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SUMMARY 

A detailed model is developed for the dynamics of the flexible 

structure DAISY. Motion equations are first written for the various sub-

structures comprised by DAISY and then these are combined to obtain an 

overall dynamics model. A similar procedure is used to derive gravita-

tional and aerodynamic disturbance models and a detailed inertia model. 

Preliminary detailed designs for each substructure also are presented. 

(iii) 
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1. 	INTRODUCTION 

This report describes the progress made towards completing 

the detailed design of a facility to study the control of flexible 

space structures. The conceptual design for this facility has already 

been described in an earlier report [Sincarsin, 1983]; however, since 

the present discussion requires a knowledge of the former, a brief re-

view is in order. 

1.1 	Review of Conceptual Design  

It is conceived that the control facility will consist of 

a highly flexible structure, called DAISY, and a group of primary and 

secondary actuators and sensors, so arranged as to make achievable the 

objectives of the control facility development program. In brief, 

these objectives are as follows: 

• The primary objective is to study the stabilization and control 

of structurally flexible communications satellites. 

• Fundamental concepts in the control of flexible space structures 

must be investigated and evaluated. 

• 'Hands-on' experience must be developed with realistic sensors, 

actuators, structures, and control electronics. 

• Control approaches must be developed that are especially adapted 

to the unusual and challenging requirements of large flexible 

space structures. 

• The results of this research must be of direct relevance to the 

attitude control of the next generation of Canadian communications 

satellites. 

It is believed that the structure shown in Fig. 1.1 will 

satisfy the requirements for the control facility. DAISY is approxi-

mately 3m in diameter and consists of a central rigid hub to which are 

attached 2n (n odd) 'flexible' ribs. Initially all the rib flexibility 

is to be localized in the form of spirator springs at the rib-hub inter- 

1 



3 m  

\ 

0000" 	..ne-------Connecting Struts 
( rigid /flexible) 

7 

2n Ribs 
(rigid/flexible) 

DAISY 
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face. The ribs are interconnected at their tips via 'flexible' struts. 

Again, the strut flexibility is localized, as will be seen later in this 

report. The rib attachments to the hub are adjustable and, in fact, for 

a horizontal mounting, DAISY's ribs 'droop' under gravity. It is also 

intended to have the rib attachments designed so that ribs can be inter-

changed. This permits both geometric and material asymmetries to be in-

troduced by removing certain ribs or replacing a given rib with one made 

of a different material. Another advantage of the chosen structure is 

that it is easily discretized into individual substructures, a character-

istic that will be exploited in Section 2. 

The primary sensors chosen for the control facility are digi-

tal encoders and accelerometers. The digital encoders, three to measure 

angular displacement ànd three (Itachometers') to measure angular rate, 

are located at the hub gimbal (see Fig. 1.2). The accelerometers, on 

the other hand, are to be mounted on the ribs. The secondary sensors, 

located on the periphery, are linear variable differential transformers. 

Future possibilities for sensors include gyros and an optical relative-

displaceMent measurement system. 

The primary actuators are three reaction wheels located in 

the hub, and the secondary actuators are solenoid drivers loca .eed on the 

periphery of DAISY (see Fig. 1.2). The former are intended to control 

DAISY, while the latter will provide known 'external' disturbances. In 

the future, proof-mass actuators may be placed on the ribs and the rib 

root adjustment may be automated, using brushless DC motors. 

A diagram of the proposed mounting for DAISY and the various 

sensor and actuator locations is given in Fig. 1.2. A horizontal mounting 

(with DAISY suspended from below) is chosen to enable the mass center to 

correspond with the gimbal pivot point. This removes the possibility of 

a pendulous mode for the structure under gravity. It is notable that the 

ribs are shown 'drooping' in the figure, for just this reason. The sup-

port structure is isolated in the sense that electronic filtering will be 

requjred to remove high-frequency background noise. The gimbal is intended 

eventually to possess three degrees of freedom, but for the present it is 

restricted not to rotate about the hub symmetry axis. Every attempt will 

3 
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be made to keep the gimbal mount a 'universal' mount suitable for use with 

a variety of structures, not just with DAISY. 

1.2 	Report Outline  

This report consists of three major sections. The first, 

Section 2, presents a detailed dynamics model for DAISY. The basic tech-

nique is first to formulate equations of motion for the individual sub-

structures and then to combine these equations to obtain the overall 

motion equations. In this regard, Section 2 parallels very closely the 

presentation given by [Hughes, 1981]. The major differences are these: 

(i) for DAISY the geometric constraint equations are more complicated, 

and (ii) the multiplicity of individual substructures necessitates the 

use of indicial notation. 

Section 3, the second major section, deals with disturbance 

models. Both gravitational and aerodynamic disturbances are modeled for 

each substructure. The aerodynamic disturbances are inertial air resis-

tance and viscous drag. the general theory behind these models is elab-

. orated upon in [Sincarsin and Hughes, 1983], with results specific for 

DAISY being the aim of Section 3. 

The third and final major section, Section 4, describes the 

preliminary detailed designs for each substructure and presents an inertia 

model for each. This is required before the equations derived in Section 

2 can be applied to assess structural dynamical characteristics. Some 

comments on spring placement and design also are included in this section, 

as is a brief discussion of one potential damper and its most likely loca-

tion. 

2. 	DYNAMICS MODEL FOR DAISY 

In this section a detailed dynamics model for the DAISY struc-

ture (shown in Fig. 1.1) is presented in its most general form. The motion  

equations for the overall structure are derived in terms of the motion 

equations for the individual substructures comprised by DAISY. 

5 
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2.1 	Basic Considerations  

Prior to obtaining motion equations for each substructure, 

it is necessary to specify in some detail the generic model assumed for 

DAISY. For example, the flexibility of each substructure must be estab-

lished. 	Also, the reference frames and attachment points assumed for 

the various substructures must be identified, as must the forces and 

torques acting upon these substructures. Finally, the overall inertia 

distribution must be determined. These topics are discussed in detail 

in what follows. 

2.1.1 	DAISY»Substructures  

The morphology assumed for DAISY is depicted in Fig. 2.1. 

It is assumed to consist of 2m + 1 substructures, where m = 2n, n > 3 

and n odd, is the number of ribs and the number of struts. Since these 

substructures are repeated components it is necessary to consider only 

a typical rib and a typical strut. Hence, the substructures of interest 

are as follows: 

Hub, 	symbol 	Rh  , 	Rigid 

	

Rib . 	symbol 	Er.' 	Elastic j , 

	

Strut. 	symbol 	Es' 	Elastic J' 

The connection points between the various substructures {Or. ,Os  ,Oc. , j = 

1,... ,m} are also shown in Fig. 2.1. The motion equations J 	J 
 

will ultimately be written with respect to Oh , an arbitrary reference 

point in the hub. 

2.1.2 	Reference Frames  

A total of 2(m + 1) reference frames are required to formulate 

the dynamics model: 2m + 1 explicit frames and one implicit inertial 

frame, Fr  It is not necessary to consider individually each rib frame 

F
r
i 

 and each strut frame F s 
; only a typical frame need be considered 

in each case. The remaining reference frame of interest is the hub frame, 



WWÇ 

Figure 2.1: 	Daisy Morphology 

Rigid 

Flexible 
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F
h' 

The origin of F 	is the point 0
r 
 ; similarly, the origins of Fs ' 

ri 	
. 

F h  and F 1  are Oc  , Oh  and 0,, as shown in Fig. 2.2. 
. 

Each substructure is assigned its own reference frame so 

that the motion equations of that structure can be written independently 

of the remaining substructures. It is convenient, therefore, to express 

absolute displacements (i.e., those relative to F 1 ) in local reference 

frames. To be specific, the following symbols indicate absolute trans-

lational displacements: 

Mil 	- translation of oh' 
expressed in F

h 

w  
r. 	

- translation of 0
r' 

 expressed in F
r. - 	 .j  

J 	J 
w 	- translation of o

s.
, expressed in F

s. -s. 
J 	J 	J 

w 	- translation of 0
c

, expressed in 
j+1 	

F
s. -cj+1 	 J 

Furthermore,the absolute angular displacements are as follows: 

e
-h 

- rotation of F
h 
 about 0

h ' 
expressed in F

h 

e 	- rotation of 
Fr. 

about()
r.

, expressed in F
r. -r. 

J 	J 	J 	J 
0 	- rotation of F

s. 	
J 

abouto
s.

, expressed in F
s. --s i  

	

J 	 J 

These absolute displacements are not assumed to be necessarily small; 

however, their first and second time derivatives (i.e. the absolute 

velocities and accelerations) are assumed to be first-order infini-

tesimals. 

2.1.3 	Rotation Matrices  

Here we adopt the notation C 
Pq 
 for a rotation matrix that , 

-- 
transforms the components of a vector expressed in F

q 
 into the com- 

ponents of the same vector expressed in F . Since the absolute rota- 
!) 

tions assumed herein are not small, the rotation matrices between the 

various substructures of DAISY need not represent small rotations; 

however, any changes to the rotation matrices caused by deformations 

8 



Hi 

I  

HI 
1 

Figure 2.2: 	A Typical Rib-Strut Pair 



and 

(C a ) x  = C axC _pq_ (2. 2) 

of DAISY are first-order infinitesimals. This fact, coupled with the 

realization that every rotation matrix in the motion equations occurs 

multiplied by a first-order system coordinate, implies that any change 

in C
Pq 
 will result in second-order terms - to be neglected in the 

linear analysis presented here. Hence, any change in C 	can be ignored 
--Pq 

from the outset and the relationships between the various reference 

frames established as though DAISY were rigid. 

Two useful relationships are the identities 

C = C C 
-pq -pb-bq 

( 2 . 1) 

where F
b 

is some intermediate reference frame and a is any 3 x1 matrix 

expressed in F 
c! 

 . These relations will prove very useful during the cleri-

vation à• the final motion equations. It is noteworthy that sinèe any 

change in C
Pq 
 can be ignored, the ques.tion as to whether a is expressed 

- 
in an undeformed F or in a deformed F is inconsequential. 

2.1.4 	Attachment-Point Vectors  

Let the vector attaching the point 0 to 0 be r . Further- 
P 	q 	÷ pq 

more, let the components of this vector, denoted r 	be expressed in F.  
P 

Then, from Fig. 2.2, it follows that: 

= r 	+ C 	 (2.3) 
-r.c. 	-f.S.  

j j+1 	J J 	J J J JA- 1 

rC 	r 	 (2.4) 

	

= 
17hr + . 	-fir. -r.c. 

- J 	J 	J J J 

r 	= r 	+ C 	r 
-fis. 	-hr. 	

(2:5) 
 

J 	J 	J  33  

= r 	+ C 	r 	+ C 	r 	(2.6) 
-11c

j+1 	
-hr. 	-hr.-r.c. 	

= r 
. 

J J 3+1 	
-hsj 	

J J J+1 

10 



(2.7) 

(2.8) 

Again, these relations will play a key role in formulating the final 

motion equations. 

2.1.5 	Forces and Torques  

In order to formulate the motion equations for the indivi-

dual substructures, it is helpful to draw a free-body diagram for the 

substructure in question. Figure 2.3 shows such diagrams for Er.  and 

Es  . A partial free-body diagram for Rh  is also shown. Two types of 

force (and torque) are evident — internal interaction forces that act 

as external forces applied to the substructures, and truly external 

forces, which remain after the individual substructural models have 

been combined. Discussion of the types of external force experienced 

by DAISY is left until Section 2.3.4. 

As shown in Fig. 2.3, the internal force from substructure 

q on substructure p is denoted f>pq • Simlarly, the torque on substructure 

p from Substructure q is g . Since these are internal interaction 
-->pq 

forces and torques, they occur in equal and opposite pairs: 

f  pq = -f  qp ÷ 

= - 9 4101 	4-cip 

Here we choose to express f and 	in F , whence 4-pq 	4pq 

f 	= -C 	f 	• 	Ihr. = -4 1 2  .h —hr. 	—hri—rj h ' ri  rj  

= -C 

J J 	JJ JJ  
2r.s. =  

J J 	Ji Ji 
(2.9) 

J 3-1 
= r,s. —s. ,r.' 	2r.s 

j-1 
= -C 

—r .s
1 

 • —gs
j - 1 
• r . 

j 3 - 	j 

j 3+1 
= -C 

--s.r. —r• 	s.' 
J 3+1 3+1 j 

= -C 	g.r  
j+1 	 'j+1 - j 

1 1 
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1 

Of course, these relations can be written in reverse by application of 

the identity C-1  = C 
—Pq 

The notation adopted here to represent external forces and 

torques also is highlighted in Fig. 2.3. Simply, the external force 

acting on substructure p is denoted by f '  with components expressed in 
÷10 

F
. 

The external torque about the point 0 for this same substructure 
P 
is given by q , where the components of g also are expressed in F . 

,p 
Therefore, to summa - ize: 

f 	- external force on R
h 

expressed in F
h 

f 	- external force on E
r
,expressed in F

r —r. 	 . 	.  

f 	- external force on Es , expressed in F
s —sj  

- external torque on Rh  , expressed in Fh 

 - external torque on E
rj
,expressed in Fr. 

us  - external torque on E
sj
,expressed in F, 

Given the above definitions, (2.9), and the geometry from Section 

2.1.4, it is possible, by combining the system of forces and torques on the 

individual substructures, to define the total force and torque (about oh ) 

acting on DAISY. The total force, expressed in Fh , is 

f 
= 4 
 + 	(C 	f 	+ C 	f) 	 (2.10) 

— 	. 
j=1 	j j 	J J 

while the total torque about Oh , also expressed in Fh , is 

.9_41  = 	[(ç_h   
j=1 	J J 	J 	J J 

(-Çfis gs 	rix,s .P.fis fs )1 	
(2.11) 

j 

It only remains to consider the inertia distribution for DAISY, before 

the motion equations for the individual substructures can be formulated. 

12 



2.1.6 	Inertia Distribution  

We denote the masses of the individual substructures as 

follows: 

m
h 

- mass of R
h 

m
r. 

- mass of E
r. 

m
s. 

- mass of E
s. 

The total mass is 

m = m
h  + 
	(mr  +m ) . 	

j 	
s • 

j=1  

Also, let the first moments of inertia (frdm) for the individual sub-

structures be given by 

(2. 12) 

ÇAI  -firstinertiamomentof.about 0h' 
expressed in F

h 
Rh , 

c 	- first inertia moment of E
r 
 , about 0

r 
expressed in F

r. —r. 	 i  
J 	 J 	J 

c 	- first inertia moment of E
s 

,about 0
s? 

expressed in 

J 	

F
s. —s • 	

j J 	 J 

Then the first moment of inertia of DAISY about 0
h' 

expressed in F
h' 

is 

= 	+ 	[(mr 	+ 	) + 	+ çh, _ÇL, )1 	(2.13) , j 	j-"j   

Finally, denoting the second moment of inertia matrix for each substructure 

as follows 

1241  - moment-of-inertia matrix for Rh  , about oh  , expressed in F h  

J 	- moment-of-inertia matrix forE
r.

, about 0
r.

, expressed in F
r. —r. 

J 	 J 	J 	J 

J 	- moment-of-inertia matrix for E
s,

, about o
s 

, expressed in F
s —si 	

J 	j 	j 

the second moment of inertia matrix for DAISY, about 0
h' 

expressed in F
h' 

13 



takes the form 

• 
J = J + 	[(C 	J C 	- C 	c

x 
C 	r

x 
j=1  

x x 
- r

x 
C 	c

x 
C 

-fir. 	mr 	r 
JJJ 	J 	J 	j 

,( 	 x 	hrii( 
s
i  

x x 
rhs 5-hs 	.h 	ms.rhs rhs )] 
JJJJ 	J 	j 	j 

(2.14) 

This expression and (2.13) follow from the repeated use of the parallel-

axis theorems governing moments of inertia, as described by [Hughes, 1980]. 

2.2 	Motion Equations for Substructures  

The motion equations for each substructure specified in Sec-

tion 2.1.1 can now be written. Here the equations are presented in a 

general format so that they will remain valid despite any changes in the 

design of the various substructures. The only restrictions are that the 

overall geometry for DAISY be that shown in Fig. 2.1 and that the degrees 

of freedom assumed for each substructure do not change. These will be 

elaborated upon in what follows. 

2.2.1 	Motion Equations for the Hub  

As stated in Section 2.1.1, the hub is assumed rigid. Thus 

the absolute displacement (to first order) anywhere in the hub (located 

by 4 relative to oh ) is given by 

= w (t) - je (t) 
--h --h 

where d is expressed in F
h 
and w and e are defined in Section 2.1.2. 

The motion equations governing these six rigid degrees of freedom are 

well known: 

(2.15) 

14 



x- mw-ce=f+îf h—h 	—h —h j=1 —hrj 1 
(2.16) 

x- 
cw +Jo =_g_h+ 	+ rh

r. —hr 
f 	) 

j=1 hrj 	. 
J 	J 

(2.17) 

1 
1 
1 
1 
1 

d (r ,t) = w (t) - rx  0 	+ à (r 	t) 
-f. -f. 	—r. 	—r.—r.  

J 	J 	J J 	J 1 
(2.18) 

à
e 
 (rr  ,t) =  —. —.  

(2,19) 

1 
1 

(2.20) Ar (r,t) = 	4(r)qk (t) 

1 
1 

1 
1 

It should be noted that the torque equation (2.17) is written about oh , 

and that both (2.16) and (2.17) are expressed in Fh . 

2.2.2 	Motion Equations for a Typical Rib  

For the present analysis each rib is itself rigid; however, 

the spirator springs at the hub-rib interface (recall Fig. 1.1) necessi-

tates the treatment of each rib as an elastic body. Nine degrees of 

freedom are associated with each rib — six absolute displacements, wr.  

and e 	and three relative rotations about 0r  , a.. These relative —r. 	 . 

rotations activate the springs at the rib root. 

The absolute displacement at any point within the rib (r 
—ri  

measured relative to or. ) is in general given by 

1 
where in the present context the deflection from elasticity A (r, ,t) —ri  

is just 

Furthermore, as is common practice, we shall assume that Ar (r,t) can be 

expressed as a superposition of shape functions 1/21 (r),12 (r),...1 accord-

ing to 

where  q(t) is the generalized coordinate associated with the shape func-

tion 1, k (r). Then, defining the rectangular matrix 

15 



• • 2.(t) = [q 1  (2.23) 

1 (1) = [11 (1) . 2 (1) 	•..1, 

(2.20) can be written in the form 

_r (r,t) = Y(r)s(t) 

(2.21) 

(2.22) 

where 

Therefore, for each rib, 

Y (r ) E -rx • qr . 1  MJ 
J 	J 

(2.34) 

Given these facts, the linear and angular momentum matrices (P 	and 

H ) associated with the elastic deflections of the rib can be determined: 

P = f Y 	dm E -Cx 

	

—r. 	r. 	. 

	

J 	
rj 

H 	= 	rx  Y dm E J r. 
J J 

(2.35) 

(2.36) 

Also, the mass matrix M 	and the generalized forces iu  can be written 

explicitly: 

M = f Y
T

Y dm E J 

	

—r.—r. 	r. 

	

J J 	J 

T = f 	E 2 

	

-f. —r. -f. 	r. 	r. 
J J 	J 

(2.37) 

(2.38) 

A distributed force per unit volume fr (r,t) has been assumed in (2.38). 

This is consistent with the type of external forces anticipated to be 

significant for DAISY — gravitational and aerodynamic forces (see Sections 

2.3.4 and 2.3.5). In any case, should a different force model be required 

16 



1 

1 
1 
1 

1 
1 
1 

1 
1 

(e.g., point forces), the modification of (2.38) is a straightforward 

matter. 

Now recalling the free-body diagram of Fig. 2.3, and summing 

the applied forces and torques, the motion equations for a typical rib, 

expressed in Fri , are 

- 	
- 	

- 

m w 	-c
x

e 	+Pa. .f 	+f 	+ f 	+ f 	(2.39) r.--r. 	--r. 	-r. 	--(1.--3 	-r. 	—T'
j
h 	-r

j
s
j 	

-r.s. 
j-1 

, 	- x 
+ r

x 
 f cw +u0 +HŒ. 2e.  +2 

rh 
+ 2 

 . 	-r.s4- r.s 
J J 	J J 	

risi 	JJ ji 

(2.40) 
+ g 	+ rx f 

r.s. 	-r.c.- r.s. j j-1 J-1 

	

T - 	- 	- 	+ rx 

	

Pw 	+ T
H 0 	+Ma. 	a. 	'-'.. 	.(1_ + g 

	

----ct•-r 	
+K 

—f.S
f
.—r.s 

J J 	J J 	J 	J 	J  
• 

+ r
x 
 f 

•
+ _g 

r • s • 	-r • c •-r . s 
3 j-1 	J J j j-1 

(2.41) 

The torque equation (2.40) is written about or. . To permit a variety of 

rib designs without requiring substantial modifications to the final dyna-

mics equations for DAISY, P , H 	, M 	and .44  are retained in their -ai  	-ai  

most general forms in (2.39) through (2.41). However, for the present rib 

design (see Section 3.2), these matrices are given by (2.35) through (2.38). 

K 	is the stiffness matrix associated with a.. 
-a 

2.2.3 	Motion Equations for a Typical Strut  

As for the ribs, each strut is elastic only because of the pre-

sence of springs in its design. Of the eight degrees of freedom possessed 

by each strut, two are associated with elastic (spring) displacements. They 

aredellotedbY(Sand.The first is a linear displacement along the line Yj. 

1 

1 



(2.43) 

(2.44) 

(2.45) 

joining the strut connection points 0s and0cj+1.  That 
is, 6 is the 

magnitude of the displacement along the unit vector 

„ 
r 	= r 	fe = 1 

j j+1 	j j+1 	j 	J 
(2.42) 

where t.s• is the magnitude of r c jj. 
The second elastic displacement, 

—s 
J 	+1 

y., is a rotation about the 1 	direction. The remaining six degrees of 
J 	—s. 

J 
freedom are the absolute displacements w, and 0, defined in Section 

--3 i 	--3i  
2.1.2. 

Given the cited degrees of freedom, the absolute displacement 

for any point in the strut is 

= w (t) - rx  0 (t) + A 
s 	

(r 	,t) 
J 	J 	J J 	J 	J 

where r 	is measured relative to os 
and d 	is expressed in 

. 
	

. 	
Fs. . 

.J 
Furthermore, 

A (r ,t) =  
j 	j 

whence 

-r
x 
 1 Y (r ) E [1 

	

-S • -S • 	-S • 	-S • --S
] 

 • 
J 	J 	J J 

gsj  1 • Yi  (2.46) 

Therefore, conducting the integrations implied by (2.35) through (2.38) 

with Ir. imp -laced by  s,  it follows that 
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—
H  
--6. 

H 
H
s. = — P  

—s.
=  

—6. 

—YJ 

J J 

J  
--s .-

1  
s • 

_ J  J_  

m 1 
s 
J J 

-cx 1
sJ 

—s .— • 
J  _ 

..n••n 

(2.47) 

J J 

rm„ . 	m 
Sy. 

11 yS. 

	ni 
YYj 

1T cx  ms. 	—s .
J

—s .--s
1 
 • 

J 	J 

L -1T 
 X1 
	1

T
J 1 	I 

—s .--s .—s • 
J J J 	J J 

M
5 
 = 

—. 

ré5. 

J
= 

ri f 
J 

r 

yi  

As before, in order to keep the final dynamics model for DAISY as 

general as possible, these matrices will not be implemented explicitly 

in the Motion equations for the strut. 

Once again, referring to the free-body diagrams depicted in 

Figure 2.3, and summing the applied forces and torques, the motion equ- 

tions for a typical strut, expressed in F
s

, are 

J  

— — 	

— 	

— 

M W 	— c
x 
 6 	+P  S. + P y. = f 	+f 	+ f 

	

s • —s • 	—s • —s 	—S • j 	—y.  j 	—S • 	—s .r. 	—s .r. 

	

J J 	J i 	J 	J 	J j+1 

x 	- 
c w 	+ J 	+ 	+ 6 	H 6, 	H y. = 	+ g 	+ g_ 

—s •—s 	--cS • j 	—y • j 	. r . 	.r. 
J J 	J 	 J J 	j j+1 

+ rx 
—s.r. 

j 3+1 j j+1 

(2.48) 

(2.49) 

T 	- 
P w 	+ HT  o 	+ m 	6. + m 	y. 	k 	+ k 	y. 
--S .—s 	--S .—s 	cS 	y • j 	j 	cS • j 

J 	J 	
Yj 

(2.50) 

= 	+ 1
T 

f 
S, 	—S.— 	. s i rj+ , 

to be consistent with (2.51). 
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.. T - 	T - 	- 
P w 	+He 	+m, 6. +m 	y. +k 	S., +k 	y. 
—y 

J 
 .--s • 	—y • s . 	Yo• J 	YY

J 
 . J 	Y 6 - J 	YY. J 

J 	J J 	J 	J 	J 

= 6 + 1T  9 
• —s• s.r. Yj 	

J J 3+1 

(2.51) 

Here the torque equation (2.49) is taken about os  . Also, it should be 

noted that the strut stiffness matrix K has been partitioned in a manner 
—si  

analogous to M . 
—s i  

2.2.4 	A Comment on Subscripts  

To avoid notational difficulties when either rib "1" (j = 1) 

or strut "m" (j = m) appears in a summation, the following definitions 

are assumed: 

A 	à 	A 
• r 	- f 	

a 	- a 	a 	- 
—s 

m+1 	1 	—sm+1 	1 	—cm+1 —c l 

(2.52) 
à 	A 	A • 

5 —f 	—S 	 — 
0 

—fm 	
0 

—Sm 
	Co 	Cm 

 

Here a is any matrix quantity appearing in the motion equations for rib 1 

or strut m. These definitions permit a summation over j = 1,...,m without 

the need to treat rib 1 or strut m as special cases, at least until the 

final mass and stiffness matrices are assembled. 

2.3 	Motion Equations for DAISY  

The motion equations presented in Section 2.1 for the hub, a 

typical rib and a typical strut can now be combined to produce a set of 

motion equations for the dynamics of DAISY. The technique involves forming 

a number of appropriate linear combinations of the substructure motion . 

equations, after the imposition of several geometric constraints. 

2.3.1 	Geometric Constraints  

In order that the free-body diagrams of Fig. 2.3 can be combined 

into the single structure shown in Fig. 2.2, a number of geometric constraints 
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= C 	0 
—r. —r.h—h 

(2.54) 

must be satisfied. To be specific, it is necessary that, at the point o
rj 

(2.53) w = C 
—rh(w 

 - r
x 	

1 
—r. 	. —11 	. —hrj—h 

At the point o
sj

, 

w 	= C 	[w 	- r
x 	

(0 	+ a.)] 	(2.55) 
—r.s. -r. 

J J 	J J 	J 

6 	= C 	(6 	+ a.) - 1 X  1X  12.• 	(2.56) 
—s•

J 
 —sr  • —r . 	—j 	—s .—s 
 J J 	J 	J J 

Last, at the point 0, 	, 
'1+1 

= w 	- r 	6 	+ 1 6 
-C 	-S. 	-S.C. -S. 	-S 	

(2.57) 

j+ 1 	J 	J J+1 J 	• J  

0 	= 0 
.si 
	— 
+ 1

sj 
 y. 	 (2.58) 

—cj+1  

The angles e denote three rigid rotations about os 
of strut s relative 

—j 

to rib r. (expressed in F
s 

). We know, however, that an elastic rotational 

degree of freedom y. has been included in the strut model. Hence, to per-

mit DAISY a full range of motions (in-plane, out-of-plane and twist), only 

two rigid rotations are actually required at os  , namely, those perpendi- 

j 
cular to 1 . To elaborate, using the identity 

—s j  

1 E 1 1
T - l x  l x  

	

—s .—s • 	—s .__s 	
(2.59) 

	

J J 	j j 

where 1 is the identity matrix, p can be separated into components parallel 
—j 

and perpendicular to 1 : —s j  
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5. = 5. 	+ 5. 	= 1 .--j  (1.5.) _ 
ix ix 

-s-J 
J j 

(2.60) 

Now, since y. is used to represent any rotation about the 1 	direction, -s. 

only 5. need be incorporated into the angular constraint at 0s. . 

Fethemore,therotationsrepresentedby. Uare not inde- 

pendent degrees of freedom. They are linear combinations of the relative 

rotations a
r 
 at the rib roots or . To demonstrate this fact, we begin 

-. 	.  

by writing the constraints at 0 	relative to rib j+1 rather than rela- ci+1  

tive to strut j. Simply, from Fig. 2.2, it follows that 

= C 	[w 	- r
x 

-s.r. 	. 	-r. c. 	Cp.r. 	
+ 	)] -r j+1 j+1 	rj+1 

= 	2-'- 
C 

-cj+ 1 	---sjrj+1ej+i 	
j+1 ) 	lx  

(2.61) 

(2.62) 

where 4 is defined analgous to 5i , but about oc  instead of about os  . 

Now,replacer.by in (2.53) and (2.54) and substitute.the resulting ri+1  

equations into (2.61) and (2.62). Then given the attachment point vector 

definitions of Section 2.1.4, one obtains 

(2.63) - 	941)
j
r
j+1

rr
j+1

cj+1L'j+1 —s 	---ri 	—flc
j+1 —ci+1 

o = C 	+ c 	
x x 

-ci+1 	-s.r . 2j+1 ls 4 ±* J J+1 	j j J 
(2.64) 

Also, by direct substitution of (2.53) and (2.54) into (2.55) and (2.56), 

it can be shown that 

w 	= C 	(w - rx  0 ) - C 	rx 	a. 
--s. 	-s.h 	-s.r.-r.s 

JJ Jj 

6 	= C 	+ Cl
x i x 

J J 	J J 

(2.65) 

(2.66) 
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Whence, from (2.57) and (2.58), 

w 	C 	(w - 	0 ) - C 	a. = 
j+1 	

-s
j
h --h 	-fic

j+1
-h 	-s.r.-r.c. 

J J J J+1 

+ r 	1
X 

1
X 

5. + 1 s  6. -s • c . -s .-s --j 	-- 
J J+1 J j 

0 	=C 	0 +C 	a. - 1 X 1X 5. +1 
-c

j+1 
-s

j
h --h 	-s.-s -j  

J J 	J 

As a consequence, equating (2.63) and (2.67) gives 

1 6 + 	1
X 

1
X 
5 = C 	a. 

J J+1 J j 	J J J 3+1 

II - C 	rx 	a. 
-s

j
r
j

1 

II Now recàlling that 
. 

II 	
Z 1 	= r 

-s.c. 
J J 	j j+1 

II and noting from (2.59) that 

x x x _ 
1 1 1 	- 	uL 	- 1) = - 1 x  

-s --s .-s 	- 

(2.69) becomes 

1 6 	1
x e. 	c 	rx  

—s 	
- 	=

. j 	s. —s 	-s.r.-r.c. -92'j j
r
j+1j+1

c
j+1

2-j+1 
J 	J J J J+1  

Therefore, forming the cross-product of 1 	with (2.72), that is 
-s 

1
x 

(2.72), the desired relationship for 5. results: 
-sj  

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 
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13. 	= - 1
X 

1
X 

f3. 
-S--s--i 
J J 

(2.73) 

= 1
T 

(C 
j 	

- C 	) a 
-s -s .r --j+1  

j 	J J 1- 1 	J J 

(2.75) 

To summarize, the required geometric constraints are, at the. 

24 

point 0
r.

, I  

1 

1 1x /, 	r
x 

rx 

 S. 	j 

 

	

-s. 	
j 	j 

C
j+1 	

-. -j  
j 

Furthermore, by forming the dot product of ls  with (2.72), namely 

1
T 

(2.72), we obtain the interesting relation 
-s. 

rx 	r
x 

6. = 	-  
j 	-s • -s.r .-r .c • -j 	--s .r • -r • c • 

J 	JJJJ+1 	j j+1 j+1 j+1 

The implication, not unexpectedly, is that 6. also is not an independent 

degree of freedom. Similarly, by forming the dot product of Is  with 

the equation obtained by equating (2.64) and (2.68), it can be shown 

that y. also is a dependent degree of freedom: 

(2.74) 

Equation (2.73) also plays a key role in obtaining this result. It should 

be noted that the defining relationship for p,  namely, 

= - 1
X 

1
X 

±. 
-s .-s J 

J 

1 	x 
= 1

x 
. - 
[(Cs + 	1 C 	rx  

-s.r. 
j j+1 	• 	JJJ1 sj  

(2.76) 

r
x 

	

-s.r. 	-s•-s•r•-r.c• 

	

JJ 	sj 	J 	JJ 	JJ-1- 1 

can be found by taking the cross-product of 1 	with the same equation as -ss 

that used to obtain (2.75). 



with 

r
x 

r
X 

CS. = 	-  

J 
 

333J -1- 1 

(2.81) 

w 	= C 	(w - r
x 

e ) 
-r. 

	

	.1h --h  rj  

6 	= C 	6 
-r.h-fi 

and, at the point Os  , 

w 	= C 	(w - rx  0 ) 	r r 	a. 
-s j h -fi 	-fis.-h  

JJ JJ 

(2.77) 

(2.78) 

(2.79) 

, 	1 	1 X n  
= C 	(C  

-S, 	-s .r .  
jj 	s. 	j jj jj+1 

(2.80) 

1 ,x 
C 

-s .-s • r • -r-r . c 	• +1 
• 	3+1 3+1 j+1 	• 

and 

. = 

	

y 	1
T 

(C 	a. 	-  

	

j 	-s. -s.r. --j+1 
J 	J J+1 	J J 

(2.82) 

Given the findings of this section, it is timely to review the various 

degrees of freedom prior to formulating the motion equations for DAISY. 

2.3.2 	Degrees of Freedom  

Let us begin by summarizing the degrees of freedom associated 

with each substructure. From Section 2.1.1, we know that the hub has six 

rigid degrees of freedom - three translational (w ) and three rotational 
-fi 

(4). A typical rib, on the other hand, has nine degrees of freedom, six 

rigid - three translational (w ) and three rotational(e
r 
 ) - and three 

-. 

elastic - the relative rotations (a.) at the rib root. Finally, a typical 
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(2.83) 

C 	I (2.51) - r
x 	

C 	1 (2.50) 
-r •s 	-r .c . -r .s .-s 
J J j 	J .1+1 J J j 

(cont'd next page) 

strut has eight degrees of freedom, six rigid - three translational (w.s  ) 

and three rotational (0 ) - and two elastic - the linear displacement --s. 

along 1 	(â.) and the rotation about 1 	(y.). However, based on the 
-si 	j 	 -s • 	j 

previous section, only the following degrees of freedom are independent: 

Here m is the number of ribs (and struts) in DAISY. This represents a 

total of 6 + 3m degrees of freedom, six of them rigid and 3m of them 

elastic. 

Now, based on the substructure motion equations presented in 

Sections 2.2.1 through 2.2.3, the total number of aVailable scalar equations 

is 6 + 17m. At present, there are 14m equations too many. These extra 

equations will vanish, as will the inter-structure constraint forces, when 

an appropriate set of 6 + 3m linear combinations of the substructure equa-

tions (with the 14 geometric constraints (2.77) through (2.82) inserted) 

are taken. 

2.3.3 	Linear Combinations of Substructure Equations  

In the following, it will be assumed that (2.77) through (2.82) 

have already been substituted into (2.16), (2.17), (2.39), (2.40), (2.41), 

(2.48), (2.49), (2.50) and (2.51). Now, form the following linear combina-

tions: 

(2.16) +Lçhr  (2.39) + 	' (2.48)] 
j=1 "  

6 : 	 (2.17) + 	Uç-hr (2 ' 4°) 	filr (2 ' 39)  -41 	j=1 	j 

fils  ( 2. 4 9 ) + ri(ls  fils  (2 .48 )] 

a.: 	(2.41)  +C 	(2.49) + rX 	C 	(2.48) 
-J J J 	Jj Jj 
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+ C 	1 	(2 51 
) j--1 	rx 	c  

—r.s. —s. 	• 	
1 	(2 50) j-1  

J  3 -1 j-1 	
--r •c .œr •s • —s • 	' 

j j j j-1 j-1 

1 	x C 	1
x (2.49) 

• 	J J+1 J J J s j  

1 	x 

J- 1 

The notation ( ) j-1  implies that j is replaced by j - 1 in the respective 

equation. The degrees of freedom associated with each resultant motion 

equation are given in the left margin. 

This procedure yields the final set of motion equations for 

DAISY. In matrix format, they are 

Mq  + Çg..1 = Bu b  + 

where 

= 	 (2.85) 

ub  = coll«grisi,ge2s2,--'9-rmsm'2rismq-r2s,' 

Ur3s2 	
mm-1 

 

= 	 (2.87)  

and M, K and 8 are partitioned as shown in Tables 2.1, 2.3 and 2.5. 

The expressions for the partitioned elements of M, K and 8 are given in. 

Tables 2.2, 2.4 and 2.6. Also, the expression for gu  used in (2.87) is • 

cited in Table 2.7. 

While the mass (M) and stiffness (K) matrices given in Tables 

2.1 and 2.3 are complete, the input matrix (8) must be augmented to in-

clude the inputs from the actuators listed in Section 1. This is part of 

(2.84) 

(2.86) 
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m 	M 	M 	M 	M 	M 	x 	x 	M 	M 
—WW 	—WO —Ma l  —Wa 2  —Wa 3  —Wa4 	 —Wa 

r11-1 	' m  

M 	M 	M 	M 	M 	x 	x 	M 	M 
—00 	—0a, --Oa 2  —0a 3  —0a4  

--e%-1 	
—0a 

IT1 

M 	M 	0 	0• 	- 	0 	M 

—ha ]. —OE 1 a2 	— 	
_ • 	 _ 

—a rm 

M 	M 	0 	• 	• 	0 0 _ 	_ 
—a2(1 2 —ar3 	— 

M 	M 	. 	. 	• 
—043a3  —« 3a4  

— Ct irt4 

0 	0 

0 
—a

m-2
a
m-1 

—OEm-Cm-1 

—a a 
m m 

(symmetric) 

Table 2.1  

Partitioning t  of the Mass Matrix, M 

tsee Table 2.2 for individual elements 

x 	a series of nonzero elements 

. 	a series of zero elements 
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Table 2.2  

Expressions for Partitioned Elements in M 

= 1 m 
-ww 

= -c
x  

—W6 

= C, (P 	- m rx 	) 

	

-fir. a • 	s .-r .s. 
J 	J 	J J J 

+ C 	[(P 1
T 	-1- cx 1 x )C 	r

x 
-hs 	•-s 	--s •-s • -s • r .-r • c • 

Ji 	JJJJJ3+ 1  

- ( P 1 T  + cx  )C 	] 

_ i _s i J J 

ÇAis 	[( f-S 	-12-s )-C-s 	r 	c . 

	

s i-1 	j 

- P 	1
T 	

C 	] 

M 	= J -190 	— 

n••nn 

M 	= C H + rx C 	P 	- m r
x C rx  

. 	-Air .-a . 	-hr.-hr. 	s.-bs.-hr.-r.s 

	

J J 	JJJ 	JJJJi 

+ rx C 	[(P 1T 	-1-- c
x 1x )C 	rx 

	

-iis .--hs 	-6 .-s 	.e,  
Ji 	Ji 	s-JiJJJJ+ 1  

J 

—y .—S • 	—s —s .r• 
J J  

[Eg' n cont ' d next page] 

t
Here jE(1,...,m), provided that the following definitions are noted: 

for j = 1,  j-1  A m and for j = m, j + 1 	1. 
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- r
x 	 T 	1 

—hs 	---hs • 	[(13-6 	 c
x 	

1
x 	

)C 
es

3
-1 	 —si_lri—rrici 

—Y  • 1—s • 1—s  lr  J- 	J - 	J -  J 

1 
+ 	[ (H 1

T 	
+ —,) J 1

x 
)C 	r

x 

	

—ris • —6 •--s • 	--s •—s . —s r .—r • c • 
J 	 JJ J 	s • 	J 	JJ JJ +1 

, 
- (H 1

T 
- J )C 	- c C 	r

x 

	

— y--s  . 	—5
a 
 —s .r• 	—s.--s.r•—r.s• 

	

J J 	a 3 	J JJ JJ 

1 	
r

x 
- [ 	

T 	
J 	l

x 	
)C 

	

sj-1 	 s
j-1 

- H 	1
T

C 
—y • —S • —S • r • 

3-1 3-1 3-1 a 

=M 	C 	J C
x 	x 

- m r 	r 
—r • s •—s •—s • r . 	s •—r • s .—r • s • 

JJ J JJ 	J JJ JJ 

+ r
x 

r
x 

	

( 	J 1 	- 1 m 	1
T 

)C 

	

—r • c • — r • s • 	—s 	.—s . 	—s • (SS •—s . —s • r •—r • c • 

	

JJ+133 	JJJ 	J 	J J 	JJ JJ +1 

+C 	1 m 	iT 
—r • S 4-$ yy .--s _s r 

 JJJ 	 i 

 
+ r, C, 	 - 	

T 
 

j--ri ci  

1 	m 	1
T 	

C + C 
 • s • 	. 	y y . --s 	--s 	r  
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1 

(symmetric) x K 	0 
— 

K 

—a a 
mm  

1 

1 

1 

1 

1 

1 

1 
1 

Table 2.3  

Partitioning t  of the Stiffness Matrix, K 

o 	o 	o 	o 	o 	 • 	 0 	0 • 

K 	K 	0 	0 	• 	• 	0 	K 

—c4 1(1 1 --c'1 (1 2 	— 	
_ 

— —œ lam 

0 	• 	0 	0 

2c4  2 —°2a3 

—«3a3 —u3a4 

• • • 

—u4a4 

0 	0 

.n1.n 

tsee Table 2.4 for individual elements 

x a series of nonzero elements 

• a series of zero elements 

1 

1 
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Table 2.4  

Expressions for Partitioned Elements in K 

(see Table 2.3) 

= K 
—ai ai  

- (C 	1 k 	+ r
x 	

C 	1 k 	)1
T

C 	r
x 

-r • s .-s (Sy . 	-r • c • -r • s .--s (SS -s .--s • r .-r .c. 
J J 	J 	J 3+1 JJ 	JJJJ J+1 

+ (C_ , 1 k 	+ rx 	C„ 1, k, )1
T 

C 

YY ‘i 	 L'YJ 
. 

J J J 

-  + r 	C 	1 	k 	)1
T 	

C 	rx  
Sy • 	-r•c•-r•s. -s. 	SS 	—S 	—S 	r.-r.c. 

j j-1 j-1 	j-1  

+ (C 	1 	k 	+ r
.x

c 	1 	le6 

	

)1

T 	

C 

-r.s 	-s 	yy . 
j j-1 j-1 	j-1 	r3 c3 r3 s 3 -l-s j-1  

rx = 	(C 	lia  + rx 	1 k 	)1
T 

C 
--(1•(:( • 	-r .s .-s • Sy • 	-r.c. -r .s .-s ss • -s •-s •r • -r • c • 

j j+1 	JJJ 	J 	j j+1 jj j 	j 	j j+1 j+1 j+1 

- (C 	1 k 	+ rx  

33 3  JJJ331- 1 

t
Here jE(1,...,m), provided that the following definitions are noted: 

for j = 1, j - 1 à m and for j = m,  j+1  à 1. 
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Table 2.5  

Partitioning t  of the Input Matrix, 8 

. 0 	0 	0 	° 	0 	0 	0 	0 	0 	0 	0 	• 	. 0 	 0 

- 0 	0 	0 	• 	0 	0 	0 	0 	0 	0 	0 	• 	• 	0 	 0 
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1
s
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1
s
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_ 	—• 	_ 	_ 
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t
see Table 2.6 for individual elements 

x a series of nonzero elements 

- 	a series of zero elements 



Table 2.6  

Expressions for Partitioned Elements in 13 

(see Table 2.5) 

1 	x 
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Table 2.7  

Expression for Elements in the Disturbance Vector ud  

[see equation (2.87)] 
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-a. 	-r.S. "S.  
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f  
-Gi = 

-a
G 
 m.0

I 
 R. 

-i -1 
(3:1) 

the ongoing detailed-design procedure. It is noteworthy that for the 

present DAISY design, no torque exists about 0
s 

and 0
c 

, in directions 

perpendicular to 1, . Hence, the product Bu b , where B and ul_b  are given 

by Table 2.5 and Equation (2.86), vanishes. 

A number of other system matrices must still be specified — 

a damping matrix V, a gyroscopic matrix G, an output matrix P, a measure-

ment matrix C, a regulation cost matrix g, and a control cost matrix R. 

However, a great deal of information can be gleaned from (2.84) in its 

present form, provided that the values for the various matrices associ-

ated with each substructure are known. This subject is dealt with in 

Section 4. 

3. 	DISTURBANCE MODELS 

In this section, two sources of environmental disturbance 

important to the dynamics of DAISY are modeled. They are gravitational 

and aerodynamic forces and torques. 

3.1 	Gravitational Disturbances  

Earth's gravity plays a key role in the design of DAISY. As 

explained in Appendix A, the preload in the out-of-plane spirator spring 

at each rib root is governed by gravitational forces. In fact, provided 

DAISY remains motionless, this spring balances the gravitational torque 

about the rib root. However, once DAISY is set in motion (via external 

excitation) gravitational disturbing forces and torques will arise. In 

an attempt to predict these disturbances a gravitational force and torque 

model is assumed for each substructure. Simply, neglecting the finite 

size of each structure relative to the radius of Earth, the gravitational 

force acting on body i Efh,r.,s.}, expressed in F i  (recall Fig. 2.2), is 
J J 

Here a
G 

(= 9.8 m/s) is the acceleration of gravity at Earth's surface, m. 

is the mass of body i, C iI  is the rotation matrix that transforms frame F 1  
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into frame F., and R. is the unit vector from the mass center of Earth to 

Oi . R i  is expressed in F 1 , where F 1  is taken to have its origin at Earth's 

mass center. Furthermore, it is assumed that the hub frame F h  and F
I 

are 

related via the first order rotation matrix 

1 	6
3 	-e2 

Ç 	= 	-03 	1 	e 1  

62 	
-6

1 	1  

(3.2) 

where the order for the hub rotation angles 6 = 	02  0 3
) is 0

1 
about 

xh , followed by 6 2  about yh  and finally 6 3  about zh . 

To be consistent with the decision to neglect the finite size 

of each substructure relative to Earth's radius, it is also assumed that 

. A 

R = R = R 	R 
— —h 	—r. 	--s . 

Whence 

f  
G1 

. = -a G  m.C. R 
-  

where 

î3- = 	= [0 2 -6 1 -1}T  

(3. 3) 

(3.4.) 

(3.5) 

That is, z h  (the hub axis perpendicular to the X-Y plane shown in Fig. 1.1) 

is aligned with -R when DAISY is motionless. It also is assumed that the 

x h  and y h  axes of Fh  are aligned with the x 1  and y 1  axes of F 1  initially. 

In other words, the nominal rest state for DAISY is eh  E 0. 

Now, given (3.3), the torque caused by gravity about F i , ex-

pressed in oi , takes the form 

x 
= a 	 (3.6) - c. 

-b .' 	G
C

-1 —ih
R 

  — 

where c. is the first moment of inertia of body i. Also, recalling (2.38) 
-1 

and (2.47), the generalized 'elastic' gravitational forces and torques 
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acting on each rib and strut can be determined. These are summarized 

in Table 3.1, along with hi  and for each substructure described 

in Section 2.1.1. 

3.2 	Aerodynamic Disturbances  

The details of the aerodynamic disturbance models assumed 

for DAISY are described in [Sincarsin and Hughes, 1983]. As a conse-

quence, only a brief summary of the two models is presented here. The 

first considers a flexible body i immersed in an incompressible fric-

tionless fluid (a high Reynolds number model). The inertial resistance 

of the fluid to the translational, rotational and 'elastic' accelera-

tions of the body takes the form 

_ _ 	
c
T 	______•• 

f 	 M 	P 	w. 
-Ri 	-Ri 	-Ri 	-1 

.. 
= - 	c 

ZRi 	-Ri 	
J 
-Ri 	p1-Ri 	

0. 
-I 

f 	pT 	HT 	m 	
.. 

9... -Ri -Ri 	-Ri 	-RRi 	1 

where 

Mn. = 
S.  

P = —Ri 	Pf n•C
T 

•11  .
'
ds 

S. -1 -q 1 -1 1  

x T 
1 

= 
S.-

1
-
1
-w
1 1 

x T 
H,. =p 

-1-1-11 -1 1 S. 
1 

x T 	T T 
J 	= pi r.n. 	.dS. 	; 	m 	. =pf 	.111.dS. 
-Ri 	 -RR1  

S. 	 S. 

= T .w. +
T .0. +

T 
1 	-W1 -1 	-01-1 	-11-1 1 

,t) = 	- 

and 
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Table 3.1  

Gravitational Force and Torque on Each Substructure  

f = - aGmR —Gh 

Rib.: f 	= - aGm r.bR 
J J 

9G r.  = - a c x C G—r.—r.b- 
J 	J J 

ha. - 
J 	J 

Strut.: f 	=-aGms—sb- CR .. 
J 	J J 

= _ ae_s  C R 
J J 

6Gd. = 4%s. 

= 

Hub: 



f 
-V1 

g • 
-V1 

f . 

Here f
Ri'  g 
	and f,. are the inertial resistance force, torque and 

— 	—Ri 	—to 
generalized 'elastic' force acting at some arbitrarily chosen point oi  

in the body. and me, Ri  are hydrodynamic inertia matrices, 

and P and H are hydrodynamic momentum matrices. The absolute dis- -Ri  
placement of a point on the surface S i  of body i is given by d i , where 

r.ismeasuredfrom.As in the previous section, w. is the absolute 01 . 

displacement of oi  relative to some inertial frame and e i  is the abso- 

e elastic displace- 01 . 

mentsof body i are represented by the product of a rectangular shape 

functionmatrixli.withasetegeneralizedcoordinatesg..The  velo- 

city  potential (p i  associated with the fluid flow (of density p) past 

body i is stated by (3.9). It is expressed as a superposition of the 

vector potentials . and . associated with each type of dis- 

placement 	
- el 	—q1  

placement in d i . Finally, n i  is the normal to the surface S i . 

A second areodynamic model, where the fluid (in this case 

air) instead is assumed viscous, is also presented in [Sincarsin and 

Hughes, 1983]. . This model, which is applicable for low Reynolds num-

bers, culminates in the following resistive forces, torques and general-

ized 'elastic' forces for body i: 

_ 
c
T 	— — • — 

m 	Emi 	w. --vi 	--vi 	—1 

= - 	C 	J 	O.  
-vi 	-vi 	Evi 	-1 

T 
H
T 

P 	M 	1 g* —vi 	—vi 	—vvi 	_ _ 

(3.11) 

where 

• M  4 = 	N 	
S

.dS. vi = -p 

= - p 	r.N .dS. 	; 	H vi = - 	f rxN dS . 	. 	. 
—1—wi 	— 	—1—qi 

S. 	 S. 

vi 
=- p fr 	

l 	; 	vvi .N .dS. 	m 	= -p 	Y.N .dS. 

	

—1—e 	— 
S. 	 S. 

(3.12) 

42 



and LI, z E {w1 ,0.,q 1 } is the portion of the normal component of the stress 

tensor at the surface of body i associated with z. Here, 4 i , 21i  and 

f . are the force, torque and generalized 'elastic' force caused by viscous 
—vi 
effects (21i  is taken about 0i ). mr_vi , 	Jvi  and /vvi  are hydrodynamic 

inertia-rate matrices, and Pvi  and Hvi  are hydrodynamic momentum-rate 

matrices. The remaining undefined symbol p is the viscocity of the fluid. 

Both (3.7) and (3.11) are expressed in F. 

In order to apply the above two aerodynamic models to DAISY, 

the hydrodynamic matrices given in (3.8) and (3.12) must be determined for 

each substructure cited in Section 2.1.1. 

3.2.1 	Hub Hydrodynamic Matrices  

Since the hub is a rigid substructure, only m 	c and 1
z' 

zE{Rh,Vh}, need to be specified. We choose to model the hub as a thin disk 

parallel to the xh-yh  plane (where Fh  is as shown in Fig. 4.1), centered 

about the z
h 

axis, a distance 1/2h above 0
h' 
 where h is the height of the 

„ 
hub. This model is reasonable provided that -eh  » 1/2, where Zh,s(=a h/h h ) is 

the ratio of the hub radius a h  to the hub height. For DAISY, £11  = 3, hence 

this model should be adequate. If for some reason this does not prove to 

be the case, the much more complicated hydrodynamic matrices for an oblate 

spheroid can be used. A disk is the limiting case for this quadric. 

Rather than belabor the details of the integrations cited in 

(3.8) and (3.12), a sample calculation for a typical rib is given instead, 

in Appendix B. The hub hydrodynamic matrices are simply stated here with-

out proof (see Tables 3.2 and 3.3). For further details, the interested 

reader should consult [Lamb, 1945], [Milne and Thomson, 1955] and [Brenner, 

1974]. 

The form of the matrices provided in Tables 3.2 and 3.3 is 

chosen to highlight the matrix components parallel to (denoted by the sub-

script  U ) and perpendicular to (denoted by the subscript_L) the symmetry' 

axis 1., ic{h,r.,s.}, for each substructure. This axis, expressed in  
—1 	J J 

also is specified in the tables. The final hydrodynamic matrices are ex-

pressed relative to op  instead of relative to the substructure's geometric 
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J
R 11 h 	

0 
16 	5 

J
UL') 

= —
145 

pa
h 

Table 3.2  

Inertial-Resistance Rydrodynamic Matrices  

Formulas: 

ie{h,r,s1 

x x m 	= 1.1.m 	- 1.1.m -Ri 	R II i 	Rli 

c 	= 	c 1. -Ri 	-1 Ri 

x x 
J 	= 1.1.J 	- 1.1.J -Ri -1-1 R i 	-1-1 Rii 

= [o 	o 	1] 
—h 

8 3 mR II h = —

3 

p a
h 	mR_Lh = 0 

Hub: 

cRh = 

Rib j: 

1-rj = [1 	0 	0] T 

0 	,2 p 

r = . 	mRir. =  p ar . 'r. 
J 	J 

(cont'd) 
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1 	 2 
J

R II r . 
= 0 	

JR_Lr 
= —

3 
m

'Ur "er . 
J J 

c
RrJ. 

= —
2 

m
Rix 

J J 

P 	= -C 	 J 
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H 
Rr . 
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—Rr 

= j  
—Rm  Rr . —Rr . 

Strut j: 
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--s . 

m
R II s 
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J J 

	

= —1 	 2 
m = 0 

jR s 	 Ris . 	3 	is . s . 
J J 

1 

C RS  . 
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2 
mRis 	. 

J J 

P 	= 0 	H 
 Rs .
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—RRs 	— 



= 4we
r / (£112.e. 	= 8up,e

r
/ (£.112.e. 	- m

\Mr. 	r - . 	2 	 vir . 	 r . 	2 

1 

1 

(conte d) 

Table 3.3  

Viscous-Resistance Hydrodynamic Matrices  

Formulas: 

ie{h,rs
j

} 

x x 
m . = 1.1.m 	. - 1.1.m 	. —vi 	-1-1 

c . = 
—V1 	—1 V1 

J 	= 1.1.J 	- 1.1.M . 
vHi 	vj3 

1 = [0 0 	U
T 

-h 

32  
m

v I th 
= 16 p a

h 	
m
vih 

= —
3

p a
h 

32 	3 

	

jvIlh 
= —

3 
 p a

h 	
J 	= J 	+—m h

2 
vih 	vIlh 	Vih h 

1 
C  h =h h v.. 	2 VI 

Hub: 

Rib j: 

1r . = [1 	0 	M
T 

-  = 	/a 
r.  

J 	J 
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p 
 vr = -C . j  

H 	= J —vr. 	—vr. 

= [O 	1 	0] —si  = s 	s. 	s • 
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ur.  
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 m vr. 	2 vir. r. 

J J 
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--vvr. 

=
—vr. 
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mv  H s  = 47111.e s . /(£112t. 	- -
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(cont'd) 
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center. Hence extensive use has been made of the parallel-axis theorems 

cited in [Sincarsin and Hughes, 1983]. 

It should be noted that, for a disk immersed in an ideal 

fluid and subjected to either longitudinal translations (i.e. in the 

xh- or yh - directions) or a rotation about its perpendicular (z h  in the 

present  case), the  resultant flow has no velocity component perpendicular 

to the surface of the disk. The flow simply slips tangentially across 

the disk's surface. For a viscous fluid this is no longer the case, a 

fact reflected by the disappearance of several zero entries between the 

inertial resistance and viscous-resistance hydrodynamic matrices for the 

disk. 

3.2.2 	Rib Hydrodynamic Matrices  

Unlike the hub, each rib is modeled as a 'flexible', rather 

than a rigid, substructure. Thus the entire complement of hydrodynamic 

matricesmcJpHandm 	z= nr.,Vr.l, must be specified. 
—z' 	—z' 	—zz' 	J 	J 

To deterfiline these matrices, the rib is modeled by an 'infinite' cylinder. 

A typical rib is shown in Fig. 4.2. The assumed rib frame, F, also is 

shown in that figure. 

As previously mentioned, the detailed derivation of the 

hydrodynamic matrices for ribj is relegated to Appendix B. Here only the 

results of that process are summarized (see Tables 3.2 and 3.3). Again, 

the components parallel to, and perpendicular to, the symmetry axis l r  

are highlighted in the form of the final matrices. 

In a manner analogous to that for the hub, certain motions of 

rib j result in no normal velocity component to the surface, for a rib 

immersed in an ideal fluid. For F
r- 

as shown in Fig. 4.2, these motions 

are translations along the x
rj -direction 

and rotations about the x
r 

-axis. 
i 

For a finite cylinder moving along x
rj

, this is not strictly true. However, 

since the rib is a thin open-ended tube the inertial resistance in this 

direction should be negligible. As before, these statements do not apply 
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for viscous fluids, hence the extra nonzero entries in the viscous-

resistance hydrodynamic matrices for rib j. 

3.2.3 	Strut Hydrodynamic Matrices  

Strut j (see Fig. 4.3) is geometrically similar to rib j; 

thus an 'infinite' cylinder model also is used to determine the strut 

hydrodynamic matrices. Again, since the strut is a 'flexible' sub-

structure, all the matrices defined by (3.8) and (3.12) must be deter-

mined. The exact procedure is analogous to that given in Appendix B, 

except that the 'elastic' displacements for rib j (c) and their cor-

responding shape functions (-r),,<, ) are replaced by those for strut j 

( [ S 	y.]
T 

and [1 i 	-r
x 1 ]). The resulting hydrodynamic matrices, 

—s —s —s 

expressed in Fs  (recall Fig. 4.3) are shown in Tables 3.2 and 3.3. 

Once again, the matrix components along the symmetry axis 1, and in 

the cross-axis directions are emphasized. 

Since an infinite-cylinder model is used for bot.h rib j 

and strut j, it follows that comments similar to those for the motion 

of rib j, when immersed in an ideal fluid, will also apply to strut j. 

The only difference is that F is oriented with y along the strut's 
s j 	sj  

symmetry axis, while Frj is oriented with x r
j 
 along the rib's symmetry 

axis. Hence translations along the y5  -directionand rotations about 

the y -axis yield no velocity component normal to the surface of strut j. 

In fact, since the end of each strut is essentially blocked by a rib, the 

assumption that the inertial resistance in the direction of the symmetry 

axis is negligible is even more valid for strut j. However, once viscosity 

is included, a substantial resistance results in the ys  direction, not be- 

cause of 'end effects', but because of tangential viscous forces acting . 

along the length of the strut. The result, as for the hub and rib, is the 

appearance of several nonzero elements in the viscous-resistance matriçes, 

that are zero in the corresponding inertial-resistance matrices. 
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-9-i = 9-Ei 	91i 

--Ii  i 	h 	(3.16) 

(3.15) 

3.3 	Total Disturbing Forces and Torques  

It is useful at this juncture to summarize the total ex-

ternal environmental disturbance acting on each substructure of DAISY. 

This permits one major component of the external disturbance vector u.d  

(recall 2.87) to be identified. That is, Itc, can be written as the sum 

of two components, as follows: 

u = u 	+ u (3.13) 

where u 	denotes external environmental disturbances and u 	represents -dE 
known external 'input' disturbances. 'Input' disturbances means those 

11 
disturbances introduced during control studies and used to define the 

initial uncontrolled state, or as adversaries during the performance 

verification of a particular control strategy. 

To accomplish the separation implied in (3.13) it is neces-

sary to write the total external force and torque on each substructure in 

a similar form (iE{h,r.,s.}): 
J J 

11 	+ f -1 - --Ei 	 (3.14) 

Then, given the information in the previous two sections, the following 

definitions apply: 

11 

• 	9-Ei = 	gRi 	Ivi 

Also, for rib j, 

= 9Eri  

f. = f 	+ f 	+f. 
-£1 	-G1 	-R1 	--vi (3. 17) 

(3.18) 

(3.19) 
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and, for strut j 

6 Es. = 	. 	. isjlEsj  
i T 

4 Ey. = 	. 
J sJ 

(3.20) 

The exact forms for f 11 , 	. andgi are still to be determined. They, -- 
of course, will depend greatly on the exact locations and directions of 

action of the peripherial actuators for DAISY, the sources for the 'in-

put' disturbances. 

4. 	SUBSTRUCTURE INERTIA MODELS 

To further complete the motion equations provided in Sec-

tion 2, a detailed set of inertia models for the various substructures 

is required. Since the 'elastic' mass and the momentum matrices as-

sociated with a typical rib [recall (2.35) - (2.37)] and a typical strut 

[recall (2.47)] are functions of the rigid inertias of 'each respective 

structure, it is necessary only to specify the mass m i , the first moment 

of inertia c., and the second moment of inertia J. about 0 '  expressed 

in F , . for each substructure ic{h,r.,s.}. In the following, the align- 1 	- 	J 	J 
ment drillan for F. and the components of the attachment point vectors 

forthevarious.1  0's (recall Section 2.1.4) also will be given. 	• 

Let eachsubstructureiconsisten.components. Futher- 

more assume that in each component k there is some reference point o k , 

located relative to O. by 
—1 

 r. k  that acts as the origin for a 
reference 

' 
frame Fk' Hence Fk and F. are related by the rotation matrix C. . Then 

denoting the mass, first moment of inertia and second moment of inertia 

of k about 0k' expressed in F k' by m
k'-I< 

and
k' 

respectively, the 

inertias of substructure i are given by 

n. 

mi = 	mk k=1 

n i  

c i = 	(mgik çik-ÇO k=1 

(4.1) 

(4:2) 
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n. 
x,  

= k 
	

,x 
J * 	(fik4fici 

=1 

X X 
- r. C. c

x
C . - m r. r. ) 

k-ik—lk 
(4.3) 

Rather than write (4.1) through (4.3) explicitly for each substructure, 

only rik , Cik, and the individual component inertias will be provided in 

what follows. 

4.1 	Inertia Model for the Hub  

As stated in Section 2.1.1, the hub is assumed to be rigid. 

To be more specific, it is assumed that the hub consists of five basic 

components: a bottom cover plate, a central cylinder, a top cover plate, 

a group of reaction wheels (3) and a set of rib mounts (m = the number of 

ribs). Hence for the hub (i= h), n
h 

= 6 	m, where the above components 

aredenotedbyk=(B,C,T,RX,RY,RZandMr.), respectively. A diagram 

highlighting the various hub components is given in Fig. 4.1. 

4.1.1 	Bottom Cover Plate  

The bottom cover plate is a solid circular disk of uniform 

density. The local reference frame F s , with origin 0B  at the geometric 

center of the plate, is taken to be aligned with Fh . The physical para-

meters of interest are the disk radius aB , height h B , and density p B . 

Given these quantities the inertias for the bottom cover plate, relative 

to 0B  and expressed in FB , are 

2 
m
B 

= p
BB

h
B 

c = 0 
--B — 

= 1 	= 1 m (Q 2  4. 1, 2 \ 
BII 	'B22 	12 n'B"uB 	"B i  

1 	2 
J  
B33 = m B a B 

= 	0 
3B12 = j B13 	jB23 =  

(4.4) 
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ru  = [o o Ilh B ] T  (4. 5) 

C 	= 1 
— 

(4. 6) 

Also, the location of 0B 
relative to 0

h 
and the rotation matrix relating 

F
B 

to F
h 

are 

These relations imply that Oh  is located at the center of the lower sur-

face of the bottom cover plate. Furthermore, Fh  is chosen such that 

the x h -yh  plane coincides with this surface and z h  is the downward facing 

normal. The directions of x h  and yh  are fixed by choosing x h  to lie along 

one of the rib axes, as shown in Fig. 1.1. 

4.1.2 	Central Cylinder  

The central portion of the hub is modeled by a thick-walled 

cylinder (necessary to accept the bolt-on cover plates) of uniform density. 

The cavtty within the hub created by this component is used to hold the 

reaction wheels. Here the local reference frame F
c 

has its origin at the 

cylinder's geometric center and it is aligned with Fh . The geometric center 

is chosen; rather than the mass center, because creating holes to accept the 

rib joints, or any other such removal of mass, will shift the center of mass, 

but leave the geometric center unchanged. 

The physical parameters required to determine the inertias of 

the central cylinder are: the outer radius of the cylinder, a c ; the wall 

thickness, tc ; the cylinder height, h c ; the density, p c ; and the inertias 

associated with the mass removed to permit the rib joint to interface with 

the hub (see Fig. 4.4 and Section 4.4). In fact, these 'hole' inertias are 

more easily dealt with as part of the rib-mount inertias and therefore they 

are included in the section that considers the rib mounts. Hence the inertias 

for the central cylinder, relative to 0
c 

and expressed in F
c' 

are 
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(4. 9) 

(4.10) 

2 	2 
J
C11 

= J
C22 = 17

-111
c
(3a2 

C 
+ 3b

C 
+ h

C
) 

J 	= 	m (a
2 

+ b
2

) 
C33 	2 C C 	C 

0 
j C12 =  jC13 =  JC23 

where 

b = a - t 
C 	C 	C 

(4.7) 

(4.8) 

Here the location of 0 relative to 0
h 
and the rotation matrix relating 

F to F
h 

are given by 

rhc = [ o  O 	(h B ,1/2h c
) ]

T 

C 	= 1 
—1-1C 	— 

This completes the inertia model for the central cylinder. 

4.1.3 	Top Cover Plate  

The top cover plate model is identical to that for the bottom 

cover plate although, to permit different dimensions and materials to be 

used in each case, the physical parameters of the two plates are not assumed 

to be the same. This is indicated by changing the subscript B in (4.4) to 

the subscript T. Also, while oT  and FT  are defined in a manner analogous to 

0B and FB' so that (4.6) still applies (with B replaced by T), the location 

of 0
T 

is given by 

rhT  = [o o (FI B + h c +1/2h T )] T 	 (4.11) 

rather than by (4.5). 
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4.1.4 	Reaction Wheels  

It is assumed that three reaction wheels are contained within 

the hub, one with its spin axis aligned along the xh -axis (RX), another with 

its spin axis aligned along the yh-axis (RY), and the last one with its spin 

axis aligned along the z h -axis (RZ). At present, the detailed design of 

these components has not been performed. Hence, from the viewpoint of ob-

taining a preliminary inertia model for the hub, only the inertia about each 

wheel's spin axis J T , TE{RX11,RY22,RZ33}, and the mass mk , ke(RX,RY,RZ1, of 

each reaction wheel are included. Furthermore, it is assumed that Ok , the 

origin of the local frame Fk , is at the mass center of each wheel, hence 

c =0. The location of each wheel's mass center relative to oh is repre- 
-k — 
sented by 

(4.12) 
rbk = [ fic n k 

while Fk is related to Fh according to 

C 	= 1 —hk — 
(4.13) 

One advantage of the component-by-component analysis of each substructure 

is that, once a more detailed component model or an undated component model 

becomes available, the entire substructure's new inertia can be computed in 

a straightforward manner via (4.1) through (4.3). One obvious application 

for this procedure is the case in point. As more detailed inertia models 

for the reaction wheels become available, the hub inertia will be recom-

puted. 

4.1.5 	Rib Joint Mounts  

It suffices to consider a typical mount, that corresponding 

to rib j, rather than the entire set of m. Each mount is, in fact, two ' 

mounts, one external to the central cylinder wall and one inside the wall 

(see Fig. 4.4). A common shaft hole is shared by both mounts and there is, 

of course, an identical hole through the wall of the central cylinder at 

the appropriate position. 
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(4.14) 

(4.15) 

A similar set of mounts exists for each strut attached to 

rib j (recall Fig. 1.1). Hence a certain commonality can be maintained 

for all mounts (and all joints). One can use identical mount and joint 

models throughout, provided appropriate subscripts are adopted. To this 

end, a general mount and joint model is provided in Section 4.4. To 

obtain the inertias corresponding to the rib j mounts on the hub, one 

simply substitutes (T, t, p) = (ri , tc , p c ) in the formulas contained 

in the mount section found therein. 

The locations of the various mounts are unique and must be 

treat individually. For the rib mount Mr. it is assumed that omr  lies 

on the center line of the mount hole at the outer surface of the central 

cylinder wall. Then 

. [a cosA. a sinA CjCj CP1r. ]  

where 

A. = 2 11 (j - 1)/m 

is measured about z h in the positive 
right-hand-sense (starting at th'e 

xh -axis) and 	is the z h-component of 0M 
 . Furthermore

' 
 F 

r. 	Mr is  .  

taken to be aligned with rh , except for the above rotation. Whence 

__. 

	

COSA. 	-sinA. 	0 

	

J 	J 

C 	 0 Sin . 	cosA. --hMr 
- . 	Aj 	

J 
J 

L 0 	O 	1 

(4.16) 

This implies that xmr.  always points radially outward along a rib and 

would be the rib centerline if the ribs did not droop under gravity. 

(Given (4.15), the ribs have been assumed equidistantly spaced around the 

circumference of the hub.) 

4.2 	Inertia Model for a Typical Rib  

Since the flexibility of each rib is localized at the rib 
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root (or, to be more specific, in the rib joint -see Section 4.4), the 

'elastic' rib inertias are all related to the rigid rib inertias. Con-

sequently the rib can be considered as a rigid body for the purposes of 

obtaining its inertia model. A typical rib consists of five main com- 

ponents, as shown for rib j in Fig. 4.2. These are: a rib joint, of 

which only the attachment bracket is shown in Fig. 4.2 (a more complete 

illustration is given in Fig. 4.4); a rib tube; an accelerometer group; 

andtwosetsofstrutmounts.Therefore,foreachribj(i=y, we 

have n
r 

= 5, where the appropriate component subscripts are k 
. 

 

rj 
R. A. 	), respectively. 
J ,  J ,  sj 

M 	and M
c  

As shown in Fig. 4.2, rib j droops through an angle 0 oj • 

relative to the horizontal (i.e., the xh  -yh  plane). The primed Fh  axes 

shown in the figure correspond to the prerotated joint axes Fu r .  given 

in Section 4.4. They are aligned with Fmr.  of the previous section; 

however, their origin 0, is offset a distance d, (defined in Section 
j 	 j  

4.4.2) in the positive x
Mr 
 (xl) direction. Thus 

. 	h j  

rhr. =[(a.-.+d r )cos Aj 	(a +dr.j  )sinA 
	] T 	(4.17) 

. 	C 	r. 

(4.18) C 	= C 
-hW  -41Mr.j  

Now as shown in Fig. 4.2, 0 	is also the origin of F . Therefore, 
rj 	 Fr 

(4.17) locates the origin for this substructure relative to 0h . The 

rotation matrix relating F
r. 

to Fh  follows from the realization that 

the rotation matrix relating  Fr.  to Fill  is 

coseo 
	

0 	-sine
oj j 

C 	= 	0 	1 	0 
-filr. 

J 
sine 	0 	cos  O 0  e oj _ 	_ 

(4.19) 
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C hr = C 	C (4.20) 

(4.21) 

(4.22) 

Whence, recalling (2.1), 

Both (4.17) and (4.20) play key roles in the dynamical equations for 

DAISY presented in Section 2. (The use of Fh. rather than Fur,  in Fig. 

4.2 was motivated by the desire for a briefer notation and to emphasize 

the relationship of Fur,  to Fh .) 

4.2.1 	Rib Joint  

Each rib joint (excluding the joint mounts) consists of a 

universal mechanism and a circular attachment bracket. Details of local 

reference frames, appropriate physical parameters, and inertias for a 

typical rib joint are discussed at length in Section 4.4. The appropriate 

variable set for this case is (T, x) = (rj' e oj ).  

Given the inertias from the above procedure, it only remains 

to note that 

0 —r 	=Jr. — 
J J 

1 —r 	=Jr. — 
J J 

which are consistent with the comments made in Section 4.2. 

4.2.2 	Rib Tube  

The rib tube is modeled as a thin-walled circular cylinder of 

uniform density. This hollow design minimizes the mass and is capable of 

accepting the accelerometer leads. Once again the local reference frame. ,. 

here denoted FR. , is chosen to have its origin oR  at the geometric center 

of the component. However, now Fri is the substructural reference frame of 

importance and thus FR  is chosen to be aligned with F r  . 
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(4.24) 

(4.25) 

r 	= [E 	+ 1-t 	0 0] 
—r.R. 	Jr. 	2  R. 
33 	J 	J 

(4.26) 

C 	1 
—r.R. =— 
33 

(4.27) 

The physical parameters necessary to establish the rib tube 

inertias are: .  the outer radius of the tube, a R. ; the wall thickness, tR. ; 

the length of the rib, t, ; the distance from 0, to the edge of the rib E i 	E i  

tube,cjr.  (from Section 4.4); the density, p R. ; and the inertias associated 

with the mass removed to permit the strut joints to interface with the rib 

(see Fig. 4.4 and Section 4.4). As before, these 'hole' inertias are most 

easily dealt with as part of the strut mount inertias and hence they will 

not be included in the inertias given below. Given the above parameters, 

the inertias for the rib tube, relative to 0R.  and expressed in FR. , are 

M 	= p 71.(a
2 

- b
2 

),e, 
R. 	R. 	R. 	R. 	R. 

	

J 	J 	J 	J 

c = 0 
—R. — 

J
1 	f  2 , k2 \ 

—R.11 
. 
7 mR.` a R. ' 'R.' 

J 	J 	J 	J 

j= 1 	f 2 „ 1k2 , 92 
R.22 	"R.33 	12 mR ‘ 3a R. ' '"R. ' 4-R.J 

• 

jj 
R.12 3 R.13 = R.23 = 0  

where 

b
R. 

= a
R. 

- t
R. 

J 	J 

t 
 R. = 
	- 

r. 	Jr. 
J 	J 

(4.23) 

Also, the location of o R  relative to Or  and the rotation matrix relating 

F
R. 

to F
r. 

are given by 
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T 

	

= [ A. nA 	A,  
J j 	J 	j 	j 

(4.28) 

It should be noted that no end cap has been assumed for the 

rib tube. There are three main reasons for this decision: less weight, 

less aerodynamic resistance, and easy access to mounts and accelerometer 

leads. 

4.2.3 	Accelerometer Group  

The accelerometer group is presently modeled by a point mass 

m . The location of this mass relative to 0r 
is represented by 

Rj 	 .  

If a more detailed accelerometer inertia model becomes necessary it can 

easily be implemented via equations (4.1) through (4.3). 

4.2.4 
s, 

Strut Joint Mounts 

As discussed in Section 4.1.5, a universal joint-mount inertia 

model is adopted for DAISY. The details of this model are presented in 

Section 4.4. Using the parameter set (T, t, p) = (s
j , t R.

,  p
R.

) in the 

equations found therein one obtains the inertias corresponding to the 

joint-mount inertias associated with the 0s3 
 strut (recall Fig. 2.1). How- 

ever, since each strut joint is oriented such that the 'Li' of the joint 

universal (see Fig. 4.4) lies in the horizontal plane (the x h -yh  plane), 

rather than being vertical like the rib joint, a transformation is required 

to redefine the inertias about the appropriate axes. The  problem is further 

complicated by the fact that different axes are assigned for the symmetry 

axis of the rib and the strut (for each rib the symmetry axis is the x-axis, 

while for each strut the symmetry axis is the y-axis). This change in axes 

simplifies the final rotation matrices and ultimately the physical inter .- . 

 pretations of DAISY's various motions; however, it complicates the trans-

formation required to realign the inertias from Section 4.4. In any case, 

the final transformation has a relatively simple form: 



T 
—s 

0 	0 	-1 

10 	0 

0 -1 	0_ 

(4.29) 

_r.ms.  = Rs. 	aR. 	0 1  
J J 

(4.31) 

whence 

mMs. 
= M

MT 

c 	= T c 
Ms j  . —s —MT — 

J 	= T J T
T 

—Ms. —s —MT —s 

(4.30) 

where the subscripted T-quantities are those from Section 4.4. 

The local reference frame for the 0 	' s 
mounts FMs ' has its . 	. 

origin located relative to o
ri 

by 

where 	is the distance to the centerline of the mount holes from or. . 

The above equation implies that oms  lies on the outer surface of the rib 

tube, on the centerline of the mount holes, which lies in the x
r.

-y
r. 

plane and is aligned with y
° FMs 

 is taken to be aligned with 
F111, 

from 
r.  

Figure 4.2. Therefore 9  

(4.32) = C 
J J 

This completes the information required for the os  mounts. 

4.2.5 o
c. 

Strut Joint Mounts 

In a manner analogous to the previous section, the joint-

mount inertias associated with the 0 	strut (recall Fig. 2.1) are obtained C. 
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= C 

J J 
(4.32c) 

by setting (T, t, p) = (c
j

, t
R.' 

p
R.

) in the formulas of Section 4.4. A 

transformation similar to (4.29) is required here also, for the same 

reasons: 

0 	0 	-1 

-1 	0 	0 

_ 
 

	

01 	0_ 

Then, 

= m  
MCi 	MT 

c. = T c. 
T —m . 	-M C 	-C i  

J 	=TJ 
T 

—Mc. —c—MT—
T
c. 

(4.32a) 

(4.32b) 

where, again, the subscripted T-quantities come from Section 4.4. 

The origin of the local reference frame for the 0c 
mounts, 

i 
 

0 	is located relative to 0r 
by the vector Mc ' 	

.j 
 

rr.cM. = [ c, -a R 	01T  
J J 

where 	is the distance to the centerline of the mount holes from or  . 

j 	 j 
That is, 0mc  lies on the outer surface of the rib tube on the centerline 

j 
of the mount holes. As for the 0

s. 
mounts, this centerline lies in the 

j 
x
r 
 -y 

	

	plane and is aligned with the yr.
-axis.  Also, the local re- 

r. j  
J 	 J 

ference frame Fmc  is taken to be aligned with Fil . Hence, 

j 	 . 

It is notable that, ideally, all the strut mounts should be located the 

65 



r 	= [. 	a 	+d 	0] 
—r.s. 	j 	R. 	s. 
33 	J 	J 

(4.33 ) 

C 	= C 
—r.Ms. 
J J 

(4.34) 

same distance from 0
r.

. Therefore, it will be assumed henceforth that 

= 
J 	J 

4.3 	Inertia Model for a Typical Strut  

Each strut has its flexibility localized in springs at the 

joints and in a pair of linear springs on the guide ram shaft (see Fig. 

4.3). As a consequence, this substructure's 'elastic' inertias, like 

those of the rib, are all related to its rigid inertias. Thus one need 

concentrate only on the latter. In this regard, five strut-component 

inertia models must be developed, one for each component shown in Fig. 

4.3. Therefore, in the notation adopted in the introduction to Section 

4, i 	sj' 
n
s 

= 5 and k = (J , E. G. S and 
Jj+1), 

 where the k sub- 
s • 	J , 	j 	c  

scripts respectively refer to the os  strut joint, the end plate, the 

guide ram (keyed not to rotate), the strut tube, and the 0, 	strut 

joint components. 	
1+1 

 

The F" frame shown in Fig. 4.3 corresponds to the prerotated 
h 

joint axes FUT  given in Section 4.4 for the os  strut joint. Again, a 

simplified notation that emphasizes the relationship of this frame to Fh  

is adopted. The xlh'-yh" plane is parallel to the xh -yh  plane, hence the 

axis is parallel to the z h  axis. Now, F  is aligned with Fms  ; however, 

Os  is offset a distance ds  (defined in Section 4.4) in the positive ymr 

 (yi ') direction. Therefore, 

Furthermore, os  is also the origin of Fs  , so that (4.33) locates the 

origin for the strut substructural frame relative to 	. The strut sub- 
ri  

structural frame F
s. 

is obtained from F" by a rotation of A about z" ' 
 where 

h 	 h 
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— 

	

cosA 	-sinK 0 

C 	= sinT 	cosi 0 
--hus

j  
0 	0 	1 

(4.36) 

or 

(4.39) = r 	+ C 	[0 Z . 
0] —r .c 	—r .s • 	—r .s 	s 

j j+1 	J J 	J J 

- Aj ) = u/M 	 (4.35) 

given (4.15). Equation (4.35) results from the geometry of a set of ribs 

equidistantly spaced around the circumference of the hub and a set of struts 

whose ends are located at the same radial distance from the z
h
-axis. More 

general relations can be proved which permit the modeling of geometric 

errors caused by manufacturing tolerances. Although not included in this 

report, an unpdated description of the inertia model will be issued should 

such be required later in the design process. 

Given (4.35), the rotation matrix relating F
sj 

to  F  is 

Hence the rotation matrix relating F
sj 

to F
rj 

is 

C 	= C 	C —r.s. 
J J 	J 

(4.37) 

This relation also holds for F, 	which is aligned with F
sj 

but has its 
'J+1 

origin 0 	given by 
cJ+1 

—r 	c . 	= 	j + 1 -(a 	+ d 	) O' T  
J+1 3+1 	

Rj4.1 
(4.38) 

instead of-by (4.33). Here ts  is the length of the strut which, given 

the assumptions used to obtain (4.35), is the same for all struts. 
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4.3.1 0
s. 

Strut Joint 

. 0 

J 

(4.41) 

This joint consists of a universal mechanism and a rectangular 

bracket (shown side-on in Fig. 4.3). As with the rib joint, the details 

governing the inertias assumed for the 0s . strut joint are provided by sub-

stituting (T, x) = (s., i\--) into the formls contained in Section 4.4. How-

ever, as explained in 4.2.4, the inertias resulting from this process must 

be subjected to a transformation analogous to that in (4.30). To be specific, 

mJs. 	mJT 

c 	= T c 
—s —MT 

J 	T J T
T 

—Js. 
=
—s —MT —s 

(4.40) 

where T is given by (4.29) and the subscripted T-quantities are those ob-
-s 

tained from Section 4.4. 

To complete the 0s  strut joint inertia model it must be noted 

that 0
Js 

coincides with 0
r. 

and that F
Js 

is aligned with  F5 .  Thus 

	

= 1 	 (4.42) 
—s.Js. 	— 
J J 

These results are required in (4.2) and (4.3). 

4.3.2 	End Plate  

The end plate of each strut j is a circular disk of uniform 

density. A hole is drilled along its symmetry axis so as to permit the . 

translational motion 6 of the keyed guide ram (see Fig. 4.3). The local 

frame F
Ei 

 is again chosen to have its origin 0E.  at the geometric center 

of the disk, and is aligned withF s
. Thus 

j 
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(4.43) 

(4.44) 

r
Js 

[0 	+ A 	+1/2h
E 	

0] 

	

E . 	. 
J J 	j 	J 

C 	= 1 
J J 

where Ljs  is the distance from or.  to the edge of the rectangular bracket 

closest to the end plate (see Section 4.4), à E  is the gap between this 

edge and the end plate and hE.  is the height of the end plate. 

The remaining physical parameters for the end plate are: 

the radius of the disk, a E. ; the radius of the hole, a m. ; and the density, 

p E. . The required inertias then become 

2 	2 
m
E. 

= p
E (a 	- Tr  

. 	E.  
JJJJJ 

c = 0 
—E• — J 

E1 	
(1u  2 4.1a  2 4_ 1 	

'
,2 

E11 	j  .22 	12 	'H. ' "E. 
J 	

E 	= 	M  j 	
J 	J 	J 	J 

m ( ,2 , 2 
.22 = 1/2  mE.''E. 	aH.' Ej 	

J 	J 	J 
0 

E.12 = J E.13 	j E.23 

(4.45) 

relative to 0E
j 
 and expressed in FE  . For the present, any difference 

between the bushing density (a bushing exists in the end-plate hole to 

assist the motion of the keyed ram) and that of the end plates is neglected. 

4.3.3 	Guide Ram  

The guide ram shown in Fig. 4.3 consists of a disk with a 

threaded center hole, into which a shaft is threaded. Even though this 

shaft is welded to the rectangular end plate, it is still considered to be 

part of the guide ram. This ability to unscrew the two components (and to 

remove the strut end plate) is necessary to be able to access and preload 

•  the shaft springs. A retainer ring is also required to force the interior 

shaft spring to maintain its compressive load against the end plate. The 

rectangular attachment bracket plays the same role for the exterior shaft 

spring. 
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Here the physical parameters of interest are: the radius of 

the disk, aG  ; the height of the disk, hG  ; the density of the disk, p G  ; 

j 	 j 	 j 
the radius of the guide shaft, a Gs  ; its length, YGs  ; and 

its density, p Gs  . 
- 

j 	j 	j 

	

One must also know the distance to the retainer ring, dRR  ; its mass, m 	: 

j 
RR - 

and the masses of the interior and exterior springs, m Is  and mEs. . Then
j  

j 	J 
the appropriate inertias are 

m
G. 

= m
GD. 

+ m
GS. 

+ m
RR. 

	

J 	J 	J 	J 

+ m 	+ m 

	

. 	ES. 

	

ISJ 	
J 

c 	= -% m 	(t 	- h ) 
G .2 	2  GS . GS . 	G . 

	

J 	 J 	J 	J 

-7. mRR. (2'GS. -A É. - d RR. ) 
 J 	J 	J 	J 

- m 	(t.' 	- A l  -1-d 	) 
IS. 	GS. 	E. 	2  RR. 

J 	J 	J 	J 

- m ES ( "eGS  - ½E)  

c
G.1 

. c
G.3 

. 0 

	

J 	J 

J 	= J 	= 	m 	(3a
2 +3

2 
G .11 	G .33 	12 GD.' G 	

a 
. 	- GS. 	"G.' 

J 	J 	J 	J 

+ -1-2-  mGS .
(3a

G
2
.G

2
S.

) 

J 	J 

+ m SGS 
- h G. )

2 
4 	G. 	.  

J 	J 	J 

+ m
RR 

(
GS 

Z I 	- A' -  d)2  . 	. 	E. 	RR. 
J 	J 	J 

+ m 	- A' -1/2c1 	) 
IS. 	GS. 	E. 	. 

J 	J 	J 	
RRJ 

• mES ( GS t.' 	-1/2A E )
2 

. 	. 	. 
J 	J 	J 

J 	= — m a
2 

-14-m 	a
2 

G.22 	2  GD. G. 	2  GS. GS. 
J J 	J 	J 

Gi 12 = j
Gj

13 
= 
 3 G.23 

= 0 

2 

(4.46) 
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r 	=[0 	+ 	o] 
J J 	sJ 

(4.47) 

C 	= 1 

J J 

(4.48) 

r 	= [0 	+h 	0] 
—s.S. 	S . 	E. 	E. 	S. 
33 	J 	J 	J 

(4.49) 

where 

m 	= p Tr(a
2 

-a
2 

)h 

	

GD. 	G. 	G. 	GS. 	G. 

	

J 	J 	J 	J 	J 

m 	= p 	Tra2 

	

GS. 	GS. GS. GS. 
J 	J 	J 

=%11 
GS. 	GS 

- . 	2 	. j 	Gj  

à l = à  

	

E. 	E. 	"E. 

	

J 	J 

and the inertias are taken relative to 0G
j 
 and expressed in FG  . Here it 

is assumed that
G. 

is at the geometric center of the guide ram disk and 

that F 	is aligned with F
s

. Thus FG 
	

. 
 

It should be noted that the self-inertias of the retainer ring and both 

shaft springs have been neglected in obtaining the above results. 

4.3.4 	Strut Tube  

The strut tube is modeled as a thin-walled circular cylinder 

of uniform density. The local reference frame F s  is taken to be aligned 

withFs

i 

 and to have its origin os  located at the geometric center of the 

tube. 

(4.50) C 	= 1 
—s .S 	— 

J J 

where 
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(4. 51) =
. 
- h

E 

	

. 	 . 

	

S 	s 	E . 	s. 	c .+ 
J 	J 	J1. 	J 	J 

and 	is the distance from 0
c. 	

to the edge of the circular attachment 
1+1 	 j+1 

bracket on the strut end nearest rib j + 1. Also, given the assumptions 

cited in the introduction to Section 4.3, ts  can be written as a function
•  

of variables that have already been discussed: 

t,. = 2[{(ac +dr  ) + yose o 
 .3  

+ (a R  +ds  )cosi] (4.52) 

The only remaining physical parameters of interest are the outer radius of 

the tube, a s  , the wall thickness, ts  , and the density, p s  . Then the 

inertias for the strut tube take the form 

2 	2 
mS. = P S. u(aS. -bS. ) "eS. 

J 	J 	JJJ 

c  S = 0 
— . — 

J 

j 	= .1 	=  
S .11 	- S .33  

J 	3 	J 	J 	J 	J 

J 	= 	m
S 
 (a

2 
+b

2 

	

% 	 S 
) 

S .22 	2 	. 	S . 	. 
J 

 

33 	j 

0 d s.12 	tls.13  = Js.23 =  

where 

b 	= a 	- t 

	

S . 	S . 	S . 

	

J 	J 

(4.53) 

(4.54) 

A lubricated lining to aid the translational motion of the guide ram is . 

also anticipated to be necessary; however, any difference between the 

density of this lining and that of the rib tube is neglected, for the pre-

sent. Also, holes may have to be drilled in the rib tube, above and below 

the displacement range of the guide-ram disk, to relieve the air pressure 

on this disk. If this should prove to be the case, then some modification 
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= 1 
-s.Jc. 	- j j+1 

(4.57) 

of (4.53) would be required. 

4.3.5 	0, 	Strut, Joint 
1+1 

Unlike the 0
s 

strut joint (recall Section 4.3.1), this joint 

employs a circular, rather than a rectangular, attachment bracket. Again 

the inertias for this joint are found by substituting (T, x) = (cj+1
, 

directly into the equations of Section 4.4 and then performing a trans-

formation to realign the inertias, so as to be consistent with the joint 

orientation adopted for the struts. In particular, 

m 	= m, J 	UT Ci ll  

C 	= T c 
-Jc

j+1 
--c-MT 

= T J T
T 

J 
--Jc

j+1 	
--c-MT c 

(4.55) 

where T -is given by(4.32a) and the quantities with the subscript T are 
-c. 

those from Section 4.4. 

To complete the 0, 	strut joint inertia model it must be 
1+1 

noted that 
0Jcj+1 

coincides with 
0cj+1 

and is located relative to 0s 
by 

Is Jc
j+1 

= [0 ts.  MT (4.56) 

and 
thatFJcj+1 

coincides with 
Fcj+1, 

 which in turn is aligned with F
s.

. 

Therefore, the necessary rotation matrix is 

This enables equations (4.2) and (4.3) to be applied for the 0cj+1 
strut - 

joint. 

4.4 	Inertia Model for a Typical Joint  

In this section an inertial model for the joint shown in Fig. 4.4 
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is presented. A joint strictly is defined as a universal plus either a 

circular (shown) or a rectangular (not shown) attachment bracket. Each 

joint is considered to be part of the substructure to which the attachment 

bracket is fastened. Hence each rib has one joint, while each strut has 

two. The joint mounts are also shown in Fig. 4.4 and will be discussed 

in what follows. They also are considered as part of the substructure 

to which they are attached. 

The orientation of each joint depends on the particular sub-

structure to which it is attached. For each rib, the top drawing in Fig. 

4.4 is in a vertical plane aligned with the z h  axis, while the bottom 

drawing is the top view of the joint. For each strut, the top drawing 

lies in a horizontal plane parallel to x h -yh  so that the bottom drawing 

is a side view of the joint. The dimensions of the mounts are also altered 

for the strut joint so that the two views shown in Fig. 4.4 are reversed. 

4.4.1 	Mounts  

A dimensioned schematic of a typical pair of joint mounts is 

presented in Fig. 4.5, where a general notation employing the subscript T 

has been asdopted. In fact, the physical parameters for the mounts also 

employ this notation (see Table 4.1). There are, however, two unsubscripted 

'global' quantities, the thickness t of the wall separating the exterior and 

interior mounts, and the density p of the wall material. These two variables 

are determined by the type of mount (rib or strut). For example, the set 

(T, t, p) = (r 	t
C' 

p
C

) specifies a rib mount, while the set (T, t, p) = 

( s. t
R 	

p ) specifies a strut mount. 
j' 	.' 	R. 

The local frame FmT  , chosen for the purpose of inertia calcu-

lations, also is shown in Fig. 4.5. Its origin 0mT  is located on the center-

line of the mount holes at the wall-edge of the exterior mount. The mounts 

are positioned relative to FmT  (as shown). The alignment of FiT  again de-

pends on the type of mount considered. These alignments have been discussed 

previously and will not be repeated here (see Sections 4.1.5, 4.2.4 and 4.2.5). 

Given these facts, the inertias for the rib mounts, relative to 

0
MT 

and expressed in F , are MT 
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Table 4.1  

Mount and Joint Physical Parameters  

Mounts: 

Exterior (Interior) 

"eE(I)T 
—length 

w
E(I)T 

--width 

hE(I)T — height 

E(I)T — 
density 

P   

a 	— hole radius 

msT 
— mass of each opposing spring 

Global 

t — wall thickness 

p — wall density 

Joint: 

Uni versai  

a, — radius of cross shafts (4) 

a
M 
 — radius of mount shaft (1) 
T 

t. 
 CT 
— length of cross shafts 

t 
 MT 
— length of mount shaft 

ST 
— density of shafts 

P  

r Zn 
T  —

length of cross-shaft support plates (2) 

w 	--width 
PT 

t 	— thickness 
PT 

BT 
— length of back plates 

w, — width 
DT 

tn  — thickness 
DT 

(cont'd) 
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1 

1 
1 

1 
1 
1 
1 

1 

1 
1 

Table 4.1 (Continued)  

PT — 
density of plates 

P  

à  CT —gap between cross shafts and back plate 

à. — gap between back plate and exterior mount 
PIT 

— see below 
UT 

M
OS 	

mass of each opposing spring 
T 

m
CST 

—mass of each complementary 

Circular Attachment Bracket 

—length of uprights (2) 
UT 

w" --width 
UT 

t — thickness 
UT 

a
DT 

— radius of disk 

h,UT 
— height 

D 
p, T — density of bracket 

— distance from centerline of bracket holes to 
JT 

farthest edge of disk 

a, —as above 

Rectangular Attachment Bracket 

RT 
— length of rectangular plate 

w
RT 

--width 

h
RT 	

height 

a, —as above 
UT e  UT 	UT '  DT 9  UT 

— as above, except now to farthest edge of plate 
JT 

Global 

— angle between xuT  and xuT  axes 
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(4.59) 

(4. 60 ) 

Mm = Mr 	MT - MCL1 - MTLI 	Mrc 	MTC nT 	ET 	IT 	LnT 	InT 	EST 	IJT 

Cm = 
-MT  

—1/2 (mEt - mai -deET 	(MIHT M IT ) (1/2'eiT t)  

Mmc Zr - Mmc 	t) n3T ET 	noT IT 

o  

( 4. 58) 

	

2 	2 	 2 	2 
J m  „ = 	m r  (h r  +w, ) + 	m, (h, +w, ) 

ET ET 	ET 	IT IT 	IT 

	

-½ r11,,, a 2 - 	Tit a 2 
EnT T 	2  InT T 

Jm „ = 1 	p 2 	L.2 \ 
rucc 	12 "'ET 	

rn PP 2 	h2 	4- 
T 	LT 	- IT % 	“ IT I 	-M 

1 m 	p2  .4_ 2 J 	= 
T ( 2 	21 T 	M MT33 	12 mET"-ET WF

\ 
 ' -2 M -T 	 T +WT 

J 	= 	 0 MT12 	J 	=J 
MT13 	MT23 =  

where 

mE(I)T = P E(I)T'eE(I)T wE(I)T h E(I)T 

2 u  
mE(I)HT = PE(I)T ua T 'E(I)T 

jm  = 	112 mEHT 	T (3a2 z2ET ) ...  112 mIHT(3aT2  ,e2iT) 

2 
+ ( 	 II 

- muu ) ,ec + (mr - m-ru )(1/2-el + 
4 	 T 

2 
+ tr 	MnAc- (ZT 	)

2 
nJT ET 	n3T IT 

(4.61) 

Also, the corrections to the inertias of the substructure supporting the 

mounts (either the hub or rib j) required because a mount hole must be drilled 

through the wall of that substructure, are 
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d = 	+ 
T 	MT 	ET 

(4.64) 

m
CT 

= 7rpa2t 

C = [_lectt 0 0] 
CT  

J 	= %in a
2 

CT11 	a  CT T 

	

lQn 2 	+2\ 
' -4 	

2 
j C 	

m
T22 = j CT33 = 12 mC \s'uTT 	mCT'

+ 
 

J
CT12 

= J
CT13 = 

j
CT23 

= 0 

(4.62) 

where the above inertias are taken relative to 0 	and expressed in F . 
MT 	MT 

These inertias are most easily incorporated into the overall inertia model 

for DAISY by subtracting them from the inertias given in (4.58). 

4.4.2 	Universal  

The universal portion of a typical joint is shown dimensioned 

in Fig. 4.6. Again, the same T-subscript notation as that adopted for the 

mounts is used both in the figure and in the physical parameters given in 

Table 4L1. However, now only one global quantity is required, namely 

the anglè between the universal and joint frames,  FUT  and FJT  (also shown 

in Fig. 4.6). Therefore, a rib universal is specified by setting (T, x) = 

(r
J
., 8

0 
 ) in the equations that follow, while a 'strut universal is obtained 

for (T, 	= ( S., i»). 

In what follows, the universal inertias will first be expressed 

in F 	and then transformed into F
. 

As can be seen from Fig. 4.6 these two 
UT 	 JT 

frames share the same origin; however, FLIT  is rotated relative to  FUT  by an 

angle of 	about yuT . Whence 

	

cos), 	0 	sinx 

C, 
TUT 

= 	0 	1 	0 	 (4.63) 
—U 

	

- SinÀ 	0 	COSÀ 

Note that the origin of these frames corresponds to either 
 °r'•

or o
c.

. 

It should also be noted that 0 	is a distance 
MT 
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= Am 
M 
 + tn + àr + a , 

MT 	T 	DT 	UT 	UT 
(4.65) 

= C 
—r 

behind  O
UT 
 (OJT ) in the negative xuT  direction, where 

from Fig. 4.6. 

Now, the inertias of the universal, relative to OUT  and 

expressed in FuT , are 

m = 2m + m + m 	+ 4m, + m - 2m, + 2m, + 2m 
T 	PT 	BT 	CCT 	UT 	ST 	nT 	uST 	CST 

-2m,rT  (UA -1/2, ren T  ) - mnD  ( r 	D 
UA -1/2tn T  ) — n 	- 	T a  

- MS T ( 4111T + 1/2"eMT ) 

0 

0 

, 2 	,2 4. 1 rn 	( 2 4.,e2 
' -3- mCCT'CT ' 7 wC

3a  
T' CT 	CT '  

4.  1 m aa - 1 m (3a2 4. t 2 ) 
-1 ST MT 	-g Hrt. 	CT 	PT 

2 
4.j(niPT - n1 1-1T )(tI3T 4. t PT )2 +4mCT (1/2"eCT +aCT )  

+2mOST ( 'eCT +aCT - tPT )2  + 2mCST (eCT +a CT - tUT )2 
 

j 	= 1 m ft2 .i_ t2 \ 4.  1 m (z2 + t2 \ 
T22 	-67 PT \  PT 	PT' 	12 BT‘ BT 	B .C. ' 

1 	2 	2 	1 
- Î: 111 11T (3a CT +tPT )  + 7 (111 PT - mi-kr ) ( "e13T 4- t PT ) 

+ 2m 	(-e +a  -t  )
2 + J 

	

OST CT 	CT 	PT 	T 

_ 1 	, 2 	. 	, 	2 
3
T33 — m ue +w

2  ) + --
1 
 - m 01

2  + t ) - m r2  
T33 	6 PT PT 	PT 	12 BT BT 	BT 	HT CT 

N 2 
+2m 	(,e. +a 	-t  ) + J 

CST CT 	CT 	UT 	T 

2 

(4.66) 
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(4.72) 

(4.73) 

3 T12 
= J

T13 
= J

T23 
= 0 

where 

mP(B)T = P P.A(B)TwP(B)TtP(B)T 

3 
m„ =8p a, 

	

CCT 	S T  UT 

2 
mCT = P ST u a CT"eCT 

,2 e  
mST = P ST 1r ‘4MT4-MT 

2 
mFIT = P  PT a CTt PT 

2 	 2 
J = 	a

2 
 , 	

U 
+m„ a, 

	

T 	3 
 

CCT C T 	T UT 

	

(3a 2 4.,e2 ) 	m  (3a2 _ 
"'CT 	CT 	CT 	12 ST 	MT 

	

2mPT ( q1T -1/2"e-PT )2 
	

mBT ( IT -1/2tBT )2  

+ 2m, (kt, +a, )
2 
+ m,(+1/2,em  ) 

2 
UT 2  UT 	uT 	uT 	T 

MT =àM MT   

(4.67) 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

Whence the inertias for the universal, expressed in FJT , are 

= M 
UT 	T 

CH = 
U 

Ci 
 TU 

 uc 
T 
_ 	 (4.75) 

-UT -- 

J" 	
-V 

	

= Cl 	J  +C u 1 
TUT 	V --T 	- TUT 

It remains to establish the attachment bracket inertias before the total 

joint inertias can be determined. 

4.4.3 	Circular Attachment Bracket  

A typical circular bracket is shown in Fig. 4.7. It consists 

of two uprights and a flat circular disk, dimensioned as indicated in the 

figure. Also shown is the orientation of the attachment bracket relative 
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C n  = 
—DT 

(4.76) 

to the joint axes FjT  and the origin of that frame ojT . Given the geometry 

shown in Fig. 4.7 and the parameter definitions from Table 4.1, the appro-

priate inertias for the circular attachment bracket, relative to OjT  and 

expressed in FjT , are 

M
BT 

= Mn 
U 	U 

- 2m, 
T 	UT 	T 

MDT ( ‘J'T - 1/2h  DT 	2MUT 	T hDT 1/2'eUT ) 

0 

1, 2 
= - m a

2 
+ 	+ w

2 
 ) + J r„ 

JBT11 	2  DT JT 	6 UT UT 	UT 	DT 

	

2 	2 	, 2 	2 \ 

	

JD 09 = -117% (3a .1 	hn ) 	—mn 	wU uTc-c_ 	 -T 	6 _T 	T 	T 

	

2 	,2 

	

- m, a, 	-I- 	(, -1/211, ) 
UT UT 	UT UT 	UT 

p 	\ 2 
~2mUT ( JT 	hDT 	1/24-UT /  

j 	= 1 m (3a 2 	h 2 	m It2 	t2 ) 
BT33 	2 DT \  JT 	DT I 	6 UT‘ UT 	UT 

h ) 2  + 2M (P 	lej ) 
• MDT ( çJT 1/2 "DT' 	--UT"JT 	hDT 	

`"-U2 + 1 
T 1 	-BT 

= 
3BT12 = j BT13 = jBT33 	

0 
 

where 

2 
m, = p, na, 
UT 	DT UT 

h, 
UT  

mUT = PBATwUT tUT 

2 
mOT = P BTu-CT -UT 

0 0 	4.1fl, 	+ 	) DT 	UT 	UT 	UT 

(4.77) 

(4.78) 

(4.79) 

2 
~2(mUT 	mOT)(aJT 	1/2tUT )  

The total joint inertias are then the sum of (4.75) and (4.76). 
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c 	= 
—BT 0 

(4.82) 

(4.83) 

4.4.4 	Rectangular Attachment Bracket  

This bracket, which is used at the os  strut joint to reduce 

weight, still has two uprights, but now a rectangular plate replaces the 

circular disk of the previous design. The same local reference frame F JT  

and origin 0JT  are used for this bracket. Furthermore, the orientation 

of the bracket relative to the local frame remains unchanged (see Fig. 4.8). 

Noting the slightly different physical parameter set from 

Table 4.1, and taking the inertias relative to OJT , the inertias for this 

bracket, expressed in FJT , are 

mB  = mRT  + 2mUT  - 2mOT 

rmRT ( SiT -1/2 "RT ) 	2mu ( Sh "RT .1/2'euT )  

(4.81) 

j 	. 1 m  (t.2 

~~

 w2 ) 	1 m (t2 ÷w2 

BT11 	12 RT RT 	RT 	6 UT UT 	U
)

T 

~~ 

BT 

~wR2 T  ) 	muT  ( zu2T wu2 T ) 	moTa2c4T  

Li BT22 = 11:2 mRT (h2RT 

	

\2 	2 

-2" RT 	2rnUT ( JT h RT 1/2eUT )  

J 	= 	m (t2 	h2 ) 	m (z2 	t2 ) 

• m 

	_ 1/21.1 ) 2 

BT33 	12 RT RT 	RT 	6 UT UT 	UT 	RT JT 	RT 

2MUT ( JT -h RT -1/2'eu -r )2 	J BT 

J 	=J 	J 	0 
BT12 	BT13 = BT23 =  

where 

M
RT 

= p
BTRT

W
RT

h
RT 

jBT = -2m0T (3a
2 
 CT t2 

UT ) 1-2(mUT -m0T )( "eRT -1/2tUT
)2 

and the remaining variables are as given in Section 4.4.3. Once again, the 
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total joint inertias are found by summing the bracket inertias from (4.81) 

with the universal inertias given by (4.75). 

4.4.5 	Joint Springs  

It should be noted that a number of spring masses appear in 

the joint inertia model presented in the previous sections. These springs, 

which always occur in pairs, are shown conceptually in Fig. 4.4. Two sets 

of opposing springs and one set of complementary springs are found in each 

rib joint. If the joint is a strut joint then only the opposing spring-

set on the mount shaft should be retained in the earlier inertia model 

[i.e., m
OS 
 = m

CST 
 = 0 in (4.66)]. 

T  

The opposing springs occur in pairs to permit preloading of 

the springs. This shifts the equilibrium position for the springs away 

from zero, thus avoiding a potential hysteresis problem. To accomplish this 

each spring of an opposing pair is mounted so that its stored energy, if 

released, would generate a torque equal in magnitude to its counterpart but 

in the opposite direction. As a consequence, each spring 'torque' just 

balances the other, resulting in a preloaded pair. 

The complementary spring pair is chosen to maintain an inertia 

balance rather than to create a preloaded condition. As explained in 

Appendix A, gravity provides the preloading torque for these springs. 

4.4.6 	Joint Damping  

In the present design it is more likely that one might wish to 

reduce damping, rather than to increase it. If, however, this does not prove 

to be the case, a simple means for including additional damping in a controlled 

manner does exit. (There also is the opportunity to conduct control experi-

ments for a variety of damping ratios.) It is a straightforward matter to 

mount Houdaille dampers on the ends of the universal mount and cross-shafts. 

A typical Houdaille damper is shown in Fig. 4.9. It consists of 

a free rotational mass within a cylindrical cavity filled with viscous fluid 

[Thomson, 1972]. The only dynamical coupling between the free mass and the 

rotation of the shaft on which the damper is mounted is provided by the 
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Figure 4.9: 	A Typical Houdaille Damper 
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viscosity of the fluid. The motion equations for this damper are well 

known (for further details, the interested reader is referred to [Thomson, 

1972]). 

5. 	CONCLUDING REMARKS 

Substantial progress has been documented towards completing 

the detailed design for the flexible structure DAISY. A comprehensive 

dynamics model, based on a linear combination of individual substructural 

models, has been developed. Furthermore, preliminary designs for each 

substructure have been proposed and a detailed inertia model prepared. 

Gravitational and aerodynamic disturbance models also have been presented 

for each substructure. Upon such a foundation the major effort of iterating 

to an acceptable final structural design can be built. It remains, however, 

to model in detail the peripheral actuator and sensor inputs and outputs to 

the model. Although straightforward in concept, the details are greatly 

aided by the information provided in Section 2. Moreover, much dynamical 

data can.be  gleaned from the present model. For example, natural frequencies, 

mode shapes, maximum deflections, accelerations and loads on the structure can 

be predicted. The programning and simulations required to accomplish this 

task are now actively underway within Dynacon. 
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Appendix A 

Spirator Spring Design Considerations  

As alluded to in Chapter 3, gravity can be used to preload 

the out-of-plane spirator spring at each rib root. This preload per-

mits the working range of the spring to be shifted away from zero along 

the torque - vs - deflection curve (see Fig. A.1). Thus, a potential 

problem, that caused by the hysteresis often associated with torque re-

versais as the spring deflection passes through zero, can be avoided. 

To accomplish this, let us consider the 'dangling' rib shown in Fig. A.2. 

The root spirator spring is wound counterclockwise about the pivot and 

then attached to the rib, which is held securely. The rib is then re-

leased and moves clockwise, as a consequence of the spring torque, until 

the torque generated by gravity equals that applied by the spring. For 

the rib to be in equilibrium the angle from the vertical 0 = 00  is given 

by 

where m is the mass of the rib, a G  is the acceleration of gravity, c is 

the distance to the mass center from the pivot, k is the torsional spring 

constant and 0
r

is the reference angle for the spring (i.e. the total 

spring angle in the counterclockwise direction prior to releasing the rib). 

This relation follows by direct substitution of 0 = 00 , a constant, into 

the motion equation for the rib 

Jo + ma
G 
c sine - k(o - O

r
) = 0 

where J is the second moment of inertia of the rib about the pivot. 

To test the stability of the equilibrium 0 = 00 , one substi-: 

tutes 0 = 0
o 

+ S into (A.2), where (5 is a first-order perturbation about 

0
o
. The resulting requirement for stability is 

(A.2) 

1 
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Figure A.2: 	A 'Drooping' Rib 
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Now letting the natural frequency of the out-of-plane rib vibration be 

denoted by w, it follows that 

00  = cos
-1

[d(w
2 

+ k)/ma Gc] 

which, for a uniform rod (c = £/2, J = m£2/3) and a spirator spring 

(k 	0), becomes 

rb 	-1 
0 = COS (2,eW

2 
 /3aG ) 

(A.4)  

(A.5)  

Therefore, the lower the natural frequency the smaller the angle 0o
, and 

the larger the droop angle 6 = ( u/2) - 0
o 

(see Fig. A.2). It must be 

ensured, of course, that the chosen droop angle exceeds the anticipated 

half-amplitude of the rib vibration (i.e.  o > lal). In other words, the 

first-order perturbation of primary interest here is the oscillation of 

the rib about 00 . 

Relation (A.5) is most useful as a design tool for estimating 

the final equilibrium postion for each of DAISY's ribs. A better value 

for 00  then can be determined from (A.4) once the actual rib inertias 

(see Section 4.2) and spirator spring stiffnesses are known. 

The remaining spirator rib springs, the spirator strut springs 

and the linear strut springs also are preloaded, but not by gravity. In-

stead they occur in opposing pairs in which each spring of the pair gener-

ates a torque or force equal in magnitude but opposite in direction to the 

other member of the pair. Hence the 'forces' balance and there is a static 

equilibrium with energy stored in each spring. 
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(B.2) 

(13. 3) 

(B.4) 

Appendix B 

Calculation of Rib Hydrodynamic Matrices  

In what follows, it will be assumed that rib j and Fr.  are 

as shown in Fig. 4.2. Futhermore, from Section 2.2.3, recall that the 

absolute displacement of an arbitrary point in rib j can be written (to 

first order) in the form 

d (r 	= w (t) - rx  o 	+ A (r ,t) -r. 	-r. -r. 	-r. -r. 
J 	J 	33 	J 	J 

where 

A  
J 	J 

-rx -r. 

gr. (t) ' 

Hence the velocity of an arbitrary point in rib j is 

u (r ,t) = 	- rx  (è 	+ ex.) 
-f. -f. 	-f. 	-f. -r. 

J 	J 	J 	J 

The individual velocity components given by this expression play a key 

role in determining the rib hydrodynamic matrices. 

B.1 	Inertial-Resistance Matrices  

(B.1) 

(13.5) 

As stated in Section 3.2.2, it is assumed that, for the pur-

poses of modeling aerodynamic disturbances, rib j can be approximated by 

an 'infinite' cylinder. Thus for an ideal fluid, the appropriate velocity 

potential is 

ar. 

r. = - 1-(u
1
cosX + u 2sinx) 

(B.6) 
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(B.8)  

(B.9)  

cosx = y/R 

sinx = z/R 

R
2 

= x
2 
+ y

2 

(B.12) 

(B.13) 

(8.14) 

where, as shown in Fig. B.1, u l  and u 2  are the x l  and x2  components of the 

fluid flow at some arbitrary point, given by the polar coordinates (R, x), 

and a
r. 

is the radius of the rib. Thus the bracketed quantity in (B.6) is 

the fluid velocity component normal to the surface of the rib. It should 

be noted that the potential given by (B.6) assumes that the fluid is at 

rest at infinity. Furthermore, fluid flow along the symmetry axis of the 

rib is not permitted. This is consistent with the earlier arguments (re-

call Section 3.2.2) that inertial — resistance forces should be negligible 

in this direction. 

For a rib oriented as shown in Fig. 4.2, x l  and x2  become 

y
ri 

and  z
r.

, and thus 

a 
r i  

 R 
---Q-(u

Y 
 cos?, + u

z
situ) 

where from (B.5) 

uy  =w 
y 

+ x(él
z 

+
z
) - z(è

x 
+

x
) 

u
z 	

w
z 

- x(5
y 

+ &
y
) + y((è x + &x ) 

given 

r 	= [x y z]
T 

—r. 

(B.7) 

(B.10) 

expressed in F
ri

. Also, the normal to the rib's surface, n, has the 

components 

n 	= [0 cos?, sinx]
T 	 (B.11) 

—r. 

where 
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Hence (B.7) can be rewritten in the form 

2 
a r. 

j  
- 	

T• 	Tx x x• 	Tx x x• 
r. 

	

	
+nl  

R - - - -r .-r .-r .-r • - -r .-r .-r .-j 
JJJJ 	J J J 

with the knowledge, from Section 3.2.2, that 

1 	= [1 0 0
1 T 

_ . 
rJ 

Finally, recalling equation (3.9), namely, 

T • 	T • 	- 
(1) 	= 	w-0  6  

	

-r . 	-r .  

	

r
j 

j 	r. j  rj  

the following relations become obvious: 

a r. 
T _ j  T 

- R Er. -w
ri 

a
2 

T 	
r. 	

' . 	J nT i x l x ,x 
R L4-.±-r.±.r.-Lr. 

JJJJ 
J 

2 • a r. 
T 	_ 	j nT i x i x 

R !Ir.±.r."'r. 
J J J 

J 

On surface S
r 	

R = a
r. 

and (B.18) through ( 8.20) become ' 

= a nT  ; 	
T
1  x1 r 

x ^x 
n 

-w  

ri 	
J J J 

= - a
r 

n
T 

l
x 

l
x 

ri 
	.-r .-r .-r • 
JJJJ 

2 

where 



dS
r. 

= a
r. 

dx dx (13.24) 

.nnn•nn 

0 o 	o 

m 
. 0 

0 	0 	0 

0 	m 	0 
r • 

0 	0 	m 
r. 
3_ 

O „L in  t.  
2 r • r. 

J J 
2  r. r. 	

0 j 
J J 

(B.25) 

(cont'd) 

0 	0 	0 

3 r. r. 
J 	J , 

0 	0 	t
3 

J 

= 0  
rj  

0 

r 	= rr /ar.  = [x/a r. 
cos), sinX]

T 
—r. 	—.  

	

J 	J 

(B.22) 

Then upon application of the integrals given by (3.8), namely, 

• m 	= pf 	T dS 	P, = pi n
T 

Y dS 
j —Rr. 	—r. —w 	r. ' 	• 	—r. —q —f. r 

S
r. 
n j r. 	j 	

—Krj 	
S
r. 

j r. j  

C 	= pf 
Sr

r
x 

n 	
T 

dS j • 	H 	= pf 	rx n E
T 

Y dS 	(B.23) 
—Rr. 	—r—r—w 	r ' 	—Rr 	

Sr.JJ 
—r.—r.—

rj
q —r. r. 

. 
jjr. 	

J 	J  

1Rr. = Pf 	dS,. 	m . = P 	
LI 5_1  I,.dS r.  

S r .3Jurs' 	

; 	
—RRr 

	

l i 	IS r. rj  rj r. Ij 	j 

given 

	

where 0 < x < 2n and 0 < x < tr 
	

(t
r. 

is the length of the rib, tr. 
= 

— — 	— — . 

	

J 	J 	 J 
t.
r 
 /a

r 
 » 1), the following inertial-resistance hydrodynamic matrices 

. 	. 
J 	J 

result (m
r. 

= pna
2
r 
 t 

r 
 ): 

. 	
J
. 

J 	J  
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•n••n 

J 	= 

•n•n 

1 
1 
1 

1 

0 	0 	0 — 

1 	3 
0 	7i7m

r 	RR . .e.r. 	0 	
. 

; 	IIIr. 
J J 	J 1 

0 	0
3 

J J_  

0 	0 	0 -- 

1 	3 
—m 	0 

r r. 
3 

0 	0 	—m 
J J_ 

(B.25) 

These are the matrices cited for rib j in Table 3.2 of Section 3.2.2. 

B.2 	Viscous-Resistance Matrices  

A very detailed derivation of the viscous-resistance 

hydrodynamic matrices for a variety of shapes is provided by [Brenner, 1974] 

and the references cited therein. Rather than repeat the derivation for an 

'infinite' rigid cylinder here, the interested reader is referred to the 

above papers. The extension of Brenner's results to the case of a flexible 

rib, however, deserves further comment. From (B.5), we know that the 

	

II 	

'elastic' coordinates a. behave the same as the rigid rotations 0r' 
 as far 

--J 	 —. 
J 

as determining the velocity of an arbitrary point in the rib is concerned. 
, 

(This is true because the flexibility associated with each rib of DAISY is 

	

' II 	all localized in torsidnal spirator springs located at the rib root.) 

	

II 	

Therefore,.in terms of the normal stress components associated with a and 
---j 

J 

II 	 N 	= N 
--e 

J 

II For a detailed discussion of the exact form of the stress tensor the reader 

II 	

is referred to [Sincarsin and Hughes, 1983]. Here it is sufficient to 

recognize only that (B.26) is true. Then given (3.12), it immediately 

follows that 

II 	

. 

H 	= -14 	rx N dS 	= - 111 	rx N 	dS 	= J 	(B.27) 

II 	

—vr. 
J 	

—r. —a. r. 
S
r. 

j j 	j 

J 	

—r. —or. r. 	—vr. 
S r. 3 	3 	J  

J 	
J 



= -14
T
N dS 	N dS = J 

vr —vvr. 	--ct. r • = -P 	r. 	— . 
S
r. 	J 	J 	

S
r. 

j 	J 	J 

Also, from [Sincarsin and Hughes, 1983], it is known that 

c
T 

= -14N dS 
B 

Whence 

P 	= 	N dS = -14 N dS = c
T 

—vr 	r. 	r. r.  
S r. J 	J 	S r 

	j 	j 

(B.28) 

(B.29)  

(B.20) 

Thus, for DAISY, no extra computations are required to obtain the viscous-

resistance hydrodynamic matrices associated with the elastic motion of rib j. 
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