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Summary  

It is assumed that DEMSAT consists of seven substructures 

(Figs. 1.1 and 1.2): a main bus, two solar-cell arrays, two dish 

antenna reflectors, and two towers to support these dishes. All 

substructures but the main bus are allowed to be flexible, and 

their dynamical models are presumed to be specified either in terms 

of mass and stiffness matrices or in terms of modal data. This 

report shows how to combine the seven substructural models into an 

overall structural model for the spacecraft. 



1 

1. 	INTRODUCTION 

The purpose of this report is to explain how to combine the sub-

structural models for the various configurational elements of the Demon-

stration MSAT (DEMSAT for short) into a single structural dynamics Model. 

It is important to note that the substructural models themselves are not 

derived in detail in this report, but are defined in generic terms. Thus 

if, for example, one were to have a Harris dish as one reflector, a wrap-

rib dish as the other reflector, two correspondingly different tower struc-

tures, and two non-identical solar array panels, this report shows how to 

synthesize the models of each of these elements into a single model. 

A typical DEMSAT configuration is shown in Fig. 1.1. The dynami-

cist looks at the morphology of DEMSAT and sees it as shown in Fig. 2.1. 

We shall use linear structural models exclusively. 

Section 2 of this report introduces appropriate reference frames, 

discusses the forces and torques on each substructure, and introduces the 

symbols needed to specify completely the mass properties of the spacecraft. 

Sections 3,4,5 are concerned, respectively, with the kinetic energy, poten-

tial energy, and virtual work expressions required to derive the motion 

equations from Hamilton's principle. 

The actual equations of motion (and the associated coefficient 

matrices) are presented in Section 6, and Section 7 explains what one should 

do if the substructural models are given in terms of modal coordinates in-

stead of discrete coordinates. 

The reader who wishes to broaden his range of dynamic expertise 

may wish to compare the Lagrangian approach developed here with the vectorial 

formulation applied to a somewhat similar configuration in Ref. 1. This 

comparison is guided by the suggestions made in Appendix A. 

2. 	BASIC CONSIDERATIONS 

The basic configuration for DEMSAT is discussed now in its most 

general terms. It will be made clear which substructures are assumed rigid, 

1 
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Fig. 1.1: A Typical Demonstration MSAT (DEMSAT) Design 

2 



Fig. 2.1: DEMSAT Morphology 
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and which flexible. Appropriate reference frames, one for each sub-

structure, are introduced. Details of the force (and hence torque) 

distribution over the spacecraft are clarified, and the inertia dis-

tribution for the chosen spacecraft model'is defined. 

2.1 	DEMSAT Substructures  

The morphology assumed for DEMSAT is shown in Fig. 2.1. It is 

assumed the DEMSAT comprises seven bodies as follows: 

Bus: 	R
b 	

Rigid 

Two Solar ArrayS: 	E
al' 

E
a2 	

Elastic 

Two Towers: 	E
t ' 

E
t2 	

Elastic 

Two Reflector Dishes: E 
1

, E 	Elastic 
r2 	

r2 

The connection points between these bodies (0 ,0 ,0 ,0 ,0 ,0 1, are 
a
l 

a
2 

t
l 

t
2 

r
l 

r
2 . 

i also shown in Fig. 2.1. Note that Ob  is an arbitrary reference point n 

the bus. (The rotational equations for DEMSAT will be written with respect 

to 0
b*

) 

The fixed displacements between these reference points are shown 

in Fig. 2.2. Note in particular that 

r = r 	+ r 
-9-br

n 
÷bt 

 
(n = 1,2) 	(2.1) 

2.2 	Reference Frames  

Eight reference frames are used in this report. Seven of these are 

explicit (Fig. 2.2) and one--the inertial frame F i --is implied. Each sub-

structure is assigned its own frame so that each substructural model is com-

pletely independent. The absolute displacements (i.e., the displacements_ 

with respect to F i ) of the connection points shown in Fig. 2.2, expressed in 

the reference frames shown in Fig. 2.3, are as follows: 

absolute displacement of Ob , expressed in Fb , is wb  

absolute displacement of 0
a

, expressed in F
a

, is yy_'_ 	(n=1,2) 
n 	n  

—'n 

4 



Fig. 2.2: Displacements Between Reference Points 
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Fig. 2.3: Reference Frames Used 
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absolute displacement of ot  , expressed in Ft  , is _w 	(n=1,2) 

(n=1,2) 

These absolute displacements are not assumed to be necessarily small; however, 

their first and second time derivatives (i.e., the absolute velocities and 

accelerations) are assumed to be first-order infinitesimals: 

Similarly , . the absolute rotations of the reference frames shown in 

Fig. 2.3 are not assumed to be small, and a general rotation-matrix notation 

will be employed to indicate the relationships between vector components 

written in these various frames. (For example, Ça b  converts components in 

F
b 

to components in F
a  •) 

The rates of rotation clf these reference frames 

. are, however, taken to
1
be small. Thus, for example, we have the following 

small (absolute) angular accelerations: 

- 
angular acceleration of Fb , expressed in Fb , is eb  

angular acceleration of F
an

, expressed in F
an

, is 	(n=1,2) 
--a 

angular acceleration of F, , expressed in Ft  , is 6 4_ 	(n=1,2) 
'n 	n 	'n 

_ 
angular acceleration of F

rn
, expressed in Fr 	is e_ 	(n=1,2) 

In  

[It must be underetood that the question of whether the reference frames F 

are for the undeformed or deformed spacecraft does not arise in linear analysis. 

See the comments on p.4 of Ref. 1.] 

2.3 	Force and Torque Distribution  

We shall assume that all the forces and torques on the spacecraft due 

to external or environmental influences arise from a distribution of force per 

unit volume, and we denote this distribution by -4(r› ,t). If there is a distri-

buted torque distribution (rare) or a surface force distribution, or point 

forces or torques, or some other variant that seems superficially to be different 

absolute displacement of 0
rn

, expressed in F
rn

, is w 
—r

n 

7 



from the formulation used here, a reasonably straightforward modification 

to the analysis below can be made. (The details of these modifications 

are omitted for brevity.) 

A subscript will denote the reference frame in which 	is ex- 

pressed. Thus, over Rb'  f is written f * The net forces on the consti-

tuent bodies are as follows: 

force on Rb' expressed in Fb'  is f —e 

force on E
a

, expressed in F
a

, is 
n 	n 

	f --a 

force on E
t ' 

expressed in Ft 	is f 
n ' 	—tn 

force on Er , expressed in F
rn

, is f 
—rn  

(n = 1,2) 

(n = 1,2) 

(n = 1,2) 

,. 
Thus, in terms of f› , 

f (t) è ff ( 0r t)dV —11 	b 

f (t) è ff (re  ,t)dVan 	
(n=1,2) 

n 	n 

ftn
(t) è f-?_tn

(rtn
,t)dV t 	(n = 1,2)

n 

f (t) è I
—rn 	n 	n
f (r ,t 	r )dV 	(n = 1,2) —r —rn   

Here, we have used the following definitions of displacement vectors: 

position in Rb' relative to 0b' 	' exoressed in Fb' is r 
--lo 

position in Ea ' relative to 0
an

, expressed in F
an 

, is r 
--a n 	 n 

position in E
t' 

relative to 0
t' expressed in F 	is 

n 	n 	
rt t ' n 	n 

position in E , relative to 0r , expressed in F, is 
rn 	 rn 	

r
-rn 

In a similar manner, the torques on the constituent bodies from external 

(2.2) 

(n = 1,2) 

(n = 1,2) 

(n = 1,2) 

8 



(n =1,2) 

(n=1,2) 

(n =1,2) 

(2.3) 

rbr -r 	+Cr 
n 

-bt
nn

-tr
n 

(n=1,2) 	(2.4) 

sources are as follows: 

torque on Rb , about Ob , expressed in Fb , is gb  

torque on E
a

, about 0a , expressed in Fa , is 
n 	n 	n 	g, -u n  

torque on , about ot  , expressed in Ft  , is g t  
'n 

torque on Er , about 0r , expressed in Fr , is 
n 	n 	n 

	g_ 
-i n 

where, in terms of -_f› , 

gb (t)  A f*b (rb ,t)dV b  

(t)Afrx  -en 	-a n
-e n -e n 	a n 

(t)Afrx  f (rt  ,t)dV -tn 	-tn-tn - n 	tr 

g (t) frx 	(r ,t)dV 

	

n 	
rn 

(n=1,2) 

(n=1,2) 

(n=1,2) 

This completes a specification of the forces and torques due to the dis-

turbed force field  f.  

2.4 	Attachment Point Vectors  

Eight attachment point vectors are shown in Fig. 2.2. The con-

vention will be adopted that r pq  is expressed in F (for arbitrary p, q). 
-4-  

For example, 	contains the components of r 	expressed in Fb . In 

particular, the vector relations (2.1) become, in component form: 

This contraction will be needed several times in the sequel. 

2.5 	Inertia Distribution  

The following symbols represent the masses of the constituent bodies: 



mass of R
b 

is m
b 

mass of E
a 

is m
a 

n  

mass of E
tn 

is m
tn 

mass of E
rn 

is m
rn 

(n=1,2) 

(n=1,2) 

(n =1,2) 

The first moments of inertia (fr>. dm) for these constituent bodies are as 

follows: 

first moment of inertia of R
b' 

about 0
b'

'expressed in F
b 
 is c 

first moment of inertia of E
an

, about°
a 

, expressed in Fa 	is c 
a
n 	

—e
n 

first moment of inertia of E
t' 

about 0
t

,expressed in F
t ' 

is 
n 	n 

	ç
t 

first moment of inertia of Er 	about about 0
rn

, expressed in F
rn 

, is  C r 
 

(n =1,2) 

(n =1,2) 

(n =1,2) 

Similarly the second moment-of-inertia matrices are 

moment-of-inertia-matrix for R
b' 

about 0
b' 

expressed in F
b' 

is J 
--b 

moment-of-inertia-matrix for E
a

, about 0
a

, expressed in F
a

, is J, 	(n=1,2) 
n 	n 	n 

 
—'n 

moment-of-inertia-matrix for Et  , about ot  , expressed in Ft  , is J t 	(1=1,2) 
n 	n 	n 	n 

moment-of-inertia-matrix for E
rn

, about 0
rn

, expressed in F , is J 	(1=1,2) 

	

rn 	—rn  

Using these definitions, and the additional defintions 

total spacecraft mass is m 

total first moment of inertia, about ob , in Fb , is c 

total moment-of-inertia matrix, about ob , in Fb , is J 

we have (using the most general parallel-axis theorems) 

2 
m m

b 
+ 	(m

a 
+ m

tn 
+m 

 rn
) 

n=1 	n 

(2.5) 

1 0 



2 
C  = c + 	[(m .r 	+ C 	c ) —b 	a

n
—ba n 

—ba n —a n n=1 

(mtrbt + c c ) •btn—tn n 	n 

+ ( 	+ C 	c )] 
mrnrbrn —brn—rn 

(2.6) 

2 x _x 

	

=111- 	 [(çb." 	b Pba 	Ca 	rba Pba 	b -ma rba rba ) 

	

—I' 	n=1 	n- "n n 	n n n 	n 	nnn 	n 	n 	n 

x 	x 	• 	x 	x 
( Pbtnnqtnb 	Pbt S3" C A-  krbtn 	rbt P43t

C t Ct k 	(2.7)  
n 	n 	n n 	'n 'n 'n 

xx 	x 	x 
(C 	J C 	-C 	cx C 	rx rb 	C 
—brn—e—rnb —brn-fn

—rn b—brn — 	m + 	 , r, 	)] 
n n

b 	
In

b I
n.' I n 

With these 'basic considerations' now complete, a foundation has been laid 

for deriving the important dynamical properties of the  system. 

3. 	KINETIC ENERGY 

Preparatory to the use of Hamilton's principle in the derivation of 

motion equations, an expression is now derived for the total system kinetic 

energy. 

3.1 	Displacements and Velocity Distribution in Rb  

Let us denote by db (rb ,t) the total displacement of an element of 

mass dmb in Rb. Thus, in terms of earlier definitions, 

d 	" (r t) = w (t) - rxe (t) —b  (3. 1) 

Furthermore, let mb (rb ,t) denote the velocity distribution. Within the con-

fines of linear theory and our present assumptions, we have 

v (r t) =à (r t) = 	(t) - rx è (t) —b'  

This enables us to calculate the kinetic energy of Rb : 

(3.2) 

11 



Tb  = ½ fmb (rb ,t) T40 (rb ,t)dmb  (3.3) 

r m 	-cx  —b 

' 
 1

L
cx  --b 

=½ (3.4) 

LAIDI 
‘Ab 

u (r t) =  (3.6) 

In the following paragraphs, a similar calculation is made for the other 

substructures in the spacecraft. 

3.2 	Displacements and Velocity Distribution in Ean  

For simplicity, the subscript n (n=1,2) is omitted from the sym-

bol 'a' in this subsection. It is understood that the equations derived 

apply to n=1,2. We denote the displacement distribution by 

d (r ,t) = w (t) - rx (t) + u (r ,t) 
-a --a 	—a 	--a--a 	-a -a 

(3.5) 

The first two terms in (3.5) are obviously the 'rigid' contributions to 

displacement. They would occur even if Ea  were rigid (cf. Eq. (3.1). The 

extra term, u a (ra ,t), signifies the small elastic displacement distribution. 

This is the term that arises on account of structural flexibility. 

We shall assume that the elastic displacement distribution ya (ra ,t) 

has been expressed as a superpostion of 'shape functions,' 

4 1a (re )' '1)2a(re)' 	
With each of these shape functions (in the spirit 

of Rayleigh and Ritz) is associated a coordinate, so that 

• The possibility that the shape functions qija  are vibration mode shapes, in 

which case gia  become 'modal coordinates,' is not excluded; see Section 7. 

In any case, a notational simplification to (3.6)') can be made if we condense 

all the shape functions 	into a single (rectangular) matrix Y , and the 
—ja 	 --a 

associated coordinates qja into a single column matrix, as follows: 

12 



4(r,a) A [ fi.a (3 .7) 

.•] T 
Ram 4  Pila 

(3 .8) 

and where 

M = T
Y dm 

a 
(3.16) 

Then 

rt) = Ye (ra )ge (t) 

and the displacement distribution (3.5) becomes 

d (r ,t) = w (t) - 	(r rx (t) + 	)q  (t) -e 	-a a 

whence the velocity distribution is 

= 	(t) - rxà (t) 	Y (r 	(t) 
-a --a 	--a 	--a-a 	--a --a --"a 

It is now possible to calculate the kinetic energy of each of 

the solar arrays: 

• Ta =½ fv (r ,t)
Tv (r ,t)dm a --a --a 	--a 

--. -T- 	-cx 	- w 	•ma-L 	P
a --a 	 --a 

=½ 5 	cx 	J 	H 
-a 	-a  

T 
H
T 

(la 	
P 
-a 	-a 	

M 
-ea _ _ _ 	_ 

A P = 	(r )dm 

H A. 	(r )dm 

wa 

U 
—a 

—a 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where the momenta and angular momenta associated with the coordinates qia  

are defined to be 

13 



) = çAit(t) - rP, t (t) t (rtt(t) 

1.q.t 

 (3.18) 

(3.19) 

Lt  

At 

wr= crt ( wt 	1-sys'2-t (3.23) 

0 = C (0 
—ft 

 —+ ,a) 
—r 	t 

— —T- 

(3.24) 

3.3 	Displacements and Velocity Distribution in Etn  

In exactly the same manner as followed in the last section, the 

displacement distribution, velocity distribution, and kinetic energy for 

either of the towers E
tn 

(n=1,2) can be written: 

d (r t) = t(t) - rx (t) + Y 	)9.  
—t 	—t—t 	

t(t) 
 

(3.17) 

mi 	-c
x 	

P 

T = % 5 

	

t 2 —t 	—t 
c
X 	

')t 	LIt 
T 	

H
T 	

M 

	

At 	Et 	-t  

where 

Et  e f 

f rxY dm 

M e f YTY dm 

(3.20) 

(3.21) 

(3.22) 

Note that M
tt 

is in script notation, indicating that it will form part of 

the final mass matrix of the whole system (this will be proven as the deri-

vation evolves). 

A key difference between Et  and E
a 

is that another structure is 

attached to Et while none is attached to Ea . Specifically, with reference 

to Fig. 2.2, we require a special notation for the displacement andvelocity 

of 0 	(n=1,2). To this end, we note from (3.17) that 
rn 

14 



(3.29) 

(3.30) 

(3.31) 

(3.32) 

A 
gt  - 

à 
—t 	--6 

A 
H - [H 	H 	H.] —t 	--6 

(3.33) 

(3.34) 

(3.35) 

where 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

r (t) = rtt (rtr' t) 

0,(t) = 1/2C 	vxd 	t)I —rt---t —t' ir = r —t —tr 

cs(t) = yértr )gt (t) 

(1 (t) =1/2.Ël-t(rt)I r  

and the symbol V denotes differentiation with respect to rt . 

However, it is also true (cf. Eq. (3.1)) that 

• w = C (w 	x  —t 	—tb 	- r --bt---b ) 

6 	C 6 —t 	--tb---b 

Therefore, making use of (2.4) and the properties of rotation matrices, 

we can show that 

w =C w -C rx 
6 +C6 —rb—br—b --rt- 

e =C e +C a b—b —r —r 	—rt- 

At this point it is helpful to stipulate that the six coordinates 

represented by Mt) and a(t) are six of the coordinates in gt (t). This 

leads to appropriate partitioning of earlier relations: 

15 



--r 

à —r Tr =1/2 

(3.40) 

(3.41) 

(3.42) 

M 	M 	M . 
--dc3 	—Sa 	--61 

M = MT 	M 	M.  —tt 	--Sa 	—aa 	—al 

MT . 	MT . 	M.. 
—Si 

 

—cd 	—1 i _ 	_ 

(3.36) 

Note that four of the matrix partitions in (3.36) are not in script 

notation. This is because (as we shall see) additional terms have to 

be added to each of them to form the corresponding matrix partition 

in the overall mass matrix for the spacecraft. 

3.4 	Displacements and Velocity Distribution in Ern 

The reflector Er bears the same relation to the toWer E
t 

as 

the array Ea  does to the bus Rb : it is a_terminal flexible body. The 

displacement distribution, velocity distribution, and kinetic energy for 

either of the reflectors E
r, 

(n=1,2) are analogous to those written in 

Section 3.2 for the arrays." Thus 

dr (rr ,t) = wr (t) - r(t) + yr (rr )gr (t) 	(3.37) 

yr (ri„,t) = Wr (t) - rix5r(t)  + yr (rr )gr (t) 	(3.38) 

-- imr— 1 	- 	—r cx 	— --. — P 	w —r 	—f 

c
x 	J 	H 	à 

T P 	HT 	m —r 	—r 	—rr _  

(3.39) 

where 

P ef Y dm 

	

—f 	—r r 

H  e
.1  rxy d 

	

—r 	—r—r m  r 

M e f YTY dm 

	

—rr 	—r—r r 

16 



3.5 	Total Kinetic Energy  

The coordinates used so far in the analysis are collected into 

a (total) coordinate vector gT : 

A 

11
, 13.1 , 21 ,gi

1
, ‘It
22

, (12 ,22 ,21
2

, 

.‘ly,
1

'9...
r1

,ay.
1

,14_
r22

'ay,
2
1 

Associated with gT  is a (total) mass matrix MT , as inferred from the 

total kinetic energy T: 

• 
-29.7147.9.T 

where 

2 
T = T

b 
+ 	(T

a 
+ T

t 
+ T

r 
) 

n=1 	n 	n 	n 

(3.43) 

(3.44) 

(3.45) 

Based on (3.4) for Tb , (3.13) for Ta  , (3.19) and (3.36) for Tt  , and 

(3.39) for Tm,  we conclude that MT  ?s of the following  block-diagonal form: 

(3.46) MT 	diagfM 	A 
Tb' t4Ta ' 41-a 'MTt 'MTt 'MTr 'MTr) 

1 	2 	1 	2 	1 

where M 
Tb 
 is the mass matrix in (3.4), 

 Ta 
 is the mass matrix in (3.13) 

- 	
.n 

(with the extra subscript n added), 
MTrt: 
_ 	s the mass matrix in (3.39) (with 

, 	
i 

the extra subscript n added), and M
Tt 
 is given by 
n 

- 

 

m 1-  
-« 	---1 

x 

	

_qt 	
J 	H 	H 	H. 

	

-t 	--Is  

	

m
Tt 

à pT 	
H
T 

M 	M 	M 

	

--6 	---s 	-18S 	-16a 	-00 
n 

	

T 	T 	T 
M 	M.  

	

-oc 	-cx 	-0a 	-aa 	 -a 1 

	

T 	T 	T 

	

P. 	H. 	M 	M
T 	

M. 

	

-1 	-1 	-Si 	-ai 	-1 i _ 	 _ 

(3.47) 
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(3.48) 

(3.49) 

m e TTM T —T— (3.53) 

with the extra subscript n added to all the partitions. 

However, the coordinates in ar  as expressed in (3.43), are not 

independent. In fact, some of the constraints among them have already 

been recognized in (3.29) - ( 3.32). To these we add 

w = C —eD  ,(w, - r ). (  6,1 

= C 0 
—a —ab 

These 'constraints', or 'compatibility conditions' are the symbolic way 

of uniting the otherwize disparate bodies to form the spacecraft shown in 

Figs. 2.1 - 2.3. These conditions may be unified into a single matrix 

equation: 

where g contains the independent coordinates, 

03 .1r40 ,21vg
a1

,a
a2

, A1 ,21 , .91 
1 	1 2  r1  

and T is tabulated in Table 3.1. 

(3.50) 

(3.51) 

The final expression for spacecraft kinetic energy (and the mass 

matrix implied by that expression) is found by inserting (3.50) into (3.44): 

T 

, .1.  • = .„,àq 

where 

(3.52) 

The partitioned form of M is shown in Table 3.2, and expressions for these 

partitioned elements are given in Table 3.3. (The reader who sets out to 

verify Tables 3.1 - 3.3 would be well advised to acquire some  large  pieces 

of paper!) It is the final expression (3.52) that will figure most directly 

in the motion equations. 
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Partitioning of the Contraction Transformation Matrix,  T 
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symmetric 

Table 3.2  

Partitioning of the Mass Matrix, M (= TTMTT) 
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(n = 1,2) 
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C 	P ban-ban-e n  (n = 1,2) 

Table 3.3  

Expressions for Partitioned Elements in M 

(see Table 3.2) 
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-trn-rn 
M 	=M 	+C  J C 
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V
b 

= 0 (4. 1) 

V
an 

= 1/2o T K 	a 
n
—aa

n=La n 
(n=1,2) 	(4.2) 

4. 	POTENTIAL ENERGY 

The second type of energy needed to form the Lagrangian utilized 

by Hamilton's principle is the potential energy (associated with conser-

vative force fields). The only type of potential energy considered here 

is the potential energy corresponding to elastic stored strain energy. 

Any other (external) force fields will be included in the virtual work 

terms expounded upon in Section 5. 

4.1 	Strain Energy Stored in Rb 

Because the bus is assumed to be rigid, the elastic strain energy 

stored in it is zero: 

4.2 	Strain Energy Stored in E
an 

By looking at the coordinates associated with the solar arrays 

E, , it is evident that only Q., involves elastic defor:mations. Therefore 
a n 	 --c(n 

(The question of how to calculate Kaa  , or what the coordinates qa  may in 

fact be, is not, of course, the subje rcl t of this report.) 

4.3 	Strain Energy Stored in Et  

The coordinates involving elastic deformations in E, are contained 
u n  

in 2./.. . However, atn 	 1  is, in turn, subdivided into  f6 ,a as shown 

in (3.33). Accordingly, we can form a partitioned stiffness matrix_Kttn 
that plays the same role for E, as does K for Ean  in (4.2): 

--aa
n 
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--T -- K  
6 

--66 	1,16(1 

a 	KT 	K 
— 	 --6a 	—aa 

T. 	KT , Lusi 

V t Œ (4.3) 

K . 
—61 

K . 
—co 

—11 
K..1 

(subscript n implied). 

4.4 	Strain Energy Stored in E
rn 

Finally, for E
rn

, we have 

T 
V 

n 
=½Krrg-r 

n 
(4.4) 

as the expression for stored elastic strain energy. 

4.5 	Total Potential Energy 

With the definition (3.43) for the aggregate qT  of all coordinates 

for the individual constituent bodies, and the definition (3.51) for the 

final set of coordinates q associated with the system consisting of these 

bodies linked to form a spacecraft, it is possible to show that the total 

potential energy V, defined by 

2 
V = V

b  + 
	(V 	+ V

t 
+ V) 	 (4.5) 

n=1 a 	
r 	rn n 

is given by 

V =1/2a.TKg  

where K is shown in partitioned form in Table 4.1. 

5. 	VIRTUAL WORK 

The most basic expression for virtual work (needed for Hamilton's 

(4.6) 
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Table 4.1  

Partitioning of the Stiffness Matrix,  K 
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(5.2) 

(5.3) 

(5.4) 

( 5 . 5 ) 

principle) is 

SW 	f _f>» (1;,t) TSg( r>. ,t)dV 	 (5.1) 

It is the inner product between the applied force if>: and the virtual dis-

placement Sg, integrated over the spacecraft. 

5.1 	Virtual Work for Rb 

Combining (2.2a), (2.3a), and (3.1), it can be seen that 

SWb  = 	lio (rb ,t) T [Swb (t) - rixo Seb (t)]dV b  

= fTsw + 
 - 	
a
T
Se 

ID -ID 

This expression is what we should have expected. 

5.2 	Virtual Work for Ea 

For an elastic body such as Ea , on the other hand, we have 

sW = ff (r '  t) T [sw (t) - rxse (t) +  

T 	T 
' f

T
% + 9_,Mia  + i.a (Saa  

where 

A  J.  IFT (r )Î (r ,t)d% - 	--a  
(5.6) 

and (2.2h) and (2.3h) have been used. The above expressions have an extra 

subscript n understood. 

5.3 	Virtual Work for Etn  

Next, consider one of the elastic towers, Et . Again using the 
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(5.7) 

(5.8) 

+ SW = fTsw + T66 (5.11) 

definition (5.1) we have 

SW = ft - (rt' t) T [ -t6w (t) - 	t rx Se (t) + Y (r )6g (t)]dV t t 	- 	-t -  

= fTSw + q
T
S 0 + _d_

Tsn 
- 	 -t -t 	f t 

where 

f /T(rt )ft (rt ,t)dV t 	 (5.9) 

However, on account of the partitioning we have used for gt--see (3.33)-- 

we must partition _it  likewise: 

A 	 (5.10) 
-a 

whereupon (5.8) becomes 

As usual, this latter expression holds true for both towers. 

5.4 	Virtual Work for Ern 

In an identical manner, the virtual work for Er  is 

6W = fTSw + T
SO + LUI r -r -r -r -r -r -r 

(5.12) 

where 

fYT (r )f (r ,t)dV r —r 

and these relations hold for both reflectors (n=1,2). 

5.5 	Total Virtual Work  

The total virtual work is found from 

(5.13) 
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2 
= SW b  + 	(SWa + SW

tn 
+

rn
)  

n=1 	n 

which can be succinctly expressed as 

(SW = fT.9-T 

(5.14) 

(5.15) 

where aT  is the 'total' coordinate vector introduced earlier in (3.43), 

and fT is the associated column of generalized forces: 

fT 	col{f10 ,210 ,fe  
I. 	1 '2 -"2 "2 

4'16 	't '91-t 
1 	1 	1

f  2 	2 

fr   
1 	2 	2 	2 

(5.16) 

However, in the set of coordinates gT , the substructures have 

not been united to form the spacecraft. The compatibility conditions 

needed to bring about this unison are summarized in the single contract-

ing transformation 

(5.17) 

as noted in (3.50). The (partitioned) elements of T are tabulated in 

Table 3.1. Note that the coordinates in g, as listed in (3.51), are 

the coordinates for the spacecraft with the substructures all mutually 

'attached.' An alternate expression for 6W, and a more desirable one, 

is found by combining (5.15) and (5.17) to form 

6W 

where 

£ 4  TTfT  

(5.18) 

(5.19) 

The elements of 	are given (in partitioned form) in Table 5.1. Note 

that the first two (partitioned) elements are the total force f, defined by 
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Table 5.1  

Partitioning of the Generalized Force Matrix,  it  

V 

46 1 çt l r1r 1 

.4
1r
9
r1 

-La 1 
 

+C  f 
2 —t2r—r2 

+ C 
2 —t2r—r2 

_41.
2 

4 1 

42 

2 
Vehicle V = Rb  + 	+ Et  + E ) 

n=1 u n 	n 	rn 
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2 

f  = fb 	(ba 	Pbt
nn 

çbr
nn

) 
n=1 	n n 

and the total torque 	about 013 , defined by 

2 

2b 	[(fin 2a + r
x 
 C 	f ) 

—ba
n
—ba

n
—a

n n=1 	n n 

rx  C 	f ) + (C a 	_bt —bt —btn t+—n 	
n n n 

+ + rK  C 	f
r
n 
)] (C g

n
—br

n
--br

n
—r

n 

Now that the kinetic energy (Section 3), potential energy (Section 4), 

and virtual work (this section) have been fully formulated, it is a 

'straightforward task to write out the equations that govern the motion 

of the DEMSAT spacecraft structure. 

6. 	MOTION EQUATIONS 

The developments of the preceedina sections have been aimed to-

ward the objective of obtaining motion equations and, more specifically, 

toward the use of Hamilton's principle in deriving those equations. The 

point has now arrived where all the required preliminaries have been 

completed. 

Hamilton's principle (in its 'extended' form) is 

t
2 	

t
2 

6 	L dt =  I  (SW dt 

1 	1 

where the Lagrangian L is defined to be 

à 
L = T - V 

In the present case, L = L(q.,q). Now, the left side of (6.1) can be 

shown using the calculus of variations to be 

(5.20) 

(5.21) 

(6. 1) 

(6.2) 
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ft2 r d r 	) 	âL 	6q dt 
--T 

j 	D q 

and the right side is 

t9 T 
- 	 SR dt 
t
1 

as witness (5.18). It follows from the fundamental lemma of variational 

calculus that 

t l 

d 1 L 	L _ 

76-1 "t 	79 - 

These are Lagrange's equations of motion for DEMSAT. 

We now call upon (3.52) and (4.6) to indicate that 

. 	• 
T = 	

1"Mg. 	 ;  

(6.3) 

(6.4) 

whence, from (6.2) and (6.3), 

+ Kg = 	 (6.5) 

This represents, finally, the equations of motion for the present system. 

The mass matrix M is tabulated in Tables 3.2 and 3.3; the stiffness matrix 

K is recorded in Table 4.1; and the generalized forces (the elements of 11.) 

are listed in Table 5.1. 

7. 	SUBSTRUCTURAL MODELS IN MODAL COORDINATES 

It frequently happens that the substructural model for a particu-

lar elastic body E is given, not in terms of 'physical coordinates,' but 

in terms of 'modal coordinates.' These modal coordinates are associated 

with the natural vibration mode shapes for the structure in question. We 

shall assume that these vibration modes appertain to the structure when it 

is constrained not to translate at some point 0, nor to rotate about O. As 

an example of this assumption, and with reference to Fig. 2.1, we shall as-

sume that the vibration modes for Er2 are those 
modes that correspond to Er2  
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I .  

being constrained at Or2 , both translationally and rotationally. 

All the foregoing analysis in this report remains valid if some 

of the coordinates in the formulation are modal coordinates. 

To be more specific about this modal interpretation, let us 

consider what is probably a very likely situation for DEMSAT: 

(i) the reflectors are specified using modal information; 

(ii) the solar arrays are specified using modal information; 

(iii) the towers are modeled using direct physical coordinates. 

Then, as also described in Section 5 of Ref. 1, we can represent these 

assumptions by the following notational adaptations. 

For the solar arrays, the following replacements are made (n=1,2) 

ga(t) ÷ na (t) ; 11„ A E -a lg, 

4a (t)  ÷ /„(t) ; /a  A eafla  
M 	÷ 1 	; unit matrix of appropriate dimension 
-ea 

2 	A 
K 	---» p 	; 2a  - diagf 

-b)ar wa2'"* 1  —aa 	-e 

P 	.9- p 	• 	P 	à P E 
-a  

H 	± H•H 	àHE 
—a 	-a n 	' -an  -a--a 

The columns of E are the modal eigenvectors for the solar array Ea (constrained 
--a 

at and about 0a ) and 
{toa1'wa2""1 

 are its (constrained) natural frequencies. 

The identical procedure holds also for the reflectors, Er . 

8. 	CONCLUDING REMARKS 

In this report it is assumed that one is in possession of an adequate 

set of structural data for each of the DEMSAT substructures. This data may 

either be in 'physical' coordinates (i.e., mass and stiffness matrices known), 

or in 'modal' coordinates (frequencies and modal momenta known). In either 

case, the formulation presented can be used to construct an overall model.for 

a DEMSAT-like spacecraft. 
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APPENDIX A  

A Comparison of Formulations  

This report uses Hamilton's principle and Lagrange's equations 

to derive the motion equations for the 'DEMSAT-like' flexible spacecraft 

shown in Fig. 2.1. This generic spacecraft is similar in layout to the 

one analysed on Ref. 1 and reproduced here as Fig. 4.1. We shall call 

the spacecraft of Ref. 1 "OMSAT" because it was motivated by certain 

configurations suitable for an operational mobile communications satellite. 

In comparing OMSAT (Fig. A.1) to DEMSAT (Fig. 2.1), the following 

points are noted: 

(i) OMSAT has one solar array; DEMSAT has two. 

(ii) OMSAT has one tower-reflector assembly; DEMSAT has two. 

(iii) OMSAT has gimbal angles at the reflector hub; DEMSAT has none. 

Based on these observations, a congruence between OMSAT and DEMSAT can be 

established by taking the following steps: 

strip DEMSAT of E, (then Eal 	
E
a
); 

'2 

(ii) strip DEMSAT of Et2  (then Et1 	Et); 

(iii) strip DEMSAT of Er 	E 	Er ); 
'2 	r 	r 

1 

(iv) strip OMSAT of gimbals. 

The mathematical consequences of these  strippings are as follows: 

Eliminate the elements associated with E
a2

,  Et andand E
r 

from M, K, 11_ 
2 

and 	the latter  being tabulated respectively in Table 3.2, Table 4.1, 

Table 5.1, and Eq.(3.41). 

(ii) 	Eliminate the elements associated with the gimbal angles 13 from M, K, 

I.  and q in Ref. 1, the latter being tabulated respectively in Eq. 

(4.12), Eq. (4.13), Eq. (4.16) and Eq. (4.11) (aZl these equation 

references are to Ref. 1). 

It will be seen that the two system of motion equations are now identical. 

(i ) 
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solar array,a 

7 

Flexible 

;e. 

1„; 

Fin. A.1: Morphology of "OMSAT" Satellite 

Analyzed in Ref. 1. (cf. Fig. 2.1.) 



Since one of the two was derived using vectorial mechanics, and the other 

using Lagrange's equations, this comparison provides a major check on 

the correctness of both procedures. It should be noted in particular 

that in the present report no 'interbody' forces and torques were intro-

duced. Therefore, these interbody interactions did not subsequently have 

to be eliminated. (This is a well-known advantage of the Lagrangian-

Hamiltonian procedure.) 
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