
91
C655
G646
1983

Title Functional specification for
the advanced autonomous

spacecraft computer
/ I. Cunningham... [et. al.].

Al

Eidetic Systems Corporation

MUNICATIONS CA

elf 	1981

LrÉRARY - C11.1t,)

/ FUNCTIONAL SPECIFICATION
FOR THE ADVANCED AUTONOMOUS SPACECRAFT COMPUTER/

Technical Report No.ESC-82-004

Industry Canada

Library Queen

., 3% 11:- 2 0 1998

91
C655
G646
1983

I Industrie Canada

 Bibliotheque Queen

Wninaham
. Gomi

M. Inwood
I. McMaster

January 17, 1983

Eidetic Systems Corporation

1) 	i9

AUTHOR (S):

ISSUED BY CONTRACTOR AS REPORT NO: ESC-82-004

Eidetic Systems Corp.
P.O. Box 13340
Kanata, Ontario

PREPARED BY:

ee Government Gouvernement
'r of Canada 	du Canada

111

Dewxtment of Comrnunicatior -s

. . _

DOC CONTRACTOR REPORT 	 DOC - CR - SP 	-83-032

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

__SPACE PROGRAM

Wei

TITLE: Functional Specification For The Advanced Autonomous
Spacecraft Computer

T. Gomi (Applied AL Systems Inc., Kanata, Ont.)
I. Cunningham
M. Inwood
I. McMaster

DEPARTMENT OF _SUPPLY AND SERVICES CONTRACT NO: 	15ST.36001-2-0561
SERIAL No. 0ST82-00056

DOC SCIENTIFIC AUTHORITY: 	R.A. Millar

CLASSIFICATION: Unclassified

II
This report pr - s.nts the views of the author(s). Publication
of this r..port does not constitut DOC approval of the reports
findings or conclusions. This report is available outside the
department by speci.1 arr ngement.

This report pr - s.nts the views of the author(s). Publication
of this r..port does not constitut DOC approval of the reports
findings or conclusions. This report is available outside the
department by speci.1 arr ngement.

DATE: 	January 1983

2,-1

4-1

5-1

6-1

CONTENTS

Page

Acronyms

Acknowledgements 	 ii

Summary 	 iii

1. Introduction 	 1-1

2. Functional Objectives of the AASC 	2-1

2.1 Reliability of the AASC
2.2 Flexibility of the AASC
2.3 Architecture of Fault-Tolerance
2.4 Performance
2.5 Autonomy Requirements

3. Design Constraints of the AASC

3.1 The FTC Rules
3.2 The Top-Down Development
3.3 Software Fault-Avoidance
3.4 Networking Standards
3.5 Design for Fault-Tolerance

4. The Functional Test of the AASC

5. Conclusion

References

ACRONYMS

AASC 	Advanced Autonomous Spacecraft Computer (AASC)
Ada 	DoD defined Ada programming language
AI 	Artificial Intelligence
APSE 	Ada Programming Support Environment
ASM 	Autonomous Spacecraft Maintenance
CSMA/CD Carrier-sense Multiple-Access with Collision-Detection
FTC 	Fault-Tolerant Computing
IEEE 	Institute of Electrical and Electronic Engineers
IIU 	Subsystem I/O Interface Unit (AASC/IIU)
ISO 	International Standardization Organization
LAN 	Local Area Network
MBPS 	Mega Bits Per Second
MIPS 	Mega Instructions Per Second
MTFF 	Mean Time to First Failure
NASA 	National Aeronautics and Space Administration
OAM 	On-Board Autonomy Manager (AASC/OAM)
OSI 	Open Systems Interconnection
PCU 	Subsystem Processor Complex Unit (AASC/PCU)
VLSI 	Very Large Scale Integration

3.

ACKNOWLEDGEMENTS

This report is one of a series resulting from studies per-
formed for the Federal Department of Communications, Communica-
tions Research Centre, Shirley Bay, Ottawa, Ontario, Canada
under DSS Contract 0ST82-00056.

The authors would like to acknowledge the support of Dr.
R.A. Rennels, of the University of California and also the Jet
Propulsion Laboratory of the California Institute of Technolo-
gy, and the assistance of Dr. L. Friedman, also of JPL; Dr. Tom
Anderson, University of Newcastle-upon-Tyne, England; Dr. Ge-
orge A. Gilley of The Aerospace Corporation, El Segundo,
California; Dr. Paul J. Heckman, Jr. of Naval Ocean Systems
Center, San Diego, California; Mr. Lee J. Holcomb, Office of
Aeronautics and Space Technology, National Space and Aeronau-
tics Administration; and Dr. Nancy Leveson of University of
California, Irvine. The authors also acknowledge the support of
R.A. Millar, of the Communications Research Center, under whose
guidance these studies are conducted.

SUMMARY

The following aspects of the Advanced Autonomous Space-
craft Computer (AASC) are specified: the functions of the
on-board computer system in relation to the autonomy of the
spacecraft; the constraints under which the development will
take place; and methods of verifying compliance of the devel-
oped AASC to the specificiations.

Definitions and values are given for reliability terminol- ,
ogy and parameters. Software fault-avoidance is examined and
three approaches selected: N-version programming, recovery
blocks, and ad hoc measures. Fault diagnosability is discussed.
The objectives for system flexibility are outlined and perfor-
mance criteria are established. The means of achieving on-board
autonomy are introduced.

Design constraints, including the Fault Tolerant Computing
rules, the application of an overall top-down developmental ap-
proach, software fault-avoidance methods and networking stan-
dards, are imposed to allow the maximum ability to adopt new
fault-tolerant techniques and methods, as and when they are ap-
propriate.

Compliance with specifications is to be tested throughout
the system development by the appropriate application of test-
ing techniques to be indicated in a test plan.

work.
A detailed design plan is to be the subject of follow-on

iii

1. Introduction

The Advanced Autonomous Spacecraft Computer. (AASC) is a
conceptual design for an onboard spacecraft computer. It was
introduced as a proposed "ideal spacecraft system" during an
examination of building block computer concepts [GOMI 82a]
for the purposes of comparison with existing designs. It
was, originally, an attempt to bring together the results of
many developments which had occurred since the design of
such building-block computers as the Jet Propulsion
Laboratory's Unified Data System/Fault-Tolerant
Building-Block Computer and the European Space Agency's
On-Board Data Handling System. The concepts were elaborated
in a further study [GOMI 82b], during the course of which it
became apparent that the ideal of autonomous spacecraft man-
agement was the aim of a number of influential authorities
in the spacecraft community. So certain were these authori-
ties that autonomy was possible that they indicated a time
frame for its achievement [MARS 80]. During this period of
study, technological advances have been made which form a
sound basis for achieving the fault-tolerance necessary for
such an undertaking. These developments cover the discip-
lines of system engineering, artificial intelligence, and
networking, as well as computer software and hardware. They
have produced such innovations as the International Stan-
dards Organization's Open Systems Interconnection (ISO/OSI)
protocols, software fault-tolerance, Ada programming
language, highly configurable operating systems, and new
computer architecture such as iMAX 432. They were examined
in the report which precedes this and their relevance to the
goal of autonomy was established.

It was hinted in the ASM Final Report [MARS 80] that
the achievement of autonomy involved more than automated
fault-tolerance. A high degree of decision making would be
necessary, adding a new discipline to those already in-

. volved, namely Artificial Intelligence (AI). Over the past
year, AI has had an increasing amount of publicity and has
acquired some respectability, with much attention being fo-
cussed on robots of varied intelligence for various
non-trivial applications, and practical Expert Systems such
as MYCIN and PROSPECTOR. Research during the course of the
present studies has clarified the part to be played by such
systems in the achievement of aUtonomy. Work on expert sys-
tems in connection with autonomy is proceeding at NASA ("Be-
bysitter"), Naval Ocean Systems Center (ft EAVE
WEST")[HECK 81] and JPL ("DEVISOR")[VERE 81a,b]. This dis-
cipline and its variations are to be an integral part of the

1-1

design to achieve autonomy in the AASC.

From the start of these studies, the approach has been
the top-down/structured approach advocated very early in the
1960s by IBM and brought into the public domain by Yourdon
[YOUR 75] in connection with software design and program-
ming. This methodology has proved to be appropriate and va-
luable in many fields where the development of systems by
professionals is involved. Its application has been the gu-
iding principle throughout these studies and it has been ap-
plied to all areas of study in this particular phase. The
top-down approach to design requires that first principles
be dealt with before system details, as implied by the sys-
tem structure shown in Figure 1. For this reason, it is not
the intent, in this study, to differentiate between hardware
and software in outlining the functionality of the AASC.
Those detailed aspects will be covered in the later stages.
This report does cover the results of a sifting process ap-
plied to the mass of information, papers and consultations
made in connection with the latest research and activities
in the Fault-Tolerant Computing (FTC) world. The results of
this process have been applied in a specific manner to those
somewhat abstract system attributes required for the achi-
evement of autonomy. Thus the report defines in concrete
terms reliability, flexibility and the application of auton-
omy.

Improvements in fault-tolerant techniques are occurring
continually. It is intended that the design of the AASC
should permit advantage to be taken of these revisions and
introductions and its design should, therefore, be undertak-
en in a disciplined fashion. , The constraints of
top-down/structured development, - Fault-Tolerant Computing
rules, which were developed earlier in the study as guide-
lines for maintaining a high degree of fault-tolerance, and
networking standards, have been imposed with the intention
of making the design capable of accepting future changes. It -
is also felt that these constraints, together with software
fault-avoidance techniques, will ensure the high quality ne-
cessary in a system before fault-tolerant techniques can be
applied.

Finally, an examination of the latest thinking on pro-
gram validation, verification and testing has. been made.
This, too, takes the top-down approach, with the recommenda-
tion that these techniques should be conducted in a planned
fashion throughout system development. The test plan should
be drawn up in conjunction with the design plan, to enstire

1-2

operating system

	1

system hardware

-.mil—operating system/
hardware interfacc

-.1*---operating system/

application interface

1
I.

Figure 1. 	System Structure

-«*----system function

'on-board

application
and autonomy

r management soft-
ware

-.14---application/system
software interface

fault-handling software

implementation

system testability and completeness of testing.

Failure:

where M is the length of a mission.

1 Reliability:

1 2-1

FunCtional Objectives Of the AASC

2.1 Reliability of the AASC

2.1.1 Definition and Assumptions

As any system is subject to failure, it is desirable to
predict and to measure the degree to which the system per-
forms its functions. However, there is a wide variance among
the meanings attached by designers and researchers to the
te.rms used to describe reliability parameters. For this rea-
son, we define the following terms used in specifying the
reliability of the AASC.

Valid State:
the state of a system from which transitions
produce the desired output.

-Invalid State: 	 • •
a state from WhiCh transitions produce unde-
sired output.

transition of a system from a valid state to
an invalid state. For some period of time
following the failure, outputs will be incor-

the internal Condition Of a system (compo
nent, program, etc.) mhich'causes it-to fail:

,
Transient 	 . 	. 	. 	•

I '' ' 	.
Fault:-

a fault that exists for an interval T sUch -
. 	. 	. 	.

:1

that

4 <= 0(T/M). <=

a function 'R(t),.the probability that no fai-
lure has occurred to time t. "

Failure Rate:

1 A constant :lambda.
. - Based on this assumption the reliability-function is:-

R(t) = Ro exp(—lambda *t)

where 0 <= Ro <= 1, the probability that the
component is functioning at t = O.

Mean.Time To
First Failure
(MTFF):

the time T such that

Pr{first failure is in (0,T)}

= Pr {first failure is in (T,infinity)}

For exponential reliability,

MTFF = 1/(ln (2* lambda))
where ln = natural logarithm

Availability:
the proportion of time during which a system
produces the desired output.

Error:
the occurrence of undesired symbolic output
from a process. An error can be due to a
hardware failure or a software fault.

Forward
Recovery
Procedure:

an algorithm which produces a transition from
an invalid system state to a valid state that
is not one of the states from which the in-
valid state was derived.

Backward
Recovery
Procedure:

an algorithm to produce a transition from an
invalid system state to a state from which
the invalid state was derived.

2.1.2 Reliability partitioning.

AASC reliability can be partitioned as shown in Figure
2. Whenever there is a choice of embedding a fault-tolerance
procedure in hardware or software, hardware will be chosen.
However, detection, isolation, diagnosis, and recovery at
the subsystem level and at the network level will be accom-
plished by software.

The 	first 	line 	of 	defense 	in 	software 	is
fault-avoidance, that is the minimization of the number of
faults in software before mission implementation begins.
Software fault-avoidance is discussed in Section 3.3.

The following techniques will be used to tolerate
faults in software.

1. N-version programming: this technique has been des-
cribed and implemented [LEVE 82, ADRI 82] at the sys-
tem level. That is, two or more redundant, indepen-
dently designed and implemented software systems run
concurrently, 	voting 	on 	their 	outputs.
Fault-detection occurs when the outputs disagree. In
a multiprocessing and/or multi-tasking environment,
redundancy can be extended to the process level. That
is, redundant independently designed and implemented
procedures can execute concurrently to perform the
same function. Outputs of the multiple processes can
be compared to detect failures, and can diagnose the
failure if redundancy is triple or greater.

The advantage of procedure-level redundancy is that
it can be applied selectively to critical functions,
reducing the cost of redundancy drastically.

2. Recovery blocks: this technique will also be extended
beyond previous implementations. Existing implementa-
tions 	impose 	on 	each 	critical procedure the
structure:

- acceptance criterion;
- list of alternate equivalent procedures;

together with the implied control sequence:

i := 1; 	•
loop

alternate procedure i;
i := i + 1;
exit when acceptance criterion is met;

2-3

Hardware
Fault-
Tolerance

Software
Tolerance
of Hardware
Faults

Software
Fault-
Tolerance

Transient
Fault7
Tolerance.

n11•11111111

System
Reliability

Software
Reliability

Hardware
Reliability

Software
Fault-
Avoidance

Permanent
Fault -
Tolerance

Figure 2. 	Reliability Partitioning

end loop;

The main criticism of this technique is its rigidity.
In the AASC, the recovery block will be extended to
include:

- a flexible, algorithmic control sequence for the
alternate procedures;

- a final alternate procedure to be executed if no
alternative meets the acceptance criterion;

- the ability of an alternative procedure to use the
results of previous alternatives rather than re-
turn to the initial state;

3. Ad hoc techniques: there may be situations where nei-
ther of the above methods can be used, because of
timing or cost constraints or irreversible error con-
ditions. In these cases, ad hoc techniques for for-

. ward recovery will be used.

2.1.3 Reliability values

The parameters of importance to spacecraft missions
are:

Mean Time to First Failure
System Failure Rate
Availability
Error Rate

MTFF is an estimate of the upper bound on mission
length, while system failure rate is an estimate of confi-
dence in a system's ability to complete a mission. Availa-
bility and error rate deal not with failures of the system
but with the degree to which a system performs its functions
over,a mission.

A system may perform in a degraded mode for part of a
mission or may, for short intervals, not perform any func-
tions, even though this loss of function does not end the
mission. Availability is a measure of this kind of reduction
in function.

A system may produce information which is partially in-
correct. If the errors do not cause disturbance to the he-

2-4

I .

•

I .

I .

alth of the spacecraft, the mission can continue even though
it does not perform functions perfectly. The error rate par-
ameter is a measure of the extent to which information is
corrupted.

The MTFF of the AASC will be 10**9 hours. The system
failure rate will thus be approximately 10**-9 failures per
hour. If the maximum expected mission length is 30 years,
this implies that on average, 1 in 4000 missions will exper-
ience a system failure.

The error rate will be 1 incorrect symbol in 10**9.

The availability of the AASC will be (1 - 10**-9).

2.2 The Flexibility of the AASC

The AASC design will possess a high degree of adapta-
bility at all levels of its structure, both in hardware and
software. To this end, the following design objectives are
found to be essential:

(1) mission-to-mission application changes: the ability
to serve an arbitrary set of applications on each
mission.

The ability to apply the same basic design of the
AASC to several missions will result in an immediate
reduction in development costs, and longer term costs
including costs for operations, testing, upgrading,
training, and maintenance. It is expected that the
basic design will have a clean modular structure to
allow substitution of components at all levels of its
logical organization. A small application will have
simpler networking and a smaller number of relatively
simple clusters. The on-board system software for
such a system will be equally bare-boned in a system-
atic fashion. A larger AASC implementation will have
more capabilities implemented both in software and
hatdware, while sharing the same basic structure with
the simpler version. There will be many sizes and
complexities of the AASC between the two extremes.
Furthermore, a mission may contain more than one
AASC, each of different magnitude and characteris-
tics.

Two examples of dissimilar missions might be a geo-

2-5

I

I .

2-6

synchronous communication satellite and an eccentric
orbit research probe. Applications in the former
might include antenna deployment, orbit and attitude
maintenance, communication channel control, power
supply monitoring and control, while the latter might
require multiple sensing device deployment, naviga-
tion, trajectory control, and telemetry.

(2) in-mission application changes: the ability to adapt
in flight to changes in mission profile.

The diversification of space activities expected in
the near future will lead to multiple mission objec-
tives charged to many future spacecraft. This calls
for hardware and software structures that are adapt-
able to in-flight, on-board reorganization.

The mission profile changes of the Voyager space-
crafts are typical examples. After successfully com-
pleting their activities around Jupiter, they used
its gravity field to bring the orbit towards Saturn.
The eventual successful completion of the Saturn mis-
sion led to the in-flight implementation of yet other
missions to explore the outer-most planets of the so-
lar system.

Interpreting this adaptability, with 	respect 	to
earth-orbiting satellite missions, a geosynchronous
communication satellite would, for example, enjoy the
ability to reassign on-board switching facilities
from TV channels to data communication channels from
time to time during its life.

(3) the ability to upgrade or enhance system components
and relationships.

It must be possible, between missions, to replace one
hardware component with another that is functionally
similar, but has different performance levels, tech-
nology base, or other characteristic which is not re-
lated to logical function. Such changes will be ne-
cessary as a result of, among other things, changes
in performance requirements, advances in hardware
technology (for instance radiation hardness), cost,
and availability.

The relationships among system components must be
flexible so that, as experience accumulates, design

changes can be made wi‘thout major changes in unrelat-
ed areas of the design. For example, if design
changes require that Processor Complex Units (PCUs)
be dynamically assigned to I/O Interface Units
(IIUs) CGOMI 81b], instead of dedicated to them, this
will be possible by changing the functional charac-
teristics of a very small number of system modules.

Functions implemented in software are inherently more
flexible than those in hardware. It will be possible
to substitute for one software module another module
which implements an enhanced algorithm for a particu-
lar function, without adversely affecting cost or ef-
fectiveness of the AASC and, hence, with little or no
effect on other modules in the AASC. For example, if
a new method for fault recovery is discovered, its
introduction into the AASC should cause no
side-effects.

(4) in-mission system changes and distribution of loads:
modification of configuration to cover component fai-
lures during a mission and the ability to cope with
non-homogenous load distribution.

While system level re-structuring may be achieved far
more easily on software structures, hardware must al-
so provide the facility to remove incapacitated com-
ponents from the system and re-load the task to a
spare. Hence, a mechanism to feed spares and discon-
nect invalidated elements is essential. Although pre-
sent technology does not permit complete physical re-
moval of rejected hardware components, there must be
a scheme to keep them totally out of the way. Re-
placements, in most cases, must exist in the form of
blank spares (as opposed to hot spares) so that the
overhead is kept low. For the same reson, they must
exist in a sufficiently fine granularity, preferably
in several classes. For a given analyzed fault,
spares of a finer granularity will be applied first
(e.g. VLSI components are replaced before computer
cards, cards before complete processor units, and so
on).

The on-board software will have the ability to revise
its execution environment. The revision may occur
gradually by updating portions of the environment at
a time; drastically, by rewriting the entire run-time
world in a short sequence of events; or at any tempo

2-7

in between the two extremes. The system software must
not only be able to modify itself but also be capable
of managing application loads in the reconfigured
physical and logical execution environment.

The interconnecting on-board networks must also be
reconfigurable to cope with on-board emergencies. The
ways in which they can be configured will include to-
pology, capacity, protocol and the degree of redun-
dancy.

A wide variation in the demands by on-board subsys-
tems on resources such as computing or communication
bandwidth will always exist, even during the course
of one mission. For example, an on-board image ana-
lysis subsystem would require a greater processing
capability than a subsystem that handles input from a
strain gage which measures the external distortion of
the spacecraft shell at discrete intervals.

2.3 Architecture of Fault-Tolerance

A 	distributed 	processing system with distributed
fault-tolerance capabilities, such as the AASC, must include
the following:

1. distributed fault detection - the ability of all
nodes of the distributed system to detect faults in
other nodes to which it is linked.

2. cooperative fault diagnosis - the ability of more
than one node to exchange fault detection informa-
tion in order to make a correct diagnosis.

3. node/link fault discrimination - the ability to dis-
tinguish between node faults and faulty communica-
tion links.

4. message/state conflict detection - the ability to
determine that a correct message is being sent at an
inappropriate time.

- physical isolation - the ability to physically pre-
vent signals from a faulty node from reaching other
nodes when such signals could prevent operation of
the node (for instance because of the high rate of
arrival of signals).

2-8

- logical isolation - the ability to prevent logical
information from a faulty node from reaching good
nodes.

- backward recovery - the ability to restore a faulty
node to a previous correct state and to restore all
nodes whose current states depend on the faulty node
[WOOD 81].

- forward recovery - the ability to find an arbitrary
correct state for a faulty node and transform that
node into the correct state and to perform similar
transformations on nodes depèndent on the faulty
node.

- physical reconfiguration - the ability to change
physical links and node characteristics where neceà-
sary to allow forward recovery

- logical reconfiguration - the ability to change log-
ical relationships among objects in the network, for
instance, reassignment of processes to processors,
to allow forward recovery.

Algorithms exist for all the above capabilities, given
the above assumptions for fault occurrence.

2.4 Performance
•

The performance criteria of the AASC are described in
terms of the following system parameters:

(1) the minimum throughput of a network linkage between
two clusters.

I.

1

For the transmission of data that is not a represen-
tation of an image or voice, 10 MBPS (Mega Bits Per
Second) will be required as the minimum bandwidth
between two clusters. In places where image or voice
processing is involved, this may flot be sufficient
and an appropriate bandwidth must be . provided. When
the 	continuity 	of 	transmission 	is important,
bandwidth alone is not sufficient to define a satis-
factory 	operational 	environment 	(e.g., 	voice
transmission or similar traffic on a 10MHz CSMA/CD
network will have to face "glitch" problems). The
combination of network access delays, routing delays

2-9

and bandwidth of the communication media must create
a satisfactory communication channel to meet the ac-
cess requirements set by the application or combina-
tion of applications.

(2) The logic and arithmetic operations required by an
application (excluding extremely high-intensity com-
putation such as high-resolution time series analysis
and image processing) will be done by a processor
complex unit. The through-put of this unit will be
sufficient for all appropriate applications. In gen-
eral, the unit must be able to yield a minimum of 1.0
MIPS (Million Instructions Per Second) of processing
power when properly configured and measured in terms
of a 16-bit instruction set or equivalent.

(3) For floating-point computation, the processor unit
must have at least 0.25 MIPS of throughput when exe-
cuting a mix of basic floating point operations (add,
subtract, multiply, divide and modulo) on floating
point values in IEEE standard single 	precision
(32-bit) format.

(4) The memory transfer rate between the processor in the
cluster and on-unit memory array must be more than
5.0 megabytes per second. Similarly, 	the 	data
transfer rate between the unit and off-unit memory
(secondary memory) must exceed 2.0 megabytes per sec-
ond.

(5) The operating system for the processor unit will pro-
vide a multitasking environment which is transparent
to any multiprocessing scheme the processor unit may
have. It will support basic multitasking functions
(e.g. inter-task communication and control, context
switching) with less than 25% overhead. The maximum
time requirement for context switching must be less
than 50 microseconds.

2.5 Autonomy Requirements

The On-board Autonomy Manager (0AM) will maintain the
well-being of the on-board operation of the spacecraft. This
will include proper handling of minor faults. In the case of
severe on-board faults, it will attempt to solve the crisis
in cooperation with ground control.

2-10

In order to satisfy ground control's audit, override
and reporting requirements, the OAM will establish communi-
cation with the ground asynchronously - i.e. no fixed time
windows, or synchronization restrictions - when one of the
following conditions exists:

(1) ground control wishes to query or monitor any aspects
of on-board operation

(2) ground control attempts to take over part or all of
the on-board management

(3) the OAM decides that a significant on-board event re-
quires reporting

The thresholds implied in (3) above will be determined
case by case, as system parameters, for each application.
The OAM will maintain sufficient on-board archiving storage
so that information subject to ground audit may be kept for
the period of time determined for each mission. Such storage
shall be organized in a hierarchical fashion so that
on-board archiving of data will occur in diminishing fre-
quency and quantity in respect to time (e.g. the on-board
storage will retain detailed data on the events of the' pre-
vious few hours, a summary of the events for the previous
week and a condensed summary of events that occurred several
months ago). The anticipated relationship between the OAM,
the on-board system and ground control is indicated in Fig-
ure 3.

Since the technology involved in developing the OAM is
new, several aspects of its design may evolve rapidly during
the early years of its implementation. For this reason, the
initial design of the OAM must consider the following:

- The OAM must be able to, at a later time, incorporate
an explanation subsystem that will describe how the
on-board expert system achieved its deduction, or
other forms of decision making, from a given set of
conditions.

- In the event that suitable techniques are developed
in the field of so-called "knowledge acquisition" or-
"learning", the OAM will be able to gracefully in-
clude them in its structure.

-,The on-board expert system will maintain a reasonable
architectural distinction between the knowledge-base

2-11

On-board
subsystems

consult

monitor
Ground Ground update

• Control

Expert system
for on-board
management

Figure 3. On-Board Autonomy Management

and the inference mechanism. First, this is to permit
different applications to use the same OAM structure
by substituting a knowledge-base with one that is ap-
propriate for the new application domain. Second,
such a modular structure will allow the system de-
signer to take advantage of improvements in the im-
plementation of these elements.

- The "global data base" or "scratch-pad" used during
the operation of the OAM will have an appropriate
internal structure and capacity to store not only
current data being used in the process of deduction
but also data concerning the immediate past operation
of the OAM, such that backtracking can be performed
when necessary.

- The OAM will contain hooks to incorporate a mechanism
to deal with "fuzzy situations". Heuristic techniques
will be introduced when the OAM is forced to proceàs
fuzzy conditions or apply unclear deduction schemes.
When these heuristics take place the OAM will report
their occurrence and the procedures followed to
ground control.

3. 	Design Constraints of the AASC

The following constraints are applicable to the design
of the AASC.

3.1 The Fault-Tolerant Computing Rules (FTC Rules)

Reliability of a system can be increased in two time
domains: development time and mission time. The use of tech-
niques during system development that tend to decrease the
number of faults in the system at the start of a mission is
called fault-avoidance. In particular, during the design
phases of system development, there are a number of constra-
ints which will reduce the number of faults in a system, as'
well as ensuring that the flexibility criteria (section 2.2)
are met.

The following are the proposed fault-tolerant computing
design rules (FTC design rules):

[1] There shall be no, or as few as possible, single points
of failure in the system (the redundancy rule).

A chain is only as strong as its weakest link. If the
system is dependent on a single item, channel, or meth-
odology, system reliability equals the reliability of
such single points of failure. For instance, if a star
configuration is used in a multiprocessor system, fai-
lure of the central node causes inter-processor commun-
ication to fail. If there is only one software module
available for executing a crucial algorithm, a fault in
that module means the algorithm cannot be relied upon.

[2] There shall be no fixed master-slave relationships
among processing units (the democracy rule).

The use of dedicated redundancy means an inefficient
use of resources and loss of flexibility. In a fixed
master/slave processor relationship a faulty master can
propagate errors throughout the system before the dam-
age is discovered.

[3] There shall be no permanent fault arbiters or judges in
the system (the modesty rule).

A permanent fault arbiter runs the risk of harbouring
faults. If the ability to detect or diagnose faults is
incorporated in individual modules, the chance of caus-

3- 1

ing widespread failures due to a faulty judge can be
avoided.

[4] Interconnection among functional modules must be mini-
mal and of the simplest type (the decoupling rule).

Whenever a function is supported 	by 	processors,
processes, tasks, subprograms, or other form of sub-
functional modules, the method of inter-connecting them
shall obey the module decoupling rules proposed by
Glenford Myers [MYER 75,78].

In a dynamically configurable system, which permits its
own reconfiguration in operation, the ability to mani-
pulate component modules is important. In order to
achieve the addition or removal of a module with the
minimum of disruption, modular interfaces should be as
simple and clean as possible. While the principle is
clear in hardware terms, its application to software
often requires discipline on the part of the designer.
The simplest example is the minimization of the number
of arguments passed between calling and called pro-
grams. Similarly, variables in a block-structured
language should be declared as locally as possible, be-
cause a global declaration gives all procedures access
to the variable, thus providing the possibility of
side-effects and coupling procedures unnecessarily.

The concept, along with the concept of module strength
given below, was developed in software engineering.
However, it is judged that these concepts are equally
applicable to non-software system entities such as
hardware components and processes.

[5] Every functional module must follow Myers' module
strength rules (the module strength rule).

The strength of a module lies in its raison d'etre. A
functionally cohesive module will be easier to recog-
nize and manipulate, and will not disintegrate in a dy-
namic environment. A module must perform a recogniz-
able, coherent function. A module which attempts to ex-
ecute two or more disparate functions will require a
more complicated interface with other modules, breaking
Rule [4]. Furthermore, since there is more than one
function, the probability is increased that a modifica-
tion will be required of that module, so system testing
and modification will become harder and more error

3-2

prone.

[6] System function must be broken down vertically into la-
yers of decreasing levels of abstraction. Decoupling
between the layers must be observed (the layer rule).

Since hierarchical thinking is natural to humans, com-
plex structures arranged in orderly layers are more re-
adily understood. Such a structured representation of
concepts will be more accurate, revisions will be fewer
and more readily implemented. Examples of this thinking
are seen in the designs of operating systems, computer
networking, and computer graphics.

3.2 Top-Down/Structured Development

In order to adhere to the FTC rules described above,
system development will use techniques collectively known as
"top-down/structured development". The methodology applies a
consistent approach to phases of development commonly known
as system design, module design, implementation, and test-
ing. "Module" here implies software, hardware, or a combined
software/hardware entity that may exist in a system stati-
cally (e.g. processors) or dynamically (e.g. processes). A
module performs a predefined function and contributes to the
global function of the system. The common characteristic at
each step is that the individual functions (or modules, or
test units) are defined by a process of successive refine-
ment, starting with the most global functions (or modules,
or test units).

Since there are several versions of the interpretation
of this technique, the following sections describe briefly
the application of top-down/structured techniques to each
development activity. While four activities are described,
it cannot be emphasized too heavily that these activities
are not consecutive in time, but are overlapping and largely
concurrently executed in much smaller units. That is, once
the decomposition of system functions has passed the second
level, implementation of the first level function and its
interfaces can begin. Once the first level is implemented,
testing can begin. The extent with which implementation of a
level and the design of the next overlap may vary depending
on the nature of the implementation and other circumstances.
The point is that the implementation, integration and test-
ing of a level will not have to await the completion of the
next lower level or any subsequent levels. Feedback from the

level immediately below the one being tested is encouraged
in order to remove distortions at the earliest possible
chance, while long-hop feedbacks are discouraged to maintain
an effective development cost.

3.2.1 Top-down system design

The first step is to define the overall function of the
system, characterized as accurately and as succinctly as
possible. This document, for example, is aimed at achieving
this objective. This function is then decomposed into a
small number of subfunctions, each of which is required, at
some point in time, to accomplish the global function-. Each
of these subfunctions can, in turn, be decomposed into a
simple set of "lower-level" subfunctions, and so on, until a
set of primitive, (or "low-level" or "terminal") subfunc-
tions is arrived at, whose simplicity does not require
further decomposition.

The above process will produce a set of functions whose
relationships form a tree, or hierarchy, the root node of
which is the global function and the leaves of which are the
primitive subfunctions. The next step is to determine the
input and output for each of these functions, associated da-
ta stores, and timing requirements. Finally, the interfaces
between the functions, that is the data passed between func-
tions, must be defined.

The choice of which functions in the hierarchy are to
be implemented in software and which in hardware can be made
at this point. However, if Rules [4] through [6] of the FTC
Rules have , been followed, it will be possible to change
these assignments later with minimum disruption. Similarly,
partitioning of functions among processor classes is done at
this point, but can be altered later with minimum
side-effects.

3.2.2 Top-Down/Structured Module Design

A subset of the hierarchy of system functions can be
implemented either in software or hardware. In the case of
software functions, a subset of software functions will be
implemented as separately-compiled programs. Each of these
modules is decomposed, top-down, into subfunctions which are
implemented as internal procedures (software) or sub-units
(hardware), a process known as top-down module design. The
inputs and outputs (parameters) of each procedure are de-
fined, as well as its data stores (software) or signals

3-4

(hardware), in the same way as for system functions. As the
modules are decomposed into submodules, proper structured
design techniques will be used to maintain the structural
soundness of the over-all system.

3.2.3 Top-Down Implementation.

Implementation of a module designed top-down is done by
implementing the top-level or global procedure first, with
the procedures of the next level implemented only as dummy
procedures containing no usable body. These are called
stubs". Following the integration of the implemented module
into a skeleton system and the testing (Section 3.2.4) of
this procedure, the stubs are "expanded" or developed in
full, with their dependent procedures written as stubs. This
method is repeated at each level of procedure until the
low-level or terminal procedures have been implemented.

3.2.4 Top-Down Testing

As mentioned in 3.2.3, the global procedure in a system
is tested while the second level procedures exist only as
stubs. As each stub is expanded, the system can be tested
with possible lower-level stubs. Errors detected during
testing can, in most cases, quickly be identified with the
particular stub that has just been expanded.

Top-down testing will, in fact, be applied not only to
local module testing but to system testing. As soon as the
system functional hierarchy has been defined, a test plan
will be designed. The top-down module of the system will be
implemented, and testing will begin with stub modules repre-
senting the second-level functions of the hierarchy. Testing
will proceed top-down, with implementation of the modules
proceeding level by level. This process produces a very lo-
calized feed back loop consisting of module design, module
implementation, module integration, module testing, error
detection, module correction. System integration testing as
a major development phase will be non-existent.

3.3 Software Fault-Avoidance

The following methods will be given serious considera-
tion in the design, implementation, and testing of software
for the AASC.

1. Structured system design and analysis.

3-5

2. Top-down program design (see Section 3.2)

3. Structured coding. These well-documented techniques
impose discipline on coding and enhance verifiability
of procedures.

4. Top-down Testing (see Section 4.)

5. Software fault-tree analysis. This technique promotes
the coverage of software faults by formalizing the
design of acceptance tests for recovery blocks.

6. Software fault-seeding/mutation analysis (see Section
4.)

Use of the above techniques will reduce the probability
that a software module contains a fault when the AASC begins
a mission.

The concept of fault tree analysis requires some cla-
rification. Since any system may be recursively decomposed
into functions (this is the underlying principle of top-down
design), it follows that a similar decomposition can be ap-
plied to system failure.

As an example, the hierarchy chart for a simple
real-time system for providing temperature readings based on
readings of transducer channels is given in Figure 4. A
fault-tree analysis of the same system is shown in Figure 5.
The starting point in fault analysis is to assume that the
system can fail. From the first-level functional decomposi-
tion, we can deduce the failures at this level that can
cause system failure. Each first-level failure can cause
system failure, so there is an implied disjunction among all
these conditions. In addition to faults which are intrinsic
to each function, there are general faults that can cause
failure at any level: loss of context (the loss of informa-
tion about what task to do next) and incorrect
parameter-passing between functions.

Each of the first-level failures can in turn be ana-
lyzed for failures in second-level functions, and similarly
at the third level. Carrying the functional decomposition to
a more detailed level in the hierarchy chart would allow a
more detailed fault-tree analysis.

Fault-tree analysis can be used to:

3-6

Read
channel

111111111111111•11111111MIMMIIM111MIIIIIIIIIIIIIMMI

Provide
Temperature
Readings

Convert 	Calculate ' 	'Convert for
channel' 	temperaturel 	'display
reading

Display
reading

Convert
to floating

point

Handle
Interrupt

Get
reading

front eueue

Save
Context

Put
reading

in nueue

Restore
context

Figure 4. Hierarchy- chart showing functional
decomposition of a simPle process.

Channel is
not read

ri 	.
n Interrupt 	Iterrupt

s missed 	is mishandled

Wrong
channel
is read

Reading
is
misplaced

Context
is lost

Incorrect
Parameter
Passed

Temperatur

-1

e \

—

Calculation . 	

No displam 	
conversion

incorr ct incorr ct

No
conversion
is done

Queue is
accessed
incorrectly

[

Displ ay
conversion
incorrect

No displam
is done

Display
is incorrect

Queue is
accessed
incorrectly

Floating
Point
Conversion
is incorrect

Smstem
Fails

Channel
is read
incorrectlm

Reading is
mishandled

Interrupt
is mishandled

1 Conversion 1
is incorrect

--...„..

Figure 5 . Fault-tree analysis of simple process

a) determine partitioning for recovery blocks

b) determine acceptance tests for recovery blocks

C) determine sequence and criteria for testing

d) determine 	isolation 	regions 	for 	software
fault-tolerance.

Fault-tree analysis can be applied at the system, node,
processor, process and module level.

3.4 Networking Design Principles and Standards

The structure and design of communication architectures
has been researched in depth by the telecommunication and
distributed data processing industries. From this work, a
number of fundamental design principles have been identified
which the authors recommend be applied to the development of
the AASC. These principles are as follows:

(1) Layered Communications Structure

A layered structure be required such that the communica-
tion procedures used between two systems (e.g. a satel-
lite and a ground computer) be partitioned into a hier-
archical set of procedures (i.e. protocols). In this
structure, each protocol provides a set of services
(e.g. sequencing, flow control, check point signalling
etc.).

Each partition in this structure is called a layer. Each
layer uses the services provided by the layer below,
plus the functions performed by the protocol in its own
layer, to offer enhanced services to the next higher la-
yer.

(2) Criteria for Selecting Layers

There area number of criteria for partitioning the com-
munications structure into . a set of layers. The number
of layers should not be too high to avoid inefficient
communications. Too few layers can result in protocols
that perform many functions and thus are very complex.
The consequence is that proof of protocol correctness
and validation of implementation are difficult.

7

Layers should be selected where alternate technologies
(and hence protocols) are anticipated. This criteria
will allow the use of new communication technologies
without requiring the re-design and implementation of
the entire communication structure.

(3) Performance

The communications structure should allow performance
criteria to be dictated by the needs of the applica-
tions. The following are statements of objectives asso-
ciated with the major performance criteria:

a. Throughput

The communications structure should manage the shar-
ing of limited communication resources across appli-
cations. • If necessary, the full bandwidth should be
available to a single application. The simultaneous
use of multiple connections to achieve the required
capacity should not be precluded.

b. Reliability and Availability

The communication structure should offer a range of
transmission integrity checking and recovery ser-
vices.

Recovery 	either 	through 	error 	detection 	and
re-transmission (or re-generation) or reconnection of
a logical link (perhaps using a different physical
circuit) should be an intrinsic feature and should be
a service provided to application processes.

c. Transparency

The application should be able to send arbitrary se-
quences of bits without concern that they will be in-
terpreted by lower layer protocols.

d. Recovery from End Application Failure

The structure should facilitate the recovery of in-
formation when one of the communicating applications
fails. Techniques such as check point/restart proto-
cols provide this feature.

(4) Interconnection to Ground and Other On-Board Systems.

3-8

Multiple applications in the AASC must be able to com-
municate with application processes in a variety of com-
puter systems distributed on the ground and elsewhere in
space. An example of such interconnections is seen in
Figure 6.

The standard communication architecture called Open
System Interconnection (OS I) 79] satisfies the above la-
yering, performance and interconnection requirements. Given
the trend to use this architecture when interconnecting het-
erogeneous computing systems, we recommend that the use of
the °SI architecture be an AASC design requirement.

3.5 Designs for Fault-Tolerance

While adherence to FTC rules and top-down/structured
development has implications for all design decisions, the
design of fault-tolerance mechanisms deserves particular at-
tention.

FTC Rule [1] implies that a distributed processing so-
lution will be chosen for the design, since it removes sin-
'gle points of failure. Similarly, the functions of diag-
nosis, containment, and analysis of, and recovery from er-
rors should be distributed, so that no single module is res-
ponsible for fault diagnosis. There are at least two classes
of designs for distributed fault-diagnosis - hierarchical
and "democratic" in which all nodes in a network have the
potential for diagnosing one or more other nodes. The FTC
rules bias design towards the democratic model, but it is
possible that the choice will be constrained not by design
rules but by the existence of appropriate algorithms for di-
agnosis of node faults and link faults [KUHL 81, MCPH 81].

FTC Rule [1] has implications for the choice of
fault-tolerant data structures. A single point of failure in
a list, linked list, tree, etc. is discouraged by the rule.
The concept can be extended to encourage tolerance of N fai-
lures in the data structure, since it is quite easy for a
software or hardware error to destroy a set of data items in
a data structure in a single event. Data structure design
should, hence, incorporate robustness [BLAC 81] as a
fault-tolerant feature.

9

Remote on-board
network
(remote satellite)

LAN B

On-board network system
(large aatellite or -
orbiting . platform)

on-board

0 Cluster

• gateway

global network
nodes

Figure . AASC Interconnections

Ground Control

i\
1 *
i •

nha 1

i‘

1« 	1 ,

Med-wnrk I

11111111 	 Ma 111•11 Ilall MI - MM. MI - MI 111111111 	-111111 	.1111111 .

•

4. The Functional Test of the ÀASC

Purpose

The purpose of testing the AASC is to establish:

- compliance with the functional specification

- confidence in the design

- consistency of performance.

Principles

It is widely acknowledged [ANDE 82, LEVE 82a] that it
is not possible to achieve 100% avoidance of faults in bu-
ilding a system. Similarly, it is impossible to ensure that
system testing will expose all the faults remaining after
the application of fault-avoidance techniques. However, cer-
tain principles have been applied during this study to the
system development process in order to obtain a high degree
of software quality assurance and thus to maximize
fault-avoidance. These principles are equally appropriate to
the area of testing and validation, for which the same goals
apply. A top-down, structured approach to testing will be
used and the application of redundant methods will be consi-
dered, particularly in areas recognized as most likely to
harbour critical faults.

Concurrent Testing

Testing is seen as a continuous process involving all
levels of the system hierarchy and all stages in its evolu-
tion [HOWD 82]. Tests should be applied at each phase of de-
velopment and to each concept, level or module as it is
formed, with reference to the real-world environment in
which the system is designed to operate. The nature of this
process is shown in Figure 7, which is derived from Howdon
[HOWD 82].

Test Plan

An attempt must be made to validate the system formal-
ly. The achievement of high system quality requires the in-
corporation of verification into each phase of development
[ADRI 82]. To this end, the test plan is considered to be an
integral part of development. It will take into considera-
tion these factors:

4-1

Requirements 	Requirements
development 	validation

\,,._e. 	
L----

Specifications
development

Specifications
validation —\

,s_fesign Dèsign development validation

Module 	Module
development 	validation

Figure 7. 	Integrated validation and development.

Test Scope:
All parts of the system hierarchy and aspects of
its development should be covered by testing and
validation. Testing should include a check of the
basic system concepts against a. real-world model.
These concepts include reliability, availability,
flexibility, reconfigurability, performance, and
general conformity to the FTC rules. It should
continue throughout development to make reference
back to the previous stage. This will enable any
changes made to be tested as they are made and in-
crease confidence in the implementation of the
specification.

Exhaustive testing, the technique of testing every
element of a domain, is the only known analysis
.technique which will guarantee the validity of a
program [ADRI 82]. This is the ideal but where
this is practically impossible, criteria must be
selected.to enable economical, feasible and yet
representative testing to take place.

Testability:
To be testable, software must be understandable
and measureable [ADRI 82]. Understandability re-
quires that each stage be structured, concise and
self-descriptive. Measurability requires the pos-
sibility of instrumenting, probing, testing, and
evaluating at each stage of the development. The
requirement for testability at each stage calls
for the creation of the test plan at the earliest
possible point. This should be done in conjunction
with other design plans to ensure that measurabil-
ity is, indeed, a feature at all levels.

Timely detection of errors:
Emphasis should be placed on the early detection
of errors. Errors occurring in the requirements or
sPecification stages are harder and more expensive
to catch and persist longer than other types
[HOWD 82, LEVE 82b, SCHI 82]. Validation should,
therefore, be applied at the earliest opportunity.

Fault Types:
Knowledge of what faults are being tested for is
essential. An analysis of fault-types should be
made prior . to making the test/design plans. This
should cover the criticality of fault types and

4-2

areas of high fault concentration 	[SCHI 81 1 .
Awareness of these factors should lessen the
chance of building faults into the design.
Fault-tree analysis will considered for this, as
well as other purposes.

Redundancy:
The use of redundancy should be considered when
planning tests. Redundancy is appropriate in the
use of:

- methods: redundant, independent methods may well
ensure more complete error-trapping. Fault-type
analysis will aid the selection of areas in
which redundant tests should be applied, namely
areas deemed most likely to contain critical
fault types and high concentrations of faults.

- models: use of the same simulation model for
testing purposes throughout will produce valid
results only to the extent to which the model
itself is fault-free. N versions of a model,
preferably originated by 	different 	people,
should be used. N different, independent ver-
sions used at each stage of a system's evolution
will result, by being tested both against each
other and against the previous stage, in the em-
ergence of a preferred version(s).

Test Tools:
Serious consideration should be given to the ac-
quiring and appropriate use of test and validation
tools when the test plan is drawn up. They should
be selected in accordance with the above require-
ments and their relevance determined in terms of
functionality, module size and language.

The use of Ada as a specification and implementa-
tion language and an Ada Programming Support Envi-
ronment (APSE) may obviate the need for some forms
of testing. For example, type checking would be an
inherent part of the APSE. However, this should
not cause the requirement for redundancy of test-
ing methods to be overlooked.

Tests are divided into 	static 	and 	dynamic
[SCHI 82]. Static tests can be conducted during
the construction stage of development on incom-

4-3

plete programs and will yield faster results. Dy-
namic tests are more productive in the later
stages of development during execution of the
code. Static testing tools include data-flow ana-
lyzers, path analyzers, coverage analyzers, inter-
face analyzers, and cross-referencers. Some dynam-
ic testing tools are assertion checkers, simula-
tors, path-flow tracers, symbolic execution tools
and mutation analyzers.

Requirements, specification and design documents
will be subjected to document analysis in the form
of document inspection and structured
"walk-throughs". A checklist of'properties such as
consistency, necessity, sufficiency, feasibility
and correctness should be drawn up and applied to
each document. Walk-throughs, although expensive
in terms of man-power, would be appropriate at any
stage, and must be conducted as frequently and in-
formally as feasible.

Fault-seeding, referred to earlier in Section 3.3,
is a technique which "seeds" known errors into the
implementation in a statistically similar manner
to that of actual errors. Test data are then ap-
plied and the number of seeded and original errors
determined. With the assumptions that seeded and
unseeded errors are equally findable and that
seeding and testing are statistically unbiased,
the proportion of undetected, unseeded errors is
ascertained. These assumptions, however, are open
to question [ADRI 82]. A further development from
this method is mutation analysis, which also in-
volves error seeding. In this method, several mu-
tant programs are derived from the original, each
containing different errors or error sets. The
program and mutants are run interpretatively on
the test set. Results so far have shown that test
sets which showed scores of 0.95 or more did not
produce any further errors in subsequent use. It
is recommended that this method be seriously con-
sidered for use in the test plan.

Tests of specific concepts will require the use of
estimation tools, for, example the use of Aries 82
[MAKA 82] in the evaluation of reliablility. Con-
stant referral should be made to the FTC rules,
particularly in the specification and design

4 - Li

stages.

5. CONCLUSION

The main objectives of the AASC have been laid down and
definitions and assumptions regarding reliability have been
formed. A basis for partitioning reliability into hardware or
software has been indicated. Software fault-avoidance techni-
ques were examined. Findings in this area were that:

- N-version programming can be used selectively and would,
therefore, be cost-effective in use;

- use of recovery blocks provides an extension beyond
N-version programming but is rigid in application. Recom-
mendations to counteract this rigidity were made;

- Ad hoc measures can be useful in circumstances when nei-
ther of these two methods apply.

Reliability values important on spacecraft missions have
been established. Conditions for the achievement of diagnosa-
bility and recovery are determined.

The essential objectives were outlined for the achievement
of flexibility of system hardware and software. These involve
mission-to-mission application changes; in-mission application
changes; enhancement of components and relationships; and
in-mission modification.

Performance criteria were established, including minimum
throughput, floating-point requirements, memory transfer rate
and multitasking capabilities and constraints.

Autonomy will be achieved through an Onboard Autonomy Man-
ager and conditions have been established which apply to its
operation.

Design constraints will be imposed during development to
minimize the introduction of faults and ensure that the design
criteria are upheld. These consist of the Fault Tolerant Com-
puting rules; the application of a top-down/structured approach
to development, system and program design, implementation, and
testing; and the use of software fault-avoidance methods. •

The design principles and standards which are applicable
to networking have been outlined, namely a layered communica-
tions structure, performance criteria and interconnection to
other systems.

Top-down principles were also applied to functional test-
ing. The application of testing should be concurrent with the

5-1

development of the system. To ensure system testability, a test
plan is to be created at the outset of development. Reference
points for this plan should be system scope and testability,
the timely detection of errors, redundancy of techniques, types
of faults and testing tools.

REFERENCES

ADRI 82 Adrion, W.R., Martha A. Branstad, and John C. Cherni-
avsky, "Verification, Validation, and Testing of Com-
puter Software", ACM Computing Surveys, Vol. 14, No.
2., June 1982.

ANDE 82 	Anderson, T. and P.A. Lee, "Fault Tolerance: Princi-
ples and Practice", Prentice Hall. 1982.

GOMI 82a Gomi, T. and M.Inwood, "FTBBC - The Fault-Tolerant
Building Block Computer", Eidetic Systems Corp.,
1982.

GOMI 82b Garni, T. and M. Inwood, "A fault-Tolerant On-Board
Computer System for Spacecraft Applications", Eidetic
Systems Corp., 1982.

HECK 80

HOWD 82

ISO 79

Heckman, Paul J., Jr. "Free-Swimming Submersible
Testbed (Eave West)", Technical Report 622, Naval
Ocean Systems Center, San Diego, Calif.

Bowdon, William E., "Validation of Scientific Pro- •
grams", ACM Computing Surveys, Vol. 14, No.2, June
1982.

"Reference Model of Open Systems Interconnection",
ISO TC97/SC16/N537

LEVE 82a Leveson, Nancy G., and Shaula Yemini, "An Evaluation
of Software Fault Tolerance Techniques in Real-Time
Safety-Critical Applications", Technical Report 192,
University of California, Irvine, November 1982.

LEVE 82b Leveson, Nancy, "Software Fault-Tolerance" AIAA/NASA
Workshop on Applied Fault Tolerant Computing for Aer-
ospace Systems. Texas, November 1982.

MAKA 82

MARS 80

Makam, Srinivas V. and Algirdas Avizienis, "Aries 81:
A Reliability and Life-Cycle Evaluation Tool for
Fault-Tolerant Systems", Proc. of 12th Ann. Symp. of
F.T.Computing.

Marshall, Michael H. and G.David Low, "Final Report
of the Autonomous Spacecraft Maintenance Study Gro-
up", February 1, 1981. JPL Publication 80-88

MYER 75 	Myers, Glenford . "Software Development by Composite

6-1

Design", 1975.

MYER 78 	Myers, Glenford "Software Development", 1978.

Schindler, Max "Software Testing - A Scarce Art
Struggles to Become a Science", Electronic Design.
July 22, 1982.

VERE 81a Vere, Steven, ,"Planning in Time: Windows and Dura-
tions for Activities and Goals", NASA/JPL, Nove.
1981.

VERE 81b Vere, Steven and Brad Wallis, "A Full-Scale Demons-
tration of Autonomous Spacecraft Sequencing", Infor-
mation Systems Research Section (364), JPL.

TOUR 75 	Yourdon, E. "Techniques of Program Structure and De-
sign", Prentice-Hall, Englewood Cliffs, N.J., 1975.

SCHI 82

6-2

CUNNINGHAM, I.
Functional apeotfication for the

advanced autonomou .1pacecraft comput-
er

8 631
H

1

91
C655
G646
1983

DATE DUE
DATE DE RETOUR

7 1984 SEP

LOWF-MARTIN No. 1137

1

I

I

1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

