
Liz  

A QUANTITATIVE COMPARISON 

OF ACTIVE AND PASSIVE DAMPING 

FOR LARGE SPACE STRUCTURES 

BY 

FRANCIS SHEN 

91 

C655 
S435 

1983 

INSTITUTE 

FOR  

AEROSPACE STUDIES 

UNIVERSITY OF TORONTO 



Industry Canada 
LIBRARY 

Department of Communications 

DOC CONTRACTOR REPORT 

TITLE: 	A Quantitative Comparison of Active and Passive Damping For 
Large Space Structures 

AUTHOR(S): 	Francis Shen 

ISSUED BY COWTRACTOR AS REPORT NO: 

PREPARED BY: Francis Shen and P.C. Hughes 
Department of Aerospace Science and Engineering 
University of Toronto 

I n+ 
1 

1 
1 
1 

1 

1 

1 
1 

1 
1 

915 
S435 
1983 

Government Gouvernement 
of Canada 	du Canada 	• 

JUIL 
JUL  2 0 1998 

DOC-CR-SR-e- 063 . 

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA 

SPACE PROGRAM 

BIBLIOTHÈQUE 
Industrie Canada 	( 

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OSU 82-00163 
HSU.36100-2-4211 

DOC SCIENTIFIC AUTHORITY: F.R. Vigneron and A. H. Reynaud 

CLASSIFICATION: Unclassified 

This report presents the views of the author(s). Publication 
of this report does not constitute DOC approyal of the reports 
findings or conclusions. This report is available outside the 
department by special arrangement. 

•' 

DATE: 
o 



UMMURICOONS CAMA 

A QUANTITATIVE COMPARISON 

OF ACTIVE AND PASSIVE DAMpING 

FOR LARGE SPACE STRUCTURES 

by 

Francis Shen 



/A QUANTITATIVE COMPARISON 

OF ACTIVE AND PASSIVE DAMPING 

FOR LARGE SPACE STRUCTURES/ 

BY 

/FRANCISCHEN/ 

DEPARTMENT ,OF AEROSPACE SCIENCE AND.  ENGINEERING 

A Thesis submitted in conformity with the requirements 

for the degree of Mas -ter of Applied Science 
in the University of Toronto 

1983 



Acknowledgements  

The author would like to express his 

Professor P. C. Hughes for his suggestion 

vision and guidance during this research, 

review of this thesis. 

Financial support received from the University of Toronto, 

Ontario Government, and Communications Research Centre is 

gratefully acknowledged. 

sincere gratitude to 

of this topic, super-

and for his critical 



Abstract 

Damping has increasingly become a major issue in the control 

of the flexible modes of large space structures (LSS). In the past, 

the damping problem has been approached using two distinct techniques: 

active and passive damping, which have almost always been studied 

independently. It is therefore the intention of this report to present 

an interdisciplinary approach. A quantitative method for comparing 

active and passive damping according to weight and positivity criteria 

•is outlined. The method assumes thruster actuators for active damping 

and viscoelastic material for passive damping. Each of these damping 

techniques is implemented by optimizing the damping performance 

•against weight. The Mobile Communications Satellite (MSAT) is used 

as a model to compare active and passive damping. The results show 

that, in general, active damping is much more weight-cost effective 

and possesses better positivity qualities than passive damping. 

(Positivity is a term used in this report to describe robustness when 

the positivity concept of stability is assumed.) However, this 

generalization is not without exception, for example, as the filtering 

of the feedback signal of the active damping system increases, the 

weight-cost effectiveness will decrease while positivity increases. 

Evidently, until the design of the active system incorporates a 

filter for observation noise that is equal in magnitude to the dis-

turbance noise, passive damping will not be more weight-cost effective 

than active damping. The results in this report cannot be complete 

without a good understanding of the underlying difference between 

active and passive damping: active damping is an on-going weight 



expenditure, while passive damping is not. Thus, the major factor 

influencing the choice of which damping technique to implement,is 

how much damping is required during the lifetime of the LSS. An 

interesting aspect concerning the positivity of the active controller 

is that apparently the uncertainties of the natural frequencies have a 

much greater effect on the system stability than the damping ratios 

have. 
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Notation  

Note: Symbols used only locally are defined when introduced. 

A 	system plant matrix 

augmented system plant matrix 

control distribution matrix 

E
T
B 

modal output matrix 

D damping matrix - 
„ 
D 	E D E 

x - x 

undamped normalized modal matrix 

i-th element eigenvector for the mode -ai 

feedback gain 

H observer gain - 

J performance index 

J
x 	

dynamic performance index 

J
u 	

control effort index 

stiffness matrix - 

K. 	i-th element stiffness matrix 
-1 

compensator transfer matrix 

La 	loss factor for mode a 

L 	loss factor 

mass matrix 

solution to the Riccati equation 

'a 	physical coordinates 

dynamical performance weighting matrix 
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Qk 	EIW(t)WT (T)1 = QkS(t-T)_ 

R 	control effort weighting matrix 

EfV(t)VT(T)1 = kt-T) -k 

S › 	defined in (4.39) 

plant transfer matrix 

U 	control vector 

V 	observation noise 

excitation noise 

X 	state vector 

X 	estimated state vector 

Y 	output vector 

6 	positivity index; impulsive function 

normalized delta positivity index 

damping ratio for mode a 
a 

damping ratio error coefficient 

modal coordinates 

disturbance to observation noise ratio (4.31) 

augmented state vector (4.37) 

undamped natural frequency for mode a 
a 

E
T
K E P2 

Subscripts  

flexible modes 

passive damping 

-rigid body modes 

viscoelastic material 



Special Notations  

1 	unit matrix 

vector 

( ) matrix 

( )
H 

Hermitian 

( 
)
T 

transpose 

(-) 	Laplace transform 
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1. INTRODUCTION  

The advent of the Space Transportation System has made an enormous 

contribution to the feasibility of large space structures (LSS). However, 

as experience has shown (beginning with the first U.S. satellite, Explorer 

I), the feasibility of a spacecraft requires not only a transportation 

system into space, but also the stability and control of the vehicle 

in space. Ironically, attitude stabilization of Explorer I was lost 

because damping was not taken into account. 

It is clear that as the sizes of space structures increase while 

their weights are kept to a minimum, structural flexibility becomes one 

of the major concerns in designing a controllable spacecraft. Indeed, 

this dominant Characteristic has prompted much research in the area of 

damping technology by both structural and control engineers. However, 

there has been a strong tendency for the two distinct disciplines of 

engineering to conduct their research in two quite different directions, 

each with no awareness of the other. 

For structural engineers, the approach is passive damping - a method 

of energy dissipation through the intrinsic properties of materials or 

passive devices. For control engineers, the approach is primarily 

active damping, which dissipates energy from a systeM through the use of 

sensors and actuators that require external energy input. Although 

soMe control engineers have considered passive damping, this has been 

limited to discrete damper devices. Understandably, the dynamics of 

these discrete dampers bears a remarkable resemblance to special cases 

of active damping. Uhile the choice of approach has generally been 

dependent on the proclivities of the engineer, it is the intention of 

1 



this report to provide a quantitative comparison of active and passive 

damping: 

In this report, the two methods are compared according to two 

criteria: weight and 'positivity'. The term 'positivity' refers, 

in this report, only to the robustness of the system using the 

positivity concept given in Section 5. Also, to clarify the term 

'robust', this refers to the stability of a system having low sensi-

tivity to modelling uncertainties. It should be noted that since 

positivity is a sufficient condition for system stability (see Section 

5), positivity implies robustness, but robustness does not necessarily 

imply positivity. There are, of course, other criteria of interest 

when selecting the 'best' damping method. These include cost, com- 

. plexity and spillover (which refers to the energy input or output 

into those modes not explicitly controlled). These, however, are 

beyond the scope of this report. 

The strategy used to compare active and passive damping is 

extremely important to the outcome of selecting the 'best' damping 

system. The conditions under which they are compared could make an 

inferior technique appear to be superior; therefore it is important 

to appropriately select and design each damping system. The following 

approach is taken to assure a fair comparison. 

(1) The selection of the type of damping technique that best represents 

each of active and passive damping is made based on comparability, 

hardware realizability and conventionality (Section 2). 

(2) Each damping technique is designed by optimizing a performance 

index against weight (Section 4). 

2 



'The ultimate test of any method devised is its practical applica-
. 

tion. In Section 6, the Mobile Communications Satellite (MSAT) is 

used as a model for LSS. Active and passive damping are applied to 

this structure for the purpose of comparing their damping efficiencies 

as to weight and positivity. 

2. SELECTION OF DAMPING TECHNIQUE  

Since several different techniques exist for both active and 

passive damping, it will be necessary to specify the damping technique 

used to represent each category. These damping system designs are 

selected on the basis of its conventionality and whether it is quan-

titatively comparable. 

2.1 Active Damping  

This category can be subdivided based on the dynamics of the 

control actuators. There are essentially two distinct types of 

actuators: force actuators and torque actuators. The former are 

usually produced by chemical propellant thrusters while the latter 

could involve a number of wheels distributed throughout the vehicle. 

The concept of angular momentum management has in the past been con-

fined to the rigid part of the spacecraft, and its hardware realiz-

ability as a distribution of small wheels throughout the structure has 

yet to be proven. On the contrary, propellant thrusters have been 

used extensively for spacecraft control, and probably no significant 

modifications are required of them for active damping. Therefore, 

force actuators through the use of chemical propellant thrusters are 

selected to represent the performance of active damping. 

3 



2.2 Passive Damping 

For passive damping, similar divisions are made based on the 

dynamics of the damping mechanism. The selection of a passive damping 

representative will also depend on how well defined these physical and 

geometrical parameters are. There are three categories of passive 

damping distinguished in this report: alternative materials, discrete 

damper, and viscoelastic material (VEM). 

The 'alternative material' approach to passive damping augmen-

tation uses, as the term implies, replacement of a portion of the 

original strUcture with alternative material which has better damping 

characteristics, while maintaining the basic material properties of 

the original substructure. The most promising candidates are com- 

posite materials which have shown a good strength-to-weight ratio while, 

under certain designs, exhibiting good damping characteristics. 

However, these materials are only in their initial development stage, 

and while research has found composite materials to have good damping 

characteristics, they are far from being fully documented. Therefore, 

this approach is not considered in this report for comparison with 

active damping. It should be noted that the alternative of material 

damping augmentation depends very much on how the composite material 

is designed and this requires extensive knowledge of its material 

properties, which is beyond the scope of this report. 

The 'discrete damper' method is probably most popular with 

control engineers (although only a handful of them have really looked 

into this). The physical configuration of the hardware in these 

devices is not a significant concern to them, except that it is a 

'mechanical fluid dashpot or electronic equivalent' [8]. There have 



been several of these devices designed; however, their full employ-

ment in the space program has been limited. The usual mathematical 

model of these devices is envisaged as a linear-viscous mechanism. 

Nevertheless, the physical properties of these devices do not matter 

so long as they behave as their mathematical model dictates. It is 

interesting to note that the analysis of discrete dampers using a 

linear-viscous damping law is essentially the same as active damping 

using rate feedback and decentralized control of co-located actuators 

and sensors. 

In any case, the discrete damper has many attractive features 

and, in particular, the device can be placed, with little attention to 

its physical configuration, at any crucial points in the spacecraft. 

The discrete damper usually is assumed to have the ability to selec-

tively damp certain modes as well as alter the damping strength at 

will [11]. It is difficult to define the relationship between weight 

penalty and damping strength. The discrete dampers' physical proper-

ties and limitations are worth further investigation because these 

devices show great versatility (similar to active damping). 

Finally, the 'viscoelastic material damping', used in this 

report to represent passive damping, is understandably the method most 

investigated by structural engineers for damping augmentation. The 

work done to date typically involves implementation of VEM onto a 

structure through such configurations as a sandwiched cantilevered 

beam [14, 15]. Much experimental data has been generated to support 

a hysteretic damping law (rather than a viscous  •damping law) for VEM. 

It should be noted that although it does more closely obey a hysteretic 

damping law, VEM damping is actually both frequency and temperature 
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dependent. However, it is assumed that modal vibrations requiring 

explicit control have vibrational frequencies close enough to each 

other that hysteretic damping can be assumed. The physical properties 

of VEM are well defined, making few assumptions (or guesswork) required. 

These conditions make VEM worthwhile for comparison with active damping. 

It should also be noted that VEM is basically the conventional ideal 

of damping where energy dissipation is achieved by applying viscous 

materials to the vibrating structure. 

3. MATHEMATICAL MODEL  

The form of the spacecraft mathematical model must be suitable 

for designing the damping systems considered. As well, it must be 

easily manipulated so that weight and positivity comparisons can readily 

be made. In view of these factors, the state-space form of system 

matrices is •most satisfactory. 

To begin, since finite element techniques are commonly used for 

modelling the dynamics of a flexible spacecraft, a dynamics model is 

generally given in the form 

	

Mq+Dg_ +Kq=Bu 	(3.1) — 	— — 

where q are the physical coordinates, 

M and K are the mass and stiffness matrices respectively, 

D is the damping matrix, 

B is the control distribution matrix, 

u is the control input. 

6 



11=  
-11r - 

[-nf 

(3.4) 

+ D 	+ 2 	= u 

= g U 
-T -r- 

(3.5a) 

(3.5b) 

This is normally transformed into modal coordinates by 

q = E n 

resulting in the equations of motion 

• 	2 	- n 	S21-1=Bu 

(3 . 2) 

(3.3) 

where 

E
T
M E = 1, 	E

T
K E

2 

T^ 
E
T
D E = D 	E B = B 

Now, by partitioning 

where n r  is the rigid body modal coordinates, - 

f 
is the flexible modal coordinates. 

Equation (3.3) can be separated into the rigid body and flexible 

equations of motion: 
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SZ 2 '5=  
0 	0 - 

‘ 
0 	D.  

ro 	o 

Lo Qf  

where 

and 

-r 

fi 
—f- 

The dimensions for the various zero matrices follow directly from the 

partitioning in (3.4). 

The primary objective of Bu is often to control the rigid body -- 

modes. However, the attempt to control the rigid body modes of a 

flexible spacecraft almost always leads to a significant amount of 

undesirable spillover to the flexible modes that cannot be ignored. 

As described by Hughes [12], 'Bu is often both friend and foe°. Using 

this analogy, the rigid body control may be considered as a foe to the 

flexible modes. Accordingly, (3.5) can further be broken down into 

the form: 

•• 	••n 

= 

(3 . 6a) n =Bu +Bu 
-r -r-r -r-f 

n 4.1)n + S2
2
n =Bu +Bu 

-f -f-f -f -f -f-r -f-f 

where ur 
is the rigid body control vector, 

(3.6b) 

Li
1 

is the flexible control vector. 

For multi-input, multi-output control analysis, the state-space 

form of system matrices is most convenient, thus: 
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x =Ax +Bu +Bu 
-T -r-r. -r-r -r-f 

x =Ax +Bu +Bu -f -f-f -f-r -f-f 

(3.7a) 

(3.7b) 

n11 

A = -r 

n•nn 

0 

where 

-xr = -.fir  I 

n••n•n 

L-. 	_ 

o 	1 

- 

^  

o 	1 
A = I 

-13 	I  _fi -f 

0 

B=  -r B= -f L fJ  

Using the control laws 

- 

(3.8a) 

(3.8b) 

r 
= -F x -r- 

where 

-
x
r 

Ix 
x=  (3.9) 

and F is the gain matrix for rigid body control, • 
-r 

Ff  is the gain matrix for flexible control, - 

the system may have a control block diagram given in Figure 1(a) 

with the following definitions: 

9 



T = 
-r 

(3.10a) 

(3.10b) 

(3.10c) 

L = B F 
-r 	-s--r  

L = B F -f -s-f 

(sI -A ) -1 
	

0 -1 - -r 

= [I - 0 	(S1 -A ) -1  

0 	0 

_f 

(3.10d) 

B 
-r 

[B • 

and 

B= 
 -s 

The dimensions dimensions for the various zero matrices follow directly from the 

partitioning in (3.9). 

To facilitate the positivity analysis to come in Section 5, the 

following assumptions are made. 

(1) The control vector ul  uses only the feedback of flexible state, 

i.e., uf  = -Ffxf . 

(2) Control spillover to the rigid body modes, B ur-f' 
 are not consid- 

- 

ered explicitly since it is beyond the scope of this report. 

However, it can be taken into account at a later stage as an 

independent disturbance input to the rigid body modes. 

Upon these assumptions, the block diagram of Figure 1(a) can be modified 

to the form given in Figure 1(b) with a new definition for 4: 

0 

B F --f-f-J 

Note that the dimension of Ff 
 must be adjusted accordingly. 

- 

Lf = (3.11) 

1 0 



T = (s1 - A f)
-1 

-f 	- 
(3.13a) 

As will be discussed in Section 5, this block diagram may also be 

used to describe passive damping simply by setting Lf  = 0 and modifying 

A -f' 

Finally, to make it easier to determine F f , as well as to facil-

itate weight comparison more readily, Bfur  is modelled as an independent 

impulsive disturbance (which most accurately satisfies its analogy 

of a 'foe'). This model was discussed by Hughes [12] to be represen-

tative of the action of chemical propellant thrusters, and also it 

is a good input disturbance model which excites all frequencies. 

Equally important, an impulsive input has the same effect as an initial 

condition, which greatly simplifies the comparison process. 

In order to simplify notation and since rigid body dynamics is 

not considered explicitly in the following sections, some notation 

changes are made as follows: 

(3.12) 

F ± F 	x ÷ x 

Also, it must be noted that the form of Tf 
 (s) and L

f 
 given in (3.10) 

- 	- 

and (3.11) unnecessarily complicates the positivity analysis since 

rigid body dynamics is not considered explicitly. Therefore, the 

various zero matrices of Tf 
 (s) and L

f 
 whose purpose is to accommodate 

- 	-' 

addition with the rigid body system are now dropped. Thus, 

11 



L, = B. F 
-f-f (3.13b) 

J = xT  Q x dt 
x 	— — 

o 

(4.1) 

4. WEIGHT CRITERION  

For every component put into a spacecraft, weight is always con-

sidered to be a major factor and every attempt is made to have each 

component weight-cost effective. The damping system is no exception, 

and thus, in this section, the designs of active and passive damping 

are optimized against weight. Also they are set in such a way so 

that they can be readily compared for their weight effectiveness. 

4.1 Comparison Approach  

The basis for comparing the weight effectiveness of active and 

passive damping depend prirarily on the design objectives. In this 

problem, the main objective is to control the flekibility of the space 

structure. One widely accepted measure of the flexible motion is the 

dynamical performance index, 

where Q is a positive semi-definite weighting matrix for the state 

vector of the system (3.7b). Essentially, Jx  establishes a comparable 

medium for two very different damping methods. In other words, if J
x 

is the same under active control as it is under passive control, then 

the two systems are considered to have the same dynamical performance. 

•  The trade-off of this index against weight will allow the designer to 

compare the two methods of damping. It should be noted that an optimal 

12 



design must be used for each damping method in order that a valid 

comparison can be performed. Here, 'optimal design' refers to a con-

trol system designed with the most efficient use of weight to minimize 

the dynamical performance index. 

4.2 Active Damping  

The weight of the active controller is dependent on two distinct 

contributions'. These are the hardware and fuel expenditures of the 

system. The former is relatively fixed in its weight contribution 

while the latter is dependent on the extent in which the active con-

troller is used. As indicated in the previous section, the controller•

must be designed such that its weight is minimized against the allowable 

flexibility. Since the hardware weight involves such items as actuators, 

sensors, propellent tanks, connectors, and on-board computers, which 

are relatively fixed, their contribution to the total weight of the 

controller can be neglected in the optimization problem. Moreover, in 

some cases, where the existing hardware of the rigid body controller 

can also be used by the flexible controller, the weight contribution 

of the hardware could be minimal. With the omission of the hardware's 

weight, optimal control theory can be used easily to minimize the fuel 

expenditures. The optimal control performance index, 

J 
 = j

(x
T
Q x u

T
R u)dt 

— — — — 
(4.2) 

conveniently incorporates the dynamic and the control effort perfor-

mances for minimization using the control vector - u(t) subject to: 

13 



x(t) = A x(t) 	B u (t) _ 

x(o) = x 
--O 

(4.3a) 

(4.3b) 

= j u
T
R u dt 

u — — 
(4.4)  

o 

R = ri (4.5) 

(I  
sp 	u  

(4.6) 

= n
d 

 (1 
sp

r)  1J
.0 r  

(4 . 7) 

For the weight of the fuel expenditure, the control effort index 

nust be translated to fuel weight. If the specific impulses of the - 

thrusters and the type of fuel used by each thruster aboard the space - 

structure are all the same, then the weighting matrix R takes the form 

Therefore the equation to transform the control effort index to fuel 

expenditure is 

where I is the specific impulse and é is the output thrust of the 
sp 

actuator. Although (4.6) measures the amount of fuel required to damp 

out a given disturbance, for the purpose of comparison with passive 

damping, the number of tines this disturbance occurs during the life-

time or before reservicing must also be determined. Thus,- the weight 

of the active controller is given by 

14 



A
T 
P + P A = 

-c -x 	-x-c 
(4.11) 

where n
d 

is the number of times the disturbance occurs. To be complete, 

the hardware weight, depending on the situation, should be added to 

give the full weight of the active controller. 

4.2.1 Full-State Feedback 

For full-state feedback, the optimal control vector is given by 

u(t) = -F x(t) 	(4.8) 

where 

F = R I B P 

and P is the symmetric positive semi-definite solution of the matrix 

Riccati equation 

A
T
P +PA-PBRB

T
P +Q= 0 (4.9) 

The minimum cost of J subject to (4.3) is 

J = x
T 
Px 

 —o 
(4.10) 

For the dynamic performance index, the integral can be evaluated by 

solving p of the Lyapunov equation 

where 

A =A-BF 

15 





u = G y -c 
(4.20) 

to the idealistic state feedback. Discussed here are three methods 

of determining the control vector via output feedback. These methods 

are minimum error excitation, minimum norm excitation, and the Kalman 

state estimator. The minimum error excitation and minimum norm 

approach to optimal control are described in detail by Kosut [13], 

and briefly outlined here. 

Minimum Error Excitation 

The objective of this method is to minimize 

co 

where 

1=1 e
T 
Re  

—u —u 
o 

e = (G C -F)x 
—u 	-c- 	— 

(4.19) 

and Gc 
 is the gain matrix of the output feedback, where the control 

- 

vector is given by 

The gain matrix G that minimizes (4.19) is given by 
-c 

G = F P C
T
(C P 

 
-c 	-e 	_e 

(4.21) 

where P satisfies 
-e 

- B F)P ., + P„,(A - B F) T  + 1 = 0 (4 . 22) 

17 



Minimum Norm Excitation 

•The objective of this method is to minimize 

iIc - F 
(4.23) 

by the output gain matrix Ge . The norm of (4.23) is defined by Kosut 

to be 

m 

Îl eNli 	eii 
i=1 j=1 

The resulting gain matrix under this minimization problem is 

G_ = F C
T
(C C

T
)
-1 

(4.24) 

(4.25) 

• Kalman State Estimator 

The preceding two methods determine the control vector by comparing 

it to the full state feedback gain matrix under certain minimization 

assumptions. The Kalman filtering approach, however, uses the exact 

gain matrix of the full state feedback system. Of course, since all of 

the state variables are not necessarily available (or, in some cases, 

a high degree of uncertainty is inherent in the state), a filtering of 

the output information is required. Kalman filtering is one systematic 

method for state estimation. Although methods such as the use of a 

Luenberger observer are quite popular, the resulting solution is difficult 

to be quantitatively described. Nevertheless, the Kalman filter is a 

special case of the Luenberger observer and in fact both have the form 

x(t) = A x(t) 	B u(t) 	H[y(t) - C x(t)] — (4.26a) 

18 



x(t) = A x(t) 	B u(t) 	w(t) _ (4.29a) 

X(0) = (4.26b) 

where x(t) is the estimated state vector. _ 

The method for determining the matrix H is what separates the two 

estimators' performances. Also, state estimation by Kalman filtering 

is often referred to as an optimal observer. This reference owes itself 

to the similitude with optimal control theory. Kalman filtering requires 

the minimization of the dual system: 

CO 

T n 
jk = 	(-1(Qklk 	11-1(

dt  

o 	. 	• 

subject to 

e (t) = -A
T
e (t) - CT (t) 

--k 	-k 

(4.27) 

(4.28) 

fk (o) = fico 

where 

mk (t) = -HTek (t) 

G and Rk  are determined by assuming the actual system equations to be: -k 

y(t) = C x(t) 	v(t) 	(4.29b) 

where w(t) and v(t) are state excitation noise and observation noise 

respectively and they are assumed to be uncorrelated. 

19 



lic 9,kql1 
K - 	 

11 13k 

e(t) = x(t) 	x(t) (4.34) 

If white noise is assumed, then 	. 

9ic6(t - T) = E{W(t)WT (T)1 

Rk6(t - T) = E{V(t)V(t)} 

(4.30a) 

(4.30b) 

where E { -} denotes the expected value of {-}. A major advantage in 

using a Kalman' filter is that a quantitative measure of the observer 

sensitivity can be described by 

where K is defined as the ratio of disturbance noise to observation 

noise. 

Once Q and R
k 
 are specified by the designer, the observer gain, H, 

- 	 - 

can be calculated by solving for P of the matrix Raccati equation: 

(4.32) AP +PA -P BRBP +Q = 0 
_k -k_k -k _k_ -k -k 

The resulting observer gain is 

H = P C
T
R
-1  

-k- -k 
(4.33) 

Now, to analyze the performance of an optimal output feedback system, 

define 
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Define 

E = 

[x(t) 

Le(t) 
(4.37) 

B F 

Subtract (4.3a) from (4.26a) to give 

x(t) - x(t) = A[x(t) - x(t)] 	H C[x(t) - (t)] 	(4.35) 

e(t) = (A - H C)e(t) 	(4.36) 

or 

The augmented system is now given by 

4 = A 	 (4.38) 

where 

r A B F 
A = 

0 A - H CI 

To calculate the dynamic performance index, consider 

(4.39) x = S 

where 

S = [1 	0 	] -nxn 	-nxn 

where n is the number of flexible modes. Then (4.1) can be written as 

CO 

J = 	
T
Q dt x 	— 

where 

Q = S
T 

Q S 

(4.40) 
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where 

Therefore, the performance index can simply be calculated by solving 

for P of the Lyapunov equation: 

A
T
P +PA = Q (4.41) 

The dynamic performance index cost is 

J =
T 

P x —o -—o 
(4:42) 

For the control effort index, this can be found by calculating the total 

performance index and then using (4.17b) to obtain .
J
u

. 

The total performance cost can be written  as 

J = Jo 
+ LJ 	(4.43) . 

. 	. 

where Jo is 
the performance index for full state feedback, 

AJ is the increase of performance cost due to observer dynamics. 

- AJ is given by 

A.1 = e
T
R e dt 

— -F- 
• 	o 

where 

R = F
T
R F 

The proof of this is given in Reference 5. 
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u = F C
-1 
 y (4.47) 

Again AJ cost of this form can easily be calculated by solving 

the Lyapunov equation: 

(A - H C)
T
P + P (A - H C) = R -A 	-F 

The resulting performance cost is 

J = x
T 
P x + e

T 
P A e 

-0 -x-o -0 -m-o 

(4.45) 

(4.46) 

The three controllers discussed here have certain distinct 

properties. The minimum error excitation and minimum norm controllers 

do not ensure stability of the closed-loop system. In fact, it has no 

filtering of observation noise, which is very important when modal 

uncertainty and modal order truncations as well as sensors' noise are 

present. These two methods essentially work on the inversion of the 

C matrix and in the case where there are as many state variables as - 

output variables, the resulting control law of both minimum error 

excitation and minimum norm is 

This relation between the state and the output variables can easily be 

realized during modal order reductions. 

4.3 Passive Damping  

A common type of passive damping is the use of VEM where no sophis- 
; 

ticated man-made mechanisms are employed to dissipate energy. Instead, 
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Minimize 
CO 

= x
T
Q x dt 

x 	— — 
(4.48) 

damping is achieved by the natural internal friction in the material. 

The intrinsic nature of this type of damping requires little servicing 

once it is implemented, except for the material's natural aging. The 

weight of a ITEM  passive damping system depends only on the amount VEM, 

and this amount affects the damping performance. Equally important, 

the optimum positioning of these materials is extremely important to 

effectively dissipate energy from the structure. In fact, if damping 

materials are placed at a section where no strain energies are distri-

buted, then no damping enhancement will be experienced. 

The problem of placing  ITEM on the LSS such that the control objec-

tive is optimized against weight can be posed as: 

o  

subject to 

P 
• 
x = A x, 	x(o)___ 	

1 

	

= x , 	M = i m., 	m. -› 0 
— -p— 	— 	—o 	p . 1 	1 

=1 

(4.49) 

where A is the system matrix (including the VEM), 
-P 

M is the total mass of the VEM allowed, 

m. is the mass of the ITEM  placed at the i-th section, 

p is the number of sections allowed for VEM placement. 

This minimization problem has (p-1) independent variables. 

To simplify this minimization problem, three assumptions are made: 

(1) light hysteretic damping, 

(2) Ki.K aK (K is the stiffness matrix of VEM), 
-v 	v 

(3) M-FM aM (M 
v 	

is the mass matrix of VEM). 
- 	v 

24 



Jx 	Jxa  
a 

(4.50) 

where .2 2 
ba . 

a 
J - 	 xa 2L w 

3 
a a 

(4.51a) 

.2 
la = aa 

(4.51b) 

There-are basically three_methods for analyzing structures with dis-

tributed damping materials. These  are: (1) direct frequency response 

method, (2) complex eigenvalue method, and (3) modal strain energy 

method. The method adopted in this design comparison is the modal 

strain energy method. The main reason for this is that, for .a partic-

ular LSS, a mathematical model usually has already been developed before 

implementing a specific damping system. This is primarily due to the 

fact that an initial knowledge of the flexible modes is required in 

order for the designer to know how much damping augmentation is needed, 

and where. Furthermore, the effective use of VEM requires an insight 

into how strain energies are distributed  'and  this may be achieved by an 

initial mathematical model. The modal strain energy method, for light 

damping enhancement, allows the flexibility of adding damping material§ 

onto the structure without remodelling the whole system. 

With the assumption of light damping, Jx  can.be  simplified to the 

form (Reference 12) 

La 
is the loss factor for mode a. The implementation of VEM will alter 

L.  Nominally La 
is determined by the structure's natural damping and 

is related to the damping ratio by 
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= 2C (4.52) 

La = 2 a 
+ L

va 
(4.53) 

2 
a 

(4.54) Lva  = LIT  

Lva  = Lva(mi, m2' • 
m ) 	 (4.55) 

The inclusion of VEM will alter the loss factor of the a-th mode by 

where Lva  is the loss factor for mode a which is due only to the VEM 

implemented. To determine  L, the modal strain energy method with the a 

assumption of hysteretic damping gives (Reference 15): 

r T 
L E 	K. E -1 —ai 

where L
v 

is the material loss factor of the VEM, 

E is the i-th element eigenvector for mode a, 

•  K. is the i-th VEM element stiffness matrix. 
-1 

ThedependencyofLva onthemassoftheVEMcomesfromK.,thus, 

The optimal design problem can now be summarized and computer coded 

based on the minimization problem: 

Minimize 

subject to 

and 

2 2 

J = 	
i
a 

bai  
X a 2(4a 

+ Lv  )11)
3 

a a 

M = î m. 
P 	i=1 1  

(4.56) 

(4.57) 

m.;? 0 
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nnn••n 

A = 
-v 

To calculate  J, the assumption of light damping allows the use of (4.56). 

However, this assumption  cari  be verified by solving the Lyapunov equation: 

A
T
P+PA 	Q 

-P 	-P 

where 

A = A 4. A -p 	-v 

and 

(4.58) 

0 	0 7  

0 	-D _I 
-v 

where 

D = DiaeLv  w 1 

The subsequent cost index Jx  is 

J = x
T 
Px 

 x 	—o (4.59) 

J
x 

calculated by (4.56) should closely agree with (4.59) if the light 

damping assumption holds. Note that (4.59) does not assume light damping, 

while (4.56) does. 

5. POSITIVITY CRITERION  

5.1 Comparison Approach  

. The positivity comparison uses the theory positivity of operators to 

assess the relative robustness of the LSS control. A major advantage of 

this concept is the availability of a robust stability test which is 

independent of the number of, and the exact numerical values of, modal 
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frequencies and mode shapes. However, this robust stability test is 

conservative, and the conditions it demands for stability, though 

sufficient, are not necessary. Nonetheless, for the purpose of com-

parison, the 'conservativism''is assumed to be of a similar magnitude 

for each damping design and therefore serves as a useful comparison 

measure of robustness. 

The positivity concept requires first the definition of 'positive 

realness'. This involves the transfer matrix of the system Z(s), which - 

must be square. This matrix is referred to as 'strictly positive real' 

if 

• 	. (1)Z(s) has real elements for real s, 

(2) 7.(s) has 'elements which are analytic for Re(s) > 0, - 

(3) Z(jw)
H
(jw) is positive definite for all real w. 

If the transfer matrix describing' a system is strictly positive real, this 

implies that the'system is energy dissipating. In addition, for a feed-

back system of the form shown in Figure 2, where T(s) and L(s) are square - 

matrices, the,system is asymptotically stable in the input-output sense 

if bOth transfer matrices are strictly positive real. The proof of this 

theorem is given in Reference 3. 

This positivity concept was employed by Iwens, Benhabib, and 

Jackson [4] in designing a robust controller. In their work, the 

concept of 'embedding' was introduced in order to make use of the 

positivity concept for controller design. Basically,.the requirement 

of both transfer matrices to be strictly positive real is often too 

restrictive and thus the embedding technique is used to alleviate this. 

Émbedding is a block diagram transformation of the original system into 

a system that has the saine  stability characteristics. This is shown 
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1 
1 
1 
1 
1 

1 
1 
•1 

1 
(5 . 2) min 

. 	= 
min 

 

(5.3) G = -(3 . 1 
min- 

1 29 

in Appendix A. Figure 3 shows the embedding :transformation of Figure 2. 

The embedding operator G can be considered as a measure of.how much - 

control is required by the plant matrix or, alternatively, how stable 

•the plant matrix is. It should be noted that embedding is a-mathematical 

manipulation and its final goal is to use the stability- theory associated 

with the closed-loop system Figure 2. 

In Reference 4, the embedding operator G was used in designing the - 

controller gain, and positivity of the transfer matrices was-used to 

check for system robustness and spillover. This report.makes use of 

that robust test. As indicated previously, the embedding operator is a 

measure using positivity theory to determine how stable the system is. 

Therefore, by subjecting the plant matrix to varying degrees of modal 

errors, one can determine how stable the system is via the embedding 

operator. Using the embedding operator as a quantitative measure  of 

 robustness, a comparison can be made between diff6rent damping designs: 

The determination of G requires the definition of a positivity 

index: 

(w) = Xmin 	[T (jw) 	Tii(jw) 	(5.1) 

where 	is the smallest eigenvalue {.-}. Also define min{  

1 One form of G can be 



. (s e  - s evso  (5.5) 

This embedding operator will set the plant matrix positive at the 

expense of the controller. The transformed system for stability analysis 

is 

= T 	G 	 (5.4a) 

= (1 - L G) -1L 	(5.4b) 

A modal data error of the plant matrix may cause a change to the embedding 

operator. By normalizing the change of the positivity index to modal 

errors, a comparison can be made of the sensitivity of the damping design 

to modal data. 

Define a normalized delta positivity index 

where
e 

is the positivity index with . error in the modal data, 

S
o 

is the positivity index without error in the passive damping, 

T
f 
 is the plant matrix inclusive of the passive damping system, 

- 

and thus the matrix associated with Tf 
 is  A. In addition, Lf 

 is set to 
- 	-P 	- 

a null matrix for passive damping. The embedding technique transforms 

the block diagram of Figure la into Figure 4. Therefore, the comparison 

of robustness is based upon the penalty that Lr  has to pay in order to 

maintain similar positivity of the nominal system when modal data error 

is encountered. It should be noted that the flexible controller's spill-

over to the rigid body modes is neglected for the reasons given in 

Section 3. 
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6.(w)  = Xmin { 	[Ifc (i w)  
(5.12) 

5.2 Active Damping  

5.2.1 Full-State Feedback  

To calculate the positivity index of the full state feedback system, 

consider the block diagram of Figure 4. The embedding operator is 

determined by the characteristics of the feedback loop having the transfer 

matrix 	- 

-1 
T = (1 	T, 
-fc 	-r-r 

For the output feedback system 

T = (sl - A)
-1 

-f 

L = B F 
-f 

(5.9a) 

(5.9b) 

The resulting plant matrix with flexible control can be determined by 

substituting (5.9) into (5.8) 

T  fc = 11 	(si - A)
-1

B F]
-1

(51 - A)
-1 

- 

Simplifying gives 

T  fc = (sl - A 4. 
 

- 

(5.10) 

(5.11) 

As prescribed by Equation (5.1), the positivity index is calculated by 
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L =BFPC
T
(CPC

T
)
-lt (5.15) 

Substituting (5.11) gives 

(w) = 	. { 
1 

• 6 	- A + B F)
71 

+ (jwl - A + B F) -1-11 	(5.13) 
min 2 	- 

For ease in computer coding, this can be greatly simplified to 

(N A )
T 

+ jw(N
T 

- N)1 2 min 	-c 	-c 

where 

2 	-1 
N =  -c-c 

(5.14) 

A =A-BF 

See Appendix B for this simplification. 

' 5.2.2 Output. Feedback 

The positivity index of the minimum-error or minimum-norm excitaiion 

methods is similar to that of the full state feedback. The difference 

is simply 

for minimum error excitation and 

1, = . B F C
T
(C C

T
)
-1

C (5.16) 

for minimum norm excitation. 
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(si - A) -1  

L, =BF(s1 -Ai-BF-FL-IC) 1H C 

(5.19a) 

(5.19b) 

Therefore, the positivity index is the same as (5.14) except 

for the modifications to  A.  For minimum error excitation, -c 

-1' 
A_ =A-BFP_CT

(C P_C
T 
 ) C - (5.17) 

and for minimum norm excitation 

-1 
A_ =A-BFC

T 
 (CC

T
) C (5.18) 

When an observer is used such as a Kalman filtering state estimator, 

the problem becomes slightly more complex. Proceeding as the full 

state feedback problem, the transfer matrices 	and Lf  are 

The derivation of Lf 
 is a simplification of the block diagram of Figure 

- 

5. It should be noted that these transfer matrices apply not only to 

Kalman filtering observers but also to the Luenberger type observers. 

Equation (5.19) leaves a rather complex system for calculating 

the positivity index where the plant matrix with flexible control is 

given by 

Tfc = 
 [si -A-1-BF(s1 -A-1-BF+ H.C)

-1
H C1

-1 	
(5.20) 

- 
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Tfc = S T - (5.23) 

or 

Tfc = S (sl - 
 

- 	_c (5.24) 

To overcome this unnecessary complexity, consider the augmented system 

discussed in Section 4.3.2, except that here, instead of using the 

initial condition as the disturbance in the system equations, impulsive 

inputs are'used which have the same effect. Therefore, by setting -o 

to zero, the augmented system is then given by 

- = A 	S
T 

f 

( (3') = 0  

The transfer function for this augmented system is . 

T = (sl - A )
-1

S
T 

(5.21) 

(5.22) 

wheref is the input and is the output. 
-r 

Sincex --e- thenthetran.sfermatricesTfc 	cLisrelatet0 T,-bY 
- 	 - 

As can be - seen, the form of Tfc  given by (5.24) is much simpler than 

(5.19b), especially when evaluating the positivity index. Using 

(5.24) and substituting it into (5.12) the positivity index is 

1 	 -H 
X in {S (jwl - A )

-1 S
T + S (jwl - A ) 

2 m 
1 (5.25) 
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TH 
after noting that (Sr) = S, Upon simplification for computer coding, 

the positivity index can be evaluated by 

T, 
6(w) = 	Amin{ 	- (N A )

T 
+ jw(N

T 
- N )1S_J- 

2 	-C 	-c 

where 

N, = (w
2
1 + A A ) 

(5.26 )'  

See Appendix B.for this simplification. 

5.3 Passive Damping  

As discussed in Section 5.1, the block diagram of Figure 4 represents 

a passive damping system by setting Lf  =  O. and including the VEM dynamics 

in T
fc ° 

As such, the positivity index can be calculated by 
- 

1 	-1 
6(w) = — 

2 
X
min 	- 

I(jw1 - A ) 	+  
-p 	-p 

where A is defined in Section 4.3. 
-P 

Again this can be simplified (Appendix B) to 

1 
6(w) = —X I-N A - (N A )

T 
+ jw(N

T 
- N )1 

2 min -p-p 	-p--p 	-p  -P 

where 

N = (w
2
1 + A A )

-1 

-P 	-p--p  

(5.27) 

(5.28) 

•  6. APPLICATION OF THE COMPARISON METHOD TO MSAT  

A comparison of active and passive damping for the Operational 

Mobile Communication Satellite (MSAT) shown in Figure 6 is conducted 
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1 
in this section to demonstrate the quantitative method just outlined in 

this report. The MSAT is a relatively flimsy structure, composed of a 

44-meter diameter dish antenna, a 44-meter supporting tower boom, a 

cross boom, a solar array and a main bus. Of all the main structural 

components, only the bus can be considered rigid. Thus, the MSAT model 

poses a good example of a flexible space structure for damping design 

analyses. It should be noted that the availability of this rather com-

prehensive mathematical model of the vehicle's dynamics (developed by 

P. C. Hughes and G. B. Sincarsin of Dynacon Enterprises Ltd.) makes 

possible this quantitative comparison of damping designs. The basic 

dynamic objective of the MSAT while orbiting the Earth is to maintain 

the focus of the paraboloid reflector nominally at the feeder horns 

located on the bus while aiming the communication beam at its target on 

Earth. It was suggested that some damping augmentation should be imple-

mented in order to upgrade its structural integrity. 

Different approaches to damping augmentation as outlined in this 

report were applied to the MSAT for comparison. The various methods of 

damping augmentation were computer coded, but are quite complex to be 

reused. This is because the comparison involves many varying input design 

parameters, and the results of one program are required by several other 

programs. Also, in the intermediate stages of some of the programs, 

numerous data files were generated in order to reduce repetitive computa-

tions. The ultimate reason for all this complexity was to minimize the 

computing cost. Therefore, a listing of the programs used is not 

provided. 

1 



37 

I. 

6.1 MSAT's Mathematical Model  

The MSAT had originally a total of 108 modes which were reduced to 

a design model of four flexible modes and eight rigid body modes. The 

comparison uses this model. Since the analysis only concerns four 

flexible modes, the output vector (in physical coordinates) was chosen 

to be 

y = col(6 1
,

2 
a
1
, a

2
) 

(S
1 
and 

62 
are relative displacement of tower tip to tower root, and 

a1 
and a

2 
are relative angular displacement of the reflector with respect 

to frame fixed at tower root. These physical coordinates were chosen 

because they were completely independent of the eight rigid body modes 

and are pervasive for all four flexible modes. 

The modal output matrix C is 

6.1) 

c=  

_ — 
-1.756x10

-3 
-3.172x10

-6 	
2.786x10

-3  -2.075x10
-3 

 

- 
2.418x10

-6 
-5.019x10

-4 

	

-1.230x10
6 	-4.650x10

-7 
 

4.200x10
-6 3.425x10

-3 -2.497x10
-6 2.209x10

-6 

L5.736x10
-5 1.776x10

-6 -1.050x10
-3 -5.249x10

-4 
_ 

(6.2) 

The natural frequencies of the design modes are: 

03
a 
= 0.124, 0.240, 0.341, 0.556 	rad/sec 	= 1, 2, 3, 4) (6.3) 

A 1% damping was assumed in each of the substructures [10] and the ,  

modal damping matrix is: 



1.846x10 
-3 

2.519x10
-6 

3.409x10
-3 

-1.700x10
-3 

-6.900x10
-6 

(6.4) D 
1.711x10-2  

1.237x/0-3 	5.243x10-6 	-6.647x10-3 	1.109x10
-2 

Symmetric 

From a geometrical calculation of the relative importance of roll, pitch 

and yaw as well as internal flexibility, the modal weighting matrix was 

calculated to be 

2.014x10 6 
Symmetric 

8.746x10
-9 

1.115x10
-6 

-5 
-8.075x10

-6 
-4.195x10

-8 
4.247x10 

4.569x10
6 	

2.283x10
-8 	-2.203x10

-5 
1.176x10

-5 - 

(6.5) 

Using the light damping assumption, the matrix of (6.4) and (6.5) can be 

simplified to only eight modal parameters. They are the damping ratios, 

Ca , and 'modal involvement indices', 1Œ' for the four flexible modes, 

c
a 

= (7.421, 7.116, 5.013, 15.374) x 10-3  

= 1, 2, 3, 4) 

(6.6) 

i = (1.419, 1.056, 0.105, 
a 

6.517) x 10
-3 	

(6.7) 

The actuators aboard the MSAT consist of a total of eight thrusters, 

three reaction wheels in the bus, and two torquers at the reflector 

hub. The modal control distribution matrix, B, of this arrangement 

is given in Table 1. To summarize the mathematical model used, the 

system in first-order assumes (note that this only includes the 
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13= 

LU 
0 	1 

-St
2 	

-D 

C = [e 	,Q1 

flexible iodes)  

(6.8) 

Ln 

and the resulting system equation as prescribed in (4.3) and with the 

following matrix definition: 

The associated Q and C for the MSAT have the form: 

The dimensions for the various zero matrices follow directly from the 

partitioning in (6.8). 

6.2 Damping Designs  

The type of damping designs that are considered here for the MSAT 

are active damping with full state feedback and with output feedback, 

and passive damping using VEM. The mathematical design approaches were 

all outlined in Sections 4 and 5. All the design methods were used_ 

explicitly from these sections except for minimum error and minimum • 

norm excitation method. This is because these two methods do not 

guarantee stability and have no filtering of the output noise as 
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demonstrated when C is square in Section 4.3.2. 

6.2.1 Active Damping  

As outlined in Section 4, two situations of active controls are 

considered: active control with full state feedback and with output 

feedback. Linear quadratic optimal control theory was applied to both 

these situations. For active damping with full state feedback, the 

design of the controller involves solving (4.9) and then substituting 

P into (4.8). All the matrices were as prescribed in Section 6.1. 

Only the R matrix needs to be determined, but as discussed in Section 

4.2, by varying r, defined by (4.5) will give a range of M which will 

arrive at a relation between fuel expenditure and dynamical performance. 

For active damping with output feedback, the design of the controller 

is similar to the full state feedback case except that instead of the 

feedback vector being x in (4.8) it is x. x was calculated by setting 

K defined in (4.31) which in turn gives Q k 
 and R of (4.32) for the 

- 	-k 

observer gain given by (4.33). 

In order to use Equation (4.7), several parameters were assumed: 

I = 500 N-s, é = 0.1N, and n
d 

= 106 . The first two parameters were 
sp 

determined based on the use of a low thrust monopropellant hydrazine 

thruster system while nd' 
the number of times the disturbance occurs 

during tfie lifetime of the LSS, was selected to represent,a long dura-

tion spacecraft. 

6.2.2 Passive Damping  

Some internal structural modelling is required for passive damping 

design and this would depend on where the VEM is to be applied. The 
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aim of having this internal structural model: is to use-Equation (4.54) 

which requires the strain energy distribution. The optimal application 

locations for the VEM depend on three aspects. They are: the design 

objective; the strain energy distribution; and the disturbances. 

An insight'into some of these aspects can greatly simplify the problem. 

Considering the objective of the control problem, the effect of flexi-

bility of the MSAT renders a major concern, the maintenance of correct 

positioning of the reflector and the feeder horns. This suggests that 

the tower-cross boom is a good place to distribute the damping material. 

Once the problem of applying the VEM has been narrowed'down to the 

tower-cross boom structure, a detailed modelling of this structure is 

required to ascertain a strain energy distribution. Since a model of 

the tower-cross boom was available in detail through Reference 10, the 

construction of the finite element model may simply follow in this 

- 

.manner. 

To begin with, the tower-cross boom was modelled as a four-element 

rod structure as shown in Figure 7(a). The dynamics of this structure 

can be completely described by q., a, (5, and lab  and 930 , where mb and 
- - 

e are three translational and three rotational coordinates of the main 
-b 

bus, respectively, and q. is the twoer's internal coordinates  a and S 

are three relative angular displacement and three relative displacement 

of tower tip to tower root, respectively. This gives a total of 26 

coordinates. The strain energy that is distributed over this structure 

for the flexible controller design only considers the four flexible 

modes. Thus, the eigenvectors of these 4 modes were required, and they 

were transformed to physical coordinates of the tower relative to the 

inertial space. This transformation was devised by Reference 10, page 35, 
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and the transformation has the relation 

q = S_colfw 	0 	cS, 	q.1 
-t 	-b' -b' — 	-a 

where S is the transformation matrix, or the selection matrix as 
-t 

referred to by the reference. It should be noted that Eb  and 9b  are 

related to Is
Tt 

and 10_
t 

(translation and rotation at the tower root) by 

a simple rotation matrix. With the 32 tower coordinates q , the -t 

eigenvectors are further broken down into elemental eigenvectors, Eai . 

To reiterate, the purpose of this is to facilitate the use of Equation 

(4.54) or, more precisely, to determine the modal strain energy distri-

bution over the tower-cross boom structure. This distribution is given 

in Table 2 for the four-element model of the twoer-cross boom structure. 

Several input parameters were assumed, as follows: 

(1)Effective diameter of tower-cross boom = 1.5m. 

(2)Density of the VEM = 1.5x10
3 
kg/m

3
. 

(3)Young's modulus = 6..2x10
6 
N/m

2
. 

(4)Shear modulus = 2.07x1
06 

N/m
2

. 

(5)Material loss factor = 1.3. 

(6)Equal impulsive input from all eight thrusters fired 

independently. 

The basic algorithm used to determine the optimal placement of the VEM 

follows the flow diagram shown in Figure 8. The result of this optim-

ization yielded an arrangement where the damping material is most 

weight-cost effective when placed on element one, Figure 7(b). However, 

this result is based on an equal impulsive input by the eight thrusters. 

In the case where the disturbance is only an impulsive input generated 
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by thruster two, the most effective placement of the damping material 

was found to be on element two. 

6.3 Damping Design Comparisons  

Once the damping systems were designed, the next step was to 

compare their damping effectiveness based on the two criteria of weight 

and positivity. The candidate designs were subjected to an impulsive 

disturbance fired independently from the eight thrusters on board the 

spacecraft. This was felt to best approximate the type of disturbances 

that may be encountered by the structure, since there is no reason to 

single out any one particular thruster or combination of them. It should 

be noted that the optimal design of the passive damping system is depen-

dent on the type of disturbances, while the active damping system is not 

(at least so far as the control law is concerned). 

6.3.1 Weight Criterion  

Figure 9 shows a weight comparison of three damping designs --passive, 

active with full state feedback, and active with output feedback. In this 

plot, it shows clearly that active damping with full state feedback gives 

the best dynamic performance to weight applied. Passive damping appears 

to be the least effective, but it cannot be stressed strongly enough that 

this plot assumes no hardware weight contribution for the active damping 

analysis and no credit is given the passive damping for damping the 

'higher modes'. The active system with an observer designed for noise 

level of K = 10
3 

shown in the same figure, agrees with the physical 

mechanics of noise filtering. That is, its control performances are 

damped to account for the possible observation noise; thus the structural 
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damping is less weight-cost effective as shown in this figure. This 

is further demonstrated in Figures 10 and 11, where the controller was 

designed foi varying levels of observation noise: K = 10 and K = 2. 

Evidently, as K decreases (K is inversely proportional to the observer 

noise), the dynamical performance index will reach a saturation point 

much earlier at which increased fuel expenditure will not improve damping. 

This is shown most clearly by Figure 11, where a controller designed for 

a low ratio of.disturbance noise to observation noise exhibits a satura-

tion point quite abruptly at M = 2.5 kg. 

6.3.2 Positivity Criterion  

A logical common denominator gor  comparing the robustness of several 

damping designs is to have a common weight for each design. This way, 

one can determine which damping system is most robust for a given weight. 

A common weight of 10 kg was chosen and Figure 12 shows (3 as a function 

of the error coefficient fore' 
defined as

e 
= 	. This plot 

a a 

compares the passive, active with full state feedback, and active with 

output feedback (K = 20) damping systems. Surprisingly, the passive 

damping design shows more sensitivity to the modal data a 
than active 

damping. However, the behaviour of the active damping design agrees 

with intuition in that the more filtering of the output vector, the less 

sensitivity to modal data, and hence the more robustness. In fact, this 

was investigated further; Figure 13 shows that as K decreases the robust-

ness increases (other things being equal). 

To consider errors in the modal data wa 
Figure 14 plots 'às  versus 

we w
hich is defined as w = &o/w1. 

This plot is complementary to Figure 

12: it compares the positivity of three systems: passive, active with 
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full state feedback, and active with output feedback (K = 20). Again 

the passive damping design shows more sensitivity to modal data errors. 

Similarly, positivity is observed to increase when the observer incor-

porates  •a filtering process as shown in Figure 15. This filtering 

process is shown to increase positivity as the strength of the filter 

increases. This effect of filtering on positivity is further confirmed 

by Figures 16 and 17, where the weight of the fuel expenditure was set 

at 5 kg. 

There are several noteworthy characteristics of the plots in Figures 

9-17: 

(1) It appears that for active damping where a filter is incorporated, 

there exists a saturation value for Jx 
which is not zero, but 

which increases as K decreases. 

(2) The relation between 6 and
e 

is rather linear while that 

between and w
e 

is not. 

(3) The variation of 6 with we 
is about an order of magnitude 

greater than the variation of 6 with . This suggests, for 

example, a 5% error in w
a 
may be as important as a 50% error 

in OE . 

7. CONCLUSIONS  

A quantitative method for comparing active and passive damping 

according to weight and positivity criteria has been presented. The 

method assumes thruster actuators for active damping and viscoelastic 

material for passive damping. Each of these damping techniques has 

been implemented by optimizing the damping performance against weight. 
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This method was applied to the MSAT model and the results of the 

comparison are shown in Figures 9 to 17. The following major conditions 

should be-kept in mind when examining these figures: 

(1)The weight comparison was made based on impulsive disturbances 

from all eight thrusters firing independently for a million 

times. Note that thiS is to model the lifetime disturbances 

imposed by the rigid body controller on the flexible system. 

(2)The Weight of the active damping syStem is calculated with 

the inclusion of only the lifetime fuel expenditures used. 

Therefore, it should be clear that the hardware weight is not 	- 

accounted for. 

(3)The positivity concept is a conservative-approach to stability 

analysis. 

The results of this comparison show active damping with full state -

feedback to give much better damping performance for a given weight than 

does passive damping. This is accompanied also with.active damping 

being superior in positivity when compared to passive damping. Of course, 

full state feedback is an idealized situation where the entire state is 

,available and without noise. Although this is an unrealistic situation, 

it defines a useful reference point for the best damping-performance-to-

fuel-weight that the active approach can achieve. Having ,this design in 

perspective, a more realistic active controllermas designed and compared 

with pas -sive damping. As expected, the more filtering was incorporated 

into the controller, the less effective was the damping  performance, but  

the more robust the system became. Even with filtering of the feedback 

vector, it appears that for the MSAT, active damping is much more efficient 

per unit weight unless-the disturbance (Caused by rigid body control) is 
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of equal magnitude to observation noise. As Figure 11 suggests, only-

for a relatively low disturbance noise/observation noise ratio (K = 2), 

passive damping shows a weight-cost benefit when the damping systems 

are allowed to weigh more than 7.5 kg. In general, however, it would 

appear that for moderate filtering in the control system, active damping 

is better under the criteria considered. As well, if a system of 

thrusters such as those on MSAT are already in existence for rigid body 

control, then only an adjustment in the controller's gain would greatly 

enhance damping. This is because of the exponential drop of J (increase 

in damping performance) that occurs for small additional fuel expenditures. 

An interesting robustness aspect that should be noted is that uncertainties 

in natural frequencies have a much greater effect on system stability than 

uncertainties in damping ratios. 

In applying this comparison method, one must keep in mind the under-

lying nature of active and passive damping. Active damping is an on-going 

weight expenditure, while passive damping is an initial, nonrecurring 

weight investment. With this understanding, lifetime becomes a major 

factor in the decision. 

Finally, this method was developed with the intention to place the 

trade-offs of active and passive damping on an objective level. As with 

all non-trivial design problems, many criteria exist and in most cases, 

it is not possible to quantify them all. This problem is no exception, 

and final decisions will still require ample engineering judgement. 
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Table 1 

Modal Control Distribution Matrix 

Mode 
Actuator 	  

No.  

	

1 	-8.282x10-7 	-9.888x10
-4 

8.859x10
-7 

-1.407x10
-6 

2 	-5.856x10
-4 

2.133x10
-7 

-3.964x10
-4 

-3.743x10
-4 

5.812x10
-6 

3 	1.157x10
-3 

-5.932x10
-3 

3.110x10
-3 

	

4 	-5.553x10
-4 

-1.500x10
-6 

8.518x10
-4 

1.688x10-5 

	

5 	-2.199x10
-6 

-2.577x10
-3 

1.731x10
-6 

-8.184x10-7  

	

6 	6.530x10
-3 

	

-3.368x1e3 	-2.485x10-2 	1.358x10
-2  

	

7 	-3.478x10
-3 

3.370x10
-3 

2.639x10
-2 

-1.328x10
-2 

-2.653x10
-2 

	

8 	3.488x10
-3 

3.419x10
-3 

1.336x10
-2 

	

9 	-6.539x10
-3 	 - 

-3.421x10
-3 

	

2.499x10
2 
	-1.363x10

-2 

	

10 	-1.039x10
-2 	 -6 

1.806x10
-2 

	

4.926x10 	-1.654x10
-4 

	

11 	-1.027x10
-2 	 -5 

-1.806x10
-2 

	

2.497x10 	-1.687x10
-4 

	

12 	1.039x10
-2 

-1.806x10
-2 

-4.926x10
-6 

1.654x10-4  

	

13 	1.027x10
-2 

	

1.806x10
-2 	

-2497x10
-5  

1.687x10
-4 

1 
1 
1 

1 



Table 2 

Relative Strain Energy Distribution  

Element 

Mode 	1 	2 	3 	4 	4 

4.32x10
-3 

1.52x10
-3 

1 	1.00x10° 	1.03x10
-1 

2 	3.83x10
-2 

4.32x10
-3 

3.08x10
-2 

S.96x10
-2 

-1 	-2 
3 	5.01x10 	1.74x10 	1.04x10-3 	1.01x10

-3 
 

4 	9.03x10
-2 

3.06x10
-3 

	

1.43x10-4 	1.02x10-4  
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Figure 1(a)  System Block Diagram 
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Figure 1(b)  Simplified System Block Diagram 
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Figure 4  Equivalent System to Figure 1(b) 
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T = (1 + T L)
-1
T L (A-1) 

APPENDIX A  

EQUIVALENT STABILITY CRARACTERISTICS  

To prove that the transformation of the embedding technique maintains 

the stability characteristics of the original system, one need only examine 

their characteristic equations. 

According to Figure 2, the closed-loop transfer matrix before embedding 

is given by 

After embedding (Figure 3), the closed-loop transfer matrix is 

-- - 
T = (1 + T L)

1  T L 

where 

T = T + G 

L = (1 	L G) 1 L 

Expanding (A-2) using ( A-3) gives 

= [1 + CT + G)(1 - L G)
-1

L]
-1 (T + G)(1 - L G) 1 1, 

= [(1 -  L G)(T + 
-1 

+ Ll
-1

L 

(A-2) 

(A.3a) 

(A.3b) 

(A-4) 

(A-5) 

Premultiply by CT + G)(T + G) -1  to find 



- 
T = CF + G)(T + G)

1 
 [(1 7 L G)(T + G)

-1 + L)
-1

L 	(A-6) 

= CF + G)(1 + T L)
-1

L 	 (A-7) 

which has the same characteristic matrix equation as (A-1): 

(1 + T L) 	 (A-8) 

Therefore, the block diagram transformation .has equivalent stability char- 

acteristics. 



T = T(jw) + TH (jw) 

T(jw) = C(jw1 - A)
-1

C
T 

and A and C are real matrices. 

Some simplification can be made to minimize computing costs. 

T = C(jM_ - A)
-1

C
T 

+ [C(jw1 - 

Since C -  = CH , then 
.0y 

T = Cj(jw1 - A)
-1 + (jw1 - A)

-H
}C
T 

Now 

where where 

(B-1)  

(B-2)  

B-3) 

(B-4)  

(B-5)  

(B-6)  

(B-7)  

(B-8)  

APPENDIX  B 

SIMPLIFICATION OF THE POSITIVITY INDEX  

It is required to find the eigenvalues of 

where 

Also note that 

(jw - A)
-1 

= -N(jw1 + A) 

Cjzo - 	= 	col 4. 	
NT 

N =
2
1 -• A A)

-1 

(jwl - A)
H = (-jwl + A

T
)• 



Therefore, substituting (B-5, 6, 8) into (B-4) gives 

T = C[-N(jw1 + A) + (jw1 - AT)NT
]cT  (B-9) 

Or 

T = C[-N A - (N A)
T 

+ jw(N
T 

N)]C
T 

(B-10) 

Noting that N
T 

N is skew-symmetric T can be computer coded quite 

efficiently. 
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