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1. SUMMARY 

A typical set of requirements for future unmanned space-
craft is given. This has been supplemented by an additional set 
of requirements which arose from the general trend towards au-
tomation based on computer technology and sophisticated system 
control studies. The introduction of Artificial Intelligence 
(AI) concepts in the context of space applications is of par-
ticular importance at this time, as the products of this tech-
nology are expected to affect almost all aspects of 
computer-related technologies in the relatively near future. 
Also discussed are a realistic introduction of the concept of 
software fault-tolerance, and examples of approaches taken by 
studies in this field. A set of design criteria to assure a 
high degree of fault-tolerance has also been determined and is 
described. 

An on-board computer system that has a strong potential 
for meeting these functional requirements and design criteria 
is then introduced. Its global structure, probable hardware im-
plementation and software peculiarities are discussed. The pro-
posed system is designed around a local networking model and 
possesses a strong fault-tolerance that depends on the system-
atic management of non-dedicated, as well as some dedicated, 
redundancies distributed in the system. In particular, the Pro-
cessor Cluster Unit, which achieves its extreme stability, high 
throughput, and tight protection through entirely new architec-
tural and hardware component concepts, is described in detail. 

Requirements for a control software that regulate active 
processes within a cluster are depicted. This is followed by a 
description of a method to properly inter-connect these clus-
ters, each of which represents a spacecraft subsystem in a lo-
cal networking scheme, and then establishes communication links 
between the on-board facility and the external world. 

Finally, an explanation is given of the interface between 
the proposed computer system and its users, these being the ap-
plication software and hardware which occupy a cluster and con-
stitute a spacecraft subsystem. 



2. INTRODUCTION 

This report outlines a conceptual design for an Advanced 
Autonomous Spacecraft Computer (AASC). It is the second part of 
a study begun in 1981 in a search for a fault-tolerant computer 
suitable for future on-board spacecraft processing require-
ments. In the report on the first stage, "A Review of Space-
craft Fault-Tolerant Computer Design Concepts" (Ref.1), the Jet 
Propulsion Lab's Fault-Tolerant Building Block Computer (FTBBC) 
was studied as a possible candidate for meeting future needs. 
The results of the study showed, however, that innovative as it 
was in many respects, advantage had not been taken in the FTBBC 
design of important developments in several highly relevant 
fields. The report concluded that  considération of these devel-
opments would be necessary in designing a system capable of 
meeting future on-board processing requirements. 

On-board processing is being required to further the con-
cept of spacecraft autonomy to a greater degree than has so far 
been achieved in conventional spacecraft. Reliance on ground 
support is placing an increasingly heavy work load on ground 
support staff in addition to being time consuming, vulnerable 
and costly. The aim is, therefore, towards bringing control and 
maintenance on board spacecraft. A United States Air Force (U-
SAF) study (Ref.2) points to the need for the development of 
technology in the field of highly reliant fault-tolerant com-
puting systems if spacecraft autonomy is to be achieved. They 
have published a list of Design Requirements (Appendix A) to be 
applied to future developments and have recommended that it is 
both feasible and necessary for ASM to be an integral part of 
all U.S. spacecraft becoming operational from March 1989. These 
Design Requirements have been taken as terms of reference for 
this present study, which is concerned with the definition of 
an Advanced Autonomous Spacecraft Computer (AASC). 

The ability of a spacecraft to survive for lengthy periods 
of time and under adverse conditions implies that control must 
be reliable and immediate. Reference to a ground-based authori-
ty may be too time consuming for survival under some contingen-
cies and the implications are that this control should be im-
plemented in an on-board, intelligent fashion. These implica-
tions have led to the inclusion of additional ASM requirements 
further to those already proposed by the ASM study group. 

Another set of references used has been the FTC Design 
Rules, drawn up during the first stage of this study, and are 
considered essential principles in the achievement of system 
reliability. These are contained in Appendix B. 
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The concept of the AASC has been designed to take advan-
tage of state-of-the-art developments in hardware and software 
philosophy, system architecture, fault-tolerance, and network-
ing. It also reflects the increase in understanding of future 
spacecraft design needs which has been acquired during the cur-
rent study. Indications are that the scope of such projected 
needs will go even further than the current work of the ASM 
Study Group. 



.3. THE ASM REQUIREMENTS 

In 1980, the USAF initiated a study (hereafter referred to 
as the ASM study) of the means needed to achieve a greater de-
gree of satellite autonomy, i.e. to increase space system sur-
vivability while reducing the ground station work load, vulner-
ability and related expenses. (Ref.3). Maintenance of a space-
craft can be divided into two categories: 

a) welfare, which is concerned with satellite upkeep such 
as thermal control, battery charging, solar array orien-
tation and sensor calibration, and 

b) health, which is responsible for the detection, correc-
tion of, and recovery from malfunctions and other un-
planned events. 

Although health maintenance is generally far less under-
stood than welfare, a study of the state-of-the-art technology 
substantiates its feasibility. An effective approach, Autono-
mous Spacecraft Maintenance (ASM) is seen as the fully 
fault-tolerant design of the entire spacecraft with a highly 
reliable fault-tolerant data processing subsystem at its core. 
It is intended that this computer should extend its 
fault-tolerance to all spacecraft subsystems and act as an "au-
tomated repairman" to them. 

In order to consolidate and increase the knowledge of 
fault-tolerant technology, which is seen as a relatively imma-
ture field, a study group (the ASM study group) was formed of 
experts from industry, academia and NASA. After studying cur-
rent spacecraft capabilities and the requirements for ASM, this 
group produced a Final Report (Ref.2) including an Implementa-
tion Plan and a list of ASM Design Requirements (Appendix A). 
They recommended that the USAF proceed with plans to implement 
ASM in operational spacecraft by March 1989. Under these re-
quirements, the spacecraft is initially responsible for its own 
maintenance. Ground support would act in a supervisory role 
with the ultimate ability to override ASM functions. The incre-
ased complexity needed in the space segment to handle onboard 
navigation, fault detection, isolation and recovery will re-
quire the development of an autonomous navigation subsystem and 
a fault-tolerant data processing subsystem. It is the latter, 
considered in the context of autonomous spacecraft maintenance, 
which is the subject of this report. 
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1.4, ADDITIONAL ASM REQUIREMENTS 

4,0 General 

The ASM study group highlighted several areas of research 
which it deemed essential to future ASM development. Of these 
it is felt that three, in particular, should be considered 
within the scope of this study and should be considered as ad-
ditional requirements in view of their importance. 

The complexity inherent in an autonomous system should be 
viewed from a hierarchical viewpoint and would be best dealt 
with by the application of an integrated advanced control theo- 
ry. 

The concept of an on-board system acting as an "automated 
repairman" (Ref.3) leads to the issue of unanticipated faults. 
"Recovery by problem solving" implies some degree of intelli-
gence and, therefore, the application of Artificial Intelli-
gence (AI) is felt to be a necessary requirement in this con-
text. 

The third area to be considered is that of software 
fault-tolerance, in which progress has not been as rapid as in•
the hardware field but which is beginning to attract more study 
and attention. 

4.1 Advanced Control Theory 

The ASM study is among the first few to recognize that 
faults in a system form a hierarchical phenomenum. In addition, 
it successfully pointed out the need for a layered 
fault-protection or fault-handling scheme (Ref.2, p.2). The 
study also mentioned, as research• agenda to be carried out in 
current and future phases of the ASM study, the importance of 
architectural revision of spacecraft control systems, software 
fault-tolerance, system modelling, and system verification 
methods, among others. The fault-tolerance mechanism, viewed as 
a hierarchical system, calls for a new unified theory that de-
als with the issues related to the design, implementation and 
optimized performance of hierarchical control systems. 

One successful undertaking in this area is a Model devel-
oped by ' Dr.  J. Albus and his grouP at the National Bureau of 
Standards (NBS) (Ref.4,5). A theorStiçaily clearcut model re- 
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presents a layer in a multi-layered "intelligence hierarchy". 
Layers can be created using the model as a building block and 
the depth of the intelligence is, at least in principle, arbi-
trarily definable. The building block takes the form of a sym-
bolized servomechanism which constitutes a closed loop 
feed-back system with a mechanism to store learned experience 
about its operating environment as detailed in Figure 4.1. Dr. 
Albus has produced an impressive demonstration of the applica-
tion of this theory in the area of robotics. It consists of 
several layers and exists as a lab model. The theory is broad 
enough to be applied to the solution of far more abstract prob-
lems such as the establishment of a hierarchical fault-tolerant 
capability onboard a spacecraft. 

Compared to this "organic" approach, a conventional adap-
tive control system lacks flexibility. System responses are 
calculated mechanically and they tend not to be a highly or in-
telligently optimized answer to a given situation. On the con-
trary, a learning control system, of which the NBS model is an 
example, develops a type of knowledge-base during its opération  
and learns to improve its response even to an identical set of 
environmental and control inputs. It is clearly recognized here 
that such an advanced control theory is essential to formulate 
a truly useful autonomy onboard a spacecraft. A system equipped 
with theory of a lesser, deterministic nature would constantly 
require undesirable human intervention. 

4.2 Artificial Intelligence 

In early 1980, the NASA Langley Research Center conducted 
a study to address topics in Artificial Intelligence (AI). 
These included operations research, and advanced control theory 
in the context of automated decision making; problem solving in 
relation to space mission-oriented machine intelligence; and 
robotics technology (Refs.4,5). A diagram of these relation-
ships is given in Figure 4.2. Of these topics, advanced control 
theory was addressed in the study described in the previous 
subsection. Operations research deals mainly with the modelling 
of various control algorithms and spacecraft design, and hence 
will not directly affect on-board computing. NASA's aim is to 
provide a general direction for technological development ac-
tivities in the space community for the period 1990 to 1999. 
The study addressed three major application areas for such new 
technologies: global services such as geostationary service 
satellites; deep space exploration; and space industrializa-
tion. The AI technology developed will be applied to both the 
space and ground segments of the operation with an emphasis to- 
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A cross-coupled processing-generating hierarchy. The M. modules 
remember sensory experiences which occur in association With specific 
activity in the generating hierarchy (P.) and other - sensory mod-
alities (X.). 	The M. modules thus leaL a set of internal expect- 
ations (£71". a predichve model) of the external world as seen 
through the sensory input channels. 

Figure 4.1 
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wards on-board use. Through this study NASA has clearly comMit-
ted itself to the development of AI capability. 

The NASA study group singled out the difficulty of devel-
oping software to realize algorithms that support machine in-
telligence as an expected bottleneck in the pursuit of the 
above technological objectives. The concentration of program 
objectives, first on activities leading to an "increased level 
of machine intelligence and perception, and then on those which 
enable automated manipulation and robotics" was thus justified. 
In practice, automated decision making, relational 
knowledge-base structuring, feature extraction, and learning, 
are the targets of immediate study. This explains NASA's strong 
interest in the Fifth Generation Computer project by the Japan-
ese. The NASA study, it is hoped, will eventually lead to the 
establishment of in-house capabilities focussing on areas of 
advanced AI technology with a high expected payoff. 

According to the NASA report (Ref.2), it is expected to 
see several versions of highly autonomous robots in space that 
would communicate with earth only when contacted or when a sig-
nificant event occurs requiring immediate attention on earth. 
The similarity of this to the thinking of the ASM study group 
is obvious, although the NASA study addresses issues beyond 
those of ASM. A degree of continuity, accidental or not, is 
seen between the ASM study and NASA's AI approach: ASM ad-
dresses problems to be solved by 1990. NASA aims at solving the 
problems foreseeable during the period 1990-1999. One can con-
clude from this that the ASM capability is a prerequisite to 
the introduction of sophisticated on-board intelligence. 

The trend towards implementation of space-borne intelli-
gence seems logical from the standpoint of increased system 
level reliability and improved economy in space operation. The 
cost of operating any space program has long been exceedingly 
high. It also makes sense to acquire the capability to cope 
with ever increasing system complexities in monitoring and con-
trolling activities in space. Interpreted in the context of the 
present study, this amounts to an additional set of require-
ments to be placed on the structure and capability of future 
on-board processing facilities. Among those already recognized 
are the following: 

- high 	CPU 	throughput: 	AI computations are highly 
CPU-intensive 

- large and hierarchical memory space: memory accesses are 
extensive in the execution of AI programs. They call for 
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a large memory space, most of which will be formulated 
into a hierarchical structure in terms of their size and 
access time, from the fastest but smallest (e.g., regis-
ter sets, cache memories) to the slowest but largest 
(e.g., mass storage for an on-board knowledge base, 
ground-based archiving system). 

- effective internal (on-board) and 'external communication 
-links 

- operating 	system 	software that supports efficient 
multi-tasking and multi- processing • 

- AI-oriented operating system extensions that coordinate 
various on-board AI activities and an AI protocol to be 
used among AI subsystems. 

4.3 Software Fault-Tolerance 

As demonstrated in Section 8 on the fault-tolerance capa-
bility of the PCU, a methodology to cope with basic computer 
hardware has been achieved at the manufacturers' level. One can 
now safely say that, within the foreseeable  •future, commonly 
used computer hardware components can be made.to survive a ser-
ies of incidents normally to be expected in space applications 
that could cause faults of considerable magnitude. The FTC 
technology exists in the form of a collection of theories, ide-
as, implementation techniques, and knowledge concerning materi-
als, space environment, and ground operational needs. The stage 
is clearly set to enhance this technology by addressing 
fault-tolerance at higher levels of abstraction, while solving 
and improving the implementational aspects of the basic 
hardware fault-tolerance. 

The higher level fault-tolerance issues that are now visi-
ble include stable operation, general networking welfare, and 
other communication methods, distributed operating systems, and 
application software. In these areas, signs of system-level 
fault-tolerance studies have just started to appear. The fol-
lowing are examples of topics that need to be entertained dur-
ing the course of the detailed design of the AASC: 

- the study of a diagnostic model that will be used to es-
tablish system-level fault profile, such as that sug-
gested by J. Kuhl and S. Reddy of the University of Iowa 
(Ref.6). 	The implications of the third FTC Rule call 
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for distributed or non-fixed capability to perform fault 
diagnosis. Such a task often involves solving complicat-
ed logical issues and highly theoretical treatment. 

- fault-tolerant data structures. It is now known that 
some data structures are more robust than others, thanks 
to efforts by J. Black et al of the University of Water-
loo (Ref.7). Error detection and recovery algorithms of-
ten depend on the type of data structures used by the 
process. A formal study is necessary to axiomatize these 
relationships and apply them to on-board software. 

- system level fault-tolerance in distributed processing 
also needs to be viewed in relation to networking. A 
large scale project that involves this area of study is 
in progress in France (Ref.8) and others are in the 
planning stage at other centres in Europe. 

- theoretical study of recovery. The study of the forma-
tion of algorithms to handle system level recovery using 
advanced hardware components supported by non-dedicated 
redundancy concepts makes the issues related to a safe 
recovery of interprocess relationships become increas-
ingly obvious. The majority of the FTC community is 
still not aware of the problem, as these are highly the-
oretical issues. Study topics will include the defini-
tion of requirements for fault-tolerant interprocess 
protocol, for example the studies by W.G. Wood of Un-
iversity of Newcastle-upon-Tyne, England (Ref.9); and 
ways to establish proper check- pointing in processes as 
presented by F. Schneider et al. of Cornell University 
(Ref.10). 



5. SYSTEM STRUCTURE 

5.0 General 

The definition of the structure of the AASC consists of 
functional descriptions of a set of components, the size and 
number of which depends largely on the individual application. 
Those components that are expected to be implemented in 
hardware are described in this section. Discussions of issues 
related mainly to software components are contained in a part 
of this section and the following sections. Detailed descrip-
tions of the Funtional Redundancy Checking (FRC) version of the 
processor complex are described in detail in Section 8. 

5.1 The Network Based Architecture 

The proposed AASC hardware consists of clusters (subsys-
tems) of highly fault-tolerant computer complexes, each sup-
porting a satellite subsystem, distributed along inter-cluster 
buses or Local Area Networks (LANs), which are shown in Figure 
5.1. Local area networking is introduced to ensure the readi-
ness of computer systems for the advent of large scale space 
structures as evidenced in recent post-shuttle space activities 
(Ref.11). A cluster interfaces the LAN(s) at one end and, nor-
mally, i/o subsystem(s) at the other, as shown in Figure 5.2. 

5.2 Hardware Redundancy 

Hardware redundancy is provided at several levels within 
the system hierarchy: every element of the system may exist in 
multiple copies to provide dedicated or non-dedicated redundan- 
cy 	at the hardware level. These include the following: 
clusters; LANs; LAN to cluster interfaces; 	intra-cluster 
processors; intra-cluster buses and bus controllers; 
intra-cluster memory control units; and local and global memory 
modules. 

5.3 The Inter-Cluster Bus 

The inter-cluster bus or LAN is not specified in detail at 
the present •time as its design is, to a greater degree, intend-
ed to be independent of currently available technology. 
However, a fully distributed architecture is assumed, i.e. no 
dedicated controllers on the bus 'and no polling scheme enforced 
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Figure 5.2 AASC/Breadboard - hardware configuration 

A cluster  consists of an NIU, PCU, and III.]. 	The , number and Size of the Nil.] and IIU can change according 

to the need as well as the coMplexity of the PCU. 	All units are built using several building blocks. 



over the bus, but a multi-drop scheme on plural LANs tapped-on • 

by fully independent clusters or subsystems which are operating 
asynchronously. 

5.4 The Cluster 

A cluster consists of three units; the Subsystem Network 
Interface Unit (NIU), the Subsystem Processor  Complexa  Unit 
(PCU), and the Subsystem I/O  Interface Unit (IIU). An example 
of a typical cluster is shown in Figure 5.3. 

5.4.1 The NIU 

The Subsystem Network Interface Unit (NIU) establishes 
contacts between a subsystem and the rest of the system. Each 
of the multi-drop connections to the inter-cluster bus is achi-
eved by a Network Controller (NC). The Network Controller han-
dles at least the first two layers of a multi-layer intercon-
nect protocol. The NIU contains an Attached Processor (AP) 
which processes and deals with the issues associated with the 
interconnect protocol in Layers 3 and above. The other end of 
the AP is connected to an Interface Processor Link (IPL) which 
is a part of the PCU. The IPL is responsible .for mapping ad-
dress windows between the operating environments of the PCU and 
NIU. 

5.4.2 The PCU 

The Processor Complex Unit (PCU) is based on the Function-
al Redundancy Checking (FRC) version of Intel's iAPX 432 com-
puter. The selection was made after a series of comparative 
studies including most of the modern microprocessors. The 
fault-tolerant featureS of the iAPX 432 out-scored any competi-
tors even before other advanced features of the basic design of 
the computer were considered. The indication that the entire 
iAPX 432 itself will be space-qualified by the end of 1986 en-
hanced confidence in the decision. 

The PCU, shown in detail in Figure 5.4, will be used to 
house the upper layers of local intelligence required for a 
subsystem and provides most of the computing power needed by 
the subsystem. It consists of a mesh of packet oriented buses 
which connect processors and controllers. The System Packet Bus 
(SPB) handles the inter-processor communication, while the Pro-
cessor Packet Bus (PPB) controls distribution of information 
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The PCU consists of.processors (either GDP or IPL), two types of 

packet oriented buses (system packet bus and processor packet bus), 

Bus Interface Units (BIU), Memory Control Units (MCU), and Memory 

Arrays (RAM). 



between a processor and a number of System Packet Buses. The 
former is supported jointly by all processors in the complex, 
while the latter is sponsored by a single processor - either a 
General Data Processor (GDP) or an Interface Processor Link 
(IPL). At the intersection of the two packet buses is a Bus In-
terface Unit (BIU), which controls information transfer between 
the two packet buses. •The Memory Control Unit (MCU) attaches a 
memory module (RAM or ROM) to the System Packet Bus. The intel-
ligent memory controller converts logical address spaces im-
plied on the packet bus into physical addresses in the memory 
module. 

The capability of the fault-tolerance mechanism embedded 
in the PCU hardware far surpasses that of any known computer 
system. The currently available version of the GDP provides a 
throughput of approximately 0.2 MIPS (Mega Instructions Per 
Second), or the capability of a typical minicomputer. The mul-
tiprocessing is performed in a manner completely transparent to 
the overlaying software structure and, hence, the user. The 
over-all computing power of the cluster is determined as a 
function mainly by the number of GDPs and System Packet Buses. 

5.4.3 The IIU 

The I/O Interface Unit (IIU) handles all non-network i/o 
to and from the PCU, as shown in Figure 5.3. It employs the 
same IPL-AP structure as in the MU. In place of network con-
trollers, however, the AP is connected to a structure that con-
trols subsystem i/o. The subsystem i/o in this application 
would be an i/o section of a satellite subsystem such as an 
AOCS, •a temperature control subsystem, an uplink/downlink chan-
nel, an on-board power management subsystem, etc. The 
fault-tolerance within the subsystem IIU will be provided using 
known FTC techniques, including the use of redundant copies of 
such a unit. 

5.5 Software 

The software will consist of three major module groups: 
the operating system and its support, the fault-tolerance man-
agement software, and the application software. They will be 
developed as Ada packages to take advantage of the excellent 
software engineering features of the language, and will remain 
highly configurable to permit intense customization by the ap-
plication system designer. Together, modules from these three 
groups will establish and support a hierarchical process struc- 

5-7 



ture which may dynamically change its profile and infrastruc-
ture during its life, according to changes in operation envi-
ronment and needs of the system. 



6. OPERATING SYSTEM 

6.0 General Characteristics 

The operating system and, to a large extent, other (appli-
cation) software to be used in the AASC should possess those 
characteristics normally attributed to modern real-time operat-
ing software for a sophisticated embedded application. These 
include the following: 

- multi-tasking 

- transparent multiprocessing 

- queued inter-processor message exchange and control 

- queued resource request handling 

- generic device 

- device independence 

- layered communication access method 

- capability-based access control. 

The operating system itself shall be layered, or have a 
concentric "pie structure". The relationship between the com-
puter hardware and the operating system must be "friendly": the 
operating system should be an extension of the basic computer 
hardware and maintain a partnership with it. Together they sup-
port the bottom layers of a hierarchically-defined system func-
tion. 

Since a hardware/software distinction is not considered 
essential, portions of the operating system may be implemented 
in hardware as occurs, for example, in the iMAX 432 operating 
system (Ref.12). The reasons for the delegation of the operat-
ing system functions to hardware may vary: for example, 
cost-effectiveness, structural security, extreme complexity, 
and a tight response requirement. As many operating system 
functions become standardized, the implementation of higher 
level functions will be placed in hardware. In this respect, it 
is important that an understanding of the continuous evolution-
ary process exists in the operating system-hardware partner-
ship. The basic hardware, even now, must include appropriate 

6-1 



1 

1 

1 

support for some of the operating system primitives such as 
message exchange, process dispatch, interprocess control, i/o 
channel control, memory management, etc. In other words, the 
operating system software should not be directly involved in 
instructing processor hardware at a basic instruction level; it 
should issue instructions in a far more abstract fashion stich 
as, "create process", "send message to process", "terminate 
process", "obtain buffer°, etc. This trend will continue to in-
clude, eventually, even more abstract "instructions" in 
hardware. 

The creation of CPUs with an elevated level of functional-
ity may appear costly. However, a venture of this nature is 
justified by the ability of the operating system to cope with 
the greatly increased level of sophistication and complexity 
demanded by application software. One would constantly be en-
couraged to put as many routine functions of an operating sys-
tem as possible into the hardware, since this would result in 
stabilization of those functions and an increased level of ab-
straction of the hardware machine which forms the basis of the 
system structure. The level of reliability demanded in the op-
eration of the AASC and the expected complexity of the applica-
tion software could certainly justify such effort. The operat-
ing system working in the AASC environment would then be able 
to devote its code to improved monitoring of the overall sys-
tem, or cope with such higher level issues as the upper level 
fault handling and requests related to the continuous monitor-
ing of spacecraft subsystems. 

6.1 Separation of Policy from Mechanism 

Another important characteristic demanded of the operating 
system used in the AASC environment will be the separation of 
control policies from the mechanisms that support such poli-
cies. For example, transparent multiprocessing support is a me-
chanism, while assignment of processors 1 to 5 as subsystem 
monitors and processors 6 to 12 as "blank spares" is a policy. 
Provision of structured filing is a mechanism, while a struc-
tured file tree depicting the relationship between on-board 
telemetry data belongs to the policy domain. Yet another exam-
ple is process scheduling. A process dispatch port and its sur-
rounding facilities are mechanisms, while the implementation of 
a specific scheduling scheme is a policy. In addition to stan-
dard multi-priority round-robin scheduling, the operating sys-
tem should be capable of accepting such process dispatching 
policies as °last in, first out" or "random dispatch°, since 
such scheduling schemes do exist in nature and real life. 
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Traditionally, policy and mechanisms have been confused 
and implemented as a tightly interwoven entity within an oper-
ating system. Since it is expected that the AASC will be used 
repeatedly in various versions and configurations, a clear dis-
tinction between the two will be of particular importance as 
the system will be expected to provide application (spacecraft) 
designers with tools with which to fulfill his/her functional 
requirements. An operating system should merely provide a me-
chanism on which policies can be implemented and enforced by 
the application designers, whose chief concern is the realiza-
tion of an efficient and reliable operational environment in 
the spacecraft. 

Again, the underlying rule is that the system structure is 
hierarchical. The operating system would only address issues 
that belong close to the bottom of the hierarchy. However, as a 
unified hierarchical structure, the completed system should not 
see any clear boundary between the operating system and appli-
cation software. They should only represent different layers of 
the hierarchy, each layer being served by "tools" or mechanisms 
made available by the layer below it. The decision to use these 
tools always belongs to the current layer. This relationship 
must be universally true throughout a hierarchy. 

6.2 Ada Packages 

Further to the issue of optimization of operating systems, 
functional modules within an operating system should be sup-
ported and represented in the form of such clear-cut encapsula-
tion and labelling mechanisms as the package concept in the Ada 
programming language. This is not to be confused with the often 
used "software package" concept, since an Ada "package" ad-
dresses more precise and unique concepts. Combined with the li-
brary concept also defined in Ada, the use of "packages" would 
allow the application designer a wider and finer range of con-
figurability. 

In fact, as the library and package concepts are such a 
rational means of building software structures, it is antici-
pated that many software products, operating systems or other-
wise, will be implemented in these terms. This will contribute 
greatly towards the eventual widespread standardization of 
software products for various applications. Manufacturers will 
be forced to conform to such standards. The tremendous improve-
ments in quality and in software productivity which are implied 
in the Ada package concept, should not be overlooked. An exam-
ple of this is the ability to compose an application software 
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structure using readily available software components), 

6.3 Operating System Dynamism 

Another strong reason for the use of Ada packages and oth-
er related concepts in the design and implementation of an op-
erating system is their ability to contribute to the current 
trend towards more dynamic operating systems. An operating sys-
tem should not only be configurable at "sysgen" time but also 
remain configurable in a major way throughout its deployment in 
an application's operational environment. This means an operat-
ing system which can reconfigure itself in operation. Such re-
configurability within an operating system is essential when 
there is a need for a highly modifiable system. Logical shape 
and functionality must conform to changes in the mission pro-
file and changes in the operational environment, many of which 
could be caused by faults of various origins and significance. 
The hierarchy of encapsulation methods provided in the Ada 
language (package, task and procedure) will permit the operat-
ing system designer to meet the demand for a higher level of 
dynamism or flexibility. Thus, while a conventional operating 
system would have offered the user an indifferent choice of op-
erating modes, a modern operating system built around new con-
cepts would provide almost countless modes of operation due to 
the greatly reduced size of its building blocks and the flexi-
bility in configuring them which the structure affords. Thus if 
the application's execution environment is supported by an op-
erating system, it will be able to alter its appearance from 
time to,time by small increments or on a large scale, if needs 
be. 

The concept of dynamic range as an attribute of an operat-
ing system should prevail. This is the ability of an operating 
system to offer a range of management functions in a smooth and 
continuous fashion. If an operating system can maintain a wide 
dynamic range without always having to carry a large burden ar-
ound and can offer services without hitches, as and when they 
are needed, it is said to have a good regulation within its dy-
namic range. 

6.4 Packaging Criteria 

The packaging of operating system functions*should be 
achieved in such a way that only one clearly defined function 
would be encapsulated in a module (package, task or procedure). 
This requirement comes from the,advanced module management con- 
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cept studied and proposed by G. Myers (Refs.13,14), and listed 
as FTC Rules 4 and 5 (Appendix B). Myers' study demonstrates 
various types of modules and their relative quality. In short, 
Rule 5 contends that if a module represents only one function, 
its reason for being a module would be greater, thus increasing 
its "strength". The module would also offer simple and clean 
interfaces to other modules. Combined with the use of a 
well-structured package specification technique such as that 
introduced by the Ada language, modules will have fewer "cou-
plings" among themselves, resulting in enhanced modular inde-
pendence within the operating system. All in all, the operating 
system for the AASC should look more like "bags of tools" rath-
er than a monolithic body. The "subsetting" of an operating 
system should be carried out smoothly by selecting appropriate 
tools from several bags and placing them in another set of 
bags. 

6.5 Operating System Extensions 

The collection of tools thus created for a specific appli-
cation (a spacecraft computer design) may, whenever necessary, 
be supplemented by additional tools selected or developed by 
the designer of the application. Such an extension should han-
dle application-specific functions attributed to the operating 
system. An operating system extension carried out in this way 
will provide further optimization of its original functionali-
ty. 

To make this process simpler, access to functions should 
not depend on conventions which are normally particular to op-
erating systems (such as supervisory calls), but follow a set 
of standard intermodule protocols. These may be universally ap-
plied across the system and include application and system 
software. 

Such protocols include subprogram calls and process creation or 
invocation. Thus, operating system modules will be formed, 
linked together and accessed using the same conventions and 
formalities as those used for application modules. The ambigui-
ty of the boundary between the operating system and application 
software is thus increased further. 

6.6 Process and Data Protection 

In the same way that modern structured computer languages 
address issues of finer and tighter intra- and inter-module 
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protection schemes, operating systems that create and support 
runtime environments for software modules written in such a 
language must also provide a high level of protection. This 
must cover both processes (software entities that perform func-
tions) and data (that which is subjected to functional manipu-
lation). This trend is in line with the increased reliability 
requirements for the AASC software. Unlike the philosophy be-
hind many conventional operating systems, protection against 
accidental or malicious destruction of these software entities 
should not be left to the mercy of application software de-
signers, or that of eventual users of the system. Such protec-
tion mechanisms must be clearly imbedded in the design of an 
operating system. In reality, such advanced features of an op-
erating system can only be implemented efficiently enough with 
the aid of the underlying hardware facilities which support it. 
The above mentioned partnership between the operating system 
and computer hardware becomes eàsential. The hardware mechanism 
that offers such support to software is often called a 
capability-based machine. In capability-based systems the oper-
ating system checks the requestor's access rights and the 
requestee's protection specifications before granting an access 
to any of the system objects under its jurisdiction. It has 
been conventional for a segment of memory or a whole process to 
be protected in this manner. The trend now is •owards a finer 
level of protection. In the AASC environment, an operating sys-
tem should be able to enforce the protection of the smallest 
degree of granularity which the language of implementation, 
(such as Ada) can define. 

Thus one must be able to define a protection scheme around 
a data structure, and distinguish access to it from its neigh-
bouring data structures by giving it an independent protection 
mode. Similarly, a process may be granted, for example, a "mes-
sage receive right" from a specific mailbox, but not a "message 
send right". If a faulty access was attempted by an application 
module - or an operating system module, for that matter - the 
hardware protection mechanism, operating system, or both, 
should be able to intercept such an access before any damage 
can be done to the rest of the system. 



7. NETWORKING 

7.1 Subsystem Network Interface 

As described in Section 5, a type of networking is used to 
support on-board inter-subsystem communication in a highly 
fault-tolerant manner. The networking consists of redundant 
network pathways and subsystems fully distributed along them. 

The Subsystem Network Interface Unit (NIU) shall manage 
the inter-cluster communication channel(s), in conjunction with 
its resident software, and other software in the configuration, 
such as the components of the distributed operating system in 
the PCU that are related to layered communication access. 

Such a channel shall exist in the form of a fully distri-
buted Local Area Network (LAN) similar or identical to Ethernet 
(Ref.15) to comply with the FTC design rules (Appendix B). 

Having a fully distributed LAN architecture implies that 
the network is devoid of fixed bus arbiters or controllers of 
any sort which govern the flow of traffic on the network. Such 
control normally would occur in a system with a centralized 
controller which synchronizes signals, acknowledges access re-
quests from subsystems, grants or refuses accesses, polls, pro-
vides timeslots, or otherwise regulates the activities of sub-
systems on the LAN. This ban on fixed controllers in the net-
work does not preclude the use of a bus controller which is 
fully software implemented, or which achieves a greater degree 
of flexibility by some other means. Such a diversified con-
troller may reside in portions dispersed across the network 
among several subsystems, or be distributed to a lesser extent 
but change its dispersal from time to time among the subsys-
tems. 

In order to avoid dependence on a single transmission 
channel, the LAN pathways must exist in duplicate, triplicate, 
or in whatever numbers are needed to satisfy the redundancy 
level that is demanded by a specific spacecraft bus design. 

The number and type of LAN pathways to be incorporated in-
to the design is also dependent on the quantity and patterns of 
traffic expected among subsystems. Not all subsystems have to 
be incorporated into a LAN - a network pathway that provides 
access points to certain subsystems but bypasses others is 
quite conceivable, as shown in Figure 7.1. 
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Onboard,networking will be designed to meet individual application 
and logistics requirements of a spacecraft. The extent of redun-
dancy provided to the onboard and ground communication systems must 
also be determined in terms of the fault-tolerance and throughput 

needs of the respective networks. All network interconnects shall 

be achieved through gateways which adopt a standard interconnect 

protocol. 

Figure 7.1 	Onboard Networks and gatewaying 
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As implied above, the designer of AASC applications will 
be free to designate redundant LANs either for added throughput 
capacity or for increased fault-tolerance. The designation 
shall be made by providing a set of properly chosen parameters 
that defines the network's operational environment. The network 
monitor/control software, which exists in each subsystem, will 
respond to the parameter sets and attempt to establish the op-
erational profile. 

Furthermore, the network's operational profile shall be 
dynamically definable so that changes to the operational re-
quirements of a spacecraft may be possible even after it is 
launched. For example, an added level of payload activities de-
cided by ground control may require the opening up of a 
subsystem's accesses to a LAN that was previously installed 
during the fabrication of the spacecraft but kept dormant until 
its use became justified. On the other hand, an on-board equip-
ment failure might cause a portion of an inter-cluster linkage 
to become a critical path requiring backup support. In order to 
provide a backup route, traffic on a LAN would need to be sus-
pended and then emptied, or rerouted. In either example, the 
on-board network monitor/control software shall oversee the im-
plementation of the reorganization, as well as the initial net-
work setup. 

7.2 Network Monitor/Control Software 

As discussed above, the network monitor/control software 
is responsible for first establishing, then maintaining and up-
dating upon request, the appropriate operational environment 
for spacecraft on-board communication networks. The software 
shall exist independently of the network access control 
software and have the following functionality: 

- to accept parameter sets that define the profile of an 
on-board network structure and operation 

- to verify such configuration requests and report any in-
consistencies or predictable weaknesses in the configu-
ration 

- to plan and execute a smooth transition from one confi-
guration to the other without seriously disrupting net-
work activities 

- to maintain a network operation log by collecting data 
each time an access or other significant event occurs 
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and filing them in a log file. 

7.3 Flexibility of Networking 

The reconfigurability of on-board communication networks 
shall exist in the form of network monitor/control software and 
shall be supported by it. For each application, the hardware to 
support on-board networks and their access mechanisms shall 
have sufficient redundancy in terms of spare components and 
communication pathways. Furthermore, such redundant components 
and pathways shall be strategically placed so that the software 
can make best use of them in the event of reconfiguration. In 
short, software shall maintain the flexibility of the networks 
and manage trade-offs between the maximum over-all throughput 
and maximum reliability. For example, there shall be a suffi-
cient number of physical connections between each subsystem and 
a LAN so that the software can respond to a sudden need for al-
ternate routing by allowing a subsystem to tap onto a new LAN. 
(If a key subsystem is not already provided with access to a 
LAN which is then chosen as a candidate for an alternate path, 
the usefulness of the rerouting will be greatly reduced.) 

7.4 Cluster Isolation 

In addition to providing a signal contact between a LAN 
and a subsystem, there shall be a mechanism to isolate the sub-
system effectively from the rest of the network. Depending on 
the type of communication media used, such isolation must be 
effective mechanically, electrically, electromagnetically, opt-
ically, or otherwise. Needless to say, proper isolation is ne-
cessary to avoid contamination or drainage of signal traffic on 
the network(s) by accidental transmission to, or grounding of 
the pathway by the subsystem while the subsystem is logically 
disconnected or inoperative but physically still engaged to the 
network. 

As an example, if the nature of the LAN traffic is electr-
ical, optical isolation or transformers shall be used to iso-
late the subsystem electrically from the pathway. Some other 
technique shall be devised if the traffic is to be optical in 
nature. 

7.5 Standard Methodology 

The internal organization of the NIU must adhere to widely 
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recognized computer network interconnect standards applicable 
to similar communication needs. This is not to prevent de-
signers from providing the means to absorb structural differ-
ences arising from added fault-tolerance requirements or other 
application-specific needs which are particular to the space-
craft use of such interconnect standards. 

The standards shall affect the design of both software and 
hardware. In designing modules, both vertical and horizontal 
module boundaries must be recognized and retained. For example, 
a "layer" within an interconnect model, such as a horizontal 
module boundary, shall remain visible throughout the design and 
implementation so that its independence from other layers is 
enforced. 

The rationale for adopting such standardized network ac-
cess methods comes from the recognition of the greater benefits 
to be obtained by establishing and maintaining a relationship 
between the on-board usage of networking technology and its us-
age elsewhere, both at conceptual and practical levels. Com-
puter communication technology is highly complex and is advanc-
ing in a reasonably logical fashion. Because of this complexi-
ty, and the astronomical development costs involved in achiev-
ing high quality networking, there will be a far greater chance 
of success if a standard methodology is adopted. This means 
that one may use readily available components or equipment 
which are then optimized to a specific application and allowed 
to evolve as existing standards develop. Although embarkation 
on a completely new, one-of-a-kind development has been a trad-
ition widely followed in aerospace applications, from the 
standpoint of system (global) level project optimization it 
shall be avoided now that superior quality networks are avail-
able. 

Another benefit to be derived from "going standard" is the 
possibility of ready connection of on-board communication fa-
cilities to other ground or space-based networks. Thus the 
ground and on-board communicatio networks. Th established using 
recently developed gateway technology. Another use of "gateway-
ing" would permit a clear-cut interconnection of networks on 
board a spacecraft. In time, computer communication technology 
is likely to evolve to accommodate such diverse communication 
modes as ground-based office or factory systems, and 
multi-satellite global networks in a unified fashion. 

Any deviation from standard methodologies which may become 
necessary when they are applied to a specific on-board use, 
shall be handled in terms of customization of the smallest pos- 
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sible, and well isolated portion(s) of such methodologies or 
models. If customization alone will not satisfy the require-
ment, distinctive and well modularized components, either 
software, hardware or both, shall be added to contain the devi-
ation in an identifiable manner. 

7.6 Layered Protocol Structure 

Implementation of the above mentioned standard network in-
terconnect schemes, including any application specific exten-
sions to it, shall be achieved in such an open-ended fashion 
that the process may easily benefit from evolving technology. A 
layer must be designed and implemented with maximum indepen-
dence from neighbouring layers. If a particular hardware imple-
mentation would force the use of any specific type of hardware 
or software in the neighbouring layers, the choice of that 
hardware must be avoided unless there is an over-riding ration-
alization. To give another example, if the subsequent upgrading 
of a layer, either in software or hardware, results in a modif-
ication to the software, hardware or both, of neighbouring la-
yers, the original design for the layer would be termed faulty. 

The emphasis on layered design does not imply an intercon-
nect model with fixed, rigid layers that would never change its 
infrastructure. The objective of the argument here is to incor-
porate in the conceptual design as much flexibility as possible 
in order to maximize the benefits from future technological de-
velopments. If future changes in technology demanded the subdi-
vision of one or more protocol layers, a re-evaluation should 
be made at that point and a decision made as to the accommoda-
tion or rejection of such major modifications. Also, if at some 
point in the future, the amalgamation of two or more layers 
made better networking structure, it should then be given seri-
ous thought. 

As an example, the use of an Ethernet-like LAN is given. 
If the present 10MHz serial access coaxial cable pathway were 
to be replaced by a 100MHz fibre optic cable in the near fu-
ture, the only impact of this drastic change in transmission 
speed, and hence capacity of the channel, would be in terms of 
greatly increased throughput. To implement this technological 
change, only the protocol used and the bottom layer handler 
would be altered. (Layer 1 being the physical layer, both 
handler and protocol are likely to be hardware implemented.) In 
other words, what happens to the physical layer shall be fully' 
transparent to the layers above it. A similar transparency 
should be in effect at all layers. 
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, 	 A layer in such a multi-layered interconnect model shall 
represent a "level of abstraction". The level of abstraction 
shall be manifested in the form of the functional complexity 
attributed to that layer. Functional complexities of various 
degrees will be ordered into a "hierarchical functional tree" 
and inter-relationships established between them. The higher 
structural layers shall contain the highest levels of abstrac-
tion. 

Levels of abstractions in a hierarchical structure must 
exist in an orderly fashion: the granularity of abstraction 
from one layer to another shall remain reasonably uniform, and 
there shall never be an inversion of abstraction, i.e., the ex-
istence of a funCtional layer with a lower-level neighbour of a 
higher degree of abstraction than itself. 

7.7 Gateways 

Each on-board LAN shall have at least one gateway station. 
The gateway shall be the sole method of linking two or more 
LANs or one LAN to some other form of communication network. 
There shall be no designed-in restrictions as to the maximum 
number of gateway stations on a LAN except for those due to the 
traffic capacity of the LAN and its access facilities. For in-
stance, an on-board LAN may require two gateway stations, one 
for the ground link (e.g., T & C subsystem) and the other to 
communicate with another LAN. 

Thus, a gateway shall serve as a standard means of ex-
change between a LAN and others, and its functional and impie-
mentational profiles shall resemble those of the general des-
cription of a spacecraft subsystem: it shall connect itself to 
a LAN in a standard multi-drop fashion; it shall be fully 
isolatable; it shall be powered in the same way as other 
subsystems; access to it shall be governed by the same LAN pro-
tocol as is applicable to other subsystems on the same LAN. 
Figure 7.1 depicts the relationship between LANs, gateways and 
other forms of communication network, and the manner in which a 
gateway could be used to interconnect various networks. 

In principle, if there is more than one LAN on board a 
spacecraft, there shall be linkage among them via gateways. The 
reason being to minimize the chance of accidentally causing a 
total isolation of a LAN and its associated subsystem cluster 
from the rest of the on-board system. Ideally, a LAN should 
have duplicated gateways to other LANs or another communication 
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media in order to further reduce such possibilities. 

A gateway station will talk and listen to a gateway sta-
tion that belongs to the target network. The possible destina-
tions of a gateway shall include the following: ground control 
station; ground or satellite-based global network; another LAN 
on board the same spacecraft; a LAN on board another space or 
aircraft, or other forms of mobile network (such as cars or 
ships). In spite of the variety of destinations, a gateway must 
maintain consistent functional and interface characteristics. 



8. PROCESSOR COMPLEX UNIT 

8.0 General 

The PCU complex, as'hown in Figure 5.2, will consist of 
redundant System Packet Bus(es), Subsystem Processor module(s) 
and Memory module(s). 

A subsystem processor module will contain a processor (ei-
ther a GDP or an IPL), a processor packet bus and bus interface 
unit(s). 

A memory module will consist of a Random Access Memory 
(RAM) array and a Memory Control Unit (MCU). 

These modules are to be connected by one or more system 
packet buses which also connect the Interface Processor Link 
(IPL) to the Processor Complex Unit (PCU). 

8.1 System Packet Bus. 

The System Packet Bus (SPB) connects the various modules 
within the system. A system may have up to 8 SPBs, depending on 
the throughput and redundancy levels required. The SPB has 16 
address/data/specification lines, 3 arbitration, 3 control, 2 
parity and 1 error reporting line. The principal features of 
the system packet bus are message-based protocol, synchronous 
operation, and independent distributed arbitration. 

The message-based protocol will be optimized for the mini-
mum number of bus cycles and will ensure that there is no 'bus 
dead-time'. The packet bus will support multiple requests 
through a very tight protocol. Messages will be sent 
back-to-back with a very strict ordering. The end of a message 
will be indicated in advance to facilitate a smooth transition 
from message to reply. 

The system is designed to be synchronous, with all units 
running off the same clock. 

Arbitration and control will be fully distributed among 
BIU/MCUs, complying with Rules 2 and 3 of the FTC Rules. The 
control lines specify message type and end-of-message in an en-
coded form. Any device on the bus will have the ability to look 
at the control lines and observe what is happening in the sys-
tem. 
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Bus arbitration will take place on two levels. At the pri-
mary level each BIU will maintain a time-ordered FIFO queue. 
This operates when there is no contention for the bus. When 
multiple requests occur within a clock cycle' then arbitration 
goes to the secondary, priority-ordered level, again conforming 
to the second of the FTC Rules. Arbitration is hidden from the 
system so that a high bus utilization is maintained with a min-
imum arbitration overhead. The processor priority is software 
controlled and is not related to the hardware ID. Replies will 
not require arbitration since strict message/reply ordering is 
maintained. 

Parity lines will be interlaced and cover address, specif-
ication, data and control lines. Any time a device is driving 
the bus it creates parity, which is checked by every BIU on •the 
bus regardless of the message destination. The extensively dis-
tributed checking emphasizes the third FTC rule. 

The bus will have an error report line driven by any mo-
dule detecting an error, which will specify the type and loca-
tion of errors. 

A system with a single bus system can only support one 
memory module. On a multiple bus system accesses can be distri-
buted across all buses. An address is split into sections which 
are sent consecutively, one per bus. On long accesses this will 
allow ,  more than one MCU to fetch data, with the proviso that 
memory on each bus must be of identical size. BIUs have a sep-
arate communication line which enables them to coordinate this 
'memory interleaving'. 

8.2 MCU Features 

The MCU is a form of logical memory controller. It will 
support up to four megabytes of memory per chip. The current 
implementation of the memory array is 32 bits wide with 7 ECC 
bits and 1 spare. This spare can be switched by software con-
trol into any of the other 39 bits. Currently, an MCU will sup-
port 16K, 64K, 256K, or 1M bytes of dynamic and static Random 
Access Memory. 

In order to prevent aliasing and ensure that the correct 
address has been accessed, the Error Correcting Code will be 
generated across address and data lines. The ECC will only cor-
rect data as it goes to the bus. Errors in memory itself will 
be corrected by 'scrubbing' and refreshing by the MCU. Special 
commands will allow access to the ECC bits to ascertain the lo- 
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cation of errors and to clear location and memory. 

The MCU will support read modify write locking for indivi-
sible operations, to maintain data integrity in a multiple ac-
cess environment. 

8.3 Processor Module 

The processor may be a GDP or IPL. The Processor Packet 
Bus (PPB) belongs to a processor. It is similar in design to 
the SPB but does not require the same message ordering. A pro-
cessor will merely issue a request and wait for a reply. A PPB 
intersects with SPB(s). At the intersection a BIU controls the 
data flow. Thus the number of BIUs is dependent on the number 
of SPBs and PPBs. 

8.4 Fault-Tolerant Aspects 

The ASM Final Report points to the need for development of 
a highly reliable fault-tolerant computing capability if auto-
nomous spacecraft maintenance is to be achieved. The philosophy 
involved in the development of the AASC Processor Complex Unit 
has been to provide such fault-tolerant coverage in as complete 
a way as possible combined with error-free computation. It is 
intended that the AASC will meet the ASM Design Requirements 
and conform to the FTC Rules. 

• In this context, the follOwing are points which the de-
signers have been particularly concerned with: 

- the capability for recovery should occur at the Same 
level as the fault 

- hardware should have the ability to handle hardware 
fault recovery, utilizing the four fault-handling 
stages: 

- detection 
- containment 
- diagnosis or analysis 
- recovery 

- the achievement of a range of fault-tolerant capabili-
ties through hardware replication which can be ddrected 
to support increased performance or fault-tolerance.as 
required. 
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- the creation of an architecture which will never die. 

In support of these considerations, a fault-handling cycle 
(detection, confinement, recovery) is designed into the 
hardware level. 

8.4.1 Detection 

Methods of detection used will include ECC for checking 
memory errors, parity to check bus errors, duplication and 
Functional Redundancy Checking (FRC) to verify processor integ-
rity. 

FRC mode (Ref.16) is a specific fault-tolerant feature de-
signed for checking components. It allows for the replication 

' of components as Master and Checker, as in Figure 8.1. For ex-
ample, in the case of the GDP, this is to be achieved simply by 
pulling a pin on one chip and mounting the two piggy-back 
style. In this mode, the Master drives the bus, while the 
Checker only receives signals. Any disagreements between Master 
and Checker will be indicated on a hardware error line. The al-
liance of Master and Checker does not consititute a 
Master/Slave relationship, which would be a violation of the 
second FTC Rule. As will be explained later in Section 8.4.6 on 
Module Shadowing, this is not a fixed state. 

8.4.2 Error Confinement 

• The complex is divided into four confinement areas as in-
dicated in Figure 8.2, in order to limit error propagation and 
localize faulty and damaged areas. There will be a limited 
number of tightly controlled interfaces between them to prevent 
bad data entering or leaving the area. These confinement areas 
consist of GDP, IP, RAM and SPB areas. Where the SPB is contig-
uous with other areas, there will of necessity, be a slight 
overlap within the BIU/MCU. The introduction of distinctive 
hardware-supported fault barriers in the design is another fea-
ture of the processor complex. An appropriate combination of 
•detection methods will be used in the different confinement ar- 
eas. 	 • 
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8.4.2.1 GDP Confinement Area 

The aim is to check the interface rather than the indivi-
dual GDPs in order to contain faulty data. Therefore, in this 
instance, both GDPs will be run as Masters. •FRC on GDPs them-
selves has been described earlier. FRC on BIUs will be a 
software configuration. In a GDP confinement area, all modules 
would be duplicated. One set of GDP/BIUs would be designated as 
Masters, the other as Checkers. 

The coverage of this area, as shown in Figure 8.3, in-
cludes the GDP, its processor packet bus, packet bus hardware 
and its BIU(s). 

8.4.2.2 IP Confinement Area 

FRC in this area will only cover outgoing data, as the ve-
rification of incoming data must be the responsibility of the 
Application Processors (APs). 

8.4.2.3 Meinory  Confinement  Area 

This area covers the RAM elements, address lines, data 
lines, array support logic, and MCU. It will employ ECC with 
scrubbing and FRC, as previously described. Figure 8.4 shows 
the MCUs as Master and Checker in FRC mode and sharing the in-
terface to the RAM array. This mode • covers the support logic. 

8.4.2.4 System Packet Bus Confinement Area 

The Address, Data and Control lines are within this area, 
as described in Figure 8.5, and are covered by parity. The ar-
bitration lines are duplicated. One set is driven and received 
by the Master BIU and checked by the Checker. The Checker 
drives and checks the other set. A disagreement in the arbitra-
tion network will cause the Master/Checker to enter different 
states which will, in turn, be reflected on the control/data 
lines and eventually will result in the rejection of the pair. 

8.4.3 Reporting and Logging Network 

This consists of a report line for each system_packet bus 
(BERL) and one for each processor packet bus (MERL), with BIUs 
and MCUs forming nodes on the network. If a module detects an 
error on the bus it will brOadcast . an error report., which will 
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be received by all nodes on the reporting network, as shown in 
Figure 8.6. Everyone on the system will know where and what 
kind of an error has occurred and will be capable of acting ap-
propriately. BERLs are duplicated and MERLs are included in FRC 
in the GDP confinement area. There will be no single point de-
pendencies in this arrangement in accordance with FTC Rule 1. 

When the error message has been broadcast, all modules 
will stop. A pause occurs to allow transient errors to subside, 
following which all accesses will be retried. If the error re-
occurs during retry, it is considered permanent. If the retry 
was successful, a second pause follows. Recurrence of the error 
at this point indicates its permanence and no further retries 
are attempted. Both pauses are programmable from 10 microse-
conds to 2 seconds. 

The first error to be notified is logged. Succeeding er-
rors are only counted as they may be a direct result of the in-
itial error and, if permanent, will reoccur later. Each BIU and 
MCU has an identical copy of the log which indicates the nature 
of the error, location and count. 

It should, therefore, always be possible to read the error 
log at some point for ground reporting purposes and maintain a 
fault management activity record in accordance with ASM Re-
quirements #9 and 10. 

8.4.4 Error Response 

If retry fails, i.e. the error is permanent, then reconfi-
guration takes place either on a bus basis or a module basis. 
The BIUs are capable of recognizing the location of the error 
from the report and will reroute the message accordingly. If 
that fails then the processors try to lay down their processes. 
If they encounter an error during this procedure then the fatal 
line is pulled and the processor is disconnected automatically. 
The only impact at the application level will be a slightly 
longer access to memory or the early setting down of a process. 
However, it is felt that a clear indication to the upper system 
layers must be made at this point to allow them to take collec-
tive action at the respective levels. An example would be the 
firing of orbit control thrusters. If a reconfiguration occurs 
due to an internal error right in the neighbourhood of this 
critical action, the thruster control software in the AOCS sub-
system must know the fact in order to determine whether the re-
firing of the thruster is necessary or not. 
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8.4.5 Redundanc 

As stressed elsewhere, redundancy can be utilized either 
for increased throughput or fault-tolerancy. A memory module 
can be physically connected to two buses, one primary and one 
backup. Both buses can be used normally but if one fails, the 
MCU is switched to the backup bus, as shown in Figure 8.7. The 
BIUs are informed via the reporting network and all the address 
space is given to the backup. This reconfiguration is transpar-
ent to the processor. 

8.4.6 Module Shadowing 

This is a higher level of fault-tolerance which can be 
used when requirements are more stringent, such as in an ASM 
application. A shadow is a redundant resource totally dedicated 
to maintaining a complete and current backup of the module 
state information for a period of time designated by software 
control. In the case of processors, two identical FRCd modules, 
primary and secondary, are married using software. They need 
not be physically contiguous. Figure 8.8 shows an example of 
processors configured as a married pair. When two cards are 
married they will alternate addresses, i.e. one will drive the 
bus, whilst the other receives. After a fixed time period, 
their roles will be reversed. This provides a hot standby, each 
pair having a complete set of information. If an error occurs, 
it is reported to the whole system. The BIUs recognise the 
faulty unit, which is then switched off and the access is re-
tried on the remaining unit. System software can retry the pair 
as married or divorce them if the fault is permanent. This mode 
is completely controllable by software. 

Memory modules can also be shadowed, in which case four 
buses will be required. Each module will be linked to two dif-
ferent buses, so that failure in one of a pair of buses will 
not impair RAM shadowing. 

8.4.7 Latent Faults 

This is a fault existing in some part of the system which 
would normally be dormant. The strategy here involves exercis-
ing these parts at times when they would usually be inactive. 

The MCU refreshes memory locations regularly in every ar-
ray, and soft errors are erased. 
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Detection mechanisms periodically have error conditions 
forced into them by software. In accordance with FTC Rule 3, 
the roles of master/checker are reversed by software to ensure 
there are no permanent arbiters or judges and to allow for 
checking. 

Software control initiates and observes error reports and 
also periodically invokes recovery operations. 

The BIU/MCU have special commands to facilitate the ex-
ercising of these dormant areas. 

8.4.8 System Configuration 

A high degree of fault-tolerance can be built into the 
subsystem. Figure 8.8 shows a typical highly fault-tolerant 
configuration. The GDPs are arranged in FRCd pairs, i.e. physi-
cally superimposed as Master/Checker. Through software control 
two pairs can then be married as primary and secondary proces-
sors in a Quadruple Modular Redundancy (QMR) arrangement. If 
one pair fails and will not respond to a retry, FRC will indi-
cate which is the faulty pair. If necessary, a third pair, as 
shown in Figure 5.2, can be brought in« as a replacement 
partner. If either of these partners fail, the remaining pair 
can continue to operate but at a greatly increased risk, in 
which case, the configuration would resemble Figure 8.3. When 
the fault-tolerant requirements are not so stringent the three 
pairs will operate separately to provide a greater processing 
capability, but always checked by FRC mode. 

System packet buses can also be quadrupled to enable re-
configuration in the event of bus failure. 

The level of fault-tolerancy designed into the configura-
tion need carry no penalties in the way of performance, unused 
options or changes to the architecture during recovery. 



9. APPLICATION INTERFACE 

9.0 General 

There are five aspects to be considered in terms of estab-
lishing linkage when a spacecraft subsystem is to be loaded to 
the AASC. They are the following: 

- hierarchical control structure interface 

- operating system interface 

- network protocol 

- subsystem i/o interface 

- physical connections. 

The first four of these will be achieved mainly by arrang-
ing linkages in software terms. The last one will require 
hardware considerations in achieving the linkage and installa-
tion. The following subsections will clarify  •the nature of the 
linkages and the general method of achieving them. 

9.1 Hierarchical Control Structure Interface 

Each AASC application will have its system objective(s) 
and functional requirements to achieve such objective(s). Some 
of the functional requirements will be broken down into sub-
functions, each of which may be further decomposed. The collec-
tion of functions and subfunctions will form a hierarchical 
control structure. 

The functionality of a given subsystem will occupy a re-
gion in this abstract structure. Within the hierarchical struc-
ture, in order to achieve over-all functional objectives a sub-
system shall communicate with its neighbouring subfunctions by 
exchanging messages that follow a defined protocol, as shown in 
Figure 9.1. This control system protocol shall be designed and 
defined for all of the hierarchical structures by the space-
craft applications engineer even before the detailed design of 
any subfunctions begins. Note that the hierarchical control 
structure will exist in an abstract functional domain. In this 
respect, some subsystems will represent functions of a higher 
abstraction than others. However, the hierarchy does not imply 

9-1 



low 

system hardware physical 

implementation 

system function 

Addllik 
high 

AMIL 

' 1111111111116  IlIllk 

subfunctions-_____110, 

MR 
environment 

Figure 9.1 	Hierarchical control structure and 

inter-function protocol 

level of 

abstraction 

-.142-----system function 

+e- 0/S - application interface 

operating system 

.114.- 0/S - hardware 

interface 

Figure 9.2 	Standardized application-operating system 

interface 



that a fixed master-slave relationship be implemented in 
hardware. A fully distributed hardware structure is still used 
for flexibility in configuration and to support non-dedicated 
redundancy. 

9.2 Operating System Interface 

As discussed in Section 6, the operating system used in 
the AASC shall be well integrated with the computer hardware to 
provide application software with an elevated access interface 
to the processor and other hardware capabilities. The protocol 
exchanged between application modules and the operating system 
constitutes the interface. 

There is a trend in the software industry to standardize 
this interface. If that materializes in a reasonable fashion, 
it is strongly recommended that it be adopted even at the cost 
of an increased overhead. This implies that access to operating 
system services will be restricted to those adopted in the 
standard set. By doing so, system to system portability of ap-
plication software is assured and thus a way is opened to ex-
change application software between projects, or incorporate 
externally available software without difficulty. It is a well 
established fact in Software Engineering that any small benefit 
one obtains by optimizing access methods to a specific need is 
too often wiped out by the greater losses suffered in losing 
compatibility with a common scheme. The isolation of software 
from the main growth path shall be avoided to maintain the 
overall quality of the software. 

In spite of the fact that the AASC is an on-board system, 
use of a file system is not precluded. The implied higher level 
of data representation made possible by processes operating at 
higher levels of abstraction will naturally demand the creation 
of files and a management facility for these files. 

9.3 Network Pràtocol 

A subsystem will be implemented on a cluster that consti-
tutes a node on the AASC networking. When two or more subsys-
tems are to exchange messages via nptwork(s), the 
inter-subsystem, or the inter-cluster communication will re- 

ly on a network communication protocol as shown in Figure 9.2. 
While the operating system and the NIU will look after the 
lower layers of the multi-layer protocol scheme, application 
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software on the subsystem will still have to provide support 
for the upper layers of the protocol. 

The nature of exchanges over the network will be substan-
tially more abstract than that seen on those conventional 
spacecraft system bus. The results of analyzed or processed da-
ta will be sent or received via the LAN(s) instead of raw data 
such as telemetry information. However, to comply with the 
overriding ground requirements specified in the ASM require-
ments, there must be a provision in the protocol to allow mass 
transfer of data. A burst mode of transfer defined as part of 
the protocol will permit, for example, bit by bit reporting 
from telemetry subsystems to the ground control via LAN(s) and 
the ground gateway .  subsystem. Similar mass transfer shall be 
anticipated for the occasional remote-loading of software or 
data files to selected subsystems by ground control. 

The basic (lower layer) network protocol supported by the 
cluster shall have a hierarchical broadcasting facility to al-
low selective broadcasting. 

9.4 Sybsystem I/0 Protocol 

At the lower end of the control hierarchy most of the sub-
systems will interface i/o devices of some kind, as depicted in 
Figure 9.3. These i/o devices are often integral parts of a 
spacecraft design. An AOCS subsystem, for example, will employ 
several different types of sensors and a few actuators. For a 
Grand Gateway (Telemetry and Control) subsystem, transmitters 
and receivers with their antennae assemblies will serve as i/o 

devices. An on-board knowledge base will probably require ac-
cess to a few layers of mass storage devices of some kind. 

Since the nature and characteristics of subsystem i/o 

differs drastically from one subsystem to the other, the proto-
col at this level will be highly customized. However, at a few 
layers above the actual physical i/o, a great deal of effort 
must be made to standardize device access methods. For in-
stance, there shall be as few device handlers as possible (say, 
one each for stream and byte i/o). Access protocol between ap-
plication software and these device handlers shall also be 
standardized (standardized calling sequence, parameter set for-
mat, system response format, logical device naming, request 
queueing conventions, error handling schemes, etc.). 
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9.5 Physical Connections 

Physical connections between a subsystem and the AASC oc-
cur in two areas: subsystem linkage to LAN and subsystem i/o 
interface to i/o devices. In the former, network interface ca-
bles from the NIU will be connected to multidrop transceiver 
units on selected LAN(s). In the case of multiple LANs, the ap-
plication design engineer should take the decision during sys-
tem design as to which LAN will receive the connection. 

The Subsystem I/O  Interface Unit (IIU) is basically a com-
puter system in itself, apart from the PCU, and  o f : a . more con-
ventional architecture with a localized system bus. There will 
be several versions of IIU based on the selection of CPUs, con-
trollers, the amount and type of local memory support, and the 
type and volume of sensory inputs to and control outputs from 
the unit. 

In some cases IIUs will be embedded in subsystem i/o dev-
ices in the form of dedicated redundant units to achieve a cus-
tomized control function in a conventional fault-tolerant ar-
rangement. In other situations where the subsystem does not re-
quire encapsulation of its controlling computer elements, the 
IIU will be physically mounted outside the i/6 device, next to 
the PCU for that subsystem. 



10. CONCLUSION 

A conceptual design has been introduced for an on-board 
computer to meet the stringent requirements and design cri-
teria outlined in this report. This work is one stage in the 
development of such a computer system. In furtherance of 
this process, it is recommended that the study of the ad-
vanced concepts already begun should be pursued so that a 
sound technological base for on-going space utilization may 
be laid down. It is felt that such a knowledge is a necessi-
ty for achieving preeminence in future space activities. 

In addition to the continuing theoretical study needed, 
some recommendations for further development and study are 
made. These are concerned with a detailed breadboarding of 
the AASC, and would lead to the development of a system 
which would make use of state-of-the-art concepts and tech-
niques and would open the way to the future adoption of ad-
vanced control and fault-tolerant features which are contin-
ually being explored. 



11. RECOMMENDATIONS FOR FOLLOW-ON WORK 

In order to verify the AASC concept and obtain hands-on 
experience with the new computer architecture proposed in 
it, the following phased actions that include theoretical 
and practical activities are recommended. Such actions are 
expected to be carried out step-by-step, each one feeding 
results for the next stage •in the design cycle. 

Step 1 Concept Review. 

An elaboration should be made of the system concept, bu-
ilding blocks, hardware/software trade-offs, 
fault-tolerance features, and related technologies of the 
AASC in respect of the anticipated requirements for future 
spacecraft. 

Step 2 Conceptual Breadboard Development and Tests. 

An experiment should be planned using a breadboard system 
to test concepts refined in Step 1. A flexible breadboard 
should be designed and built to test the basic concepts of 
the AASC. Figure 11.1 shows the breadboard system consist-
ing of at least two (2) computer stations (micro or mini-
computer) to be linked by a local area network. 

The computers should be used to test the algorithms de-
fined or implied in the AASC but not the AASC hardware. 
The local area network would simulate actions of the AASC 
system bus. The objective of the breadboard experiment 
should be verification of system level control concepts, 
inter-cluster communication, and fault-tolerance algor-
ithms. The similarity between the breadboard and the actu-
al AASC should be consistent with low experimental costs 
and maximum benefits from the hardware. The computer sta-
tions should be loaded with software modules that simulate 
the algorithms and control methodologies. Tests would be 
planned and carried out. 
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Step 3 Refined Breadboard Development and Tests. 

Two smaller hardware elements of the AASC should be devel-
oped, the NIU and IIU. They would be integrated into the 
basic breadboard system of Step 2, as shown in Figure 
11.2, and the experiment repeated. The software should re-
flect the necessary changes discovered during Step 2. It 
should also include the new software elements which con-
trol the real NIU and IIU. A real or simulated spacecraft 
i/o system would be employed in testing the IIU. 

Step 4 Full Breadboard Development. 

The PCU hardware should be developed and added to the 
breadboard. PCUs of various sizes and combinations of com-
ponents should be created. FRC'd processor pairs and mar-
ried couples would be included. A breadboard system con-
sisting of more than two stations should be configured, as 
shown in Figure 11.3. It would be loaded with the latest 
versions of the software resulting from the tests conduct-
ed in Step 3. New software to control the real PCU would 
also be necessary. A real or simulated spacecraft i/o 
would be connected to the IIUs, as appropriate. A 
monitor/control system should be set up for , systematic ex-
ecution of the experiment. 

Step 5 Full Breadboard Experiment. 

A detailed test plan should be generated for testing the 
full AASC breadboard developed in Stage 4. The plan should 
take into account the results of earlier tests conducted 
in Steps 2 and 3, but should be more comprehensive than 
the earlier tests. The plan should also include tests on 
the characteristics of the PCU, as identified during its 
development in Step 4. Tests should be conducted using the 
full breadboard system. 

Step 6 Recommendations for Prototype Design. 

Revision of the system, software and hardware requirements 
should take place, if necessitated by the results of the 
full experiment performed in Step 5. Recommendations would 
then be listed for developing a prototype AASC. 
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APPENDIX A 

THE ASM-ENHANCED SYSTEM 

Design Requirements 

1. All Air Force spacecraft launched after March 1989 shall 
meet the ASM requirements listed below. 

On this date, the Department of Defense would require all 
subsequent spacecraft purchased to include the fully opera-
tional ASM capability. 

(Prior to this date, it is desirable to add incremental ASM 
capabilities, consistent with system performance, as they 
are developed.) 

2. The ASM spacecraft shall operate without a ground support 
control link for up to 60 days without degradation of per-
formance. 

This is the essence of autonomous operations. The space-
craft will function until ground  support  is available or 
desirable from the viewpoint of the ground support team. 

3. The ASM spacecraft shall operate with not more than 10% de-
. gradation of key functions over a 6-month period of autono-

my. 

This requirement will set some sizing constraints, such as 
data storage, and require some definition of loss of per-
formance. It stresses the need for continuous function of 
the spacecraft on an "ad hoc" basis if scheduled ground 
support is not provided. The 10% figure is somewhat 
arbitrary; however, at the end of 6 months, the performance 
of the entire system shall be at a useful level. 

4. The ASM spacecraft shall interact with the ground support 
segment for not more than 90 minutes to perform all re-
quired support functions without performance degradation. 

After a period of autonomy, it is required that the space-
craft and ground support perform all the required support 
functions in this window. The functions include (a) down-
link of all stored maintenance history, (b) uplink of all 
data load (such as star tables and ephemeris), (c) redun-
dancy management, and (d) testing. Specification of the du- 
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ration of the support window is mission dependent. The in-
tent would be an uplink•support period approximately the 
same as that required for non-ASM spacecraft. 

5. ASM shall not change the design lifetime of the spacecraft. 

The imposition of the requirement for ASM on a spacecraft 
development is in addition to mission-imposed requirements, 
particularly the design lifetime. ASM will impact the de-
sign methodologies. Such design issues as depth of redun-
dancy must take into account the rate at which resources 
are used up with the ASM design so that the total lifetime 
or mean mission duration shall not be reduced. 

6. ASM shall not change the performance of the spacecraft or 
its payload. 

All requirements placed upon the spacecraft development for 
performance of either spacecraft or payloads shall not be 
affected by the presence of autonomous spacecraft mainte-
nance. The spacecraft must be designed to provide these 
performance levels in the absence of frequent ground con-
trol interaction. Specific additional spacecraft functions, 
such as navigation, may be required to meet the autonomy 
requirement. If so, the performance of these functions•
(e.g., navigation accuracy) must support non-ASM system 
performance requirements. 

7. The ASM spacecraft shall be able to recover from failures 
that have been defined a priori, and the probability that 
any particular failure was defined a priori shall be >= 
0.98. The ASM functions include monitoring the spacecraft 
performance for faults and problem symptoms, and, in the 
presence of a fault, identifying, isolating, and implement-
ing the recovery mode at both subsystem and system levels. 
The a priori analysis shall be sufficiently complete that, 
during the lifetime of the spacecraft, at least 98% of the 
failures (e.g., where some component has failed) will be 
identified in this manner (the coverage is >= 98%). Com-
pound failures wherein multiple symptoms occur simultane-
ously or near simultaneously during the detection and reco-
very period can be exempted from this requirement. 

8. Following launch, the ASM spacecraft shall go through a 
period of on-orbit checkout and initialization of the same 
duration as that of a comparable non-ASM spacecraft. 

The autonomy requirements discussed here are applied to the 
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operational period of the spacecraft, which is deemed to 
begin following the on-orbit checkout period. In the check-
out period, maintenance will be under ground control, with 
autonomous capabilities turned on or off as appropriate. 
Since the addition of ASM does add certain functions, oper-
ation modes, and complexities to the spacecraft, these must 
also be checked out during the same period. Following 
checkout, all autonomy requirements will apply. 

9. The spacecraft shall process and store all onboard manage-
ment data required for ground support, and shall telemeter 
the data during the ground support periods upon ground com-
mand. The capability shall handle all necessary data for 6 
months. 

No matter how confident designers may be of the maintenance 
capability of the spacecraft, it will be necessary to leave 
a record for ground support (an audit trail). Without this 
information, the ground support function cannot evaluate 
the state of the spacecraft and use the record of perfor-
mance to extend the lifetime of the spacecraft, develop or 
implement alternative operating modes, or improve future 
designs. 

10. The ASM spacecraft shall transmit a message to the ground 
at 	the 	first 	opportunity 	following 	any 	on-board 
fault-management activity. 

Whenever an incident occurs that requires maintenance ac-
tivity in response to failure symptoms, it is important 
that the ground be given the opportunity to review the ac-
tion and to verify the status and mode of the spacecraft. 
Thus, a telemetry message indicating that some activity had 
taken place would be sent to the ground at the first pass 
over an appropriate ground station. This type of signal may 
be coded into the user data to trigger an alarm at the 
ground support station. Sending of the message does not 
abolish the obligation of the spacecraft to retain the data 
for the maximum period, and to continue to operate in an 
autonomous manner for the established periods. 

11. The ground support shall be able to override ASM management 
activities for the system and the subsystems. 

While the ASM spacecraft shall have the ability to perform 
redundancy management in thé presence of an apparent fault 
or problem, it is necessary that the ultimate control over 
these functions be maintained at the ground, and that the 
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spacecraft shall allow for ground communication that over-
rides and can reverse the prior decisions of the ASM func-
tions. The capability is necessary so that the system will 
be able to recover from such learning curve uncertainties 
as misdiaghosed problems or design flaws. In this way, non-
failed components may be recycled back into the configura-
tion inventory, or the spacecraft alternate modes of func-
tioning may be utilized to make use of partial capabilities 
of components. In terms of a hierarchical decision tree, 
the ground support personnel shall occupy the top level to 
maximize system performance. 

12. The source of last resort for fault isolation and recovery 
shall be the ground support. 

The ASM spacecraft shall be designed to recognize when it 
has been unable to isolate, remove, and recover performance 
following a fault. When this occurs, the spacecraft shall 
take action to protect itself from self-injury or dissipa-
tion of resources (such as an engine firing limit cycle 
that would consume propellant), and await ground interven-
tion. 



APPENDIX B. 

The Fault-Tolerant Computing Rules  • (FTC Rules) 

Eidetic has compiled a tentative list of rules which a 
good fault-tolerant computer system should comply with. Such 
rules were proposed, from time to time, by several groups and 
individuals in the fault-toleradt and space computing communi-
ties, mainly on an empirical basis. Added to this existing set 
of findings are three further constraints (Rules [4], [5] & 
[6]) which are brought up anew by Eidetic, and which have been 
accepted among researchers and practitioners in the field of 
software sciences as system design principles considered essen-
tial in order to increase reliability of complicated software 
systems. Here, the distinction between the software rules and 
system or hardware rules is considered insignificant as trends 
towards acceptance of functional decomposition as the fundamen-
tal methodology of system design are increasing among planners 
and designers. 

The following are the proposed - fault-tolerant computing 
.design rules (FTC design rules): 

[1],There shall be no, or as few. as possible, single points of 
failure in the system (the hardware  rule). 

(A chain is only as strong as,its weakest link. If the
system is dependent on a single item,. that is a measure of 
its strength.) 

[2] There shall be no fixed master-slave - relationShips among 
processing units ('the democracy rule.)'. 

(The use of, dedicated redundancy is  an ihefficlent use of 
resources. In a fixed mester/slave processor relationship 
a faulty master can propogate errors throughout the system 
before the 'damage  is discovered.) 

[3] There shall be no permanent fault arbiters or judges in 
the system (the modesty rule). 

(If fault judging is software implemented then flexibility 
and distribution of the responsibility ensures that even 
the judges are judged.) 

[4]Whenever a function is Supported by processors, processes, 
tasks, subprograms, or other form of subfunctional mo- 

B-1 



dules, the method of inter-connecting them shall obey t 
module decoupling rules proposed by Glenford Myers (t1 
module decoupling rule). . 

(In order to achieve the addition or removal of a modulE 
with the minimum of disruption, modular interfaces should 
be as simple and clean as possible.) 

[5] Similarly, every subfunctional module must follow Myers' 
module strength rules (the module strength rule). 

(The strength of a module lies in its raison d'etre. A 
functionally cohesive module will be easier to recognize 
and manipulate, and will not disintegrate in a dynamic en-
vironment.) 

[6] As well as the horizontal breakdown, a function must be 
broken down vertically into layers. Levels of abstraction 
must be defined for each layer and independence between 
•the layers must be observed (the layer rule). 

(Since hierarchical thinking is natural to humans, complex 
structures arranged in orderly layers are more readily un-
derstood. Such a structured representation of concepts 
will be more accurate, revisions will be fewer and more 
readily implemented.) 
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