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GLOSSARY 

AASC 	Advanced Autonomous Spacecraft Computer 

ACS 	Ada Compilation System 

Ada 	DoD defined Ada programming language 

AI 	Artificial Intelligence - a major and significant 
discipline in Computer Science (AI). 

APF 	Application Function (AASC/iMAX/BAM/APF) 
- mission-oriented function of a spacecraft. 

AP 	Attached Processor (AASC/PCU/AP) 
- external i/o processor used in conjunction with 
iAPX 432-based PCU. 

APP 	Application Process (AASC/iMAX/BAM/AP) 

ARBY 	An Expert System framework for diagnostic 
applications. 

BAM 	Basic Application Manager (AASC/iMAX/BAM) 

BPM 	Basic Process Manager (AASC/iMAX/BPM) [INTE 82 1  

CMP 	Communicating Processes 

CKB 	Compound Knowledge Base (AAsc/oAm/cKB) 

DUCK 	Deduction System for the ARBY consultant 
(AAsc/oAm/ocs/DucK) 

EOA 	Example On-Board Application (AASC/EOA) 
- station on the AASC breadboard that represents 
a typical on-board application. 

EOD 	External Object Descriptor 
- product of the Intel Ada compilation and 
linkage processes for execution on iAPX 432. 

ES 	Expert System (AI/ES) 
- a system that mimics experts working in a limited 
domain. 	A form of the application of AI 
technology for practical purposes. 



FTM 	Fault Tolerance Manager/Management (AASC/FTM) 
- collective title for functions in the Layers 1 
through 4 of the Hierarchy of System Autonomy. 
Layers of fault-tolerance capabilities arranged 
in ascending order of abstraction. 

HLL 	High Level Language(s) 

IF 	Interactive Frame (AASC/oAm/oCS/IF) 
- a unit of exchange between the on-board 
consultant (OCS) and the user. 

IFM 	Human Interface Component (AASC/OAM/OCS/IFM) 
- a part of the OCS that deals with the user. 

IIU 	Subsystem I/O  Interface Unit (AASC/IIU) 
- modules that support i/o activities (sensor 
or effector activities) of a spacecraft. 

iMAX 	Multifunction Applications Executive [INTE 82] 
- an operating system for iAPX 432 computer. 

ISO 	International Standards Organization, alias 
International Organization for Standardization. 

KB 	Knowledge Base (AI/KB) 
- a module in ES or other form of AI system 
for storing and making available domain 
specific knowledge. 

KE 	Knowledge Engineering (AI/KE) 
- a discipline of AI. 	Deals with practical 
use of knowledge in achieving design objectives. 

KR 	Knowledge Representation (AI/KR) 

LAN 	Local Area Network 

MS 	Monitor Station (AASC/MS) 
- a monitor station on the AASC breadboard 
that represents a subset of ground control functions 

NISP 	Nifty LISP - a LISP macro library developed 
by Yale University 

NIU 	Network Interface Unit (AASC/NIU) 
- a module that permits PCU or IIU to access the 
AASC on-board network. 



NL 	Natural Language (AI/NL) 
- ordinary spoken, written, or otherwise expressed 
language. 

NLI 	Natural Language Interface 
- sub-discipline in AI. 

NLP 	Natural Language Processing 
- sub-discipline in AI. 

OAM 	On-Board Autonomy Manager/Management (AASC/OAM) 
- an entity on-board the AASC responsible for 
maintaining autonomous operation of the space-
craft. 	Uses both AI and conventional 
control techniques to govern the spacecraft. 
Reports to ground control. Also, represents 
a function of a layer in the Hierarchy of 
System Autonomy [GOMI 83a]. 

OCS 	On-Board Consultation System (AASC/OAM/OCS) 
- an instantiation of ES. Performs consult-
ations on-board spacecraft with users both on-
board and off-board (ground). 

OSI 	Open Systems Interconnection 
- a global schemè to interconnect a wide 
variety of nodes (computer-based and other-
wise). 	An international standard 
proposed by the ISO, which is being 
widely accepted. 

PCU 	Processor Cluster Unit (AASC/PCU) 
- a physical description of a node on the 
AASC that performs algorithmic/ 
heuristic processing. A processing unit 
with several variations. 

TCL 	Transport Control Layer 

VLAN 	Very Local Area Network - network suit- 
able for a very limited geographical area, 
typically 1 - 50 m., in length. 

N.B. 	Throughout the pseudocode and Ada program specifica- 
tions, the double hyphen (--) is used to indicate 
comment(s). In the same context, it is common in 
Computer Science to use an underscore ( ) to form an 
identifier from a collection of names. — 
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1 ABSTRACT 

A detailed system design is presented by the authors 
under sub-contract to Eidetic Systems Corporation, contrac-
tors for the Communications Research Centre, Department of 
Communications, Ottawa, Canada, under DSS Contract 
#OST82-00056. 

An Advanced Autonomous Spacecraft Computer system has 
been proposed in previous reports by the same authors. The 
design of a proof-of-concept system is described in some de-
tail, whose purpose is to provide a test of the novel combi-
nation of state-of-the-art design philosophies and software 
and hardware technology. The system design is structured us-
ing a layered, hierarchical methodology. The top layer is 
On-Board Autonomy Management (OAM), which provides consulta-
tion by an Expert System for the next layer, Fault-Tolerance 
Management (FTM). The FTM maintains reliable functioning of 
the Application Functions of the spacecraft, in this case a 
stationkeeping subsystem for a geosynchronous communications 
satellite. The system executes by distributing its process-
ing over a Local Area Network (LAN) of processor complexes 
(PCUs) which use the OSI Reference Model protocols for 
inter-process communication. A Monitor Station (MS) simu-
lates a ground station for satellite monitoring and control. 

The OAM uses artificial intelligence techniques, in-
cluding a rule-based knowledge representation (KR), and rea-
soning by hypothesis formation, refinement, and selection. 
The FTM, which can consult the OAM, starts, monitors,'and 
stops the processes involved in executing the 
mission-oriented application functions (APF) of the space-
craft, and provides guardian ports and owner processes to 
handle APF faults. The example APF uses a simplified orbital 
model to simulate stationkeeping using orbit determination 
and prediction, and manoeuvre planning, to produce thrust 
control command sequences. Communication over the AASC bus 
is controlled by Network Interface Units employing Ethernet 
and OSI protocols up to the Presentation layer. Ada and LISP 
are used as design and implementation languages for the ma-
jor part of the system software. 

The major hardware  components of the proof-of-concept 
system are a VAX-11/780 for the OAM, iAPX 432 complex for 
FTM and BOA, and Intel iSBC 8086 for the NIU for the FTM/EOA 
node. Other hardware choices will be made from a small set 
of possible choices at implementation time. Development en-
vironments, including requisite hardware and software, will 



be needed for the OAM, FTM, and NIUs. 

The proof-of-concept system is expected to provide con-
firmation of the effectiveness of the novel combination of 
elements in the AASC design. 



1. INTRODUCTION 

A spacecraft with the ability to manage its own sys-
tems', even in the face of system failures and unforeseen 
circumstances, was proposed in [GOMI 82a]. In subsequent re-
ports [GOMI 82b,83a] we have brought the concept of an Ad-
vanced Autonomous Spacecraft Computer (AASC) further down 
the path from abstract to concrete. The design philosophy 
has included: 

1. A layered, hierarchical model for complex system 
functions 

2. Knowledge engineering for the highest layers of 
system management 

3. Fault-tolerance, both  hardware and software, at all 
layers below knowledge-based 

4. Use of available hardware and software products 
wherever possible. 

These approaches have implied certain other aspects of 
the design. Layering has implied use of the OSI Reference 
Model for network communications, and a layered model that 
integrates intelligence with fault-tolerance. The require-
ment for knowledge engineering combined with the desire to 
use available products implies the choice of an Expert Sys-
tem for intelligent autonomy management. To make the 
fault-tolerance objective explicit, the Fault-Tolerant Com-
putin9 (FTC) rules [GOMI 82a] were formulated, and these in 
turn imply a distributed approach to both satellite func-
tions and fault-tolerance management. The last aspect of the 
philosophy has led to the choice of Ada as a design and im-
plementation language where possible, and to the choice of a 
fault-tolerant VLSI processor, the iAPX 432. 

The actual introduction of Artificial Intelligence (AI) 
techniques to the design of the AASC is also achieved in the 
design of the proof-of-concept system. Presently, there are 
several efforts being made throughout the world in develop-
ing a highly autonomous vehicle. Such autonomous vehicles 
are meant for use underwater [BLID 83],[BECK 80], on ground 
(rough terrain) [HARM 83],[BULL 83], Or in space 
[VERE 81,83],[WAGN 83],[SOTT 83],[MOGI 83],[ORLA 83]. While 
their respective modes of operation vary wildly, in particu-
lar in the formalism of their lower level sensors and effec-
tors, the methodology employed to design the autonomy me- 
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chanisms is surprisingly similar: they all depend on AI 
technology, namely Expert System (ES) technology. 

Such was also the notion introduced in the AASC at its 
conception 15 months ago. We are now at the stage where we 
can define the linkage between conventional control technol-
ogy and this drastically different approach to the control 
problem. This topic is assumed to become dominant in various 
realtime system research areas as the impact of AI is incre-
asingly felt by system designers and project administrators 
(see [DeJo 83 1, for example). 

In fact, the AASC has been built as an AI machine from 
the beginning. To this end, other technologies were meant to 
be more or less subservient. Networking, with its OSI'ele-
gance, will provide an ideal fault-tolerant framework. The 
FTM will look after the remaining important issue in 
fault-tolerant computing, namely, the problem of providing 
software fault-tolerance. Upon this flexible, yet stable bed 
are built open-ended AI layers. The AASC design differs from 
other similar autonomous vehicle projects in the clear con-
ception of system reliability as a hierarchy of abstraction 
or intelligence. 

In this report, we specify in detail the structure, 
hardware, software, and development environment for a 
proof-of-concept system for the AASC. Hardware and software 
product choices are made, with some qualifications. Software 
to be implemented in the ensuing phases of AASC development 
is described by Ada package specifications, and the develop-
ment systems for such a project are specified in detail. 

Each of these areas is presented as it relates to the 
OAM (On-Board Autonomy Management), FTM (Fault-Tolerance 
Management), Networking, a spacecraft application function 
(Stationkeeping) and the simulated ground station (Monitor 
Station). 

Finally, 	we 	present 	our 	conclusion 	that 	the 
proof-of-concept system is readily achievable and expandable 
to a full AASC. 
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2. OBJECTIVE OF THE DESIGN 

2.1 Testing the AASC Concept 

The design document [GOMI 83a] preceding this one set 
forth the structure and function of an AASC proposed for a 
hypothetical but realistic spacecraft. The objective of this 
document is to present a detailed design of a system which, 
if implemented, would serve as confirmation or negation of 
the viability of all or some of the concepts embodied in the 
AASC design. 

The important AASC characteristics to be tested by im-
plementing this "proof-of-concept" system are: 

1. Use of Artificial Intelligence (AI) techniques, 
specifically an Expert System, to manage on-board 
processing functions and provide ground-station con-
trol and information 

2. Use of a hierarchical, layered model for system 
structure 

3. Use of a Local Area Network (LAN) to support 
on-board processing functions 

4. Use of iAPX 432 or similar faul -È-tolerant VLSI pro-
cessor for spacecraft processing functions 

5. Use of software fault-tolerance to maintain reliable 
subsystem control and performance 

6. Use of the Open Systems Interconnection (OSI) refer-
ence model as a communications design model 

7. Use of Ada as a software specification, design, and 
implementation language. 

To judge whether the proof-of-concept test confirms or 
negates any of these characteristics we must specify criter-
ia against which system performance is to be gauged. 

AI Techniques: 

If a knowledge base for a chosen on-board fault domain may 
be built successfully, and if the OAM conducts the success-
ful diagnostic consultation requested by its users, then 
these techniques will be justified. 
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Hierarchy: 

If inter-layer communication between layers of the Hierarchy 
of System Autonomy takes place in such a fashion as to sup-
port collective achievement and maintenance of the 
well-being of the spacecraft; and if the proof-of-concept 
system is implemented successfully and can support the eXam-
ple application function, support is given to the use of hi-
erarchical, layered models for system structure. 

LAN: 

If the Example On-Board Application function (see Section 
3.4) is able to execute successfully within the timing con-
straints required in a real-life system, including interact-
ing with the Monitor Station (see 3.5), then this charac-
teristic is confirmed. 

iAPX 432: 

If a fault-tolerant configuration of iAPX 432 processors ex-
ecutes and provides sufficient processing power to support 
the example application function, then support is given to 
the use of the 432 for the AASC. We will not attempt in the 
initial proof-of-concept, to actively test reliability by 
inducing processor faults. 

Software Fault-Tolerance: 

If the proposed software structures for Fault-Tolerance Man-
agement (FTM) are successful in initiating, monitoring, and 
stopping the example application function, then support is 
given to this characteristic of the AASC. If the FTM is 
further able to handle intentionally-placed (seeded) faults 
in the application function, much heavier support is given 
to the concept. 

OSI Reference Model: 

If the proof-of-concept system is able to support the exam-
ple application system within real-life timing constraints, 
then support is given to the OSI reference model as a viable 
model for on-board communication. 

Ada: 

If system development deadlines are met while maintaining 
the 	quality 	of 	the 	software 	written, 	and 	the 
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proof-of-concept system is implemented as proposed, then use 
of Ada as a design and implementation and documentation 
language will be given support. 

I 2.2 Scope of the Proof-of-Concept System 

An important part of designing a proof-of-concept sys-
tem is deciding how far one should go along the road to  bu-
ilding a real-life AASC. Clearly, there are a number of lim-
iting factors: 

Il.  Elapsed time to implement and evaluate the system 
must be reasonable, so as to capture current 
state-of-the-art technology in one system. 

I
2. The system must be within the current or achievable 

level of expertise of available implementors. 

I 	3. The system must not exceed available financial re- 
sources. 	 . 

111 

4. The system must perform a function or functions suf- 
ficiently close in complexity and performance re- 
quirements to a real-life AASC to allow judgement of 
the viability of the AASC design (see Section 2.1). 

I Taking 	the 	above 	factors 	into 	account, 	the 
proof-of-concept system will have the characteristics shown 

I in Table 2.1. 

I. 
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OAM 

PCU 

Table 2.1: Proof-of-Concept Characteristics. 

Item Quantity 	Description 

Application 	1 	Stationkeeping for geosyn- 
Function 	chronous communications 

satellite 

Simulated 1 	Monitor station attached to 
Ground Station 	network 

1 	Consultation using on-board 
ES techniques 

2 	Support FTM, Stationkeeping 
Subsystem, and OAM 

Fault-Tolerance - Four-layer FTM resident in 
same PCU as Stationkeeping 
function 

NIU 	3 	Support OSI protocol up to 
Sèssion layer for 
Monitor Station and 2 PCUs 

1 	Ethernet bus 

The system will support one Example On-Board Applica-
tion (EOA) in a PCU, managed by the Fault-Tolerance Manager 
in the same PCU. 

Similarly, there will be only one OAM node, while in a 
real-life AASC, there could be several OAM stations. 

Networking is not multiplied as in the standard AASC 
design. In a real-life AASC, a ground station is, or is 
likely to be connected to a global network. The network may 
have a node which acts as a gateway for spacecraft communi-
cations. This gateway communicates via appropriate media 
with a gateway which is a PCU, or PCU-IIU combination, on 
board the spacecraft. However, in the proof-of-concept sys-
tem, the ground station will be simulated by a workstation 

LAN 
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attached directly to the LAN. 

2.3 Extensibility 

Implicit 	in 	the 	proposal 	to 	implement 	a 
proof-of-concept system is the eventual creation of an AASC 
laboratory prototype, which performs or simulates all the 
functions of an actual spacecraft computer system. The 
proof-of-concept system provides, in a very natural way, for 
a stepwise advance towards that goal. In fact, it is a na-
tural outcome of the very design philosophy of the AASC that 
allows the gradual progression from the simplest 
proof-of-concept system to a full-blown prototype. 

If we look at the various characteristics described in 
Section 2.2, we see how each can be expanded, replicated, 
made more sophisticated, or improved in performance; in oth-
er words, how the scope of the system can be increased ac-
cording to any desired strategy. 

Application Function: 

To increase the number of functions, one can 

- add more PCU-NIU pairs to the network 

- design and code more application functions. 

To make these functions handle various real physical subsys-
tems, one can 

- add NIU-IIU pairs to the network, each supporting a 
real or simulated physical subsystem. 

To increase the realism of the application functions (for 
instance, use a more realistic orbit-parameter set for Sta-
tionkeeping) one can redesign the relevant parts of the ap-
plication function algorithms, without altering any of the 
other system architecture. 

Ground station: 

Two dimensions are available for improvement of the ground 
station simulation. First, Monitor Station capabilities can 
be enhanced to allow control over and communication with 
more application functions. Second, one can progress towards 
a realistic network link to the ground station by the fol-
lowing steps: 

2-5 
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- replace NIU-Monitor Station attached to bus, using 
instead NIU-PCU-MS configuration 

- replace the above with 

NIU-PCU-NIU-link-NIU-MS 

- replace the above with 

NIU-PCU-NIU-link-NIU-existing network (not AASC) 

with the MS linked somewhere in the network. 

Autonomy: 

The sophistication and quantity of knowledge in the OAM can 
be increased dramatically. Furthermore, additional layers of 
intelligence can be added above the initial Layer 5 (Intel-
ligence 1). 

Fault-Tolerance: 

There 	are 	at 	least 	two 	options 	for 	increasing 
fault-tolerance capabilities: 

- better message format checking in the Presentation 
layer of OSI 

- creation of a sub-layer within Layer 4 of the FTM 
that can watch processes in remote processors. 

PCU: 

As stated above, more PCUs can be added at will with no 
change to the existing software. 

NIU: 

Same as for PCUs. 



3. STRUCTURE OF THE SYSTEM 

3.0 Overview 

In the AASC, the key elements of system design are 
on-board autonomy based on AI technology, and the concept of 
software fault-tolerance. In addition, the idea of coordi-
nating multiple functional nodes, loosely coupled by stand-
ardized inter-process and inter-processor communication 
links is considered essential as the framework of the sys-
tem. Such nodes, each of which is built in a fault-tolerant•
fashion, would jointly achieve the intended autonomy re-
quirements of the system. This use of cooperative distribut-
ed processes is also suggested by Lesser [LESS 83]. Nodes 
are not necessarily physical in their existence, although 
each of the nodes will have its physicality as attributes. 

There are several levels of abstraction (or levels of 
machine intelligence) within the system, each represented by 
one or more nodes. The lower levels typically correspond to 
such tasks as hardware and software fault-tolerance arrange-
ments, storing of data units, and the basic computational 
activities. 

As stated in the objectives above, in the present phase 
of the AASC development, emphasis is on the interaction 
between the levels of intelligence represented by each la-
yer, as well as such interactions among elements within a 
layer. It is interesting to note that there is a great simi-
larity between the structure aimed for in the AASC and that 
of the Japanese Fifth Generation computer currently under 
development [FEIG 83a,b]. 

More basic fault-tolerant computing issues, such as the 
need for redundancy in implementation as a basis for 
fault-tolerance, are assumed but, for reasons of economy, 
are not planned during this phase of development. This means 
that, in this phase, each level may be implemented without 
consideration for redundancy. Such techniques, though essen-
tial for the building of fault-tolerant systems, are 
well-understood by a major part of the Fault-Tolerant Com-
puting (FTC) community, and hence can be demonstrated in a 
more elaborate (and richer) demonstration, which may be de-
veloped later. This simplification is manifested in the cur-
rent design of the proof-of-concept system, for example in 
the use of a single bus structure as the means of 
inter-process/processor message exchange. A further economy 
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I. 

in implementation detail is seen in the use of a single phy-
sical node to support more than one logical nodes, or more 
than one level of abstraction. Multitasking is used as one 
such method of compromise. 

It is of the utmost importance that hierarchical archi-
tecture as described and specified in the Design Report 
[GOMI 83a] be clearly established first. This hierarchy will 
become the framework to realize a rational autonomy control. 
The current testbed design reflects this thinking. Following 
the philosophy of E. Dijkstra, C.A.R. Hoare, and Hubert Si-
mon, and as reiterated by reliability researchers like Pro-
fessor Nancy Leveson of UC Irvine, hierarchical structuring 
of the problem-solving scheme must be the heart of the de-
sign for any complex system. We can point to examples of 
such notions in the design of modern (post sixties) operat-
ing systems, computer graphics, networking, and most impor-
tantly, in Artificial Intelligence. 

The AASC hierarchy is explained in detail in the above 
mentioned Design Report, along with meta-rules that govern 
the layers in the hierarchy. It may be helpful to show the 
correspondence between the design hierarchy and its imple-
mentation in non-hierarchical physical media. The logical 
structure of a fully implemented AASC would look like Figure 
3.1. A subset of logIcal functions for the proof-of-concept 
system is shown in the figure, using shaded elements. 'This 
is the subset of the AASC hierarchy chosen for the 
proof-of-concept design. Its physical implementation is 
shown conceptually in Figure 3.2. 

A 'commercially available, rule-based Expert System 
framework for system diagnosis is adopted as an instance of 
the On-Board Autonomy Management (OAM) layer (Layer 5 in the 
System Autonomy Hierarchy). Similarly, a set of Ada program 
modules are defined to represent the selected subset of 
functions of the FTM layers (Layers 1 through 4 in the hier-
archy). As an arbitrary example of on-board application, the 
OAM complex is linked to an application node and used to 
test the proof-of-concept system. The FTM and suitable ap-
plication function(s) will be represented in the node. 

3.1 On-Board Autonomy Management 

The On-Board Consultation System (OCS) of the OAM is 
defined for the proof-of-concept system. For the purpose of 
this system, the rest of the OAM functions, as described in 
the Design Report, will exist in a simplified form within 
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the interfacing module to the OCS, or within the network 
protocol. The OAM uses the network protocol to exchange mes-
sages with the other portion of the on-board system, other 
space systems, and also with the ground. 

The idea of developing our own Expert System (ES) from 
scratch for this phase of the AASC has been rejected for the 
following reasons: 

- availability of commercial ES frameworks of a reason-
able capability 

- lack of experience in constructing a major ES for di-
agnostic purposes 

- excessive cost of full in-house development of a so-
phisticated AI system 

Several available ES frameworks are considered. Some 
examples are: 

- EMYCIN, from Stanford University (is now available 
only from Teknowledge) 

OPS-5, C. Forgy, Carnegie-Mellon University 

- PROSPECTOR, R. Duda, Fairchild AI Lab. 

- PSN and its extension, J. Mylopoulos et al., Univer-
sity of Toronto 

- INTERNIST-II, E. Pople, University of Pittsburg 

- ROSY 

- ARBY, D.McDermott, Yale University/Smart 	Systems 
Technology Inc. 

- EXPERT, Rutgers University. 

EMYCIN [VANM 81] was rejected as it already belongs to 
the older generation of tools; OPS-5 [FORG 81] because in-
formation was not obtained in time; PROSPECTOR, [DUDA 81,83] 
since its characteristics as an ES for exploration did not 
suit the objectives of the AASC; PSN (and its extension) 
[MYLO 82],[SHIB 82,83] because it was judged too sophisti-
cated for the current version of the AASC; INTERNIST-II, for 
the same reason as PSN and also as it is still very much 
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under development; ROSY, as not enough information was 
obtained; EXPERT as its development facility requirement is 
excessive, and also it was judged too general. Therefore, 
ARBY, of Smart Systems Technology was chosen and the basic 
system design [GOMI 83a] was adjusted to accommodate the 
package. 

In addition to its general suitability as an introduc-
tory diagnostic ES, ARBY has the following list of desirable 
features which are judged particularly suitable for the cur-
rent phase of the AASC proof-of-concept system: 

(1) ARBY is relatively dynamic in its method of con-
ducting diagnosis. It can respond quickly enough to 
changing system states and adjust its inference 
process accordingly. Also, it can describe and re-
tain the changing state of the system as a dynamic 
history of system performance. This is a major de-
parture from the first generation diagnostic ESs, 
such as MYCIN. 

(2) It has actually been built and 'tested in the domain 
of diagnosing electronic systems. 

(3) It is judged sufficiently abstract and general pur-
pose to represent and manipulate knowledge in the 
domain of software fault-tolerance, as well as 
hardware diagnosis. 

(4) Sufficiency of the explanation facilities found in 
the design Explanation subsystem is considered par-
ticularly important for application of AI technolo-
gy in new space systems. This is because of the 
greater risk and cost involved in the operation of 
space systems and, hence, the eagerness on the part 
of human operators to audit, monitor, and take 
over, if deemed necessary, the operation. 

(5) Inference schemes and algorithms used by the infer-
ence engine are judged effective, practical and 
economical, while achieving a tolerably sophisti-
cated level of reasoning. There are techniques to 
eliminate redundant hypotheses, as well as to avoid 
the over-stretching of a single hypothesis. Such 
techniques are implemented without resorting to an 
expensive, over-elaborate method. The robustness of 
the process is anticipated. 
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(6) Interface to other on-board subsystems is a good 
compromise between a Natural Language scheme and 
the rigid inflexible formalism of fixed parameter 
exchange. The message interface is also very suit-
able for the AASC on-board and off-board communica-
tion format. It is assumed to be fully adaptable to 
the OSI protocol scheme. Both the module strength 
and the module decoupling rules are well observed 
in the design. 

(7) The design is open enough to: 

- allow future expansion and/or sophistication of 
selected subcomponents 

- permit trimming, reorganization and other modes 
of optimization to make it an efficient AASC com-
ppnent 

- allow later extensions to incorporate more ad-
vanced 	AI features such as a full Natural 
Language interface and more sophisticated knowl-
edge representation using structural semantic 
networks ("structural" in the sense discussed by 
Mylopoulos, 	DeJong 	[DeJ0 83] 	and 	Pople 
[POPL 83]). 

(8) The reasoning scheme is flexible enough to deal 
with 	expected spacecraft on-board faults. The 
inference engine can handle both forward and back-
ward chaining and deals nicely with compounded 
causes of a fault, as well as multiple faults. 

(9) The requirement for a development environment is 
modest and can be realized on easily accessible fa- 
cilities (such as the VAX computer). 

On the other hand, the following areas of the design of 
ARBY are identified as cause for some concern: 

(1) It is rule-based, and as R. Davis of MIT points out 
[DAVI 82a,b], using such a rudimentary KR method in 
diagnostic ES may eventually pose a problem, as 
such a system is incapable of efficiently describ-
ing the internal (topological and relational) 
structure of the system to be diagnosed - "A 
rule-based ES, such as MYCIN, does not care if the 
patient has three legs or two hearts" (Davis). D. 
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McDermott, the principal designer of ARBY, empha-
sizes the significance of adopting "shallow" models 
for conducting diagnosis. Yet we feel that the 
shallow investigations of relationships between the 
symptoms and diagnosis may not be enough in more 
involved cases. The concern still does not affect 
our choice of ARBY as a good entry system for the 
AASC. 

(2) The KR method used in ARBY is highly domain and ap-
plication specific. We still cannot foresee the way 
to generalize inference schemes and eventually ex-
tract 	"reusable" diagnosis knowledge This, we 
think, is partly because the ES is rule-based. In 
the KB of the rule-based ES, particularly those 
written in LISP, knowledge is represented in a re-
latively ad hoc fashion. We agreed to disregard the 
generalization issue for our first try. 

(3) Again, as a rule-based system, we may experience 
greater difficulties in debugging the KB. More so-
phisticated KR are not available in a suitable form 
for use in the current phase of the project. 

3.1.1 Operation of the On-Board Consultation System 

The OCS (implemented using the ARBY framework) runs 
under the guidance of the consultation monitor. The monitor 
manages each consultation session. It is invoked by a con-
sultation request message sent by one of its users (the FTM, 
the EOA, or the MS). At this point, the user may specify if 
it wants to continue the consultation carried out previous-
ly, or start an unrelated session. If the previous consulta-
tion is to be continued, data structures created earlier are 
made available to the user. 

An Interaction Frame (IF) is a means of communication 
between the user and the OCS and is discussed further in 
3.1.3 below). At the beginning, an introductory IF is gener-
ated by the OCS to acknowledge the request and initiate a 
consultation session. It is assumed that, at this time, the 
Session establishment over the AASC on-board network is com-
pleted by the NIUs involved. Such IFs will ask general ques-
tions that are typically asked by a domain expert at the be-
ginning of a real-life consultation: "Explain what went 
wrong." If the OCS encounters, during consultation, a rule 
which demands a new finding, another IF will be fired to ac- 
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counted for such a rule. 

If the initial information gathering collects some new 
findings the OCS begins to find, and then refine, hypotheses 
to account for them. During this process, the OCS will re-
port the progress by sending out messages about the choices 
it is making. A trivial consultation will terminate rela-
tively quickly. However, in more involved cases, the OCS 
will eventually pick a test to use to gather additional in-
formation. Such a test is also an interaction between the 
user and the OCS, and hence runs as an IF. The user will be 
put in "Question Mode" (see 3.1.3 below for "Question 
Mode"). 

When the OCS exhausts the hypotheses expansion and 
comes to the end of a run, it outputs the over-all hypo-
thesis structure that it has inferred. It then puts the user 
in "Walk Mode" (explained also in 3.1.3 below), so that it 
can inspect the structure of the consultation session just 
completed, investigate the reason behind choices of hypo-
thesis, and, in rare cases, change the course of the consul-
tation by altering the data base (the "change" feature is 
yet to be implemented). 

The following pseudocode summarizes the operation of 
the OCS. However, it must be noted that the representation 
of the consultation algorithm in a pseudocode is somewhat 
misleading as it de-emphasizes the heuristic nature of the 
exchange and processes that take place in a session. 

task on board consultation session is 
initialize 	cF, nsultation; 

-- includes a request for an OSI session 
-- establishment to the NIU. 

activate initial Interaction Frame; 
- "Uescribe —what went wr-ong" 

while findings to be accounted for loop 
look for hyp-o-ih'se to accourit for the 
findIngs; 
ask for more information (findings); 
- hypothses are accounted 
-- for in a structured 
-- fashion from the abstract 
-- to the detailed as the loop 
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-- repeats. 
if no more to find then 
findings to be accounted for := false; 

end loop; — 

output overall hypothesis structure; 
put the consultant into "Walk Mode"; 

-- consultant explains what 
-- he did altogether for the 
-- user 

while walk mode loop; 
accept 1-- quest by the user and 
walk about the result of 
the consultation as instructed; 
If user enters "quit" then walk mode := false; 

end loop; 

end on board consultation session; 

3.1.2 Functions of the OCS 

Two major functions are performed by the core of the 
OCS: the inference conducted by the HYPO module; interaction 
with the external world (in our case, communication with the 
FTM, EOA, or the MS) conducted by the IFM module. Both mo-
dules are written mainly in Franz LISP, and augmented by the 
NISP macros. The general purpose deduction retriever DUCK is 
also needed for their operation. 

HYPO tries to find hypotheses which successfully ac-
count for a given set of findings. On-board faults described 
in terms of symptoms and system states are an example of 
such findings. The findings could be  initial observations or 
any new information, such as test results collected during 
the course of the consultation. Hypotheses are statements 
about the nature of the fault or problem which caused or are 
causing the findings. 

Initial findings will make HYPO choose a set of initial 
hypotheses. In the process of refining them, the OCS at-
tempts to ask the user to make observations, to perform 
tests, so that HYPO can delete or elaborate hypotheses in 
the set. Backward-chaining is the main inference methodolo- 
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The IFM, or Human Interface Component, is called upon 
by the inference engine (HYPO) as needed. The net effect of 
the IFM's function is to add to or modify the assertion da-
tabase that is built up during a consultation. The Interac-
tion Frame or IF, is a discrete unit of interaction with the 
user to carry out the investigation. 

The IFM asks questions using one of five defined formu-
lae. A very simple IF may ask the user to choose an answer 
on the state of the system from a set limited number of al-
ternate answers, for example, (FATAL, RAD-ALERT, 
ORANGE-ALERT, YELLOW-ALERT, STABLE, A-OK). These symbolic 
expressions are treated as symbols throughout the system and 
not converted to codes (such as YELLOW-ALERT = -1, for exam-
ple). This is one difference between AI programming and con-
ventional programming. However, it is pointed out that this 
level of symbolic manipulation is still a far cry from what 
can be offered by Natural Language (NL) processing. 

In a slightly more sophisticated dialogue the user 
might be asked "Is the second bank of the main memory com-
plex responding?" If the answer is "Yes", an assertion like 
(STATUS MEMORY ENABLED) might be put into the assertional 
database. A yet more complex IF might instruct the user, 
step by step, to run some interactive tests on on-board 
equipment (note that "the user" may be a software process in 
the FTM or the EOA), and report the result to ground using a 
limited English vocabulary. Such IF might then place several 
different assertions into the database. There is a way to 
expand the IF interface and provide a reasonable NL process-
ing facility. This would further increase the flexibility of 
the system, creating a consultant whose explanations are 
more articulate, and who can respond more freely to input 
variations. 

A more detailed explanation of how HYPO and IFM work 
will be found in Section 4.1. 

3.1.3 User Interface to the OCS 

3.1.3.0 Overview 

The sole interface of the consultation system is that 
between it and the user. Normally, the physical implementa-
tion of the interface takes the form of a standard alphanu- 
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meric console attached to the processor. Except for the de-
bugging period, however, the interface in the AASC 
proof-of-concept system will be between the OAM machine 
(software/hardware entity) and the Network Interface Unit 
(NIU). The interface will be used to convey to the OCS re-
quests for consultation and other information demanded by 
the OCS in the course of the reasoning process; and the re-
sult of the consultation, explanations and other reports 
generated by the OCS for its user. 

The NIU that is used with the OAM, like the other NIUs 
in the AASC, will support the OSI protocol. Hence, the OAM 
will follow the Session layer protocol to establish a con-
sultation session with the user stations at the beginning of 
each consultation. This channel will be dissolved at the end 
of a consultation. It is assumed only one consultation will 
be supported at a time due to current limitations in the 
handling capability of the OCS. Therefore, there will be a 
maximum of only one invocation of Session protocol between 
the OAM and its users. 

There 	are 	three types of user within the AASC 
proof-of-concept system. They are the simulated groundsta-
tion or the MS, the simulated application station or the 
EOA, and the FTM. The OCS will issue requests to these users 
for <facts> or <findings> as needed to carry out the reason-
ing process. 

3.1.3.1 Interaction Frame (IF) 

The unit of exchange between the user and the OCS is 
called an Interaction Frame, or IF. An IF consists of at 
least one output and one input message from/to the OCS. It 
is typically a question issued by the OCS followed by the 
reply submitted by its user. This unit of exchange is nor-
mally a part of a larger framework (a consultation session). 

There are several standard frame types that the OAM 
understands. These standard IFs will be used for the simpler 
interactions. These include the following: 

- an IF that solicits a reply by asking the user to 
choose it from.a known, finite list, e.g., 

(SUCCESSFUL, NO-CHANGE, OPERATION-FAILURE) 

- an IF that requests an answer from the user which can 
be any subset of a list, i.e., multiple answers are 
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acceptable 

- an IF that demands an integer as an answer, 
e.g., Anticipated length of thrust? -> 1400 

- an IF that is used to ask for names of things; it 
does not place any restrictions on acceptable values. 

In addition, the OCS provides the potential user with 
ways to define its own IF format. The consultation system 
also permits bundling of IFs that are frequently used in a 
particular sequence. It is anticipated that several IFs will 
be developed during the implementation phase of the AASC 
proof-of-concept system, including several "macro-IFs" that 
support a relatively lengthy exchange. Examples of lengthy 
exchange expected on board the AASC are: step-by-step 
re-loading of portions of on-board software; and periodical 
report to the ground by the on-board consultant. The NIU gu-
arantees the safe delivery of the elements of an IF (mes-
sages) by using its Transport layer protocol. It also sup-
ports an exclusive access to the consultant during a consul-
tation session, using its Session layer protocol. 

3.1.3.2 Question and Walk Modes 

A more sophisticated exchange between the OCS and its 
users takes place when the OCS puts the consultation into 
Question Mode by asking the user a fact-finding question. 
Instead of simply providing requested information, the user 
may then ask the consultant for the meaning of the question, 
the reason for asking it, its aim, how to collect needed in-
formation, and an explanation of related commands. The user 
can even refuse to answer the question. 

When the user asks about either the reasoning behind,or 
the aims of a question, the OCS will put it into Walk Mode. 
This enables the user to examine either the deductive goals 
which the answer to the question would help to satisfy; or 
the overall hypothesis that the OCS is currently entertain-
ing. This feature is obviously useful to ground control (in 
the present setup, the Monitor Station or MS and its opera-
tor). 

It is very unlikely that either of the other two users, 
the FTM and the EOA, would access the Walk Mode facility. 
Although the algorithms executed within these modes may be 
very complicated and sophisticated, they nevertheless repre- 
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sent considerably lower intelligence than the operator at 
the console of the MS, or the OCS. 

In a full-scale AASC application, ground control will 
typically use this facility to monitor the on-board opera-
tion, to execute its auditing duties (see the AASC Design 
Report [GOMI 83a]), or, in extreme circumstances, to take 
over control. Even in the case of a take-over, it is likely 
that ground control would depend on the interfacing func-
tions of the OCS. It is anticipated that only in extreme 
circumstances would ground control disable on-board autonomy 
features (the OAM and the FTM) completely, and resort to di-
rect control of lower level on-board functions. 

An example of a reply from the OCS to the user in Walk 
Mode appears below: 

Goal: (after (subunit-diag-4 (generator-fault 8)) 
Rule used: 

1 	SUBUNIT-64-RULE-1 
How you got here: 

2 	(voltage-fluctuation intermittent) 
3 	(invoked 	(IF 12)) 

Where are you going: 	(after (subunit-diag-6) 
'(generator-fault 8)) 

The output says that the immediate reason the question 
is being asked by the OCS (one gets into Walk Mode from 
Question Mode) is to find out if generator-fault 8 is a re-
sult of running subunit-diag-4. The test was run as the 
SUBUNIT-64-RULE-1 suggested it. The rule had checked inter-
mittent voltage fluctuations, and before that, another IF 
had been invoked in the current consultation sequence. 

The user, in response to such an explanation, may walk 
further about the deduction structure, change the focus of 
attention by changing the display, or demand more detailed 
explanations. Optionally, the user can alter an element of 
the reasoning sequence. This may or may not be meaningful 
depending on the element to be changed and the way in which 
it would be changed. 

There are five kinds of display for different purposes. 
These purposes are: 

- editing the concepts in the domain 

- investigating successful and failed deductions 
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- inspecting and editing Interactive Frames 

- investigation of the current state of a diagnosis 

- miscellaneous minor items 

It is anticipated in the near future, the facility to 
permit changing old answers will be added to ARBY. When this 
happens, the OCS will become capable of re-enacting its old 
sessions and of changing its course of action retrospective-
ly. 

3.2 Fault-Tolerance Management 

3.2.0 Overview 

The Fault-Tolerance Manager (FTM) is composed of four 
layers. Their relationships are shown in Figure 3.3. 

3.2.1 Layer 4: Application Function Integrity 

Layer 4 is responsible for maintaining reliable execu-
tion of each AASC application function (APF). Application 
functions are such things as Stationkeeping, Thrust Control, 
Attitude Determination, etc. The functions provided in this 
layer include those in Table 3.1. 
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Table 3.1: Structure of Layer 4 of FTM 

Function 

initiation, monitoring, 
and termination of APFs 

detection and recovery 
from transient faults 
in interprocess 
communication 

reporting of permanent 
faults in interprocess 
communication 

reporting of permanent 
faults in APF. 

Performed by 

Basic Application Management 
packaie (BAM) 

OSI Presentation package and 
relit.ed packages 

OSI Presentation package and 
relîted packages 

Basic Application Management 
packaUe 

3.2.2 Layer 3: Process Integrity 

Layer 3 is responsible for maintaining reliable execu-
tion of each process within each APF. There are two classes 
of techniques used to accomplish this objective: 

1. Software fault-tolerance: 

- assertions 
- exceptions 
- exception handlers 
- N-version programming 

2. Guardian/owners 

These are not independent classes, but represent dif-
ferent parts of the overall structure of Layer 3. Each of 
the items in class 1 can only be specified by meta-rules for 
the design and coding bf processes within APFs. 

Assertions: 

An assertion is a logical expression A, associated with a 
range of instructions of a procedure P, with the property 
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that if A = false between execution of the first and last 
instructions of the range, then P is faulty. More practical-
ly, an assertion can be tested at the beginning and/or end 
of the range, and if it is false, a fault has been detected. 

Exception: 

An exception is the occurrence, during execution of a proce-
dure, of a state for which there is no valid successor state 
within the procedure. Stated more simply, it is a condition 
for which coding has not been provided within the body of 
the procedure. When an exception occurs, the procedure can-
not continue executing. 

Exceptions can be: 

- system-defined, e.g. integer overflow 
- programmer defined. 

The latter kind of exception will be raised when an asser-
tion is false. Thus assertions will be placed at key points 
within a procedure to prevent further execution in the pres-
ence of a fault. The choice of these key points is 
process-dependent, but the following are suggested points: 

- start of the procedure 

- after an input instruction 

- before a procedure reference 

- after a procedure reference 

- before an output instruction 

- at the end of the procedure. 

Exception-handler: 

For each possible exception defined within a procedure, an 
exception-handler can be defined. It may perform arbitrary 
process-specific functions for isolation or analysis of the 
exceptional condition. For the purposes of the AASC, it must 
terminate by raising an exception itself. The reason for 
this is given under Guardian/Owner below. 

Each procedure in each process in each application may 
contain an exception-handler. Its purpose is to handle con- 
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ditions for which appropriate actions cannot be coded within 
the procedure. The exception-handler may perform arbitrary 
functions necessary for isolation or analysis of the excep-
tion, but must ultimately send the process within which it 
is located to a guardian (see below). The exception-handler 
does this by raising an exception itself. The operating sys-
tem then sends the containing process to its guardian, where 
it awaits handling by its owner. 

The exception-handler is invo'ked either by the implicit 
raising of an exception, such as integer overflow, or by an 
explicit 'raise' statement for a process-specific exception. 
An example framework for an exception handler is given 
below: 

procedure xyz ( 
a: type 1; 
b: type 2); 
wrong combination: exception; 

-- -This declares the exception. 

begin 

if a > 0 and b < 0 
then 

raise wrong combination; 
-- This raises the exception. 

end if; 

exception 
-- This declares the actions 
-- of handling the exceptions. 

when wrong combination => 
failure  description  := 

faiTure descriptor' ("wrong._ 
combinjt-ion", a, b); 

raise; 
-- This invokes iMAX to send 
-- process to its guardian. 

when otheYs 
-- This handles all other 
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-- exceptions. 
failure description := 

failure descriptor'(null, null, null); 
raise; 

end; 

The raise statement within each handler causes iMAX to 
send xyz to its guardian, and thence to its owner, which can 
examine the state of the xyz, including failure description, 
and perform required recovery functions on it. — 

Guardian/Owner: 

When an exception occurs, the question arises: what happens 
now? The first level of response depends on whether there is 
an exception-handler within the process. If there is, it is 
executed. It must terminate by raising an exception itself. 
Thus, whether an unhandled exception or a handled exception 
occurs, the operating system sees the exception as the end 
result. 

When a process terminates by means of an exception, the 
operating system automatically sends the process to its gu-
ardian. 

A guardian is a special instance of a port [INTE 82]. A 
port is simply a queue to which objects may be sent and from 
which objects may be received. A guardian'is a special port 
in that only processes can be sent to a guardian. When any 
process is started, a guardian is associated with it, and it 
is to this guardian that the process is sent when an excep-
tion is faised within it. In addition, an owner process is 
defined when the process is started, whose responsibility it 
is to receive processes from the guardian. The owner can 
perform isolation, diagnosis, and recovery functions for the 
process. A generic package for owners is presented in Sec-
tion 4.2. Figure 3.4 shows the process fault-handling se-
quence involving exceptions, guardians, and owners. 

N -Version Programming: 

An obvious technique for tolerating faults is redundancy. 
Concurrent redundancy implemented in software is called 
N-version programming. 2-version programming provides fault 
detection, 3-version provides fault detection, diagnosis and 
recovery. 
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In the AASC, redundancy may be provided at the process 
level, as shown in Figure 3.5. It has been pointed out 
[LEVE 82] that rigorous N-version programming would require 
that the specification, design, coding, and testing of a 
software module be independently carried out, in order that 
no systematic error occur in the N versions. Such indepen-
dence would, it is claimed, raise software costs to an unac-
ceptable level. There are two reasons for mollifying these 
objections, however. 

First, to demand independent specificiations and/or de-
sign is to demand much more of the software than is usually 
demanded of the hardware in equivalent redundant hardware 
designs. That is for hardware, redundant components are usu-
ally simply manufacturers' replications of the same compo-
nent design. That is, hardware redundancy is at the fabrica-
tion level, not at the specification level. If such a level 
of redundancy is acceptable in hardware, then for software, 
redundancy at a point intermediate between independent spec-
ification and independent coding should be accepted as pro-
viding an enhanced level of reliability. 

Second, by providing N versions at the process level, 
redundancy can be applied selectively to critical processes. 
Hence, cost/benefit can be kept at an arbitrarily reasonable 
level. 

3.2.3 Layer 2: Processor Integrity 

Processors in the AASC are the PCU, NIU, and IP. The 
PCU achieves fault detection and recovery at the processor 
level by multiple redundancy of the iAPX 432 GDP (General 
Data Processor) [PETE 83]. 

Two levels of redundancy are available in the 432: 
Master/Checker (double redundancy) and Primary/Shadow or 
married processors (quadruple redundancy). The latter sup-
plies detection and uninterrupted recovery from processor 
faults. A detailed description of the mechanisms by which 
this is achieved appeared in a previous report [GOMI 82a]. 

3.2.4 Layer 1: Component Integrity 

By component, in this case, we mean a component of a 
processor, not necessarily a physical module. For instance, 
an adder, a bit plane, a word, a logical comparator. Fault 
detection and recovery for these components is provided in 
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the iAPX 432 within the chips, by: 

access retry 
access re-routing on alternate backplane buses 
several bit-correction schemes 
bus parity 
ECC memory arrays. 

3.3 Networking 

3.3.1 Interprocess Communication 

Interprocess communication is considered to take place 
between: 

OAM and BAM 
e.g. request to start an APF 

OAM and APF 
e.g. request for stationkeeping 

APF and APF 
e.g request for current orbit parameters from 
Stationkeeping to Orbit Determination subsystem 

APF and subsystem 
e.g. Thrust Control program and thruster 
controllers. 

The two communicating processes (CMPs) may be within 
the same processor complex (PCU) or in different PCUs. The 
CMP which initiates the communication is called the initia-
tor process, the other is the acceptor process. Neither CMP 
should have to know the location of the other. A solution to 
this problem is attempted in the Liberty Net [NASS 82] but, 
unfortunately, the solution appears to deviate substantially 
from the OSI Reference Model. Within the OSI Reference Mo-
del, the location of two OSI users is unknown above the Net-
work layer. Ideally, then, if two processes CMP1 and CMP2 
establish communication, their locations should be known on-
ly at the Network layer. If CMP1 and CMP2 are within the 
same PCU, this would imply the flow of messages between CMP1 
and CMP2 as shown in Figure 3.6. 

There are two disadvantages of implementing this type 
of connection for co-located CMPs. First, it implies extra 
processing steps in going through the PCU -NIU connection and 
three OSI layers. However, processor speed is sufficient for 
us to disregard this disadvantage. Second and more impor-
tant, however, is the fact that it is not guaranteed that 
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existing available communication packages will provide the 
kind of connection in Figure 3.6. Available specifications 
on such products do not indicate whether or not this feature 
is implemented. For this reason, the ability to determine 
whether CMP1 and CMP2 are co-located will be contained in an 
application-layer module within the PCU, through which all 
inter-process communication will go. Figures 3.7a and 3.7b 
compare co-located and remote communication paths. 

The purpose of the local exchange is to determine 
whether the destination process is in the same processor or 
not. If it is, it (the local exchange) uses the local 
inter-process communication facility to deliver the message 
[INTE 82]. Otherwise, it transmits the message to the NIU, 
where the Presentation and lower layers of the OSI implemen-
tation take over. A more generalized theory of distributed 
concurrent processes is presented by Tobiasch [TOBI 82], but 
the formalism is too experimental to be incorporated here. 

3.3.2 OSI Implementation 

When two processes communicate across the network bus, 
they do so through two NIUs, one attadhed to each of the 
processors in which the processes run as shown in Figure 
3.7a. Each NIU can be considered as providing a service to a 
communicating process (CMP). In turn, the NIU must send and 
receive digital signals over the bus. The transformation 
between the quite abstract function of exchanging messages 
between CMPs and the exchanging of signals over a bus is di-
vided into six steps within the NIU. This choice is not ar-
bitrary. It is based on the OSI Reference Model [GOMI 82h] 
[BLAN 81],[SCHI 83],[ISO 82b]. Figure 3.8 shows the layers 
within the NIU. We describe here the services provided at 
the Session and Presentation layers. 

Message exchange is at the application level in the OSI 
Reference Model. Thus the AASC must provide service at the 
Presentation layer. The messages may have any content, de-
pending on the application. For the propdsed 
proof-of-concept system, the Presentation layer will provide 
functions to make inter-process communication reliable: 

1. Check 	message . form 	and 	content 	against an 
APP-specific template 

2. Check messages' origins and destinations for cor-
rectness, using APP-specific criteria 
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3. Handle exceptional waiting times and other excep-
tional conditions 

4. Detect patterns of failure of communication. 

The Session layer of the OSI model provides the follow-
ing categories of service to its user [BLAN 81],[ISO 82a]: 

1. Session connection establishment/connection 

2. Provision of a token or turn to one or both users 

3. Expedited data transfer, i.e. immediate delivery re-
gardless of other waiting messages 

4. Data transfer. 

It may also provide, optionally, the ability 	to 
re-synchronize message exchange at some agreed point in the 
past. 

The users of the 	Session 	layer 	in 	the 	AASC 
proof-of-concept system will be the Presentation layer and 
the local exchange module within the PCU. The local exchange 
module can be considered an Application layer process. 

The following Ada packages specify the detailed ser-
vices provided by the Session and Presentation layers. (For 
Ada reference, see [PYLE 81].) 



-- SESSION PROTOCOL 
[SCHI 83] 

package OSI Session is 
subtype prTnt name is string (1 .. 12); 
type connectron_spec is 

record 
initiator id: print name; 
acceptor  id: 	print—name; 
connectiUn id: print name; 
data token—available: —  boolean; 
major tokeii available: boolean; 
end reard; — 

type direction spec is (send, receive); 
type service_p7imitive is ( 

request, 	-- Invokes, or does not, invoke a 
no request, 	-- service. 
inUication, 	-- Indicates, or does not, indicate 
no indication 	-- service is invoked: 
reiponse, 	-- Completes a service 
no response, 	-- previously indicated, or does not. 
coiifirmation 	-- Completes, for the request 
no confirmation); 	-- indicator, a given service, or 

-- does not. 
type token transaction is ( 

give, — 
please); 

procedure s connect ( 
result: —  out function result; 
connection: in out -Connection spec; 
initial_  major token: in boolea-ri; 
initialdata t.oken: 	in boolean; 
time liiit: ;  in  elapsed time); 

--Function: 
-- If the time limit is zero, the Session layer checks to 
-- see if the îcceptor process is currently also requesting 
-- connection with this process. 	If it is, Session 
-- establishes the connection and returns the result 
-- connection established. 
-- If the spe-Cified process is not requesting connection, 
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-- the result is process not available. 
-- If time limit > 0,  Session checks for the specified 
- process-r  request until either the request exists or 
-- the time limit is exceeded. 	If time limit is 
-- exceeded,-  the result is process_hot_a •Uailable. 

procedure s release ( 
result: —function result; 
connection: conriê-ction_spec); 

--Function: 
-- The corresponding process is disconnected. 
-- If messages remain to be delivered, the result is 
-- messages waiting. 
-- If no mesages are awaiting delivery, the result 
-- is success. 

procedure s u abort ( 
connectiUnT connection spec ; 

 message: any_access); 

--Function: 
-- Send a process- 
-- specific message to the corresponding 
-- process, and abort the connection. 
-- Other than the specified message, no 
-- undelivered messages will be delivered. 

procedure s token give ( 
result:  out  -function result; 
connection: in out cUnnection_spec; 
major token: in boolean; 
data token: 	in boolean; 
message: in any_access); 

--Function 
-- Give the specified tokens to the acceptor 
-- process via the specified connection, and 
-- deliver the message. 	Results are 
-- similar to s_data. 
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procedure s token please ( 
result: —  out Tunctio n result; 
connection: in out —connection spec ;  
major token: in boolean; 
data -Eoken: in boolean; 
mess-4e: any_access); 

--Function: 
-- Request that the specified token(s) be given 
-- to the initiator, and deliver the message. 
-- Results are similar to s_data. 

procedure s major synchronization ( 
result:  out Tunction result; 
connection: in out d(innection spec; 
serial number: out natural; — 
messag-e-: any_access); 

--Function: 
-- Establish a synchronization point 
-- for the purpose of possibly resynchron- 
-- izing in the future. 	The synchronization 
-- point is given a serial number by the 
-- Session layer for future reference. 
-- If the initiator does not hold the 
-- major token, the result is no_major_token. 



procedure s resynchronize ( 
result:  out  function result; 
connection: in out cUnnection_spec; 
serial number: in natural; 
forced-collision: in boolean; 
new major token: in boolean; 
new-data -E-oken: in boolean; 
message: -  in any_access); 

--Function: 
-- Purge all undelivered messages 
-- since the synchronization point 
-- specified by the serial number. 
-- Request establishment of the specified 
-- tokens with the initiator as specified. 
-- Deliver the message. 
-- The acceptor has the option of refusing 
-- the re-synchronization by initiating a 
-- re-synchronization with the forced 
-- collision parameter set. 



procedure s data ( 
result: -out function result; 
connection: in out coilnection spec; 
serial number:  out natural; - 
forced-collision: out boolean; 
major token change: token transaction; 
data token  change:  token transaction; 
message: in  any_access)7 

--Function: 
-- Receive via the specified connection 
-- any of the parameters, depending on 
-- the nature of the corresponding process' 
-- activities. 
-- If the serial number is not null, a 
- resynchronization is requested. 
-- If forced collision is true, a 
-- previous -Fesynchronization is being 
-- rejected. 
-- If major token change = please, 
-- the major  tokeii is being requested by 
-- the corresponding process. Similarly 
-- for the data token. 	If token change = 
-- give the token is being 
-- given to the calling process. 
-- The message may be null or non-null. 
-- If there is no current message or 
-- other communication from the 
-- corresponding process, the result is 
- no_communication. 

procedure s broadcast ( 
result: -out function result; 
initiator id: in print name; 
broadcast-reason: in br-&adcast reason value; 
message: in any_access); 

--Function: 
-- Broadcast the message to all connections 
-- associated with the initiator. 

end OSI_Session; 

-- PRESENTATION LAYER 
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with OSI Session; 
package -bSI Presentation is 
type rang-é-_spec is 

record 
minimum: natural; 
maximum: natural; 

end record; 
type alternation_spec is 

record 
send_range: range spec; 
receive range: raTige spec; 

end record; 
type message validation  rules is 

record 
min length: constant natural := 1; 
max length: constant natural := 256; 
min-value: 	string (1 .. max length; 
max value: 	string (1 .. min-length); 

end record; 
type message_flow characteristics is 

record 
alternation: 	alternation spec; 
min interval: natural; 
max-interval: natural; 
min-response time: natural; 
max response-time: natural; 

end r-è-cord; 

--Example of message flow characteristics: 
- (((1,3)(1,2)),20 0,4007300,500) 
-- which means that the given process 
-- must sent between 1 and 3 messages, 
-- then receive between 1 and 2 messages. 
-- Also, it should not space consecutive 
-- messages closer than 200 time units or 
-- wider than 400 time units. 
-- The process expects response from the 

correspsonding process no sooner than 
-- 300 units, and no later than 500 
-- units after sending a message. 
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--The procedures of. the Presentation 
-- layer are just those of the Session 
-- layer, except for the connect 
-- procedure. 	In addition, note that 
-- extra values of the type function 
-- result have to be defined: 

message template error 
messagelflow_errUr 

procedure p connect ( 
result:  out  function result; 
connection: in out cUnnection spec; 
initial major token: in boole-a-n; 
initial data token: in boolean; 
time 	—in elapsed time; 
mess-ige_template:  message validation rules; 
message flow: message flow characterTstics); 

--Function: 
-- Same as s connect, except that 
- message_t"mplate is specified to allow 
-- checking of message form and message 
-- flow is specified to allow checking Uf 
-- message flow. 

end OSI_Presentation; 



It can be legitimately asked whether the complexity re-
presented by the OSI Reference Model is appropriate to all 
kinds of communications, regardless of the sophistication of 
the nodes in the network. For instance, consider the situa-
tion shown in Figure 3.9. One might argue that the simple 
thruster controller, with very little processing power, does 
not have the sophistication to follow the protocols required 
by the OSI Reference Model. Would it not be "simpler" just 
to connect the controller directly to the PCU with the 
Thruster Control APF in it? 

First, no extra sophistication is required of the 
thrust controllers. In fact, the purpose of the OSI is to 
relieve the communicating process of all the burden of han-
dling the mechanism of communication. The implementation of 
the Presentation layer, the highest layer in the BIU, is 
such that the application process (in this case the thruster 
controller) simply sends whatever coded signal it is capable 
of, and the Presentation layer adds the appropriate informa-
tion to enable delivery to the Thrust Control APF. Similar-
ly, when the Thrust Control APF sends a control command to 
the thruster controllers, the Presentation layer sends the 
bare control signal to the appropriate controller. 

This scheme is preferable to an ad hoc connection 
between the thruster controller and the PCU, for the follow-
ing reasons: 

1. It allows redundancy to be designed into PCUs inde-
pendent of physical connections. 

2. It allows the Thrust Control APF to execute in any 
PCU on the bus. 

3. It allows the mechanisms for communicating with the 
thruster controllers to be localized in a processor 
specifically designed for i/o. 

4. The modularity of the design allows easy substitu-
tion of different components for PCU, NIU, thruster 
controllers with minimum impact on other components. 

5. It allows a uniform design and implementation appro-
ach to be used throughout the network, simplifying 
and speeding up implementation. 

3.4 Example On-Board Application Model 
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The proof-of-concept experiment requires that at least 
one example of an on-board application function be imple-
mented so as to provide evidence that the proposed AASC can 
support a realistic subsystem and allow estimation of some 
quantitative aspects of the proposed system. The Station-
keeping subsystem of a geosynchronous communications satel-
lite provides such an example [EKMA 83]. It is relatively 
complex, because of the calculations required; it is a crit-
ical function of the AASC; and it communicates with at least 
three other subsystems, namely Orbit Determination, Attitude 
Determination, and Attitude Control. 

The Stationkeeping model assumed here for purposes of 
software specification is not strictly a realistic one, 
since it assumes an orbit parameter set which has a singu-
larity for exactly equatorial orbits (ascending node = 0.0). 
However, different dynamic models may be substituted by 
altering some data type definitions and some procedure par-
ameters. Further specification and design of the example ap-
plication processes should be carried out by experienced 
spacecraft application programmers or by application pro-
grammers in conjunction with satellite designers. Existing 
application programs could be converted to Ada to run in the 
iAPX 432. 

The satellite is assumed to be in a near-equatorial ge-
osynchronous orbit, with its required station at a given 
longitude with a given deadband. The goal of Stationkeeping 
is to maintain the satellite within the given deadband with 
manoeuvres that minimize fuel consumption. 

The policies for timing of Stationkeeping functions may 
be specified in several ways: 

1. Ground control decision 

2. OAM decision with ground control consultation 

3. OAM decision 

4. Deterministic algorithm within Stationkeeping func-
tion. 

For purposes of the proof-of-concept, we will use the last 
alternative. 

For the purposes of rough specification of Stationkeep-
ing functions, we assume the following general sequence: 
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1. Determine current orbit 

2. Predict orbit events 

3. Plan manoeuvre 

4. Execute manoeuvre 

5. Check effects of manoeuvre 

Furthermore, we assume that a manoeuvre may require the 
sequence: 

1. Change attitude 

2. Change velocity vector 

3. Reset attitude 

It is important to point out that it is not our inten-
tion nor is it within our expertise to specify an actual 
stationkeeping algorithm. It is sufficient for our purposes 
to specify a model that approximates the real case and pro-
vides similar computational complexity and interprocess re-
lationships. 

3.5 Monitor Station 

The AASC network is connected via a gateway node and 
link of appropriate medium to a ground station, and thence 
possibly to a global network. Ground control exists either 
at the first ground station (no global network) or at some 
node in the global network [GOMI 83a]. Ground control will 
conduct dialogues with the OAM, and in exceptional cases is-
sue messages directly to a spacecraft subsystem. 

In the proof-of-concept system the configuration will 
be less ambitious, as shown in Figure 3.10. The analogue of 
a ground station will be the Monitor Station, which is im-
plemented as a node in the AASC networking. The functions of 
the Monitor Station are: 

1. Accept input from an operator/experimenter 

2. Issue requests to OAM 

3. Receive and display messages from OAM 
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4. Monitor and display traffic on the bus 

5. Monitor and display traffic through each layer of 
any NIU. 

6. Send a message to the FTM. 

To accomplish this, the Monitor Station (MS) must be 
able to: 

1. Communicate via the standard AASC communications 
protocol (see Section 3.3) 

2. Intercept any transmission on the LAN and analyze 
the message contents to determine its contents as 
they relate to Link, Network, Transport, Session, 
and Presentation layers in the two communicating 
NIUs. 

Apart from this latter specialized ability, the MS be-
haves at the system level like any other node on the net. 



4. SYSTEM SOFTWARE 

4.1 On-Board Autonomy Management Software 

4.1.0 Overview 

The software of the OAM (for this proof-of-concept de-
sign) consists of the On-board Consultation System (OCS) 
which interfaces the NIU protocol modules, and a few inter-
facing modules between them. The OCS will be built on the 
ARBY expert system framework, and has the following major 
software components: 

- UNIX operating system for VAX-11/780, Berkeley Ver-
sion 4.2 or later 

- Franz LISP package that comes as a part of the Berke-
ley UNIX 

- Smart Systems Technology's ARBY expert system for bu-
ilding diagnostic expert systems. It has, as major 
software subcomponents, the following: 

- HYPO inference engine 
- IFM user interface 
- DUCK deductive retriever 
- NISP LISP macro library 

4.1.1 Structure of OAM 

The OAM consists of the OCS and the OAM Control Subsys-
tem. The functions of the Control Subsystem are not essen-
tial to achieving the objectives of the proof-of-concept 
system, and thus are minimized during this phase of the pro-
ject. For all practical purposes, the OCS represents the 
OAM. Therefore, only the functionality of the OCS is des-
cribed here. 

Two major software modules in the OCS play a key role 
in achieving the consultation. The inference engine, or the 
HYPO, conducts the reasoning process, while the user inter-
face module, or the IFM, performs the dedicated high level 
system i/o to the external world. These modules are imple-
mented mostly in Franz LISP, but also use macros defined in 
the NISP macro library. NISP houses LISP functions and pro-
vides easier syntax, data types, improved number handling, 
and convenient control structures. The LISP syntax, if not 
semantics, is known to be rather limited in these areas, and 
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NISP attempts to unload the burden from AI programmers by 
encapsulating these utility functions in more visible for-
mats. 

Access to an assertive database is handled exclusively 
by a deductive retrieval module called DUCK. The deductive 
database records the progress of consultation in a relation-
al database formalism. The database is called deductive as 
it permits deductive access. Figure 4.1 shows the software 
structure of the OCS. 

HYPO 	I 	IFM 

1 DUCK 1 

NISP 

Franz LISP 

Figure 4.1 OCS Software Structure 
as supported by ARBY 

The reasoning machine (or inference engine), HYPO, is 
further divided into two distinctive parts: a hypothesis 
manager, and a hypothesis chooser. The former keeps track of 
the current complex hypothesis. The latter is responsible 
for making choices of individual hypotheses. 

4.1.2 Internal Workings of the Reasoning Machine 

The basic operation of the OCS is described in 3.1.1 
above. Further details of the internal workings of the con-
sultation system as supported by the ARBY inference mechan-
ism are discussed below. 

Seq uence: 

The reasoning sequence is started when a request for consul-
tation is received by the OCS. Such a request arrives at the 
OCS via the AASC on-board networking which adopts the OSI 
protocol formalism. After the necessary initialization, the 
IFM issues an initial Interactive Frame (IF), demanding a 
set of findings from the user. It is typically given as a 
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high level question in order to define the problem. The gen-
eralized approach at the beginning helps in picking the 
right hypothesis from the start. Following this, the DUCK 
deductive retriever retrieves from the KB hypotheses that 
account for the initial finding(s). It searches through the 
KB, backward-chaining through rules using pattern matching 
techniques. This way, an initial set of hypotheses is creat-
ed, with at least one hypothesis for every finding. When 
more than one hypothesis is involved for a given problem, it 
is said that a complex hypothesis is found. 

The system uses the choice rule, or "the survival of 
the fittest" rule so to speak, to eventually eliminate spu-
rious hypotheses. It amasses evidence either for or against 
one or another hypothesis by proposing tests to be done to 
gather more evidence. The problem of complex hypothesis is 
dealt with by favouring one explanation more than another. 
The favoured hypothesis is one that accounts for more find-
ings. 

Testing: 

The choice mechanism (the hypothesis chooser of the HYPO re-
asoning machine) uses the estimate of profitability to de-
cide which test (request for findings) to run. The profita-
bility of a test is based on the ratio of the change the 
finding would produce to the cost of producing it. 

A test on-board the AASC satellite would be, for exam-
ple, the running of a diagnostic program on one of its 
transmitter modules. This involves decommissioning the unit, 
supplying the power, assigning a communication channel, if 
the test involved an external station, and supplying other 
logistic supports such as temperature control around the un-
it, and orientation management of antenna. Knowledge of the 
spacecraft design and operation is needed to estimate the 
costs involved in such operations, and the OCS knowledge 
base (KB) would contain such information for each of the an-
ticipated tests. 

Involvement by the domain expert would be seen in the 
building of hypotheses as well. In addition to knowledge of 
faults and their causes, the extent of the benefit antici-
pated by knowing the possibility of faults is a form of do-
main knowledge itself. This is a type of knowledge that is 
related to the way inference is conducted. Study of such 
"control knowledge" and methods of its application is a hot 
topic in the current study of ES technology. Also, in the 
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diagnostic ES, what the expert would do in the event of a 
fault would be a crucial bit of knowledge. Such knowledge 
would be stored separately from diagnostic or control knowl-
edge, probably as "rehabilitation knowledge". It would guide 
the spacecraft in its effort to recover from faults. 

In contrast to these symbolically recorded knowledge 
data in KBs, diagnostic programs that run under the direc-
tion of such collective knowledge are a collection of more 
conventional algorithms written in conventional procedural 
representation. One of the major differences between the AI 
programming and conventional programming is that the former 
permits symbolic (a form suitable for semantic expressions) 
interaction between units of knowledge embedded in the pro-
gram, while the latter is limited to numerical and logical 
manipulation of narrowly defined entities. Hence, while the 
creation of sophisticated diagnostics program sets for diag-
nosing transmitter modules may require extensive domain 
knowledge typically found in the experience of the designer 
of such modules, these programs are not called AI programs. 
Being non-AI programs, they do not possess the flexibility 
that makes symbolic manipulation so attractive and powerful. 
Only by succeeding in extracting and representing the knowl-
edge of domain experts in a format that permits flexible ac-
cess and manipulation of that knowledge does on-board intel-
ligence, such as that intended for the AASC, become meaning-
ful. 

Estimates of what it costs to perform a test may vary 
widely from no cost at all (the test has already been con-
ducted, and its result is unlikely to have changed) to very 
costly, involving running several diagnostic programs, each 
taking hours, or needing extensive exchanges between the 
on-board consultant and the external tester (not necessarily 
human). Simple observations of system status, such as power 
source voltage checks, will typically have a low cost esti-
mate. Identifying the number of available buffers of a cer-
tain type may take more effort, involving messages to be 
sent to the FTM for request and confirmation, and processing 
the reply. The OCS may engage in a more elaborate exchange 
with the FTM. For example, the OCS may direct the FTM to re-
configure an on-board process structure that deals with the 
control of a vision analysis unit, and then request it to 
perform a test using a standard series of process test pro-
tocols. In such a case, the estimation of the cost would be 
more involved. 

The Reasoning Cycle: 
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One deduction cycle, as described so far, involves sending 
out requests for new information to the user, accepting 
findings, searching KB for hypotheses that best explain the 
findings, adjusting the score on the hypotheses so far cho-
sen, eliminating spurious hypotheses, elaborating and ex-
panding on the remaining hypotheses, and identifying tests 
to be conducted to clarify them. The cycle continues until 
there is no more need to run external tests, or to collect 
facts. At the end of each cycle, the inference engine (HYPO) 
checks the profitability of the best proposed test against 
what it requires to take a decision. 

Messages: 

In the AASC, such requests are carried over the on-board 
network (LAN/VLAN) to its users (ground control, the FTM, 
the EOA, or the MS). Ground control would exchange messages 
with the OCS via the down-link subsystem or the 
ground-gateway node, and the up-link or the space-gateway of 
the ground station. The subsystem structure is shown in Fig-
ure 4.2. This is simplified in the proof-of-concept system 
to merely perform simulated ground control functions or as a 
monitor station (MS) which is directly linked to the 
"on-board" network accessed by the OAM, as shown in Figure 
4.3. 

The exchange between the OCS and the application node 
takes place on-board. The application nodes are those 
hardware/software entities that are involved in various 
on-board sensory/control activities. In executing their own 
on-board functions, some of them access the OAM via the net-
work. The type and nature of the consultation request de-
pends on the application. See Section 4.4 below for further 
detail. 

The FTM also issues consultation requests, or reports 
problems to the OAM. This happens when the on-board 
fault-tolerance manager fails to solve problems by itself. 
The message format and contents will be determined when the 
KB of the proof-of-concept system is implemented. This is 
true for other message formats between the OCS and the EOA 
and the MS. 

The request for a test is sent out to the FTM only 
after some tests involving the software manager are.found to 
be worth doing. The requests for tests are, as in the case 
for hardware tests, issued through the IFM module of the 
OCS, and sent over the on-board network to the FTM. The 
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Table 4.1: Example of an On-Board Malfunction Analysis  

hl:  • scillator temperature high 	75 
h3: connector to antenna 

subsystem deterioration 	30 * 
h4: transmittermemory controller 

lost by radiation 	25 * 

fi: transmission carrier 
intermittent 

£2:  transmitter control 
software malfunctioning 

£3:  memory for control 
software parity error 

h4: memory controller 
lost by radiation 

h6: RAM memory bank failure 

h2: on-board loader malfunction 
h4: memory controller 

lost by radiation 
h5: object module in ROM 

destroyed 
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findings by the FTM on the functioning of on-board software 
are sent back to the IFM, also via the network. Once re-
ceived by the IFM, like facts regarding conditions of 
hardware, the results become new assertions (or findings) in 
the database. The hypothesis chooser of the HYPO applies the 
new findings in its attempt to reevaluate the hypotheses on 
these software conditions. 

Control: 

The hypothesis chooser uses an algorithm (in the broader 
sense of the word) to retain "valuable" hypotheses and dis-
card useless ones. For example, let us assume a mismatch is 
reported by a software voter within the FTM. The OCS, ac-
cording to a rule in the on-board KB, orders a test from the 
FTM. Suppose the test only turned up a header syntax error 
in one of the messages issued by processes involved in the 
voting. In such a case the OCS, like a human consultant in a 
similar situation, would attempt to chase this lead as hard 
as it can, performing those tests which are profitable 
enough. However, if, for example, there are several findings 
after the initial test, such as the discovery of a dormant 
process, memory bank failure, buffer checksum error, etc., 
the system does not have to chase these findings as hard, 
and lets the survival of the fittest rule take its own ef-
fect. 

An Example: 

As explained above, a key principle of operation of the 
HYPO chooser is, "How hard should it try to eliminate all 
but one hypothesis?" The example shown in Table 4.1 demon-
strates this principle. 

The table shows the results of testing after a refine-
ment cycle. The example shows multiple hypotheses explaining 
the same finding, and a single hypothesis explaining multi-
ple findings. Those hypotheses with test results marked by * 
are the ones to be ruled out due to their "below threshold" 
score. Hypothesis "h4: lost by radiation", which counts for 
"f2: software malfunctioning" and "f3: memory parity", does 
not explain  "fi: intermittent transmission" well enough, and 
hence, is ruled out as the cause for that finding. An impor-
tant distinction is that it failed to account for the find-
ing, and that it is not necessarily false. Actually, the 
confidence in "h4: lost by radiation" is increased by the 
HYPO chooser as it accounts for both "f2: software malfunc-
tion" and "f3: memory parity" (the chooser adds bonus points 
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to those hypotheses that account for multiple hypotheses, 
each time this happens). The set (hl, h4) explains the find-
ings better than any single or combined hypothesis. Note 
that "h4: lost by radiation" won out over "h2: loader fai-
lure" as the explanation for f2, since this explanation also 
accounts for the "f3: memory parity" and, hence, obtained a 
bonus (in this case 50 points). 

4.1.3 Refinement of Hypothesis 

Once a compound hypothesis is arrived at, as in the 
above example, the OCS attempts to refine it by obtaining a 
more specific explanation for each finding. Thus "f4: memory 
controller lost to radiation" would be traced down to the 
subcomponent within the memory controller and what type of 
radiation damage has caused the loss. While such information 
may not help revive the lost controller, it will greatly as-
sist on-board reconfiguration efforts and provide data for 
future design improvements. The refinement takes place in 
the cycle described earlier, and the cycle continues until 
no further explanation is possible. A set of rules is retri-
eved from the KB which have the potential for establishing 
subsidiary hypotheses. Profitability criteria 
(cost-effectiveness estimates) are calculated on each of 
them, and hypotheses are ordered according to the results of 
the calculation. 

4.1.4 Treatment of Heuristics 

Unlike those in MYCIN or PROSPECTOR, the uncertainty 
mechanism in ARBY depends on a more practical means for in-
corporating heuristics into decision judgements - counting 
and evaluation of the viability of each hypothesis at the 
end of every refinement cycle. Hypotheses that do not achi-
eve a threshold are considered hypotheses without sufficient 
evidence, and are discarded. Thus, unlike some other ES, 
there is no need to combine uncertainty factors of one type 
or another across conjunction, disjunction, and implication. 
Carried to extremes, this method may discard an essential 
hypothesis which did not initially have a sufficient score 
but might have improved later. However, executed with dis-
cretion (mainly by adjusting the threshold appropriately) 
the method helps greatly to economize in the handling of the 
necessary heuristics, while maintaining reasonable control 
over the course of reasoning. The issue of guiding the 
inference process based on some control algorithm is an 
on-going research topic in the study of ES (see, for exam-
ple, J"PL's efforts on this issue in the application of ES to 



space systems in [GOMI 83c]). 

4.1.5 Hypothesis Choosing 

Hypothesis choosing, and hence pruning, has two main 
objectives. The first is to prevent stretching a hypothesis 
in an attempt to explain everything. In the example above, 
"h4: memory controller lost by radiation" as an explanation 
for "fi: intermittent transmitter", had that potential. The 
HYPO chooser, at the end of the current cycle, will elimi-
nate this possibility since that hypothesis explained rather 
poorly the transmitter problem. However, it is still mainta-
ined as a dominant hypothesis for the other two findings. 
Other low-score hypotheses, namely "h3: antenna connection 
deterioration" for "fi: intermittent transmitter"; "h5: ob-
ject module loss" for "f2: transmitter software 
malfunction"; and "h6: memory bank failure" for "f3: memory 
parity error"; are similarly discarded. 

The second step in the selection process picks up the 
hypotheses which are the only alternatives left for their 
respective findings. "hl: oscillator temperature high" for 
the transmitter malfunction (f1) and "h4: lost by radiation" 
as the explanation for "f3: transmitter memory parity" are 
picked up for that reason. 

Thirdly, the chooser selects hypotheses for the remain-
ing findings which are not accounted for so far. During this 
step, if a hypothesis has already been selected by the pre-
vious step, it is given a bonus point. Thus "h4: loss by ra-
diation" for f2 beats out "h2: loader failure", as the bonus 
points of 50, say, are added to h4 because it was selected 
in the previous step. Otherwise, it would have been lost to 
"h2: loader failure" as the explanation for f2. Thus, in the 

 above example, we arrived at the selection of the hypotheses 
set (h1; h4) at the end of the current stage. This "test and 
refine" approach simulates very well the process of diagnos-
ing complex problems by human experts. 

4.2 FTM Software 

4.2.1 Process Management 

The mission-oriented functions of the spacecraft are 
termed Application Functions (APFs). Each is carried out by 
one or more Application Processes (APPs). The Application 
Functions are under the direct supervision of the 
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Basic Application Manager (BAM) which is a package of proce-
dures-Within LayeF 4 of the FTM. Its functions are to: 

- handle exceptions raised in BPM. These can be classi-
fied as 

- errors in the way OAM called BAM 
- transient conditions which can be retried 

- detect permanent faults 

- detect anomalous conditions or patterns of error 

- create a guardian for each APP process to carry out 
Layer 3 fault-tolerance functions. 

To carry out these functions, BAM must know what 
processes are required to accomplish a given function. Hence 
there must be enough information passed by OAM to determine 
function -> process mapping. If this mapping is in the KB,, 
then the information can be formatted and passed directly. 
If it should only be available at Layer 4, then it must be 
parameterized by using generic procedures in BAM, or placed 
in non-volatile storage for constant availability. 

Functions in the BAM package will include: 

Invoke function 
Stop faction 
Restîrt function 
Suspend-function 
Get funUtion information , 

The following Ada package specifications describe the 
Fault Tolerance Management layer of the AASC. 

package FTM Definitions is 
type functiUn result is ( 

success, 
function invoked, 
no such !unction, 
caiinot Freate process, 
connecion es-Eablished, 
process no available, 
message-slyaIiing, 
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no major token, 
no —commuilication); 

end FTM_Definitions; 

-- BASIC FUNCTION MANAGEMENT 

with Basic Process Management, 
Descriptor Uefiniti -o-ns, iMAX Definitions, 
Untyped Po-fts, Process Globais Definitions; 
package—  Basic_Functioil_Managelient is 

- -Function: 
- - Basic Application Management 
- provi-des 	function-s-  to manipulate application 
- - functions that consist of sets of cooperating 
-- processes. 	It creates and starts the 
- - necessary processes, can retrieve inform- 
- - ation about them, and can stop and destroy 
- - them. 	Furthermore, it attempts to maintain 
- -  •the reliability of these application functions. 

use Basic_Process_Management; 

TYPES 

type function state is ( 
healthy, 	-1  performing function correctly 
suspended, 
suspect, 	-- anomalous conditions are 

- - under investigation 
degraded, -- the function is degraded 
dead); 	-- no aspect of the function is 

- - being carried out. 

type failure descriptor is 
record 

exception: exception; 
-- 	other fields may have to be added. 

end record: 

type function result is ( 
success, 
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no such function, 
carinot -Create_process); 

type process_list_element; 

type process list pointer is 
access procss_lTst_element; 

type process list element is 
record 
process_field: process; 
next process: 	process list pointer; 
prey process: 	process-list pointer; 

end record; 

type recovery descriptor is 
record 
recovery result: function result; 

othe7 fields may be ad-a-ed. 
end record; 

type function descriptor is 
record 
name: print_name; 
component processes: process list_pointer; 
timer: p7ocess; 
state: functibn state; 
error: failure Uescriptor; 

end record; 

type function report is 
record 
description: function descriptor; 
information: any_acces; 

end record; 

type error type is 
no error, - 
po-s-sibly transient, 
permanen-t); 
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max duration: constant short ordinal 
:= short ordialilast; 

-- This Uives a way of specifying 
-- the maximum duration for 
-- a particular state. 

max time: constant short ordinal 
:= short ordinal'last; 

-- This -g-ives a way of specifying 
-- the furthest possible point 
-- in the future. 



-- FUNCTIONS OF BAM 

function Invoke function ( 
f: print naile; 
duration: —elapsed time := max duration; 
expiry_time: absorute_time := —max_time) 

return function_result; 

--Function: 
-- Get function structure from non-volatile 
-- storage. 	If duration or expiry time is non- 
-- null, create a timer to limit execution 
-- time of f. 	Create one or more 
-- guardians/owners and associate 
-- processes with guardian/owner. 
-- Each owner is capable of handling 
-- faults at Layer 3 for its associated 
-- processes. 
-- Update the function descriptor in the 
-- function directory, —and start the 
- processei and timers. 

function Suspend function ( 
f: print nam") 

return funaion_result; 

--Function: 
-- If the function exists and is not dead or 
-- suspended, suspend it 
-- by stopping the component processes and 
-- updating the function directory. 

function Stop function ( 
f: print nime) 

return funtion_result; 

--Function: 
-- The named function is stopped by 
-- stopping the associated processes. 

function Restart function ( 
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E:  function name; 
duration: elapsed time; 
expiry time: absolute time) 

return Tunction_result; —  

--Function: 
-- If the function is not dead, restart the 
-- function f by starting the component processes. 
-- If the function has a timer, and duration 
-- and expiry time are null, the function is 
-- still subïct to the timer. 
-- If the function has a timer and duration 
-- or expiry time are not null, the current 
-- timer is Ciestroyed and a new timer is 
-- created. 	If there is no timer, and 
-- duration and expiry time are null, the 
-- function's processei are allowed to run 
-- indefinitely. 
-- If there is no timer, and duration and 
-- expiry time are not null, a timer is 
- createU. 

function Get function information ( 
f: 	func.Eion 	nameT 

ret urn functiorireport: 

--Function 
-- The function f is queried to obtain a function-
-- specific description of its state. 	This 
-- description is supplied by a process called 
- xx...x reporter, where xx...x is the APF print- 
-- name. — This process must be 
-- built into every application function. Its 
-- purpose is to report its state in application-
-- specific terms so that Layer 4 of AASC and 
- OAM can make decisions about the function. 
-- It may be a null process. 



-- OWNER package definition 

with Basic Application Manager; 
generic 

f: in out function name; 
guardian: in out port; 

with procedure Isolate failure ( 
failed process: in p7bcess); 
- This  procedure must be custom-designed 
-- for each application. 

with procedure Analyze failure ( 
failed process: in Frocess); 
remote—threshold: constant natural 

:= iiatural'last; 
-- This procedure must be custom-designed 
-- for each application. 

recent threshold: constant natural 
:= aturaPlast; 

package Owner is 

--Function: 
-- This is a generic definition of an "owner" 
-- of one or more processes of an AASC function. 
-- The package requires, for an instantiation 
-- of an owner of a particular process, the 
-- coding of each of the procedures listed 
-- above to isolate and analyze the failure 
-- of the particular process. 
-- Detection of the failure is carried out 
-- by the assertions and exception-handler 
-- of the specific failed process, or, if 
-- no exception-handler exists, by the 
-- operating system. The operating system 
-- sends the failed process to its guardian, 
-- which was associated with it when the 
-- process was created. The owner receives 
-- the failed process from the guardian. 
-- The parametric procedures and those 
-- defined in the package per:form all the 
-- functions of Layer 3 of the FTM. 	Any 
-- exception in these procedures causes 
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-- assertion of a permanent failure of the 
-- failed process, which is propagated to Layer 4. 

procedure Inform cooperating processes ( 
failed_pr-o-cess: in pr- ocess); 

--Function: 
-- The procedure broadcasts a message to the 
-- Presentation layer to suspend all 
-- sessions involving the process. 

procedure Determine permanence ( 
failed process: —in process; 
failure  description: failure descriptor; 
permanea_failure: boolean); —  

--Function: 
-- Log the failure event, and determine the 
-- frequency of this type of failure for the 
-- process. 	If the failure frequency is 
-- above a threshold, assert a permanent 
-- process failure. 

procedure Log failure event ( 
failed_pr6Eess: iri process; 
failure description: in failure descriptor); 

--Function: 
-- Record the failed process name and failure 
-- description on non-volatile storage. 

procedure  Check_  failure event ( 
failed proces: in -5rocess; 
failur description: ,in failure descriptor; 
permanerit_failure: boolean); 

--Function: 
-- Look up all instances of the described failure 



-- in the failure event log in the intervals 
(remote_past, now) 

-- and 
(recent past, now) 

-- If remote -Eount > remote threshold, 
assert—permanent failuîe 

-- If recent count > r.. cent threshold, 
assert—permanent_failUre. 

procedure Recover ( 
failed_process: in process; 
failed_processor: in processor; 
failure description: in failure descriptor); 

--Function: 
-- If failed process is not null, and failure 
- description  is not permanent, then recover- 
-- from transient process fault. 
-- If failed processor is not null, then 
-- recover f-r-om permanent processor fault. 

procedure Recover transient process fault 
failed_process7 process)7 

--Function: 
-- Find the most recent checkpoint in the 
-- checkpoint data-base. 
-- If the checkpoint exists, report the 
-- restart to cooperating processes by 
-- issuing a request to the Presentation 
-- layer to resume any session in existence 
-- for this process. 
-- Restart the process with checkpoint 
-- data if it exists, or in its initial 
-- state if not. 

procedure Find checkpoint ( 
failed_procss: in process; 
checkpointed_process: out process); 

--Function: 
-- Search the checkpoint data base 
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-- for the most recent checkpoint for 
-- this process. 	If there is no such 
-- checkpoint, return null. 

procedure Report to cooperating processes 
failed_procesi: —in process)7 

--Function: 
-- Issue a request to the Presentation 
-- layer to resume all existing sessions 
-- involving the recovered process. 

procedure Recover permanent processor fault ( 
failed_processUr: in pr-o-cessor; — 
failure description: failure descriptor); 

--Function: 
-- Determine failed processor type. 	Disable 
-- that processor. 
-- If the processor is a single point of 
-- failure, then assert permanent failure of 
-- the process. 
-- If an alternate exists, then assign the 
-- process to an alternate processor. 

procedure Maintain process ( 
g: in processport); 

--Function 
-- This is the main procedure of the Owner. 
-- It receives a process from the guardian, 
-- then uses the procedures defined in the 
-- package parameter list and within the 
-- package to maintain the process. 
-- First, isolate the failure. 
-- Second, analyze the failure for 
-- transience or permanence and any other 
-- process-specific characteristics. 
-- If the failure is not permanent, 
-- attempt recovery. 
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-- Report the failure event and, if 
-- applicable, the recovery of the 
-- process. 

procedure Function timer ( 
function  description: in function descriptor; 
expiry_time: in absolute_time); 

--Function: 
-- Periodically checks current time against 
-- expiry time. 	If current time >= expiry time, 
-- calls stop function to  stop  all processeî 
-- within the—given function. 	This process is 
-- optionally created when the function is 
-- started, and has its iMAX 'periods' parameter set 
-- so that it only does one or two time-checks 
-- per time-slice, so as not to use up much 
-- processor-time. 

I 
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4.3 NIU Software 

4.3.0 Overview 

As discussed in detail in 3.3 above, the NIU adopts the 
OSI protocol structure. The fundamental software requirement 
is very clear: for whatever software structure that exists 
on the OAM, the FTM, the Example On-Board Application or the 
Monitor Station accessibility is established to the OSI mo-
del. In search of such software structures, we came across 
several attempts by the industry and academia. Most of the 
achievements in terms of transportable software packages are 
still very exploratory, and hence a considerable amount of 
work is expected to build the linkage between the above men-
tioned stations of the proof-of-concept system. In particu-
lar, there is no commercially available Session layer proto-
col module that can be used for the proof-of-concept system: 
it must be implemented for each of the stations in the AASC. 
The state of the business in this area (OSI software mo-
dules) is very volatile and one must anticipate a consider-
able amount of effort in writing the "glue" modules to es-
tablish the above mentioned linkage between the OSI and the 
application. 

There are a few protocol packages that offer support 
for Link, Network, and Transport layers. Yet most of them 
are not necessarily built after the OSI model. A historical 
reason for this is the large investment made, particularly 
during the late '70s, to develop and make available to the 
market, software products that support a hierarchical appro-
ach to computer communications. Such products roughly fol-
lowed the OSI model, which was barely taking shape. A typi-
cal example of that type of software is the TCL (Transport 
Control Layer) protocol offered by XEROX Corporation in the 
early '80s. Many software houses and manufacturers of busi-
ness, scientific, and control computer systems adopted it, 
until in 1982, ECMA adopted the Class 4 of the Transport la-
yer specification by the working group with CCITT/ISO. The 
move greatly increased the visibility of the international 
efforts up to that point. By then moves by other standardi-
zation organizations, such as the National Bureau of Stan-
dards (NBS) and the American National Standard Institute 
(ANSI) to adopt a protocol structure and detail specifica-
tion similar to the ISO proposal, put an end to ad hoc pro-
tocol development business. Software manufacturers have 
since pledged adoption of the proposed ISO/OSI protocol. The 
present problem is caused by this transitional condition. 
The lack of readily available procotol modules should by no 
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means be taken as a reason to abandon the OSI approach, be-
cause of the logical clarity the model provides, and the in-
creased acceptance of that fact in the industry. 

The NIU is responsible for providing network access 
support up to Presentation layer services to the processes 
within the PCU. This implies that it must provide implemen-
tation of the layers below Presentation in the OSI: Session, 
Transport, Network, Link, and Physical. Class 4 Transport 
layer services will be provided by the AASC Transport layer. 
Class 4 includes error detection, recovery, and correction 
for all but misdelivered messages. 

Session and Presentation layer services are provided by 
two packages, OSI Session and OSI Presentation. For the pur-
poses of proof-:-(7f-concept, the P.resentation layer provides 
only one extra service over Session: message format and flow 
checking. It allows the APP to specify maximum and minimum 
message lengths, and to set bounds for response time, mes-
sage exchange patterns, and delivery times. 

The Session layer allows an APP to establish a session 
connection with another APP and exchange data with that APP. 

In the following subsections attempts are made to iden-
tify the characteristics of each station in regard to ac-
cessing the AASC networking, and the currently available op-
tions one can pursue to establish such connections. 

4.3.1 NIU Software for the OAM 

The OAM, in its present design, exists in a virtual 
LISP computer. Since all its users will speak to it by set-
ting up a session, (one consultation session corresponds to 
a session in the OSI terminology) the OAM must be able to 
handle needed subfunctions of procotol layer functions up to 
the Session layer. Assuming that the Ethernet access under 
Version 4.2 of the Berkeley UNIX permits modules written in 
Franz LISP to access the UNIX Ethernet driver, one will have 
to write both Transport and Session layer protocols in LISP. 
Although this sounds like a tremendous amount of work, ex-
perienced LISP users testify that such work can be done with 
relative ease. For example, D-series machine by XEROX Corp. 
has all its system software written in LISP, including the 
operating system and device drivers. 

Another option is to adopt Interlan's Network software 
product for VAX-11 computers which is currently under devel- 
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opment. The company has made a pledge to provide protocol 
software which covers all seven layers (with the possible 
exception of the Application layer for reasons of practical-
ity) of the OSI model. They already have a tentative TCL 
(which is likely to be a XEROX version) and are working on 
the Presentation-Session layers. When these materialize, the 
engineering tasks needed to establish the linkage between 
the LISP modules (OCS) and the protocol layers will be re-
duced. 

Digital Equipment Corporation is apparently working on 
an OSI protocol product. When this is completed, it is sup-
posed to provide all seven layers. Running Franz LISP under 
the UNIS operating system would permit a relatively easy 
linkage between the two software structures. 

4.3.2 NIU Software for the FTM and EOA 

Since the FTM and EOA will be implemented using the 
432, the issue is to link it to the Ethernet and provide 
upper layer protocol modules to support 432's effort to ac-
cess the network. 

All i/o, including network access, by the 432 system is 
done through the links between the 432 complex (PCU) and the 
Attached Processor  CAP) . When the network access software 
and hardware are included, the AP itself becomes the NIU. 

In terms of networking, software-wise, the RMX 86 oper-
ating system talking to the INA 950-1 protocol package con-
stitutes a good framework. The interprocessor communication 
utility package iMMX 800 is used to link the processor that 
houses the RMX 86, and the iNA loaded on the communication 
processor. 

A more sophisticated implementation involves Intel's 
new Datacom computer, iSBC 186/51 which is still under de-
velopment. It would appear that there are engineering issues 
involved in making it an AP. However, they do not look seri-
ous. This would make the interconnection between the 432 and 
networking far simpler. Our preference is to pursue this 
route. 

The Session layer protocol needs to be implemented. 
This, in the FTM's case would be written in languages avail-
)able under RMS 86, such as PASCAL 86, PL/M-86, or "C" for 
8086. Whether the Session protocol should be in the proces-
sor that houses the AP, or on the Communication processor, 
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is another level of refinement in specification in describ-
ing the NIU software for the FTM, as there a few options in 
choosing the NIU software. 

4.4 Example On-Board Application Software 

The following packages specify the Stationkeeping func-
tion which is used as an Example On-board Application (see 
Section 3.4). Figure 4.4 shows the relationship of Station-
keeping to other application functions. 

package Geometry Definitions is 
pi: constant float:= 3.14159265; 

type angle in Oegrees is new float digits 5; 
type angle—  ii  new float digits 5; 
revolution in degrees: constant 
angle in_deirees:= 360.0; 

revolutTon: constant angle:= 2*pi; 
subtype circular angle in degrees is 

angle in degreîs range 	.. re volution in degrees ; 
 subtype — Orrcular_angle is 

angle range 0 .. revolution; 
subtype orbit dimension is 
float range—  0 .. 35860.0; 

type eccentricity value is new float 
range 0 .. 1.0 digits 5; 

type absolute time is new float digits 5; 
subtype  quadrant angle in degrees is 

angle in degreei rang -e- 	.. 90.0; 
subtype—  quadrant angle is angle 

range 0 .. pi/270; 
subtype right semi circular angle in degrees is 
angle in deirees —range -9U.0 ..-90 70; 

subtype —riiht semi circular angle is 
angle range-  -pi72.0 	pr/2.0; 

type epsilon is 
float range 0.0 .. 1.0 digits 5; 

end Geometry_Definitions; 

with Geometry Definitions; 
package EartE Position is 

position _description: circular angles in degrees; 
subtype deadband limit in degrees is 

float range 0.0 .. 270; — 
end Earth_position; 
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with Geometry Definitions; 
package Orbiî.  Range is 	[EKMA 831[BALL 67] 

low semima-for axis: orbit dimension; 
higri semimajo7 axis: orba-  dimension; 

type orientatioil_spec is 	- 
record 

cap-omega: quadrant angle; -- Right ascension of ascending 
-- node. 	Angle measured from 
-- vernal equinox to 
-- ascending node. 

omega: circular angle; 	-- Argument of perigee. Angle 
-- measured from ascending node 
-- to perigee 
-- in plane of orbit in 
-- direction of motion. 

i: right semi circular angle -- Inclination. 	The angle _ _ 	_ 
-- between orbit and 
-- equatorial planes. 

end record; 

type orbit_spec is 
record 

a: orbit dimension; 	-- 
e: ecceriEricity value ; 

 orientation: orientation spec ; 
 end record; 

semi-major axis in km. 

-- Note: This is not the only 
-- way to specify an orbit. 
-- In fact, since there is 
-- a Singularity in cap omega 
-- if 1 =0, a different - 
-- coordinate system is 
-- preferable. Assumptions 
-- about lunar, solar, and earth 
-- gravity fields, may be 
-- introduced. 

type position_spec is 
record 
orbit description: orbit spec; 
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eta: angle; -- Angle from perigee 
-- to current position in 
-- direction of motion and 
-- in plane of orbit. 

end record; 
type attitude_spec is 

record 
type eclipse_spec is 

record 
entry: absolute time; 

-- time of enry into eclipse. 
exit: absolute time; 

-- time of exit  from eclipse. 
end record; 

end Orbit Range; 

with Geometry_pefinitions, Orbit Range; 
generic 

type orbit observations_spec; 

package Stationkeeping is 
type attitude_spec is 

record 
theta: circular angle; 
phi: right semi -Eircular angle. _ 

end record; — 
max thruster pulse duration: constant elapsed time 

subtype thruster_pulse duration spec is 
ordinal range 0.0 .. —max thruîter pulse duration; 

max number thruster pulses: —  constant short _ordinal := 1000; 

subtype number thruster pulses spec is 
ordinal range 0.0 .. ra-à- __numb. r_thruster_pulses; 

•  type thrust_parameters is 
record 
pulse delay angle: circular angle; 
pulse—lengtE: 	thruster puls-e-  duration_spec; 
numbe7 pulses: number -thrust-é- r pulses spec; 

end record; 

--Assertion and Exceptions 
-- The following show examples of assertions 
-- and the associated exceptions to be raised 
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-- to accomplish fault detection. 

-- Al: computed orbit is within pre-specified 
bounds 

-- A2: check orbit invariant equations 

orbit_invalid : exception; 

- - A3: check manoeuvre attitude and thrust 
parameters by simulating the 
manoeuvre, and check resulting 
attitude and station. 

manoeuvre invalid : exception; 

procedure Maintain station ( 
earth position:—  circular angle in degrees; 
deadb-a-nd: deadband limit—in decires); 

--Function: 
-- This is the main procedure and initial process 
-- Maintain station. 	It starts executing when 
-- the BAM itarts the function stationkeeping. 
-- Its purpose is to accept a command from the 
- OAM to perform any necessary manoeuvres to 
-- maintain the specified station, within the 
-- specified deadband. 	It must decide 
-- whether such manoeuvres can be accomplished 
-- and report to the OAM if the given station 
-- is not within its pre-defined ability to 
-- achieve or maintain. 	In this case, the 
- OAM may have to decide to re-acquire 
-- station via another function (subsystem). 
-- For each major step in determining and 
-- carrying out a stationkeeping function, a time- 
-- stamped log entry is created and stored in 
-- the event_log. 

procedure Get orbit ( 
orbit: ou-E orbit_spec); 

--Function: 
-- Send a request to the Orbit Determination 
- APF for specification of the  current orbit. 
-- Record the event on the event_log. 
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procedure Plan manoeuvre ( 
orbit: in Urbit_spec; 
earth position: in earth position spec); 
thrust for 	attitude change: out tgrust_pa rameters; 
thrust —for—velocitylchange: out—thrust parameters; 
thrust—for—final attitude: out thrust Farameters); 

--Function 
-- Determine epoch of manoeuvres, using orbit 
-- prediction methods. 	Determine required 
-- semi-major axis. 	If necessary, iterate 
-- above two steps to determine appropriate 
-- combination of epoch and semi-major axis. 
-- Send a request to the attitude determination 
-- subsystem to determine current attitude. 
-- Calculate required thrust parameters to 
-- attain the initial manoeuvre attitude, to 
-- change velocity, and to return to required 
-- operational attitude. 
-- In order to determine attitude, this 
-- procedure can establish communication with 
-- the attitude control subsystem, in a real 
-- system. 	In the proof-of-concept system, a 
-- sequential procedure call is used. 
-- Record manoeuvre plan on event log. 

procedure Execute manoeuvre ( 
thrust for attitude  change: thrust parameters; 
thrust—for—velocity—change: thrust—parameters; 
thrust —for —final attitude: thrust parameters; 
result7 factiori_result); 

--Function: 
-- Create command sequences for the thrust 
-- subsystem to accomplish the required 
-- thruster actions. Report these sequences 
-- to the OAM and await response. If the 
-- response confirms the sequences, send the 
-- command sequences to the thrust subsystem 
-- sequentially. Record manoeuvre execution 
-- and result on event log. 

end Stationkeeping; 
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with Geometry Definitions, Orbit Range; 
package OrbiE Determination is - 

type converUence criterion spec is 
record 
epsilon a: epsilon; 
epsilon -e: epsilon; 
epsilonlcap_omega: epsilon; 
epsilon omega: epsilon; 
epsilon-i: epsilon; 

end record;  

package Event Logging is 
type event -Elass values is ( 

orbit det-é-rmina.iion, 
orbit-prediction, 
manoeTivre_plan, 
manoeuvre execution); 

type event_spec (event class: event class values) is 
record 
time: absolute time; 
APF name: prin name; 
case 	clasi 
when orbit determination => 

orbit : dait spec; 
when orbit preeliction => 

orbit : -brbit spec; 
-- other components to be 
-- filled in later. 

when manoeuvre plan => 
orbit : oret spec; 
thrust for atti-Eude 	 change: thrust_parameters; 
thrust-for-velocity-change: thrust parameters; 
thrust-ior -final at .titude: thrust P.arameters; 

when  manoeuvre  ex.é.-cution => 
thrust for attitude change: thrust_parameters; 
thrust-for-velocity-change: thrust parameters; 
thrust -for-iinal atitude: thrust Farameters; 

factiori result; 
end case; 

end record; 

end Event_Logging; 
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with Geometry Definitions, Orbit Range; 
package Orbit_Determination is- 

procedure Determine_orbit; 

--Function: 
-- Receive requests from the OAM or other 
-- subsystems to determine current 
-- orbit parameters. 	To accomplish this, a set of 
-- orbit observations are required. 	For proof- 
-- of-concept, these will be input via the Monitor 
-- Station (MS), so a request must be issued to the 
-- MS for the observations. 	Estimate an initial 
-- orbit. 	Use an iterative technique to 
-- converge on an orbit such that two successive 
-- approximations differ by less than the 
-- convergence criterion. 

end Orbit_Determination; 



4.5 Monitor Station Software 

As described in Section 3.5 above, the Monitor Station 
is a simplified ground control station attached directly to 
the on-board network for the purpose of monitoring and con-
trolling the proof-of-concept demonstration. The software 
requirements for the Monitor Station are: 

- ability to monitor the on-board network at the Link 
level 

- optionally, the ability to intercept and monitor net-
work traffic at any other level, i.e., Network, Tran-
sport, Session, and Presentation 

- facility to inject into network traffic at any level 
of the protocol layers 

- capability to tally up message type, count, size, 
etc., at various levels of the protocol layers for 
any station on the network 

- facility to present the result of the monitoring in a 
highly visible fashion. Access to some form of graph-
ics display is desirable. 

- flexible filing facility to properly store the re-
sults of the observations. 

The availability of software options which are realis-
tic for the present project environment are the following: 

- RSX-11M operating 	system 	in 	conjunction 	with 
Interlan's Ethernet driver, TCL protocol module, Net-
man network monitoring software, and in-house imple-
mentation of the Session layer protocol using an ap-
propriate language available under RSX-11M: PASCAL, 
"C", Ada (one may be available by the time the actual 
implementation takes place), or MACRO-11. 

- RSX-11M operating system in conjunction with DEC's 
, new networking software which includes all seven la-
yers of the OSI and the network monitor program. 
Interlan's Link layer protocol driver will be used, 
unless a new R5X-11M device drivers that allow access 
to network at higher levels are provided. 

- iRMX 86 operating system plus iNA 950-1, TCL protocol 
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module, Ethernet driver (Link and Physical layer 
driver), and iMMX 800 for iRMX 86. Implementation of 
Session layer protocol will be necessary. 

- iRMX 86 or iRMX 286-based system with appropriate 
Ethernet controller (Interlan NI3010, Intel iSBC 550 
Kit, or a new controller based on 82586/82501 VLSI 
network access controllers expected in 1984. New ver-
sion of iNA 950-1 software supporting up to the TCL. 
Possible Session-Presentation layer protocol modules 
to be made available in the near future. PASCAL 86, 
PL/M-86, "CI', or other suitable language system to 
implement the Session layer protocol, if necessary. 

- New "Datacom" computer to be made available , late 1983 
or early 1984 (iSBC 186/51). iRMX 86 operating system 
plus new TCL and Ethernet driver (offered as packaged 
software on the Datacom computer) plus Session layer 
implementation on the Datacom Computer. This solution 
is preferred over the two before this, as it repre-
sents a new generation implementation of the Ethernet 
access method. 

- iRMX 86 operating system plus Interlan's TCL package; 
Interlan's 	Ethernet driver for iRMX 86; Netman 
software; NT10 Non-Intrusive transceiver unit (all 
the above made available as an Ethernode package). 

- 68000-based "baby" machines - super microcomputer 
workstations, such as Sun Micro Systems, Callan Data 
Systems, Plexus, Altos, or Pixel. UNIX operating sys-
tem. Ada, "C", or PASCAL language system. Networking 
protocol. The Session layer protocol only to be im-
plemented, likely in Ada such as the one by Telesoft. 

Software composition using RMX-11M is likely to face 
problems with filing, as the RSX-11M does not provide a 
structured filing facility. iRMX 86, on the other hand, has 
a UNIX-like filing structure but lacks a sufficient graphics 
support. It is very likely that a thorough search in the 
market would turn one up. 
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5. SYSTEM HARDWARE 

5.1 OAM Hardware 

The current version of the OAM requires a VAX-11/750 or 
780 computer with appropriate real memory and standard disk 
and tape units, sufficient to run the Berkeley Version 4.2 
UNIX, as its hardware foundation. In addition, as the boot-
strap device, an 8-inch floppy disk driver (780) or a cas-
sette driver (750) is necessary. To support local monitoring 
of the operation of the OCS, a standard alphanumeric termi-
nal will be necessary. 

5.2 Hardware for FTM and EOA 

Layers 1 and 2 of the FTM are implemented in hardware, 
specifically, an iAPX 432 PCU. Layers 3 and 4 are implement-
ed as Ada programs running under iMAX 432 operating system. 
The Example On-Board Application will run as a process in 
the 432 PCU, under local control of the FTM. 

The PCU will be configured as follows: 

The system chosen for the target machine is the Intel 
iAPX 432. It will comprise a Processor Cluster Unit (PCU) of 
two General Data Processor boards, one Memory Controller 
(MC), two Storage Array (SA) boards and a System Bus back-
plane. There will be one Attached Processor (AP) linked to 
the PCU by an Interface Processor and an Interface Processor 
Link. This is a basic target system using the minimum number 
of boards necessary for a prototype. It would be possible to 
extend this system up to three GDP boards, in addition to 
two IPL boards and as many as six SA boards (up to 1.5M 
bytes of RAM) for use in later stages of development. Deta-
ils of the components are as follows: 

Subsystem Processor 
Cluster Unit 

Two General Data Processor boards 
- iSBC 432/601, which include 
the system bus and arbitration 
logic. 

Memory Controller board 
- iSBC 432/604 

Two Storage Array boards 
- iSBC 432/607 
256K bytes each 
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Interface Processor Link 
- iSBC 432/603 

System Bus Backplane 
- iSBC 432/611 (12 slot) 

I/O  Interface Unit 	Interface Processor 
- iSBC 432/602 

Attached Processor - iSBC 86/12A 

Multibus backplane 
- iSBC 432/615 
(6 slot) 

Enclosed chassis 	Cardcage - iSBC 432/630 (18 slot) 

5.3 MS Hardware 

Based on the software requirements specified in Section 
4.5 above, and judging from the availability of certain 
hardware components in the immediate environment, the fol-
lowing options are identified for the implementation of the 
Monitor Station hardware: 

- PDP-11/45: with maximuin main memory and reasonable 
peripherals; Interlan model NI1010 controllerL cor-
responding Interlan transceiver. 

- PDP-11/45: with maximum main memory and reasonable 
peripherals; DEC's new Ethernet controller, assuming 
. it is different from the Interlan model and becomes 
available in time. 

- iSBC 86/05, 11A, 14, 30 processors with sufficient 
ROM/RAM 	memory 	space 	to house the respective 
software; iSBC 550 Ethernet controller; appropriate 
disk subsystem. 

- iSBC 186/51 Datacom Computer with built-in Ethernet 
controller chips; sufficient memory space; matching 
Ethernet transceiver (these to be made available as a 
package); appropriate disk subsystem. 

- iSBC 286/14,30 processor with sufficient ROM/RAM mem-
ory space; Interlan's Ethernet controller for Mul-
tibus with matching transceiver; appropriate disk 
subsystem. 
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In all cases, graphic display and standard controller 
are not included in the specification. However, it is as-
sumed such i/o devices will be chosen at implementation time 
with appropriate controllers. Also excluded are logistic re-
quirements such as chassis and power supply. 



6. DEVELOPMENT ENVIRONMENT 

6.1 OAM Development Environment 

6.1.0 Overview 

The development environment for the OAM consists of the 
basic VAX-11 hardware with a minimum 2MB main physical memo-
ry, and several layers of software. The hierarchy is shown 
below in descending order of abstraction and the structure 
is shown in Figure 6.1: 

IFP and HYPO 	- the top ARBY modules, or HLL for AI 
DUCK 	- general purpose deductive retriever 
NISP 	- Nifty LISP, Yale LISP macro set 
Franz LISP 	- a major dialect of LISP 
UNIX 	- Berkeley Version 4.2 or later 
VAX-11 	- 750 or 780 preferred. 

6.1.1. VAX-11 

Several hardware options have been investigated so far, 
but considering all the factors, the VAX-11 seems to be the 
best compromise, in particular in view of the new acquisi-
tion of this machine at Analysis & Simulation Laboratory. 
Other hardware options investigated include the Altos com-
puter, Sun Micro Workstation, Plexus Systems, Pixel com-
puters, Symbolics 3600, Callan System's Workstation, and 
LMI's new Lambda computer. The hardware is, however, the 
least significant element in the environment design, and we 
can possibly move to other machines without major technical 
difficulties. The situation may change in the near future 
and we may choose to change machines in future phases of the 
project. 

6.1.2 Berkeley UNIX 

Berkeley UNIX Version 4.2 or later is presently the 
most preferred among AI researchers involved in similar de-
velopment projects. We have yet to find out whether the 
Berkeley UNIX can be run under the VMS operating system. 
However, this seems to be of no practical merit since file 
format incompatibility would nullify any benefits obtained 
by avoiding a "two-operating-systems-time-sharing" situa-
tion. Most AI utility and library packages are available 
under the UNIX file format. There are ways to convert UNIX 
files to VMS format. Nevertheless, it is a layer of process-
ing one wishes to avoid in favour of reliability of the 
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transported software and efficiency of the process. Also im-
portant is the fact that UNIX is more than an efficient sys-
tem program. It is also an educational tool that affects the 
development habits of even the experienced. At least one AI 
researcher denounced the UNIS approach and encouraged poten-
tial users to stay away from that "best of both worlds" ar-
rangement. We have not enough time to study these issues 
systematically. However, through our discussions with vari-
ous AI researchers, we can specify with confidence, the 
VAX-11 and Berkeley UNIX combination is the most proven for-
mula at the current state of the business. It is desirable 
to obtain UNIX Version 4.2 or later because of various new 
features (including formal Ethernet access) and reliability 
added since Version 4.1. 

Standard development facilities under UNIX are typical-
ly used for housekeeping such as file management, version 
and configuration control in the production of AI software, 
mail handling, file backup, and file transportation (includ-
ing network access). 

6.1.3 "Baby Machines" 

Another important issue in this respect is the recent 
progress made in the area of so-called "baby machines" (see 
[GOMI 83c]). Studying these machines carefully, one can be 
convinced by the claim of some that within 12 to 18 months 
we will be seeing the emergence of reliable portable ma-
chines that match in throughput and features the VAX-11/750 
and sold almost at one tenth of the present price of a stan-
dard VAX-11/750 system. There are several companies, both on 
the manufacturers' and the users' side, who are already 
looking into that possibility seriously. This includes a few 
prominent AI corporations in the US. At any rate, as stated 
earlier, we believe the hardware is the least significant 
part of the development environment. One should simply be 
ready to adapt to the changing hardware viability scene. 

6.1.4 Franz LISP 

Franz LISP is one of several major LISP dialects that 
have been developing over the past 15 years or so. It origi-
nated from a group at UC Berkeley, and is now used widely at 
various AI centres. Again, while there are conversion meth-
ods among various LISP dialects, usually it is not wor-
thwhile to attempt a conversion. Franz LISP comes as a part 
of the Berkeley UNIX package for VAX-11 computers. The UNIX 
installation procedure automatically makes Franz LISP avail- 
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able to general UNIX users. Benchmarks on Franz LISP running 
on a VAX-11/780 against INTERLISP running on a DEC 10 system 
drew an average 1 : 5 speed ratio both at the basic LISP 
level and also at the level of AI high level languages which 
are built using the basic LISPs (Franz LISP is slower). 
Franz LISP is, nevertheless', preferred at various AI centres 
because of its elegant integration with the UNIX operating 
environment and its more advanced features not seen in DEC 
10 environment. Again, it is important to be aware of devel-
opments around us, as they will affect cost-effectiveness of 
AI projects that greatly depend on the efficiency of the de-
velopment environment. It is entirely possible that we may 
be urged to switch our environment to, say, one based on a 
new, less expensive LISP machine running GLISP (a new gener-
alized LISP from Stanford AI community). 

6.1.5 NISP, DUCK, IFM and HYPO 

The top three layers of the development environment are 
the software modules that actually perform key roles in the 
consultation. These are also the top two modules of the ARBY 
expert system framework. Their functions are explained in 
Section 3.1.2 above. It is merely pointed out here that an 
understanding of their internal functions is important in 
developing the KB and other domain-specific data structures 
that are needed for the operation of the OCS. 

A set of extensions are provided in the ARBY package 
(OCS framework) with the aim of assisting the development of 
the KB. Including these, there are editors defined at each 
level of the software hierarchy (LISP, NISP, DUCK, IFM and 
HYPO). Essentially, they have the same syntactic formalism. 
Similar commands exist at every level. However, the meaning 
of the commands reflects the level of abstraction at which 
such commands are defined. There are also several commands 
which are unique to specific software levels. An example of 
such commands is the "new-if" command, which is used to de-
fine an IF at the IFM level. 

The arrangement is quite helpful, as one can maintain 
the OCS software without actually exiting from the OCS de-
velopment levels (to, say, the UNIX level). Editors are al-
ways at hand at wherever the current development operation 
is. 

6.1.6 ARBY Utilities and Debugging Aid 
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Several utility programs exist in the ARBY framework to 
assist the development of domain-specific expert systems, 
such as the OCS. The workspace manager is responsible for 
storing and retrieving data structures created or edited by 
the developer/user of the OCS. Such data structures, or ob-
jects may be distributed throughout the hierarchy (IFM plus 
HYPO, DUCK and NISP) and typically include type definitions, 
IFs, assertions, rules, functions and variables. 

Rules are defined using a function defined in the DUCK 
retriever for this purpose. ACCOUNT-FOR rules and EVIDENCE 
rules are the two important rule types in defining a KB. For 
every IF, there must be rules that say when it can be in-
voked. Also important are rules that say when a given set of 
arguments is finished. 

A set of utility functions will assist the system de-
veloper in the following manner: 

- a locater utility that locates a rule 

- a list program that lists all the rules one can use 
to conclude a given fact. 

These utility functions are accessible only at DUCK 
level, where most rule definitions take place. 

A powerful way to debug emerging data structures in the 
OCS is the use of Question and Walk Modes, which are des-
cribed in Section 3.1.3 



6.2 Fault-Tolerant Management Development Environment 

6.2.0 Overview 

The development environment for the FTM has been chosen 
to conform to the specific hardware and software 
fault-tolerant requirements outlined in the AASC Design Re-
port. It is felt that, at this point in time, the needs of 
both software and hardware are most nearly met by the use of 
Intel's iAPX 432, which integrates a highly fault-tolerant 
hardware architecture with the software reliability and sec-
urity of the Ada programming language and the adaptability 
of the iMAX operating system. The environment components are 
depicted in Figure 6.2. 

6.2.1. Hardware Environment 

The hardware components of the environment will consist 
of a host system, a development workstation and the target 
AASC computer system. Figure 6.3 shows the functions of the 
host support. 

6.2.1.1 The Host System 

This will house the Ada compiler and will support 
source program preparation, source program compilation and 
program linking. It will consist of a VAX-11/750 or 780, us-
ing the standard VMS operating system, editor and program 
development facilities. 

6.2.1.2 The Development Workstation 

The development workstation will allow the updating and 
loading of linked programs into the target system for debug-
ging and execution. It will also serve as a diagnostic con-
sole for the target machine. An Intellec Series III Micro-
computer Development System will be used for the debug 
workstation. It will require an minimum of 192K bytes of 
RAM, a high-density mass storage subsystem, console inter-
face, and an interface to the target computer system. 

6.2.1.3 The Target Computer System 

This consists of the PCU described in Section 5.2 

6.2.1.4 Communication Links 

Two serial links are required between the VAX-11 and 
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Intellec MDS: a synchronous communications link supporting 
standard 2780/3780 point to point BSC protocol, for which 
additional VAX communication hardware will be required; and 
an asynchronous link supporting standard ASCII asynchronous 
point to point protocol operating via a direct cable connec-
tion and standard I/O ports. 

6.2.1.5 Interconnect Kit 

The Intellec Series 111/432 Interconnect Kit will be 
the link between the Intellec Series III and the System 
432/670. It consists of an IP board and an IPL board in ad-
dition to those described above, plus Proclink cabling. 

6.2.2 Software Environment 

This includes a compiler for the Ada programming 
language, standard VAX/VMS editors and file system support 
functions, program linker, debugger, and iMAX operating sys-
tem. The software environment components and development 
process are shown in Figure 6.4. 

6.2.2.1 Ada Compiler System (ACS) 

This translates Ada source programs into compiled 
External Object Descriptors (E0D5) which are 
linker-compatible. It also provides source code listings and 
error-reporting functions using the REPORT utility. In addi-
tion, REPORT generates data structure "templates" which are 
used in debugging Ada programs on the iAPX 432. 

A key feature of Ada is support of separate compila-
tion, i.e. individual design, development and compiling of 
program units. Units must, however, be compiled in a specif-
ic order based on their relationships as specified in envi-
ronment files for the units. The ACS time-stamps all envi-
ronment files and compiled EOD modules and warns of incon-
sistencies. 

6.2.2.2 Program Linking 

,LINK-432 combines compiled EODs into a linked EOD ready 
for downloading to the debug workstation for 
execution/debugging. Traditional linker functions are per-
formed in addition to 432-specific functions which include 
assignment of logical addresses to objects, and building 
physical 432 access segments and object tables. The linker 
also acts as a link between the iMAX executive of the user 
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application and produces a 432-executable program. 

A further function is iterative linking - updating an 
existing linked EOD by replacing, removing or adding newly 
coupled EODs to form a new linked EOD, or revision EOD (a 
shorter version). The linker checks for time-stamp inconsis-
tencies, thus promoting version control. 

6.2.2.3 DEBUG-432 

DEBUG-432 is contained mainly on the Workstation and 
supports loading of software into the target system, initi-
ating program execution, setting breakpoints in 432 
processes, examining and modifying the contents of variables 
and data structures, examining the state of failed programs, 
and debugging multiprocess systems. The use of templates as-
sists in symbolic debugging. These may be generated by RE-
PORT or created individually and stored on the workstation. 

6.2.2.4 iMAX 432 

The iMAX operating system is a collection of components 
which executes both on the PCU and the AP. It provides sto-
rage, basic process, process communication, input/output 
services, and initialization services. It may be configured 
to suit the number of processors in the system. The level of. 
its services may be adapted as required. 



6.3 NIU Development Environment 

Depending on the hardware and software modules used for 
the particular form of NIU, the following combinations are 
possible as development facilities for the respective NIU 
types. Of these, some software products may change their 
specifications. When these, or other, alterations happen 
some adjustments will become necessary. 

1. for RSX-11M, Interlan controller and driver, TCL 
protocol, Netman, and in-house Session protocol - 

RSX-11M on a reasonably equipped PDP-11 or LSI-11 
model with language facility (PASCAL, FORTRAN, 
"C") and system utility sufficient to develop 
Session layer protocol module; test Ethernet with 
other station; Interlan controller, transceiver 
and necessary cabling. 

2. for Intel's Datacom Computer, new TCL 	package 
(non-MIP version) with network management monitor, 
and in-house Session layer protocol module - 

iRMX 86 based Workstation (Intel's System 86/330 
or /380), or Series IV, or NDS-II development 
system; Intel's network software package; 
language facility for Session layer development 
(PASCAL 86, PL/M-86, "C", Ada) and system 
utility; test Ethernet with another station; 
transceiver and necessary cabling. 

3. for iRMX 86, iSBC 550 controller,  INA 950-1 protocol 
, module with network management monitor, in-house 

Session layer - 

Intel's Series II, III, IV, NDS-11, or System 
86/330, /380 Workstation (the last system is 
preferred); language facility and system utility 
for Session layer development, as above; test 
Ethernet with another station; transceiver and 
necessary cabling. 

4. for iRMX 86, iSBC 550 Kit, new TCL software with 
network management software - 

Same as above, plus 1MMX-800 inter-processor com-
munication package 

6-8 



5. for iRMX 86, Interlan controller, Interlan TCL pro-
tocol with Netman software, and in-house Session la-
yer - 

Intel's System 	86/330 	or /380 	Workstation; 
language and system utility for PASCAL 86, 
PL/M-86,  "C, or Ada; test Ethernet and another 
station; transceiver and necessary cabling. 
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