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SUMMARY 

The use of accelerometers as sensing elements for the control of 

large flexible space structures is explored. It is shown that, in addi-

tion to ordinary measurement error, the forces and torques on the vehicle 

produce additional direct errors in accelerometer interpretation. The 

portion of this additional error due to known  forces and torques can be 

eliminated by feedforward within the control system. Moreover, because 

the interpretation of accelerometer outputs in terms of displacement and 

displacement-rate requires the structural math model itself, a still 

further source of control system error arises: parameter errors in the 

structural dynamics model used by the control system designer. This is 

examined in detail in this report for four types of control system de-

sign: simple (static) state feedback, simple (static) measurement feed-

back, state feedback based on a state vector estimated by a full-order 

state estimator, and state feedback based on a state vector estimated by 

a reduced-order (in fact, minimal order) state estimator. 	With these 

considerations in mind, and the theory in this report for guidance, 

additional numerical and simulation work can show quantitatively what the 

benefits and limitations of accelerometers are in specific situations. 
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1. 	INTRODUCTION 

The measurement of acceleration is one of the most natural 

measurements —and one of the most useful — that can be made in the 

field of dynamics and control. There are (at least) two possible 

ways to process an acceleration measurement: 

integrate with respect to time, thus producing a measure-

ment of velocity 

use a set of motion equations to interpret the acceleration 

measurement as an indirect measurement of position and 

velocity. 

It is primarily the second of these interpretations that will concern 

us in this report. 

It should be noted that all the kinematical quantities re-

ferred to above are absolute quantities; that is, the displacement, 

velocity, and acceleration are measured with respect to an inertia/ 

reference frame. The designation "absolute" is to distinguish these 

measurements from  relative  displacement, velocity, and acceleration, 

in which the motion one point of the system is measured with respect 

to another (not inertially fixed) point of the system. 

1.1 	Integration of Accelerometer Signal  

In the first of the above two interpretations, when acceler-

ation is integrated to produce velocity, the main point to note is 

that initial errors and spurious signals are also integrated. And, 

just as high-frequency noise is anathema to a differentiation pro-

cess, so, too, low-frequency errors (in the limit, 'DC' errors) are 

the bane of an integration process. Therefore, whenever integration 

of accelerometer output is used to infer velocity, periodic up-dating 

(correction) of the reference velocity is required. 

This argument is made symbollically in Fig. 1.1. Let the 

(ideal) accelerometer outputs be a(t). If the coordinates whose 

accelerations are being measured are denoted temporarily by g(t), then 
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,1n(t) 

a(t) + n(t) 

Accelerometers 

v (t) + f n di' 

q (t) +ffn dt i  dt" 

Fig. 1.1: Integration of Accelerometer Signals to Get 

Velocity and Position 
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a(t) = n/(t) = g(t) 	 (1.1) 

where the velocities v(t) = g(t). Thus, by direct integration of the 

accelerometer measurements, one can in principle produce the velocities 

A.(t), and the displacements, g(t), both of which are 'state variables' 

in the dynamical modeling of the system. (Note that acceleration it-

self is not a state variable.) 

The problem of course, is that an accelerometer does not 

measure acceleration exactly. We denote the error (or 'noise') by 

n(t). Thus, as shown in Fig. 1.1, the outputs of the accelerometers 

are contained in the output vector a(t) + n(t). Let n(t) be subdivided 

into two terms 

(1.2) n(t) = n a V 
+ n (t) 

— —A 

where the long-term integrated effect of %(t) vanishes. Then the out-

put of the first stage of integration in Fig. 1.1, after a long period 

of time is approximately g(t) + navt. Clearly there is no limit to the 

contamination introduced by the second term. 

Even worse is the problem that arises if one attempts to in-

tegrate once again to produce a measurement of displacement by inte-

grating a second time. The output of the second stage in Fig. 1.1 after 

a long time is  a(t)  + 1/2navt
2

, so that the integrated error builds up 

even faster than for g. Thus the use of accelerometers in this fashion 

to infer position and velocity requires some periodic correction from 

other instruments. We shall not pursue this subject further here. 

1.2 	Interpretation via Motion Equation  

This report is concerned primarily with acceleration measure-

ment as an indirect measurement of displacement and displacement rate. 

To illustrate this basic idea, consider Fig. 1.2, which shows the ac-

celerometer output q as measured for one-degree-of-freedom, mass-spring-

dashpot system whose displacement is q(t). The parameters are mass, m; 

damper constant, c; and spring constant, k. The external force on the 
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(a) Simplest System 
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mass is f(t). For present purposes we choose to write the well-known 

equation of motion 

mq + cq + kq = f(t) 	 (1.3) 

as 

a(t) A q(t) = af (t) - 2tunq - wq 	(1.4) 

where 

2 A 
w
n 

- k/m à  2(1)
n 

- c/m 	(1.5) 

as is conventional, and 

a
f
(t) = à  f(t)/m 	 (1.6) 

Note that a
f 

has the dimensions of acceleration. Then, if a
f
(t) is 

fed forwardaS shown in Fig. 1.2b, the net output after the summing junc-

tion is a simple linear combination of position q(t), and rate q(t). 

This interpretation will become essential in the remainder of this report, 

11 	which deals with multivariable control using a 'state-space' formulation. 

Before leaving the simple example of Fig. 1.2, two idealizations 

should be noted. It is assumed in Fig. 1.2b that the excitation force f(t) 

is known. It is further assumed that the system parameters  i and wn  are 

accurately known. In reality, neither of these assumptions is precisely 

valid. With regard to the force, let 

f(t) = fi(t) + f 2 (t) 	 (1.7) 

where f/(t) is the known portion and f2 (t) represents the unknown influences. 

Similarly, 

a(t)  A  f(t)/m 	; 	a2 (t) A f2 (t)/m 	(1.8) 

Furthermore, we denote by and wn 
the assumed values for damping factor and 

natural frequency (the actuai values are still denoted by 	and wn ). Then 

the real situation is more like that shown in Fig. 1.3. 



• 

ql [ 

cl,/(t) f (t) 

a(t)+n(t) 

n(t) 

Accelerometer 

1 
+ [n(t)+ep(t) + a p (t)] 

Fig. 1.3: Sources of Error in Actual Implementation 

6 



(1.12a) 

(1.12b) 

Now, the measurement actually made (after the feedforward cor-

rection has been made) is 

• 2 
actual measurement = -263n

q - w
n
q + n(t) + a 9 (t) 

Or, in terms of the measurement assumed, namely, 

• ^2 
assumed measurement = -2u)

n
1 - w

nq + 

the actual measurement is 

actual 
-- • 	-2 

measurement = -2u)
n
q - w

n
q + e

p
(t) + n(t) + a (t) 

(1.9) 

(1.10) 

(1.11) 

where e (t) is the 'error' associated with parameter errors. The latter is 

given by 

e (t) = -2(Awn + n
AOCI - 2(w

n
Aw)q 

= -2(Mun  wnAdli - 2(wnàw)q 

A = 	- 

A 
Aw

n 
= W

n 
- W

n 

with 

(1.13) 

The indications of approximateness in (1.12) reflect the assumption that 

(A ) / and (AwnYwn  are small compared to unity: the expressions in (1.12) 

are correct to first order in these small quantities. (Parenthetically, 

one might question whether the current state of the art of damping modeling 

is sufficiently advanced to make realistic the assumption that (A)h is 

confined to small values.) In any case, the idea behind (1.12) —the idea 

that interpreting accelerometer data is clouded by uncertainties in the 

dynamical model of the structure —is a principal theme in this report. 

7 
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1.3 	Overview of Report  

It is already clear that the use of accelerometer measurements 

in a state-space context poses special problems of correction and inter-

pretation. When using the structural dynamics equations as a means of 

transformation from acceleration to position and velocity, special atten-

tion must be paid to the following factors: 

all known forces on the structure must be fed forward; 

unknown forces must be reduced to a minimum; 

the structural model must be known as accurately as possible. 

In addition, it is almost trite to state that the acceleration measure-

ment itself should be as accurate as possible. 

The implications of these factors for all the control strategies 

that have been proposed in the literature for flexible space structures is 

a task so large that a complete discussion cannot be aspired to in this re-

port. However, a major step in this direction can be taken by examining 

the implications of accelerometer feedback for four of the control stra-

tegies that are best known and widely used: 

• simple state feedback 

• simple output feedback 

• full-order state estimation 

• reduced-order state estimation. 

[Note: What is herein called 'simple' feedback is often called 'static' 

feedback; and what is herein called a 'state estimator' is often called 

an 'observer.']  Each of the next four sections of this report deals with 

one of these strategies in turn. In each case, basic ideas are first re- 

viewed and then parameter error effects are introduced into the discussion. 
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= Ax -F. Bu _ 

z = Mx 

(2. 1) 

(2.2) 

(2.3) 

2. 	SIMPLE STATE FEEDBACK 

Throughout this and the following sections we shall assume that 

the spacecraft can be represented as a linear time-invariant system of the 

standard form: 

Here, x(t) is the state vector, y(t) is the output vector of regulated 

variables (or the 'regulated vector,' for short) and z(t) is the output 

vector of measured variables (the 'measured vector'). These two types 

of output vector may may contain one or more variables in common. They 

may even (in rare instances) be identical vectors. However, because one 

cannot always be guaranteed a direct measurement of a variable one wishes 

to regulate, it is a helpful generalization of the theory to make a dis-

tinction between the regulated vector, 	and the measured vector, z. 

Note that only variables appearing in z are actually available for feed-

back control. 

2.1 	The Basic Strategy  

'Simple state feedback' is a concept that represents an ideal-

istic limiting case: all the state variables are assumed available for 

feedback. An equivalent assumption is that there are as many independent 

measurements as there are state variables, so that M is a nxn nonsingular 

matrix. Then the state vector is immediately available from 

x(t) = M-1z(t) 	 (2.4) 

One is then in a position to 'feed back' this known state vector, and n 

arbitrary linear combinations of the state variables are allowed: 

u(t) = r(t) - Kx(t) 	 (2.5) 

9 



Thecoefficients..are 'gains' and K is called the 'gain matrix.' The 

negative sign indicates negative feedback, and r(t) is a reference input, 

usually constant. 

From (2.1) and (2.5) then, 

x = (A - BK)x + Br 	 (2.6) 

showing that the closed-loop system matrix is A - BK. We leave aside the 

question — the very important question — of how best to choose K to guaran-

tee satisfactory closed-loop control characteristics. We wish to focus on 

the aspects of greatest relevance to the issue of acceleration feedback. 

The  implementation of simple state feedback is shown in Fig. 

2.1. Note that the operations of measurement and state calculation have 

been separated. This separation is physically real — the measurements are 

made by sensors, while the state vector calculation (via M-1 ) is carried 

out via other hardware (or software). 

2.2 	Effect of Parameter Errors  

Looking forward to the implementation of acceleration feedback, 

one might enquire what the implications might be of parameter errors, 

especially in the measurements. To aid in developing an answer to this 

question, Fig. 2.1 is modified as shown in Fig. 2.2. Although the actual 

measurement matrix is M, the control system designer assumes it to be t̂1, 

and so the state is calculated to be 

- -1 
x = M z _  

instead of x. The feedback law is implemented as 

u(t) = r(t) - K(t) 

so that the closed-loop system becomes 

- X = ( A - BKM
-1 

 M)x + Br 

which should be compared to the ideal result, expressed in (2.6). 

(2. 7) 

(2.8) 

(2.) 

10 
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To isolate thè pseudo-disturbance attributable to parameter error, 

in analogy with the simple example in Fig. 1.3 and Eqs. (1.11) and (1.12), we 

write 

M = M + AM 	 (2.10) 

The errors AM in the measurement matrix M will be expressed in terms of struc-

tural dynamics parameters in Section 6. Then 

(2.11) _ 	--P 

where e is the error vector in the measurements arising from parameter 
—P 

errors: 

e (t) e (AM)x(t) 
—P 

In other words, the measurements are 

z = Mx + e _ 

(2.12) 

(2.13) 

At present, we are assuming the measurements themselves to be exact. The 

only error is in their interpretation, as used in the state calculator 

(Fig. 2.2). This explains the absence of a 'noise' term on the right-hand 

side of (2.13). 

3. 	SIMPLE MEASUREMENT FEEDBACK 

To measure all the state variables, directly or indirectly, is 

not usually possible. Usually a smaller number, m, of measurements is made, 

m < n, where n is the dimension of the state. That is, 

k = Ax + Bu 	 (3.1) _ 

z = Mx 	 (3.2) 

and the measurement matrix M is mxn. Only the measurements z are available 

for feedback control. 

13 



3.1 	The Basic Strategy  

In "simple measurement feedback," the feedback law consists simply 

in assigning, as control variables, linear combinations of the measurements. 

Thus 

u(t) = r(t) - _ 111(t) 	 (3.3) 

where 411  is an rxm gain matrix (there are r control variables). The sub-

script 'm' is added to distinguish the rxrp measurement feedback matrix Km  

in (3.3) from the rxn state feedback matrix K in (2.5). As usual, r(t) 

in (3.3) is a reference input. 

From (3.1) - (3.3), the closed-loop system is, ideally, 

(3.4) 

showing that the closed-loop system matrix is A - BK M. As with state 

feedback,considered earlier, the only remaining design question — What should 

Km  be? —is not answered here. The implementation of simple measurement 

feedback is shown in block diagram form in Fig. 3.1. 

3.2 	Effect of Parameter Errors  

In reflecting upon the above equations and upon Fig. 3.1, one can 

see that parameter errors (in this case, errors in M) do not have an impact 

on simple measurement feedback in the same manner as they do for simple state 

feedback. No calculation on z is made in Fig. 3.1 that corresponds to the M-1  

calculation in Fig. 2.1. The only effect of an error àM is a more subtle one, 

namely, the gain matrix chosen, Km , will be based on assumed values for M 

(and on A and B also) and so will not be as ideal a gain matrix for the actual 

values of M and A and B. (In fact, this remark applies to state feedback also 

— Section 2 — and also to the control laws to be considered in Sections 4 and 

5.) However, beyond remarking that this effect exists, no more will be said 

of a slightly off-design gain matrix in this report, because this report does 

not assign specific gain matrices. 

14 
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x = Ax + Bu (t > t,) (4.3) 

4. 	FULL-ORDER STATE ESTIMATION 

It has been remarked in the last two sections that a continuous 

knowledge of the state is desirable, but rarely possible. It is possible, 

however, to estimate the state of the 'plant' (i.e., the spacecraft dynamics) 

by making inferences from 

• the measurements, and 

• a system model. 

Then, provided the plant is observable, a good estimate of the state can be 

calculated. The good news is that simple state feedback can then be used, 

with the 'estimated state' used in place of the (unavailable) istate l ; the 

bad news is the increased reliance on a system math model — a model that 

will inevitably contain parameter errors. 

4.1 	The Basic Strategy  

The 'actual' (i.e., physical) system is represented by 

(4.1) x = Ax + Bu 

as usual, and the measurements are 

z = Mx (4.2) 

Let the estimate of x be denoted by x. At issue is the question of how to 

calculate x. 

It is only common sense that x should have the property that if, 

at some instant t = t
1' 

we know x(t
1
),then for t > t

1 
one could ideally pro-

,. 
duce x(t) by integrating the differential system 

with the initial condition  x(t 1 ) = x(t i ). Then, ideally, x(t) E x(t), for 

t > t
1' 

Two characteristics are already clear from the somewhat overly-

idealistic (4.3): 

16 



• the same controls that are fed to the actual system must also 

be fed to the state estimator 

• to implement this state estimator requires that n integrations 

be performed in real time. 

These characteristics will be shown (below) to persist even when (4.3) 

is modified to account for the assumptions behind it. 

The difficulty with (4.3) as a state estimator is, of course, 

that one does not know x at t = t 1 ; that is part of the problem. A 

further difficulty is that even if one did know x at t = t 1  and inte-

grated according to (4.3), the inevitable inaccuracies and disturbances 

would make their presence felt, even though the state estimator (4.3), 

proceeding open-loop as it does, would not take these inaccuracies and 

disturbances into account in any way. What is needed, evidently, is 

some sort of feedback within the estimator itself. This feedback would 

inform the estimator of the difference between its estimated state and 

the actual state (irrespective of whether this difference is due to a 

wrong initial condition or to subsequent inaccuracies and disturbances). 

Thus we wish to add to (4.3) a feedback term of the form 

-e — — 

Unfortunately, this is not possible because x is not known (if x were 

known, the estimator would not be needed!). The closest one can come 

is to compare, not the estimated state x with the actual state x, but 

the 'estimated measurement' Mx with the actual measurement z. On this 

basis, we add a feedback term to (4.3), and the state estimator finally 

arrived at is as follows: 

(4.4) x = Ax + Bu - K (Mx - z) _ _e  _ 

The implementation of this estimator is shown in Fig. 4.1. 

Also shown in Fig. 4.1 is the final use made of the estimated 

state, x(t): it is treated as though it were the actual state, and 

'simple' state feedback is applied: 

17 
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A =  A  + AA 

B = â + AB 

M = M + AM 

(4.9) 

u(t) = r(t) 	K(t) 	 (4.5) 

This completes a specification of the estimator. Note that the order 

of the system has been doubled — for every state variable x i (t) in the 

original model, a new state variable xi (t) is present in the estimator. 

For this reason, the estimator discussed in this section is called a 

'full-order' estimator. 

The error in the state estimate is 

e(t) à x(t) - X(t) 	 (4.6) 

From (4.1,2,4,5), 

è =  (4.7) 

which shows that the transient characteristics of the error can be de-

signed at will by a suitable choice of the estimator gain matrix Ke . 

(This last statement assumes that the pair {M,A} is an 'observable 

pair', or that, equivalently, {AT,T}  is a 'controllable pair») In 

terms of e, the closed-loop plant state x(t) evolves according to 

= (A - BK)x + BKe + Br 	 (4.8) 

The transient characteristics of the closed-loop system matrix A - BK 

can be varied arbitrarily (provided {A,B} is a controllable pair) by 

an appropriate choice of the feedback gain matrix K. As will be seen 

in Section 6, the pairs {AT, MT } and {A,B} will virtually always be 

controllable in the application to flexible spacecraft. 

4.2 	Effect of Parameter Errors  

The system matrices {A,B,M} are not precisely known in practice: 

where A, B, and M are the assumed values. Taking these parameter errors 

19 



into account, Fig. 4.1 becomes transformed to look like Fig. 4.2. 

The 'real' plant is still represented by A and B, and the 'real' 

sensors are still represented by M, but in the state estimator 

the 'assumed' values for these matrices are used. 

The system equations that correspond to the block diagram of 

Fig. 4.2 are as follows: 

x = Ax + Bu 

z = Mx 

u = r - Kx 

Note that x is now an estimate of the state x not only because it is 

the output of a state estimator, but also because the parameters 

used in the estimator are themselves estimated. 

To investigate this combination of errors quantitatively, we 

define 

à 
ex- 

as  before, and re-write the system equations (4.10) as follows: 

(A - BK)x + BKe + Br 

i=  (As  - K Ms. + (àB)Kie _ _e_ 	_ _ 

[(AA) - (13)K - K.,e (àM)p< + (àB)r 

The plant equation (4.11) is unchanged; however, the estimator error 

has several new causes, as shown in (4.12). The system matrix is 
^ 

changed slightly, from A - KeM (as assumed) to A - KeM + (a)K. 

While not welcome, this small change in the 'error system matrix' 

should not cause any problems, perhaps a slight change in error decay 

rate at most, unless the design is extraordinarily sensitive (which 

it shouldn't be), or unless the errors a are very large, or unless 

• a very-high-gain control system design has been selected. More 

worrisome,perhaps,are the other terms in (4.12),which show that the 
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BK FA - BK 

nI1 

error e is prevented from asymptotically vanishing by the persistent 

disturbance from the terms 

[(AA) - (AB)K - Ke (AM)]x 

and 

(AB)r.  

The former depends on parameter errors in A, B and M, while the latter 

depends only on errors in B. The estimator error e will still vanish, 

of course, if the reference command r E 0 and x -›- 0 asymptotically. In 

fact, (4.11) and (4.12) can be written in assembled form as 

Lei 	L(AA) - (A .)J.  - I_Çe (AM) 	Â - KeM + (AB)K 

.nnn• 

(4.13) 

AB 

The eigenvalues of the square 2n x 2n composite system matrix in (4.13) 

will in general be only marginally different from the ideal composite 

system matrix 

A - BK 	BK 

0 — --e— 
Â - K Mi.  

and so it could be argued that if the (ideal) state estimator is well de-

signed, the effects of parameter errors will be small. That may well be, 

but the fact remains that, in (4.12), the estimator error is driven by a 

new type of term that is, according to (4.7), ideally absent. The esti-

mator does not, as ideally assumed, become asymptotically exact regardless 

of what adventures the state is forced to undergo. The estimator is in 
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fact compelled to participate in those adventures through the (weak) 

influence of parameter errors. In this connection it should be noted 

that the plant disturbances (without which a control system would be 

unnecessary) have not been symbolically included in the above discussion. 

5. 	REDUCED-ORDER STATE ESTIMATION 

It is possible to identify a control strategy that is, in a 

sense, mid-way between the rather spartan feedback scheme of Fig. 2.1 or 

3.1 and the somewhat luxurious one of Fig. 4.1. In the former, measure- 

ments are just combined algebraically to form the control input variables; 

and, in the latter, the controller has as many integrators (or state vari-

ables) associated with it as has the original plant. It is not necessary, 

however, that a state estimator be of 'full' order, i.e., of order equal 

to the plant math model. As a special limiting case of this assertion, 

consider the situation discussed in Section 2, wherein n measurements 

were made. It was pointed out in that discussion that the state did not 

have to be estimated at all: it could be directly calculated, continuously 

and immediately, by the straightforward algebraic operation equivalent to 

the inversion of an nxn matrix. 

In general, the number of measurements, m, will be fewer than the 

number of state variables, n. Nevertheless, it is not necessary (as will 

be shown below) to introduce n new state variables to be associated with 

the estimator, as done for the full-order state estimator. It is in fact 

necessary to introduce only (n -m) new state variables in the estimator 

design, thus producing a 'minimal-order' estimator. Since we do not intend 

to discuss estimators whose orders lie between the extremes n and n-m, 

we can refer to an estimator of order n -m unambiguously as a 'reduced-

order state estimator.' 

It is apparent that a considerable simplification in controller de-

sign can be derived by using a reduced-order estimator instead of a full-

order estimator. The actual saving depends, of course, on the actual 

values of n and m. If a controller design is based on 6 rigid modes and 

30 elastic modes (n = 72) and only 8 sensors (measurements) are used 

(m = 8), then the full-order estimator can be reduced in order from 72 

order to 64 —only an 11% saving. On the other hand, if a controller de- 
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Z = M  X 
-A -A-- 

(5.3) 

rm 
(5 .4) 

—
z

à —à 

sign is based on 6 rigid modes and 10 elastic modes (n = 32) and 20 sensors 

are used, the full-order estimator can be reduced in order from 32 to 12 — 

a reduction in complexity by a factor of two-thirds. It is at all events 

quite clear that the idea of a reduced-order estimator is one worthy of 

further investigation. This is true in spite of the fact that although the 

system order is reduced, the algebra required to discuss the idea is increased. 

5.1 	The Basic Strategy  

The idea of a reduced-order estimator harks back to an earlier one 

— state feedback (Section 2 and Fig. 2.1). It will be recalled that state 

feedback requires that as many measurements be made as there are state vari-

ables. The reason that an estimator is required is that the measurements 

are generally fewer than the number of state variables. We shall, however, 

approach the derivation of the reduced-order state estimator by postulating 

n-m pseudo-measurements to replace the missing measurements. 

The spacecraft dynamics is still represented by 

x = Ax + Bu 	 (5.1) 

and the (real) measurements 

z = Mx 	 (5.2) 

are augmented (in the control analyst's imagination) by the pseudo-measure-

ments 

When the m measurements z are combined with the n-m pseudo-measurements 

z , we have 

and the overall measurement matrix is now n x n. This allows solution for 
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x =  
M I 

••••nn 

1 z 

(5.5) 
z.1 

-1 

(5 .6) 

the state x: 

•n•nn•n• 

We leave open the question of how best to choose M.à , except to say that 

it must be chosen such that the inverse in (5.5) exists. (And engineering 

judgment would further suggest that NU should be such that the overall 

measurement matrix in (5.5) is not even close to being singular.) 

It will be convenient in the ensuing developments to have a 

notation for the inverse of the overall measurement matrix. Thus, let 

[N 	N A ] e 

It follows that 

MN = 1 

M N = 1 —A—A — 

-LA - 
M N = 0 

— 

m x m 

(n - m) x (n - m) 

m x (n - m) 

(n - m) x m 

(5.7) 

and that 

NM + 	= 1  n x n 	(5.8) 

With these new symbols, (5.5) can be written directly as 

x(t) = Nz(t) + N z (t) 	 (5.9) 

The idea, to repeat, is that z is available, and, if z  were available 

simple state feedback could be used. To face reality, 4 can only be 
estimated. In this way, the estimation problem is reduced from x-

estimation (order n) to z
-à
-estimation (order n-m). State estimation 

then proceeds according to 
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x(t) = Nz(t) + N z (t) 
— (5.10) 

Mx - z = MNz + MN z - z = 0 _ (5.14) 

and one is led to consider appropriate means for estimating the missing 

measurements, zà . 

To begin, we derive a differential equation for 4: 

= m k 
--A 

MA  (Ax + Bu) _ 

=MA(Nz +Nz) +M Bu 
—à— - --A-A -A- 

That is, 

= (MàANà )zà  + (MàAN)z + (M ,0).0 	(5.11) 

Therefore, the basic construction of the differential equation for the 

estimate z must follow the pattern 

z = (M AN )z + (M AN)z + (M B)u + 	 (5.12) 
-A --A-A -A -A- - -A- - 

This construction is, of course, incomplete. It is in the same primitive 

stage as was (4.3) for the full-order estimator. We have, thus far, only 

an open-loop estimator. Once perfect, it remains perfect; but it lacks 

information fed back on its unavoidable errors, just as, for the full-

state estimator, (4.4) made amends for the inadequate (4.3). 

The analogy between (5.12) and (4.3) might suggest that estimator 

feedback could be carried out in the form 

z =  (MANA ) )z + (M AN)z + (M B)u 
à -A -A-- -A-- 

(tentative) 	(5.13) 

with x given by (5.10). But this approach does not work. Simple calcu-

lation from (5.10) and (5.7) shows that 
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In other words, the critical feedback term in (5.13) is always zero. 

When the state is estimated aigebraically from current measurements, as 

in (5.10), rather than dynamdcally, from a history of measurements, the 

estimate of what the measurement should be, Mx, will be merely the actual 

measurement, z. 

In place of the feedback term rb(Mx - z) in (5.13), which, as we 

have seen, has only illusory benefits, we use instead a term that is re-

lated to the time derivative of the failed term, i.e., a term rb(MX - Z). 

Now, from the fact that 

mk - 	m(Ax + Bu) - 

mA(Nz + N z ) + MBu - 	 ( 5.15) 
— -à-à — 

an estimate of the missing measurements (the pseudo-measurements) can be 

constructed from (5.12) and (5.15): 

= (MàANà )z à  + (%AN)z + (MAB)2 

- .Ke [(MAN ,Jz 	(MAN)z + (MB)u - (5.16) 

The symbol Ke  does not imply the time derivative of some matrix Ke . 

Instead, 
-e 

 K is a constant gain matrix, and the notation is merely a re-

minder that the variables for which the gains (elements of K ) serve as 

coefficients are the time derivatives of the elements of (Mx - z), or 

estimates of these elements. In this connection, note that the (unavail-

able) pseudo-measurements z à  in (5.15) have been replaced by their 

(available) estimates in (5.16). 

To reduce the estimator equation (5.16) to its bare essentials, 

we define 

à 
A - rAN 	 K' - rAN 
--e 	 -e 

(5.17) 
A B = rB 

-e — 

after which (5.16) condenses to 

A r -M -KM - 	-e-- 
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A " 

X -Z - K z 
—e 	—e- 

(5.19) 

• 	• 	. 
z =Az +Bu+KFz+Kz 
-A —e--A —e— --e— --e— (5.18) 

All the quantities needed on the right-hand side of this estimator are 

physically available. It does look as though the measurements have to 

be differentiated — an undesirable operation. This differentiation can 

be avoided, however, by introducing xe , defined by 

Thus the new state variables associated with estimator (n - m of them) 

are notz 	but x . In terms of x , the estimator equation (5.18) be- 
-A' 	--e 	--e 

comes 

).( =Ax +Bu+Kz 
—e —e--e —e-- —e— 

where 

A • 
K =K +AK 
—e —e —e—e 

(5.20) 

(5.21) 

is the final 'estimator gain matrix' needed. The implementation of this 

state estimator is shown in Fig. 5.1. The output of the estimator is, 

as planned, x, where, from (5.10) and (5.19), 

(5.22) 
e—e 

x-Cx +Dz 
— -- 	--e— 

and 	the definitions 

A 
C - N 
—e --A 

A 
D -N+NK 
—e 	—A--e 

(5.23) 

have been introduced. Now that x is available, 'simple' state feedback 
— 

(Section 2) can be emulated: 

u(t) = r(t) - K(t) 	 (5.24) 

To conclude this discussion of the basic strategy of a reduced-

order estimator, we derive a differential equation which governs how  •the 
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(t) e z ( t) - (5.25) 

estimatOr error evolves with time. The aim is to find an equation which 

does for the reduced-order estimator what (4.7) does for the full-order 

estimator. For the full-order estimator, we defined the error to be 
A 

e- x -  X.  However, in the present case (the reduced-order estimator) 

we have seen that it is really 4 that is being estimated; see, for 

example, (5.9) and (5.10). Therefore we define the relevant error to be 

Then, from (5.11) and (5.16), 

• 	• 

= (MàAN A )ez  + Ke [(MAN .Jilà  + (MAN)z + (MB)u - 

But the quantity in square brackets is, from (5.10), 

[.] = MAx + MBu - 

= MAX - MAe + MBu - 

= M(Ax + Bu) - 	- MAe 

= (MX - Z) - MAe = -MAe 

Furthermore, 

e = x - x _ _ _ 

= (Nz + %zà ) - (Nz + NAz ,j 

= N e --à—z 

So, combining the above calculations, 

è = A e 
-z 

(5.26) 

(5.27) 

This equation corresponds to (4.7) for full-order estimators. In fact, 

another form of (5.27) can be written using (5.26): 
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[- A 	BK 

o 
—
e
z 

BKN A  rp_ 
(5.30) 

o 
—
e
z 

11.n 

A = Â + AA 

B = + AB 

M = M + AM 

(5.31) 

è = NàrAe 	 (5.28) 

However, it makes more sense to integrate the n -m equations (5.27) 

and then apply (5.26), than to integrate the n equations (5.28). 

The state equation for the plant can be written 

= Ax + Bu 

= Ax + B(r - KX) 

= Ax + Br -e) 

= (5.29) 

so that the overall system equations are 

ej  A 

This system is equivalent to 2n - m scalar differential equations. 

5.2 	Effect of Parameter Errors  

As in Section 4, the parameter errors in A, B and M are now in-

troduced, 

and the consequences for the closed-loop control system derived. The 

first result to be presented is the error in N and Nà  due to the error 

in M. (The definition (5.6) should be recalled.) In general, if a 

matrix Q has an inverse, R, and Q is changed slightly to g + AQ, then 

the inverse is changed slightly to R + AR, where 

AR = -R(AQ)ii 	 (5.32) 

31 



P. 

AN = -N(AM )N 

A N = 
--A 	- 

(5.34) 

[The proof is straightforward: set 

1 

which shows that, to first order, 

+R) 	(a)R 

e's 

and (5.32) follows from imposing QR  = 1.] Now, in the case at hand, we 

make the correspondence 

R = [NN ] 	(5.33) 
—A 

and we note that AM =0 because M occurs only in the control algorithm. 
--A — 	--A 

It is set by the control designer and does not have a physical dual. 

With this in mind, the general formula (5.32) produces 

for the error in N and N caused by the parameter errors AM. 
—A 

Now, to proceed to the next step — finding the extra terms in the 

system equations caused by parameter errors. It is perhaps best to 

summarize the system equations in their elemental form (equation numbers 

on the left margin are for reference): 

(5.35a) 

(5.35h) 

(5.35c) 

(5.35d) 

(5.35e) 

(5.1) 	X = Ax + Bu 

(5.2) 	z = Mx 

(5.20) 	k =Ax +Bu+Kz 
--e --e—e 	e- 

(5.22)  

(5.24)  

where (see Fig. 5.2) 
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(5.17) 

(5.17) 

(5.23) 

(5.23) 

(5.17) 

(5.21) 

(5.17) 

à  
A - TAN 
-e ---à 

à  

-e 
à  

C - N 
-e 
- A 	. 
D -N+NK 
-e 	-à-e 

K I  - rAN 
-e — 

	

• 	n. n•• A 

K gK' +AK ErAD 
-e-e --e 

. A  . 	• 

-e- 

(5.36a) 

(5.36h) 

(5.36c) 

(5.36d) 

(5.36e) 

(5.36f) 

(5.36g) 

Our aim is to derive two differential equations, one for the 'plant 

state' x(t), and the other for the 'estimator error'  e(t).  These 

differential equations should also have their right sides expressed in 

x and
2 

to form a system analogous to (4.13) for the full-order estimator. 

We begin with the plant equation: 

X = Ax + Bu 

= Ax + Br - BKx 

= Ax - BK(x - e) + Br 

= (A - BK)x + BKe + Br 

It remains to express e in terms of ez . Before parameter errors were 

introduced, we had (5.26): e = N e 	Now, with parameter errors, we - -à-z' 
must proceed carefully. It is true that 

z = MX = (M + àM)x 

z = M x 
-A -A- 

=  MA ).  Then 

x = (N + AN)z +(N + AN )z 
- 	-A -A 

(5.37) 

(5.38) 

where AN and ANA  were derived above to be as given in (5.34). On the 

other hand, ; exists only in the controller, so 
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X = Nz + N z 
— -A-A, 

(5.39) 

Then 

e = x - x 

= (AN)z + N e + (AN )z 
- - 	--A --à 

= N e + (AN)Mx + (AN )M X 
-A, -A- 

to first order in parameter errors. Using (5.34) and the orthonormality 

condition (5.8) gives 

e = Nàez  - N(AM)x 	 (5.40) 

Finally, then, the plant equation is 

(5.41) =  _  

This is the first of the two system equations sought. 

The second system equation desired is for ez . Starting with 

-2 --A -A 

and using MàX for iA  and (5.16) for 4, it can be shown after some effort 

that 

éz  = L(A) 	(Ar)A - ( àBe )K - IVAM)]x 

+ [2Âe  + (4e )KNA]ez  + (A14)r 	(5.42) 

where 

A 
àB = (Ar)B + r(AB) _ 

A ° 

- -e - 

as is consistent with (5.17). 

(5.43) 
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-T • 

—
e
z 

(5.44) 

The overall closed-loop system is, therefore, 

A - BK - B61(àM) 	 B61„ 

r(àA) + (àr)Â - (àB )K - k 1 (0) 	Â 
—e 
 + 

(à—e
B  )61 	e 

—e 	—e  

r-  B 

L°13-e 

when parameter errors are included. 

6. 	ACCELERATION FEEDBACK IN THE CONTROL OF FLEXIBLE SPACECRAFT 

Four control strategies have been described in the preceding four 

sections. These have ranged from 'simple' measurement feedback to rela-

tively sophisticated state estimators. Considerable attention was given 

to the untoward effects of errors in the assumed values of the system 

parameters; this attention was motivated by the realization that the in-

terpretation of accelerometer feedback relies heavily on the structural 

math model being used. In this section, the parameter errors discussed 

thus far in the context of a general, linear, state-square formulation 

are expressed in terms of the errors in a spacecraft structural dynamics 

model. A second theme of this section is the entry into the system equa-

tions of the unknown forces and torques on the structure. With accelero-

meter feedback, these forces and torques not only disturb the structure, 

they disturb the control system itself that is attempting to control the 

sturcture. 

6.1 	Structural Model as State-Space Model  

We begin by assuming that a structural model of the spacecraft of 

the following form is available: 

+ 	+ 	= 	t 	 ( 6 . 1 ) 

After a standard vibration mode analysis, in which natural frequencies 



w and mode shapes e are calculated, the structural model can be re-cast a 	-a 
in modal form 

îj;1 + 02n = y( t ) 

where n contains the modal coordinates and 

R e diaeco 1 ,w2 ,  • ..I 

e ETDE 
y "e" ETIL 

E 	[el 	e2 
	•••] 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

The physical coordinates g(t) in the original model (6.1) are available 

from n: 

= En 	 (6.7) 

It is also true that E
T
ME = 1 and E

T
KE =

2
. 

Equations (6.2 - 6.7) are quite standard, but inadequate in detail 

for our purposes because of the following two facts: 

• For flexible vehicles, there are several 'rigid' modes. These 

have a natural frequency of zero, and piecewise-linear mode 

shapes. Moreover, there is no doubt (error) in these natual 

frequencies or mode shapes. 

• Usually the number of physical coordinates (the dimension of g) 

greatly exceeds the number of degrees of freedom wanted in the 

structural model. This leads to 'modal truncation' or, more 

generally, to 'mode selection.' After this process the dimension 

of n is much less than the dimension of 

To take these considerations into account, the modal matrix E is 

partitioned into three parts thus: 

E = [E r 	Ee 	Et] 	 (6.8) 

The subscripts ( ) r , ( ) e , and ( ) t  mean 'rigid,"elastic' (retained), 
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(6.12) 

(6.13) 

and elastic ('truncated'). The associated modal coordinates are nr , ne , 

n t , respectively, so that (6.7) becomes 

R = fenr gene  [+ Et] 	 (6.9) 

The term in square brackets is, by definition, dropped. 

The 'natural frequencies' associated with the 'rigid' modes are 

zero: 

E
T
KE = 0 

-r--r - 

E
T
KE = 0 

The remaining natural frequencies are collected in qe : 

E
T
KE = Q

2 
-e--e -e 

54 = diag{w 1 ,w2 , 

(6.10) 

Note that the frequencies have been re-ordered so that w l  is the first 

nonzero (i.e., elastic) natural frequency. 

The relevant damping matrices are 

E
T
DE = 0 

--r—r - 

E
T
DE = 0 

--r--e - 

A T 
D = E DE 
-e -e--e 

Then the modal dynamic equations are, from (6.2), 

n = Y (t) -r -r 

•• 
n +Dn +Q

2
n = y (t) - D n 

-e -e-e -e-e -e -et-t 

(6.11) 

with D = E
T
DE,. The term corresponding to truncated modes has been 

-e 
shifted to the right side of (6.13) to show that it now plays the role 
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col{n  (6.15) 

of an (unknown) disturbance. 

The inputs to the modal equations, /e  and /e , consist of three 

types of inputs: 

• known disturbances, 

• control inputs (to compensate for the known disturbances), 

• unknown disturbances. 

To reflect this, let 

Ir (t)  = Idr (t) 	11r1  

Ie(t) = Ide (t) 	%-1-1  

(6.14) 

For many spacecraft applications, the disturbances y dr  and /de  vary so 

slowly that they can be regarded as quasi-steady (e.g., they might be 

taken as constant for control system design). The control input vari-

ables are in u(t). Some contributions to /dr  and /de  may be known and 

calculable, others not. Also, for simplicity, we shall lump the term 

-Vett in (6.13) in with y. e (t) and call it 	
to remind us that there 

-La 
is a dynamic 'spillover' term in /àe . This brings us to the final form 

for structural model: 

n = 8 u + y A  
-r -r- -ur 

(6.14) 
• 

 +Dn  +
2 
 szn = Bu+ 

-e 	e e -e-e  -e-- 

This can be placed in first-order (state-space) form, and thus adapted to 

the results of the previous four sections, by defining the state vector 

to be 

Then the 'plant' model is 

X = Ax + Bu + v 	 (6.16) 

with 
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o o 	o 	1 _ 

o o 	o 	o _ _ 

O -R
2 

0 	-V — 	--e 	—e 

A A- (6.17) 

o o 

o  0 

B (6.18) v - 

1 1dr 

L2clice_ 

—
8
r 

--e 

•n•••n 

To complete the state-space model, and to place us in a position 

to use the results of Sections 2-5,  we need a formulation for the 

measurements, z. In this report, we consider acceleration measurements 

exclusively, although there will in general be other types of sensors 

as well. The outputs from such additional sensors can simply be con-

catenated with the accelerometer outputs considered below. With accel-

erations measured, we have 

z(t) = _S:g+ n(t) 	 (6.19) 

where n(t) is measurement error, and S is a selection matrix. If the 

coordinates whose accelerations are measured are all contained in the 

physical model (6.11),then S consists of l's and O's. If the output 

axis of an accelerometer is skewed to the physical coordinates in the 

model, then the corresponding row of the selection matrix S consists of 

direction cosines (some of which may, however, be 1 or 0). 

Now to find the measurement matrix M used throughout this report, 

we must use the structural dynamics model in (6.19). Employing (6.9) 

and (6.14), one arrived at 

z(t) = Mx(t) + zi(t) + z ? (t) + n(t) 	(6.20) 

where 
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àA 

(6.21) 

(6.22) 

(6.23) 

M = [0 	-SEes2 	0  

( t) = §.(EAr  + E 8 )u   

Mt)  = .5-(-41dr? Eele?) + SEe
t  

However, (6.20) does not include the possibility of feedforward 

(recall the simple example in Section 1.2). The known measurement dis-

turbance z can be eliminated by feeding it forward to cause cancellation. 

The feedforward would enter at the point labeled "sensor disturbances" in 

Figs. 2.1, 2.2, 3.1, 4.1, 4.2, 5.1 and 5.2. With feedforward applied, 

the measurement equation becomes 

(with 
feedforward)  

z = Mx + z +!i 
— 	-2? — 

(6.24) 

This completes the state-space model of the flexible space structure. 

Note in particular that external disturbances to the structure 

also directly disturb the measurement as well. One of the favorite 

assumptions conventionally made — that plant disturbances and measure-

ment disturbances are unrelated —is clearly invalid when accelerometers 

are used as sensors. 

6.2 	Model Errors  

Having found what the system matrices A, B, and M are for a flexible 

space vehicle, it is not difficult to find expressions for the errors 

caused in A, B and M due to structural modeling errors. From (6.17), 

o 

(6.25) 

9. 	0 	0 	0 

0 	-20 A0 	0 	-AD 

and, from (6.18), 
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Finally, from (6.21), 

"2 	" 
AM = 	-SE  R + 2Ee2eA2e ) 0 

0 

à8 
--r 

AB 
--e 

AB= (6.26) 

-S (AEA  + %Ape )] 	 (6.27) 

This raises naturally the question of how to estimate modal 

errors such as As2 , AD , etc. There are no hard and fast rules for 
—e —e - 

doing this and one must be satisfied with error estimates that are "not 

unreasonable." 

7. 	CONCLUDING REMARKS 

A number of conclusions emerge from the preceding formulations: 

• By using a mathematical model of the structural dynamics, accelero- 

meter measurements can be interpreted as a measurement of (a 

linear combination of) displacement and displacement rate. 

• This interpretation is prone to error if there are errors in the 

structural model. In other words, there can be "measurement dis-

turbances" owing to errors in mode shapes, modal frequencies, 

damping factors, etc. 

• Any forces or torques that disturb the flexible vehicle also 

directly disturb the interpretation of accelerometer measurements. 

This disturbance is over and above simple measurement error and 

the parameter error mentioned above. 

• Any known force or torque, of which control forces and torques are 

an important example, can be fed forward in the control system de-

sign to cancel part of the disturbance error mentioned above. 

• For control systems that include either a full-order state esti-

mator or a reduced-order state estimator, the estimation error does 
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not approach zero asymptotically when parameter errors are taken 

into account. The estimator's error will be continually excited 

by a non-zero state and by external disturbances (e.g., un-

modeled torques). 

Accelerometers can form part of a successful control system design, 

but only if the factors mentioned above are handled properly. 
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