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SUMMARY 

The following aspects of the Advanced Autonomous Space-
craft Computer (AASC) are specified: the functions of the 
on-board computer system in relation to the autonomy of the 
spacecraft; the constraints under which the development will 
take place; and methods of verifying compliance of the devel-
oped AASC to the specificiations. 

Definitions and values are given for reliability terminol- , 
ogy and parameters. Software fault-avoidance is examined and 
three approaches selected: N-version programming, recovery 
blocks, and ad hoc measures. Fault diagnosability is discussed. 
The objectives for system flexibility are outlined and perfor-
mance criteria are established. The means of achieving on-board 
autonomy are introduced. 

Design constraints, including the Fault Tolerant Computing 
rules, the application of an overall top-down developmental ap-
proach, software fault-avoidance methods and networking stan-
dards, are imposed to allow the maximum ability to adopt new 
fault-tolerant techniques and methods, as and when they are ap-
propriate. 

Compliance with specifications is to be tested throughout 
the system development by the appropriate application of test-
ing techniques to be indicated in a test plan. 

work. 
A detailed design plan is to be the subject of follow-on 
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1. Introduction 

The Advanced Autonomous Spacecraft Computer. (AASC) is a 
conceptual design for an onboard spacecraft computer. It was 
introduced as a proposed "ideal spacecraft system" during an 
examination of building block computer concepts [GOMI 82a] 
for the purposes of comparison with existing designs. It 
was, originally, an attempt to bring together the results of 
many developments which had occurred since the design of 
such building-block computers as the Jet Propulsion 
Laboratory's Unified Data System/Fault-Tolerant 
Building-Block Computer and the European Space Agency's 
On-Board Data Handling System. The concepts were elaborated 
in a further study [GOMI 82b], during the course of which it 
became apparent that the ideal of autonomous spacecraft man-
agement was the aim of a number of influential authorities 
in the spacecraft community. So certain were these authori-
ties that autonomy was possible that they indicated a time 
frame for its achievement [MARS 80]. During this period of 
study, technological advances have been made which form a 
sound basis for achieving the fault-tolerance necessary for 
such an undertaking. These developments cover the discip-
lines of system engineering, artificial intelligence, and 
networking, as well as computer software and hardware. They 
have produced such innovations as the International Stan-
dards Organization's Open Systems Interconnection (ISO/OSI) 
protocols, software fault-tolerance, Ada programming 
language, highly configurable operating systems, and new 
computer architecture such as iMAX 432. They were examined 
in the report which precedes this and their relevance to the 
goal of autonomy was established. 

It was hinted in the ASM Final Report [MARS 80] that 
the  achievement of autonomy involved more than automated 
fault-tolerance. A high degree of decision making would be 
necessary, adding a new discipline to those already in- 

. volved, namely Artificial Intelligence (AI). Over the past 
year, AI has had an increasing amount of publicity and has 
acquired some respectability, with much attention being fo-
cussed on robots of varied intelligence for various 
non-trivial applications, and practical Expert Systems such 
as MYCIN and PROSPECTOR. Research during the course of the 
present studies has clarified the part to be played by such 
systems in the achievement of aUtonomy. Work on expert sys-
tems in connection with autonomy is proceeding at NASA ("Be-
bysitter"), Naval Ocean Systems Center ( ft EAVE 
WEST")[HECK 81] and JPL ("DEVISOR")[VERE 81a,b]. This dis-
cipline and its variations are to be an integral part of the 
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design to achieve autonomy in the AASC. 

From the start of these studies, the approach has been 
the top-down/structured approach advocated very early in the 
1960s by IBM and brought into the public domain by Yourdon 
[YOUR 75] in connection with software design and program-
ming. This methodology has proved to be appropriate and va-
luable in many fields where the development of systems by 
professionals is involved. Its application has been the gu-
iding principle throughout these studies and it has been ap-
plied to all areas of study in this particular phase. The 
top-down approach to design requires that first principles 
be dealt with before system details, as implied by the sys-
tem structure shown in Figure 1. For this reason, it is not 
the intent, in this study, to differentiate between hardware 
and software in outlining the functionality of the AASC. 
Those detailed aspects will be covered in the later stages. 
This report does cover the results of a sifting process ap-
plied to the mass of information,  papers and consultations 
made in connection with the latest research and activities 
in the Fault-Tolerant Computing (FTC) world. The results of 
this process have been applied in a specific manner to those 
somewhat abstract system attributes required for the achi-
evement of autonomy. Thus the report defines in concrete 
terms reliability, flexibility and the application of auton-
omy. 

Improvements in fault-tolerant techniques are occurring 
continually. It is intended that the design of the AASC 
should permit advantage to be taken of these revisions and 
introductions and its design should, therefore, be undertak-
en in a disciplined fashion. , The constraints of 
top-down/structured development, -  Fault-Tolerant Computing 
rules, which were developed earlier in the study as guide-
lines for maintaining a high degree of fault-tolerance, and 
networking standards, have been imposed with the intention 
of making the design capable of accepting future changes. It - 
is also felt that these constraints, together with software 
fault-avoidance techniques, will ensure the high quality ne-
cessary in a system before fault-tolerant techniques can be 
applied. 

Finally, an examination of the latest thinking on pro-
gram validation, verification and testing has. been made. 
This, too, takes the top-down approach, with the recommenda-
tion that these techniques should be conducted in a planned 
fashion throughout system development. The test plan should 
be drawn up in conjunction with the design plan, to enstire 
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Failure: 

where M is the length of a mission. 

1 Reliability: 

1 2-1 

FunCtional Objectives Of the AASC 

2.1 Reliability of the AASC 

2.1.1 Definition and Assumptions 

As any system is subject to failure, it is desirable to 
predict and to measure the degree to which the system per-
forms its functions. However, there is a wide variance among 
the  meanings attached by designers and researchers to the 
te.rms used to describe reliability parameters. For this rea-
son, we define the following terms used in specifying the 
reliability of the AASC. 

Valid State: 
the state of a system from which transitions 
produce the desired output. 

-Invalid State: 	 • • 
a state from WhiCh transitions produce unde-
sired output. 

transition of a system from a valid state to 
an invalid state. For some period of time 
following the failure, outputs will be incor- 

the internal Condition Of a system (compo 
nent, program, etc.) mhich'causes it-to fail: 

, 
Transient 	 . 	. 	. 	• 

I '' ' 	. 
Fault:- 

a fault that exists for an interval T sUch - 
. 	. 	. 	. 

:1 
 

that 

4 <= 0(T/M). <= 

a function 'R(t),.the probability that no fai-
lure has occurred to time t. " 

Failure Rate: 

1 A constant :lambda. 
. - Based on this assumption the reliability-function is:- 



R(t) = Ro exp(—lambda  *t) 

where 0 <= Ro <= 1, the probability that the 
component is functioning at t = O. 

Mean.Time To 
First Failure 
(MTFF): 

the time T such that 

Pr{first failure is in (0,T)} 

= Pr {first failure is in (T,infinity)} 

For exponential reliability, 

MTFF = 1/(ln (2* lambda)) 
where ln = natural logarithm 

Availability: 
the proportion of time during which a system 
produces the desired output. 

Error: 
the occurrence of undesired symbolic output 
from a process. An error can be due to a 
hardware failure or a software fault. 

Forward 
Recovery 
Procedure: 

an algorithm which produces a transition from 
an invalid system state to a valid state that 
is not one of the states from which the in-
valid state was derived. 

Backward 
Recovery 
Procedure: 

an algorithm to produce a transition from an 
invalid system state to a state from which 
the invalid state was derived. 

2.1.2 Reliability partitioning. 



AASC reliability can be partitioned as shown in Figure 
2. Whenever there is a choice of embedding a fault-tolerance 
procedure in hardware or software, hardware will be chosen. 
However, detection, isolation, diagnosis, and recovery at 
the subsystem level and at the network level will be accom-
plished by software. 

The 	first 	line 	of 	defense 	in 	software 	is 
fault-avoidance, that is the minimization of the number of 
faults in software before mission implementation begins. 
Software fault-avoidance is discussed in Section 3.3. 

The following techniques will be used to tolerate 
faults in software. 

1. N-version programming: this technique has been des-
cribed and implemented [LEVE 82, ADRI 82] at the sys-
tem level. That is, two or more redundant, indepen-
dently designed and implemented software systems run 
concurrently, 	voting 	on 	their 	outputs. 
Fault-detection occurs when the outputs disagree. In 
a multiprocessing and/or multi-tasking environment, 
redundancy can be extended to the process level. That 
is, redundant independently designed and implemented 
procedures can execute concurrently to perform the 
same function. Outputs of the multiple processes can 
be compared to detect failures, and can diagnose the 
failure if redundancy is triple or greater. 

The advantage of procedure-level redundancy is that 
it can be applied selectively to critical functions, 
reducing the cost of redundancy drastically. 

2. Recovery blocks: this technique will also be extended 
beyond previous implementations. Existing implementa-
tions 	impose 	on 	each 	critical procedure the 
structure: 

- acceptance criterion; 
- list of alternate equivalent procedures; 

together with the implied control sequence: 

i := 1; 	• 
loop 

alternate procedure i; 
i := i + 1; 
exit when acceptance criterion is met; 
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end loop; 

The main criticism of this technique is its rigidity. 
In the AASC, the recovery block will be extended to 
include: 

- a flexible, algorithmic control sequence for the 
alternate procedures; 

- a final alternate procedure to be executed if no 
alternative meets the acceptance criterion; 

- the ability of an alternative procedure to use the 
results of previous alternatives rather than re-
turn to the initial state; 

3. Ad hoc techniques: there may be situations where nei-
ther of the above methods can be used, because of 
timing or cost constraints or irreversible error con-
ditions. In these cases, ad hoc techniques for for- 

. ward recovery will be used. 

2.1.3 Reliability values 

The parameters of importance to spacecraft missions 
are: 

Mean Time to First Failure 
System Failure Rate 
Availability 
Error Rate 

MTFF is an estimate of the upper bound on mission 
length, while system failure rate is an estimate of confi-
dence in a system's ability to complete a mission. Availa-
bility and error rate deal not with failures of the system 
but with the degree to which a system performs its functions 
over,a mission. 

A system may perform in a degraded mode for part of a 
mission or may, for short intervals, not perform any func-
tions, even though this loss of function does not end the 
mission. Availability is a measure of this kind of reduction 
in function. 

A system may produce information which is partially in-
correct. If the errors do not cause disturbance to the he- 
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I .  

• 

I .  

I .  

alth of the spacecraft, the mission can continue even though 
it does not perform functions perfectly. The error rate par-
ameter is a measure of the extent to which information is 
corrupted. 

The MTFF of the AASC will be 10**9 hours. The system 
failure rate will thus be approximately 10**-9 failures per 
hour. If the maximum expected mission length is 30 years, 
this implies that on average, 1 in 4000 missions will exper-
ience a system failure. 

The error rate will be 1 incorrect symbol in 10**9. 

The availability of the AASC will be (1 - 10**-9). 

2.2 The Flexibility of the AASC 

The AASC design will possess a high degree of adapta-
bility at all levels of its structure, both in hardware and 
software. To this end, the following design objectives are 
found to be essential: 

(1) mission-to-mission application changes: the ability 
to serve an arbitrary set of applications on each 
mission. 

The ability to apply the same basic design of the 
AASC to several missions will result in an immediate 
reduction in development costs, and longer term costs 
including costs for operations, testing, upgrading, 
training, and maintenance. It is expected that the 
basic design will have a clean modular structure to 
allow substitution of components at all levels of its 
logical organization. A small application will have 
simpler networking and a smaller number of relatively 
simple clusters. The on-board system software for 
such a system will be equally bare-boned in a system-
atic fashion. A larger AASC implementation will have 
more capabilities implemented both in software and 
hatdware, while sharing the same basic structure with 
the simpler version. There will be many sizes and 
complexities of the AASC between the two extremes. 
Furthermore, a mission may contain more than one 
AASC, each of different magnitude and characteris-
tics. 

Two examples of dissimilar missions might be a geo- 
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synchronous communication satellite and an eccentric 
orbit research probe. Applications in the former 
might include antenna deployment, orbit and attitude 
maintenance, communication channel control, power 
supply monitoring and control, while the latter might 
require multiple sensing device deployment, naviga-
tion, trajectory control, and telemetry. 

(2) in-mission application changes: the ability to adapt 
in flight to changes in mission profile. 

The diversification of space activities expected in 
the near future will lead to multiple mission objec-
tives charged to many future spacecraft. This calls 
for hardware and software structures that are adapt-
able to in-flight, on-board reorganization. 

The mission profile changes of the Voyager space-
crafts are typical examples. After successfully com-
pleting their activities around Jupiter, they used 
its gravity field to bring the orbit towards Saturn. 
The eventual successful completion of the Saturn mis-
sion led to the in-flight implementation of yet other 
missions to  explore the outer-most planets of the so-
lar system. 

Interpreting this adaptability, with 	respect 	to 
earth-orbiting  satellite missions, a geosynchronous 
communication satellite would, for example, enjoy the 
ability to reassign on-board switching facilities 
from TV channels to data communication channels from 
time to time during its life. 

(3) the ability to upgrade or enhance system components 
and relationships. 

It must be possible, between missions, to replace one 
hardware component with another that is functionally 
similar, but has different performance levels, tech-
nology base, or other characteristic which is not re-
lated to logical function. Such changes will be ne-
cessary as a result of, among other things, changes 
in performance requirements, advances in hardware 
technology (for instance radiation hardness), cost, 
and availability. 

The relationships among system components must be 
flexible so that, as experience accumulates, design 



changes can be made wi‘thout major changes in unrelat-
ed areas of the design. For example, if design 
changes require that Processor Complex Units (PCUs) 
be dynamically assigned to I/O  Interface Units 
(IIUs) CGOMI 81b], instead of dedicated to them, this 
will be possible by changing the functional charac-
teristics of a very small number of system modules. 

Functions implemented in software are inherently more 
flexible than those in hardware. It will be possible 
to substitute for one software module another module 
which implements an enhanced algorithm for a particu-
lar function, without adversely affecting cost or ef-
fectiveness of the AASC and, hence, with little or no 
effect on other modules in the AASC. For example, if 
a new method for fault recovery is discovered, its 
introduction into the AASC should cause no 
side-effects. 

(4) in-mission system  changes and distribution of loads: 
modification of configuration to cover component fai-
lures during a mission and the ability to cope with 
non-homogenous load distribution. 

While system level re-structuring may be achieved far 
more easily on software structures, hardware must al-
so provide the facility to remove incapacitated com-
ponents from the system and re-load the task to a 
spare. Hence, a mechanism to feed spares and discon-
nect invalidated elements is essential. Although pre-
sent technology does not permit complete physical re-
moval of rejected hardware components, there must be 
a scheme to keep them totally out of the way. Re-
placements, in most cases, must exist in the form of 
blank spares (as opposed to hot spares) so that the 
overhead is kept low. For the same reson, they must 
exist in a sufficiently fine granularity, preferably 
in several classes. For a given analyzed fault, 
spares of a finer granularity will be applied first 
(e.g. VLSI components are replaced before computer 
cards, cards before complete processor units, and so 
on). 

The on-board software will have the ability to revise 
its execution environment. The revision may occur 
gradually by updating portions of the environment at 
a time; drastically, by rewriting the entire run-time 
world in a short sequence of events; or at any tempo 

2-7 



in between the two extremes. The system software must 
not only be able to modify itself but also be capable 
of managing application loads in the reconfigured 
physical and logical execution environment. 

The interconnecting on-board networks must also be 
reconfigurable to cope with on-board emergencies. The 
ways in which they can be configured will include to-
pology, capacity, protocol and the degree of redun-
dancy. 

A wide variation in the demands by on-board subsys-
tems on resources such as computing or communication 
bandwidth will always exist, even during the course 
of one mission. For example, an on-board image ana-
lysis subsystem would require a greater processing 
capability than a subsystem that handles input from a 
strain gage which measures the external distortion of 
the spacecraft shell at discrete intervals. 

2.3 Architecture of Fault-Tolerance 

A 	distributed 	processing system with distributed 
fault-tolerance capabilities, such as the AASC, must include 
the following: 

1. distributed fault detection - the ability of all 
nodes of the distributed system to detect faults in 
other nodes to which it is linked. 

2. cooperative fault diagnosis - the ability of more 
than one node to exchange fault detection informa-
tion in order to make a correct diagnosis. 

3. node/link fault discrimination - the ability to dis-
tinguish between node faults and faulty communica-
tion links. 

4. message/state conflict detection - the ability to 
determine that a correct message is being sent at an 
inappropriate time. 

- physical isolation - the ability to physically pre-
vent signals from a faulty node from reaching other 
nodes when such signals could prevent operation of 
the node (for instance because of the high rate of 
arrival of signals). 
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- logical isolation - the ability to prevent logical 
information from a faulty node from reaching good 
nodes. 

- backward recovery - the ability to restore a faulty 
node to a previous correct state and to restore all 
nodes whose current states depend on the faulty node 
[WOOD 81]. 

- forward recovery - the ability to find an arbitrary 
correct state for a faulty node and transform that 
node into the correct state and to perform similar 
transformations on nodes depèndent on the faulty 
node. 

- physical reconfiguration - the ability to change 
physical links and node characteristics where neceà-
sary to allow forward recovery 

- logical reconfiguration - the ability to change log-
ical relationships among objects in the network, for 
instance, reassignment of processes to processors, 
to allow forward recovery. 

Algorithms exist for all the above capabilities, given 
the above assumptions for fault occurrence. 

2.4 Performance 
• 

The performance criteria of the AASC are described in 
terms of the following system parameters: 

(1) the minimum throughput of a network linkage between 
two clusters. 

I. 

1 

For the transmission of data that is not a represen-
tation of an image or voice, 10 MBPS (Mega Bits Per 
Second) will be required as the minimum bandwidth 
between two clusters. In places  where image or voice 
processing is involved, this may  flot  be sufficient 
and an appropriate bandwidth must be . provided. When 
the 	continuity 	of 	transmission 	is important, 
bandwidth alone is not sufficient to define a satis- 
factory 	operational 	environment 	(e.g., 	voice 
transmission or similar traffic on a 10MHz CSMA/CD 
network will have to face "glitch" problems). The 
combination of network access delays, routing delays 
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and bandwidth of the communication media must create 
a satisfactory communication channel to meet the ac-
cess requirements set by the application or combina-
tion of applications. 

(2) The logic and arithmetic operations required by an 
application (excluding extremely high-intensity com-
putation such as high-resolution time series analysis 
and image processing) will be done by a processor 
complex unit. The through-put of this unit will be 
sufficient for all appropriate applications. In gen-
eral, the unit must be able to yield a minimum of 1.0 
MIPS (Million Instructions Per Second) of processing 
power when properly configured and measured in terms 
of a 16-bit instruction set or equivalent. 

(3) For floating-point computation, the processor unit 
must have at least 0.25 MIPS of throughput when exe-
cuting a mix of basic floating point operations (add, 
subtract, multiply, divide and modulo) on floating 
point values in IEEE standard single 	precision 
(32-bit) format. 

(4) The memory transfer rate between the processor in the 
cluster and on-unit memory array must be more than 
5.0 megabytes per second. Similarly, 	the 	data 
transfer rate between the unit and off-unit memory 
(secondary memory) must exceed 2.0 megabytes per sec-
ond. 

(5) The operating system for the processor unit will pro-
vide a multitasking environment which is transparent 
to any multiprocessing scheme the processor unit may 
have. It will support basic multitasking functions 
(e.g. inter-task communication and control, context 
switching) with less than 25% overhead. The maximum 
time requirement for context switching must be less 
than 50 microseconds. 

2.5 Autonomy Requirements 

The On-board Autonomy Manager (0AM) will maintain the 
well-being of the on-board operation of the spacecraft. This 
will include proper handling of minor faults. In the case of 
severe on-board faults, it will attempt to solve the crisis 
in cooperation with ground control. 
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In order to satisfy ground control's audit, override 
and reporting requirements, the OAM will establish communi-
cation with the ground asynchronously - i.e. no fixed time 
windows, or synchronization restrictions - when one of the 
following conditions exists: 

(1) ground control wishes to query or monitor any aspects 
of on-board operation 

(2) ground control attempts to take over part or all of 
the on-board management 

(3) the OAM decides that a significant on-board event re-
quires reporting 

The thresholds implied in (3) above will be determined 
case by case, as system parameters, for each application. 
The OAM will maintain sufficient on-board archiving storage 
so that information subject to ground audit may be kept for 
the period of time determined for each mission. Such storage 
shall be organized in a hierarchical fashion so that 
on-board archiving of data will occur in diminishing fre-
quency and quantity in respect to time (e.g. the on-board 
storage will retain detailed data on the events of the' pre-
vious few hours, a summary of the events for the previous 
week and a condensed summary of events that occurred several 
months ago). The anticipated relationship between the OAM, 
the on-board system and ground control is indicated in Fig-
ure 3. 

Since the technology involved in developing the OAM is 
new, several aspects of its design may evolve rapidly during 
the early years of its implementation. For this reason, the 
initial design of the OAM must consider the following: 

- The OAM must be able to, at a later time, incorporate 
an explanation subsystem that will describe how the 
on-board expert system achieved its deduction, or 
other forms of decision making, from a given set of 
conditions. 

- In the event that suitable techniques are developed 
in the field of so-called "knowledge acquisition" or-
"learning", the OAM will be able to gracefully in-
clude them in its structure. 

-,The on-board expert system will maintain a reasonable 
architectural distinction between the knowledge-base 
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and the inference mechanism. First, this is to permit 
different applications to use the same OAM structure 
by substituting a knowledge-base with one that is ap-
propriate for the new application domain. Second, 
such a modular structure will allow the system de-
signer to take advantage of improvements in the im-
plementation of these elements. 

- The "global data base" or "scratch-pad" used during 
the operation of the OAM will have an appropriate 
internal structure and capacity to store not only 
current data being used in the process of deduction 
but also data concerning the immediate past operation 
of the OAM, such that backtracking can be performed 
when necessary. 

- The OAM will contain hooks to incorporate a mechanism 
to deal with "fuzzy situations". Heuristic techniques 
will be introduced when the OAM is forced to proceàs 
fuzzy conditions or apply unclear deduction schemes. 
When these heuristics take place the OAM will report 
their occurrence and the procedures followed to 
ground control. 



3. 	Design Constraints of the AASC 

The following constraints are applicable to the design 
of the AASC. 

3.1 The Fault-Tolerant Computing Rules (FTC Rules) 

Reliability of a system can be increased in two time 
domains: development time and mission time. The use of tech-
niques during system development that tend to decrease the 
number of faults in the system at the start of a mission is 
called fault-avoidance. In particular, during the design 
phases of system development, there are a number of constra-
ints which will reduce the number of faults in a system, as' 
well as ensuring that the flexibility criteria (section 2.2) 
are met. 

The following are the proposed fault-tolerant computing 
design rules (FTC design rules): 

[1] There shall be no, or as few as possible, single points 
of failure in the system (the redundancy rule). 

A chain is only as strong as its weakest link. If the 
system is dependent on a single item, channel, or meth-
odology, system reliability equals the reliability of 
such single points of failure. For instance, if a star 
configuration is used in a multiprocessor system, fai-
lure of the central node causes inter-processor commun-
ication to fail. If there is only one software module 
available for executing a crucial algorithm, a fault in 
that module means the algorithm cannot be relied upon. 

[2] There shall be no fixed master-slave relationships 
among processing units (the democracy rule). 

The use of dedicated redundancy means an inefficient 
use of resources and loss of flexibility. In a fixed 
master/slave processor relationship a faulty master can 
propagate errors throughout the system before the dam-
age is discovered. 

[3] There shall be no permanent fault arbiters or judges in 
the system (the modesty rule). 

A permanent fault arbiter runs the risk of harbouring 
faults. If the ability to detect or diagnose faults is 
incorporated in individual modules, the chance of caus- 
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ing widespread failures due to a faulty judge can be 
avoided. 

[4] Interconnection among functional modules must be mini-
mal and of the simplest type (the decoupling rule). 

Whenever a function is supported 	by 	processors, 
processes, tasks, subprograms, or other form of sub-
functional modules, the method of inter-connecting them 
shall obey the module decoupling rules proposed by 
Glenford Myers [MYER 75,78]. 

In a dynamically configurable system, which permits its 
own reconfiguration in operation, the ability to mani-
pulate component modules is important. In order to 
achieve the addition or removal of a module with the 
minimum of disruption, modular interfaces should be as 
simple and clean as possible. While the principle is 
clear in hardware terms, its application to software 
often requires discipline on the part of the designer. 
The simplest example is the minimization of the number 
of arguments passed between calling and called pro-
grams. Similarly, variables in a block-structured 
language should be declared as locally as possible, be-
cause a global declaration gives all procedures access 
to the variable, thus providing the possibility of 
side-effects and coupling procedures unnecessarily. 

The concept, along with the concept of module strength 
given below, was developed in software engineering. 
However, it is judged that these concepts are equally 
applicable to non-software system entities such as 
hardware components and processes. 

[5] Every functional module must follow Myers' module 
strength rules (the module strength rule). 

The strength of a module lies in its raison d'etre. A 
functionally cohesive module will be easier to recog-
nize and manipulate, and will not disintegrate in a dy-
namic environment. A module must perform a recogniz-
able, coherent function. A module which attempts to ex-
ecute two or more disparate functions will require a 
more complicated interface with other modules, breaking 
Rule [4]. Furthermore, since there is more than one 
function, the probability is increased that a modifica-
tion will be required of that module, so system testing 
and modification will become harder and more error 
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prone. 

[6] System function must be broken down vertically into la-
yers of decreasing levels of abstraction. Decoupling 
between the layers must be observed (the layer rule). 

Since hierarchical thinking is natural to humans, com-
plex structures arranged in orderly layers are more re-
adily understood. Such a structured representation of 
concepts will be more accurate, revisions will be fewer 
and more readily implemented. Examples of this thinking 
are seen in the designs of operating systems, computer 
networking, and computer graphics. 

3.2 Top-Down/Structured Development 

In order to adhere to the FTC rules described above, 
system development will use techniques collectively known as 
"top-down/structured development". The methodology applies a 
consistent approach to phases of development commonly known 
as system design, module design, implementation, and test-
ing. "Module" here implies software, hardware, or a combined 
software/hardware entity that may exist in a system stati-
cally (e.g. processors) or dynamically (e.g. processes). A 
module performs a predefined function and contributes to the 
global function of the system. The common characteristic at 
each step is that the individual functions (or modules, or 
test units) are defined by a process of successive refine-
ment, starting with the most global functions (or modules, 
or test units). 

Since there are several versions of the interpretation 
of this technique, the following sections describe briefly 
the application of top-down/structured techniques to each 
development activity. While four activities are described, 
it cannot be emphasized too heavily that these activities 
are not consecutive in time, but are overlapping and largely 
concurrently executed in much smaller units. That is, once 
the decomposition of system functions has passed the second 
level, implementation of the first level function and its 
interfaces can begin. Once the first level is implemented, 
testing can begin. The extent with which implementation of a 
level and the design of the next overlap may vary depending 
on the nature of the implementation and other circumstances. 
The point is that the implementation, integration and test-
ing of a level will not have to await the completion of the 
next lower level or any subsequent levels. Feedback from the 



level immediately below the one being tested is encouraged 
in order to remove distortions at the earliest possible 
chance, while long-hop feedbacks are discouraged to maintain 
an effective development cost. 

3.2.1 Top-down system design 

The first step is to define the overall function of the 
system, characterized as accurately and as succinctly as 
possible. This document, for example, is aimed at achieving 
this objective. This function is then decomposed into a 
small number of subfunctions, each of which is required, at 
some point in time, to accomplish the global function-. Each 
of these subfunctions can, in turn, be decomposed into a 
simple set of "lower-level" subfunctions, and so on, until a 
set of primitive, (or "low-level" or "terminal") subfunc-
tions is arrived at, whose simplicity does not require 
further decomposition. 

The above process will produce a set of functions whose 
relationships form a tree, or hierarchy, the root node of 
which is the global function and the leaves of which are the 
primitive subfunctions. The next step is to determine the 
input and output for each of these functions, associated da-
ta stores, and timing requirements. Finally, the interfaces 
between the functions, that is the data passed between func-
tions, must be defined. 

The choice of which functions in the hierarchy are to 
be implemented in software and which in hardware can be made 
at this point. However, if Rules [4] through [6] of the FTC 
Rules have , been followed, it will be possible to change 
these assignments later with minimum disruption. Similarly, 
partitioning of functions among processor classes is done at 
this point, but can be altered later with minimum 
side-effects. 

3.2.2 Top-Down/Structured Module Design 

A subset of the hierarchy of system functions can be 
implemented either in software or hardware. In the case of 
software functions, a subset of software functions will be 
implemented as separately-compiled programs. Each of these 
modules is decomposed, top-down, into subfunctions which are 
implemented as internal procedures (software) or sub-units 
(hardware), a process known as top-down module design. The 
inputs and outputs (parameters) of each procedure are de-
fined, as well as its data stores (software) or signals 
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(hardware), in the same way as for system functions. As the 
modules are decomposed into submodules, proper structured 
design techniques will be used to maintain the structural 
soundness of the over-all system. 

3.2.3 Top-Down Implementation. 

Implementation of a module designed top-down is done by 
implementing the top-level or global procedure first, with 
the procedures of the next level implemented only as dummy 
procedures containing no usable body. These are called 
stubs". Following the integration of the implemented module 
into a skeleton system and the testing (Section 3.2.4) of 
this procedure, the stubs are "expanded" or developed in 
full, with their dependent procedures written as stubs. This 
method is repeated at each level of procedure until the 
low-level or terminal procedures have been implemented. 

3.2.4 Top-Down Testing 

As mentioned in 3.2.3, the global procedure in a system 
is tested while the second level procedures exist only as 
stubs. As each stub is expanded, the system can be tested 
with possible lower-level stubs. Errors detected during 
testing can, in most cases, quickly be identified with the 
particular stub that has just been expanded. 

Top-down testing will, in fact, be applied not only to 
local module testing but to system testing. As soon as the 
system functional hierarchy has been defined, a test plan 
will be designed. The top-down module of the system will be 
implemented, and testing will begin with stub modules repre-
senting the second-level functions of the hierarchy. Testing 
will proceed top-down, with implementation  of the modules 
proceeding level by level. This process produces a very lo-
calized feed back loop consisting of module design, module 
implementation, module integration, module testing, error 
detection, module correction. System integration testing as 
a major development phase will be non-existent. 

3.3 Software Fault-Avoidance 

The following methods will be given serious considera-
tion in the design, implementation, and testing of software 
for the AASC. 

1. Structured system design and analysis. 
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2. Top-down program design (see Section 3.2) 

3. Structured coding. These well-documented techniques 
impose discipline on coding and enhance verifiability 
of procedures. 

4. Top-down Testing (see Section 4.) 

5. Software fault-tree analysis. This technique promotes 
the coverage of software faults by formalizing the 
design of acceptance tests for recovery blocks. 

6. Software fault-seeding/mutation analysis (see Section 
4.) 

Use of the above techniques will reduce the probability 
that a software module contains a fault when the AASC begins 
a mission. 

The concept of fault tree analysis requires some cla-
rification. Since any system may be recursively decomposed 
into functions (this is the underlying principle of top-down 
design), it follows that a similar decomposition can be ap-
plied to system failure. 

As an example, the hierarchy chart for a simple 
real-time system for providing temperature readings based on 
readings of transducer channels is given in Figure 4. A 
fault-tree analysis of the same system is shown in Figure 5. 
The starting point in fault analysis is to assume that the 
system can fail. From the first-level functional decomposi-
tion, we can deduce the failures at this level that can 
cause system failure. Each first-level failure can cause 
system failure, so there is an implied disjunction among all 
these conditions. In addition to faults which are intrinsic 
to each function, there are general faults that can cause 
failure at any level: loss of context (the loss of informa-
tion about what task to do next) and incorrect 
parameter-passing between functions. 

Each of the first-level failures can in turn be ana-
lyzed for failures in second-level functions, and similarly 
at the third level. Carrying the functional decomposition to 
a more detailed level in the hierarchy chart would allow a 
more detailed fault-tree analysis. 

Fault-tree analysis can be used to: 
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a) determine partitioning for recovery blocks 

b) determine acceptance tests for recovery blocks 

C)  determine sequence and criteria for testing 

d) determine 	isolation 	regions 	for 	software 
fault-tolerance. 

Fault-tree analysis can be applied at the system, node, 
processor, process and module level. 

3.4 Networking Design Principles and Standards 

The structure and design of communication architectures 
has been researched in depth by the telecommunication and 
distributed data processing industries. From this work, a 
number of fundamental design principles have been identified 
which the authors recommend be applied to the development of 
the AASC. These principles are as follows: 

(1) Layered Communications Structure 

A layered structure be required such that the communica-
tion procedures used between two systems (e.g. a satel-
lite and a ground computer) be partitioned into a hier-
archical set of procedures (i.e. protocols). In this 
structure, each protocol provides a set of services 
(e.g. sequencing, flow control, check point signalling 
etc.). 

Each partition in this structure is called a layer. Each 
layer uses the services provided by the layer below, 
plus the functions performed by the protocol in its own 
layer, to offer enhanced services to the next higher la-
yer. 

(2) Criteria for Selecting Layers 

There area number of criteria for partitioning the com-
munications structure into . a set of layers. The number 
of layers should not be too high to avoid inefficient 
communications. Too few layers can result in protocols 
that perform many functions and thus are very complex. 
The consequence is that proof of protocol correctness 
and validation of implementation are difficult. 
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Layers should be selected where alternate technologies 
(and hence protocols) are anticipated. This criteria 
will allow the use of  new communication technologies 
without requiring the re-design and implementation of 
the entire communication structure. 

(3) Performance 

The communications structure should allow performance 
criteria to be dictated by the needs of the applica-
tions. The following are statements of objectives asso-
ciated with the major performance  criteria: 

a. Throughput 

The communications structure should manage the shar-
ing of limited communication resources across appli-
cations.  •  If necessary, the full bandwidth should be 
available to a single application. The simultaneous 
use of multiple connections to achieve the required 
capacity should not be precluded. 

b. Reliability and Availability 

The communication structure should offer a range of 
transmission integrity checking and recovery ser-
vices. 

Recovery 	either 	through 	error 	detection 	and 
re-transmission (or re-generation) or reconnection of 
a logical link (perhaps using a different physical 
circuit) should be an intrinsic feature and should be 
a service provided to application processes. 

c. Transparency 

The application should be able to send arbitrary se-
quences of bits without concern that they will be in-
terpreted by lower layer protocols. 

d. Recovery from End Application Failure 

The structure should facilitate the recovery of in-
formation when one of the communicating applications 
fails. Techniques such as check point/restart proto-
cols provide this feature. 

(4) Interconnection to Ground and Other On-Board Systems. 
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Multiple applications in the AASC must be able to com-
municate with application processes in a variety of com-
puter systems distributed on the ground and elsewhere in 
space. An example of such interconnections is seen in 
Figure 6. 

The standard communication architecture called Open 
System Interconnection  (OS I) 79] satisfies the above la-
yering, performance and interconnection requirements. Given 
the trend to use this architecture when interconnecting het-
erogeneous computing systems, we recommend that the use of 
the °SI architecture be an AASC design requirement. 

3.5 Designs for Fault-Tolerance 

While adherence to FTC rules and top-down/structured 
development has implications for all design decisions, the 
design of fault-tolerance mechanisms deserves particular at-
tention. 

FTC Rule [1] implies that a distributed processing so-
lution will be chosen for the design, since it removes sin-
'gle points of failure. Similarly, the functions of diag-
nosis, containment, and analysis of, and recovery from er-
rors should be distributed, so that no single module is res-
ponsible for fault diagnosis. There are at least two classes 
of designs for distributed fault-diagnosis - hierarchical 
and "democratic" in which all nodes in a network have the 
potential for diagnosing one or more other nodes. The FTC 
rules bias design towards the democratic model, but it is 
possible that the choice will be constrained not by design 
rules but by the existence of appropriate algorithms for di-
agnosis of node faults and link faults [KUHL 81, MCPH 81]. 

FTC Rule [1] has implications for the choice of 
fault-tolerant data structures. A single point of failure in 
a list, linked list, tree, etc. is discouraged by the rule. 
The concept can be extended to encourage tolerance of N fai-
lures in the data structure, since it is quite easy for a 
software or hardware error to destroy a set of data items in 
a data structure in a single event. Data structure design 
should, hence, incorporate robustness [BLAC 81] as a 
fault-tolerant feature. 
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4. The Functional Test of the ÀASC 

Purpose 

The purpose of testing the AASC is to establish: 

- compliance with the functional specification 

- confidence in the design 

- consistency of performance. 

Principles 

It is widely acknowledged [ANDE 82, LEVE 82a] that it 
is not possible to achieve 100% avoidance of faults in bu-
ilding a system. Similarly, it is impossible to ensure that 
system testing will expose all the faults remaining after 
the application of fault-avoidance techniques. However, cer-
tain principles have been applied during this study to the 
system development process in order to obtain a high degree 
of software quality assurance and thus to maximize 
fault-avoidance. These principles are equally appropriate to 
the area of testing and validation, for which the same goals 
apply. A top-down, structured approach to testing will be 
used and the application of redundant methods will be consi-
dered, particularly in areas recognized as most likely to 
harbour critical faults. 

Concurrent Testing 

Testing is seen as a continuous process involving all 
levels of the system hierarchy and all stages in its evolu-
tion [HOWD 82]. Tests should be applied at each phase of de-
velopment and to each concept, level or module as it is 
formed, with reference to the real-world environment in 
which the system is designed to operate. The nature of this 
process is shown in Figure 7, which is derived from Howdon 
[HOWD 82]. 

Test Plan 

An attempt must be made to validate the system formal-
ly. The achievement of high system quality requires the in-
corporation of verification into each phase of development 
[ADRI 82]. To this end, the test plan is considered to be an 
integral part of development. It will take into considera-
tion these factors: 
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Test Scope: 
All parts of the system hierarchy and aspects of 
its development should be covered by testing and 
validation. Testing should include a check of the 
basic system concepts against a. real-world model. 
These concepts include reliability, availability, 
flexibility, reconfigurability, performance, and 
general conformity to the FTC rules. It should 
continue throughout development to make reference 
back to the previous stage. This will enable any 
changes made to be tested as they are made and in-
crease confidence in the implementation of the 
specification. 

Exhaustive testing, the technique of testing every 
element of a domain, is the only known analysis 
.technique which will guarantee the validity of a 
program [ADRI 82]. This is the ideal but where 
this is practically impossible, criteria must be 
selected.to enable economical, feasible and yet 
representative testing to take place. 

Testability: 
To be testable, software must be understandable 
and measureable [ADRI 82]. Understandability re-
quires that each stage be structured, concise and 
self-descriptive. Measurability requires the pos-
sibility of instrumenting, probing, testing, and 
evaluating at each stage of the development. The 
requirement for testability at each stage calls 
for the creation of the test plan at the earliest 
possible point. This should be done in conjunction 
with other design plans to ensure that measurabil-
ity is, indeed, a feature at all levels. 

Timely detection of errors: 
Emphasis should be placed on the early detection 
of errors. Errors occurring in the requirements or 
sPecification stages are harder and more expensive 
to catch and persist longer than other types 
[HOWD 82, LEVE 82b, SCHI 82]. Validation should, 
therefore, be applied at the earliest opportunity. 

Fault Types: 
Knowledge of what faults are being tested for is 
essential. An analysis of fault-types should be 
made prior .  to making the test/design plans. This 
should cover the criticality of fault types and 
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areas of high fault concentration 	[SCHI 81 1 . 
Awareness of these factors should lessen the 
chance of building faults into the design. 
Fault-tree analysis will considered for this, as 
well as other purposes. 

Redundancy: 
The use of redundancy should be considered when 
planning tests. Redundancy is appropriate in the 
use of: 

- methods: redundant, independent methods may well 
ensure more complete error-trapping. Fault-type 
analysis will aid the selection of areas in 
which redundant tests should be applied, namely 
areas deemed most likely to contain critical 
fault types and high concentrations of faults. 

- models: use of the same simulation model for 
testing purposes throughout will produce valid 
results only to the extent to which the model 
itself is fault-free. N versions of a model, 
preferably originated by 	different 	people, 
should be used. N different, independent ver-
sions used at each stage of a system's evolution 
will result, by being tested both against each 
other and against the previous stage, in the em-
ergence of a preferred version(s). 

Test Tools: 
Serious consideration should be given to the ac-
quiring and appropriate use of test and validation 
tools when the test plan is drawn up. They should 
be selected in accordance with the above require-
ments and their relevance determined in terms of 
functionality, module size and language. 

The use of Ada as a specification and implementa-
tion language and an Ada Programming Support Envi-
ronment (APSE) may obviate the need for some forms 
of testing. For example, type checking would be an 
inherent part of the APSE. However, this should 
not cause the requirement for redundancy of test-
ing methods to be overlooked. 

Tests are divided into 	static 	and 	dynamic 
[SCHI 82]. Static tests can be conducted during 
the construction stage of development on incom- 
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plete programs and will yield faster results. Dy-
namic tests are more productive in the later 
stages of development during execution of the 
code. Static testing tools include data-flow ana-
lyzers, path analyzers, coverage analyzers, inter-
face analyzers, and cross-referencers. Some dynam-
ic testing tools are assertion checkers, simula-
tors, path-flow tracers, symbolic execution tools 
and mutation analyzers. 

Requirements, specification and design documents 
will be subjected to document analysis in the form 
of document inspection and structured 
"walk-throughs". A checklist of'properties such as 
consistency, necessity, sufficiency, feasibility 
and correctness should be drawn up and applied to 
each document. Walk-throughs, although expensive 
in terms of man-power, would be appropriate at any 
stage, and must be conducted as frequently and in-
formally as feasible. 

Fault-seeding, referred to earlier in Section 3.3, 
is a technique which "seeds" known errors into the 
implementation in a statistically similar manner 
to that of actual errors. Test data are then ap-
plied and the number of seeded and original errors 
determined. With the assumptions that seeded and 
unseeded errors are equally findable and that 
seeding and testing are statistically unbiased, 
the proportion of undetected, unseeded errors is 
ascertained. These assumptions, however, are open 
to question [ADRI 82]. A further development from 
this method is mutation analysis, which also in-
volves error seeding. In this method, several mu-
tant programs are derived from the original, each 
containing different errors or error sets. The 
program and mutants are run interpretatively on 
the test set. Results so far have shown that test 
sets which showed scores of 0.95 or more did not 
produce any further errors in subsequent use. It 
is recommended that this method be seriously con-
sidered for use in the test plan. 

Tests of specific concepts will require the use of 
estimation tools, for, example the use of Aries 82 
[MAKA 82] in the evaluation of reliablility. Con-
stant referral should be made to the FTC rules, 
particularly in the specification and design 
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5. CONCLUSION 

The main objectives of the AASC have been laid down and 
definitions and assumptions regarding reliability have been 
formed. A basis for partitioning reliability into hardware or 
software has been indicated. Software fault-avoidance techni-
ques were examined. Findings in this area were that: 

- N-version programming can be used selectively and would, 
therefore, be cost-effective in use; 

- use of recovery blocks provides an extension beyond 
N-version programming but is rigid in application. Recom-
mendations to counteract this rigidity were made; 

- Ad hoc measures can be useful in circumstances when nei-
ther of these two methods apply. 

Reliability values important on spacecraft missions have 
been established. Conditions for the achievement of diagnosa-
bility and recovery are determined. 

The essential objectives were outlined for the achievement 
of flexibility of system hardware and software. These involve 
mission-to-mission application changes; in-mission application 
changes; enhancement of components and relationships; and 
in-mission modification. 

Performance criteria were established, including minimum 
throughput, floating-point requirements, memory transfer rate 
and multitasking capabilities and constraints. 

Autonomy will be achieved through an Onboard Autonomy Man-
ager and conditions have been established which apply to its 
operation. 

Design constraints will be imposed during development to 
minimize the introduction of faults and ensure that the design 
criteria are upheld. These consist of the Fault Tolerant Com-
puting rules; the application of a top-down/structured approach 
to development, system and program design, implementation, and 
testing; and the use of software fault-avoidance methods. • 

The design principles and standards which are applicable 
to networking have been outlined, namely a layered communica-
tions structure, performance criteria and interconnection to 
other systems. 

Top-down principles were also applied to functional test-
ing. The application of testing should be concurrent with the 
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development of the system. To ensure system testability, a test 
plan is to be created at the outset of development. Reference 
points for this plan should be system scope and testability, 
the timely detection of errors, redundancy of techniques, types 
of faults and testing tools. 
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