamism or flexibility. Thus, while a conventional operating
system would have offered the user an indifferent choice of op-
erating modes, a modern operating system built around new con-
cepts would provide almost countless modes of operation due to
the greatly reduced size of its building blocks and the flexi-
bility in configuring them which the structure affords. Thus if
the application's execution environment is supported by an op-
erating system, it will be able to alter its appearance from
time to,time by small increments or on a large scale, if needs
be.

The concept of dynamic range as an attribute of an operat-
ing system should prevail. This is the ability of an operating
system to offer a range of management functions in a smooth and
continuous fashion. If an operating system can maintain a wide
dynamic range without always having to carry a large burden ar-
ound and can offer services without hitches, as and when they
are needed, it is said to have a good regulation within its dy-
namic range.

6.4 Packaging Criteria

The packaging of operating system functions*should be
achieved in such a way that only one clearly defined function
would be encapsulated in a module (package, task or procedure).
This requirement comes from the,advanced module management con-

6-4

1

cept studied and proposed by G. Myers (Refs.13,14), and listed
as FTC Rules 4 and 5 (Appendix B). Myers' study demonstrates
various types of modules and their relative quality. In short,
Rule 5 contends that if a module represents only one function,
its reason for being a module would be greater, thus increasing
its "strength". The module would also offer simple and clean
interfaces to other modules. Combined with the use of a
well-structured package specification technique such as that
introduced by the Ada language, modules will have fewer "cou-
plings" among themselves, resulting in enhanced modular inde-
pendence within the operating system. All in all, the operating
system for the AASC should look more like "bags of tools" rath-
er than a monolithic body. The "subsetting" of an operating
system should be carried out smoothly by selecting appropriate
tools from several bags and placing them in another set of
bags.

6.5 Operating System Extensions

The collection of tools thus created for a specific appli-
cation (a spacecraft computer design) may, whenever necessary,
be supplemented by additional tools selected or developed by
the designer of the application. Such an extension should han-
dle application-specific functions attributed to the operating
system. An operating system extension carried out in this way
will provide further optimization of its original functionali-
ty.

To make this process simpler, access to functions should
not depend on conventions which are normally particular to op-
erating systems (such as supervisory calls), but follow a set
of standard intermodule protocols. These may be universally ap-
plied across the system and include application and system
software.

Such protocols include subprogram calls and process creation or
invocation. Thus, operating system modules will be formed,
linked together and accessed using the same conventions and
formalities as those used for application modules. The ambigui-
ty of the boundary between the operating system and application
software is thus increased further.

6.6 Process and Data Protection

In the same way that modern structured computer languages
address issues of finer and tighter intra- and inter-module

6-5

protection schemes, operating systems that create and support
runtime environments for software modules written in such a
language must also provide a high level of protection. This
must cover both processes (software entities that perform func-
tions) and data (that which is subjected to functional manipu-
lation). This trend is in line with the increased reliability
requirements for the AASC software. Unlike the philosophy be-
hind many conventional operating systems, protection against
accidental or malicious destruction of these software entities
should not be left to the mercy of application software de-
signers, or that of eventual users of the system. Such protec-
tion mechanisms must be clearly imbedded in the design of an
operating system. In reality, such advanced features of an op-
erating system can only be implemented efficiently enough with
the aid of the underlying hardware facilities which support it.
The above mentioned partnership between the operating system
and computer hardware becomes eàsential. The hardware mechanism
that offers such support to software is often called a
capability-based machine. In capability-based systems the oper-
ating system checks the requestor's access rights and the
requestee's protection specifications before granting an access
to any of the system objects under its jurisdiction. It has
been conventional for a segment of memory or a whole process to
be protected in this manner. The trend now is •owards a finer
level of protection. In the AASC environment, an operating sys-
tem should be able to enforce the protection of the smallest
degree of granularity which the language of implementation,
(such as Ada) can define.

Thus one must be able to define a protection scheme around
a data structure, and distinguish access to it from its neigh-
bouring data structures by giving it an independent protection
mode. Similarly, a process may be granted, for example, a "mes-
sage receive right" from a specific mailbox, but not a "message
send right". If a faulty access was attempted by an application
module - or an operating system module, for that matter - the
hardware protection mechanism, operating system, or both,
should be able to intercept such an access before any damage
can be done to the rest of the system.

7. NETWORKING

7.1 Subsystem Network Interface

As described in Section 5, a type of networking is used to
support on-board inter-subsystem communication in a highly
fault-tolerant manner. The networking consists of redundant
network pathways and subsystems fully distributed along them.

The Subsystem Network Interface Unit (NIU) shall manage
the inter-cluster communication channel(s), in conjunction with
its resident software, and other software in the configuration,
such as the components of the distributed operating system in
the PCU that are related to layered communication access.

Such a channel shall exist in the form of a fully distri-
buted Local Area Network (LAN) similar or identical to Ethernet
(Ref.15) to comply with the FTC design rules (Appendix B).

Having a fully distributed LAN architecture implies that
the network is devoid of fixed bus arbiters or controllers of
any sort which govern the flow of traffic on the network. Such
control normally would occur in a system with a centralized
controller which synchronizes signals, acknowledges access re-
quests from subsystems, grants or refuses accesses, polls, pro-
vides timeslots, or otherwise regulates the activities of sub-
systems on the LAN. This ban on fixed controllers in the net-
work does not preclude the use of a bus controller which is
fully software implemented, or which achieves a greater degree
of flexibility by some other means. Such a diversified con-
troller may reside in portions dispersed across the network
among several subsystems, or be distributed to a lesser extent
but change its dispersal from time to time among the subsys-
tems.

In order to avoid dependence on a single transmission
channel, the LAN pathways must exist in duplicate, triplicate,
or in whatever numbers are needed to satisfy the redundancy
level that is demanded by a specific spacecraft bus design.

The number and type of LAN pathways to be incorporated in-
to the design is also dependent on the quantity and patterns of
traffic expected among subsystems. Not all subsystems have to
be incorporated into a LAN - a network pathway that provides
access points to certain subsystems but bypasses others is
quite conceivable, as shown in Figure 7.1.

7-1

on-board network system

1

I,AN

on-board network

Global Network

!Ground Contrà1
centre

gateways

0 subsystems .

® Global Network nodes

n•••nn«...

Onboard,networking will be designed to meet individual application
and logistics requirements of a spacecraft. The extent of redun-
dancy provided to the onboard and ground communication systems must
also be determined in terms of the fault-tolerance and throughput

needs of the respective networks. All network interconnects shall

be achieved through gateways which adopt a standard interconnect

protocol.

Figure 7.1 	Onboard Networks and gatewaying

7-2

1
1

1

1

As implied above, the designer of AASC applications will
be free to designate redundant LANs either for added throughput
capacity or for increased fault-tolerance. The designation
shall be made by providing a set of properly chosen parameters
that defines the network's operational environment. The network
monitor/control software, which exists in each subsystem, will
respond to the parameter sets and attempt to establish the op-
erational profile.

Furthermore, the network's operational profile shall be
dynamically definable so that changes to the operational re-
quirements of a spacecraft may be possible even after it is
launched. For example, an added level of payload activities de-
cided by ground control may require the opening up of a
subsystem's accesses to a LAN that was previously installed
during the fabrication of the spacecraft but kept dormant until
its use became justified. On the other hand, an on-board equip-
ment failure might cause a portion of an inter-cluster linkage
to become a critical path requiring backup support. In order to
provide a backup route, traffic on a LAN would need to be sus-
pended and then emptied, or rerouted. In either example, the
on-board network monitor/control software shall oversee the im-
plementation of the reorganization, as well as the initial net-
work setup.

7.2 Network Monitor/Control Software

As discussed above, the network monitor/control software
is responsible for first establishing, then maintaining and up-
dating upon request, the appropriate operational environment
for spacecraft on-board communication networks. The software
shall exist independently of the network access control
software and have the following functionality:

- to accept parameter sets that define the profile of an
on-board network structure and operation

- to verify such configuration requests and report any in-
consistencies or predictable weaknesses in the configu-
ration

- to plan and execute a smooth transition from one confi-
guration to the other without seriously disrupting net-
work activities

- to maintain a network operation log by collecting data
each time an access or other significant event occurs

7-3

and filing them in a log file.

7.3 Flexibility of Networking

The reconfigurability of on-board communication networks
shall exist in the form of network monitor/control software and
shall be supported by it. For each application, the hardware to
support on-board networks and their access mechanisms shall
have sufficient redundancy in terms of spare components and
communication pathways. Furthermore, such redundant components
and pathways shall be strategically placed so that the software
can make best use of them in the event of reconfiguration. In
short, software shall maintain the flexibility of the networks
and manage trade-offs between the maximum over-all throughput
and maximum reliability. For example, there shall be a suffi-
cient number of physical connections between each subsystem and
a LAN so that the software can respond to a sudden need for al-
ternate routing by allowing a subsystem to tap onto a new LAN.
(If a key subsystem is not already provided with access to a
LAN which is then chosen as a candidate for an alternate path,
the usefulness of the rerouting will be greatly reduced.)

7.4 Cluster Isolation

In addition to providing a signal contact between a LAN
and a subsystem, there shall be a mechanism to isolate the sub-
system effectively from the rest of the network. Depending on
the type of communication media used, such isolation must be
effective mechanically, electrically, electromagnetically, opt-
ically, or otherwise. Needless to say, proper isolation is ne-
cessary to avoid contamination or drainage of signal traffic on
the network(s) by accidental transmission to, or grounding of
the pathway by the subsystem while the subsystem is logically
disconnected or inoperative but physically still engaged to the
network.

As an example, if the nature of the LAN traffic is electr-
ical, optical isolation or transformers shall be used to iso-
late the subsystem electrically from the pathway. Some other
technique shall be devised if the traffic is to be optical in
nature.

7.5 Standard Methodology

The internal organization of the NIU must adhere to widely

7-4

recognized computer network interconnect standards applicable
to similar communication needs. This is not to prevent de-
signers from providing the means to absorb structural differ-
ences arising from added fault-tolerance requirements or other
application-specific needs which are particular to the space-
craft use of such interconnect standards.

The standards shall affect the design of both software and
hardware. In designing modules, both vertical and horizontal
module boundaries must be recognized and retained. For example,
a "layer" within an interconnect model, such as a horizontal
module boundary, shall remain visible throughout the design and
implementation so that its independence from other layers is
enforced.

The rationale for adopting such standardized network ac-
cess methods comes from the recognition of the greater benefits
to be obtained by establishing and maintaining a relationship
between the on-board usage of networking technology and its us-
age elsewhere, both at conceptual and practical levels. Com-
puter communication technology is highly complex and is advanc-
ing in a reasonably logical fashion. Because of this complexi-
ty, and the astronomical development costs involved in achiev-
ing high quality networking, there will be a far greater chance
of success if a standard methodology is adopted. This means
that one may use readily available components or equipment
which are then optimized to a specific application and allowed
to evolve as existing standards develop. Although embarkation
on a completely new, one-of-a-kind development has been a trad-
ition widely followed in aerospace applications, from the
standpoint of system (global) level project optimization it
shall be avoided now that superior quality networks are avail-
able.

Another benefit to be derived from "going standard" is the
possibility of ready connection of on-board communication fa-
cilities to other ground or space-based networks. Thus the
ground and on-board communicatio networks. Th established using
recently developed gateway technology. Another use of "gateway-
ing" would permit a clear-cut interconnection of networks on
board a spacecraft. In time, computer communication technology
is likely to evolve to accommodate such diverse communication
modes as ground-based office or factory systems, and
multi-satellite global networks in a unified fashion.

Any deviation from standard methodologies which may become
necessary when they are applied to a specific on-board use,
shall be handled in terms of customization of the smallest pos-

7-5

sible, and well isolated portion(s) of such methodologies or
models. If customization alone will not satisfy the require-
ment, distinctive and well modularized components, either
software, hardware or both, shall be added to contain the devi-
ation in an identifiable manner.

7.6 Layered Protocol Structure

Implementation of the above mentioned standard network in-
terconnect schemes, including any application specific exten-
sions to it, shall be achieved in such an open-ended fashion
that the process may easily benefit from evolving technology. A
layer must be designed and implemented with maximum indepen-
dence from neighbouring layers. If a particular hardware imple-
mentation would force the use of any specific type of hardware
or software in the neighbouring layers, the choice of that
hardware must be avoided unless there is an over-riding ration-
alization. To give another example, if the subsequent upgrading
of a layer, either in software or hardware, results in a modif-
ication to the software, hardware or both, of neighbouring la-
yers, the original design for the layer would be termed faulty.

The emphasis on layered design does not imply an intercon-
nect model with fixed, rigid layers that would never change its
infrastructure. The objective of the argument here is to incor-
porate in the conceptual design as much flexibility as possible
in order to maximize the benefits from future technological de-
velopments. If future changes in technology demanded the subdi-
vision of one or more protocol layers, a re-evaluation should
be made at that point and a decision made as to the accommoda-
tion or rejection of such major modifications. Also, if at some
point in the future, the amalgamation of two or more layers
made better networking structure, it should then be given seri-
ous thought.

As an example, the use of an Ethernet-like LAN is given.
If the present 10MHz serial access coaxial cable pathway were
to be replaced by a 100MHz fibre optic cable in the near fu-
ture, the only impact of this drastic change in transmission
speed, and hence capacity of the channel, would be in terms of
greatly increased throughput. To implement this technological
change, only the protocol used and the bottom layer handler
would be altered. (Layer 1 being the physical layer, both
handler and protocol are likely to be hardware implemented.) In
other words, what happens to the physical layer shall be fully'
transparent to the layers above it. A similar transparency
should be in effect at all layers.

7-6

, 	 A layer in such a multi-layered interconnect model shall
represent a "level of abstraction". The level of abstraction
shall be manifested in the form of the functional complexity
attributed to that layer. Functional complexities of various
degrees will be ordered into a "hierarchical functional tree"
and inter-relationships established between them. The higher
structural layers shall contain the highest levels of abstrac-
tion.

Levels of abstractions in a hierarchical structure must
exist in an orderly fashion: the granularity of abstraction
from one layer to another shall remain reasonably uniform, and
there shall never be an inversion of abstraction, i.e., the ex-
istence of a funCtional layer with a lower-level neighbour of a
higher degree of abstraction than itself.

7.7 Gateways

Each on-board LAN shall have at least one gateway station.
The gateway shall be the sole method of linking two or more
LANs or one LAN to some other form of communication network.
There shall be no designed-in restrictions as to the maximum
number of gateway stations on a LAN except for those due to the
traffic capacity of the LAN and its access facilities. For in-
stance, an on-board LAN may require two gateway stations, one
for the ground link (e.g., T & C subsystem) and the other to
communicate with another LAN.

Thus, a gateway shall serve as a standard means of ex-
change between a LAN and others, and its functional and impie-
mentational profiles shall resemble those of the general des-
cription of a spacecraft subsystem: it shall connect itself to
a LAN in a standard multi-drop fashion; it shall be fully
isolatable; it shall be powered in the same way as other
subsystems; access to it shall be governed by the same LAN pro-
tocol as is applicable to other subsystems on the same LAN.
Figure 7.1 depicts the relationship between LANs, gateways and
other forms of communication network, and the manner in which a
gateway could be used to interconnect various networks.

In principle, if there is more than one LAN on board a
spacecraft, there shall be linkage among them via gateways. The
reason being to minimize the chance of accidentally causing a
total isolation of a LAN and its associated subsystem cluster
from the rest of the on-board system. Ideally, a LAN should
have duplicated gateways to other LANs or another communication

7-7

media in order to further reduce such possibilities.

A gateway station will talk and listen to a gateway sta-
tion that belongs to the target network. The possible destina-
tions of a gateway shall include the following: ground control
station; ground or satellite-based global network; another LAN
on board the same spacecraft; a LAN on board another space or
aircraft, or other forms of mobile network (such as cars or
ships). In spite of the variety of destinations, a gateway must
maintain consistent functional and interface characteristics.

8. PROCESSOR COMPLEX UNIT

8.0 General

The PCU complex, as'hown in Figure 5.2, will consist of
redundant System Packet Bus(es), Subsystem Processor module(s)
and Memory module(s).

A subsystem processor module will contain a processor (ei-
ther a GDP or an IPL), a processor packet bus and bus interface
unit(s).

A memory module will consist of a Random Access Memory
(RAM) array and a Memory Control Unit (MCU).

These modules are to be connected by one or more system
packet buses which also connect the Interface Processor Link
(IPL) to the Processor Complex Unit (PCU).

8.1 System Packet Bus.

The System Packet Bus (SPB) connects the various modules
within the system. A system may have up to 8 SPBs, depending on
the throughput and redundancy levels required. The SPB has 16
address/data/specification lines, 3 arbitration, 3 control, 2
parity and 1 error reporting line. The principal features of
the system packet bus are message-based protocol, synchronous
operation, and independent distributed arbitration.

The message-based protocol will be optimized for the mini-
mum number of bus cycles and will ensure that there is no 'bus
dead-time'. The packet bus will support multiple requests
through a very tight protocol. Messages will be sent
back-to-back with a very strict ordering. The end of a message
will be indicated in advance to facilitate a smooth transition
from message to reply.

The system is designed to be synchronous, with all units
running off the same clock.

Arbitration and control will be fully distributed among
BIU/MCUs, complying with Rules 2 and 3 of the FTC Rules. The
control lines specify message type and end-of-message in an en-
coded form. Any device on the bus will have the ability to look
at the control lines and observe what is happening in the sys-
tem.

8-1

Bus arbitration will take place on two levels. At the pri-
mary level each BIU will maintain a time-ordered FIFO queue.
This operates when there is no contention for the bus. When
multiple requests occur within a clock cycle' then arbitration
goes to the secondary, priority-ordered level, again conforming
to the second of the FTC Rules. Arbitration is hidden from the
system so that a high bus utilization is maintained with a min-
imum arbitration overhead. The processor priority is software
controlled and is not related to the hardware ID. Replies will
not require arbitration since strict message/reply ordering is
maintained.

Parity lines will be interlaced and cover address, specif-
ication, data and control lines. Any time a device is driving
the bus it creates parity, which is checked by every BIU on •the
bus regardless of the message destination. The extensively dis-
tributed checking emphasizes the third FTC rule.

The bus will have an error report line driven by any mo-
dule detecting an error, which will specify the type and loca-
tion of errors.

A system with a single bus system can only support one
memory module. On a multiple bus system accesses can be distri-
buted across all buses. An address is split into sections which
are sent consecutively, one per bus. On long accesses this will
allow , more than one MCU to fetch data, with the proviso that
memory on each bus must be of identical size. BIUs have a sep-
arate communication line which enables them to coordinate this
'memory interleaving'.

8.2 MCU Features

The MCU is a form of logical memory controller. It will
support up to four megabytes of memory per chip. The current
implementation of the memory array is 32 bits wide with 7 ECC
bits and 1 spare. This spare can be switched by software con-
trol into any of the other 39 bits. Currently, an MCU will sup-
port 16K, 64K, 256K, or 1M bytes of dynamic and static Random
Access Memory.

In order to prevent aliasing and ensure that the correct
address has been accessed, the Error Correcting Code will be
generated across address and data lines. The ECC will only cor-
rect data as it goes to the bus. Errors in memory itself will
be corrected by 'scrubbing' and refreshing by the MCU. Special
commands will allow access to the ECC bits to ascertain the lo-

8-2

cation of errors and to clear location and memory.

The MCU will support read modify write locking for indivi-
sible operations, to maintain data integrity in a multiple ac-
cess environment.

8.3 Processor Module

The processor may be a GDP or IPL. The Processor Packet
Bus (PPB) belongs to a processor. It is similar in design to
the SPB but does not require the same message ordering. A pro-
cessor will merely issue a request and wait for a reply. A PPB
intersects with SPB(s). At the intersection a BIU controls the
data flow. Thus the number of BIUs is dependent on the number
of SPBs and PPBs.

8.4 Fault-Tolerant Aspects

The ASM Final Report points to the need for development of
a highly reliable fault-tolerant computing capability if auto-
nomous spacecraft maintenance is to be achieved. The philosophy
involved in the development of the AASC Processor Complex Unit
has been to provide such fault-tolerant coverage in as complete
a way as possible combined with error-free computation. It is
intended that the AASC will meet the ASM Design Requirements
and conform to the FTC Rules.

• In this context, the follOwing are points which the de-
signers have been particularly concerned with:

- the capability for recovery should occur at the Same
level as the fault

- hardware should have the ability to handle hardware
fault recovery, utilizing the four fault-handling
stages:

- detection
- containment
- diagnosis or analysis
- recovery

- the achievement of a range of fault-tolerant capabili-
ties through hardware replication which can be ddrected
to support increased performance or fault-tolerance.as
required.

8-3

- the creation of an architecture which will never die.

In support of these considerations, a fault-handling cycle
(detection, confinement, recovery) is designed into the
hardware level.

8.4.1 Detection

Methods of detection used will include ECC for checking
memory errors, parity to check bus errors, duplication and
Functional Redundancy Checking (FRC) to verify processor integ-
rity.

FRC mode (Ref.16) is a specific fault-tolerant feature de-
signed for checking components. It allows for the replication

' of components as Master and Checker, as in Figure 8.1. For ex-
ample, in the case of the GDP, this is to be achieved simply by
pulling a pin on one chip and mounting the two piggy-back
style. In this mode, the Master drives the bus, while the
Checker only receives signals. Any disagreements between Master
and Checker will be indicated on a hardware error line. The al-
liance of Master and Checker does not consititute a
Master/Slave relationship, which would be a violation of the
second FTC Rule. As will be explained later in Section 8.4.6 on
Module Shadowing, this is not a fixed state.

8.4.2 Error Confinement

• The complex is divided into four confinement areas as in-
dicated in Figure 8.2, in order to limit error propagation and
localize faulty and damaged areas. There will be a limited
number of tightly controlled interfaces between them to prevent
bad data entering or leaving the area. These confinement areas
consist of GDP, IP, RAM and SPB areas. Where the SPB is contig-
uous with other areas, there will of necessity, be a slight
overlap within the BIU/MCU. The introduction of distinctive
hardware-supported fault barriers in the design is another fea-
ture of the processor complex. An appropriate combination of
•detection methods will be used in the different confinement ar-
eas. 	 •

IPL GDP

BIU - BIU

- BIU 1--{? BIU LJ - Mc

[RAM 1
MCU

BIU 17_9- BIU - BIU

GDP GDP

BIU hi? - BIU

- BIU b1-2,1±.0 BIU

BIU BIU

BIU

r-

t

L -

Subsystem

Network

Interface
Unit

BIU 77- BIU
1BAM

- BIU rLi- mcu
. n

- BIU 1!;

IPL

r - .

,Subsystem
1
1 	I/0

8 	Interface
1
t 	Unit

1

FRC provides for units to be physically superimposed in a checking mode. On

processors it is a simple hardware operation, on BIU's it is a software

configuration.

Figure 8.1 Functional Redundancy Checking in the Pçu

BIU

GDP

MCU

•

00

IP

,

	

, 	 ,

	

, 	
, r, i .

	

e ' I ' 	

I

	

; 	 L 	
_../

BIU BIU

• — 1

n

/ 	I

RAM

_

MI MI WM 11111111 MI MIR Ma 	81111111 ern 	 • MI MI MI

i/o system

_PACKET BUS

The four confinement areas; GDP, IP, RAM and SPB. The inclusion of the arbitration network within

the BIU FRC coverage causes a slight overlap between the BIU/MCU and packet bus confinement areas.

Figure 8- 2 PCU Confinement Areas

8.4.2.1 GDP Confinement Area

The aim is to check the interface rather than the indivi-
dual GDPs in order to contain faulty data. Therefore, in this
instance, both GDPs will be run as Masters. •FRC on GDPs them-
selves has been described earlier. FRC on BIUs will be a
software configuration. In a GDP confinement area, all modules
would be duplicated. One set of GDP/BIUs would be designated as
Masters, the other as Checkers.

The coverage of this area, as shown in Figure 8.3, in-
cludes the GDP, its processor packet bus, packet bus hardware
and its BIU(s).

8.4.2.2 IP Confinement Area

FRC in this area will only cover outgoing data, as the ve-
rification of incoming data must be the responsibility of the
Application Processors (APs).

8.4.2.3 Meinory Confinement Area

This area covers the RAM elements, address lines, data
lines, array support logic, and MCU. It will employ ECC with
scrubbing and FRC, as previously described. Figure 8.4 shows
the MCUs as Master and Checker in FRC mode and sharing the in-
terface to the RAM array. This mode • covers the support logic.

8.4.2.4 System Packet Bus Confinement Area

The Address, Data and Control lines are within this area,
as described in Figure 8.5, and are covered by parity. The ar-
bitration lines are duplicated. One set is driven and received
by the Master BIU and checked by the Checker. The Checker
drives and checks the other set. A disagreement in the arbitra-
tion network will cause the Master/Checker to enter different
states which will, in turn, be reflected on the control/data
lines and eventually will result in the rejection of the pair.

8.4.3 Reporting and Logging Network

This consists of a report line for each system_packet bus
(BERL) and one for each processor packet bus (MERL), with BIUs
and MCUs forming nodes on the network. If a module detects an
error on the bus it will brOadcast . an error report., which will

8-7

BIU
m

cDI

çl
14-1

BIU
c

MASTER CHECKER

FRC provides a duplicated set of modules. As
the concern is to prevent faulty data leaving the
area only the BIU's are configured in a Master/
Checker relationship to check the output.

Figure 8.3 GDP Confinement Area

DATA

32 bits

ECC

7 bits

RAM ARRAY

MCU
m

MASTER

MCU
c

CHECKER

FRC covers the interface to the RAM array and
Packet Bus. An ECC log is kept in the MCU.

Figure 8.4 Memory Module Confinement Area

Duplicate

Arbitration

Networks

111.11.

O..

e a.

Address, Data, Control, Parity lines

This figure shows the detairof the overlap between packet bus and
BIU confinement areas involving the arbitration.lines. The address,
data and control lines are checked by parity.

Figure 8.5 Packet Bus Confinement Area

be received by all nodes on the reporting network, as shown in
Figure 8.6. Everyone on the system will know where and what
kind of an error has occurred and will be capable of acting ap-
propriately. BERLs are duplicated and MERLs are included in FRC
in the GDP confinement area. There will be no single point de-
pendencies in this arrangement in accordance with FTC Rule 1.

When the error message has been broadcast, all modules
will stop. A pause occurs to allow transient errors to subside,
following which all accesses will be retried. If the error re-
occurs during retry, it is considered permanent. If the retry
was successful, a second pause follows. Recurrence of the error
at this point indicates its permanence and no further retries
are attempted. Both pauses are programmable from 10 microse-
conds to 2 seconds.

The first error to be notified is logged. Succeeding er-
rors are only counted as they may be a direct result of the in-
itial error and, if permanent, will reoccur later. Each BIU and
MCU has an identical copy of the log which indicates the nature
of the error, location and count.

It should, therefore, always be possible to read the error
log at some point for ground reporting purposes and maintain a
fault management activity record in accordance with ASM Re-
quirements #9 and 10.

8.4.4 Error Response

If retry fails, i.e. the error is permanent, then reconfi-
guration takes place either on a bus basis or a module basis.
The BIUs are capable of recognizing the location of the error
from the report and will reroute the message accordingly. If
that fails then the processors try to lay down their processes.
If they encounter an error during this procedure then the fatal
line is pulled and the processor is disconnected automatically.
The only impact at the application level will be a slightly
longer access to memory or the early setting down of a process.
However, it is felt that a clear indication to the upper system
layers must be made at this point to allow them to take collec-
tive action at the respective levels. An example would be the
firing of orbit control thrusters. If a reconfiguration occurs
due to an internal error right in the neighbourhood of this
critical action, the thruster control software in the AOCS sub-
system must know the fact in order to determine whether the re-
firing of the thruster is necessary or not.

8-11

Processor Processoe

MCU

BIU BIU
Backup Primary ri)

4-; 4.)

BERL'ç
ts.)

MIR MI MI 1111111 OM MI • ail UM MIMI MI INS MR 11111111 	IIIIII

BERI4

.An error causes a message to be propagated throughout the system on both MERL's and BERL's to

all nodes. Duplicate logs are kept in all nodes.

Figure 8.6 	Error Reporting Network

8.4.5 Redundanc

As stressed elsewhere, redundancy can be utilized either
for increased throughput or fault-tolerancy. A memory module
can be physically connected to two buses, one primary and one
backup. Both buses can be used normally but if one fails, the
MCU is switched to the backup bus, as shown in Figure 8.7. The
BIUs are informed via the reporting network and all the address
space is given to the backup. This reconfiguration is transpar-
ent to the processor.

8.4.6 Module Shadowing

This is a higher level of fault-tolerance which can be
used when requirements are more stringent, such as in an ASM
application. A shadow is a redundant resource totally dedicated
to maintaining a complete and current backup of the module
state information for a period of time designated by software
control. In the case of processors, two identical FRCd modules,
primary and secondary, are married using software. They need
not be physically contiguous. Figure 8.8 shows an example of
processors configured as a married pair. When two cards are
married they will alternate addresses, i.e. one will drive the
bus, whilst the other receives. After a fixed time period,
their roles will be reversed. This provides a hot standby, each
pair having a complete set of information. If an error occurs,
it is reported to the whole system. The BIUs recognise the
faulty unit, which is then switched off and the access is re-
tried on the remaining unit. System software can retry the pair
as married or divorce them if the fault is permanent. This mode
is completely controllable by software.

Memory modules can also be shadowed, in which case four
buses will be required. Each module will be linked to two dif-
ferent buses, so that failure in one of a pair of buses will
not impair RAM shadowing.

8.4.7 Latent Faults

This is a fault existing in some part of the system which
would normally be dormant. The strategy here involves exercis-
ing these parts at times when they would usually be inactive.

The MCU refreshes memory locations regularly in every ar-
ray, and soft errors are erased.

8-13

MCU MCU

1
Backup Primary Backup Primary

_L

11M11 	 MI IMO MIR MI MI MI Me 11•11 	11111111-11.11I111111

1

System 	 I 1
1

1

Packet-

'Bus

Bus reconfiguration requires four system packet buses in order to ensure that there will be only
one MCU per bus even after reconfiguration.

Figure 8. 7 	Bus Reconfiguration

GDPin GDP
m

GDP
m,

ICI 1

r — - - 1 r OM.

rr-1

—17n te r

- 4 -

Quadruple Module Redundancy
• ••n••n•. •

GDP
m

1•n••1

MARRIED PAIR

Primary 	 Secondary

A married pair is joined by software. Accesses are alternated
between them so that each maintains identical information. FRC

ensures checking of individual partners. Software ensures dis-
connection of faulty units and correct continuation of the healthy
partner.

Figure 8.8 Module Shadowing

Detection mechanisms periodically have error conditions
forced into them by software. In accordance with FTC Rule 3,
the roles of master/checker are reversed by software to ensure
there are no permanent arbiters or judges and to allow for
checking.

Software control initiates and observes error reports and
also periodically invokes recovery operations.

The BIU/MCU have special commands to facilitate the ex-
ercising of these dormant areas.

8.4.8 System Configuration

A high degree of fault-tolerance can be built into the
subsystem. Figure 8.8 shows a typical highly fault-tolerant
configuration. The GDPs are arranged in FRCd pairs, i.e. physi-
cally superimposed as Master/Checker. Through software control
two pairs can then be married as primary and secondary proces-
sors in a Quadruple Modular Redundancy (QMR) arrangement. If
one pair fails and will not respond to a retry, FRC will indi-
cate which is the faulty pair. If necessary, a third pair, as
shown in Figure 5.2, can be brought in« as a replacement
partner. If either of these partners fail, the remaining pair
can continue to operate but at a greatly increased risk, in
which case, the configuration would resemble Figure 8.3. When
the fault-tolerant requirements are not so stringent the three
pairs will operate separately to provide a greater processing
capability, but always checked by FRC mode.

System packet buses can also be quadrupled to enable re-
configuration in the event of bus failure.

The level of fault-tolerancy designed into the configura-
tion need carry no penalties in the way of performance, unused
options or changes to the architecture during recovery.

9. APPLICATION INTERFACE

9.0 General

There are five aspects to be considered in terms of estab-
lishing linkage when a spacecraft subsystem is to be loaded to
the AASC. They are the following:

- hierarchical control structure interface

- operating system interface

- network protocol

- subsystem i/o interface

- physical connections.

The first four of these will be achieved mainly by arrang-
ing linkages in software terms. The last one will require
hardware considerations in achieving the linkage and installa-
tion. The following subsections will clarify •the nature of the
linkages and the general method of achieving them.

9.1 Hierarchical Control Structure Interface

Each AASC application will have its system objective(s)
and functional requirements to achieve such objective(s). Some
of the functional requirements will be broken down into sub-
functions, each of which may be further decomposed. The collec-
tion of functions and subfunctions will form a hierarchical
control structure.

The functionality of a given subsystem will occupy a re-
gion in this abstract structure. Within the hierarchical struc-
ture, in order to achieve over-all functional objectives a sub-
system shall communicate with its neighbouring subfunctions by
exchanging messages that follow a defined protocol, as shown in
Figure 9.1. This control system protocol shall be designed and
defined for all of the hierarchical structures by the space-
craft applications engineer even before the detailed design of
any subfunctions begins. Note that the hierarchical control
structure will exist in an abstract functional domain. In this
respect, some subsystems will represent functions of a higher
abstraction than others. However, the hierarchy does not imply

9-1

low

system hardware physical

implementation

system function

Addllik
high

AMIL

' 1111111111116 IlIllk

subfunctions-_____110,

MR
environment

Figure 9.1 	Hierarchical control structure and

inter-function protocol

level of

abstraction

-.142-----system function

+e- 0/S - application interface

operating system

.114.- 0/S - hardware

interface

Figure 9.2 	Standardized application-operating system

interface

that a fixed master-slave relationship be implemented in
hardware. A fully distributed hardware structure is still used
for flexibility in configuration and to support non-dedicated
redundancy.

9.2 Operating System Interface

As discussed in Section 6, the operating system used in
the AASC shall be well integrated with the computer hardware to
provide application software with an elevated access interface
to the processor and other hardware capabilities. The protocol
exchanged between application modules and the operating system
constitutes the interface.

There is a trend in the software industry to standardize
this interface. If that materializes in a reasonable fashion,
it is strongly recommended that it be adopted even at the cost
of an increased overhead. This implies that access to operating
system services will be restricted to those adopted in the
standard set. By doing so, system to system portability of ap-
plication software is assured and thus a way is opened to ex-
change application software between projects, or incorporate
externally available software without difficulty. It is a well
established fact in Software Engineering that any small benefit
one obtains by optimizing access methods to a specific need is
too often wiped out by the greater losses suffered in losing
compatibility with a common scheme. The isolation of software
from the main growth path shall be avoided to maintain the
overall quality of the software.

In spite of the fact that the AASC is an on-board system,
use of a file system is not precluded. The implied higher level
of data representation made possible by processes operating at
higher levels of abstraction will naturally demand the creation
of files and a management facility for these files.

9.3 Network Pràtocol

A subsystem will be implemented on a cluster that consti-
tutes a node on the AASC networking. When two or more subsys-
tems are to exchange messages via nptwork(s), the
inter-subsystem, or the inter-cluster communication will re-

ly on a network communication protocol as shown in Figure 9.2.
While the operating system and the NIU will look after the
lower layers of the multi-layer protocol scheme, application

9-3

9-4

• 1

1

software on the subsystem will still have to provide support
for the upper layers of the protocol.

The nature of exchanges over the network will be substan-
tially more abstract than that seen on those conventional
spacecraft system bus. The results of analyzed or processed da-
ta will be sent or received via the LAN(s) instead of raw data
such as telemetry information. However, to comply with the
overriding ground requirements specified in the ASM require-
ments, there must be a provision in the protocol to allow mass
transfer of data. A burst mode of transfer defined as part of
the protocol will permit, for example, bit by bit reporting
from telemetry subsystems to the ground control via LAN(s) and
the ground gateway . subsystem. Similar mass transfer shall be
anticipated for the occasional remote-loading of software or
data files to selected subsystems by ground control.

The basic (lower layer) network protocol supported by the
cluster shall have a hierarchical broadcasting facility to al-
low selective broadcasting.

9.4 Sybsystem I/0 Protocol

At the lower end of the control hierarchy most of the sub-
systems will interface i/o devices of some kind, as depicted in
Figure 9.3. These i/o devices are often integral parts of a
spacecraft design. An AOCS subsystem, for example, will employ
several different types of sensors and a few actuators. For a
Grand Gateway (Telemetry and Control) subsystem, transmitters
and receivers with their antennae assemblies will serve as i/o

devices. An on-board knowledge base will probably require ac-
cess to a few layers of mass storage devices of some kind.

Since the nature and characteristics of subsystem i/o

differs drastically from one subsystem to the other, the proto-
col at this level will be highly customized. However, at a few
layers above the actual physical i/o, a great deal of effort
must be made to standardize device access methods. For in-
stance, there shall be as few device handlers as possible (say,
one each for stream and byte i/o). Access protocol between ap-
plication software and these device handlers shall also be
standardized (standardized calling sequence, parameter set for-
mat, system response format, logical device naming, request
queueing conventions, error handling schemes, etc.).

LAN 1

SUBSYSTEM

Figure 9.3 	Inter-cluster Network Protocol

I.

allYSTEM
luster

Subsystems exchange information via onboard networks. The commun-

ication channel is supported by a standard hierarchical protocol
of which the lower layers are supported by the LAN and the NIU hard-
ware. The subsystem software must provide whatever upper layers
the protocol needs to achieve the requirements of its host subsystem,
again following the standard protocol scheme.

I.

9-5

9.5 Physical Connections

Physical connections between a subsystem and the AASC oc-
cur in two areas: subsystem linkage to LAN and subsystem i/o
interface to i/o devices. In the former, network interface ca-
bles from the NIU will be connected to multidrop transceiver
units on selected LAN(s). In the case of multiple LANs, the ap-
plication design engineer should take the decision during sys-
tem design as to which LAN will receive the connection.

The Subsystem I/O Interface Unit (IIU) is basically a com-
puter system in itself, apart from the PCU, and o f : a . more con-
ventional architecture with a localized system bus. There will
be several versions of IIU based on the selection of CPUs, con-
trollers, the amount and type of local memory support, and the
type and volume of sensory inputs to and control outputs from
the unit.

In some cases IIUs will be embedded in subsystem i/o dev-
ices in the form of dedicated redundant units to achieve a cus-
tomized control function in a conventional fault-tolerant ar-
rangement. In other situations where the subsystem does not re-
quire encapsulation of its controlling computer elements, the
IIU will be physically mounted outside the i/6 device, next to
the PCU for that subsystem.

10. CONCLUSION

A conceptual design has been introduced for an on-board
computer to meet the stringent requirements and design cri-
teria outlined in this report. This work is one stage in the
development of such a computer system. In furtherance of
this process, it is recommended that the study of the ad-
vanced concepts already begun should be pursued so that a
sound technological base for on-going space utilization may
be laid down. It is felt that such a knowledge is a necessi-
ty for achieving preeminence in future space activities.

In addition to the continuing theoretical study needed,
some recommendations for further development and study are
made. These are concerned with a detailed breadboarding of
the AASC, and would lead to the development of a system
which would make use of state-of-the-art concepts and tech-
niques and would open the way to the future adoption of ad-
vanced control and fault-tolerant features which are contin-
ually being explored.

11. RECOMMENDATIONS FOR FOLLOW-ON WORK

In order to verify the AASC concept and obtain hands-on
experience with the new computer architecture proposed in
it, the following phased actions that include theoretical
and practical activities are recommended. Such actions are
expected to be carried out step-by-step, each one feeding
results for the next stage •in the design cycle.

Step 1 Concept Review.

An elaboration should be made of the system concept, bu-
ilding blocks, hardware/software trade-offs,
fault-tolerance features, and related technologies of the
AASC in respect of the anticipated requirements for future
spacecraft.

Step 2 Conceptual Breadboard Development and Tests.

An experiment should be planned using a breadboard system
to test concepts refined in Step 1. A flexible breadboard
should be designed and built to test the basic concepts of
the AASC. Figure 11.1 shows the breadboard system consist-
ing of at least two (2) computer stations (micro or mini-
computer) to be linked by a local area network.

The computers should be used to test the algorithms de-
fined or implied in the AASC but not the AASC hardware.
The local area network would simulate actions of the AASC
system bus. The objective of the breadboard experiment
should be verification of system level control concepts,
inter-cluster communication, and fault-tolerance algor-
ithms. The similarity between the breadboard and the actu-
al AASC should be consistent with low experimental costs
and maximum benefits from the hardware. The computer sta-
tions should be loaded with software modules that simulate
the algorithms and control methodologies. Tests would be
planned and carried out.

terminal

(simulated spacecraft
i/o device)

simulated
NIU, PCU
and IIU sdftware

mini or
microcomputer

station {

breadboard
monitor/control

software

microcomputer
station

terminals

AASC system bus (LAN)

Figure 11.1 Basic Breadboard

11-2

Step 3 Refined Breadboard Development and Tests.

Two smaller hardware elements of the AASC should be devel-
oped, the NIU and IIU. They would be integrated into the
basic breadboard system of Step 2, as shown in Figure
11.2, and the experiment repeated. The software should re-
flect the necessary changes discovered during Step 2. It
should also include the new software elements which con-
trol the real NIU and IIU. A real or simulated spacecraft
i/o system would be employed in testing the IIU.

Step 4 Full Breadboard Development.

The PCU hardware should be developed and added to the
breadboard. PCUs of various sizes and combinations of com-
ponents should be created. FRC'd processor pairs and mar-
ried couples would be included. A breadboard system con-
sisting of more than two stations should be configured, as
shown in Figure 11.3. It would be loaded with the latest
versions of the software resulting from the tests conduct-
ed in Step 3. New software to control the real PCU would
also be necessary. A real or simulated spacecraft i/o
would be connected to the IIUs, as appropriate. A
monitor/control system should be set up for , systematic ex-
ecution of the experiment.

Step 5 Full Breadboard Experiment.

A detailed test plan should be generated for testing the
full AASC breadboard developed in Stage 4. The plan should
take into account the results of earlier tests conducted
in Steps 2 and 3, but should be more comprehensive than
the earlier tests. The plan should also include tests on
the characteristics of the PCU, as identified during its
development in Step 4. Tests should be conducted using the
full breadboard system.

Step 6 Recommendations for Prototype Design.

Revision of the system, software and hardware requirements
should take place, if necessitated by the results of the
full experiment performed in Step 5. Recommendations would
then be listed for developing a prototype AASC.

11-3

NIU

simulated

PCU

I1U

NIU

simulated

PCU

HU'

e-

spacecraft
i/o device

simulated
spacecraft

i/o device

i
......._ /.....--

111113 	• MI MI MIN MI OM MI MI MI MI

. AASC system bus (LAN)

{

breadboard

monitor/control
software

mini or

microcomputer
station

terminals

Figure 11.2 Revised Breadboard System

etiN

UM MIR a OM Ma MI • OM MI MI • MI 	MI MI MI MI

-AASC 	system bus 	(LAN) 1

AASC system

NIU NIU NIU

minimum

PCU maximum
PCU

typical

PCU

mini or
microcomputer

station

breadboard
monitor/

control
software

IIU IIU

(simulaéed
spacecraft

device
{

eal r
spacecraft

devices

IIU

terminals

Figure 11.3 Full Breadboard System

REFERENCES

1. T. Gomi, M. Inwood, uFTBBC - The Fault-Tolerant Building
Block Computer", Eidetic Systems Corp., 1981.

2. Michael H. Marshall, G.David Low, "Final Report of the Au-
tonomous Spacecraft Maintenance Study Group", February 1,
1981. JPL Publication 80-88

3. George Gilley, "Fault Tolerant Design and Autonomous Space-
craft." Aerospace Corp., Los Angeles, California.

4. James S. Albus, "Brains, Behaviour and Roboticsu, McGraw
Hill, New York, 1981.

5. E.W.Kent, "The Brains of Men and Machines", McGraw Hill,
New York, 1981. .

6. J.G. Kuhl and S.M. Reddy, Division of Information Engineer-
ing, Univ. of Iowa, "Fault-Diagnosis in Fully Distributed
Systems", proceedings of The llth Annual Symposium on
Fault-Tolerant Computing.

7. J.P. Black and D.J.Taylor, Dept. of Computer Science and
Computer, Communications Network Group, Univ. of Waterloo,
Ont. "A Compendium of Robust Data Structures", procs. of
The llth Annual Symposium on Fault-Tolerant Computing.

8. Pierre Azema, et al, Labratoire d'Automatique at d"Analyse
des Systemes du C.N.R.S., Toulouse, France, "Virtual Ring
Protection in Distributed Systems", procs. of The llth An-
nual Symposium on Fault-Tolerant Computing.

9. W. Graham Wood, Computing Laboratory, Univ. of Newcastle
upon Tyne, England, "A Decentralised Recovery Control Pro-
tocol", 	procs. 	of 	The 	llth 	Annual 	Symposium on
Fault-Tolerant Computing.

10. Fred B. Schneider & Richard D. Schlichting, "Towards
Fault-Tolerant Process Control Software", Cornell Universi-
ty, Ithaca, N.Y.

11. Ewald Heer, uAutomated Decision Making and Problem Solv-
ing." Vol.1 - Executive Summary. NASA Conference Publica-
tion 2180. Procs. of the llth Annual Symposium of F.T. Com-
puting.

12. iMAX432 Operating System, External Product Specification,

12-1

Revision 2.1, September 30, 1981.

13. Glenford Myers, "Software Development by Composite Design",
1975.

14. Glenford Myers, "Software Development", 1978.

15. Ethernet Specification, Version 1.0, Digital Equipment
Corp., Intel Corp., Xerox Corp., Sept. 30, 1980.

16. iAPX432 FRC document, Intel 1981.

APPENDIX A

THE ASM-ENHANCED SYSTEM

Design Requirements

1. All Air Force spacecraft launched after March 1989 shall
meet the ASM requirements listed below.

On this date, the Department of Defense would require all
subsequent spacecraft purchased to include the fully opera-
tional ASM capability.

(Prior to this date, it is desirable to add incremental ASM
capabilities, consistent with system performance, as they
are developed.)

2. The ASM spacecraft shall operate without a ground support
control link for up to 60 days without degradation of per-
formance.

This is the essence of autonomous operations. The space-
craft will function until ground support is available or
desirable from the viewpoint of the ground support team.

3. The ASM spacecraft shall operate with not more than 10% de-
. gradation of key functions over a 6-month period of autono-

my.

This requirement will set some sizing constraints, such as
data storage, and require some definition of loss of per-
formance. It stresses the need for continuous function of
the spacecraft on an "ad hoc" basis if scheduled ground
support is not provided. The 10% figure is somewhat
arbitrary; however, at the end of 6 months, the performance
of the entire system shall be at a useful level.

4. The ASM spacecraft shall interact with the ground support
segment for not more than 90 minutes to perform all re-
quired support functions without performance degradation.

After a period of autonomy, it is required that the space-
craft and ground support perform all the required support
functions in this window. The functions include (a) down-
link of all stored maintenance history, (b) uplink of all
data load (such as star tables and ephemeris), (c) redun-
dancy management, and (d) testing. Specification of the du-

A-1

ration of the support window is mission dependent. The in-
tent would be an uplink•support period approximately the
same as that required for non-ASM spacecraft.

5. ASM shall not change the design lifetime of the spacecraft.

The imposition of the requirement for ASM on a spacecraft
development is in addition to mission-imposed requirements,
particularly the design lifetime. ASM will impact the de-
sign methodologies. Such design issues as depth of redun-
dancy must take into account the rate at which resources
are used up with the ASM design so that the total lifetime
or mean mission duration shall not be reduced.

6. ASM shall not change the performance of the spacecraft or
its payload.

All requirements placed upon the spacecraft development for
performance of either spacecraft or payloads shall not be
affected by the presence of autonomous spacecraft mainte-
nance. The spacecraft must be designed to provide these
performance levels in the absence of frequent ground con-
trol interaction. Specific additional spacecraft functions,
such as navigation, may be required to meet the autonomy
requirement. If so, the performance of these functions•
(e.g., navigation accuracy) must support non-ASM system
performance requirements.

7. The ASM spacecraft shall be able to recover from failures
that have been defined a priori, and the probability that
any particular failure was defined a priori shall be >=
0.98. The ASM functions include monitoring the spacecraft
performance for faults and problem symptoms, and, in the
presence of a fault, identifying, isolating, and implement-
ing the recovery mode at both subsystem and system levels.
The a priori analysis shall be sufficiently complete that,
during the lifetime of the spacecraft, at least 98% of the
failures (e.g., where some component has failed) will be
identified in this manner (the coverage is >= 98%). Com-
pound failures wherein multiple symptoms occur simultane-
ously or near simultaneously during the detection and reco-
very period can be exempted from this requirement.

8. Following launch, the ASM spacecraft shall go through a
period of on-orbit checkout and initialization of the same
duration as that of a comparable non-ASM spacecraft.

The autonomy requirements discussed here are applied to the

A-2

operational period of the spacecraft, which is deemed to
begin following the on-orbit checkout period. In the check-
out period, maintenance will be under ground control, with
autonomous capabilities turned on or off as appropriate.
Since the addition of ASM does add certain functions, oper-
ation modes, and complexities to the spacecraft, these must
also be checked out during the same period. Following
checkout, all autonomy requirements will apply.

9. The spacecraft shall process and store all onboard manage-
ment data required for ground support, and shall telemeter
the data during the ground support periods upon ground com-
mand. The capability shall handle all necessary data for 6
months.

No matter how confident designers may be of the maintenance
capability of the spacecraft, it will be necessary to leave
a record for ground support (an audit trail). Without this
information, the ground support function cannot evaluate
the state of the spacecraft and use the record of perfor-
mance to extend the lifetime of the spacecraft, develop or
implement alternative operating modes, or improve future
designs.

10. The ASM spacecraft shall transmit a message to the ground
at 	the 	first 	opportunity 	following 	any 	on-board
fault-management activity.

Whenever an incident occurs that requires maintenance ac-
tivity in response to failure symptoms, it is important
that the ground be given the opportunity to review the ac-
tion and to verify the status and mode of the spacecraft.
Thus, a telemetry message indicating that some activity had
taken place would be sent to the ground at the first pass
over an appropriate ground station. This type of signal may
be coded into the user data to trigger an alarm at the
ground support station. Sending of the message does not
abolish the obligation of the spacecraft to retain the data
for the maximum period, and to continue to operate in an
autonomous manner for the established periods.

11. The ground support shall be able to override ASM management
activities for the system and the subsystems.

While the ASM spacecraft shall have the ability to perform
redundancy management in thé presence of an apparent fault
or problem, it is necessary that the ultimate control over
these functions be maintained at the ground, and that the

A-3

spacecraft shall allow for ground communication that over-
rides and can reverse the prior decisions of the ASM func-
tions. The capability is necessary so that the system will
be able to recover from such learning curve uncertainties
as misdiaghosed problems or design flaws. In this way, non-
failed components may be recycled back into the configura-
tion inventory, or the spacecraft alternate modes of func-
tioning may be utilized to make use of partial capabilities
of components. In terms of a hierarchical decision tree,
the ground support personnel shall occupy the top level to
maximize system performance.

12. The source of last resort for fault isolation and recovery
shall be the ground support.

The ASM spacecraft shall be designed to recognize when it
has been unable to isolate, remove, and recover performance
following a fault. When this occurs, the spacecraft shall
take action to protect itself from self-injury or dissipa-
tion of resources (such as an engine firing limit cycle
that would consume propellant), and await ground interven-
tion.

APPENDIX B.

The Fault-Tolerant Computing Rules • (FTC Rules)

Eidetic has compiled a tentative list of rules which a
good fault-tolerant computer system should comply with. Such
rules were proposed, from time to time, by several groups and
individuals in the fault-toleradt and space computing communi-
ties, mainly on an empirical basis. Added to this existing set
of findings are three further constraints (Rules [4], [5] &
[6]) which are brought up anew by Eidetic, and which have been
accepted among researchers and practitioners in the field of
software sciences as system design principles considered essen-
tial in order to increase reliability of complicated software
systems. Here, the distinction between the software rules and
system or hardware rules is considered insignificant as trends
towards acceptance of functional decomposition as the fundamen-
tal methodology of system design are increasing among planners
and designers.

The following are the proposed - fault-tolerant computing
.design rules (FTC design rules):

[1],There shall be no, or as few. as possible, single points of
failure in the system (the hardware rule).

(A chain is only as strong as,its weakest link. If the
system is dependent on a single item,. that is a measure of
its strength.)

[2] There shall be no fixed master-slave - relationShips among
processing units ('the democracy rule.)'.

(The use of, dedicated redundancy is an ihefficlent use of
resources. In a fixed mester/slave processor relationship
a faulty master can propogate errors throughout the system
before the 'damage is discovered.)

[3] There shall be no permanent fault arbiters or judges in
the system (the modesty rule).

(If fault judging is software implemented then flexibility
and distribution of the responsibility ensures that even
the judges are judged.)

[4]Whenever a function is Supported by processors, processes,
tasks, subprograms, or other form of subfunctional mo-

B-1

dules, the method of inter-connecting them shall obey t
module decoupling rules proposed by Glenford Myers (t1
module decoupling rule). .

(In order to achieve the addition or removal of a modulE
with the minimum of disruption, modular interfaces should
be as simple and clean as possible.)

[5] Similarly, every subfunctional module must follow Myers'
module strength rules (the module strength rule).

(The strength of a module lies in its raison d'etre. A
functionally cohesive module will be easier to recognize
and manipulate, and will not disintegrate in a dynamic en-
vironment.)

[6] As well as the horizontal breakdown, a function must be
broken down vertically into layers. Levels of abstraction
must be defined for each layer and independence between
•the layers must be observed (the layer rule).

(Since hierarchical thinking is natural to humans, complex
structures arranged in orderly layers are more readily un-
derstood. Such a structured representation of concepts
will be more accurate, revisions will be fewer and more
readily implemented.)

o SEP 7 1984

LOWE-MARTIN No. 1137

GOMI , T.
--A fault-tolerant .on-board

computer ...

91

C655

G641

1982

DATE DUE
DATE DE RETOUR

