

> The evaluation of charge transfer device (CTD)
> technology and the development of a conceptual design for a CTD-based spacecraft stellar sensor

Prepared for

Department of Communications
Shirley Bay
Ottawa, Ontario

Prepared by

MONITEQ Ltd.
630 Rivermede Road Concord, Ontario L4K 1B6

I
 \square

$D D+831305$ DL 4831328

1.0 INTROMUCTTON
coun

2.0

AGTRONOMTCAL CONSTHERATTONS

 G 9.0) wel have reviewed the jmoblem of dederminins the mimimum field of view with respect to the probalidity of findimg one or more stars of ampromiate masnitude in the startracker pieta of view. Tm additiong it is convincingly demonstrates thet at least three stars are rebuired in order to umamisuoushs correlabe a given imase with corresponding data in the star cabalosue. since the onboard star cobabsue will recessarily be restricted to onls the prishtest gersy bhe problem of replacinsthe radiance contribution due to the weater stars bu effective star cemtres was adoressect we have shown that this procedure must be utilized for stars waker thon those in the orishthetar batajosue (mestitude \& $6+5$) or arrors of the order or e sizedale fraction of the whi curche would result.

Table 2.t sives the mubers or storsper masntude
 of 550 nm). The data hos ineen edtraded from skymp ba Hirmpeldand Gimote (Ref;) .
It is convenient to mote thet the cumbtave star densite down to masmiture 8,0 sives bhout x star per samare desree Usins a Fossson dietribution as a first apromimation one obtains the wobebilities for there beins msters in a wiven piedo of view (Table 2.2).

It must be moted thet these values are whole-ske Frobabilities wheress the actual distribution of stare is a strons function of salactio letitude. The Freferentiol ocourrence nefar the selactic eaustor (o desfees) becones atronser as the stars become fajmem. No recent idterabure was fount on the distribution of brisht stars cout this could be derived from the glivmap tape) Goins back to Pantugoek's 1924 paper (Retra) we derive sampe star densidies (Tale $2+3$) for various masnitudeg my and salakgtatituces in star/(desreetwa).

Masnitude (14mit 5.5 (2373 Etars)
Fiedo Numer of tiersfin the Field of View
of

10	+498	.347
36	.982	.204
64	.012	.052
100	.001	.007

Masmitude limit 6.5 (8479 stars)

His mumers will mot asree examtly with the skymaf dotals because of small sustemetie difference in the old and moderm masritude scalesg but it can be seen that a
 a 98% confidence leved of at least one star debected in the rield or view.
o Figure of Merit

The startcounts abovedcan likewise be used to assess the likelinoog of arror in atartield identification. If onls twolstars are in, the Fov, we have omls two mashituder and an amsulap seqaration. If the sfacecraft attitude is alreasy pairls well Krowny we have in bodition some information on the oriemtation of the arc sefaratins the two atarge dnitiallsy det as nesdect inat oftion. Then the froblem js: siven one starg whet is the probabilits of findines a soorod with mastitude mt E(m) withim an anmulus of width 2δ at a mean radius fy where \mathcal{G} and δ are tine masnibude arid separation errors. the area of the ommulus js then atrpo amd the fromatilitas is computed rrom the Foissoris oistribution asibove. This is intustrated in Fisure 2. 1 .

Wjth a masmibuce orror $\varepsilon=0$ as and a rosibionel error $\delta=$ $0.0 \mathrm{l}^{\circ}$ withs sasy an aro $\cap=8$ despeesy the ammulus ja

 As 500 a 3 three stars ape in the fiedsy the sjunation improves sreatlos simee the third star most lia in a ciroular watoh of radus g arof fine probabilibs becomesy

Consequentlyg a mindmam of three stars will be maeded for Fosition identificationo

2.2
 Effective Centres of Lishl

The pirst part of this froblem - preauencs of contamimation within the modnt 5 Fread furnedon bus fadmter stars - is wust Bnother version of the ramdom Etar dimtribution froblemp exoept for the wroblem of gouble gtars which ada a nonnmandom comfonent:

I

Consider first the domble-star froblem. It is likels that most of the stars are multifleg but the separations are too smad to be resolvable with conventional instrmentabiong sog in pact, the postitional catalostues sives an effective centre of lisht for these. The bult of bright star whsical fairs have serarations of less tinan 30 seconds of aro (thetr mastitude differences and sefarations are available in machine readable form). Because of these sucall separations ans erpors in the formation of a centremondisht ore likels to be mealisible. For a vers few pairs (like Alfhe Centauri) rowid orbibal motion presents another problem since photocentre and barscentre do not coincide. These could gimfly be excluded.

A more serious problem is the clutter from painter field stars. Given that a star of masnitude 9.0 has 0.10 the luminositw of one of mesnitude bos from the relation

$$
m_{2}-m_{1}=2.5 \log \left(l_{1} / l_{2}\right)
$$

where 1 is the duminosity and m the mandiudey then a shift of the photocentre bs $0.1 \times$ the sefaration is expected. If the blur edrole has a radius of ary then siven 244000 stars with im less than 9.0 , the probatility of one falling within this circle is 0.15. In the salactic mameg hins mobabilits would be more than twice as large. The expected sinft due to the
 backsround stars - for which no machine - readade informetion is avaliable would be more mumerous but the shifts would be smaller - however still obviously in excess of I^{*}. Ultimately the fairtest stars contribute a farls uniform backsrouns level.
sf the point suread function is radial stsmmetricy photocentres could be erecomputed for contamirants sown to 9.0 , but frobande one would exclude stars whose effective frofiles become too dissimilar from simese Etars. This depends on the centerins alsorithm used. Note also that if the foint spread is mot radially swmetric: the effective blemoins defends on camera oriemtation arid canrot be frecomented.
$2+3$ Undesired Tmoses
Mouble stars were discussed in the previous section. A rough estimate js that less than 15% of the stars would have to be exchuded due to ortital motion or wide bright companions that would render their profile too unlike a sinsle star.

Froper motions are known for all of the stars with masnitude less than oss and almost all of those with masniturde less than 9.0. To the are second level a Eimple limear chanse of position vector with time is autbe adeauate for bime weriods or a few decades ioe.

$$
x=x_{0}+\dot{x}\left(t-t_{0}\right)
$$

Almost all op the stars in the frimars catalosue have such small motions (less than $0.14 /$ sear) that for short missions thes can be isnored comwetels. The lotal number of known stars with larme proper motion (Rep. 3) are:
sreater than 2"/wear : 73 stars
1"- 2"/4ear 453 stars
-5n-10/year 3061 stars
Note however that about 85% of these are pamter than loth masnitude

Planets can be recosnized bs brishtress alome only for Venus and Jupiter (m $=-4$ and -2.5). Mercursy Marsy Saturn and Uranus would require fositional prediotion also. Exceft for Urams (m $=5$, 6) the flamets are brisht enoush that a check needs to be made onls if a "etar" with masmitude dess than 3 is im the fiela (whicin reduces the amount of checkins to be done). Moreovery For missions which atas near the Earthe orbital flane (the ecliftic) as almost aly doy a check has to be made cons whem the fiedo is whim. 10 despees of the ecliplic. Since the catalosue misho losicalls be stored in
 beins done in same) g thit would be a very quick check.

For a computation of planetary positions the usual. formulae would be

$$
E-e \sin E=\frac{a \pi}{\rho}(t-T)
$$

where $F=$ period $T=t i m e d$ perihelion and
e=ecenentricitu. This is Kepler's eaudiong solved iteratively for E. The coordinates in the planets' orbit w flare are

$$
x_{0}=a(\cos E-e)
$$

$$
Y_{0}=a \sqrt{1+e^{2}} \sin E \quad(a=\operatorname{soni} \operatorname{mag} \sin \alpha \operatorname{sic})
$$

A rotation to the final coordinate system will de of the form

$$
\begin{aligned}
& X=B X_{0}+G Y_{0} \\
& Y=A X_{0}+F Y_{0} \\
& Z=C X_{0}+A Y_{0}
\end{aligned}
$$

where the constants A-H are functions of the three orientation angles

$i=$ inclination angle <angle between orbital and ecliptic planes:
$w=$ mean lonsitude of perihelion
o $A=$ longitude of ascending node

All of the parameters F ger and A-H are functions of time but the vars slowly enough to present only a midst additional computational load for modest Precision reQuirements \{a pew arc minutes).

Docultations present a continuing problem except for a satellite orbit loins nearly in the earth's equatorial. Plane when a camera pointing toward the orate poles will always be unobstructed. The Sun is excluded bs the Sur n sensor, The moon will always be recosnilabile bs brishtness plus angular size (it ja only pinto that is magnitude greater than -Fy when it is vert mar the sum and excluded for that reason). The daslisht hemisfinere of the Earing can likewise be rejected bu brishbnessy but the rasht memisphereista problem e sine the orbit of the satellite as mom approximately at all times, the portion or the skis covered bes the Earth is computable with equations simitar to those above for the planets but the orientational alementia vary quite rapids.
Froper Motion

Ir the skymaf cotalosueg rroper motions are siven as fot pownere oland δ are the stiarfs srherical coordimates (risht $\operatorname{siscension~and~seclination).~Im~smherical~}$ coordinatesy the mositions updated to a time to from a time to are then

$$
\begin{aligned}
& d=\alpha_{0}+\mu_{d}\left(t-t_{0}\right) \\
& \delta=\delta_{0}+\mu_{0}(t-t o)
\end{aligned}
$$

If fone positions are stored as rectansular moordimabes

$$
\begin{aligned}
& x=x_{0}+\mu_{11}\left(0 \theta_{0}\right) \quad=\frac{1}{2}\left[\mu_{0}(\sec +0)\right]^{2} x_{0} \\
& y=y_{0}+y_{0}(t-b y)=y_{2}\left[\cos _{0}^{2}\right]^{2}
\end{aligned}
$$

where

If the rectansular ooordiriates are eauatorial rectansular coordimatesy thes are relawed to

$$
\begin{gathered}
d, \delta \cos , \\
x=\cos \delta \operatorname{cose} \\
\therefore y=\cos \delta \sin \\
\therefore z=\sin \delta
\end{gathered}
$$

0 : Aberration of Starlisht
Here the corrections are

$+\dot{\gamma} x y+\dot{z} x y]$

$$
\left[4\left(1-y^{2}\right)+2 y z\right]
$$

$$
+y y z+\dot{z}(1-z)]
$$ (essentially relative to tine stat). This will be mostis - for an earth satellite - the arth's orbital motiony which is aproximatedu 30 km/seg. Hance v/cy where o is the velocits bf lishta is mbout 1 , E-4 radiams or 20 arc seconds.

The velocitsóvy of the Earthis aiven ns

$$
V=\frac{n a}{\sqrt{1-e^{2}}} \quad(1+e \cos f)
$$

where a $=$ mean distance of garth from 5um $=149.6$ E0G km $n=$ mean ansular motion of eartin $=1.791 E-7$ rodiams/secorid (hence na $=29.79$ (km/sec)
$\mathrm{e}=\operatorname{eccentricits~ofearths~orbit}=0.01 .6750$
$f=$ "true anomalyo of earthy which is the ansley meastred, at the sumg between whe earth arid the merinedion of its orait.

Thereporep the maximum deviation from e constant velocily is of the prder

$$
n a\left(\frac{1+e}{\sqrt{1-e^{2}}}\right)-n a \quad \sim 0.0169 \mathrm{na}=0.5 \mathrm{~km} / \mathrm{sec}
$$

which prodaces an error of o.35". It is posedaleg in most asses theng tolresard bhe aarth's orajt as aircolarg with at most a small correctiono Tn equatorial rectansular coordinatesy the velocits componembs become (Fief. Ay plyt):

$\&$ e $\sin \pi$)

$+e \cos \pi) \cos 8$

$$
+e \cos \pi) \sin \varepsilon
$$

Table 2. 4 summarizes the problems ard sustsested solutions associated with the usage of stellar positions as attitude reference points.
2.5: Secularferturmations of Satellite Drift

The major chances inri a near abybh orbit, are caused bs the earth's oblateness. Except, when the orbit is in terminal decay these dominate fhemeffect of resjadal atmospheric ores.

Given the usual orbital elements for the sabeddite:

The leading terms in the variations are sivan bs sterne (kef. 5 , fila) where the constant $E=\omega k^{2 / 3}$ where k is the equatorial radius of the earth and t is the leading harmonic in the gravitational potential y i.e. the coefficient of the F (sin ϕ) legendre folumomial. Naturally, there are hither order terms y but the largest are about $1, E=3 * J$.

Most of the varistidons arelferiodic armof aimited
 the pollowins statements con be made (fed: s):

1) 4 Long Feriodic (areaber linan G hours)
 tusom radial ard t 50 across the tracko
2) Shorw feriodic terms (2ess than 2 nours) averase about oremtenth as ment in whal itude as the lors-meriodic terms.

Howevory the fomperipdio (semblar) berfa (binose with
 couse continuous chanses in and These arey rousht $=8$

$$
\Omega \approx-9.9\left(\frac{R}{a}\right)^{3.5}\left(1-e^{2}\right)^{-2} \cos i \quad(\text { degress } / d \operatorname{dog})
$$

$\dot{\omega} \approx 4.98\left(\frac{g}{a}\right)^{35}\left(1-e^{2}\right)^{-2}\left(5 \cos ^{2} i-1\right) \quad$ (degrecel /day)
 mamberg from the RAMARSAT mxammey with i = 97.490
 0.986 desreesfdas $=360$ desrees/sear. Comsecuertisy the orbit wane precosseg bhomb the edrbis axis at t rev/sear so that the orbit mane isy ori averasey fixed
 Gtrestme orbit is effetivelscircular).

Effectaf the orbit and orbit variations om comera Fositiom ema star catalosue:

0
Geossmanromous Case
Gemeraldsy the orait wid. atedechedy and activeds correoted if mecessarmy to maintajn a fosition near a pointim the eauatoriel wame fixed relative to earth Statioms. Gtow hinrations (cuasi-mperjodic
 aven tri the most maturaditstomae arbits with

The most obvious sefectons for camera ases are the pibeh drection and ether the roll axis or the saw axis in the antioearth direction. The pitoh anis pointa boward the celestial rolesy medther of which is a partioularls rieh star fieldy ato the other axes lie in bhe easaborial wane with consectumb freament ocalbations ba the jmon and sumg so this is not. necessarils the iseal choice. Amshmins, howevery a 10 desree pield of vied for the panerasy it does reduce the star catalosue to a 100 samere desree patah ot bot chosen mode (miteh camera) mhe a 360×10 satare desrae belt (roll or yaw camera). Allowins $3+2$ despee safets marsirin the total area of the skusean durine prie day is 5200 saubref desmees or about 43% of the sfhere Jo the extreme csee of a mosmitude limit of o. 5y this sields togo stars. Fiedd motion for bhe eatutorial comerc would be 15 are sectsecond.

Fiecins the cameras eb as desmeds bo the pitch axis woud have both cameras share the same cabalosue of
 praction of ampoximotedy 4 tsespeds : 360 despees is (cos(45 desrees)/41253 seuare desrees $=0.07$.
Dccultabions bs the sum and moon would be eliminated althoush the sun would stidy be a problem if the hapting is less than 100% efficient.
o: Frecessins Folar Orbjt -.. Sun Esmenmonous
Dres asaing the witch axis is nearly fimedy with a motion on the order of 4 desrea/das, herice urdate Preauncs for the catalosue wouta be slow, on the ather hama, if the piado is voidy the damera would be inoperative for several dassumbil orbit preceseion brousht a new pield into view. Fresumins fhat the satelifte rotates once/revolution so that it is earth orientedg a camera in the sawfolf plate will sweer the sks omedrevolution or about evers 100 mino so that imase motion will be 200 arc sec/semond.

The siow chanse of fied for the when anis camera need mot be a patal plaw if intesration tiomes can be arbitrarila imereasad (a remsondbla ardion siven the slow field rotation of the miteh camera). In
 Momeovero if "the orbit fand ratses mear the sump the fabeh ants camera would atuays be pree of solar obectrabion.

Flacins two cameras 90 begrees arert with both as desrees to the fitch axis would allow both bo sweep the same zone in the sks with mase motions of 150 are sec/seocnd. A void piedd would be bs pessed in $10 / 360$ * 100 min $=3$ minutes and the reauired star cetalosue storase would be 730 stars on averasey as in the seossnch. cese. Heres however; the frecession of 1 desree/dat would reauire ufdabes evors das or two (aese preauent if the gtored barg of sks is widened).
Flacins the cameras 45 desrees from the fitch aris foward the leadins and following roll axis would keep both free of earth ocoutwbion and (for faimasat) prea of golar occultation. The mon coula not be eliminateg.
3.1 The Attitude Imaser Montitor (AIM)

Fisure 3. shows ablock diasram of the Abtiture fmase Mondoor. The ATM cen hande more than one smart cameras The Arm miorompodessor selects the wroper cameray defines the track windou within wion estar mase will be found and determthes the camers intestation time. The AIM hes mrimary responsibilitu for extracting a cops of a camere video buffer ard processins this information to determine the eentroid of the ghellar imase A comsarison of the astimated and measured positions of the tetelyar imases allows Getermination of the sotell ite attitude.

A serial interface surforts communcotion between the dipterent smart emmerast the other spececrapt ststems aho the Attitude mase Moritor. This interface is punctionalls equivalent to the gerial interpace in the Frosramable Imase Controlter. The Rom fiam and video burfer are essentialls the sama as for the prosramable Tmase Controller diferins only in the memors size that need be aloceted for prospam and variable storase.

A star catalosuerconsists of CnOS from (us to 70 kastess it will contan meperence to all stars that are of importamee for the sateluite attithere determination. The orsaniatson and memore reauirements are described more pulls in section 6 .

A watohdos timer will contain Eimme sensins ciroutry to check for the wesence of the camera dockins and timins sisnels in order to allow the ATM microprocessor to take the arfrowriate action whenever one or more sisnals are mifsins. The wetendos timer also determines if an otthtude imase monitor is malfunctioning and remorts to the central status processor on thensateriste.

3.2 Frosrammatale Tmeser Conkroller

Fisure 3.2 is a shematic siasram of the prosrammade imase controller. The heart of the Frosramable Tmase Controller is the micrompocestor $\begin{gathered}\text { under control op a }\end{gathered}$ sortware prosram that is stored in fromy the meroprocessor routes all control sisnals for sista acouisitiomy data storase asmell as providins an interface to the Atbitube tmase Montor. The other sustem components include fan analos aisnel processmins boardy an amados to disital convertery and a sunchronization and timins senerator. The oharse bransfer device js operebed be series of dactirs waveforms which are senerded ma the mioromroceseor and amplifted bs oriver ciruftre. The sestem also Ferforms such homsekeering pumethons as temmerature and shuter control. Ant eisht or sixteen bit CMOS microprocessor will be selected to minimize power consumptom.

The output of the imase sensor is amminied and pilterer bs an amalos sianal processins ohain. The preamplipier consists of an operational amplifiers which is selected por its modse and bandudet characteristics. A manmaluspat elumbic fiater ensures that ans mosee with a freauencs spectrum above halp the somple preauencs fop the correlated double Eamplerg ull be attentated to an acceptade level. This erevents the poldbadk of unwented sisnals into the sisnal pascband. The zeros of the pilter should be fostitoned at the sample frecuence and mutheles thereof.

The correlated double sampler consists of a discrate time differentiobor followed bs os serete time intesrabor and a sample and hold. Thjs edrout wilu remove reset and clockins noise of the $\dot{\text { amase sensor. In }}$ addition it wil athenate the uncorrelabed low Preauencedif moise of the output trancistor of the arras. The sample and hold ensuras that the video data is stade durins, the conversion period of the A / M comverter.

The fol converter digitizes the analog sisnel levels with sufficient resolution and conversion meed. A converter must be chosen which minimizes power consumption while maintaining the desired resolution end conversion speed.

The timing generator is controlled be the mierofrocessorg it generates the necessary waveforms to operate the image sensor. The mocking circuits must be capable of driving the arras's clocking lines despite their relatively lapse capacitance.
The same semerator coordinates the timing semeratorg the correlated double empery the A/n converter and the microprocessor. Tn other words it is e hardware interface between the eformemtioned subsystems.

0
Other Subsystems
The shutter control consistspor a cent amplifier Whet combats a control signal from the microprocessor into a latching action on an electro mechanical. shutter It also provides the microprocessor with information on the actual status of the shutter papen or closed).

The from memory will contain the mioroprosram that operates the programmable image controller. The RAM memory $4 i l l$ be of sufficient size for stack g accumbator and variable storage. Power consumption will be smaller if byte wide CMOS RAM is used.

The video buffer is approximately l kite in size it is used to provide temporaprobtorase for all the video information about a star impaste. Upon command of the Attitude Image Monitory deli will be collected ard stored if the buffer at the lapmopriate time the contents of the buffer are transferred bo brie Attitude These Monitor for further processing.
The serial interface will send and receive all command and data that is transferred between the Frospamanle These Controller and the Attitude Image Monitor it could consist of an RS-422 interface that is capable
 This deterate should be more than sufficient to hade the commination between the F. I o C. and the A. I. H .

Golid state imasins sensors oam exhimit a fixed momumiform sfetial bacheroumg in the rofroduced
 imase sensors are tramsistor switohins interferemoeg

 of the MOS tranststor seammer oubwut voltese to the videosisnel results in a compoment of fixed patwemm moise that refeats from scian to scane For CCrosy bhere is a similar commorient arisins from bhe multimhase clocks which trapisfer charse betwect wells of the cohe Variations in row to columa orossover oepacitambe arisins from either insulabor bhimbmese or mhatom Jithosrafhic varistions cause e two dimemsional componemb of fixed watberm modser variations in biss ofarserrom site to siteg caused bs differemces im whorase wafacibance or threshold voltaser ajso remult in a two dimensional commoment of finearmbterm roise.
nark current nombniformitu can be am tmportart source of matbern rodser fartioumardy at room tempereture. Low dark "urrent ferformance oam me an aduantame bmon these ronditions:

The oramaization amo momodetructive reacout cafabinitu of the Cill imaser sives rise to a mumer of seecialized functions: The $X-Y$ adoressable orsamiastion allows ramdom access to arras fixals. The rom destructive
 combinations of rixel sisrajs to he semsen sivimerise to spatial tramstorn readant. gismals cam berefeatedlu reed amo summed to improve dumamio remse while Come do not allow rondestructive readoutg thes do permit on chip averasins over the rows and columme bu varuing the order of the horizontal amo vertical clockira fulses.
3. 1 The Charea Triection Device

The major features of the CTH imasers are sumbrixed below

0
An $x-\gamma$ addressins capability which mrovides excertional flexibituts in array readout, Thit capeniditus stsmipicanthy reduces chock Treauencus peribherat electromics a ard dabed hemdjinstratese this feature as a makes the device compatithe with imoroprocessors amo A, A edrverterta.

shown in Fisure 3.5 A 1 grser voltase is apelied bo the row of electrodes than to the colum electrodes so that photon generated charse;collected at each site is stored under the row electrode. A ine is selected for readout bu gettins its volbase to zero bs'means of the vertical sean resister GROW ENABLE condition of:Fisure 3. 5) The charse f then injected bu drivins each colum voltsae to zeroy in seabericer bs means of the horizontal sean resister and the sisnal inte. The net aniected charse is measured be intematins the displecement current in the Eisnal 1 ine over the injection interval, Cherse in the unselected lines remains under the row connected electrodes durins the indection pulse (HALF GEIECT condition of Fisure 3.5)

0

Freinjection

The preinjection readout technique is based on the measurement of the chansefin charse bhat oceurs at each eddressed fensins site when a complete row of sites is cleared (injected) simutaneoustu. The sehematic diasram of an arras contisured for preimuecton readout is shom in Fisure 3.b. Equig row anc column bias levels arel nomedy usen with this readout method. A low infut impedane (transconductame) ammutier is used so thoty durins each scan of the aras columasy the colum rotentials are reset to the reference voltase. Frion to each scan of the arras columasy durins the horizontal retnace intervaly voldase is removed from the seleeted row to alear the row of sites to a bias charse level. ang then reset to jbs orisinal value. The fotential of all, colums mad been resed to the columineference potention durins the previous mon interval. Since sismal chaise was presemt umder the eddressed pow electrodes when the colum potential wat reset, the removal of the signal charse bs the inuection operation restits in a voltase beine induced on the ploatins colum electrodes rroportiomal to the indected wisnal charse, The induced video sisnel is then read out bs the colnmin sammer.

This freindection readout method has a muber of advantages and some limitations. Arras fixed Fatherm noise is automblicalls rejected since the only net chanse in arras charse tevels wrior bo ach video lime

seen is the injection of sister charge. The technique is compatible with hash speed sampling of the induced column sismals as required for $T V$ compatible operations. The mirin disadvantage with this readout technique is the switching rigise cured into the video sisfall bu the colum in scanner. This component of the fixed pattern noise repeats for each video line and can be rejected if one linefof video storage is provided.

The parallel injection temmidue allows the functions of charge injection and chare detection to be separated Signal cherse levels can be sensed at hash speed during a lime scan and robins the tine retrace time interval all of the carse in the selected line can be injected in parallel. if injection is deferred nondestructive readout results.: The parallel injection technique is well adapted tot sean formats in that the signal is read out fi ie bu line. It is not adored to random scan aredications.

In an arras of MOS coupled capacitor pars as is used in the present chase injection imesersy all of the signal chase will be stored under the row connected electrodes if the row voltages are larger than the column voltages. This condition is illustrated in Fissure 3.7 for rows $X 1 y \times 2$ end $X A$. Tins method of biasing effectively prevents the charge stored under the row connected electrodes from affecting colum m voltages. The voltase on all arras columns Yo through YA. Can be set to a reference value ether bu means of a previous colum sean reeboutg or throush the use of the column switches 51 through sA.

If the voltage on a row electrode is then switched to aero signal chare will transfer from the row connected electrodes to the column connected electrodes in the selected row of sensing sites. This ja diasramed in Figure 3 . 7 gi for row X 3 . The voltage on each of the column lines will then be reduced bs an amount equal to the signal char ce divided bu the colum m capacitance.

The signal can be sensed by each column line to a video

scanning register and Moslswitches. The readout operation consjsts of resettins the video amplifier infut to the reference voltaser and then steppins the * gomins resister to the riext columm lime. After all columns of the arras have been scannedg charse can be returned to the row conmeded electrodes bu reamplyins voltase to the previousluselected row. This action retains the sisnal eharse for future wrocessinsy and constitutes a mon-destmethive readout (NDFO) operation.

Altermately, at the end of rebdout of the selected row while the row volbase in mationamed et zero volbsy the sisnal charse can be injected from the selected row to the sutistrateg all sites in rarallely bs switohins all colum voltases to tero gimutameousls. This action clears the sensinstsites of charse and allows the start of a new sisfalintegration time interval for that row.
o Row kesdout

A second charse transfer neadout method is diasmmed in Fisure 3.8 . Readout is effected bs drivins the colum connected electrodes to couse charse to fransper to the row connected electrodes. The condition diasmamed in the fisure is with the thtird row conmected to the video amblifier bs the verbicel scanmins resister. The horim zontal scanning resister is oferated at the video ejememt rate to sequentially comect the column drive voltase to bine arras columis. Each dement of sismal charse is transferred to the row electode extemallu sampledy and then transferred back to the colum electrode.

At the end of each line gean the selected rou and all arras columns can be driven to camse imjection For mondestructive readout of this arreas the indection operabion cen be deferred.

The advantases of this readout method over previousls described techniques is that the horizomtal scamer is jaclated from the video wismal, kTC roise can be easils rejectedy and nondestructive reacout can be readily mechenized.
3.4 .3 Wark Current and gloomins

The cin afroachpermits Gishificants/more silicon area to bet used for photot charse semeration than por charse storase. This resuths in an advantesedus dark current situation because the thermal charse seneration

rate in nonderleted bulk silicon is orders of masnitude dess than in the repleted fotorase reston.

Consequentisy ach imase sensins site collects and stores whotom seneribed charse from essentially the total site area but senergtes dark current only in the Gorase area Also no sefarate storase area is reauired for imase readoutg so that a dark current, contribution prom this source is avoided. The use of bies charse in the storase area restits in an afditional reduction of dark current since the surface thermal seneration rate, in mos wtructures is much bmaller urder inversion comditions then under demetion eonditions:

The epitaxial cif structure is resistamt to imase bloomins simce ach sencins bite is electricalls isolated from its, neishbours. Charse spreadins in the substrate is minimized (rehative to devices without an epitanial laser thy the underlsins charse collector.

3.5 Ccm Technoloss

There are essentialls three different tupes of con frame transter imsears ald of whieh function with a buried chanmel. These fere efront side illuminated device (ess. EEV B600) a thtm mackside illuminabed device (fica SID) and a virtual phase device (T,I TC 201). Althoush other desisnt have been completed usins surface channels thes ferform more foorls than the buried channel deviceg.

The virtual whase concert (Fizure 3.9) simplifies the manupaturins process bu edminatime the overdapfins sate electrode structure common to all ather con wrom cessing methods. This aives mans atded advantases of simplified clockins <one clack vereus two to four (elocks), lower dark curirent which is an order of masni... bude lower than other cca technolosiesy hish aumatum efficiencu with improved due response and a fotentially much lower cost because of a minimum mount of maskins oferatoms durims productiont

Because the mumer of deposited clock levels on the devices syrface fos been neduced bo opey bhe ocourrence of surface damase and shorts is reduced to the same hish desree of rdiabtiditw as in the fuadard mos temnoloselt This reducesthe mumer of column defects.

A vers important feature of the virtuel fhase techmoloss in our baflication is the vers low abrk current, There are three major commonents in the totel dark current in a CCD imaser: a surface commoment due to the interfacelstatest a depletion resion component oue to the current eufflied fis the bulk seneration recombination centrestand a dipfusion comsonent due to the minorits cerriers prom the neutrel underleted bulk of the silieon.

Op the three, the surface commonent is the most important one in mormal con imase sensors. Howevery in the V.P. technoldss the eontribution of thjs surface component is mestisible because the giog - si interface states are filled with holes. In adcition it is also rossible to bias the clocked phase durins the fitesration peridd at a nesative sate potential. This will porce holes to the surface over the entire imaser areay further reducigs the total dam currentonder these circumbances the dark current is reduced to - AnA/cm**2 an order of maninude lower than for other con inase sensors.
3.6 Degeration of con Frame Tramsfer Imasers

A frome transfer, ccen imase sensor (Fisture 3.10) consists of an imase intespete areag an imase storase area and a horizontal transpart resister that clocks sinste pixel information on a lime bu lime basis to an outrut amplifier.

A trajeal oferabional geatemce is described below. Initialls the whotocharse is fintesrated within the imase area, Next the entime imase area is dimola dumped into the imase storese area where the deta is read out ine by jine bu dumpins one line at a time into the horizontal shift resister. An intesral autwtut amplifier comverts the charse fachet associated with each pikel into a discrete voltase. The next imase is simultaneousta collected if the imase ares.

The timing constramber for aco imsse sensor are far more complicated than those for a Cta imaserg because the cin can be aceesed randomly in srouss of $4 * 4$ jixels whereas the con imase has to be read out completels at all times. For a star trackerg thereforey a cim sensor would have a definite advatose because at ans given time we are omly interested in maximum of four ebars im our Pield of view Trensleted into can termsy this would mean an access of 4 sroums of $4 * A$ wixels (in trackins mode).

Howevery we can senerate a similar seamemce for ach imester, To facilitate comfarison we have to translate our requirement to 4 grours of 4 limes and select 4 pixels in each line. The worst case timins reaurement for each wixel is determinedbe the mimimum imbespabion times the time that is reduined to dump the entire imase section into the stoprase section and the time that is necessary for the 4 tof lines in the storase section to be clocked throush into the seriel resister. This can all be done at moximum allowable vertioal clock freauemos. Dhce a dine is dumped into the serian resister: it is clocked out et the maximum horizontan chock frequence until the first pixel of interest is reached. The norizontal dock is then slowed down to a value that is determined be the tobal momer of pisels of interest (4 承 4 : $4=64$) drathe minimuln intesratiom bime (10 msec).

This conceft, minimizes the required video bandwidn for the analos sismal processinschain and therefore reduces associated Johnson moise.
3.7 Arialos Sismal Frocestima

To assess the performance of the anelos sisnal wheng we heve to determine which noise sources are present and their contribution to the total ssstem noise

The circuitry used in ans arres to provide peadout of the individual mixels contains several Johnson motee sources. The distributed reststance of the arras
edectronesy the inmeselection switches arod the first
 video sisnal. Furthermoreg offacitor reset switen motse (KTC mojse) g shot moisel in the dark current arid leakase ourremt in the line multamex suitches can be Eignjficank.

0
Feset Nodse
Wham a swittoh is used to stet the voltase across whe oafocitory the final voltase on the ozazeitor nas an umeertaints due to the pirgte resistariee of the suitoh.

The masmitude of this uncertaints is determimed bs the pollowing eauetion:

and T 中emwerature in desmee K゙elvin
amd C outwh camacitamee
The reset noiseg N(kTC); measured as an romos fluctuabion irthe rumber op carriers is ejven bst
$N(k T C)=(\{K T C) * * O, 5) / Q$

(rus onariers)
(EAectronic chorse din Coulombs)

With atspical arras outwit cepacitarue of 10 wFthis senerates at room temperaturet

$$
N(K T C)=1267
$$

This roise however can he sumpressed bs means of the Eorrelsted double samplims bechrique. The smonmt op sumbression that can be achieved is determined bu the dismee to which the first mafie is a messure op the kTC voltase Fö̆ a video ssstem whose bemownden is Getermined hs ofjrst orodr roll off frequencs of fo(Hz) y the sample voltase com be debermimed ss

(Volit
where ts: $=$ gample interval time
jf time sample intervay as enosen in subin a wa bhat

In this caseg kTc noise would be sumpressed bu a factor
 aravalent roisecontribution to 126j/780 $=8.4$ (rms Carriers):
0 Freamelifier Nosee |
Using an uldre low noise dual matehed N chammed tield epfect transistor like the caB60 from Crsstaloniosy we could achieve the pollowns enuvalent moise level:

where Un $=$ sfot moise figure of amplifier Cin = infut carecitance of amplifier (Ferad)
fin cose of the crigao, these pisures are:

$$
\left.U_{n}(r m s)=1.4 n v(H z * *, 5) \quad \text { (at } 1 \mathrm{kHz}\right)
$$

$$
\operatorname{Cin}=30 \mathrm{fF}
$$

Therefores,

$$
N a=.26
$$

(rms carriers/(Hzw*.5)
If we assume a video bandwidth of eas. 10 kHza than the botal contribution of the premmaifier would be:

$$
\begin{array}{cc}
N a_{1}^{\prime \prime}=26 & (r m s \text { carriers }) \\
&
\end{array}
$$

3.8

Availabilite of CII's
Althoush cin technolosu has mbtured durins 10 sears of develofment at Gemeral. Electric (GE) under various U. B . Mefense and NASA contracts; the deviees are not offered commercialls. Howeverg detajed discussions have takem place with various peofle at GE reanrdins frocurement of ur-to-date cin imasers. The compans has now @xpressed willinshess to sell sample devices for important seientiric apmbications in order to ewtablish an edse over the competins ccn technology. Dut of e wide variets of gTa imasers that have been developedy the ST-25b deviceg developed for NASA: appars to we most sutuble for the spectio ampacotion. An improved version of st-pstis extected to be available shortis. Alfrelimimars breciticetion is siven below CTable salb.

Table 3.1 Characteristios of the GT-256 Arras
Arras Size
Finel Size
256×256
$20: 20$ micrometers
$1.3 e 06$
1e04 electrons/sec at 0e
0.5% Full well
less than 1%
Werk Current varidtion, $1 e s s$ than 1.5%
Quantum Yjeld 0.4
Fesfonse foint Smited Trawezoidal
sreater than IEOA Rad
4×4 Pixel Subolock with jucrements of 2 wixel

Gee Fisure 3.11

0
The architectural details of the ST-256 device is not Het available howevery the device is vers gimilar to a 128×128 arras developed previously. Fisure 342 shows the sensor 1.asout of the $128: 128$ arras. The arras can be selected bu groups of four on both horizontal amd vertical akes. The arras is desismed for sequertial readout of imose subolocks selected bs means of scannins resisters. In operationg a losical "one" can be entered into each scamming resister and shiftedg as reauiredg to select the desired sumsroup. The column drive linesg E throush E can then be driven to obtain four warallel outputs, In addition to 128 active rows another row fls avalable to provide differential canceliation of columando anterference. This compansation row is selpeted for evers row address and is cleared when evers row is cleared. A thricel readout seauence change the rou and columm valtase bilas andyconsistsfor:

The column end row biases are brougint to zario to clear the entire dross of stored chamses bu irijection.
The row bias is set at - 8 b anos the colnmon bo $-14 \cup$ for a readerable The rinoton wenerated mimorits, esrriers are stored umoter the columm electrode.

The colmmm amd row oimses are then floeted and the column browsht to zero via the E-wimes The collected charse is transperred to the row oafecitorg ant the dismecement wuremt canses a froportional row Fotertiad chanse thet is sempled bnd held forlprocessiris.

Feturrins the colum bias to - lidu and the row bias to - 80 trenefers the charse dack to the column capacitor and another readicsole cam be made. The acoumatated charse is not lost and refeatiris the read process would Froduce the same output mus the sisnal that had been collecteg durins the first read periode This is referred to as the Namo escle.

Texas Tnstruments has develofer two con imase semsors. These are currently onily avalable as ensineerims samplesg but accordims to tra. will be avajuble commerejelly durins 1983 . TT will select devices for their customers and arej curremblu devedopins an intesrated clock driver dircuit for these imase semsors. T. T.'s arras are motable because of bhe virtust Fhase technolosus which emances the blue responsivity and lowers the dark curremb.
FCA has the best device ad far as quantum epficiencu and blue response is concermed. Howeverg RCA has chensed their probuction wrocess and are currentus enferiencins manfacturins problems. Thereforey there are no devices available at the moment.

EEV (Enslish Electron Valve) is a British mamuracturer of commercis devices desisned for television use. The bissest drawbacks of these sensors are their 3 phase clockins gructure and their foom auantum efficience in the blue.
3.10 Comparison of Ctn va Con Readout Speed

As an example we can calculate the maximum required video banduidth for a ctudevice and a virtuet phase con imase sensor of $390 \% 29 \mathrm{f}$ fixels.

For the ccil imaser, the moximm vertical alock frequencs equals 1.2 MHz and the m aximum horizontal. clock frequences equals 15 MHz.
The required minimal video badwidth depends on the minimum intesration time andthe maximallu achieveable vertical and horizontal chock freauenctes and can be calculated as follows:
p video(min) $=$

were: Tint(min) = mirimum intestation time fov(max) $=$ manimum vertian chock freaumen fon(max) $=$ maximum horizortat alock frequenct.

In the above case:
f video(mim) $=29,508 \mathrm{~Hz}$
If we compare this with the readired minimum video bandwidth for a cum imase sensorg we onle would have to examine a totajof ga fixels ingtead of the complete arras. The minimumbendwidh therefore would be:

P video(min) $=64 / T \operatorname{Tnt}(m i n)$
In our case:
p video(mín) $=6.400 \mathrm{~Hz}$
The cin technolosy therefore would meed a factor of approwimately 5 less video banduidth and therefore senerate less Johnson noise in the amplitier. The fower consumption in the sensor drive ajrouitrs would hove similar constraints. fra case of the cca virtual whase imase sensor the maximum rower dissimated in the cirivers ceused by the charsing and discharsing of the horizontal and vertical chock line capacitances of the imase sensor clodk times onn be caleulated as follows:

F = C*folomk*(U**2)
where $F=$ dissifated Fower
$C=$ plock 1 ine cobacitence
$V=$ clock drive voltase fb-rte amplitume
folock = lock preaemox
Im cose of the wirbual phase ccir imasers
Fvert = Cuert*(Uvertw*2)* $2 * 292 / T \mathrm{int}(m \mathrm{im})$
where fuert $=$ dissifated power of vertical olock driver
Cvert = capacitanee op verticeactock line
Vvert = vertical prive voltose fk-Fk amflitude
Tint (min) $==$ minimum intesration time
Gimiler for the horizontal drivers:
Fhor $=$ Chor* (Uhor**2)* $292 * 390 / T \mathrm{Tm}$ (min)
where fhor $=$ dissifated fower of horizontal chonk driver
Chor $=$ capacitance of horizontal chock lime
Unor = horizontal drive voltase pk-wh amwitude
Tint (min) $=$ minimum intesration time
If we look at the total dissifated rower in the drivers and assume that the vertical and horizontal drive voltases are the samey then we ban celoulate the bobaj dissifated Fower 3s:

For the virtual rinase Com where Vorive; 17 volt ano Cvert $=7000 \mathrm{FF}$ and Chor $=64 \mathrm{FF}$ andifor a mimimum intesration time of Tint $\begin{gathered}\text { inin }\end{gathered}=10$ msec we ean calculate the total driver fower as:
$F 60 t=329 \mathrm{mw}$.
We anmot do a similar calculation for the cTu deviceq mecouse we do not have bhe necesseru information for the chock line capacitances Eecause of the ramomm acesseibilits of the cimy the effective chock freguemmb is lower es onle \& sroups of A*A pixels inave to be addressed E Eased on this fact the bobal worst ease wower dissjeetion in the drivers is frobathe less thom in the cory arransement:

The fixed Fathern moise cambe eliminated bs taking two * sets of measurements (widh different imbespation characterigtics and swatractjms the pirst from the secoma.
A twpical read process por the CTM is illustrated im Fisure 3.13. The method emploss mom-destructive readout fin this cose charse oomtimuesto intestate while it is semmaer N times amo is summed to creabe the firgt set tharae is allowed bo contimue intespatinc sma once asedn sempled amd summed to create a second set. This results in a differemce sismal that is profortiomel to N**2. The temporal moise will shim imeoherentiseo that the reagout modse comtribution for each mfdate is rroportional to N, The gisiraltomoise ratio isy thereforey froportiomat to N**d. 5 .

The overall diasram for oferetion in bre above mode is shown im Fisure 3,14 , The double readg subtrabtion Frocess effectively cancels the umwamed Fattern moiser Howevery the intespetion thme as helved which results in a foctor of two wsmal losst althoush this loss is more than recovered bs summits the nom-destruchive readout.

A similar procenure anmbe used with atoca be formins two sets of measurememts: the first with intespation time T and the Eecoro with imbesration time 2T, Th this case mo improvement tim tempors mbise results amod the imbesrationtime is affectivels malued.

The subtraction mocess cam be eniminatod in awflications where the watterm roise is lower fhan allowed or where sbstem time mad fromessime constrednts al Jows Fremeasurims mram morins the watherm moise for compemsatiom durims oferations The secomo sproroab is of Farticular interest jriapplicationt wherm omlua small ared of the semsor reauires hish acouracsy simoe pattern rojee from onls a few mixels woulc meed bo be measured amd stored.

$$
3.11
$$

Mevice Fecommematedion

Tisole 3.2 summarixes the imsorbant characteristics of COM's and CII's. We recommend the use of the CIA ST-2Eb because of its demomstrowe performamee whereas the obher devices have ferformance characteristics which

\qquad

\qquad Serial (bucketrarissde) \qquad $\%$ access to dato pixel

6 Sark Eurseni
1 nA/cn2: לsfical
$-4-5 \operatorname{nA} / \cos 2$

200 cariierse tyricel 60 carrierse tupicel (3t 10 Ar/sec)
(at 10 \{s/sec)

9 Local Fesponse
Unipornits
1%

of Intel (but at 10% of the fower consumption) this wrocessor is also an inteal candidate.

The NSC-B00 is evallable in eommerabl to c to t70 [) and an industriad spade (-40 (0 to $+85(C)$ and a militars version will be anrounced.

The gocso is available jn an industrial srade and in the minitary srede (-5g C to t125 C). Because of the CMOS structure of both frocessors \{amd peripheral chips) it should be fossible to set radiation hardened versions. Harris (unlike National) je currentlu a supflier of radiation hardened products (RAMy Fom and Ifrear I.C.s) and it is more probable that thes will develof a radiation hardered version mieroprocessor.

0
RAM and ROM
Currentisy there is a varieds of CMOS RAMy ROM and EFFOM available on the manket, The Harris HM-65ldy a.s. a $2 k \times 8$ CMOS FAM consumes turicajus 50 mW/MHz and has etendos fower of 250 microwstts. The Herris HM-balby eis. a 2k : 8 cmos fuse link FROM consumes tsmicallu 65 mb/ityz and has a standbs fower of 500 microwats xt is with compatible with the industrastandard 27.6 EFFOM. The National Semiconductor NMO $27 C 32$ e. $5 \cdot y=4 k \times 8$ UU Erasable cmos fron consumestywically $5 \mathrm{~mW} / \mathrm{M} \boldsymbol{H} \mathrm{m}$. It is Fin compatible with the industrestandard 2732 EFFOM:
o. Other Misittal Circuitry

Currentlus there are several manuracturersg (National Semiconductor, Motorolay Fairchilds GFI) deliverina LSTTL speed and rin competible CMOS losic eircuitrs. This will allow us to build a complete CMOS losice Gsstem, that will emphasize the low fower reaudrements of the total sustem. Assimg because it is CMOSy it should be fossible to set radiation herdened chips
o Linear Circuitre
Generallys there is a trade-orf between spead and power consumbliong linear amplifiers are available with Fower consumptions prom a few miluiwatis to several mandred milliwatts. Withirl this ranse we expect to find mans that can be used in the analos sissial processins chan. Harris has severad amplifiers of loteh up free desish that can stand hish radiation boses. from a power consumption standpoint of view it therefore would be
preferable to operate the imase sensor at the lowest possible readout speed.

0
A/L Converters
There is en enormous variety of Ac converters currently on the market. Although there is not a very strong correlation g one could generally make the statement that the better the resolution and the fisher the conversion speedy the more the rower consumption of
 converter looks like the best solution. If we limit ourselves to a 25 microsec conversion time then the rower consumption could be held down to about 400 moth.

Increasing the conversion speed to about misconec would double the power consumption. At this stagey we don't have information on radiation hardening possibilities y but because most converters are hebrides built with bipolar and comas circuitry we do not expect ans particular difficulties.

> A.0 FOSTTTONAL ANA ANGULAR ERROES
$4+1$ Location Estimator
Three different techniques for locatims star posibion across the blur circle (on poirt spread furiction) were considered for investisation The mean and median locators are intesral formulations which use all of the data in the blur grot imese to define e weishted centroid. The least squares estimstor compares the blur spot distribution with an expected distribution and subseauentlu deduces star wosition to be some well sefined roint on the expected distribution when it is aljsned with the measuredtulur spot data.

The mean and megian technitues require no apriori knowledse of the blur spot distribution but are deperoent on the assumbicm that the true wha position is coincident with the defined centroid. If this assumption were not true then the least seuares estimator woudt be reemired in order to obtain realistic lestimates of wtar Fosition. Howeverg when the roirt spread furtetion is reasomaby sumetric (as one would expect for star imases froduced bs optican bhuring techmiquess then the added effort involved in implementins the least satres methodologu is not. justified

There is no compellins reason to preperentially seleot one or the other lop the two centroid locators and indeed thes both sield the same result for eswmetrie function. In additiong one would not espect the 1 esst squares locetor to be any more frecise than the cemtroids for a simple nearls sumetric poimt spread Punction (its advatases would be more evident in the case of astructured function with location informetion stored in characteristie features such as secorders Feakw). We have therefore concentrated our studies on the mean locetor incer the ossumption that thas bechnique is a suitable indicator of location estimator precision. This choice allows for the studs of locebor sencitivitu to the cTa veriades and its relation to the noise equivalent ansie. It is rot expected that these investisations will be sisnjpicantly aftected bu more refined information on the foint spread function.
$4+2$
Méan Locetor
The mean locator is analosous to the centre op mass calculation ja farticle ststem dshamics with the sisnal
induced charge density (point spread function) actins as the weishtins function vizy

$$
\begin{align*}
& \bar{x}=\int_{-\infty}^{\infty_{0}} \int_{-\infty}^{\infty} x w(x, y) d x d y \tag{4,1a}\\
& \bar{y}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{0} w(x, y) d x d y \tag{4,1b}
\end{align*}
$$

where w(xys) is the normalized point groead function whose integral over wand is is unitusif Q is the total in used charge then the coarse per unit area or point spread function is simply Q*w(x,y)). Appropriately the mean if taken over the complete point spread function is independent of the oryisim location and the orientation of the coordinate system. For a symmetric pointspread function the mean occurs at the centre of symmetry.
If the integration over fy the x computation is carried out we obtain

$$
\begin{equation*}
\bar{x}=\int_{-\infty}^{\infty} x \operatorname{l}(x) d x / Q \tag{4.2}
\end{equation*}
$$

where $L(x)$ (dine spread function $L S F$) represents the combative charge in the a direction er unit length in the x direction for brevitis we consider only the x coordinate of the mean i the y coordinate expressions are clearly identical in form). If the sambinas intervals are finite the mean calculation becomes the Quadrature approximation

$$
\begin{align*}
& \vec{x}^{\prime}=K_{i}^{1} \int_{\left(i-\frac{1}{2}\right) d}^{\left(i-\frac{1}{2}\right) d} L(x) d x / Q \\
& \therefore=d \sum_{i} g_{i} / Q \tag{4.3}
\end{align*}
$$

where otis the pixel width $x=0$ (Fixed centres), and a is the integrated charge in a column of pixels straddling x.
of Onterfolation Error
If the translated coordinate x is measured from x then the interpolation error is simple
where

$$
x_{i}=x_{i}-\bar{x}_{1}=d_{0} i-\bar{x}
$$

Lettings

$$
\begin{equation*}
T=i=i_{0} \tag{4,4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\frac{\bar{x}}{d}-i_{0} \tag{4.40}
\end{equation*}
$$

where io is the fined column containing $\overline{\text { xi }}$ yields

$$
\begin{align*}
& E / d=\sum_{i}^{2}(I-\delta) \int_{\left\{\left(x-\frac{1}{2}\right)-\delta\right\} d}^{\left\{x+\frac{1}{2}-\delta d\right.} L(X) d \delta / Q \\
& =\sum_{\Sigma_{1}} \int_{\left\{T-\frac{1}{2}-\delta\right\} d}^{\left\{x+\frac{1}{2}-\delta\right\} d}\langle(x) d x / Q-\delta \tag{A,E}
\end{align*}
$$

If $L(X)$ is symmetrical then the integrals in can we folded about $X=0$ on to the positive half of the X axis. Furthermore the overlafefins of the resulting integrals reduces the error expression to

$$
\begin{equation*}
E / d \circ \sum_{l>0} \int_{\left(i \frac{1}{\lambda}-\delta\right) d}^{\left(i-\frac{1}{2}+\delta\right) d} L(x) d x / P \tag{4+6}
\end{equation*}
$$

This function satisfies certain basic properties of the interpolation error. If xis at the centre or edge of e pixel ($\delta=0$ or $\pm 1 / 2$) then the ssmetres of $L(x$? ensures x will be located at the same point. Since there is no distinction (except sis) between the cases when x is a distance / $\delta /$ from the pixel centre it is expected that the function is odd in $\delta=[-1 / 2,1 / 2]$. Lastly the periodicity of the pixel structure requires that the function be periodic from pixel to pixel. Note that the error its not necessarily peaked or symmetric about $\delta^{\prime}=1 / 4$. For example a point spread function which tends towards a delta function (the case of non blur pins Gaussian optics) produces a sawtooth error curve versus (vertices at $\delta= \pm 1 / 2$). An alternate and useful form of equation $A+6$ is the Taylor series expansion

$$
\begin{equation*}
E / d=\left(\frac{Q^{5}-1}{Q}\right) \delta+\frac{Q_{(2)}^{+}}{Q} \frac{\delta^{3}}{3!}+\frac{Q_{(s)}^{2}}{Q} \frac{\delta^{5}}{5!}+\cdots \tag{4,7}
\end{equation*}
$$

where

$$
Q^{*}=2 d \sum_{f>0} L[(a \beta-1) d / a]
$$

The results of the previous section were based on the assumption that the entire area of the point spread function was sampled. In practical applications this will not be so and hence additional error will result because of truncation in the mean computation. The combination of interpolation plus truncation error can be written as (for a symmetric point spread
purction)
where it is assumed that x is within $1 / 2$ pixel of the truncated point spread function, \quad and L. $^{\prime}(\%)$ represent the truncated integrations for total charge and line spread function respectively and N is the total number of pixel colum is in the x direction (See Fis.4.d). We are again ponds providing derivations for the : direction the y coordinate derivations being similar in form, It is also noted that if $L(x)$ iss symmetric then $L^{\prime}(x)$ will also be symmetric. In the case where the point spread function is separable into product functions of x and s the error computations in each direction are independent of trumation in the perpendicular direction:

Equations (4.8a) and (4 .Bb) were analyzed for the specific case of a Gaussian point spread function given by

$$
\begin{equation*}
P(x, y)=e^{-y^{3} / a \sigma_{y}^{2}} \cdot e^{-x^{3} / a \sigma_{8}^{2}} \tag{4,9}
\end{equation*}
$$

The relevant farameterization is din terms of the standard deviation σ of the Gaussian point spread function and d the pixel dimension. The blur diameter (full width at half maximum) of the point spread Function is * $2.35 * 6$.

The results for 2 and 3 pixel colum is in the x direction are plotted in Figure A. 2 and Figure A. 3 cote that δ is taken prom the seometrio centre in the

Figure 4.1, Foint spread function and the samplins window (eq. 4. 0)

azse $N=2$ as offosed to the definition siven in equation 4.4b. The rumbion is odd about the orisin and has the Feriodicits of the arras. The fisure cans thereforeg be confined to the ranse o to 0.5. Implicit in the calculation is the assumption that the centre of the imase can be estimated within a siven wimel bs other techniases (e.g. a Friori knowledsey thresholding or bu findins the pivel with the larsest wisnal).

Two limitins cases can be distimatighed wich are bspical of the error variation in semeral. If the Fixel diameter d is not larse comeared to bhe wioth of the line spread function smeasured as the standard deviation 6) then the mean calculation becomes somewhat insensitive to the mosition op bine centre of suminetry. This lack of sensitivits immies that the ablculated mean lass behind the true mean as the trua mean is moved in a particular direction rins for small d/6 the sisn op the error in Fisures 4. 2 and A. 3 is positive or mesative dependins on whether the true mean is on the positive or nesative side of the seometric centre. In the limit as d becomes very small. the fraction of the point spread function which is actualls sampled appears flat so that the computed mean is the seometric contre of the samplins window and the error is simply the displacement between the centre of semmetrs and the samplins window cembre ($E / d \rightarrow-\delta$).

At larse fixel diameters truncation is no lonser a probleni <i, e, the sammins window colleots charse from that resion of the foint spread function which dominates the mean calculation and the ambisummetrio interfolation error discussed above doninates.

The error will alwass decrease as the number of pixels in the samplins window are increased. Howeverg an imerease above a sambling window diameter of 2 or 3 wirels is unacceptable siven the rapid increase of moise equivalent ansle with fixel mumber in CCD arress. One must therefore look to oftimizins d/6 (i, e. Varuins the point spread function width in the opticest design stase) in order to reduce the combined interpolation/truncation error. Fisure 4 . 4 shows the dependences of the errorton d/6 for a 3 pisel columin wide sampling windou at $\delta=1 / A, \quad$ it is evidemt that a whimumin the meishbourhood of a/6 $=2.5$ exista dntermediate to the truncation and interpolation

Figure 4.2
Interpolation/Truncation Error for 2 Pixel Wide Sampling Window

Figure 4.5"-Blur Spoi Motion

For this expression one can show that in the x^{\prime} direction

$$
\begin{equation*}
\sigma_{p}^{2}=\sigma_{b}^{2}+(V T)^{2} / 122 \tag{4.13}
\end{equation*}
$$

where σ_{p} is time stander deviation of the velocity dependent point spread functions σ_{i} is the standard deviation of the instantaneous paint spread function and UT/ $\sqrt{\text { ta }}$ is simply the standard deviation of a flat pillbox extending from -UT/2 to UT /2 The impact of equation 4.13 is that it enables us to utilize the "results of the previous section provided the velocity induced changes in the standard deviation are accounted for.

The largest change in standard deviation (with respect to the x coordinate) occurs if the velocity vector is aligned with the original CCD x axis. If we examine Fissure 4,4 we rote that the minimum in Eld is located inf the rance of d/6 between 2 and 2.5. For this range we have from equation 4.13

$$
\frac{v r}{d} \cong \sqrt{2 \psi \Delta \sigma / \sigma}(d / \sigma) \quad=\frac{\sqrt{24 \Delta(d / \sigma) /(d / \sigma)}}{(d / \sigma)}
$$

Thus for d/6 "2. 5 g this implies that motion blur should be limited to . 88 wireds between updates.
$4 \cdot 3$
Development of a Noise Model

There are two components in a noise model of a startracker. . The first component describes the startracker performance and relates the noise equivalent angle to the performance characteristics of the imeger. The second component extracts those characteristics of the arras to allow calculation of the detector sismal-tomoise ratio.

Star tracker performance can be characterized bu the random error in the imase locator our modelling has been confined to the mean locator for the reasons described above.
mark current affects the measurements of star position by movirat the apparent centroid away from the true position toward the centre of the track window if the averse cark current is measured amd subtracted only spatial variations afreet the centroid. To avoid
errors of measurement the temporal noise on ans pixel should be reduced by inereasims the integration time to bring the dark signal up to aprowimatelay w hel well. The average dark current per pixel can then de computed. Alternatively the dort current for each pixel can be stored and used to correct the star data. This is feasible for well defined areas of the arresters. the track window provided these areas do not chance frequents, A tabulation of noisy panels should be made b hus allowing defects to be identified and snored. Hark current contributes shot noise and the spatial variation of the dark current causes a random error in the centroid.

Table 3.1 above is a comparison of the semeral characteristics or eta's. Or the indicated parameters bine random noise model is most sensitive to fotbern noise Fixed pattern noise usually refers to the bestial variation of the video signal when the eta is in the dark, Occasionally some authors will refer to the fixed pattern noise in the hishatisht ration of the image, He have referred to this noise term as responsivity variation to distinguish lime two berms.

Od model assumes measurement and subtraction of the averse rack current this scenario is realistic because it requires a modest video buffer. A discrete model is assumed viz.

$$
\bar{P}_{x s}=\frac{\sum_{n, p} \frac{p}{}\left(I p_{1 n}-i \tau\right)}{\sum_{n_{1} p}\left(I_{p_{1 n}}-i \tau\right)}
$$

where Pr is the centroid in the x-direction corresponding to the summation over wi n corresponds, Lo summation over the s-directions I man represents the measured chare at each phatosite i is the average dark current and G is the intestation time.

The measured chase at the fhotosite ran be written

$$
I_{p, n}=G_{p, n} w_{p, n} Q+i_{p, n} r+R(\Delta)
$$

where $f(t)$ describes the sampled read raise (temporal
noise such as amplifier chocking noise eden and has zero meany i represents the bork

$$
\text { P. } 0
$$

current at a seven photosite with mean $\underset{i}{ }$ y Gean represents the variation in responsivits and without loss of seneralits is assumed to have a mean of 1.0 remeresents the total motocharse associated with a given star and w describes the fraction of the

Fin
point spread function $w(x, w)$ which is collates bs pmed per
j. $\cdot \mathrm{e}$:
where $0_{0} 0$ define the centre of the star image.

Assuming uncorrelated random variables we a ar i evaluate the ramos. error $\sigma(f)$ in the pixel position and relate ib ba

GiG) the rimes. variation in responsivitus
p the fractional spatial variation in the dark current.

G(F) the romps. read noise

We further assume there is a Poisson statistic for sensing charge which causes shot noise in both the jamal and ark current.

We obtain the following results:

The first biree berms desuribe lire respective contribution of the spetia? varistion in responsivitsy bine shot moise in the sisnal ama bhe combined cortribution of dark ourremt shot modses spatial roisem due bo dark murremb variation and read mojse e Bance the mean derk current is ari averase over all pixats its mobsurememt error is mestisiale combared bo ald obher. 6erms.

Note that all summations are over a tack wincow of N a H pinels mertred about arrestimate (Fs y Fy of the

 はम口
 wwoad puriotum that is coldected whtin the trach whricow:

The Quantities Ag bo have been evaluated for a Gaussian font spread. Furthermore we have assumed that 181E0.5 This later requirement has been addressed in the discussion of systematic error. From a mathematical point of view a two dimensional Gaussian

2. 2

exp($-(x+3) / 2)$, has the advantage of bens both circulars symmetric (as one expects from the optical sustemi and separable along two perpendicular directions. The value of Abb vars considerable and are best described bu an parer bound. C can be validated directs.

$$
c=\left\{2 N \sum_{1}^{\left[\frac{y}{2}+1\right]} p^{2}+N \delta^{2}\right\} / R^{2}
$$

where

$$
\left[\frac{N}{E}+1\right]
$$

is the
intesral part of $N / 2+1$. For a well defined spot and a matched track window we can ensure that k is sweater than o. s^{2}. C therefore increases rather dramatically with N taking the following minimum values $1 y$ of 20,50 for N: $=2.2945$.
of the three quantities the last term dominates all noise processes since A and a are less than 1. While a track window 2 pixels wide gives a smaller random error than a 3 pixel window the systematic error is rather leaser, Conseauentus, a three pixel window has been used. : The umber values for A sB and C are Oils 0 ot and 8 a respectively.
4.4

Afralication of the Noise Model

A noise model has been applied to bore devices the
 con : These devices have been selected because then represent three technolashoat abases -- the random accuse charge injection devices a thinned backside diluminabed three phase charge courted device and a franbeide indumated viftumphase devise. Figure A. ob adthated the random error (traction of a pixel) versus dark murratiffor the bores devices at infinite aberration the (2 oo: While the RCA device has the

Hzreset responsivitsy the 1 arse wixel area (30 \% 30 microms implies a sreater bark eurrent contribution Ghan the other devices \quad Tm arditioms the FCA device reauires lower operatime temperature to achieve this results The respomsivituy fisel adze ara derk current Por the GE and TT devines are comparahle - ofsaremtho OH: have been manmfectured with room temeersture (2EC)
 mhile the TT devioe is remorbed bo orerate at o. 1
 varietions in the rewwomsivite which acooumberor its improved merformance.

Further obmwarisom of devioes hes been aomptned bo the GE CII amo TI virbuad mbase mevice simee the RTA davice As werevellu poorer then the other two hecsuse or bhe Jerser dark curremt at a suem omerating temperature:
 Lhe ow and TT devices are simijary wonseaumbtys the be nevice shows an improvement of awwroximetely t. 4 him the Hotse equivelent ancle wher the tho devises aru

 कमि]

The Fixed Fattern modse has heen monetheo as it bheme
 wordetioms in the derk Gurremt. The model wormmetere

\%obe 4. 1
Monel Fareneters

Wark Gurremb
Fractionel Variation im
Tark Gumrert.
Beswoual Glookirs Noise
mbrypaer Noige

tomel $\mathfrak{F e w w o r s j v j t u ~}$
Varidetom
46036% 6.
1%
7 \%
$20 \quad e^{*}$
1.5 Eo3 electronstsec com

1. $\%$
0.5%

Mene of these rerameters androt be determired prom
 shodeated that the mbokims nojse is aforoximeteds 7000
 bbst the use of a coprelated bouble sempler ash rebuce

 bewntixue has wiedded wimiter values of wombined temporel ama pixad ratuern modeme

Phe be remorts inotestea thet be]ow o despace [the Johmemm mojse terim dominstes the barb eurremt. Howevers our model is not vers sensitive to the romse source mut ombs to the totst modee
 retio with Jens areapor tuo offrerent pocel tensu
 thot Tor a aiven dark omrremt bhere is = masimum

 the p/f. 4 Jume:

 जhational use of arge awerture lemexs the be newte

 tmede an enum atstribution of the sumbemedio ard

 *hoteg for stare of dipperent mesmitude Nabe bhat
 at lomser intesrationtime For ald intesmadion bimes iams than 50 Eecondse derk whramt does mot abuse soturation of the arras at ejther temperotura.

Figure 4.7

Figure 4.9 Iniegrasion tine: vs stellak hagnifude

 अanofi aror to evolve ar umate stratess. The mindmum modse equivalent arose shoula rot axceed residual

 timeror a siven lens.
 wishal bo-noise retiog of 293 and 147 resfectiveisy we

 fon : ishat - Lownoise retics tinet are requined tomblably imply brab

$$
A\left(\sigma^{2}(0) \text { y } B / Q \because[\% / S / N)\right.
$$

 fithat

$$
(s i N)_{i n}=6 A \gamma B
$$

anticua

> A is the lens area
> i is the averase fork warrabl
> P is the fractional vordefoom in dork eturemt due boswetady variabiar
 SN $=(5 / N)$ jimp

 commutation is

$$
T=\frac{1}{2 f^{2}\left(M^{2}-1\right)}\left\{1+\sqrt{1+4 f^{2}\left(M^{2}-1\right) \sigma^{2}(f \mid x)}\right\}
$$

 whmertery ario wwstem noise

 Wote thet halvins the dark currenty i, doubles the antusistion times this corresponds bo $T=-8 \mathrm{C}$. The sixnsl. to noise retio

$$
(e A \operatorname{lin} i)
$$

and the rms intermalation error is

$$
\sigma(p) \sim \sqrt{C}\left(\frac{M f i}{e A}\right)
$$

 wreas are 14.5 and 7.25 am reswectivels.

The lens roced denath then selomines bhe reaured dEA

$\sigma(P) \theta_{p}$

misere Op is the arisular subume of 1 wisel. Wobe bab

 trsceof of mower versus weisint se reautred to aswern
 the lens ofea. For fixed modse eanivelent ansin amd rowat lamthe the rabio of area to derf ourrent is fixed so bat the tradeoff is :lear.

- Effect of Motion Elus

Whan ortital rabes ore larsey we attempl bo combrot Go sestemetic errors bs deareasima the update time and
 rabdin. Remeatedmeasurement allows estimation of a strashb hine wich describes stellar position ather wemerawotaton or interrolation and which correcte for the inhererit lead or lesi.

We emaine two cosest larat orbital rates of 240 are whestec correspondins to a 70 minute low orbil and what rates of 15 arc sewsed wormesonding to a suobshenronous arbit. Table 1.2 indicates bhe whformance of wo different stsedeldesisns ofereted with the update times that would be required por is

```
stetionartstar field. Note thet the star pald is escentially stationers in seosunchronous orbit. The tolerable movement of 0.89 pisels reatires a larser maber of readimss with a mindmameasurement time for the low orbit case, This results in a larse VEA for exch measurement. Howevery the larse number op measurements \({ }^{2}\) reduces the effective value ds the seuzre root of N sutris the indicoted NEA. Note thet this mode is effective whenever the chockim and amplifier mise dominete the ctu moise cheracteristio sinwe in his dese there js no difference between on chifropp vitw summation ferurther increasins the intestation bime and the mumer of readimss bhe desired NFA em be achieved.
```

Tanle 4.2 Effact of Ornital Rote on the Urdate Tine and the doise Equivalent Ansle

Low Orbit

Star Masnitude	6	6
Period	90 min	24 hr
Oraital Fate	240 arc se/sec	15 orc sec/sec
Lens Aferture	1.4	1.4
Lens Focal Lenstin	$50 / 85$	$50 / 85$
Fixel Ansular Suhtense (arc seconds)	91/53	91/53
Star Fate Fixel/sec	$2.64 / 4.53$	$0.165 / 0.283$
NEA No Movement	1 are sec	1 arc sec
Intestation Time	$4 \mathrm{sec} / 0.3 \mathrm{sec}$	$4 \mathrm{sec} / 0.3 \mathrm{sec}$
Star Movement Fixels in l Ufdate	10.6/1.36	0.66/.085
Mzximum Tolerzite Movement (fixels)	0.88	0.88
Number of readins/meas	12/2	1/1

Tonle 4.2 Continued

heasurement Time (sec)	0.33/1.5	Equivalent to
	$5.8 / 1.9$	stationary case
Effective NEA. (zrcsec)	1,67/1.34	
Intesration Time (seconds) to achieve 1 arc sec	11.2/0.54	

5.0 OFTOMECHANTCAL IESTON

The optomenomicel desisn adoresses four wreas optical wonfisurationsy choice of lensy stros lisht surpression and an sssessment of thermal load at the cherse transrer device.

The discussion in the cherters above has aseumed biat, muttiple cameras are rresent. However the desisn hhoiges were restricted to one cto mer camere simee this describes the escente of the concewtual desisn hojees. In this section we discuss the meed for mattime CTE ser cemersy and the mumber of cameras that are reautreat

Lens focal lensth determmes both the fiald of view and the ensular whtenwe of s sinsle forel wiven the mechancol dimensions of time aras. There one numer of options avaluble as cummariad in Tobla $5+\ldots$. The rabio of dark murent bo lens area fetermines weisht. and powery so thet decreased lisht levels (smeller lens arear or decressed throushmut cen be compensebed ma wolime the maras. Imwrovememt of system merformance as ofactor of 7 a allows stams weaker then masnitute 6 E be tracked a narrower field of vies can be used arm hather resolution is obtained. Howevers the wise of the star abtelosue increases substantially.

Fisure Eat inustrates bhe mounting of the lems? arrestan mrinted circuit boerd. This etmobure is hosen to mimmize thembl comotuctom from bie awacecraft neat sink.
©. 1 Chojee of liens
in choosins suthole lemsesy the followins oriterian were concimeredt
a) The blur size ofthe lene shoula be slinhtys haser then the fixel size of the arres.
2) Distortion of the par pield must be Gharacterized and correction made for ansular fistance of the imase from the optical asis.

Tanle 5．l．Drtical Ilesisn Choices

E：	Iesisa Drtion	Advantsses	İらすdvanteses
E	Snort pocal lensth iens	Larser Field of View and short tine feriod setween emfts starfields	necreased ansular resolution
6	Lons focal lensth	Increased ansular	Small field of view and lonser period between empty starfields
－	1ens	resolution	
	Increased lens Tismeter	More lisht on the artay	Greater weisht
6	Greater numbers of Fixels in focal plane	Larser field of view	Lens distortion aore critical
E	Multiple arrays	Better then wultiple cameras	Artays are not huttable
\％	Lerser Arras		Custom İesisn Yield
S	Multifle Cameras （aininua of 2）	Hish Lisht level	Weisht Fouer
E		```Two orthegonal jines of sisht defire, fitch, roll & צВ山```	Mecharical alisnment
	Sinsle Comera with Beamsplitter	necreased weisht and Fouer	Half the lisht level

Figure 5.1 LENS \& CTD CONFIGURATION

Lunses whioh satisfs the rirst ariterion were selected siod thereafter the distortiom of that farticular lens

ETL's hove wixels which ranse from 20 to 30 micronst

 Pameliony Mgjs

$$
M(f)=e^{-(2 \pi f \sigma)^{2} / 2}
$$

 sevjation correcsponding to the Gauswism spot.

Since we have estoblimfed hat retio of winej size to
 should rarise from B 6o 15 mjeroms + Fisure 5
 difrerent blur gizest f womporison of bhesw 飞urves with the mff informetion rrovided ms dens maratacturers is
 condidete for further test since uther lenses "show mach

 furbiner aorrextion is neceswars to reduce this value bo $\hat{0}+0 \mathrm{bixel}$.

Lumz wejent veraus diameter of bhe lems js sjven in
 wíjectjyes.

Fur most optical justrumemts offomis stras disht allumataton introguces measurement error. This ocobra even whem tine source is outsjum the fielo of view mecause of dens jmperfections arod reflections within the oftics. In sbaceorafty this offazxis illumination
 minimum aldowable anale between the limb of these

Figure 5.3 LENS DIAMETER vs MASS FOR ALL LENSES

sources and the ofticel axis of the jmstrument ise krount a tuo stase shade abm be constructed to rrovide owtimm redectiom, Jm aur casey simce the sum is the brisibect obuect ombe the stray dight from the suri is womsiderad. The oesist soal of a two stase shade ja to elimimate pirst boumae reflemtions. geecular or miffuse jusht oanmot impinse on the lems eferture untid
 Af the muter stase ere mot "seem" bs the ortics. givef

 Whe Jemsth of the sumshede lensth por a wo and ssmm
 whm is oftent whtam the =tar tracter fiedu of view

Ghe Figecment of beffles in a anshede is determined so thet bhe abimere lens is wreverted from neemine are direwthen atumated waljs. The restomal lisht sprivins at the detector nat therefore beer stbemusted
 \therefore hoife edse or ms several at theme attertatins whocesses, Jf the attemustion copfictentre whe to

 cetermined. The sum over all such meths is fins attemuation ziven of the mapfle कystem: Beppla .

The intemsits distributiom apter muticle reflembams

与he fic.mre.

 or bhe arras. the effect of the bapple ie shown in
 of the piedo of view. There is bine remote qussibilits that Etellar imases ost be sewn with the moon om tie
 Eser worrespand to 2EA fuld wells for el wec
 wimeressiomy will minimize errors iry the meswurammt.

Table 5.2 Signal Levels of Various Sources on the Array f/1.4 Lens of Indicated Focal Length

Etendue $=1.46 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{sr}$

Table 5.3 Signals with the Baffle in Place as a Function of the Angle Between the Source and the Optical Axis

Angle	Effective Lens Area\qquad	Sun		Earth	
		Power (W)	Electron/sec	Power (W)	Electron/sec
20°	2.58×10^{-15}	3.48×10^{-16}	4.02×10^{2}	1.03×10^{-16}	1.19×10^{2}
21°	9.87×10^{-16}	1.33×10^{-16}	1.54×10^{2}	3.95×10^{-17}	45.7
27°	6.69×10^{-16}	9.03×10^{-17}	1.04×10^{2}	2.68×10^{-17}	31
37°	4.56×10^{-16}	6.16×10^{-17}	71.2	1.82×10^{-17}	21
58°	2.54×10^{-16}	3.43×10^{-17}	39.7	1.02×10^{-17}	11.8

$\because: 3$ Thermad Comsiderations

4
Temperature Comtrol of the f mase Semsor

To regume tembereture cemedtive derk ourrent amd brenejetor mojse it is dmportant to control the 6mmereture of the semwor The easiest westomemiove
 Hmbs heet prom its aolo aide to its mot side. The dinewtom of the heat trameper oam he reversed he reverefne the comtrod current vere carefub wonsiberetion has to be siven to bhe mionae of the
 efficiencs of the cooler is nistals dependemt ar the
 enomite of heet bhet hise to be bransperred, these reatore will determine the amount of contrel pouer thet is mecessary.

The cooler contronder oomsists of a mownr Emblifier thet will semerate the meaewकers contrut Fower for the thermoedeotrio wooler f temperedure to भaltase monverter semses the temperature of tho (Frefersblu) inage area or the surpace betwem lhe
 miorowroceseor will execute s womtrol adsor thm finet

- Heat Loed ot the Charse Trarster Revies
 \&efreas C and thet the sint vories in tempereture prom

 fremesthes the mumber of thermoweoumbes in the semoma

 stimetwd mower comsumwtim; as the cold wide femperature is variod. The watculatiom sswumes s hot

 Uैhues for tuo Eorg-werrer aoolere heve meer
 La efunate the sustem performence at intermediete与emperobures.

c	Table 5.A Thermal load			
	Part	Iimensions	Heat Transfer C/	Fower (${ }_{\text {d }}$)
\%				
-	Eeramic Flanse	4.5 cm In		0.60
		0.2 cni wall	114	
.		thickress		
-		4.5 ceilons		
		X sectional area		
区	¢ffrox. 3 cma			
	30 Leads	Copper	23	-
		$\begin{aligned} & 2.5 \times 0.08 \times .013 \mathrm{~cm} \\ & \text { Constantin } \end{aligned}$		
E		Corstantin .014 dia. $\times 0.5 \mathrm{cr}$	476	
		Series combination	500	0.14
¢.	Scene			Neslisible
C	Fadiation	Emissivits 1		0.24
		wall affrox, 65 desre chip affrok, - 5 dest	$\begin{aligned} & 5 \mathrm{C} \\ & 65 \mathrm{C} \end{aligned}$	
Power Ilissifation				0.1

G.j Fotern Fecosmitiom Alsorithm

A rudimentars plow onart which combimes the seareh and track alsorithm with a view to mimimizins the atar
 The prifucife peature of this approseh is the coricept
 monerine the dinks prom a siven wtar to jts rearest mefshburs amo cross indexims this list woth the star cotelosue a comsiderable racrease in seserot time j. achioved at the exकense of some imireased storase reamirements.

0
Creatims the star Cotalosue Orseniastion
The sters of the wes mes be constoered os wointis on a

 nsmeds:

$$
Y \cdots E+F=2
$$

mere vis the mumber of vertices (stars): fis the mumbt
 ithmer of peces of the wolwhedrom.
 redadionsins beoomes

$$
E=: \quad y y \quad \cdots \quad b
$$

 कе storem: Howevery कimee bhe rewresentetion must bu जter centreds thet is, exwh star must "krou" al op itw

 ar Anks per otar. The deta ctructure is illustreted :"
The mesor Froblem remamims is the conetruction of bine polyneoror or comver mull'. An alsorithm for this existe im the 1 itarewure ara is due to Freserata ama
Fature by Searoh and Track Alaorithm
＊note thet oomments are anclosed in ／本＊＊＊Gelimjters，＊／

Fewet forevert
Take star pield smapshot： if and dance … errop rot set then

／出 the ples＂suidemae－wror＂osm be set either by the inertiot sestem on actuel mreakrowng or by the code below（sicmallins an mmbisuous wituations＊／
if stertum onche them

Ferform a timear searom of star mabaloちae por all sters in the fiold of wiew wrentoted ins the inertisj

450

 Pield of view hocetorn Fer esch wier in Fost Fov，wearoh links for utars in mew Fov ard thus mreete a liset of stars empeoted in 190
 star im list $\begin{gathered}\text { a reete cogree imese prom real }\end{gathered}$
 oristhal．For each preadeted Eearch wimoto
 in orizined imase sre mot acomated for them
if have 2 or more stare veritiau
them ietmore the rest if hewe 1 of
fewer stars yerifjes bhen
wet suibefice erroris th this
f．s iust s fuas for the ment sectiom
if suidence errom mot set then
returritruestar wositions from

Fisure 6.1 Contimued

```
if sutommce -- error then
    /* mow a "blimd searm" is
    mecessery rarticular]!.f if tha
    swstem inas mot be=n oferatims for
    Gome feriou op time w'resed
    sujdsmeemerrory /* esmame if trum
    imertual Esstum errarg bhis ki]] Bu
    set asejr! */
if bremkdown ocourued tess
them x time undts aso bhem
```

usince most recent wosition arod motion informetiom oreate a zarse subsection of wku winin windin Fov must we wresent．

世15e Full sky searoh
areate coarse imese from rayd imesen threwhot
 in thas imaset
 from oetslogus usims wosjtior informationy so bhat stars are in subsemtin of sks to mexamenedt find wter candidabes im imaseg nsoothestze metches
combinatoriallst reduce mbmber of rossinde metones usims experted mosnitudest begim metchimes with least ambjemous star maton＊

> refext until 2 or more store ot e fettern are matched ot
Eareration aistances

की execoted distance\％woel is to fina whars rieishnourhood meltern fin
 Poung binem retumatrue stat mositioms prom cetalomae to wutdamce sustem $\%$ If mo wrower matches fonmag raturn to top．op logey toke a mew fioture aro trs ョきまう口 水／

N： B ，Least ambjemous mere mears some mombination op
 ifctones：

star	Star	Foiriter	Link List
Number	Lata		

For each star there is a fointer to the list of edses. In bhe fisure these are giver the values 5,3.8. This indicates that stars $1,2,3$ have 5938 meishbours. The star mamber for each of these meishbors is indicated bus tine *'s in the fisure. For V stars in the catalosue bhere is a meximum of $3 \cup-6$ connections which must be stored tadirectionalls, Each star also requires a Fointer and an edse. In total, therg one reaujres $8 \cup-6$ intesers. For maximm compressiong this means that los u bits are reauired for each inteser. 2
 whe amourt of commutation mitss is

$$
K * \Gamma * \log (\Gamma)+\mathbb{B}
$$

wherek ard O are coretants and in is the mumber op जetices, The exwemse really boesm't matter simce the d.woritmm wht onls be executed for star eetalosue שreation: Adtitional wort on oomvex hulds was dore bs ? Fourke (reference . There are aome rromyeme that were ancountered bs o Rourke in the implementation ef bine 'merme' oweretion but thes were overcomen There rewds to be comsideretjom at at least t weotad wases fiot of the merse of 1 point with a rolshedrori The

 omstructeg subsurfaces to oreate the rimal overed.
 sriser A serieral solstion is to areate a mato of

 bMe aroremembiomed referemaes *

- Trodeatt: Srace Ve. Time

He woint of creatims a ster cotalosue ueinathis

 बnc wedete times, the men field of view js "ismbeced mos lw: them ome desree whitw meams bhat wherw are twomady mo more than threa mew mandiowtes fos the 1.mb list orsarization:

6.2 Attitude Determination fron Startracker Measurements

The nomenclature and seometrical transformations introduced in this section are similar to the "Hish Altitude Reference Sustem Ineveloment Studs (Ref. 10) which was used as a basic reference.

To transform from stellar coordinates to the local startracker coordinates one utilizes four cartesian coordinate susteas. Star fositions are siven in terms of risht ascension (azimuth ansle) and declination (elevation ansle) in the inertial or celestial reference systen whose z axis is alisned with the earth's axis of rotation. For a sfecific orbit orientationn vectors in this coordinate sssten are transformed to the orbital coordinate system shown iri Fisure 6. 3

The orbit plane is completely specified in teras of its inclination i relative to the equatorial plane and the azimuthal ansle, Ω, between the direction of a specific star (the pirst point of Aries) and the intersection point of the ascendirs orbit tirack with the eauatorial plane (ascendins node). For the sake of convenience When referrins to body centred coordinates (see below) the axes are labelled so that the Z axis points radially inward alons the direction of the ascendins node axis, the Y axis is perfendicular to the arbit plane (opposite in direction to the obital ansular momentumi) and the X axis completes a risht hand set. The bods centred coordinate system (shown at the tof of the orbital plane in Fisure 6,3) is fixed on the orbiting satellite and oriented such that its nominal position is characterized by the Z (yan) axis beins perpendicular to the orbit plane (asain oprosite to the orbital ansular momentun vector), and the X (roll) axis comeletes the risht hand set (in the direction of motion for a circular orajt). Note that with this definition the nominal position of the bods centred coordinate sustem is coincident with the orbital coordinate system at the time of ascendins node crossins.

Fisure 6.4 shous the semetrical relationship between the bods centred coordinates and the sensor coordinate sustem whose Z axis is alisned with the optical zxi of the system (or some appropriate

Figure 6.3 Inertial, orbital and body centred co-ordinate systems (subscripts I, O, and B respectively)

Figure 6.4 The body centred and sensor coordinate system (subscripts B ans S respectively)

reference in the field of view of the instrument). Since the sensor measurements are essentially angular measurements relative to the optical axis and because these arises are small, displacements int the sensor (artesian) coordinate system ere affroximoted bu insular Quantities (see below) .

AI I transformations between a artesian coordinate systems can be expressed as a product of three matrices representing three Euler rotations. This geometrical. sequence can be erivisased in berms of three separate rotations of a rigid bods about its x g wy ara coordinate axis.

In sons from inertial to orbit aooraimates a rotation about the Z_{x} axis (Ω) ancisubsequenthe the X_{x} axis (inclination angle i) wields the transformation

$$
\begin{align*}
\left(\begin{array}{l}
x_{0} \\
y_{0} \\
x_{0}
\end{array}\right) & =\left(\begin{array}{ccc}
\cos i & -\sin i & 0 \\
\sin i & \cos i & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-\sin \Omega & \cos \Omega & 0 \\
0 & 0 & -1 \\
-\cos \Omega & -\sin \Omega & 0
\end{array}\right)\left(\begin{array}{l}
x_{I} \\
y_{I} \\
z_{I}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-\cos i \cos \Omega & \cos i \cos \Omega & \sin i \\
-\sin i \sin \Omega & \sin i \cos \Omega & -\cos i \\
-\cos \Omega & -\sin \Omega & 0
\end{array}\right)\left(\begin{array}{l}
x_{I} \\
y_{I} \\
z_{I}
\end{array}\right) \\
& =\widetilde{T_{o I}}\left(\begin{array}{c}
x_{I} \\
y_{I} \\
z_{I}
\end{array}\right) \tag{6+1}
\end{align*}
$$

where the $3 x i s$ orientations orion to line rotations were X_{0} with $Y_{I} \quad Y_{0}$ with $\cdots Z_{I}$ arad Z_{0} with $-X_{I}$ (chosen for aomenience in referemoe to bods centred-courdjrates: A similar procedure for the tramaformatim from orbital bo bods centred coordinates wield as

$$
\tilde{T}_{B 0}=\left(\begin{array}{ccc}
\cos \psi \cos \theta+\sin \psi \sin \phi \sin \theta & \sin \psi \cos \phi & -\cos \psi \sin \theta+\sin \psi \sin \phi \cos \theta \\
-\sin \psi \cos \theta+\cos \psi \sin \phi \sin \theta & \cos \psi \cos \phi & \sin \psi \sin \theta+\cos \psi \sin \phi \cos \theta \\
\cos \phi \sin \theta & -\sin \phi & \cos \phi \cos \theta
\end{array}\right)
$$

represents a rotation about the fitch (Yo) axis a rotation about the roll (X_{0}) axis arid a rotation t about the saw (Ko) axis. All rotations are in a direction such that a right hard thumb rule points an tine direction of the associated axis. The nominal bodes centred orientation referred to above is taken here bo
man the case $\psi=\phi=0^{\circ}$; and $\theta=\cdots$ where Θ is the azimuth angle of the satellite position vector in the rime of the orbit $(\Theta)=90$ desrees in Fisure b. 4 above).

The last transformation from bods centred to sensor coordinates is given bs

$$
\hat{T}_{s \beta}=\left(\begin{array}{ccc}
-\sin \alpha_{s} & \cos \alpha_{s} & 0 \tag{6,3}\\
-\cos \alpha_{s} \sin \beta_{s} & -\sin \alpha_{s} \sin \beta_{s} & \cos \beta_{s} \\
\cos \alpha_{s} \cos \beta_{s} & \sin \sigma_{s} & \sin \beta_{s}
\end{array}\right)
$$

where α_{s} and β_{s} are the azimuth and elevation anele of the sensor optical axis (Figure 6.4).

Since these transformations must preserve vector lenstins all transformation matrices \bar{T} are unitary or equivalently
$\tilde{T}^{-1}=\tilde{T}^{t}$
where the superscript t refers to the transpose of \tilde{T}.
The coordinate transformation of a fixed vector pointing in the direction of a given celestial reference point (star) is seven bs

$$
\hat{\rho}_{s}=\tilde{T}_{S G}\left(\alpha_{s}, \beta_{s}\right) \tilde{T}_{B D}(\theta, \phi, \psi) \tilde{T}_{O I}(i, \Omega) \dot{\rho}(D E C, P A) \quad \text { (o. Aa) }
$$

Where \hat{F}_{s} is in terms of the sensor coordinate system (the circumflex indicates a unit vector). 今 in terms of the inertial coordinate system is giver bu

$$
\hat{p}=\cos R A \cos D E C \hat{i}_{I}+\sin R A \cos D E C \hat{j}_{I}+\sin D E C{\hat{R_{I}}} \quad(6 . A D)
$$

RA represents the rishi ascension of the star (azimuthal ansles, IE C the declination (elevation angle) and $\hat{i}_{\boldsymbol{r}} \hat{X}_{\mathbf{y}}$ \widehat{K}_{I} are axial unit vectors in the direction of the X_{I} Y and $Z_{\text {g axis }}$ respectively.

If os and β represent the azimuthal and elevation angles of the unit vector in the bods centred coordinate system (see Figure 6.4), then the transformation to
the sensor system is siven hu

$$
\left(\begin{array}{l}
x \tag{6,5}\\
y \\
z
\end{array}\right)=\tilde{T}_{s_{0}}\left(\begin{array}{c}
\cos \alpha \cos \beta \\
\sin \alpha \cos \beta \\
\sin \beta
\end{array}\right) \tilde{x_{0}}\left(\begin{array}{c}
\left(\alpha-\alpha_{s}\right) \cos \beta \\
\beta-\beta_{S} \\
1
\end{array}\right)
$$

where onls terms of first arder rejative to unitu are retained. The X and Y components refresent the ansles actualls measured bs the startracker relative to the prtical axis.

Given the X and Y commonente as infut one can attempt to extract 0 , ϕ, andyfrom eauation 6. 4 . However it is clear that for small off axis ansles the attitude is vers insensitive to the z component of \hat{F}_{s}. (i.e. $z \sim 1$ for all measurements). Thus an inversion of (6,4) usins data from a sinsle star sensor can realistically rrovide onls two pieces of informetion (two anshes) ressrding attitude. A sood illustration of this concept is the case where the oftical axis is olose to sas the ritch axis and a larse chanse in mitoh onsledis required before the displacement of a star on the star semsor imase flane is comparable to the displacemento caused by relatively small chamses in roll ana saw ansle.

If estimates of attituse are ayailable from the inertial navisation sustem or from previous star tracker measurements then the retrieval froblem abr ba reduced to extractins chanses in attitude siven charges in stellar mositions on the startracter inase flane. Such an auproach is advantaseous in the sence that it ediminates the need to repeet redumant information noncernins absolute ansular position when ansular chamses from estimated positions are shell. Accordinsts for astar of siven decination ant risht aseension we consiter a mominal or referemce mosition to be siven bs

$$
\hat{P}_{s, r}=\tilde{T_{S \theta}}\left(\sigma_{s}, \beta_{s}\right) \tilde{T}_{\Delta 0}\left(\theta_{r}, \phi_{r}, \psi_{r}\right) \tilde{T}_{O \Sigma}(i, \Omega) \hat{p}(D E C, R A) \quad(\sigma . \sigma)
$$

and its actual fosition to be siven by equetion (b, A). gince the celestial coordinates and orbital farameters are the same for both star sensor vectors we man combine eatations (6,4) and ($6, b$) to oblain the difference equation

$$
\begin{aligned}
& \tilde{T}_{B O}{ }^{\beta}(\theta, \phi, \psi) \hat{T}_{s \theta}^{\beta} \hat{\rho}_{S}-\tilde{T}_{A O}^{r}\left(\theta_{r}, \phi_{r}, \psi_{r}\right) \tilde{T}_{S \theta}^{r} \hat{\beta}_{s, r}=0 \quad \therefore .7 . \\
& \text { or } \quad \hat{P}_{s}=\tilde{T}_{s \theta} \tilde{T}_{B \theta}(\theta, \theta, \psi) \tilde{T}_{B O}^{t}\left(\theta_{r}, \phi_{r}, \psi_{r}\right) \tilde{T}_{s \theta}^{t} \hat{P}_{s, r}
\end{aligned}
$$

where the unitary maperte of the transformation matrices has been utilized to replace inverses bs bine ir transpose, If the reference position is sufficient is close bo the b rue position we can make use of the small angle affrosmations.

$$
\begin{aligned}
& \cos \theta=\cos \left(\theta_{r}+\Delta \theta\right) \cong \cos \theta_{r}-\sin \theta_{r} \Delta \theta \\
& \sin \theta \cong \sin \theta_{r}+\cos \theta_{r} \Delta \theta
\end{aligned}
$$

with similar expressions for pend ψ. Equation (6.7) is then reducible to the form

$$
\begin{equation*}
\hat{P}_{s}-\hat{P}_{s, r}=\tilde{T}_{s B}\{\tilde{A}+\tilde{B}\} \tilde{T}_{s \theta}^{t} \hat{p_{r}} \tag{6,9}
\end{equation*}
$$

where $\overline{\text { a }}$ is an antisymmetric matrix which is first order hin ensular differences while $\overline{\text { a }}$ is second order in angular differences. The pertinent components of π and Z are

$$
\begin{aligned}
& a_{12}=\Delta \psi-\sin \phi_{r} \Delta \theta \\
& a_{13}=\sin \psi_{r} \cdot \Delta \theta-\Delta \theta \cos \phi_{r} \cos \psi_{r} \\
& a_{23}=\Delta \theta \cos \phi_{r} \sin \psi_{r}+\Delta \phi \cos \psi_{r} \\
& b_{12}=-\Delta \theta \Delta \phi \sin ^{2} \psi_{r} \cos \phi_{r} \\
& b_{13}=\Delta \theta \Delta \psi \cos \phi_{r} \sin \psi_{r}+\Delta \theta \Delta \psi \cos \psi_{r} \\
& b_{21}=\Delta \theta \Delta \phi \cos ^{2} \psi_{r} \cos \phi_{r} \\
& b_{23}=\Delta \theta \Delta \psi \cos \phi_{r} \cos \psi_{r}-\Delta \phi \Delta \psi \sin \psi_{r} \\
& b_{31}=-\Delta \theta \Delta \phi \cos \psi_{r} \sin \phi_{r} \\
& b_{32}=\Delta \theta \Delta \phi \sin \psi_{1} \sin \phi_{r} \\
& b_{i i}=0
\end{aligned}
$$

In deducing these expressions terms of third order were respected in comparison to terms of first order, The reader win note that all components are jadewandent of the witch angle.

Consider as a relevant example a ster sensor whose coordinate axes are aligned with the bode centred axes (ide. a camera poirtiris close to the direction of he orbit radial vector j $\alpha_{s}=-90^{\circ}, \beta_{3}=+90^{\circ}$. Letters $\phi_{r}=0, \psi_{r}=0$,
 reduce to

$$
\begin{align*}
& x=x_{r}-\Delta \theta+\left(y_{r}+\Delta \phi\right) \Delta \psi \tag{6.12a}\\
& y=-\left(x_{r}-\Delta \theta\right)+y_{r}+\Delta \phi \tag{6.12n}
\end{align*}
$$

ar

$$
\begin{align*}
& \Delta X=Y_{r} \Delta \psi-\Delta \theta+\Delta \phi \Delta \psi \tag{6,133}\\
& \Delta y=-X_{r} \Delta \psi+\Delta \phi+\Delta \theta \Delta \psi \tag{t.1.36}
\end{align*}
$$

where third order terms hove been respected relative to fir at order (note also that Z_{r} has been taken as units as fer equation 6.5). For small anoles equations 6.12 and $6,12 \mathrm{a}$ represent a rotation by $\Delta \psi$ of a coordinate system $X_{r}-\Delta \theta$, $Y_{r}+\Delta \phi \omega i$ th respect to the star sensor system X, Y (Figure 6.5).
hecordinsls the reverse transformation wields (ignoring ard order terms relative to first order)

$$
\begin{align*}
-\Delta \theta & =\Delta X+V \Delta \psi \tag{6,1.4a}\\
\Delta \phi & =-\Delta \psi X+\Delta Y \tag{6.14b}
\end{align*}
$$

Clearly the Δx measurement is optimal for information resardins $\Delta \theta, \Delta y$ for information concemains $\Delta \phi$ while $\Delta \psi$ is only weakly related to the star sensor measurements throush a second order product.

In the case of a, pitch camera ($\alpha_{s}=90^{\circ}, \beta_{5}=0^{\circ}$) with the game values for the reference coordinates) equation 6.9 yields

$$
\begin{align*}
& \Delta x=y_{r} \Delta \theta-\Delta \psi \tag{6.15a}\\
& \Delta y=-x_{r} \Delta \theta-\Delta \phi \tag{6.150}
\end{align*}
$$

which is second order in terms containing $\Delta \theta$ while Δx ama A are strongly correlated with $\Delta \|_{\text {and }} \Delta \phi$ respectively.

We can thus inner from these examples that image data from two star sensors at ristht anoles will provide wffacient information to accurately extract attitude change information. The inversions for $\Delta \theta_{g} \Delta \phi_{y}$ and $\Delta \psi$ using the small angle approximation will be accurate Gif comparison to more generalized inversion

Figure 6.5 Geometrical Representation of Equation 6.13

techniques) to the order of unity comfared to a second order angular term (about 1 arc sec for an ansular ranse of 1 desree).

We recommend a sustem desismed around an 8smm f/1.4 Iens, The use of this lems allows the flexibilits to see stars weaker thar masmitude by as well as frovidims increaseg angulartresolution. Tris lems also allows. the use of a sifisle camera with bwo pields of view.

The CIm, ST-25by is bhe recommended device simed it has demonstrabed startracker Ferpormence. Althoush bra JFl star tracker wses the FCh device we believe that. the TI CCI would be suferiorg howeverg the TI device mas rot heen used in a startracker.

Estimates of Fower are summariand acoordinsto subsustem in Table 7.1. A multifle outrut switch mode IC to mC converter can rum at an affroximate efficienou of 80% + Mass estimates aresiven in Table 7.2 and the şstent desisn Ferformarice is :iven in Table 7. 3 .
 (e.s, bs the stu) a reduridamb ssctem should consist of two comeras and at lesst two attituse imase monitors should be available, The tables indicate the power amo weisht constraints for both a reduridant and nonregumaznt sustems.
Table 7.1 Fower Consumption for a Sinsle Camera
Frogrammable tmage controller
Freamplitier 10 W
Hax Flat Fassand Elliftic Filter 30 w
Correlated double sampler 50 W
Analos to disital converter (12-bit, 25 mierosec) 75 W
© includins multiflexer, imstrumentation ammifier and sampile and hold
Mrivers 10 W
Timins Generator 10 W
Sumehromization Generator 10 W
Microfrocessor (NSC 800 CFU amid 80serial and farallel interfaces
FiAM (4k bstes at i MHz) $.10 \quad W$
FROM (ok butes at 1 MHz) 20 W
Video buffer (2k butes at 1 MHz) 054
TE cooler Controller 2.00 wTE cooler10.00 W
Shutter control 10 W
TOTAL 15.50 w

ATTTTULE TMAGE MONITOF	
Microrrocessor 180 CB + Serial Interface)	1.50
FAM (8k astes at 1 MHz)	.20
	. 40
Uideo wefrer (ak bstes at $\mathrm{l}^{\prime} \mathrm{MHar}$)	.05
Gtur Catalustue (70k bytes standbs Fower;	. 02
Camera timins gemerator	.10
Weleratos Timer	. 10
TOTAL.	$2 \cdot 37$

7able $7+2$ Mass Estimates for a Simsle Camera
7. Lem Mass (sms)
Lens (85 mim f/1.4) 600
Low thermal expansion 370
Ceromie Structures
Cr 1.0
Two Stase Cooler 100
Frinded Circuit Board 10
mennc Comverter 700
Twa Eeffle 2500
geanselitter 100
Two Ghutter 1200
Cuclines structures 500

Tatie $7+3$ Sustem	Mesismmerformancer
	85 mimp／7．4
CTh Fewnout	GE：ST－256 Nonnomerucbive double reas
Qrewrabinut	0 destees C
Tembercture	
Fixel Gize	20 miorons scuare
Ansular Sututerse 	48.5 arc sect
Field of Visw	$3 \cdot 45: 3,45$ dostees
Interwolation	二FFrox， CH
	0.5 arc seut
Fataimerrur	16世s ねinan $\%$ 1．est bism 0.5 arosec．
Fexutired	ホrerax 250
Hasintom useful in，besembion linate	$10 \leq 6 \mathrm{c}$
```Itutsum jutesmataon fimes (stetiomars &&:%```	g\％rrox， 2 stc
Minimum fribesration titilit：   Homainume 2 wtas	10 ms
Masthman lalersale motion alur	43 arc sec／updater

## Table 7.3 (contimued)



Yho sbar catalosine is estimated to hold apfroximately


## references

1) A. Hirshpeld and Fi.W. Sinnot, Sky Catalogue 2000.
2) Pannekoeky Publ. Astrom, Institute of Amerstiams 1924.
3) LHS Catalosueg W.J. Luyten, 1979, Univ, of Minnesota Fresse (2nd edition).
4) E. Wooluard and G. Clemences Spherical Astronoms Academic Press: 1966.
5) T. Sterneg Introduction to Celestial Mechanics InterScienceg 1960.
6) W.M. Kaula, Fubl. No. 944, Inst. of Georhssics and Planetary Phusics, UCLA, 1968.
7) L, Blitzerg d, Georibsical Fesearch, 70, 3987, 1965.
8) F.F. Preparata and S.J. HoEs, Communications of the ACM, 20'y 87. 1977.
9) J. O'Rourkes Proceedinss of the International Joint Conference on Artificial Intellisence, Vancouver. E.C., 1981.
10) Hish Altitude Attitude Fieference Sustem, AFAL-TR-1111, Vol. 2, Rockuell International Corp, 1970.

HOLLINGER, ALLAN B. --The evaluation of charge transfer device (CTD) technology and the ...

91
C 655
H 65
1983

	DATE DUE			
DATE DE RETOUR				

