
AERODYNAMICS 

of a 

VIBRATING RIBBED STRUCTURE 

[DOC-CR- S P-83-024] 

91  
C655 
F5533 
1983 



MMUIU,\l'ION3 CANADA 

(416)889-9260 

Ye efr( là,ed 

DYNAMICS AND CONTROL ANALYSIS
som L 18 Cherry Blosane Thornhill, Ontario L31  3B9 D-YNAC°N  " 

' P 
91 ! 
C655 • I 
E5533  - 1 
1983 	I 

L 

7 tAERODYNAMICS 

of a 

VIBRATING RIBBED STRUCTURE,/ 

[DOC-CR-SP-83-024] 

Industnj Canada 
LIE3RARY 

ec 2 0 1998 

BIBLIOTHÈQUE 
Industrie Canada 

, 

• B.incarsin 

P. C. Hughes 

February 1983 	 Dynacon Report DAISY-3 



) 
-12-„, 9 

cri 



This report presents the views of the author(s). Publication e  
of this report does not constitute COC approval of the reports 
findings or conclusions. This report is available outside the 
department by special arrangement. 

eig  Government Gouvernement 
a err of Canada 	du Canada 

Department of Communications 

DOC CONTRACTOR REPORT 	DOC-CR-SP-83-024 

• 	• , 	DEPARTMENT OF COMMUNICATIONS - OTTAWA 7  CANADA 

SPACE PROGRAM 

TITLE: AERODYNAMICS OF A VIBRATING RIBBED STRUCTURE 

AUTHOR(S): 	G. B. Sincarsin & P. C. Hughes 

ISSUED BY CONTRACTOR AS REPORT NO: 	Dynacon Report DAISY -3 

PREPARED BY: Dynacon Enterprises Ltd. 
18 Cherry Blossom Lane, 
Thornhill, Ontario 
L3T 3B9 

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 15ST.36001 -2-0727(22ST) 

DOC SCIENTIFIC AUTHORITY: 	A. H. Reynaud (Communications Research Centre) 

CLASSIFICATION:. 	Unclassified 

DATE: February 1983 



SUMMARY 

Two models for the aerodynamic disturbances experienced by a 

flexible body moving in a fluid (initially at rest) are presented. 

The first applies to flows with moderate to high Reynolds numbers 
, 

and considers the inertial resistance of the fluid. The second 

deals with viscous effects and low Reynolds number flows. It is 

demonstrated that the 'inertias' and 'momenta' associated with 

these models obey parallel-axis theorems analogous to the corre-

sponding structural inertias and momenta for the flexible body. 

The suitability of both models for use in prediction of the aero-

dynamic disturbances caused by the laboratory air surrounding 

DAISY also is assessed. 
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1. 	INTRODUCTION 

It is well known that environmental disturbances play a key role 

in the dynamics of spacecraft and that often, in order to achieve some speci-

fied level of performance, control strategies must be devised to counteract 

their effects. To accomplish this end, some reasonable estimate for the 

various environmental disturbances must be made, based either on analytical 

models or on flight experience. While for many types of spacecraft this 

task has been essentially completed, with only the details varying from one 

design to another, similar progress has yet to be made for structures tested 

in terrestrial laboratories. In particular, the impact of aerodynamic dis-

turbances on the'dynamics of a slowly vibrating body (fundamental frequency 

< 0.5 Hz.), where the relative velocity between the body and the air is 

caused solely by the vibratory motion, has not previously been modeled. 

While unsteady-flow models do exist for rigid bodies, similar 

models for flexible bodies are absent in the literature. Unfortunately, it 

is precisely such models that are required to model the effects of aerodynamic 

disturbances on DAISY, a highly flexible structure emulating third generation 

spacecraft (see [Sincarsin (1), 1983]). More than one model is necessary be-

cause, for different flow regimes, the importance of inertial and viscous 

fluid effects will vary. 

As with all other fluid dynamics problems, for an immersed flexible 

body moving unsteadily through a fluid (here, air), the relative importance of 

viscous drag versus the inertial resistance of the fluid displaced can be as-

sessed by considering the characteristic Reynolds numbers, R, for the motion 

(translational, Rt , and rotational, IR r ), 

where p is the fluid density, p is the fluid viscosity, u is the translational 
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velocity (relative to the fluid), w is the angular velocity (again, relative 

to the fluid) and
t 

and î
r 

are characteristic lengths associated with the 

translational and rotational motions. [It is noteworthy that lift can also 

be generated via viscous effects or by circulation in a potential flow (where 

inertial effects dominate). These forces are included in what follows.] 

Typical Reynolds numbers 1R for the anticipated rib motions of 

DAISY are given in Appendix A. They reveal that for certain motions (twist 

about the rib centerline) viscous effects will dominate, while for other 

motions (out-of-plane and in-plane displacements) inertial effects may become 

significant. This does not, however, imply that for twisting motions inertial 

effects must be ignored, nor that viscous effects are negligible for out-of-

plane and in-plane motions. The appropriate aerodynamic disturbance models 

must be chosen within the context of the original structural model. That is, 

the situation could be as shown in Fig. 1.1, where the inertial fluid forces 

dominate those caused by viscosity --relative to the corresponding_structural 

forces though, the viscous fluid forces are more important. How well Fig. 1.1 

represents reality for DAISY is still to be established. This is part of the 

ongoing detailed-design procedure documented in [Sincarsin (2), 1983]. 

To permit a valid assessment of the importance of both inertial and 

viscous fluid forces, two aerodynamic disturbance models are developed in what 

follows. The first treats the problem of the inertial resistance generated. 

by a fluid against the unsteady motion of a flexible body immersed in an incom-

pressible frictionless fluid (a model valid for moderate to high 1R). The 

second deals with the same motion but does not neglect viscosity and is valid 

for low IR. 

1.1 	Velocity of a Flexible Body Moving Through a Fluid  

Consider a flexible body 8 immersed in fluid as shown in Fig. 1.2. 

The body undergoes unsteady motion through a fluid that is initially at rest. 

The resultant fluid velocity is denoted by _\/(t._;,t), where r lies in the region 

between S
B' 

the surface of 8, and S,  some surface at infinity. The velocity 

at each point within 8 is most easily obtained by first considering the dis-

placement at each point and then differentiating with respect to time. Letting 

2 



VISCOUS FORCES 

INERTIAL FORCES 

Structural Inertial 
Resistance 

Damping 	Viscous 
Drag 

Figure 1.1: Comparison of Inertial and Viscous Forces 
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à(12.,t) = 	tp.(r)q.(t) . 
1=171 7 1  

(1.4) 

(1.5) 

(1. 6) 

w and o  represent the absolute translational and rotational displacements 

(first-order infinitesimals) of the reference point OB  (i.e. relative to some 

inertial frame) and A represent the small elastic displacement in body 8, the 

total displacement (to first order) is 

d(r,t) = w(t) 	rxe(t) + à(r,t) 	(1.3) 

where r remains within SB  and d is expressed in FB  (see Fig. 1.2). A more 

useful form of (1.3) is obtained by assuming that à(r,t) can be expressed as ' 

a superposition of 'shape functions' li (r), each associated with a single 

'modal coordinate'  

Then, defining a single rectangular matrix 11/(r) and a single column matrix 2. , 

as follows, 

1/(r) A [11 	...] 

g(t) ù [q 1  q2  ...] T  

(1.3) becomes 

d(r,t) = w(t) - rxe(t) +  

Whence the velocity at any point in 8 is 

u(r,t) = W(t) - r xô(t) + 11(r)g(t) 

(1.7) 

(1 .8) 

expressed in FB . It is also assumed that the components of n4(1z,t) are ex-

pressed in FB  in what follows. Furthermore, although 8 experiences small 

deformations, it is assumed that its surface area and volume remain constant. 

The appropriate unit normal vector on S (=SB  + S.), 141. (4) I 1.; e S, is also 

shown in Fig. 1.2. 
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2. 	INERTIAL RESISTANCE 

2.1 	Neumann's Problem  

Here it is assumed that the fluid, in which the flexible body 8 

shown in Fig. 1.2 is immersed, is incompressible and frictionless (zero 

viscosity). Furthermore, any fluid motion is induced solely by the motion 

of 8. Now, from the continuity equation for an incompressible fluid (i.e. 

mass conservation) 

(2.1) v v = 0 — — 

This means we can represent 

V  = -v(1) 

provided 

vxv = 0 

(2.2) 

(2.3) 

that is, provided the flow is irrotational. Furthermore, the fluid velocity 

potential (i) is one-valued (only one value of (1) exists for each r in V (= V. - 

V ) the volume enclosed by S). From (2.1) and (2.2), 
B ' 

which is Laplace's equation. Also, the following boundary conditions apply: 

Equation (2.6) implies that the flow is ideal. There is tangential 'slip' 

on the boundary SB ; however, the velocity components of the body and the 

fluid normal to S B  must be equal. Now, given (2.2), and (1.8) from the pre: 

vious section, the boundary conditions (2.5) and (2.6) may be rewritten as 

V qb (2.7) L  e Sco 
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and, from (2.9), 

(2.11) 

1 

1 
1 

T • 	x• 	• 
n (w - r 6 + 12.g) = - (v4) 

T 
n = - 

The problem of solving v
2
4,  = 0 within a region, given Dean on 

the boundary, is kuown as Neumann's Problem. Some properties of this problem 

are as follows: 

1. It has a unique solution, hence a unique flow field exists. 

2. The maximum or minimum of 4) must occur on a boundary 

(SB  or S.). 

3. Adding a constant to (I) is irrelevant. 

4. The mean value of 41 over any spherical surface of radius E, 

is equal to the value of (p at the center of the sphere, as 

0. 

5. 	The magnitude of v (= v) cannot have a maximum at an interior 

point of the flow field. 

2.2 	Form of the Fluid Velocity Potential  

We note that Laplace's equation (2.4) is a linear differential 

equation, and thus the solution 4)(r,t) can be written as a superposition of 

other solutions. Accordingly, we choose 

4)(r,t) = eil (r)W(t) + 4(r)i)(t) + 4(r)11(r)g(t) 	(2.9) 

with E 	E and 	expressed in F
B. 

Thus, for example, E 
--w is 

the portion of 
-w' -1  

4) associated with translational motion. Since, from (2.8), 

1 
we conclude that (on SB ) 

1 



n 	n _ 	. 	-0 _ 	x 	. 	,,T, )  . _ TTn  
n , — - -r n , — 

Dn 	Dn 	- 	an -q-LI 

Furthermore, since v
24)=0, we have 

(2.12) 

v
2
E = 0 	; 	v

2
E = 0  --w 	

• 

(2.13) 

It is noteworthy that 4, 	and .51  depend solely on the body shape and not 

on its motion. Therefore, given the shape of an undeformed flexible body 

and a knowledge of the possible deformed modes (via the shape functions), one 

can solve for E
' 
 E and E once and for all. Then specific motions can be 

determined by using the superposition cited in (2.9). Surface irregularities 

are not ignored in the above derivation; they would be reflected in the solu- 

tions for E 	E and E 
-w' -0 	-1' 

2.3 	Kinetic Energy of the Fluid  

Preparatory to finding the energy of the fluid, we recall Gauss' 

divergence theorem 

f  na  dS = - f va  dV 
V 

(2.14) 

(The minus sign arises because of the direction of the normal.) We take, in 

particular, 

(2.15) a = 4)v45 

and recall the identity 

vT (V7(1)) = (v(P) Tv(I) 	(I)v 2 (1) 

Thus, given (2.2) and (2.4), 

vT (4) ,71))  = y2 

Now, using (2.14) with a defined by (2.15) 

(2.16) 

(2.17) 

f 2-4)- dS = v2dV (2.18) 

S " V 
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But the kinetic energy of the fluid is given by 

f
v  2 dV T 	% p f 	2 

V 

where p is the fluid density, so that we obtain 

T =-% r 
f 	2P  j P  ân dS 

(2.19) 

(2.20) 

Furthermore, for an infinite fluid bounded internally by the surface of an 

immersed body (as is the case here), it  cari  be shown [Milne and Thomson, 1955] 

that the integral in (2.20) vanishes on S. and therefore 

 T
f 

=  -½p 	dS 
ân 	B 

S
B 

(2.21) 

Given the assumed form for the velocity potential from (2.9), the kinetic 

energy becomes 

- 	-T 	• 	• 
T =1/2 T  wmW + 	0 6 + Tp 
f 	_R_  

-T 	• 	-T 	• + k e cie ke 	+ 1/20 H_Ra 

+ 
T • 	• 	•T 	• 	•T 	• 

4'2 	.12-1R0- (2.22) 

where 

T 
A 	-W 	A 
- - p 	dSB 	; 	GIR  = - p 	E_ 	dSB  

S
B 	

d  

T n 
0 A - p f 	dS 	• 	J = - p  
-R 	an 	B 	 f ' -R 

S
B
-w 	S

B 
 

T T 
â(IF 	D(11

T
.5.
I

)
T

dSB 
A à 
	, 	• H - 	

( 2.23) P = - 	

n) 
dS p -R 	-w an 	B' -R 	p 	Dri 

fS
B 	

fS
B 
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—R 	—q an 	B 

S
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R e 	(Y I E ) 
 an 
dS
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(2.23) 

—R  
SB 	 (cont'd) 

T T 
T 	(11'  1n )  

M 4  -of 	) 	" dS
B —RR 	- S

B 

Now, certain properties of these matrices can be made clear if 

we again take the divergence theorem (2.14), but instead choose 

(2.24) 
= 

where (p
1 
and (p

2 
are any two solutions to Laplace's equation: 

7
2 
4'2 = 

Then 

v
T
a = (

7
(P1)

T7
(P2 - (P 1v

2
2 ' (Di)

T
11)2 

so that 

(1) 2 
dS = -1 (v(p 1

)
T

.y.1)
2 

dV 
S 1 -a-17- 	V 

However, interchanging (p i  and (1) 2  gives 

J 2 
 4)1- „ 	r iv 	T \ j  y 2 717---1  us, — - j \_J„, vq) ].  dV 

V 

from which the recipxocity theorem follows: 

(1) 2 Aç 

s 2 
	

dS  y — 	= f (I) nn 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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0 = c 
-R -R 

Q = P
T 

-R -R 

R 

 

_ T  
-R -R 

(2.30) 

One immediate conclusion from (2.29) is that M
' 
 J and M are symmetric 

matrices. Also, application of (2.29) on a component-by-component basis to 

the matrix pairs (12R ,ÇR ), (gR ,4) and (ER ,4) reveals that 

Finally, the matrices given in (2.33) can be written in a more 

compact form by applying (2.12): 

T 
M = pf nE

T 
dS 	• 	P = pf nE Y dS -R 	

SB
--w B ' 	-R 	

S 	B  

C = pf r
x
nE

T 

 S 	
dS • 	H = pi r

x
nE

T 
dS -R 	--w B' 	-R 	S

B
- 	B  

(2.31) 

= pf rxnE
T 

dS 	
RR 

;
TT 

dSp 
1-11-  S B 	

S
B 

It is shown in Appendix B that, in fact, parallel-axis theorems exist for the 

fluid inertia and momentum matrices (2.31) that are analogous to their counter-

parts for the flexible body. The particular forms for the integrals in (2.31) 

were chosen to permit direct comparison of Appendix B with [Hughes, 1980]. 

2.4 	Inertial-Resistance Forces and Torques  

To determine the inertial-resistance forces and torques on body 8, 

all that remains is to apply Lagrange's equation to the system energies: 

d(DL/e)/dt 	DLai=  f 	 (2.32) 

L = T - V 	 (2.33) 

11 
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T = T
B 

+ T
f 

(2.34) 

V = V
B 

(2.35) 

Here, the total kinetic energy T consists of the kinetic energy of the 

flexible body, TB , and the kinetic energy of the fluid, Tf . There is no 

potential energy associated with the fluid; hence the total potential 

energy V is simply VB , the potential energy for body 8. The generalized 

forces associated with each degree of freedom contained in are  denoted 

by  f.  Typically f consists of those external forces and torques acting 
-Y 	--Y 

on 8 that are not implied by V B ; however, should body 8, in fact, be 

conhected to other structural elements (see, for example [Sincarsin (2), 

1983 ] ), then 	will contain interbody forces and torques as well. The 

exact forms for T
B 

and V
B 

are not of interest here — it is only necessary 

to acknowledge their existence. 

Upon substitution of (2.33) through (2.35) into (2.32) and 

partitioning / according to 

= col { w, e ,g} 	 (2.36) 

it follows that 

d(aTB/DW)/dt - DVB/pw = fw  + 4 

d(BTB/à)/dt - OB/De 	+ gR  

d(aTB/DA)/dt - aV B/Dg.  fg  + fR  

(2.37) 

(2.38) 

(2.39) 

where the inertial-resistance force 4, torque gR  and generalized 'elastic' 

force f are 
-R 

-d(aTfh)/dt 

= -d(ef/à)/dt 

4 = -d(aTf/A)/dt 

Then, application of (2.40) to (2.22) of the previous section yields the 

desired result: 

(2.40) 

12 



(3. 1) 2 	- 
f = - ½ p  v CD — 

Av 
—D  

1 

1 	where 

where p is the fluid density, v is the velocity of the fluid flow past the 

body immersed in the fluid (it has magnitude v and direction v = v/v), A is 

the surface area of the body exposed to the flow (projected perpendicular 

to v) and C
D 

is the drag coefficient (a function of Reynolds number, TR). 

For our situation, v is not constant in either magnitude or direction over 

the surface area S
B' 

Furthermore, since different values of IR will apply 

over different portions of the body (for example, see Appendix A), CD  also 

varies over S
B' 

All this suggests that an alternate form for (3.1) should 

prove more useful: 

f = 	df 
—0 	—0 

S
B 

(3.2) 

dA = cosA dS
B 

(3.4) 

M c P 
—R —R —R 

aR = - 2R  el-R ER 

T 	T 
P H M 

—R 	RRRRRR 

The similarity between (2.41) and the corresponding inertial terms associated 

with the structural mass of body 8 (see [Sincarsin (2), 1983]) is immediately 

obvious. 

3. 	VISCOUS RESISTANCE 

Generally, the viscous drag on a body is represented via the 

relation 

o (2.41) 

- 
df = %pv 2  C (vT  n)v dS 

2 	D — — — B 

and, as before, n is the outward unit normal to the elemental area dSD . 

That is, 

(3.3) 



-T 
cosA = -v n (3. 5) 

where 

It is noteworthy, that for CD  and v constant, .(3.1) is rec.overed from (3.2) 

and (3.3). 

Since f does not have to be evaluated relative to the center 
-D 

of pressure—for example, we choose to evaluate 1 0  relative to 0B  (recall 

Fig. 1.2) --a viscous torque also will exist in general: 

= f rxdf 	r SB  
— -D 

S
B 

(3. 6) 

Finally, using the concept of virtual work, the generalized 'elastic' drag 

force acting on a flexible body 8 is 

f = 	Y(r)
T
df 

-D 	-- -D 	
r E S 

B 
S
B 

(3.7) 

where lif(r) is given by (1.5). 

While (3.2), (3.6) and (3.7) are valid for all R, they are some-

what misleading when one attempts to assess the dependence of the drag 'forces' 

on the velocity v. While for low Reynolds numbers C D  is approximately in-

versely proportional to v (see Fig. 3.1) so that the drag 'forces' are essenti-

ally Zinear in v, for high Reynolds numbers CD  is almost constant (see Fig. 

3.1) and thus the drag 'forces' are virtually quadratic in v. Furthermore, for 

our application it is assumed that v is a first-order infinitesimal, since the 

fluid velocity is induced by motion of the flexible body, which possesses a 

first-order infinitesimal velocity u: As a consequence, for high Rofiscous 

drag should be a second-order effect. Hence we should concentrate our efforts 

towards developing a viscous drag model for low- IR flows. Such a model is 

presented in the following. 

3.1 	Creeping Motion Equations  

For flow with low IR ( IR < 50) it is reasonable to neglect inertial 

effects in the general Navier-Stokes fluid equations, in the same way that for 

14 
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(from, [Massey, 1970]) 
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(3 

2 	1 
v v=irvp 

v
T
v=0 

(3.8) 

.9) 

V =VW +VÔ-I-Vlià 
—6— --q 

(3.13) 

T. 	T. 	T • 
= (3.14) 

high IR ( IR > 103 ) viscous effects are neglected to obtain potential flow 

theory (i.e. the theory used in Section 2). If one then assumes the flow 

to be incompressible, the creeping motion eq2ations result: 

The pressure on the fluid-body boundary SB  is denoted by p, while the fluid 

viscosity is represented by p. Furthermore, for the flexible body 8 shown 

in Fig. 1.2, the following boundary conditions apply 

V  = 0 	r E S 	 (3.10) 
— 

V  = u 	r 	SB 	(3.11) 

where u, the velocity of 8, is given by (1.8): 

u(r,t) = W(t) 	rxô(t) 	11(r)A(t) 	(3.12) 

Equation (3.11) implies that there is no 'slip' on SB . Unlike the boundary 

condition for potential flow, both the tangential and the normal velocity 

components of v and u must be equal on the surface of the body. 

Equations (3.8) through (3.11) are also applicable to unsteady 

motions [Happel and Brenner, 1973], provided both the translational and rota-

tional R are small (see Section 1). It is also assumed that the hydrostatic 

pressure is negligible and that p represents only the dynamic pressure. For 

our problem, the hydrostatic pressure is essentially constant, since there is 

no fluid flow without motion of the body. 

3.2 	Form of.thé Fluid:VéloCityand'PeSûre  

The creeping motion equations are linear differential equations, 

and therefore it is possible to seek solutions of the form 

16 



0 uz - Bz)Az = 

V A = o 

3 E SB  

3 E S — œ 

which are superpositions involving the two-dimensional velocity fields Vz , 

z E {w,e,q} and the one-dimensional pressure fields 22  associated with the 

translational, rotational and elastic motions of 8. 

Substitution of (3.13) and (3.14) into (3.8) through (3.11) 

yields three sets of independent equations, one associated with each type 

of motion: 

[V2 (VA) - v(PIA z )]i =" 0 

 [vT
(V A )] = 0 
-Z-2 

PzAz ]2  = °  

(3.15) 

3 c  S B  

3 E S c.  

where, for z = (wo,q), we set, respectively, [Az ,Bz ] = ([1,1j, [1,-r x ], 

and 1 is the identity matrix. However, since (3.15) must be true for all W, 

ô and AL, it follows that 

v2 (VzAz ) = v(EzAz ) 

VT
(VA) = °

T 

(3.16) 

Hence, since y2 and-z depend solely on the shape of 8 and not its motion, 
(3.16) can be solved given the undeformed shape of 8 and the shape functions 

associated with its deformed modes. Specific motions can then be represented 

by applying superposition according to (3.13) and (3.14). Again, surface 

irregularities will be reflected in the solutions for Vz  and Ez . 

3.3 	Form of the Pressure Tensor  

In an ideal fluid the force exerted on an elemental area dSB 
is a 

17 



df = - p n dS 
—SB 	— B 

(3.17) 

=  - Pi (3.18) 

I. 
 = 	+ (T)T] 	(vTv) (3.21) 

A  = 	+ Idy.m7 + (vv T ) T ] (3.22) 

H = 11(11 + n + n ) -w -e -q 
(3.23) 

normal thrust proportional to the pressure 

We can therefore regard the stress (force per unit area) as being obtained 

from a stress tensor 

whereby 

df = H
T
n dS 

B 
(3.19) 

For a viscous fluid, the stress tensor is no longer given by (3.18), nor is 

it in general symmetric, but instead  takes  the  form [Happel and Brenner, 1973] 

= p 1 + K(vTv)1 + 211 r 	 (3.30) 

where K is the bulk (or volume) viscosity, p is the shear viscosity (here 

called the fluid viscosity) and r, the rate-of-deformation tensor, is given by 

Since, for creeping motion, v
T
v = 0, the relevant stress tensor for the pre-

sent analysis becomes 

(The reader should be cautioned that, because of the order implied by the use 

of the v operator, (vvT ) T  t vv
T

.) In fact, substitution of (3.13) and (3.14) 

into (3.22) yields an alternate form for the stress tensor that will ultimately 

prove more useful, namely, 

where 

T • 	. 
H = - .1(2 A z) + v(Tz A

T 
V
T ) 	rv(iTATvT) 1 T 

—z — z—z— — — —z—Z 	L- -Z-Z 
(3.24) 
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1 
1 

1 
1 
1 
1 

1 df = H
T
n dS 

-SB 	B 
(3.29) 

1 
1 

= 	rxn-rn dSB  

SB  
fl =

T 
d5B  ; 

S
B  (3.30) 

1 

and, as before, for z = (w,e,q), we use, respectively, Az  = (1,1,T). Finally, 

we define the three-dimensional matrix f
12 

according to the relation 

• 
H = P z 
-2 

so that the (i,j,k) element of Pz  is 

(3.25) 

P 	= -1..p A 	+ ---(A 	V .) + 	V .) 	(3.26) 
zijk 	lj zm zmk 	zkm zmj 	zkm zmi 

with the repeated index m implying summation over m = (1,2,3), whereupon 

(3.24) can be written as 

(3.27) 

The multiplication operation cited in (3.25) is most easily visualized in 

indicial notation. Simply, 

H
zij 

= P
zijkk 

where the range for k is the dimension of 4 and the summation convention 

mentioned previously applies. 

(3.28) 

1 
3.4 	Hydrodynamic Inertia-Rate and Momentum-Rate Matrices  

As stated at the beginning of the previous section, the force 

exerted on an elemental area dS
B 

is given by 

1 where, in our case, H is given by (3.27). Hence the total force, torque and 

generalized 'elastic' force acting on 8 as it moves in a viscous fluid are 

f =
T
H
T 

dS
B 

SB 
-v 
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SW 7  Is d(r,t
)Td1sB (3:31) 

(3.32) 

(3.33) 

These relations can be verified by forming the virtual work expression 

where the virtual displacement sd(r,t) correspondsto the displacement given 

by (1.3). Now, recognizing that the i-th element of nz  = HIn is 

n
Zi 

= n H . 
M Z1111 

so that one can define the matrix N
2 

according to 

à 
N 	= n P 
zu 	m zmij 

equations (3.30) can be expanded in terms of the stress tensor (3.27) to 

obtain 

M 0 P 
--V -I -V 

= - 	C 	eT 	H 
-V -1 —1 

-11\r 	vv  

where 

M 	- pf —w  N dSB 	• rv 
A - pf rxN dS 

—v 	
SB 	

' 	—w B 
S
B 

0 
A 	 A 	f - - ii 	N dS 	r

X
N dS

B —v 	
S
B
--8 	

B 	' 	
S
B
---

-e  

A  ID 	 f A - 	N dS 	H = - p 	r
X
N dS 

—v 	
S
B 	

B  
—v 	

S —(1 	B  

A 	T 

•

Q 	 N dS
B  —v 	— —w 

S
B 

fv 

(3.34) 

(3.35) 
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0 = C 
-1 

p
T 

R = H
T 

-1 -1 

(3.37) 

(3.35) 
(cont'd) 

M 4 -uf IFTN  dS 
-vv S

B
- 	B  

Various properties of these matrices can be demonstrated by 

invoking the reciprocal theorem for creeping motion [Happel and Brenner, 1973]: 

.T 

IS v
T
N
vl 

v. dS =jS 
	2 
vN v dS 
-1--v -2 

(3.36) 

One immediate consequence is that, by choosing the (v,1) pairs in the combin- 
-v 

ations 	,v ,N ) = (W,,Nw ,w2 ,Nw ), then = (-rxô i ,N.0 ,-rA5 2 ,113 ), and finally 

= (Yel l ,Ng ,/à2 ,N1 ), the matrices ell  and ilivv  can be shown to be symmetric. 

That N N and N are independent of the fluid velocity-has-also been used; 

they are functions only of the shape of S. Furthermore, choosing 

= (W N -rx5,N ), then = 	,W,N ), and finally = 

(12A,Nci ,-rxô,N.8 ), it can be shown that 

Finally, Mv , J 1 , Çrl  and 4v , henceforth called the hydrodynamic inertia-rate 

matrices, and 4 and 4 henceforth called the hydrodynamic momentum-rate 

matrices, obey parallel-axis theorems analogous to those for the inertias and 

momenta of a flexible body (see Appendix C). 

3.5 	Viscous-Resistance Forces and Torques  

Given (3.34) and (3.37), the general form for the viscous-resistance 

forces and torques acting upon an immersed flexible body are 
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1 
1 
1 
1 

1 
1 

1 
1 
1 
1 
1 

1 

—fv 

= - 

Tfl  
(3.38) 

9. 

M 	
CT 

--V 	--V 	—V 
P 

C 	J 	H —v 	—v 	--V 

pT HT . M 
71 	-1 • -vv_ 

The term viscous-resistance may be somewhat misleading in that (3.38) in-

cludes both lift and drag 'forces'; however, drag is expected to be dominant 

for DAISY. Also, while (3.38) is valid for a single flexible body, if a 

number of bodies are interconnected, hydrodynamic interaction forces and 

torques will result. These are not modeled in (3.38), nor are they modeled 

in the inertial-resistance 'force' equations (2.41). Their region of im-

portance should, however, be localized near the interconnections. Provided 

this region is small compared to the body size, their effect on the global 

hydrodynamic 'forces' [those cited in (2.41) and (3.38)] should be minimal. 

4. 	CONCLUDING REMARKS 

An attempt has been made to model the important aerodynamic 

disturbances affecting the dynamics of a flexible body as it vibrates in 

air. For motions with small 12, the viscous effects of the air will domin-

ate. As a consequence, a disturbance model based on the fluid creeping 

motion equations (Stokes flow) is presented. On the other hand, if the re-

sultant air flow has a large R, it is the inertial resistance of the air 

that becomes important —hence the inclusion of a disturbance model for this 

effect. It would appear, however, that based on Appendix A, the former dis-

turbance model is of greatest interest with regard to the anticipated rib 

motions of DAISY. 

A very useful trait of both disturbance models is that parallel-

axis theorems exist for their individual governing matrices. This enables 

one to express the forces and torques in each model about any arbitrary 

reference point, a necessity if these disturbing effects are to be included 

in a consistent manner in the dynamics model for DAISY. 
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Appendix A 

Typical Reynolds Numbers for DAISY  

In Section 1, two Reynolds numbers were identified, one associated 

with translational motion 

TR 	P  !let 
t 	Ii 

and a second associated with rotational motion 

pwt.2 
_ 	r 

t 

(A.1)  

(A.2)  

Recall that p is the fluid density, p the fluid viscosity, u the translational 

velocity (relative to the fluid), w the angular velocity (again, relative to 

the fluid) and t.t and £rare  characteristic lengths associated with the trans-

lational and rotational motions. 

The primary sources of flexibility for DAISY (see [Sincarsin (1), 

1983]) are the springs at the rib roots where the rib is attached to the struc-

ture's central hub. These springs permit the ribs to undergo in-plane, out-

of-plane and twisting motions as shown in Fig. A.1. Since the struts which 

interconnect the ribs are 'follower' structural elements, it is the JR associ-

ated with these rib vibrations that are of greatest interest here. Furthermore, 

while the struts are geometrically similar to the ribs, they are dimensionally 

smaller. Thus the 1R values cited herein should be upper bounds for the entire 

structure. 

A typical DAISY rib (a cylindrical tube) is 1.35 m in length, with 

-3 
an outside diameter of 0.05 m and a wall thickness of 1.6 x 10m. It is anti- 

cipated that the amplitude of the in-plane and out-of-plane rib vibrations will 

be approximately 0.1 m at the rib tip. The angular amplitude of the twist 

vibration will be about 0.07 rad (4 0 ). This last estimate is consistent with 

the angular rotation (a) required at the rib root to produce a 0.1m deflection 

at the rib tip [i.e. a 	2 arctan (0.05/1.35) = 4.2°]. Now, the velocities for 

typical translational (in-plane and out-of-plane) and rotational (twist) rib 
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vibrations can be approximated by using the relations 

u(t) = Dontcosntt 

w(t) = 00orc0snrt 

where D
o
'is the linear amplitude, e

o 
is the angular amplitude and  

are the fundamental natural frequencies of the translational and rotational 

vibrations. The design range for these frequencies is between 0.06 and 3.14 

rad/s (see [Sincarsin (1), 1983]). A plot of 1Rt  (evaluated at the rib tip) 

and IR
r versus n is provided in Fig. A.2, where (A.1) and (A.2) have been 

used with 

u = lu(t)I = D
o
n 

w = 1 10 (t)I = eon 

The pertinent values for t
t' 

t
r' 

p and g are 0.05 m, 0.05m, 1.197 kg/m
2 

and 	• 

18.22 x 10
-6 

kg/ms, where p and p are for dry air at room temperature, 21.50 C 

(71 o F). It should be noted that at the rib root, lR
t 
 = O. 

t 
ranges in value from 20 to 1032, while IR has the range 0.72 to 

36.1. Hence the most important flow regime anticipated for DAISY, from the 

viewpoint of rib vibrations, has a low R. Viscous effects will dominate for 

twisting motions. They will also dominate for in-plane and out-of-plane motions 

if the first natural frequency is near the lower end of the design range. If, 

however, the first natural frequency occurs near the upper end of the design 

range then inertia effects may become significant for these two motions. For 

example, according to Fig. 3.1 of Section 3, Rt  = 1032 is near the boundary of 

the JR range in which the drag coefficient CD  is approximately constant, that 

is, the region in which inertial effects dominate. 	. 

One shortcoming of Fig. A.2 is that it shows the potential range of  JR 

for only the lowest natural frequency. One might inquire as to the consequences 

of considering a higher value of n. In an attempt to answer this question 

qualitatively, consider (A.1) and (A.2) written explicitly in terms of (A.5) 

and (A.6), where now n is not necessarily the fundamental frequency: 

(A.3) 

(A.4) 

(A.5) 

(A.6) 
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Figure A.2: Typical Reynolds Numbers for the Rib Vibrations of DAISY 



	

pDoRttt 	 (A.7) 
t 

2 
pe 2 t m  _ 	orr 	 (A.8) 

l‘r 

Provided the products Dêt  and oêr  remain constant as 0 increases, Fig. A.2 

will remain valid. While it is common for the amplitude of vibration for a 

given body to tend to decrease at the higher natural frequencies, it is not 

guaranteed that this decrease will exactly equal the increase in frequency. 

Hence Fig. A.2 may, in fact, underestimate IR for the higher frequencies. It 

is not expected, however, that this underestimation would be substantial. 

One way to confirm that the correct flow regime is being considered 

is to determine (nt'  Do ) and (s2r'o)  for the frequency range of interest (e.g. 

the lowest few frequencies of DAISY) and then plot the resulting IR on a fre-

quency- vs-amplitude plot, such as that shown in Fig. A.3. The curves shown 

in the figure are curves of constant 1R; they are used to demarcate the various 

flow regimes. Typical values of Pt, indicated by crosses, are also shown in 

the figure. These points côuld be either analytical predictions or experimental 

values. As the detailed design progresses, it is hoped that such a plot can be 

used to confirm that the proper flow regimes have been assumed in formulating 

aerodynamics disturbance models for DAISY. 
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(B.3)  

(B.4)  

Appendix B 

Parallel-Axis Theorems for the Hydrodynamic Inertia  

and Momentum Matrices  

A derivation based on [Hughes, 1980] will be used to prove 

parallel-axis theorems for the hydrodynamic inertia matrices (IR ,G.k,4,4,R ) 

and momentum matrices (P H ) 	These matrices are defined in equation (2.31) 
-R'-R • 

of Section 2. 

To begin, consider the flexible body shown in Fig. B.1. The two 

distinct points 0B  and 0c  are chosen arbitrarily; the only stipulation is 

that 0c  be located relative to 0B  by a constant vector 4c . The other two 

vectors, 2-).B  and jzc , respectively locate an arbitrary point D on the body sur- 

face S
B 

relative to 0
B 

and 0 . Also shown in the figure are the two reference 
C 

frames FB  and Fc , which have origins at 0B  and O.  

From (1.7) of Section 1.1, we know that the absolute displacement 

of the point D, in terms of the absolute translational and rotational dis-

placements associated with the frame FB , is 

rx0 (t) + Y (r )g(t) 
— -B 

(B.1) 

where dB  is expressed in FB . Similarly, this same displacement, in terms of 

the absolute displacements associated with Fc , takes the form 

= w (t) - rx0 (t) + 	(r + C r )2(t) _c 	-C—C 	-C —C -£B-BC 

where dc  is expressed in Fc  and p 	is the rotation matrix relating FB  to Fc . 

Also, since rBc  is a constant vector, it follows that 

(B.2) 

w = 	rx 	) 
-C -CB -B -BC-B 

0 = C 0 

where, as in (B.2) I.Bc  is expressed in FB . Now, forming 
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Figure B.1: Geometry of Parallel-Axis Theorems for Hydrodynamic 

Inertia and Momentum Matrices 
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(C r) x  = C rxC (B .8) 

with 

C = C -QP --PQ (B.9) 

(B.5)  • 	d=Cd 

and applying (B.3) and (B.4), it can be shown that 

1£(.qurB) = P-calB(4) 

where the relation 

r =r +Cr -B -BC -BC-C 

(B.6) 

(B.7)  

(see Fig. B.1) has been used. Here, as in (B.1) and (B.2), 4 is expressed 

in FB  and rc  is expressed in Fc . The identity 

is also required to obtain (B.6). Prior to proceeding, it is useful to note 

that in what follows the rotation matrix C 	can be taken to be constant 
-BC 

since it always multiplies a first-order quantity. Hence any first-order 

change in Ç 	yields second-order terms, to be neglected in the 

present analysis. 

Let us now consider the velocity potential (1) at D expressed in 

terms of the absolute velocities of FB and F 

(1)B = §-we:J-8 	4-Bi.3-B 	qBB 

= 4C1. 74 4CAC 4*(11  

(B.10) 

(B.11) 

In the above , zi3 , for zE{wd,q}, is expressed in FB , while 	is expressed 

in FC ' However, (1) is a scalar and thus independent of reference frame. 

Therefore, equating (B.10) and (B.11) and applying (B.3), (B.4) and (B.6), 

one finds that 
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= -Ç-BeRAB 
(B.18) 

(B.12) 

(B.13) 

(B.14) 

T 	Tc 	x = 	- 	Cr 
-11B 	-wC-CB -BC 

T 	T 
C 

-qB -qC-CB 

These results are essential to the development of the parallel-axis theorems 

applying to the hydrodynamic inertia and momentum matrices. For example, 

that M is independent of the chosen origin can be demonstrated quite readily 
-R 

by application of (B.12). One simply notes, from (2.31) that %, in terms of 

quantities related to OB  and expressed in Fs , is 

M = pi n
T 

dS 
—"RB 
	s —a—e 

B 

while in terms of quantities related to Oc , 	(expressed in Fc ) becomes 

M = i p 	n g
T 

dS 
-RC 	

SB
-C-wC B 

where 

nc = cBnB 

(B.15) 

(B.16) 

(B.17) 

is the outward normal to SB  at the point D expressed in Fc  (i.e. LIB  is the 

outward normal to SB  at the point D expressed in FB ). By direct substitution 

of (B.12) into (B.15), and noting (B.17), it follows that 

which confirms the stated independence. The parallel-axis theorem governing 

the hydrodynamic first-moment-of-inertia matrix can be demonstrated using an 

analogous procedure. One begins by writing 2R  (recall (2.31)) in terms of 

quantities related to oB  and oc , 

C 
 RB 
= pf r

x
n 

T 
dS 

- 	
SB 	

B 
(B.19) 
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J = 	rxn E
T 

-RB 	-B-eB B 
S
B 	

dS
-B  

f rxn E
T 
 dS s  -C-C-eC B 

(B.23) 

(B.24) 

g-ptc = Pfs  r ncZ7,cisB 
,B 

(B.20) 

with C 
RB 
 expressed in F

B 
 and C 	expressed in Fc . Then application of ( 3 .12) 

- 	 -RC 
and (B.7) to (B.19), given (B.8), (B.9), ( 3 .15) and (B.17), produces 

ÇRB = ÇBCÇRCÇCB 1)B(,ACIIRAC 

Also, it can be shown that for the hydrodynamic second-moment-of-inertia 

matrix J 
-R' 

J =CJC 	CCC 
x 

-RB -BC 	
- 

-RC-CB -BC-RC-CB-
r
BC 

r
x 

C  C
T 

C 	r
x 

C -M C r
x 

-BC-BC-RC 	
-

-CB -BC-BL-RC-CB-BC 

(B.21) 

(B.22) 

where, from (2.31), 

To demonstrate (B.22), first (B.13) is substituted into (B.23) and then (B.8), 

(B.9), (B.15), (B.17) and (B.20) are applied. Finally, (B.6), (B.14) and 

(B.17) can be used to show that the elastic-mass matrix mn  obeys the relation 

(B.25) 
-RRB -RRC 

where 

M 	= pf
T
n E

T Y dS 
-RRB 	

SB 	
B 

RRC = pfs "1".clo;clicdsB 

(B.26) 

(B.27) 
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(B.30) 

(B.31) 

P = C —P-
-RB —BuE.KC 

H = C H + rx C P 
—RB —BC—RC —BC—BC,-RC 

and, as before, quantities with the subscript B(C) are expressed in FB ( c) . 

For the hydrodynamic momentum matrices 

P =
T
YdS, 

—R  P I  
J SB.  

H =p f r
x
nE

T
tYdS 

—R 	
B 

(B.28) 

(B.29) •  

the same procedure is followed. First, ER and ER are expressed relative 

to 0
B 

and o and then the appropriate equations from (B.12) through (B.14) 

are applied to obtain 

Equation (B.17) is also required for both proofs, while (B.7) is necessary 

only for ER. It is notable that both (B.30) and (B.31) and the relations 

governing the hydrodynamic inertia matrices are analogous to those for the 

corresponding structural momentum and inertia matrices for a general body 

(see [Hughes, 1980]). In particular, (B.21), (B.22) and (B.31) are the 

parallel-axis theorems for the hydrodynamic inertia and momentum matrices 

C J and H 
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(C.1)  

(C.2)  

(C.3)  

(C.4)  

(C.5)  

(C.7)  

(C.8)  

(C.9)  

Appendix C 

Parallel-Axis Theorems for the Hydrodynamic Inertia-Rate  

and Momentum-Rate Matrices  

The geometry governing the equations developed in this appendix 

is the same as in Appendix B. In this respect, the reader is advised to 

become acquainted with Fig. B.1 and the notation of Appendix B. Furthermore, 

the following relations should be noted: 

x 	• 
w = C (w 	r o 
—C —CB 	

- 
—B 	BC—B

) 
 

6 = C 
 —C —CB-
8  B 

= C 
—C —CB—B 

r =r +Cr 
—B —BC —BC—C 

n = C n —B —BC—C 

Now, from Section 3.4, it can be inferred that the normal component of the 

stress tensor n 3 

can be written as 

where 

n = Tn 
-IT - - 

n = 11(N 	+ N 	+ N g) 
--w— —9 — 

n
uzi 

= n
mzmi 

= N
zij

Z
j 

	

T ••T T T 	•T T T 
= 71(p  A z.)+ v(z A V ) + [v(z A V )] 

z—z — -2-2 	- 

(C.6) 

with A = (1,1,Y), respectively, for z = (wd,q). Hence, the normal com- 
_2  

ponent of the stress tensor at the point D (shown in Fig. B.1), in terms 

of quantities related to OB , is 
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n 	= C n 
-/FC 	-CB-11- B 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

v = V 	+ v 5 + v (C.18) 

• n 	= p(N 	+ N é + N g) 
-wB-B 	-qB 

where n B  is expressed in FB . Similarly, for quantities related to oc , 

n 	= p(N 	+ N 	+ N 
- ffC 	-wC -C  	-qC 

(C.10) 

(C.11) 

where n c  is expressed in Fc . However, since (C.10) and (C.11) represent 

the same vector, it follows that 

where ÇcB  is the rotation matrix relating FB  to Fc  (see Appendix B). Thus, 

substituting (C.10) and (C.11) into (C.12), and applying (C.1) through (C.3), 

it can be shown that 

where 

N =CNC 
-wB -8C-wC-CB 

N =CNC 	-CNC rx  
--eB -BC-GC-CB -BC-wB-CB-BC 

N = C N 
-10 -BC-qC 

BC - = .T.CB 

Relations (C.13) through (C.15) can be confirmed directly using 

(C.8) and (C.9), as follows. To begin, we express the absolute velocity of 

the point D in terms of quantities related to oB  and oc , using (3.13) of 

Section (3.2): 

(C.17) 

Here the matrices in (C.17) are expressed in FB , while those in (C.18) are 

expressed in Fc . The realization that these two equations represent the same 

vector v, combined with (C.1) through (C.3), yields the relations 
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(C.22) 

(C.23) 

(C.24) 

V =CVC 
-wB -BC-wC-CB 

V =CVC 	CVC x  
-013 -BC-0C 	

- 
-CB -8C-wC-CB-

r
BC 

V 	=CVC 
-0 -BC-qC-CB 

(C.19) 

(C.20) 

(C.21) 

Similarly, we can show using (3.14) that the pressure fields p2 , Z E {w,e,q}, 

• associated with the pressure at point D satisfy the equations 

p
T 

= p
T 
 C 

-wB -wC-CB 

	

T 
 -PIC 	

x 
P 	=PC 	-PC -0C-CB -wC-CB 

r 
 -8C 

p
T 

= p
T 
 C 

-qB 

Now since, for creeping motion, H is symmetric, it follows from (C.8) and 

(C.9), that 

T •• T T 	T T T 
Z - 

n 	= -np A z + v(zA V )n + [v(z A V ) nj 
Z-Z-  

(C.25) 

If (C.25) is then expressed in quantities related to 0B  and oc  and the re-

sulting equations equated using (C.6) (after applying the appropriate rota-

tion matrix) (C.13) through (C.15) can be reproduced, given (C.8). This 

procedure requires the use of (C.1) through (C.5) as well as (C.19) through 

(C.21) and (C.22) through (C.24). It is also necessary to employ the gradient 

identity 

(C.26) v = C v 

which follows from the relation 

H =C HC 
-B -8C-C-CB 

(C.27) 

where H 
4C 

is the stress tensor at D written in terms of quantities related 
-4 

to 0B,c  and expressed in FB,c  . 

Now that the validity of equations (C.13), (C.14) and (C.15) has 
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been confirmed, they can be used to establish the desired parallel-axis 

theorems. In this regard, the definitions for the hydrodynamic inertia- 

rate matrices (M ,C ,J and Mvv  ) and the hydrodynamic momentum-rate matrices 
--v 	--/ 	— 

(P and H ) should be recalled from (3.35) of Section 3.4. As in Appendix 
--v 	--v 

B, it is straightforward to demonstrate that /4 is independent of the chosen 

origin. Simply write /121, in terms of quantities related to oB  (expressed in 

FB ) and in terms of quantities related to Oc  (expressed in Fc ), 

M  V- B = -pf N dS 
S
B
—w
B B 

M = 	dS 
—VC 	C B 

S
B
—w  

and then apply (C.13) to obtain 

•11;113 = %CilIVAB 

(C.28) 

(C.29) 

(C.30) 

The parallel-axis theorem corresponding to the hydrodynamic first-moment-

of-inertia rate matrix cv  is likewise ceonstrated by applying (C.4) and 

(C.13) to 

C = 	r
x
N dS 

--VB 	—wB B 
S 	

(C.31) 
—B  

C
VC 

= -14 r
x
N dS 

—
SB
—C—wB B 	

(C.32) 

where C VB,C 
 are defined in a Manner analogous to M„ 	, to obtain 

--  

c =CCC 	
x
CmC 

--VB —BC 	
+ r

—VC—CB —BC—BC—VC—CB 
(C.33) 

Furthermore, defining 

VB = -Pi r
x
N dS

B  
—

SB
—B-41B  

(C.34) 
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P = C -VB -Bu-VC 
C.42) 

( C.35) 

and noting (C.4), (C.14), (C.28) and (C.32) it can be shown that the hydro-

dynamic second-moment-of-inertia rate matrix j_R  obeys the relation 

J =CJC 	CCCr
x 	

r
x
CC

T 
C -VB -BC-VC 	- -CB -BC-VC-CB 	+-BC -BC-BC-VC-CB 

r)8(6BerACrIk (C.36) 

where, as before J 	refer to J written in terms of variables related to 

oil,c  and expressed in FB,c . Finally, the last inertia-rate matrix, the one 

associated with the 'elastic mass,' m
' 
 can be shown to satisfy the equation 

-VV 

(C.37) m = m -VVB -VVC 

where 

M  VVB = -14 T
N dS 

- s 	B 

m 	= -pf Y
T
N dS -VVC 	

SE
-e-qC B 

(C.38) 

(C.39) 

by virtue of (C.3) and (C.15). 

As in the previous appendix, the relations governing the momentum-

rate matrices 

= 	N dS 
S
B 	

B 	

(C.40) 

= 	rxN dS 
 

JSBB 	
(C.41) 

are obtained by applying the same techniques used for the inertia-rate matrices. 

Rather than repeat details, only the resulting equations are recorded: 

40 



EYB = %CliVC +43xCç-BC12RC 
(C.43) 

Again, the striking similarity between the parallel-axis theorems governing 

C J and H and those governing the inertia and momentum matrices for both 
--V' --V 
the fluid (see Appendix B) and the structure (see [Hughes, 1980]) should be 

noted. 
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