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SUMMARY

A detailed model is developed for the dynamics of the flexible
structure DAISY. Motion equations are first written for the various sub-
structures comprised by DAISY and then these are combined to obtain an
overall dynamics model. A similar procedure is used to derive gravita-
tional and aerodynamic disturbance models and a detailed inertia model.
Preliminary detailed designs for each substructure also are presented.
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1. INTRODUCTION

This report describes the progress made towards completing
the detailed design of a facility to study the control of flexible
space structures. The conceptual design for this facility has already
been described in an earlier report [Sincarsin, 1983]; however, since
the present discussion requires a knowledge of the former, a brief re-
view is in order.

1.1 Review of Conceptual Design

It is conceived that the control facility will consist of
a highly flexible structure, called DAISY, and a group of primary and
secondary actuators and sensors, so arranged as to make achievable the
objectives of the control facility development program. In brief,
these objectives are as follows:

° .The primary objective is to study the stabilization and control
of structurally flexible communications satellites.

° Fundamental concepts in the control of flexible space structures
must be investigated and evaluated.

° '"Hands-on' experience must be developed with realistic sensors,
actuators, structures, and control electronics.

] Control approaches must be developed that are especially adapted
to the unusual and challenging requirements of large flexible
space structures.

o The results of this research must be of direct relevance to the
attitude control of the next generation of Canadian communications
satellites.

It is believed that the structure shown in Fig. 1.1 will
satisfy the requirements for the control facility. DAISY is approxi-
mately 3m in diameter and consists of a central rigid hub to which are
attached 2n (n odd) 'flexible' ribs. Initially all the rib flexibility
is to be localized in the form of spirator springs at the rib-hub inter-
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face. The ribs are interconnected at their tips via 'flexible' struts.
Again, the strut flexibility is localized, as will be seen later in this
report. The rib attachments to the hub are adjustable and, in fact, for
a horizontal mounting, DAISY's ribs 'droop' under gravity. It is also
intended to have the rib attachments designed so that ribs can be inter-
changed. This permits both geometric and material asymmetries to be in-
troduced by removing certain ribs or replacing a given rib with one made
of a different material. Another advantage of the chosen structure is
that it is easily discretized into individual substructures, a character-
istic that will be exploited in Section 2.

The primary sensors chosen for the control facility are digi-
tal encoders and accelerometers. The digital encoders, three to measure
angular displacement and three ('tachometers') to measure angular rate,
are located at the hub gimbal (see Fig. 1.2). The acce]erometefs, on
the other hand, are to be mounted on the ribs. The secondary sensors,
located on the periphery, are linear variable differential transformers.
Future possibilities for sensors include gyros and an optical relative-
displacement measurement system.

The primary actuators are three reaction wheels Tocated in
the hub, and the secondary actuators are solenoid drivers located on the
periphery of DAISY (see Fig. 1.2). The former are intended to control
DAISY, while the Tatter will provide known 'external' disturbances. In
the future, proof-mass actuators may be placed on the ribs and the rib
root adjustment may be automated, using brushless DC motors.

A diagram of the proposed mounting for DAISY and the various
sensor and actuator Tlocations is given in Fig. 1.2. A horizontal mounting
(with DAISY suspended from below) is chosen to enable the mass center to
correspond with the gimbal pivot point. This removes the possibility of
a pendulous mode for the structure under gravity. It is notable that the

ribs are shown 'drooping' in the figure, for just this reason. The Sup;

port structure is isolated in the sense that electronic filtering will be
required to remove high-frequency background noise. The gimbal is intended
eventually to possess three degrees of freedom, but for the present it is
restricted not to rotate about the hub symmetry axis. Every attempt will
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be made to keep the gimbal mount a 'universal' mount suitable for use with
a variety of structures, not just with DAISY.

1.2 Report Outline

This report consists of three major sections. The first,
Section 2, presents a detailed dynamics model for DAISY. The basic tech-
nique is first to formulate equations of motion for the individual sub-
structures and then to combine these equations to obtain the overall
motion equations. In this regard, Section 2 parallels very closely the
presentation given by [Hughes, 1981]. The major differences are these:
(1) for DAISY the geometric constraint equations are more complicated,
and (ii) the multiplicity of individual substructures necessitates the
use of indicial notation.

Section 3, the second major section, deals with disturbance
models. Both gravitational and aerodynamic disturbances are modeled for
each substructure. The aerodynamic disturbances are inertial air resis-
tance and viscous drag. The general theory behind these models is elab-

_orated upon in [Sincarsin and Hughes, 1983], with results specific for

DAISY being the aim of Section 3.

The third and final major section, Section 4, describes the
preliminary detailed designs for each substructure and presents an inertia
model for each. This is required before the equations derived in Section
2 can be applied to assess structural dynamical characteristics. Some
comments on spring placement and design also are included in this section,
as is a brief discussion of one potential damper and its most likely Toca-
tion.

2. DYNAMICS MODEL FOR DAISY

In this section a detailed dynamics model for the DAISY struc-
ture (shown in Fig. 1.1) is presented in its most general form. The motion
equations for the overall structure are derived in terms of the motion
equations for the individual substructures comprised by DAISY.



2.1 Basic Considerations

Prior to obtainfng motion equations for each substructure,
it is necessary to specify in some detail the generic model assumed for
DAISY. For example, the flexibility of each substructure must be estab-
Tished. Also, the reference frames and attachment points assumed for
the various substructures must be identified, as must the forces and
torques acting upon these substructures. Finally, the overall inertia
distribution must be determined. These topics are discussed in detail
in what follows.

2.1.1 DAISY ‘Substructures

The morphology assumed for DAISY is depicted in Fig. 2.1.
It is assumed to consist of 2m + 1 substructures, where m = 2n, n > 3
and n odd, is the number of ribs and the number of struts. Since these
substructures are repeated components it is necessary to consider only
a typical rib and a typical strut. Hence, the substructures of interest
are as follows:

Hub, symbol Rh . Rigid

Ribj, symbol Er.’ Elastic
Strut., symbol E J, Elastic
J SJ'
The connection points between the various substructures {Or 205 50 > J =
NN BN

1,...,m} are also shown in Fig. 2.1. The motion equations
will ultimately be written with respect to Op> 2an arbitrary reference
point in the hub.

2.1.2 Reference Frames

A total of 2(m + 1) reference frames are required to formulate
the dynamics model: 2m + 1 explicit frames and one implicit inertial
frame, FI' It is not necessary to consider individually each rib frame

Fr and each strut frame FS ; only a typical frame need be considered
J J

in each case. The remaining reference frame of interest is the hub frame,
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Fh. The origin of Fr. is the point O3 similarly, the orfgins of FS.,

J J J
F, and F; are O , O, and Oy, as shown in Fig. 2.2.

J
Each substructure is assigned its own reference frame so

that the motion equations of that structure can be written independently
of the remaining substructures. It is convenient, therefore, to express
absolute displacements (i.e., those relative to FI) in local reference
frames. To be specific, the following symbols indicate absolute trans-
lational displacements:

Wy - translation of Oh,-expressed in Fh

W - translation of O , expressed in F

s rs rs
ﬂsj - translation of OSj’ expressed in st

W - translation of O » expressed in F
L €341 ]

Furthermore, the absolute angular displacements are as follows:

gh - rotation of Fh about Oh » expressed in Fh

gyj - rotation of thabOUtorj’ expressed in Frj
'gsj - rotation of st abouttasj, expressed in st

These absolute displacements are not assumed to be necessarily small;
however, their first and second time derivatives (i.e. the absolute
velocities and accelerations) are assumed to be first-order infini-
tesimals.

2.1.3 Rotation Matrices

Here we adopt the notation for a rotation matrix that

boq |
transforms the components of a vector expressed in Fq into the com-
ponents of the same vector expressed in Fp. Since the absolute rota-
tions assumed herein are not small, the rotation matrices between the
various substructures of DAISY need not represent small rotations;

however, any changes to the rotation matrices caused by deformations
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p

of DAISY are first-order infinitesimals. This fact, coupled with the
realization that every rotation matrix in the motion equations occurs
multiplied by a first-order system coordinate, implies that any change
in Cpq will result in second-order terms — to be neglected in the

Tinear analysis presented here. Hence, any change in qu can be ignored
from the outset and the relationships between the various reference
frames established as though DAISY were rigid.

Two useful relationships are the identities

C C
“pq  “pb=bq
and

)X xc (2.2)

( = Spqd Lop

C_a
—Pa—
where Fb is some intermediate reference frame and a is any 3 x 1 matrix

expressed in F_. These relations will prove very useful during the deri- |
vation of the final motion equations. It is noteworthy that since any 1
change in qu can be ignored, the question as to whether a is expressed g

in an undeformed Fq or in a deformed Fq is inconsequential.

2.1.4 Attachment-Point Vectors

i i . F -
Let the vector attaching the point op to oq be qu urther

movre, let the components of this vector, denoted rpq, be expressed in Fp.
Then, from Fig. 2.2, it follows that:

ﬁrjcj+1 = ﬁrjsj + grjsjﬁsjcj+1 (2.3)
—hCJ ) rh-rj * Ehrjrraca (2.4)
—hsJ ) L‘hv‘j * Ehrjr¥JsJ (2.5)
e ) —hr; vk P55 ) fhsj ¥ thjrsjcj+1 (2.6)



Again, these relations will play a key role in formulating the final
motion equations.

2.1.5 Forces and Torques

In order to formulate the motion equations for the indivi-
dual substructures, it is helpful to draw a free-body diagram for the

substructure in question. Figure 2.3 shows such diagrams for Er. and
J

Eg - A partial free-body diagram for Rh is also shown. Two types of
force (and torque) are evident — internal interaction forces that act
as external forces applied to the substructures, and truly external
forces, which remain after the individual substructural models have
been combined. Discussion of the types of external force experienced

by DAISY is left until Section 2.3.4.

As shown in Fig. 2.3, the internal force from substructure
q on substructure p is denoted qu. Simlarly, the torque on substructure

p from substructure q is gpq. Since these are internal interaction
.+
forces and torques, they occur in equal and opposite pairs:
£ o= _f 2.7
+Pq ~qp (2.7)
= - 2.8
$pq = "dop (2.8)
Here we choose to express qu and gpq in Fp, whence
f = -C_f ; = -C. g,
. ~r.h? . .21 .h
%% ﬁ%rw | %% ﬁ% 5
f =-C . f ] =-C. . 9
riS; rjsj—sjrj rs; rss; 3’5
(2.9)
£ = —_(_:. f 5 g = __(_: g r
S RS AL S S Wt Al R o B AL o B M EA A
f = -C . f : = -C [s]
I R T R O B R NP Te
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0f course, these relations can be written in reverse by application of

. . -1 _
the identity qu qu.

The notation adopted here to represent external forces and
torques also is highlighted in Fig. 2.3. Simply, the external force
acting on substructure p is denoted by ip, with components expressed in
F . The external torque about the point Op for this same substructure

P

is given by gp, where the components of gp also are expressed in Fp.
+

Therefore, to summa ize:

- external force on Rh’ expressed in Fh

- external force on E_, expressed in F
] "3 "5

- external force on Es , expressed in Fs

J J J
- external torque on Rh » expressed in Fh

.F
_s
9n
9. - external torque on Er’ expressed in Fr.
J j J
9, - external torque on Es » expressed in F
J J J
Given the above definitions, (2.9), and the geometry from Section
2.1.4, it is possible, by combining the system of forces and torques on the
individual substructures, to define the total force and torque (about oh)

acting on DAISY. The total force, expressed in Fh’ is

m
+ Z (C,. f. +¢C f ) (2.10)
=1 —hrj—rj —hsj—sj

f=1

while the total torque about Op> also expressed in Fh, is

m
9=9, % 1

X
351 G, ¥ Lo Lhr,

[(c
hrgrs AN

+ (2.11)

(c el o N
—hsjgsj —hsj—hsj—sj
It only remains to consider the inertia distribution for DAISY, before

the motion equations for the individual substructures can be formulated.

A

12



2.1.6 Inertia Distribution

We denote the masses of the individual substructures as
follows:

mh - mass of Rh

m_ - mass of E
rj rj
m, - mass of Es.
J J
The total mass is
m
m=m + .Z (mr. + ms.) (2.12)
j=1 '] J

Also, let the first moments of inertia (frdm) for the individual sub-
structures be given by

c, - first inertia moment of Rh, about Op > expressed in Fh

c.. - first inertia moment of E_ , about O_ , expressed in F

[P first inertia moment ofES , about O , expressed in FS
J J J J

Then the first moment of inertia of DAISY about Op s expressed in Fh, is

+

e~z

c=c [(m_ r +C ¢ )+ (m r +C..c )] (2.13)
=h rfh% Aerj sfh% —mjﬁj

J=1

Finally, denoting the second moment of inertia matrix for each substructure

as follows

gh - moment-of-inertia matrix for Rh , about O > expressed in Fh

g¥ - moment-of-inertia matrix for Er ,» about Op > expressed in Fr
J J J J

gs - moment-of-inertia matrix for Eg > about O expressed in FS
J J J J

the second moment of inertia matrix for DAISY, about Op> expressed in Fh’



takes the form

d= Qh + Z [(—hY‘ Y‘J r h Qhr‘jgﬁj—c-r‘jhr-;(rj
B r;:r‘JQhr £>r(‘.—Qr‘J.h B mrjﬁﬁr‘JrﬁrJ)
+ (thj‘] jgsjh B thjEszthﬁﬁsJ
" s s S5 s g~ s s s ) 210

This expression and (2.13) follow from the repeated use of the parallel-
axis theorems governing moments of inertia, as described by [Hughes, 1980].

2.2 Motion Equations for Substructures

The motion equations for each substructure specified in Sec-
tion 2.1.1 can now be written. Here the equations are presented in a
general format so that they will remain valid despite any changes in the
design of the various substructures. The only restrictions are that the
overall geometry for DAISY be that shown in Fig. 2.1 and that the degrees
of freedom assumed for each substructure do not change. These will be
elaborated upon in what follows.

2.2.1 Motion Equations for the Hub

As stated in Section 2.1.1, the hub is assumed rigid. Thus
the absolute displacement (to first order) anywhere in the hub (located
by r, relative to oh) is given by '

dy(ry>t) = w (£) - rio, (t) (?.15)

where gh is expressed in Fh and Wy and 9, are defined in Section 2.1.2.
The motion equations governing these six rigid degrees of freedom are
well Kknown: '

14



m
.
MWy - Spdp = Sy * J._Zlfhrj (2.16)
w, + J,8, = +nZ]( + X f )
S T Shon T30 T L By T Sr st (2.17)

It should be noted that the torque equation (2.17) is written about O
and that both (2.16) and (2.17) are expressed in Fh.

2.2.2 Motion Equations for a Typical Rib

For the present analysis each rib is itself rigid; however,
the spirator springs at the hub-rib interface (recall Fig. 1.1) necessi-
tates the treatment of each rib as an elastic body. Nine degrees of
freedom are associated with each rib — six absolute displacements, ...

J
and 8. and three relative rotations about O > G- These relative

J
rotations activate the springs at the rib root.

The absolute displacement at any point within the rib (rr

' , j
measured relative to Or ) is in general given by
J .
d, (r,,t) =w, (t) -rie (t)+a (r ,t) (2.18)
R ' P Py
where in the present context the deflection from elasticity A, (rr ,t)
j 3
is just
X
A (r. ,t) = -r) a.(t) (2.19)
Zp My, L
rJ rJ J J

Furthermore, as is common practice, we shall assume that ér(g,t) can be
expressed as a superposition of shape functions {yi(r),yz(r),...} accord-
ing to

A(r,t) = E v (r)g, (t) (2.20)

where qk(t) is the generalized coordinate associated with the shape func-
tion gk(r). Then, defining the rectangular matrix

15




¥(r) = [y (r) wy(r) ...7, (2.21)
(2.20) can be written in the form

A (r,t) = ¥(r)g(t) (2.22)
where

— T

alt) = [a; ap ...] (2.23)

Therefore, for each rib,
X
v, (r. ) =-ri s 9p = o (2.34)
J J J J

Given these facts, the linear

and angular momentum matrices (Ea

_ anq

J
ﬂa ) associated with the elastic deflections of the rib can be determined:

J

¢
Y dm. = -Cp
J J J
X
roy . dm, =4
v . TS
J J J J

(2.35)

(2.36)

Also, the mass matrix Ma and the generalized forces ﬁa_ can be written

explicitly: J

M
—0

J

I
S——

b = |

J
-
Y.y, dm, =4
NS T
il.fr (rr ’t)dvr = 3p
J 3 3 J J

(2.37)

(2.38)

A distributed force per unit volume fr(r}t) has been assumed in (2.38).
This is consistent with the type of external forces anticipated to be
significant for DAISY — gravitational and aerodynamic forces (see Sections

2.3.4 and 2.3.5).

In any case, should a different force model be required




(e.g., point forces), the modification of (2.38) is a straightforward
matter.

Now recalling the free-body diagram of Fig. 2.3, and summing
the applied forces and torques, the motion equations for a typical rib,
expressed in Fr , are

J
mr ET B E¢ éT + Ea éj = ir + ~r.h + Zr.s + Iv s (2.39)
NN J J NN J73-1
Eﬁﬂr Pl 8 tH e =80 Yt —)rfs.frs
J J Jd J J J J 373
« (2.40)
+4g +
rss c:-r.s

T T
Pw, +H o, +M a.+K o, = ﬁa +g +r f
. T — . — . < -1 .S.—
9y T Ty T i 7 3SiTryS
X
+ g + r f
.S . —Tr.C.—r.s.
Y‘JSJ_l 373 r SJ“].
(2.41) .

The torque equation (2.40) is written about Oy - To permit a variety of

rib designs without requiring substantial modifications to the final dyna-
mics equations for DAISY, P , H s, M and ﬁa are retained in their
0. —O0O. -, . .

most general forms in (2.39) through (2.41)7 However, for the present rib
design (see Section 3.2), these matrices are given by (2.35) through (2.38).
K, . is the stiffness matrix associated with YR

J

2.2.3 Motion Equations for a Typical Strut

As for the ribs, each strut is elastic only because of the pre-
sence of springs in its design. Of the eight degrees of freedom possessed
by each strut, two are associated with elastic (spring) displacements. They
are denoted by aj and Y5 The first is a linear displacement along the Tine

17



joining the strut connection points Os and 0, . That is, 6j is the
J J+l
magnitude of the displacement along the unit vector
r =r /e, =1 (2.42)
where KS is the magnitude of r c. . The second elastic displacement,
J JTi+l

Y5 is a rotation about the 15 direction. The remaining six degrees of
J

freedom are the absolute displacements W, and [N defined in Section

2.1.2. J J

Given the cited degrees of freedom, the absolute displacement
for any point in the strut is

d. (rg »t) = ,t) (2.43)

J J J J J J J

r_ i r i i in F_ .
where rg s measu ed relative to O . and gs is expressed in S,

. J J J
Furthermore,
A, (r. ,t) =1 6, - X 1. v. (2.44)
-sj—% -sjg -%ijJ
whence
X
y (v, ) = [1 -ro 1] (2.45)
IR R RS B B
N O (2.46)
.j .

Therefore, conducting the integrations implied by (2.35) through (2.38)
with rj replaced by sj, it follows that

18



—~ - X
Ps mg Lo Hs . s L
b= il il - il . i
—s, X ? —s.
J p -¢. 1 J H J. 1
Y3 =iy Y =i
—- B T X N
m m m 1. ct1
86 § Ss.
j Y % S50
M = = (2.47)
J m m 1l e* g 179 1
§ S5, .
LA AN S I T I I
— T —_—
65 1. f
4 i RN
.._..S . - =
J T
8, L 94
RN i

As before, in order to keep the final dynamics model for DAISY as
general as possible, these matrices will not be implemented explicitly
in the motion equations for the strut.

Once again, referring to the free-body diagrams depicted in
Figure 2.3, and summing the applied forces and torques, the motion equ-
tions for a typical strut, expressed in FS , are

J
) . . .
m w. -c¢c. 6. +P s.+P y.=f_ +f + f (2.48)
.—S —So ""6- . "_S- - N . - .
555 i R i % Titin
X
c +J 8 +H. 8.+H vy, = + +
i3 i3 id Y j gS;lrgl gSJrJ“Ll
X
yy £ (2.49)
RS A I AN S
Egﬂs +ﬂ§gs +maaéj+"’a :’jJ'hsa 85 * Ry Yj
i i ivo% j Yj
(2.50)
:
-, Ll f
55 TSiTSiMye

to be consistent with (2.51).



J (2.51)
=4 +1 g
Here the torque equation (2.49) is taken about O, . Also, it should be

noted that the strut stiffness matrix 5% has been partitioned in a manner

J
analogous to Msj.

2.2.4 | A Comment on Subscripts

To avoid notational difficulties when either rib "1" (j = 1)
or strut "m" (j = m) appears in a summation, the following definitions
are assumed:

>
>

4

(LQ

g g o 5 o
- 1 TSmel 1 ml C1

(2.52)

1>

o] o) 5 o] g 5 a a
"o m o °nm o ‘m
Here ¢ is any matrix quantity appearing-in the motion equations for rib 1
or strut m. These definitions permit a summation over j = 1,...,m without
the need to treat rib 1 or strut m as special cases, at least until the
final mass and stiffness matrices are assembled.

2.3 Motion Equafions for DAISY

The motion equations presented in Section 2.1 for the hub, a
typical rib and a typical strut can now be combined to produce a set of
motion equations for the dynamics of DAISY. The technique involves forming
a number of appropriate linear combinations of the substructure motion
equations, after the imposition of several geometric constraints.

2.3.1 Geometric Constraints

In order that the free-body diagrams of Fig. 2.3 can be combined
into the single structure shown in Fig. 2.2, a number of geometric constraints




must be satisfied. To be specific, it is necessary that, at the point O s

N
= X
woo = Cpnoplwy - o 60) (2.53)
N N N
[ (2.54)
rs rjh—h
At the point o_ ,
S
N
w, =C. . [w. -rx_ (e, *ail (2.55)
_SJ —SJY‘J —Y‘J Y‘ij Y‘j |
6. =C . (8. +as)-1X1%8, (2.56)
TSy TSy 3 2557557
Last, at the point Oc. .
J*l
we, Tug - rhoo 8o t1ody (2.57)
L B S A S I N
S, T8 )

1)

The angles ﬁj denote three rigid rotations about OS_ of strut sj relative

to rib v (expressed in FS,). We know, however, that an elastic rotational

degree of freedom Y; has been included in the strut model. Hence, to per-
mit DAISY a full range of motions (in-plane, out-of-plane and twist), only
two rigid rotations are actually required at O namely, those perpendi-

J
cular to ls.' To elaborate, using the identity
J
T X X
1=1 1 -1_1 (2.59)
—sj—sj —sj—sj ,

where 1 is the identity matrix, Ej can be separated into components parallel
and perpendicular to ;sj:
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T X 41X
. . + B. = B.) -
By = By * 8y T L5 (yy) - Lo L

B (2.60)

Now, since Y5 is used to represent any rotation about the ls. direction,
J
only gjl_need be incorporated into the angular constraint at O -
J

Furthermore, the rotations represented by le_are not inde-

pendent degrees of freedom. They are Tinear combinations of the relative

rotations o, at the rib roots o, . To demonstrate this fact, we begin

J J
by writing the constraints at O relative to rib j+1 rather than rela-
j*l
tive to strut j. Simply, from Fig. 2.2, it follows that

w, =C [w. - (6, *o. ] (2.61)
_CJ+1 —SjY‘j_l_l Y‘j‘*‘l Y‘j+1Cj+l Y‘j‘*‘l Y‘j+1

6 = C (8. + oL, .) - X 1%y (2.62)
—cj+1 —sjrj+1 rj+1 J+1 —sj—sj J

where gj is defined analgous to ﬁj’ but about 0. instead of about o -

J J
Now, replace rs by il in (2.53) and (2.54) and substitute the resulting

equations into (2.61) and (2.62). Then given the attachment point vector
definitions of Section 2.1.4, one obtains '

X X '
w =C. ,(w. -r 6,) - C r o (2.63)
"Cj+1 —sjh —h —hcj+1—h —sjrj+1 rj+1cj+1 Jj+1
X X
6 =C_,0. +C O q - 10 17 ¢, (2.64)
—C. . s, =]t =
j+1 —th—h —erJ+1 j+1 —sJ—sJ |

Also, by direct substitution of (2.53) and (2.54) into (2.55) and (2.56),
it can be shown that

w. =C . (w -r' 8)-C ri o © (2.65)
=5 —sjh ~h —hsj—h —sjrj ris 5

6 =C_ .6 +C _a.-1%1%8. (2.66)
-ﬁj -ﬁjmh -ﬁj% - —sjst
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Whence, from (2.57) and (2.58),

W =C ,(w -1l 9,) - C rX a.
—Cj+1 -sjh —h —hcj+1—h 'Sjrj_*jcj+1 J
X X 41X
+ 1712 8. +1_ 8
A LS N B I
6 =C. .8 +C _a. -1%1%p. +1 vy,
_Cj+1 sjh—h —sjrj 3 —sj—sj J —sj 3

As a consequence, equating (2.63) and (2.67) gives

X X X X
1. 6, t1r 1. 17 8. =C r O
25570 540y TS S TSy NGy
X
- C r o .
-sjrj+1—rj+lcj+1—3+l
Now recalling that
L. 1. =r
55755 TSiC44
and noting from (2.59) that
SR T A (T S B s
25 =g, 25,25, T o= .
J J’SJ _——SJ ’SJ’SJ _——SJ
(2.69) becomes
X X X
1. 6. -4£_ 17 8.=C r a. - C r o .
25, =5 .2 rrLC. L O+ B
S;d TsyTSE TSy TG TS e kG M

Therefore, forming the cross-product of ls with (2.72), that is

J
X . s .
1. (2.72), the desired relationship for gjl.resu]ts.

J
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(2.67)

(2.68)

(2.69)

(2.70)

(2.71) .

(2.72)



B, =-1_1 B.
JL —SJ—SJ J
(2.73)
1 X X X
s L (s as - C v 1)
ﬂsj —sj —sjrj rjcj+1 j _Sjrj+1 rj+1°j+1 j+1
Furthermore, by forming the dot product of ;5 with (2.72), namely
J
;l (2.72), we obtain the interesting relation
J
T X X
§. =1 (C r o, = C r [ ) (2.74)
J —sj —ser rjcj+1 J _Sjrj+1 rj+1cj+1 j+1

The implication, not unexpectedly, is that aj also is not an independent
degree of freedom. Similarly, by forming the dot product of ls with
J
the equation obtained by equating (2.64) and (2.68), it can be shown
that Y5 also is a dependent degree of freedom:
ij = l-_-sr (Q‘S r g_j.'.l = Q‘S r ﬂj) (2.75)
j T3 gt JjJ
Equation (2.73) also plays a key role in obtaining this result. It should

be noted that the defining relationship for Qij namely,

1% ¢ X
j _Sjrj+1 Ksj _Sj_sjrj+1_Tj+1Cj+1

)9j+1 (2.76)

X X

— 17 C r Ja.]

30 by TG

can be found by taking the cross-product of ;S ~with the same equation as

that used to obtain (2.75). J

To summarize, the required geometric constraints are, at the.

point Op »
J
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X
= —r.h(wh £hr.gh) (2.77)

Qr. —rjhgh (2.78)

J
Wy = Lo plwy, - £ﬁs.gh) "L e Sres (2.79)
J J J JJ JJ :
LI e . N ¥
i I P IS I S LA
(2.80)
1 .x X
- =1 C v O s
with
R ll (Cs r fi el "L or Ei Cy o 2541 (2.81)
LR LN R A R B LS RS B RS R O A
and
Yj =!~_g (ES r &j'*‘l —QS Y‘-Oij) (2.82)
NN J'J

Given the findings of this section, it is timely to review the various
degrees of freedom prior to formulating the motion equations for DAISY.

2.3.2 Degrees of Freedom

Let us begin by summarizing the degrees of freedom associated
with each substructure. From Section 2.1.1, we know that the hub has six
rigid degrees of freedom —-three translational (yh) and three rotational
(gh). A typical rib, on the other hand, has nine degrees of freedom, six
rigid — three translational (wr.) and three rotational (Qr.) — and three

elastic — the relative rotations (gj) at the rib root. Finally, a typical



strut has eight degrees of freedom, six rigid — three translational (ys )

J
and three rotational (gs ) — and two elastic — the Tinear displacement

along ls. (aj) and the rotation about ls. (yj). However, based on the

J
previous section, only the following degrees of freedom are independent:

Wy Q_h, Qps wee O (2.83)
Here m is the number of ribs (and struts) in DAISY. This represents a
total of 6 + 3m degrees of freedom, six of them rigid and 3m of them

elastic.

Now, based on the substructure motion equations presented in
Sections 2.2.1 through 2.2.3, the total number of available scalar equations
is 6 + 17m. At present, there are 14m equations too many. These extra
equations will vanish, as will the inter-structure constraint forces, when
an appropriate set of 6 + 3m Tinear combinations of the substructure equa-
tions (with the 14 geometric constraints (2.77) through (2.82) inserted)
are taken.

2.3.3 Linear Combinations of Substructure Equations

In the following, it will be assumed that (2.77) through (2.82)
have already been substituted into (2.16), (2.17), (2.39), (2.40), (2.41),
(2.48), (2.49), (2.50) and (2.51). Now, form the following linear combina-
tions:

m
W, : (2.16) + .zl[ghr_(z.sg) + G (2.48)]
j= J j
i X
8y (2.17) + Z [Chp (2.40) + roe Sop (2.39)
J=1 J J o
X
* Ehs (2.49) + rhs.ghs (2.48)]
J i
a (2.41) + C,. . (2.49) + r* _C_ _ (2.48)
j : riS; rss; rjsj
- C, 1. (2.51) - _YLX C 1. (2.50) (cont'd next page)
. %5 RS EENRE RN .
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j-1 X J-1
+C 1. (2.51)007 + X ¢ 1. (2.50)
*3%3-1%5-1 BN A N R BRI B

P X o 1* (2.49)

Ksj —rjcj+1—rjsj—sj
1 X - X Jj-1
-5 C, 1 (2.49)

The notation ( )J—1 implies that j is replaced by j - 1 in the respective
equation. The degrees of freedom associated with each resultant motion
equation are given in the Teft margin.

This procedure yields the final set of motion equations for
DAISY. In matrix format, they are

.

M—9-+59-=§Eb+y-d (2.84)
where

q = col{w, »0, 51500050} (2.85)
u = C01{_g_ 3 PR > »9 ’
b 151 grzsz TS 9¥1sm 20584

seees } (2.86)

E!’(‘352 "m°m-1

Uy = COT{Fs0sG  »...sg } (2.87) |
Y4 ﬂal ﬂam

and M, K and B are partitioned as shown in Tables 2.1, 2.3 and 2.5.

The expressions for the partitioned elements of M, K and B are given in.
Tables 2.2, 2.4 and 2.6. Also, the expression for 9. used in (2.87) is -
cited in Table 2.7. J

While the mass (M) and stiffness (K) matrices given in Tables
2.1 and 2.3 are complete, the input matrix (B) must be augmented to in-
clude the inputs from the actuators Tisted in Section 1. This is part of
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Table 2.1

Pawl:H:iom’ngJr of the Mass.Matrix, M

Mww Mwe MWOLl MWOL2 MWOLB MWOL4 x
Mee Meal M@OLZ Meoz:,, M6a4 *
Moo, Moo 2 °
171 172
M M 0 .
TOp0ny TUp%3 T
M M
Ta3%3 TU3%
M X
%%
X
(symmetric)
.i.

see Table 2.2 for individual elements
x a series of nonzero elements
a series of zero elements
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Table 2.2

Expressions for Partitioned Elements in M

My = 21im

_ X

Mo = -C
MWoch=£hr‘(Poc'msfris)
J NN 337
T __1

+

J
T X
- (P. 1. +c”)C ]
I I T B L
T 1 X X X
-C [(P 1 - >— C 1 )C r
—hsj_1 _‘33-1_53'-1 zsj-l _Sj—l_sj—l _Sj-lrj r‘jcj
T
- P 1 C ]
T-1%5-1 0317
Mg =4
M =¢c H +rf c P -mry _r_x
—eocJ —hrJ—aJ. —hrJ—hrj—uj | sJ—hsJ—hrj szJ
X T 1 X X X
+£hs.ghs.[(BvS S A )E‘s.r‘ LI

THere je(l,...,m), provided that the following definitions are noted:

forj=1,j—1émandforj=m,j+1é1.

[Egq'n cont'd next page]
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X T X X X
r C (P, 1. -+— ¢° 1 )C r
NS5 TNS5 1 05175 2'sJ._l TS5-155-1 %51 5
—Ry. —1;- L. vl
Jj-173-17j-1]
T 1 X X
C,. [(H. 1. +-=—2J_ 1%)¢ r
LS. . . . .r.—1.C.
—hsJ J—SJ Ksj —SJ—SJ —erJ chJ+1
- (H ll —gs)gsr _Qégsrfv(‘s]
i i it MR AR IR AR
T 1 X X
C [ (H 1 + 5= J 1 )C r
0S5 05175501 Esj_l -1755-1%3-1" 156
T
-H 1 C ]
Yi-17°3-1°3-1";
Mo+c._Jd_C . -mrt ¢
i TN TS S
X X X T X
x| Cp o (15 do 1 -1 omo 1 )C. . r
Y‘jcj+1 rjsj -sj—sJ j sj 66.—53. sjv‘j v‘jcj+1
T
+ C 1l m _1.C
Y3353 0
X X X T X
r. C (1> Jd. 1 -1 m 1. )¢ r
TjCj Tjsj_l “Sj_lusj_l*sj_l *Sj_l Sﬁj_lhsj_l ~sJ_1rj chj
T
+ C m 1
'3%5-17°3-1 Y¥3-153-1°3-1";
X 1 X X T
[r C o721 ¢ -1 P )
Y‘J-CJ-+1 rjsj .Ksj —sj-s:J —sj—ﬁj
T X
+C (cX -1 P )€ r
N S T TR A R A I A
X T 1 X X X
v . C [((P, 1. -5—c” 17 )C L8
IS T8 sy T T T m
- (P _:Q + _C_;( )QS ] (cont'd)
i i it
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(cont'qd)

+ [ﬁijcﬁlgrjsj(ﬂ_i—j— lsjgsJ - lsjﬂgj)
- L Jsj—l-sjﬂij]‘c‘erJ
" Ergss [(ﬂsj‘l'lj ’ K_i; i]'Sa'l)s(j)Qf';i”;iﬁ*"x;iC;iJfl
- ﬂy\].—l-]s-‘].—c—s‘_j\f‘j]
+ [Z‘i‘j— ﬁijcj_l_lgrjsjl:jﬂﬁj‘l:srj
- 9¥'j5j1 j‘ij. Hz’jl;(j ' man£j>1%jrjﬁi‘jcj+l
) “ij o155 [ﬂ_;_ lsjﬁgj 1Xj95;i‘”;ir’>’(:i°:i+1
- (lsjmayj ' féfl;(jﬂ‘Yj)lljgsjrj]
+ [K_ij]'—-l Lﬁj%'grjsj-l%-l“si-llli-l
- erSj—rl‘Sj—l( TK:—j_i HIf;i—l'l';(;i-1"]‘3\‘\1‘—1_1%'-1)]QJS'
- ﬁ?jCjQ‘”jsj—l[Zi:-ﬁsj—l ﬂg;1-1‘1‘;(;i—1945;1-1‘”;i£§:icii
- (lsj-lm‘SYj-l _ -é;_l gj-lﬂyj-l)gj-lgsi‘lrj
_ﬁijcjﬂg‘ﬂjsj( ‘é‘ l;(j}]_s\] - J—sjﬂ;ls-j) - ersj(i]-sj - —1-53-&13-
* ‘-"erjs;ig‘”jsjggjlfi li‘j%jrjﬂﬁ’\fjﬂcjﬂ

J




X 1 X

+ [r C..(H=—1"H
X Tl T

- Co Pl

+[£¢c g—rs(zlgs(H
JITIN sy T
X T

£ Co P o1l

Ss

J
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Table 2.3

Partitiom’ng+ of the Stiffness Matrix, K

— _
o o o 0 o o o ]
o o o o o o o
K K 0 0 o K
’—0.1(11 "‘0.1(12 —-— —_ "ﬂldm
Koy Koo, 2 °o o
2%2 2%3
Koo, Koo .
3%*3 3%
K X .
%%
x x o 0
(symmetric) x K 0
Om-2%m-1 T
K Q, "Kﬁ Q,
m-1%m-1 Tm-1"m
K o
+

see Table 2.4 for individual elements
x a series of nonzero elements
a series of zero elements
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Table 2.4

Expressions for Partitioned Elements in K

(see Table 2.3)

—_

~(C. 1 k. +¢X C 1 k.. )1 c ¥
—.S.—S. 8v. +.C..5—.S.=S. &§. ~—S.r.—r.c.
v §CTT%575 0% T i

+(C. .1 kb +1r% C. 1. k. )
. . -1.C. —rr.s. . . . .
P3C5+1 35555 OV 555"

g
o

T X
(C, 1. k& + 1k )I. C ¥

;
+ (C 1. & +r% 1.k )1© ¢
F3%5-17%3-1 3-1 TS0 %1 -1 001

=~
I
—~
p)
—
~
+
-~
gp)
—_
~

T X
1l ¢

O s .S . . —S
T%3%5+1 %35

) r
-1.C. -.S. . 068, S .. e C.
R L A Bk B IR B L ES WL PSR B

.
-(C. Ll ok trs  C o1l k. )L C
j UM IR

There je(l,...,m), provided that the following definitions are noted:

)
A

(
for =1, j-1%mand for j =m, j+1 2 1.




G¢

|O

1O

1%

~T9Co

O

Table 2.5

Par"m"cioningJr of the Input Matrix, B

o ] . o o o
o o o o o
0 0 6] 0]
= . - - TS
B. . o o o o
)
B B 0 .
—r3C3 TGy
B X
T4Cy
« x 0 0
x B 6]
el T
B, B
- Tin- 1 m-Tm
0 0 0 B B
- o B N T
—i.

X

see Table 2.6 for individual elements
a series of nonzero elements
a series of zero elements

|O

|10

) o
o o
o )
B 0
FoSy =
B B
T3Sy T334
§Y‘ S
453
) o

) °
8] o
0 0
o o
9 9]
B 0
Thn-2%m-2 o
B B
—Tm—lsm—Z rm-lsm-l
0 B
- "mom-1




Table 2.6

Expressions for Partitioned Elements in B

(see Table 2.5)

1 X C 1x
-1 .C. —.C. -.5.—S.
PiCie1 s, T35 iS55

1 X X
=- — 7 C 1
1 X X
B. = == C 1
rjsj Ksj rjsj rjsj—sj
1 X X
B T —— T C 1
r3S5-1 L . 38517 555-1755-1

j..
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Table 2.7

Expression for Elements in the Disturbance Vector

Uy

[see equation (2.87)]
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the ongoing detailed-design procedure. It is noteworthy that for the

present DAISY design, no torque exists about Og and 0. > in directions

J J
perpendicular to gs.. Hence, the product Egb, where B and uy are given

J
by Table 2.5 and Equation (2.86), vanishes.

A number of other system matrices must still be specified —
a damping matrix D, a gyroscopic matrix G, an output matrix P, a measure-
ment matrix C, a regulation cost matrix Q, and a control cost matrix R.

‘However, a great deal of information can be gleaned from (2.84) in its

present form, provided that the values for the various matrices associ-
ated with each substructure are known. This subject is deait with in
Section 4.

3. DISTURBANCE MODELS

In this section, two sources of environmental disturbance
important to the dynamics of DAISY are modeled. They are gravitational
and aerodynamic.forces and torques.

3.1 Gravitational Disturbances

Earth's gravity plays a key role in the design of DAISY. As
explained in Appendix A, the preload in the out-of-plane spirator spring
at each rib root is governed by gravitational forces. In fact, provided
DAISY remains motionless, this spring balances the gravitational torque
about the rib root. However, once DAISY is set in motion (via external
excitation) gravitational disturbing forces and torques will arise. In
an attempt to predict these disturbances a gravitational force and torque
model is assumed for each substructure. Simply, neglecting the finite
size of each structure relative to the radius of Earth, the gravitational
force acting on body i e{h,rj,sj}, expressed in,Fi (recall Fig. 2.2), i;

fai = -3aMLidy B

Here ag (= 9.8 m/s) is the acceleration of gravity at Earth's surface, m,
is the mass of body i, Cit is the rotation matrix that transforms frame F,
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into frame Fi’ and Eﬁ is the unit vector from the mass center of Earth to
O;+ Ry s expressed in F;, where F; is taken to have its origin at Earth's
mass center. Furthermore, it is assumed that the hub frame Fh and FI are

related via the first order rotation matrix

QhI = | -8 1 el (3.2)
62 -61 1

where the order for the hub rotation angles oy, = (el, 8,5 93) is 6y about
X followed by 6 about Yn and finally 04 about Zy-

To be consistent with the decision to neglect the finite size
of each substructure relative to Earth's radius, it is also assumed that

f=fy sB R (3.3
Whence .

fai = -agniCipR (3.4)
where

R=Co k=10, -0, -1] (3.5)

That is, Z, (the Eub axis perpendicular to the X-Y plane shown in Fig. 1.1)
is aligned with -R when DAISY is motionless. It also is assumed that the
X and Yy, axes of Fh are aligned with the X and y1 axes of FI initially.
In other words, the nominal rest state for DAISY is gh = 0.

Now, given (3.3), the torque caused by gravity about Fi’ ex-

\pressed in 01, takes the form

i = -2gCiCipR (3.6)

where g? is the first moment of inertia of body i. Also, recalling (2.38)

and (2.47), the generalized 'elastic' gravitational forces and torques



.

acting on each rib and strut can be determined. These are summarized
in Table 3.1, along with fGi and gGi-for each substructure described
in Section 2.1.1.

3.2 Aerodynamic Disturbances

The details of the aerodynamic disturbance models assumed
for DAISY are described in [Sincarsin and Hughes, 1983]. As a conse-
quence, only a brief summary of the two models is presented here. The
first considers a flexible body 1 immersed in an incompressible fric-
tionless fluid (a high Reynolds number model). The inertial resistance
of the fluid to the translational, rotational and 'elastic' accelera-
tions of the body takes ‘the form

.
Ry Moi SRi R Wi
Ri |7 %R i i 8;
T T ;
£Ri Pri Hri Heei ] | %

;|UL«
—
1
°
"__ﬁ
w
4
|
-—
ch
-
o
w
-
;|UE
=
—
1
°
—
w
]
—te —]
=3
_ém
-—
|
-—da
o
w
-—

and
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Table 3.1

Gravitational Force and Torque on Each Substructure

A

Sgn =~ %chR
Rib.: _ -
J fGr T aGmr‘.-g-r.hE
J J
Sar. = - 3Ep Cp 4R
J J J
fsa, = Sor,
Strut.: -
J f = - an_ C. R
—st G sj—sjh
- X 5
955, © aGgs.Es.hB
J J
4T
bgs, = Lifes,
J
T
by = Li
GyJ JQGSJ
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Here fRi"gRi and'iRi are the inertial resistance force, torque and

generalized 'elastic' force acting at some arbitrarily chosen point 01
in the body. Moss Cpis Jpy and Mpp; are hydrodynamic inertia matrices,

and Pny and Hp; are hydrodynamic momentum matrices. The absolute dis-

placement of a point on the surface Si of body i is given by gi, where

r is measured from 0;. As in the previous section, w, is the absolute

displacement of 0, relative to some inertial frame and 9, is the abso-

Tute rotation of a frame Fi with origin at 0; . The elastic displace-

mentsof body i are represented by the product of a rectangular shape

function matrix ¥, with a set of generalized coordinates g,. The velo-
city potential b associated with the fluid flow (of density p) past

body i is stated by (3.9).
vector potentials

placement in gd.

3

2wi? é%i

Finally, n.

It is expressed as a superposition of the

and §qi associated with each type of dis-

1

is the normal to the surface Si'

A second areodynamic model, where the fluid (in this case
air) instead is assumed viscous, is also presented in [Sincarsin and

Hughes, 1983]. ' This model, which is applicable for Tow Reynolds num-

bers, culminates in the following resistive forces, torques and general-

ized '

where

elastic' forces for body i:

£

=vi

g

Zyvi

By

Cvi

PT
=vi
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and ﬂz, z e{wi,ei,qi} is the portion of the normal component of the stress
tensor at the surface of body 1 associated with z. Here, £, ., g, and

£, are the force, torque and generalized 'elastic' force caused by viscous

effects (g& is taken about O ). M5 Cyas Lys and M M, are hydrodynamic
inertia-rate matrices, and PV1 and H,; are hydrodynamic momentum-rate

matrices. The remaining undefined symbol u is the viscocity of the fluid.
Both (3.7) and (3.11) are expressed in Fi'

In order to apply the above two aerodynamic models to DAISY,
the hydrodynamic matrices given in (3.8) and (3.12) must be determined for
each substructure cited in Section 2.1.1.

3.2.1 Hub Hydrodynamic Matrices

Since the hub is a rigid substructure, only M,,C, and I,
ze{Rh,Vh}, need to be specified. We choose to model the hub as a thin disk
parallel to the Xq~Yh plane (where Fh is as shown in Fig. 4.1), centered
about the z, axis, a distance %3 h above Oh’ where h is the he1ght of the
hub. This model is reasonable provided that Eh >> L, where Eh (=a h/h ) i
the ratio of the hub radius a, to the hub height. For DAISY, £, = 3, hence
this model should be adequate. If for some reason this does not prove to
be the case, the much more complicated hydrodynamic matrices for an oblate
spheroid can be used. A disk is the Timiting case for this quadric.

Rather than belabor the details of the integrations cited in
(3.8) and (3.12), a sample calculation for a typical rib is given instead,
in Appendix B. The hub hydrodynamic matrices are simply stated here with-
out proof (see Tables 3.2 and 3.3). For further details, the interested
reader should consult [Lamb, 1945], [Milne and Thomson, 1955] and [Brenner,
1974].

The form of the matrices provided in Tables 3.2 and 3.3 is
chosen to highlight the matrix components parallel to (denoted by the sub-
script Il ) and perpendicular to (denoted by the subscript L) the symmetry’
axis ;ﬁ, 1e{h,rj,sj}, for each substructure. This axis, expressed in Fi’
also is specified in the tables. The final hydrodynamic matrices are ex-
pressed relative to 01, instead of relative to the substructure's geometric
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Formulas:

Hub:

Rib J:

Table 3.2

Inertial-Resistance Hydrodynamic Matrices

1e{h,rj,sj}
My, = 1 1T - 1% 1 M
—Ri =i R|l1 =i=i"R1i
Cpi = LicRi

- T XX
Tpi = LiLiTry g - LRy

) T
L =00 0 1
.8 3 _
Mpih T TPy, Mo = O
] _ 16 5
JRiip = 0 Jpih T w5 P8,
th =
) T
Ly=0 0 0]
Mo, =0 Mpiy, = p“axzr.ﬂr.
J J J J

(cont'd)



1 2
J = 0 J = =M L
. 3 R
RIIr‘J Rir R.LY‘J rJ
c = lM Lz
2 e
Rr RJ_Y‘J r‘J
ERr. T Rr Hpr. ~ dRr
J J J J
MRRr, T iRr‘j
Strut J:
_ T
;_3. = [0 1 0]
J
Mels, =0 MRis =p"a§ £
J J J 73
1 2
J =0 J = = M £z
. R 3 .S,
Rl]sJ 1s RisJ j
c = —l—M ¥
2 .
RsJ RisJ sJ
Pps. =0 Hps, 72
MeRs, T 2



Table 3.3

Viscous-Resistance Hydrodynamic Matrices

Formulas:
1a{h,rj,sj}
= T L 1XgX
Boi = Lilityg - Lilidy
_ X
Cyi = LiCy;
- T X
Zyi = LidiTwi — LiLiy g
Hub:
~ T
L,=00 0 1]
- _ 32
My = 1on3y, Myth T3 M3
_ 32 _3 _ 1 2
Tulln = 73 # 3, Tyih = Jvin T % My phy
c. =<y . h
vh =~ 27y h'h
Rib j:
_ T P
. =011 0 0] £, =1L, /a,
J J J J
o 3 - 1
M = 4mpe,. /(en2e,, - ~2-) M = 8mul, /(fn2e,. - E)
vllrj rj rj v —U‘j r 5 Y‘j
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-2 S T 5 B 2
Tvlle, = FH Jyir, = 18 [!’r.(gnﬂr. - 1)/(£n(£r./2))
J J J J J
+16.35/(4m)] + L u 03
' L Virsr.,
=J
c = ~1—M L
vy T2 vl
P, =-C H,. =2
v vr v, v
M =J
VY vr s
Strut j: .
. T ~
1. =0 1 0] L. =2_/a
=5 55 55",
- ~ 1
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vllsj S5 s; 2 V1S S s 2
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. .

center. Hence extensive use has been made of the parallel-axis theorems
cited in [Sincarsin and Hughes, 1983].

It should be noted that, for a disk immersed in an ideal
fluid and subjected to either longitudinal translations (i.e. in the
Xp,= or yh-directions) or a rotation about its perpendicular (zh in the
present case), the resultant flow has no velocity component perpendicular
to the surface of the disk. The flow simply siips tangentially across
the disk's surface. For a viscous fluid this is no longer the case, a
fact reflected by the disappearance of several zero entries between the
inertial resistance and viscous-resistance hydrodynamic matrices for the
disk.

3.2.2 Rib Hydrodynamic Matrices

Un]ike the hub, each rib is modeled as a 'flexible', rather
than a rigid, substructure. Thus the entire complement of hydrodynamic
matr1ce§ M,, C,s J,5 By Hoand ¥, 2 = {Rrj,Vrj}, must be specified.

To determine these matrices, the rib is modeled by an 'infinite' cylinder.
A typical rib is shown in Fig. 4.2. The assumed rib frame, Fr.’ also 1is

shown in that figure. J

As previously mentioned, the detailed derivation of the
hydrodynamic matrices for ribj is relegated to Appendix B. Here only the
results of that process are summarized (see Tables 3.2 and 3.3). Again,

the components parallel to, and perpendicular to, the symmetry axis lr
J

are highlighted in the form of the final matrices.

In a manner analogous to that for the hub, certain motions of
rib j result in no normal velocity component to the surface, for a rib
immersed in an ideal fluid. For F.. @s shown in Fig. 4.2, these motions

are translations along the xr_—dire%tion and rotations about the xr.—axis.
J J

For a finite cylinder moving along x this is not strictly true. However,

r.’
since the rib is a thin open-ended tube the inertial resistance in this
direction should be negligible. As before, these statements do not apply
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for viscous fluids, hence the extra nonzero entries in the viscous-
resistance hydrodynamic matrices for rib J.

3.2.3 Strut Hydrodynamic Matrices

Strut j (see Fig. 4.3) is geometrically similar to rib j;
thus an 'infinite' cylinder model also is used to determine the strut
hydrodynamic matrices. Again, since the strut is a 'flexible' sub-
structure, all the matrices defined by (3.8) and (3.12) must be deter-
mined. The exact procedure is analogous to that given in Appendix B,
except that the 'elastic’ displacements for rib j (gj) and their cor-
responding shape functions (-ri_) are replaced by those for strut j

([ T

v:] and [ls. 1 1). The resulting hydrodynamic matrices,
expressed in Fs. (recall Fig. 4.3) are shown in Tables 3.2 and 3.3.

J J j

Once again, the matrix components along the symmetry axis ;S_ and in

J
the cross-axis directions are emphasized.

Since an infinite-cylinder model is used for both rib j
and strut j, it follows that comments similar to those for the motion
of rib j, when immersed in an ideal fluid, will also apply to strut j.
The only difference is that FS_ is oriented with Ys . along the strut's

J
along the rib's symmetry

symmetry axis, while Fr is oriented with Xy
j J

axis. Hence translations along the ys.-direction and rotations about

the ys.-axis yield no velocity component normal to the surface of strut j.

J

In fact, since the end of each strut is essentially blocked by a rib, the

assumption that the inertial resistance in the direction of the symmetry

axis is negligible is even more valid for strut j. However, once viscosity
is included, a substantial resistance results in the Yo direction, not be-

cause of 'end effects', but because of tangential viscous forces acting .
along the length of the strut. The result, as for the hub and rib, is the
appearance of several nonzero elements in the viscous-resistance matriges,

that are zero in the corresponding inertial-resistance matrices.
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3.3 Total Disturbing Forces and Torques

It is useful at this juncture to summarize the total ex-
ternal environmental disturbance acting on each substructure of DAISY.
This permits one major component of the external disturbance vector Uy
(recall 2.87) to be identified. That is, uy can be written as the sum
of two components, as follows:

Yg = Yqp + Yyg (3.13)

where U4E denotes external environmental disturbances and Uqr represents
known external 'input' disturbances. 'Input' disturbances means those
disturbances introduced during control studies and used to define the
initial uncontrolled state, or as adversaries during the performance
verification of a particular control strategy.

To accomplish the separation implied in (3.13) it is neces-
sary to write the total external force and torque on each substructure in
a similar form (1a{h,rj,sj}):

fi 7 %y v i | (3.14)
95 = 9g ¥ 9y - (3.15)
4 = fg; * £y ith (3.16)

Then, given the information in the previous two sections, the following
definitions apply:

fei = S5 * Ly t &y (3.17)
951 = 961 T i T i (3.18)
Also, for rib j,
=g (3.19)
_ .-ﬁ-EocJ EY‘J-

51




and, for strut j

T
fes = Lo feo s g, =1
E j —sj—Esj EYj —szESj

The exact forms for fIi’ 9y and f;, are still to be determined. They,
of course, will depend greatly on the exact locations and directions of
action of the peripherial actuators for DAISY, the sources for the 'in-
put' disturbances.

4. SUBSTRUCTURE INERTIA MODELS

To further complete the motion equations provided in Sec-
tion 2, a detailed set of inertia models for the various substructures
is required. Since the 'elastic' mass and the momentum matrices as-
sociated with a typical rib [recall (2.35) - (2.37)] and a typical strut
[recall (2.47)] are functions of the rigid inertias of each respective
structure, it is necessary only to specify the mass ms s the first moment
of inertia C;> and the second moment of inertia J, about O, expressed
in Fi’ for each substructure 1e{h,rj,sj}. In the following, the align-
ment chosen for Fi and the components of the attachment point vectors

for the various Oi's (recall Section 2.1.4) also will be given.

Let each substructure i consist of n; components. Futher-
more assume that in each component k there is some reference point O,
Tocated relative to O; by ryp» that acts as the origin for a reference
frame Fg- Hence F, and Fi are re1ated by the rotation matrix gik. Then
denoting the mass, first moment of inertia and second moment of inertia
of k about Ok’ expressed in Fk’ by Ms Cp and gk, respectively, the
inertias of substructure i are given by

3
!

N
.= o)m : (4.
i k=1 k

(3.20)

n.
1
c; = kzl("‘kﬁik Ly (4.2)
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ni X X
gy = kzl(kaﬁkai = Ciilyitix
X X X X

- P M k) (4.3)

Rather than write (4.1) through (4.3) explicitly for each substructure,
only Fie g#k,and the individual component inertias will be provided in
what follows.

4.1 Inertia Model for the Hub

As stated in Section 2.1.1, the hub is assumed to be rigid.
To be more specific, it is assumed that the hub consists of five basic
components: a bottom cover plate, a central cylinder, a top cover plate,
a group of reaction wheels (3) and a set of rib mounts (m = the number of
ribs). Hence for thg hub (i=h), n, = 6 + m, where the above components
are denoted by k = (B, C, T, RX, RY, RZ and Mrj), respectively. A diagram

highlighting the various hub components is given in Fig. 4.1.

4.1.1 Bottom Cover Plate

The bottom cover~p1ate is a solid circular disk of uniform
density. The local reference frame FB’ with origin O at the geometric
center of the plate, is taken to be aligned with Fh. The physical para-
meters of interest are the disk radius ags height hB’ and density PR
Given these quantities the inertias for the bottom cover plate, relative
to Og and expressed in FB’ are

_ 2
mg = anthB

=9
Y11 = gz = 17 M3 + h) (4.4)
J333 = 7 "3
Jg12 = Jg13 = Jpo3 = O
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Also, the location of Og relative to Oy, and the rotation matrix relating
FB to Fh are

rog = [0 0 %hyl' (4.5)

Cpg = 1 (4.6)
These relations imply that Oh is located at the center of the Tower sur-
face of the bottom cover plate. Furthermore, Fh is chosen such that

the Xp = Y plane coincides with this surface and zZp is the downward facing
normal. The directions of Xn and Yy are fixed by choosing i to 1ie along
one of the rib axes, as shown in Fig. 1.1.

4.1.2 Central Cylinder

The central portion of the hub is modeled by a thick-walled
cylinder (necessary to accept the bolt-on cover plates) of uniform density.
The cavity within the hub created by this component is used to hold the
reaction wheels. Here the Tocal reference frame FC has its origin at the
cylinder's geometric center and it is aligned with Fh. The geometric center
is chosen, rather than the mass center, because creating holes to accept the
rib joints, or any other such removal of mass, will shift the center of mass,
but Teave the geometric center unchanged.

The physical parameters required to determine the inertias of
the central cylinder are: the outer radius of the cylinder, a.s the wall
thickness, tc; the cylinder height, hc; the density, Pes and the inertias
associated with the mass removed to permit the rib joint to interface with
the hub (see Fig. 4.4 and Section 4.4). In fact, these 'hole' inertias are
more easily dealt with as part of the rib-mount inertias and therefore they
are included in the section that considers the rib mounts. Hence the inertias
for the central cylinder, relative to O and expressed in FC, are ‘
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me = sgrlag - bo)hg
=0
Je11 = Jgap = 72 M(3ag + 3G + o) (4.7)
Jeas = 3 Melag + b)
Je12 = Jc13 = Jgo3 7 0
.where
be = a; - t; ' (4.8)

Here the location of OC relative to Oh and the rotation matrix relating
FC to Fh are given by

rpe = [0 0 (hg+3%he)] (4.9)
Coc = 1 (4.10)

This completes the inertia model for the central cylinder.

4.1.3 Top Cover Plate

The top cover plate model is identical to that for the bottom
cover plate although, to permit different dimensions and materials to be
used in each case, the physical parameters of the two plates are not assumed
to be the same. This is indicated by changing the subscript B in (4.4) to °
the subscript T. Also, while Or and FT are defined in a manner analogous to
Og and Fg, so that (4.6) still applies (with B replaced by T), the location
of o is given by )

T

[0 0 (hg+hg+shy)] (4.11)

Lot =

rather than by (4.5).
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4.1.4 Reaction Wheels

It is assumed that three reaction wheels are contained within
the hub, one with its spin axis aligned along the xh-axis (RX), another with
its spin axis aligned along the yh—axis (RY), and the last one with its spin
axis aligned along the zh—axis (RZ). At present, the detailed design of
these components has not been performed. Hence, from the viewpoint of ob-
taining a preliminary inertia model for the hub, only the inertia about each
wheel's spin axis JT, te{RX11,RY22,RZ33}, and the mass'mk, ke{RX,RY,RZ}, of
each, reaction wheel are included. Furthermore, it is assumed that Oy > the
origin of the local frame Fk, is at the mass center of each wheel, hence
Sy = 0. The location of each wheel's mass center relative to O, is repre-
sented by

_ T
rhk = [gk nk Qk] (4-12)
while Fk is related to Fh according to

Cp = 1 (4.13)
One advantage of the component-by-component analysis of each substructure

is that, once a more detailed component model or an undated component model
becomes available, the entire substructure's new inertia can be computed in

a straightforward manner via (4.1) through (4.3). One obvious application
for this procedure is the case in point. As more detailed inertia models

for the reaction wheels become available, the hub inertia will be recom-
puted.

4.1.5 Rib Joint Mounts

It suffices to consider a typical mount, that corresponding
to rib j, rather than the entire set of m. Each mount is, in fact, two '
mounts, one external to the central cylinder wall and one inside the wall
(see Fig. 4.4). A common shaft hole is shared by both mounts and there is,
of course, an identical hole through the wall of the central cylinder at
the appropriate position.



A similar set of mounts exists for each strut attached to
rib j (recall Fig. 1.1). Hence a certain commonality can be maintained
for all mounts (and all Jjoints). One can use identical mount and joint
models throughout, provided appropriate subscripts are adopted. To this
end, a general mount and joint model is provided in Section 4.4. To
obtain the inertias corresponding to the rib j mounts on the hub, one
simply substitutes (t, t, p) = (rj, tes p¢) in the formulas contained
in the mount section found therein.

The Tocations of the various mounts are unique and must be
treat individually. For the rib mount Mrj it is assumed that Opmye Ties

on the center line of the mount hole at the outer surface of the central
cylinder wall. Then

13

[aCcosAj acsinAj CMrj] (4.14)

r
Mr.
il J

where

A
J

2w(J - 1)/m | (4.15)

is measured about z, in the positive right-hand-sense (starting at the
xh-ax1s) and M. 1S the zh—component nf OMr .

J
taken to be aligned with Fh’ except for the above rotation. Whence

Furthermore, FMr. is

. -sinAh. |
| cosAJ sin j 0 ‘
QhMrj = s1nAj cosAj 0 (4.16)
0 0 1

This implies that XMy always points radially outward along a rib and

would be the rib centerline if the ribs did not droop under gravity.
(Given (4.15), the ribs have been assumed equidistantly spaced around the
circumference of the hub.)

4.2 Inertia Model for a Typical Rib

Since the flexibility of each rib is localized at the rib
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root (or, to be more specific, in the rib joint — see Section 4.4), the

'elastic' rib inertias are all related to the rigid rib inertias. Con-

sequently the rib can be considered as a rigid body for the purposes of -
obtaining its inertia model. A typical rib consists of five main com-
ponents, as shown for rib j in Fig. 4.2. These are: a rib joint, of
which only the attachment bracket is showniin Fig. 4.2 (a more complete
illustration is given in Fig. 4.4); a rib tube; an accelerometer group;
and two sets of strut mounts. Therefore, for each rib j (i = rj),.we

have N, = 5, where the appropriate component subscripts are k = (Jr.’

J J

R:y, A:u M

30 Ays Mg and M. ), respectively.

J J

As shown in Fig. 4.2, rib j droops through an angle eoj

relative to the horizontal (i.e., the Xp = Yy, plane). The primed Fi, axes

shown in the figure correspond to the prerotated joint axes FUr. given

J
in Section 4.4. They are aligned with FMr of the previous section;

however, their origin O, is offset a distance dr (defined in Section
i

J
4.4.2) in the positive XMy (xh) direction. Thus
' J

4

- . T
Pop. = [(ac*'dr.)COSAj (aC+-dr_)s1nAj Zp ]
J J J J
th'= QhMr
Now as shown in Fig. 4.2, O is also the origin of Fr . Therefore,
(4.17) Tocates the origin for this substructure relative to Oy The
rotation matrix relating Fr. to Fh follows from the realization that
the rotation matrix relating Fr to Fﬁ is
J
coseoj o . —s1neoj
Ehlrj = 0 1 0 (4.19)
s1neoj 0 coseoj

59

(4.17)

(4.18)




09

Side Y,

Hub Wall

7 7 Attachment Rib Tube Accelerometer

i “h Bracket \ Group \

Hub Wall
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Whence, recalling (2.1),

Qhr. th'gh'r. (4.20)
J J
Both (4.17) and (4.20) play key roles in the dynamical equations for

DAISY presented in Section 2. (The use of Fh.rather than FUr in Fig.

4.2 was motivated by the desire for a briefer notation and to emphasize
the relationship of F . to Fh.)
J

4.2.1 Rib Joint

Each rib joint (excluding the joint mounts) consists of a
universal mechanism and a circular attachment bracket. Details of local
reference frames, appropriate physical parameters, and inertias for a
typical rib joint are discussed at length in Section 4.4. The appropriate
variable set for this case is (7, A) = (rj, eoj)'

Given the inertias from the above procedure, it only remains
to note that
=0 (4.21)

r
—r.dJdr.
J ]

C (4.22)

Zpr.dr,
J J

{
=

which are consistent with the comments made in Section 4.2.
4.2.2 Rib Tube

The rib tube is modeled as a thin-walled circular cylinder of
uniform density. This hollow design minimizes the mass and is capable of
accepting the accelerometer Teads. Once again the local reference framé,_
here denoted FR.’ is chosen to have its origin Op . at the geometric center

of the component. However, now Fr is the substructural reference frame of

J
importance and thus FR is chosen to be aligned with Fr .
J J




The physical parameters necessary to establish the rib tube
inertias are: the outer radius of the tube, ap 3 the wall thickness, tR ;

J J
the length of the rib, ﬂr ; the distance from 0, to the edge of the rib

J J
tube, zj,. (from Section 4.4); the density, op.3 and the inertias associated
J

J
with the mass removed to permit the strut joints to interface with the rib

(see Fig. 4.4 and Section 4.4). As before, these 'hole' inertias are most
easily dealt with as part of the strut mount inertias and hence they will
not be included in the inertias given below. Given the above parameters,
the inertias for the rib tube, relative to Op and expressed in FR.’ are

J J
mp. = op.m(ag - b?{ g
J J J N
S. "0
j
! 2 2
Jp.11 = 7 M (ag, * by ) (4.23)
j in j
_ Y 2 2 2
Jn.oo = Jp33= 17 My (3ap +3bp + & )
j i N3 i i
J = J = J =0
R.12 . 23
B Ry13 T R,
where
b, =a, -t (4.24)
Ry TRy TR
L. = e, Er, (4.25)
i j i

Also, the location of oR relative to Or and the rotation matrix relating
J J

FR. to Fr. are given by
J J
P = [E. %0, 0 0] (4.26)
—r.R. Jr. #R. ’
3d J N

Cog, =1 | (4.27)
JJ
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It should be noted that no end cap has been assumed for the
rib tube. There are three main reasons for this decision: Tless weight,
less aerodynamic resistance, and easy access to mounts and accelerometer
Teads.

4.2.3 Accelerometer Group

The accelerometer group is presently modeled by a point mass
mo - The Tocation of this mass relative to Oy is represented by
J J
L LT Y 23A.]T (4.28)
JJ J J J
If a more detailed accelerometer inertia model becomes necessary it can
easily be implemented via equations (4.1) through (4.3).
4.2.4 O. Strut Joint Mounts

S.
J

_ As discussed in Section 4.1.5, a universal joint-mount inertia
model is adopted for DAISY. The details of this model are presented in
Section 4.4. Using the parameter set (v, t, p) = (sj, tp s op ) in the

J J

equations found therein one obtains the inertias corresponding to the
joint-mount inertias associated with the o, strut (recall Fig. 2.1). How-

ever, since each strut joint is oriented such that the 'U' of the joint
universal (see Fig. 4.4) 1jes in the horizontal plane (the Xp = Y plane),
rather than being vertical 1ike the rib joint, a transformation is required
to redefine the inertias about the appropriate axes. The problem is further
complicated by the fact that different axes are assigned for the symmetry
axis of the rib and the strut (for each rib the symmetry axis is the x-axis,
while for each strut the symmetry axis is the y-axis). This change in axes
simplifies the final rotation matrices and ultimately the physical 1nter¥A
pretations of DAISY's various motions; however, it complicates the trans-
formation required to realign the inertias from Section 4.4. In any case,
the final transformation has a relatively simple form:
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0 0 -1
]% =11 0 0 | (4.29)
0 -1
whence

mMSj = mM'r

S = TsCite (4.30)

Jo = T dy TV

—-Msj —5Mt—s

i
where the subscripted r-quantities are those from Section 4.4.

The Tocal reference frame for the OS mounts, FMS , has its
; .
origin located relative to Oy by
j N

(4.31)

where Ee is the distance to the centerline of the mount holes from O -
j : J
The above equation implies that OM lies on the outer surface of the rib

tube, on the center11ne of the mount holes, which Tlies in the Xp =Yy

plane and is aligned with Y - F

is taken to be aligned with Fh, from
J

Msj
Figure 4.2. Therefore,

C =C. (4.32)
rstj rjh

This completes the information required for the O, mounts.
J

4,.2.5 OC. Strut Joint Mounts

J

In a manner analogous to the previous section, the joint-

mount inertias associated with the O, strut (recall Fig. 2.1) are obtained
J
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by setting (T, t, o) = (cj, tp s pR_) in the formulas of Section 4.4. A

transformation similar to (4.29) is required here also, for the same

reasons:
0 -1
Ic =1 -1 0 0 (4.32a)
0 1
Then,
mMcj = M
S = Telne (4.32b)
T
J =TJd
—Mcj —C T"Cj

where, again, the subscripted t-quantities come from Section 4.4.

The origin of the local reference frame for the O mounts,
J
Oy .2 is located relative to O, by the vector
J J

r = [& -a 0}
—r.cM. . .
rJ J CJ RJ

where gc is the distance to the centerline of the mount holes from Or .

J

J
That 1is, O Ties on the outer surface of the rib tube on the centerline

Mc.
J
of the mount holes. As for the O¢ mounts, this centerline lies in the

Xp =Yy plane and is aligned with the Yy -axis. Also, the local re-
j -

ference frame FMC is taken to be aligned with FE. Hence,

J

C =C
2y .Mc. Zr.h' ‘4,32
rJMcJ rJh (4.32c)

It is notable that, ideally, all the strut mounts should be Tocated the




same distance from Or . Therefore, it will be assumed henceforth that

4.3 Inertia Model for a Typical Strut

Each strut has its flexibility localized in sprihgs at the
joints and in a pair of linear springs on the guide ram shaft (see Fig.
4.3). As a consequence, this substructure's 'elastic' inertias, like
those of the rib, are all related to its rigid inertias. Thus one need
concentrate only on the latter. In this regard, five strut-component
inertia models must be developed, one for each component shown in Fig.
4.3. Therefore, in the notation adopted in the introduction to Section
4, i = Sy nSj =5 and k = (J Ej’ Gj’ Sj and ch+1), where the k sub-
scripts respectively refer to the O . strut joint, the end plate, the
guide ram (keyed not to rotate), thertrut tube, and the O . strut
joint components. J*l

5.’
J

_ The FH frame shown in Fig. 4.3 corresponds to the prerotated
Jjoint axes FUT given in Section 4.4 for the O . strut joint. Again, a

simplified notation that emphasizes the relationship of this frame to Fh
is adopted. The x;-yﬁ plane is parallel to the Xp = Y plane, hence the

zy axis is parallel to the z, axis. Now, Fﬁ is aligned with FMS.; however,

O . is offset a distance ds. (defined in Section 4.4) in the positive My,

(yﬁﬁ direction. Therefore, !
Y. = &5 ap *dg 017 (4.33)
JJ J J
E-Y‘.h“ - E-r.Ms. (4.34)
- J J

~Furthermore, O . is also the origin of Fs.’ so that (4.33) locates the

J J
origin for the strut substructural frame relative to O, - The strut sub-

J .
structural frame Fe is obtained from FH by a rotation of A about z., where
J
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- -

A =%(A - A;) = w/m (4.35)

J+l J

given (4.15). Equation (4.35) results from the geometry of a set of ribs
equidistantly spaced around the circumference of the hub and a set of struts
whose ends are located at the same radial distance from the zh—axis. More
general relations can be proved which permit the modeling of geometric
errors caused by manufacturing tolerances. Although not included in this

report, an unpdated description of the inertia model will be issued should
such be required later in the design process.

Given (4.35), the rotation matrix relating F, to F, is

J
cosk -sink 0
Cpng . = sinA cosh 0 (4.36)
J 0 0o 1
Hence the rotation matrix relating FS to Fr is
| J J
C =CpnCug (4.37)
rjsj rjh =h sj .
This relation also holds for FC which is aligned with FS but has its
J+1 i
origin Oc given by
J+1
Ty = £, -(ag +do ) 017 (4.38)
J+165+1 J i+l 3+l
or
Trc o = Tes t g 10 g 0T (4.39)
37+l 37J NN J .

instead of..by (4.33). Here L s the length of the strut which, given

the assumptions used to obtain (4.35), is the same for all struts.

68



4,3.1 Os. Strut Joint

J

This joint consists of a universal mechanism and a rectangular
bracket (shown side-on in Fig. 4.3). As with the rib joint, the details
governing the inertias assumed for the Og, strut joint are provided by sub-
stituting (t, A) = (sj, 1) into the formu%as contained in Section 4.4. How-
ever, as explained in 4.2.4, the inertias resulting from this process must
be subjected to a transformation analogous to that in (4.30). To be specific,

= mJT

E\JS‘_j = ‘ISEMT (4.40)
_ T

-‘l\]S‘_j - ISQMTIS

where Is is given by (4.29) and the subscripted t-quantities are those ob-
tained from Section 4.4.

To complete the oS strut joint inertia model it must be noted

J
that 0O s coincides with O, and that FJs is aligned with Fs.' Thus

JJ’ J J J
Es.Js. =0 (4.41)
J J
C =1 (4.42)
—stsj

These results are required in (4.2) and (4.3).
4.3.2 End Plate

The end plate of each strut j is a circular disk of uniform
density. A hole is drilled along its symmetry axis so as to permit the
translational motion 5j of the keyed guide ram (see Fig. 4.3). The Tocal
frame FE. is again chosen to have its origin oE at the geometric center

J J
of the disk, and is aligned with F_ . Thus

J
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(4.43)
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I it
=1 (4.44)
—sjEj
where £3s . is the distance from O, to the edge of the rectangular bracket
J
closest to the end plate (see Section 4.4), Ap is the gap between this
J

edge and the end plate and h. is the height of the end plate.

E.
J
The remaining physical parameters for the end plate are:
the radius of the disk, ag 3 the radius of the hole, I and the density,
j J _

pp - The required inertias then become

J
2 2
m. =op.n(ag -a; )h
Ej Ej Ej Hj Ej
c- =0
_Ej 2 2 2
= =L
Je,11 = Jg.22 = 17 Mg, (3ag +3ay +hg ) (4.45)
J 5 ?_J J J J
Jp,op =% Mg (ag *ay )
J J J
J = = J =0
.12 .13 E.
EJ EJ JZ3
relative to Op and expressed in FE . For the present, any difference
i .
between the bushing density (a bushing exists in the end-plate hole to
assist the motion of the keyed ram) and that of the end plates is neglected.

4.3.3 Guide Ram 1

The guide ram shown in Fig. 4.3 consists of a disk with a
threaded center hole, into which a shaft is threaded. Even though this
shaft is welded to the rectangular end plate, it is still considered to be
part of the guide ram. This ability to unscrew the two components (and to
remove the strut end plate) is necessary to be able to access and preload

* the shaft springs. A retainer ring is also required to force the interior

shaft spring to maintain its compressive load against the end plate. The
rectangular attachment bracket plays the same role for the exterior shaft
spring.
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Here the physical parameters of interest are: the radius of
the disk, ag 3 the height of the disk, hG ; the density of the disk, pG 5

J
the radius of the guide shaft, aGs ; its length KG ; and its dens1ty, Pes.*

J
One must also know the distance to the retainer r1ng, dRR ; 1ts mass, MeR .3
J J
and the masses of the interior and exterior springs, Mg and Meg - Then
J J
the appropriate inertias are
m. =m +m +m
Gj GDj GSj RRj
+m +m
ISj 4 ESj
c = < mae (Loe -hp )
Gj2 GSj GSj Gj
- My (Lhe =AL =-dpy )
RRj GSj Ej RRj
mrs, (£gs. - Op, ~*dpg, )
J J J J
- Mee (BAc -Y%AL )
ES GSj EJ
cg.1 = Cq.3=0 (4.46)
J J
1 2 2 2
J = J =  —m., (335 +3asc *+hy )
. .3 12 . . GS G.
GJll GJ 3 GDJ GJ i
1 2 2
* 15 Mgs, (33, +4gs )
J J
+ 3 mgg (8gs ~hg )
J J J
+ Mo (£8s - 0F = dpp )°
j J J J
+mpg (L - 8p ~Ydgp )’
J J J
*meg (2 -ibg )7
J J
21 2 2
Ja.22 = Z "gp_ %6, +""es 6,
J J
6,12 7 J6,13 = Y23 = O
J J J



where
_ 2 2
Mep. = °g."(3g. ~3gs g
J J J j
m = a2 L
GS. °G6S."96S.%6S.
J J i
Lhe =2 Lh
GSJ st GJ
Ar = A- +h
EJ. EJ. Ej

and the inertias are taken relative to Og and expressed in FG.' Here it
is assumed that Og is at the geometric center of the guide ram disk and

J
that FG is aligned with FS . Thus
J J

. T
Y56, " [0 Eds.-FEGs. 0] (4.47)
JJ J J

G, o1 (4.4
JJ

It should be noted that the self-inertias of the retainer ring and both
shaft springs have been neglected in obtaining the above results.

4,3.4 Strut Tube

The strut tube is modeled as a thin-walled circular cylinder
of uniform density. The local reference frame FS. is taken to be aligned

with FS and to have its origin Og Tocated at the geometric center of the
J J

tube.
+h. +he +%0. 0] (4.49)
£y " e, TS |

g =1 (4.50)

where
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By =&, - & - E. = A = hg (4.51)

and £ is the distance from 0, to the edge of the circular attachment
J+l J+l
bracket on the strut end nearest rib j+ 1. Also, given the assumptions
cited in the introduction to Section 4.3, £s can be written as a function
J
of variables that have already been discussed:
L, = 2[{(aC4-dr.) + gjcoseo_}s1nA
J J J
+ (ap +d )cosh] (4.52)

. S

J J :
The only remaining physical parameters of interest are the outer radius of
the tube, g » the wall thickness, tS , and the density, og - Then the

J
inertias for the strut tube take the form
~ 2 2
mg = pg m(ag -bg g
J J J
c =0
=5, X
J
2 2 2
J =J =L m. (325 +3bS +45) (4.53)
Sjll Sj33 12 Sj Sj Sj Sj
g 09 = % Mg (ag.”’bé.)
J J J
J = J = =0
Sj12 Sj13 Sj23
where
be = a. -t (4.54)
S, S. S.
J J J

A Tubricated lining to aid the translational motion of the guide ram is

also anticipated to be necessary; however, any difference between the
density of this lining and that of the rib tube is neglected, for the pre-
sent. Also, holes may have to be drilled in the rib tube, above and below
the displacement range of the guide-ram disk, to relieve the air pressure
on this disk. If this should prove to be the case, then some modification

-
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of (4.53) would be required.

4.3.5 0., Strut, Joint
\.oj_’_l

Unlike the O . strut joint (recall Section 4.3.1), this joint

J
employs a circular, rather than a rectangular, attachment bracket. Again

the inertias for this joint are found by substituting (t, ) = (cj+1, 1)
directly 1nto the equations of Section 4.4 and then performing a trans-
formation to realign the inertias, so as to be consistent with the joint

orientation adopted for the struts. In particular,

m =m
ch+1 Jt
S (4.55)
_ T
gdcj+1 - ICQMTTC

where chis given by (4.32a) and the quantities with the subscript t are
those from Section 4.4.

To complete the O strut joint inertia model it must be

J+l
noted that Oyc coincides with O, and is located relative to O by
J+l J+l J
v . =10 & ol (4.56)
Jj i+l J

and that FJ coincides with F , which in turn is aligned with F_ .
©3+1 €3+ 3
Therefore, the necessary rotation matrix is

C =1 (4.57)
This enables equations (4.2) and (4.3) to be applied for the O, strut -
. j+l
Joint.
4.4 Inertia Model for a Typical Joint

In this section an inertial model for the joint shown in Fig. 4.4
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is presented. A joint strictly is defined as a universal plus either a
circular (shown) or a rectangular (not shown) attachment bracket. Each
joint is considered to be part of the substructure to which the attachment
bracket is fastened. Hence each rib has one joint, while each strut has
two. The joint mounts are also shown in Fig. 4.4 and will be discussed

in what follows. They also are considered as part of the substructure

to which they are attached.

The orientation of each joint depends on the particular sub-
structure to which it is attached. For each rib, the top drawing in Fig.
4.4 is in a vertical plane aligned with the Z, axis, while the bottom
drawing is the top view of the joint. For each strut, the top drawing
lies in a horizontal plane parallel to Xp = ¥y, SO that the bottom drawing
is a side view of the joint. The dimensions of the mounts are also altered
for the strut joint so that the two views shown in Fig. 4.4 are reversed.

4.4.1 Mounts

. A dimensioned schematic of a typical péir of joint mounts is
presented in Fig. 4.5, where a general notation employing the subscript t
has been adopted. In fact, the physical parameters for the mounts also
employ this notation (see Table 4.1). There are, however, two unsubscripted
'global' quantities, the thickness t of the wall separating the exterior and
interior mounts, and the density p of the wall material. These two variables
are determined by the type of mount (rib or strut). For example, the set
(t, ty p) = (r., tes pC) specifies a rib mount, while the set (t, t, p) =

J
(Sj, tp » pp.) specifies a strut mount.
J J

The Tocal frame FMT . chosen for the purpose of inertia calcu- .
lations, also is shown in Fig. 4.5. Its origin OMec is located on the center-
Tine of the mount holes at the wall-edge of the exterior mount. The mounts
are positioned relative to FMT (as shown). The alignment of FMT again de-
pends on the type of mount considered. These alignments have been discussed

previously and will not be repeated here (see Sections 4.1.5, 4.2.4 and 4.2.5).

Given these facts, the inertias for the rib mounts, relative to
Ove and expressed in Fyp» @re
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Mounts:

Joint:

Exterior

Global

Universal

Table 4.1

Mount and Joint Physical Parameters

(Interior)

(1)
WE(I)T — width
hE(I)T — height
pE(I)T —density
a_ — hole radius
Mse — Mass of each opposing spring
t — wall thickness
p — wall density
ac. — radius.of cross shafts (4)

Ay — radius of mount shaft (1)
KCT — Tlength of cross shafts
KMT — Tength of mount shaft
Pg. — density of shafts_
EPT — Tength of cross-shaft support
tP — thickness
T
KBT — length of back plates
— width

tB — thickness
T
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- :

Table 4.1 (Continued)

Ppy — density of plates
Ac. — 9ap between cross shafts and back plate
Ay — 9ap between back plate and exterior mount
ty, — see below

Myg, — Mass of each opposing spring

Mg, — Mass of each complementary

Circular Attachment Bracket

Ly — Tength of uprights (2)
— width
tU — thickness
T
ag. — radius of disk
T
— height
PR — density of bracket

EJ — distance from centerline of bracket holes to
farthest edge of disk

a~_ — as above
Ct _

Rectangular Attachment Bracket

KRT — length of rectangular plate
Wp, — Wi dth

h T — height

R
KUT’ WUT’ tUT’ pBT, aCT — as abOVG

g, — @S above, except now to farthest edge of plate

Global

A — angle between XUt and Xy, axes
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Mve = M ¥ M1 “Pepe = Mgy * Mpge ¥ Mgy
_I/Z(mET_mEHT)'eET * (mIHT_mIT)(l/z'eIT+t)—
+iye L = Mye (£, +1t)
_C_MT - MST™Ex MSTY\©It (4.58)
. |
| 0 _
J = = m. (h +w2) + m (h2 +ws )
Mtll 12 E Et Et 12 71 It It
2
plcLUTRCIL L I
o 2 .2 1 2 .2
Ine2o = T2 Mg (g *hg ) + g mp (L +hy ) + Jy
oL 2 2., 1 2 2
Ine3s = 17 Mpollpe PWEL) *+ 73 M (L7 +wp) + dy
Jur12 ® Iue13 ¥ Mgz = 0
where
Men)e = PE(T)eCE(T)eE(T ) "E(1) (4.59)
_ 2
e (1) He = PE(I) ™ 3<PE(T) (4.60)
2. 2. 1 2. 2
In 17 My (380 ¥ L5 )= 17 mpy (3 +L7.)
1 2 2
t o (mg -mgy e+ (mp-mp ) (el )
* s Lo+ My (27 +1)° (4.61)

Also, the corrections to the inertias of the substructure supporting the
mounts (either the hubor rib j) required because a mount hole must be drf1}ed
through the wall of that substructure, are
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mCT = qmpa_t
c = [am.t 0 0]
Ct
_ 2
- -1 2 2 2
JCTZZ _.JCT33 T 12 mCT(3aT tET) +k mCTt
Jer12 = Jcr13 T gepz T O

_where the above inertias are taken relative to OM+ and expressed in FMT'

These 1inertias are most easily incorporated into the overall inertia model
for DAISY by subtracting them from the inertias given in (4.58).

4.4.2 Universal

The universal portion of a typical joint is shown dimensioned
in Fig. 4.6. Again, the same t-subscript notation as that adopted for the
mounts is used both in the figure and in the physical parameters given in
Table 4.1. However, now only one global quantity is required, namely A,
the angle between the universal and joint frames, Fle and FJT (also shown
in Fig. 4.6). Therefore, a rib universal is specified by setting (t, A) =

(rj, 8 ) in the equations that follow, while a ‘strut universal is obtained
J

for (t, A) = (sj, ).

In what follows, the universal inertias will first be expressed
in FUT and then transformed into FJT' As can be seen from Fig. 4.6 these two
frames share the same origin; however, FJT is rotated relative to FUT by an
angle of -A about Ve Whence

cosh 0 sinx
0 1 0 (4.63)
-sinx 0 cosx

EJTUT =

Note that the origin of these frames corresponds to either 0., Oy or OC:.

J J J
It should also be noted that OMT is a distance

dT = gy, t LE. (4.64)
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1

behind OUT (OJT) in the negative X\ direction, where

gMT - AMT * tBT * ACT * ace

from Fig. 4.6.

Now, the inertias of the universal, relative to 0UT and

expressed in FUT’ are

m
T

'_kn

33

11

22 ~

(4.65)

szT * mBT * Meee * 4mCT * Mg = 2mHT * 2mOST * 2mCST

83

-ZmPT(gl‘l/l —12£PT) h mBT(EI\l’lT -lztBT)
- mST(ng +1/2'€MT)
0
L 0 i
1 2 2 1 2 2
—ngT(tPT+WPT) * 13 mBT(ﬂBT WBT)
2 2 1 2 2
t 3 Mee o, t 3 M (330, +L¢ )
1 2. 2 2
+ Mg ay - g MWy (3aCT-+tPT)
1 2 2
tg (mp =my ) (e *+tp )" + dmp (e +ag )
2
+ 2mgg (Lo +ac - tp, )T+ Ameg (e Fap, -y,
=1 2 2 1 2 2
6 mPT(KPT+tPT) 17 mBT(ﬂBT-l-tBT)
2 2 1 2
6 mHT(3aCT+ tP )+ T'Z-(mP mHT) (KBT-‘- tPT)
2
* szS (KCT-*.aC - tPT) * JT
21 2 2 1 2 2 2
"% mPT('KPT +WPT) t 17 mBT(WBT * tBT) - mHTrCT

(4.66)



where

Mo8)e = Pptp(B)c"P(B) < P(B) <
3

805,80+
2

Pg Tac Loy

_ 2
mST T Pge T aMTﬂMT

_ 2
mHT T Pp.T aCTtPT
_2 2 2
JT T3 Meceder ¥ Mo2ce
1 2 2 1 2 2
* 6 mCT(3aCT +£CT) * 12 mST(3aMT +£MT)

. 2 Y
* szT(EMT - 1/""Y’P"c) * mBT(EMT - 12tBT)

2

2 i
* szT(I/z'eCT * aCT) * mST(EMT +1/2£MT)

]
EMT EMT - AMT

Whence the inertias for the universal, expressed in FJT’ are

m m
Ue T

e 7 Coutl,

QUT =L TUTiJ—'r * QUTJT

It remains to establish the attachment bracket inertias before the total

joint inertias can be determined.

" 4.4.,3 Circular Attachment Bracket

.67)
.68)
.69)
.70)

.71)

.72)

.73)

.75)

A typical circular bracket is shown in Fig. 4.7. It consists

of two uprights and a flat circular disk, dimensioned as indicated in the

figure. Also shown is the orientation of the attachment bracket relative
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to the joint axes FJT and the origin of that frame Oj, Given the geometry
shown in Fig. . 4.7 and the parameter definitions from Table 4.1, the appro-
priate inertias for the circular attachment bracket, relative to 05, and
expressed in FJT’ are

+ 2m

mBT mDT Ut ~ szT

mDT(EJT -1/2hDT) * 2mUT(€JT - hDT -‘/J,UT)

S, = 0 (4.76)

Jga11 = 2 Mpedge + My (G +ul) + dg,
Jgrzg = T M (385, + 50 + g my (25, + wi)
- My ac, + oy (B, l’zhn—c)z
b amy (g, - hpe -ty )°
Jgrgz = 5 Mpe(3a5, + o)+ gmy (4 + )
* mDT(EJT - 1/2hDT)2 * 2mUT(EJ hDT B 2£UT)2 * JBT
Jpc12 = 13 T Ype33 = O
where
b = enEe o
My = Perfucuctue (4.78)
Mo = Pty (4.79)
Iy = - 5 Mg (3G, * tf)
* 2(mUT - mOT)(aJT B 1/ZtUT)Z (4.80)

The total joint inertias are then the sum of (4.75) and (4.76).
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4.4.4 Rectanqgular Attachment Bracket

This bracket, which is used at the oS strut joint to reduce

weight, still has two uprights, but now a rectangular plate replaces the
circular disk of the previous design. The same local reference frame FJT
and origin 0, are used for this bracket. Furthermore, the orientation

of the bracket relative to the local frame remains unchanged (see Fig. 4.8).

Noting the slightly different physical parameter set from
Table 4.1, and taking the inertias relative to 05, the inertias for this
bracket, expressed in FJT’ are

+ 2m - 2mOT

Mg = Mpe Ut

Mpo(Bge ~22hpe) + 2my(g - hp =3ty )
0

cg, X (4.81)
._ 1 2 2 1 c .2 2
Ige11 = 13 MRellre T WRe) + 5 My (g HWyg) * e
_ 1 2 .2 1 2 .2 7
Ipe22 = 7 MelRe *Wae) + 5 My By o) - Molc,
2 2
* M (Bge =iy ) ™+ 2my (8, = N ~sby,)
o 2 .2 2 2 R
J81'33 T 12 mRT(KRT’*-hRT) % 6 mUT([‘UT+tU )+ mRT(gJT 2hRT)
* ZmUT(gJT Rt QKUT)
Jgr12 T Jge13 = Y2z T O
where
MRt ~ KRTWRThRT : (4.82)
I = -2m. (322 +t2 ) + 2(m, -m )&, -kt ) (4.83)
Bt Ot Ct Ut Ut 0t Rt ™"Ut : :

and the remaining variables are as given in Section 4.4.3. Once again, the
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total joint inertias are found by summing the bracket inertias from (4.81)
with the universal inertias given by (4.75).

4.4.5 Joint Springs

It should be noted that a number of spring masses appear in
the joint inertia model presented in the previous sections. These springs,
which always occur in pairs, are shown conceptually in Fig. 4.4. Two sets
of opposing springs and one set of complementary springs are found in each
rib joint. If the joint is a strut joint then only the opposing spring-
set on the mount shaft should be retained in the earlier inertia model
[i.e., Myg = Meg. = 0 in (4.66)].

The opposing springs occur in pairs to permit preloading of
the springs. This shifts the equilibrium position for the springs away
from zero, thus avoiding a potential hysteresis problem. To accomplish this
each spring of an opposing pair is mounted so that its stored energy, if
released, would generate a torque equal in magnitude to its counterpart but
in the dpposite direction. As a consequenée, each spring 'torque' just
balances the other, resulting in a preloaded pair.

The complementary spring pair is chosen to maintain an inertia
balance rather than to create a preloaded condition. As explained in
Appendix A, gravity provides the preloading torque for these springs.

4.4.6 Joint Damping

In the present design it is more likely that one might wish to
reduce damping, rather than to increase it. If, however, this does not prove
to be the case, a simple means for including additional damping in a controlled
manner does exit. (There also is the opportunity to conduct control experi-
ments for a variety of damping ratios.) It is a straightforward matter to
mount Houdaille dampers on the ends of the universal mount and cross-shafts.

A typical Houdaille damper is shown in Fig. 4.9. It consists of
a free rotational mass within a cylindrical cavity filled with viscous fluid
[Thomson, 1972]. The only dynamical coupling between the free mass and the
rotation of the shaft on which the damper is mounted is provided by the
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Figure 4.9: A Typical Houdaille Damper

90




viscosity of the fluid. The motion equations for this damper are well
known (for further details, the interested reader is referred to [Thomson,
19721).

5. CONCLUDING REMARKS

Substantial progress has been documented towards completing

the detailed design for the flexible structure DAISY. A comprehensive
dynamics model, based on a Tinear combination of individual substructural
models, has been developed. Furthermore, preliminary designs for each
substructure have been proposed and a detailed inertia model prepared.
Gravitational and aerodynamic disturbance models also have been presented
for each substructure. Upon such a foundation the major effort of iterating

to an acceptable final structural design can be built. It remains, however,
to model in detail the peripheral actuator and sensor inputs and outputs to
the model. Although straightforward in concept, the details are greatly
aided by the information provided in Section 2. Moreover, much dynamical
data can.be gleaned from the present model. For example, natural frequencies,
mode shapes, maximum deflections, accelerations and loads on the structure can
be predicted. The programning and simulations required to accomplish this
task are now actively underway within Dynacon.
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Appendix A

Spirator Spring Design Considerations

As alluded to in Chapter 3, gravity can be used to preload
the out-of-plane spirator spring at each rib root. This preload per-
mits the working range of the spring to be shifted away from zero along
the torque - vs - deflection curve (see Fig. A.1). Thus, a potential
problem, that caused by the hysteresis often associated with torque re-
versals as the spring deflection passes through zero, can be avoided.

To accomplish this, let us consider the 'dangling' rib shown in Fig. A.2.
The root spirator spring is wound countercliockwise about the pivot and
then attached to the rib, which is held securely. The rib is then re-
leased and moves clockwise, as a consequence of the spring torque, until
the torque generated by gravity equals that applied by the spring. For
the rib to be in equilibrium the angle from the vertical © = @

by

i i
o 1s given

maGcsineo = k(e -0.) (A.1)

where m is the mass of the rib, ag is the acceleration of gravity, ¢ is

the distance to the mass center from the pivot, k is the torsional spring
constant and 0, is the reference angle for the spring (i.e. the total
spring angle in the counterclockwise direction prior to releasing the rib).
This relation follows by direct substitution of o = 0> @ constant, into
the motion equation for the rib

J6+maGcﬁno—lde—or)=0 (A.2)

where J is the second moment of inertia of the rib about the pivot.

To test the stability of the equilibrium o = 6, One substi-
tutes o = 0, + 8 into (A.2), where 8 is a first-order perturbation about

eo. The resulting requirement for stability is

ma.c ose, > k A (A.3)
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Figure A.1: Typical Torque versus Angular Displacement
Characteristic for a 'Spirator Spring'
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A 'Drooping' Rib
95

Figure A.2:




Now letting the natural frequency of the out-of-plane rib vibration be
denoted by w, it follows that

1

6, = cos™H[(u” + k)/magc] (A.4)

0
which, for a uniform rod (c = £/2, J = m£2/3) and a spirator spring
(k ¥ 0), becomes

0, ¥ cos™ (204%/3a;) (A.5)
Therefore, the Tower the natural frequency the smaller the angle 6g> and
the larger the droop angle 6 = (n/2) - % (see Fig. A.2). It must be
ensured, of course, that the chosen droop angle exceeds the anticipated
half-amplitude of the rib vibration (i.e.|6| > |a]). In other words, the
first-order perturbation of primary interest here is the oscillation of
the rib about 0,

Relation (A.5) is most useful as a design tool for estimating
the final equilibrium postion for each of DAISY's ribs. A better value
for % then can be determined from (A.4) once the actual rib inertias |
(see Section 4.2) and spirator spring stiffnesses are known.

The remaining spirator rib springs, the spirator strut springs
and the linear strut springs also are preloaded, but not by gravity. In-
stead they occur in opposing pairs in which each spring of the pair gener-
ates a torque or force equal in magnitude but opposite in direction to the
other member of the pair. Hence the 'forces' balance and there is a static
equilibrium with energy stored in each spring.
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Appendix B

Caiculation of Rib Hydrodynamic Matrices

In what follows, it will be assumed that rib j and Fr. are

J
as shown in Fig. 4.2. Futhermore, from Section 2.2.3, recall that the
absolute displacement of an arbitrary point in rib j can be written (to
first order) in the form

_ X
. (r.st) =w (t) - vl o (t) +a. (r, ,t) (8.1)
J J J J J J J :
where
A
AL (r.st) 5w (r.)g. (t) (B.2)
rj rj rj j rj
_ X
¥, (r5) = -ry (B.3)
J J
S_Y‘(t) - (B.4)
J
Hence the velocity of an arbitrary point in rib j is
_ o X .
Up (L ot) =W, - ryp (6, + %) (B.5)
J J J J J

The individual velocity components given by this expression play a key
role in determining the rib hydrodynamic matrices.

B.1 Inertial-Resistance Matrices

As stated in Section 3.2.2, it is assumed that, for the pur-
poses of modeling aerodynamic disturbances, rib j can be approximated by
an "infinite' cylinder. Thus for an ideal fluid, the appropriate velocity
potential is '

a

r.
_ J :
¢rj = —ﬁ—(ulcosx + U,sina) (B.6)
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where, as shown in Fig. B.1, Uy and u, are the Xq and Xo components of the
fluid flow at some arbitrary point, given by the polar coordinates (R, A),
and a.. is the radius of the rib. Thus the bracketed quantity in (B.6) is
the f1ﬂid velocity component normal to the surface of the rib. It should
be noted that the potential given by (B.6) assumes that the fluid is at
rest at infinity. Furthermore, fluid flow along the symmetry axis of the
rib is not permitted. This is consistent with the earlier arguments (re-
call Section 3.2.2) that inertial — resistance forces should be negligible
in this direction.

For a rib oriented as shown in Fig. 4.2, Xq and Xs become

y.. and z_ , and thus
rj rj
a
Y.

_J :
2 (uycosA + uzs1nA) (B.7)

1l

d)Y'.
N

where from (B.5)

Uy = Wy, x(eZ +a.) - z(6, + &X) (B.8)
u,=w, - x(8, + &y) + y(éX +a) (B.9)

given
Lrj =x y z' (B.10)

expressed in F . . Also, the normal to the rib's surface, n, has the

components J
- el
n. = [0 cosx sin] (B.11)
J
where
cosx = y/R _ (B.12)
sinx = z/R (B.13)
RZ = x2 + y? (B.14)
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Hence (B.7) can be rewritten in the form

. TiX 4X X =
r 6 +.r_].ly\._;l‘_r_r_y\_g_j)

J3odd J 33
with the knowledge, from Section 3.2.2, that

1= 0 off
j

Finally, recalling equation (3.9), namely,

the following relations become obvious:

ay
gT - _d T
=, R —rj
J
2y
T J T X X X
3 =-—5-n, 10 1.
_erj R Y‘j Y‘j Y‘j Y‘j
ay
T J T X ;X
&g - 01,1
=4, R rj Y‘j rJ
J
On surface S, , R = a, and (B.18) through (B.20) become
J J
T T T T.X ;X 2X
& =a.n 3 3 =nl 1. r
=W, rj =0 rj Y‘j rJ
J J
T T X (X
£, =-a.n 1.1
—qY,j rj rj Y‘j r;

where
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COSA sinA]T

by (3.8), namely,

T T
M =pf n, g ds 5 p =pf n, g Yy, dS
—Wj %.%w% r; 4% Srrf%j% v
‘ J J
SRe, = pf Lp Dy §£ Sp o5 Hpp T pf re 1, g; Ly Oy
J Sp 3 Ty d ] Sp, 33 vy 3 I
J J
X T T T

J = pf ron g dS. 5 M = pf y.on £ ¥ dS
—Rrj S, r; rJ~erj rs —RRrJ s.. s rj—qu Ty

J J

given

~

where 0 < A < 2rand 0 < x < £, (&, fis the Tength of the rib, £

J

r. .
Kr_/arj >> 1), the following inértia1gresistance hydrodynamic matrices
- 2 .
result (mrj = pﬂarjﬂrj).
0 0 0 0 0 0
ST R I S 0 b
0 . P olo am e Yo
J NI
0 0 0 0 0 0 ]
QRrj = |0 0 '%mrjer ’ ERrj =10 "§mrj£§jl 0 5
0 %mﬁzw 0 _O 0 ?mwzwi
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0 0 0 0 0 0
_ 1 3 _ 1 3
gRrj =10 '5"%j£rj 0 s ooMpppe, = | 0 Fmt 0
1 3 1 3
0 0 =m 0 0 =m_ £
Lr. 30
3 3y | i ryry |

These are the matrices cited for rib j in Table 3.2 of Section 3.2.2.

B.2 Viscous-Resistance Matrices

A very detailed derivation of the viscous-resistance
hydrodynamic matrices for a variety of shapes is provided by [Brenner, 1974]
and the references cited therein. Rather than repeat the derivation for an
"infinite' rigid cylinder here, the interested reader is referred to the
above papers. The extension of Brenner's results to the case of a flexible
rib, however, deserves further comment. From (B.5), we know that the
‘elastic' coordinates a behave the same as the rigid rotations ¢, , as far
as deterhining the velocity of an arbitrary point in the rib is co%cerned.
(This is true because the flexibility associated with each rib of DAISY is
all Tocalized in torsional spirator springs located at the rib root.)
Therefore, .in terms of the normal stress components associated with éj and

6, >
.—Y‘_
J

Na. (B.26)
J r

For a detailed discussion of the exact form of the stress tensor the reader

is referred to [Sincarsin and Hughes, 1983]. Here it is sufficient to

recognize only that (B.26) is true. Then given (3.12), it immediately

follows that

—Vr,

H = —uf rx.ﬂa ds_ = -uf rﬁ Ner.dsr = J (B.27)
J S j S J 3 3 J
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T
M = —uf vy'N dS. = —u‘( r" N, dS,. =g
—\/Vr. — . . - .—0r. . .
V Y‘J SY‘ "‘OLJ Y‘J Sr Y'J Y'J Y‘J —VY'J
J J

Also, from [Sincarsin and Hughes, 1983], it is known that

T _
Qv‘"“fﬂedsa
Whence
Bvr, © '“f N, .8, = —“f Nop 85y, = gir
J Sp. Sp. d J
J J

(B.28)

(B.29)

(B.20)

Thus, for DAISY, no extra computations are required to obtain the viscous-

resistance hydrodynamic matrices associated with the elastic motion of rib j.
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