b d

91

C655
S$435

1983

INSTITUTE
FOR

AERONPACE STUDIE

UNIVERSITY OF TORONTO

A QUANTITATIVE COMPARISON
OF ACTIVE AND PASSIVE DAMPING
FOR LARGE SPACE STRUCTURES

BY

FRANCIS SHEN




s B

* -Government  Gouvemement N . - Industry Ganada
. ofCanada  duCanada - . ~ - S |

St 201998

. . o . BIBLIOTHEQUE
Department of Communications - Industrie Canada

DOC CONTRACTOR REPORT | DOC~CR-SP-83-063
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA :
SPACE . PROGRAM '

U NG ks e TR TS SO M 5 AR e S AN A
< . - .

s_.; RS Yol
rakddy

TITLE: A Quantitative Comparison of Active and Passive Damping For
Large Space Structures :

AUTHOR(S):  Francis Shen

1
IIE: © ISSUED BY CONTRACTOR AS REPORT NO:

PREPARED BY:

Francis Shen and P.C. Hughes

Department of Aerospace Science and Engineering
University of Toronto

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO:  OSU 82-00163 ,
_ HSU.36100-2-4211

DOC SCIENTIFIC AUTHORITY: F.R. Vigneron and A.H. Reynaud

" CLASSIFICATION: Unclassified

Ilfi~ ‘ This report presents the views of the author(s). Pub]icatiohf_
U 1 of this report does not constitute DOC approval of the reports:
s findings or conclusions. This report is available outside the

_ department by special arrangement. .

«®
o7’

DATE:



A QUANTITATIVE COMPARISON

OF ACTIVE AND PASSIVE DAMPING . -

FOR LARGE SPACE STRUCTURES -

Francis Sheh

S ey ot

[ owmRCHTIONS ChAm |

e e |




P

- B
H .

/ A QUANTITATIVE COMPARISON .
¢

OF ACTIVE AND PASSIVE DAMPING
. FOR. LARGE SPACE'STRUCTURE%/

BY

W | -
//;RANCISZFHEN/ e
DEPARTMENT .OF AEROSPACE SCIENCE AND ENGINEERING

A Thesis submitted in conformity with the requirements
for the degree of Master of Applied Sciemce
in the University of Toronto

- 1983




PO

Acknowledgements

The author would like to expfess his sincere gratitude to '

Professor P. C. Hughes for his suggestion of this topic, super-

. vision and guidance during this research, and for his critical_f‘

review of this thesis.

Financial support received from the University of Toronto,

Ontario Government, and Communications Research Centre is

gratefully-acknowledged,

ii




Abstract

Damplnc has 1ncre351ncly become a maJor issue in the control

" of the flexible modes of large space structures (LSS). In the past

“the damping problem has been. approached u51ng two distinct technlques.

active and passive damping, which have - almost always been studled

‘independently. It is therefore the intention of this report to present ' -

an interdisciplinary approach. A quantitative method for comparing
active and passive damping according to weight and positivity criteria

is outllned The method assumes thruster actuatofs'for active damping

.and viscoelastic material for passive damplng Each of these damping‘

techniques is implemented by optimizing the damping‘performance

. against weight. The Mobile Communications Satellite (MSAT) is used~

as a model to-compare active and passive damping. The‘reeuits show1
that in cenefal actiﬁe demping is much more weight-cost effective
and possesses better positivity qualltles thanvo;e51ve damplng
(Positivity is a term used'in this report to describe robustness‘when”
the p051t1v1ty concept of stablllty is assumed. ) However, thls |
generalization is not without exception, for example, as the fllterlng'
of the feedback signal of the active damping system increases, the
weight-cost effectivenese will decrease while positivity increases.
Evidently, untll the design of the active system incorporates a
filter for observatlon noise that is equal in magnltude to the d1s—
turbance noise, passive damping will not be more weight—cost effective
than,active damping. The results iﬁ this repoff oannot be_complefe

without a good understahding of the uhderlying difference between

"active and passive damping: active damping is an on-going weight

iii




expenditure, while passive damping is not. Thus, the major factor

_influencing the choice of which damping technique to implement, is -

" how much damping is required during the lifetime of the LSS. - An

interesting aspect concerning the positivity of the active controller

is that apparently the uncertainties of the natural frequencies have a

‘much greater effect on the system stability than the damping ratios

have.
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Notation

~ Note: Symbols used only locally are defined when introduced.

A system plant matrix
éé ' augmented system plant mafrix
B | control distribution matrix
B E'B
C modal output matrix
9 damping matrix
D ED E
e x-X
E undamped normalized modal matfix
Ei i-th éleﬁent eigenvector for fhe mode
F feedback gain
- H observer gain T
J performance index
' I dynamic perfbraance indeﬁ
3y control effort index
X stiffness matrix
51 i-th elemént stiffness matrix
L .compensator transfer matrix
Ly loss factdr for mode o
Lv material loss factor
M mass mafrix
solution to the Riccati equation
physicai coordinates |
dynamical performance weighting matrix
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Subscripts

£

EQH(E)W (D)} = Qa(t=1),
control effort weighting ﬁatrix
EV()V (D)} = R, 8(t-T)

defined in (4.39)

 plant transfer matrix

control vector

observation noise

eXcifation noise

state vector

estiﬁatedAstate vector

output vector

positivity index; impulsive fuﬁction -
normalized delta positivity index
damping ratio for mode o |

damping ratio error coefficient

modal coordinates

diéturbance to observation noise fat16 (4.3l)
augmented state Qeétor (4.37) |
undamped natural frequency for ﬁode o

ETK'E

flexible modes

passive damping

‘rigid body modes

viscoelastic material
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Special Notations

1

)
®
Ok

&R

@)

unit matrix
vector
matrix
Hermitian
transpose

Laplace transform
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1. INTRODUCTION Lo

The advent of the Space TransportationVSystem has made an enormous

contribution to the feaéibility of large space structures.(LSS).A'However;

as experience has shown (beginning with thé first U.S. satellite,.Exploref
), the'feasibiiity of a spacecraft requires not only a transportation‘~
system into space; but also the stability and control of the Vehiéle
in space. Ironically, attitude stabilization of Expldrer I Qas lost
because damping was not taken into account. |

It is clear that as the sizes of space struciure§ inc?easé while
their weights are kept to a minimum, structural flexibility:becomes.ong f
Qf.the major concerns in designing a éontrollable spacecfaft. 1Indéed,
this dominant characteristic has prompted much research in the aféa.of ‘
damping technology by both structural and control engineer§.< Howeyer, |
there has been a strong tendency for the two distinct disciplines of
engineering to conduct their research in two quite different directionms,
:each with no awareness of the other. : S  ~ Tope

For structural engineers, the approach is passive damping.— a'method
of energy dissipation through the intrinsic properties of materidls ori
passive devices. For control engineers, the approéch is primarily
active damping, which dissipates energy from a system througﬁ the use of
sensors and actuators that require external energy input. Although
some control engineers have considered passive damping, this has been B
limited to discrete damper devices. Understandably, the.dynamics of
these discrete dampers bears a remarkable reseﬁblance to special cases
of'active damping. While the choice of approacﬁ has ggnefally been

dependent on the proclivities of the engineer, it is the intention of




this report to provide a quantitative comparison of active and passive
damping.

In this report, the two methods are compared according to two

- criteria: weight and 'positivity'. The term 'positivity' refers,

in this report, only to the robustness.of the system using the
positivity concept given in Section 5. Also, to ciarify the térm
‘robust', this refers to the stability of a system ﬂaving low sensi-
tivity to modelllng uncertainties. It should be noted that.since
p051t1v1ty is a sufficient condition for system stability (see Sectlon
b) positivity 1mp11es robustness but robustness does not necessarlly
imply positivity. There are, of course, other criteria of interest
when selecting the 'best' damping method. These include cdst,1c6m=
plexity and spillover (wvhich refers to the energy input .or output

into those modes not explicitly controlled). These, however, are

st
LR

beysndAthe scope of this report.
The strategy used to compare active and passive damping is

extremely important to the outcome of selecting thé 'best'.dambing

system. The conditions under which . .they are'compare& could make an
inferior technique appear to be.superior;}therefore‘it is important

to appropriately select and design each damping system. The following

approach is taken to assure a fair éomparison.

(1) The selection of the type of damping technique that best represents
each of active and passive damping is made based on comparability,
hardware realizability and conventionaiity (Section 2). |

(2) Each damping technique is designed by optimizing a performance

index against weight (Section 4).




"The ultimate test of any method devised is its practicai'applica—
tion. In Section 6, the Mobile Communications Satellite (MSAT) is

used as a model for LSS. Active and passive damping are applied to

- this structure for the purpose of comparing their damping efficiencies

as to weight and positivity.

2. SELECTION OF DAMPING TECHNIQUE

Since several different techniques exist for both active and
passive damping, it will be necessary to specify the damping technique
used to represent each category. These damping system designs are

selected on the basis of its conventionality and whether it is quan-

titatiﬁely comparable.

2.1 Active Damping

. This category can be subdivided based on tﬁgﬁéynamics of the
control actuators. There are essentially two distinct types of
actuators: force actuators and torque actuétors. The fofmér are
usually produced by chemical propellant thrusters while the lattef
could involve a number of wheels distributed throughout the vehiéle.'
The concept of angular momentum management has in the past been con-
fined to the rigid part of the spacecraft, and its hardware realiz-
ability as a distribution of small wheelé throughout the sfrﬁétﬁre has
yet to be proven. On the contrary, pr0pe11aht thrusters have been

used extensively for spacecraft control, and probably no significant

‘modifications are required of them for active damping. Therefore,

force actuators through the use of chemical propellant thrusters are

selected to represent the performance of active damping.




2.2 Passive Damping

For passive damping, similar divisions are made based on the.
dynamics of the. damping mechanism. The selection of a paséive damping
representatife will also depend on how well defined these physical and
geometrical parameters are. There are three categories of passive
damping distinguished in this report: alternative materials, discrete
damper, and viscoelastic material (VEM).

The 'alternative material' approach- to passive damping augmen-
tation uses, as the term 1mp11es, replacemerit of a portion of the -
original structure with alternative materlal which has better damplng
characteristics, while maintaining the basic material properties of
the original substructure. The most promising cahdidates are com-
posite materials which have shown a good strength—to~we1ght ratio while,
under certain de51gns exhibiting good damping characterlstlcs.
However; these materials are only in their 1n1t1a1 development stage,
and while research has found composite materials to have good damping_
characteristics, they are far from being fully documented. Therefore,
this approach is not considered in this report for comparison with
active damping. It should be noted that the alternative of material
damping augmentation depends very much on how the composite material
is designed and this requires extensive knowledge of its material
properties, which is beyond the scope of this report.

‘The 'discrete damper' method is probably most popular with
control engineers (although only a handful of them have really 1ooked
" into this). The physical configuration»of the hardware in these
devices is not a significant concern to them, eXCept'that§it ia a

'mechanical fluid dashpot or electronic equivalent' [8]. There have




been several of these devices designed; howéver, their.full employ-
ment in the space program has been limited. The usual mathematical
model of these devices is envisaged as a linear-viscous mecﬁanism}
Nevertheless,.the physical properties of these devices do not métter
so lbng as they behave as their mathematical model dictates. It is
interesting to note that the analysis>of discrete dampers using a
linear-viscous damping law is essentially the same asAactiﬁe damping:
using rate feedback and decentralized control of co-located actﬁatoré
and sensors. o
In any case, fhe discrete damper has many attractive.featureg
and, in particulaf, the device can be placed,‘with little éftention fo
its physical configuration, at any crucial points in the spacecraft.
The discrete damper usually is assumed to have the ability to selec;

tively damp certain modes as well as alter the damping strength at

R T

will [11]. It is difficult to define the relatibnship between-wéight
peﬁalty and damping strength. The discrete dampers' physical prbper~
ties apd 1imitation§ are worth further investigation because fhese |
devices show great versatility (similar to active damping).

| Finally, the 'viscoelastic material damping', used in this
report to represent passive damping, is understandably the method most
investiga£ed by structural engineeré for damping augmentatioh.> The
work done to date typically involves implementation of VEM on£o>a
structure through such configurations as a sandwiched cantilevered
beam [14, 15]. Much experimental data has been génerated‘to support

a hysteretic damping law (rather than a viscous damping law) for VEM. .
It shoﬁld be noted that although it does more closgly-obey a hysteretic

damping law, VEM damping is actually both frequency and temperature




dependent. However, it is assumed that modal vibrations requiring
explicit control have vibrational frequeﬁcies close enough to each
other that hysteretic damping can be assumed. The physical proﬁerfies
of VEM are well defined, making few assumptions (or guesswork) required.
These conditions make VEM worthwhile for comparison with active damping.
It should also be noted that VEM is'basicéliy the conventional ideal

of damping where energy dissipation is achieved by applying viscous

materials to the vibrating structure.

3.  MATHEMATICAL MODEL

The form of the spacecraft mathematical model must be suifable'
for designing the damping syétems considered. ~As well, it must be _
easily manipulatéd so that weight and positivity‘comparisons can.réédily.,
be made. In view of these factors, the statetiPace form of system
matrices is most satisfactory.

To begin, since finite element techniques are commonly used for
modelling the dynamics of a flexible spacecraft, a dynamics model is

generally given in the form

q=Bu ’ (G.1)

¢ =
Lo
+
g
Qe
+
tR

where q are the physical coordinates,

M and K are the mass and stiffness matrices respectively,

is the damping matrix,

g

B is the control distribution matrix,

le

is the control input.



This is normally transformed into_modal‘codrdinates by

(3.2)

a=En
resulting in the equations of motion
ﬁ*§ﬁ+95=§3 ,jiﬁ
wﬁere
EWE = 1, ipee?
for-b,  fMed
Now,. by partitioning
nz[% | | W
Lng |

where n. is the rigid body modal coordinates,
N is the flexible modal coordinates.
Equation (3.3) can be separated into the rigid body and flexible

"equations of motion:.

n. = §rg (3.5a)
+ DN, + 020, = Bu o . (3.5b)
Ne * Delle + % Dp = Dg2 | LB
7



where
R 9 0 2 o 0
D= P R 2
o b 0
and

[ v=P
]

B}

B

The dimensions for the various zero matrices follow directly from the
partitioning in (3.4).

The primary objective of gg is often‘to control the rigid body
modes. However, the attempt to control the rigid body ﬁodes of a-
flexible spacecraft almost always leads to a significant émouﬁt of -
undesirable spiliover to the flexible modes that camnot be igﬁéréd.
As described by Hughes [12], '§3 is often both friend and foe'. Using
this analogy, thé rigid body control may be considered as a foe to the

flexible modes. Accordingly, (3.5) can further be broken down into

the form:

n_=Bu +Bu , " (3.6a)

.- N e 2 ~ . - X
Np + Dgng + Qg np = Bou, + Bt (3.60)

where u. is the rigid body control vector,
u. is the flexible control vector.
For multi-input, multi-output control analysis, the state-space

form of system matrices is most convenient, thus:



X =AX + EIE- + Bu, ' \-(3.7a)
Xg = ApXp + By + Belte - G
where -
_ 1 - . D¢
—-r - © ]’ .}..(.f [- 1
L n
K 1:‘ I o 1]
= ~ ~ A. = ~ -
~T b4 -.f 2 ~
0 0 —_E.Zf De
— oj] - 0:}
= ~ B = ~
~T ~ L4 ~f ~
-—-gr ——E’f
Using the control laws
et e
up = Fex | (3.8b)

where , o
x= |7 ' - (3.9)
X¢ - .

and Fr is the gain matrix for rigid body control,

Pf is the gain matrix for flexible control,

the system may have a control block diagram.given in Figuré 1(a)

1
§
L]

with the following definitions:



’ (3 10)

= B F

~T :-S~I'

Le = B¢ (3.10b)

(s1-A) 0]

= T - ) - (3.10c)

~ B 0 0| ~ .
- 0 0 7 o
T.=1" - - (3.10d)
~f 0 (sl- f) -1 .

S
The dimensions for the various zero matricés follow diréctl&}ffom the
partltlonlnc in (3.9). | |

To facilitate the positivity analysis to come in Sectlon 5, ‘the
follow1ng assumptlons are made.

(1) The control vector u. uses only the feedback of flexible state;
ieees g = Egkpe -

(2) Control spillover to the rigid body modes, grgf’ are not éonsid—
ered explicitly since it is beyond the scope of this report;
However, it can be taken into account at a later stage as an
independent disturbance input to the rigid body modes. \

Upon these assumptions, the block diagram of Figure 1(a) can be modified

to the form given in Figure 1(b) with a new definition for Lf..v

v [: ; :‘ .
Le = - : . (3.11)
£ A
BeFe | :

Note that the dimension of F_ must be adjusted accordingly.

10




As will be discussed in Section 5, this block diagram may also be o
used to describe passive damping simply by setting Lf = 0 and modifying

Age

Finally, to make it easier to determine Ff, as well as to'facil—

itate weight comparison more readily, gfgr is modelled as an independent
impulsive disturbance (which most accurately satisfies its anaiogy

of a 'foe'). This model was discussed by Hughes [12] to be represen-
tative of the action of chemical propellant thrusters, and also it .

is a good input disturbance model which excites~a11-frequencie${fff
Equally important, an impuléive input has the same effect as an initial
condition, which greatly simplifies the comparison process. | A

In order to simplify notation and since rigid body dynamics is

not considered explicitly in the following sections, some notation .

_changes are made as follows:

Ag 7 A, By > B
D, + D, g§+92 (3.12)
Fe > Es Xe 7 X

Also, it must be noted that the form of If(s) and Ef given in (3.10)
and (3.11) unnecessarily complicates the positivity analysis gince
rigid body dynamics is not considered explicitiy. Therefore, the
variéus zero matrices of If(s) and Ef’ whose purpose is to aécommodate

addition with the rigid body system are now dropped. Thus,

-1

£ (3.13a)

Te=(s1-A

11



L.=BCF |  (3.13b)

4.  WEIGHT CRITERION

For every component put into a spacecraft, weight'is aiways con~
sidered to be a major factor and every attempt is made-to have each
component weight-~cost effective. The dampiﬁg system is no exception,
and thus, in this section, the designs of active and passive damping
are optimized against weight. Also they are set in such.a ﬁa} éo

that they can be readily compared for their weight effectiveﬁess;;

4.1 Comparison Apprbach

The basis for comparing the weight effectiveness of active and

. passive damping depend primarily on the design objectives; In this

problem, the main objective is to control the fleXibility of the space
structure. One widely accepted measure of the flexible motion is the

dynamical performance index,
J=J£ Q x dt @)

where 9 is a positive semi~definite weighting matrix for the state

vector of the system (3.7b). Essentially, Jx establishes a comparable
medium for two very different damping methods. In other wqrds,gif Jx
is the same under actife control as it is under passive control, then

' the two systems are considered to have the same dynamical performance.

" The trade~off of this index against weight will allow the designer to

compare thé two methods of damping. It should be noted that an optimal

12



design must be used for each damping method in order that a valid
comparison can be performed. Here,"optimal design' refers to a con-
trol system designed with the most efficient use of weight to minimize

the dynamical performance index.

4.2 Active Damping

The weight of the active controller is dependent on two distinct
contributions. These are the hardware and fuel expenditures of the
system. The former is relatively fixed in its weight contribution

while the latter is dependent on the extent in which the active con-

troller is used. As indicated in the previous section, the controller o
must be designed such that its weight is minimized against the allowable -

flexibility. Since the hardware weight involves such items as.actuators,

sensors, propellent tanks, connectors, and on—boafd computefs,‘which
are relatively fixed, their contribution to the‘zgtal weight of fheA
controller can be neglected in the optimization problem. Moreover, in
some cases, wheré the existing hardware of thé rigid bédy controller
can also be used by the flexible controller, the weight contribution
of the hardware could be minimal. With the omission of the hardwafe's
weight, optimal control theory can be used easily to minimize thé fuel

expenditures. The optimal control performance index,
J=I(XQE+ERE)dt . (4.2)

conveniently incorporates the dynamic and the control effort perfor-

mances for minimization using the control vector u(t) subject to:

13



X =AXM®) +Bu®) | (4.32)
x(0) = x, |  (4.3b)

For the weight of the fuel expenditure, the control effort index -

oo

3, = [ u'R u dt 4.
A T

must be translated to fuel weight. If the specific'impulses of the
thrusters and the type of fuel used by each thruster aboard the space

structure are all the same, then the weighting matrix R takes the form

B = rl ) . (4.5)

R

Therefore the equation to transform the control effort index to fuel

expenditure is

Mo = (Ispﬁr)_lJu :(4-6)

where Is is the specific impulse and 4 is the outbut thrust of the
actuator. Although (4.6} measures the amount of fuel required to damp ‘
out a given disturbance, for the purpose of comparison with passive

damping, the number of times this disturbance occurs during the 1ifé~
time or before reservicing must also be determined.. Thus,«the Weight

of the active controller is given by

Mg = ng(I 5.r)”1qu » (4.7

14



where ny is the number of times the disturbance occurs. To be complete,
the hardware weight, depending on the situation, should be added to

give the full weight of the active controller.

4.2.1 Full-State Feedback

For full-state feedback, the optimal control vector is given by

u(t) = -F x(t) (4.8)

where

F=R1gp

and P is the symmetric positive semi-definite solution of the matrix

Riccati equation
AP+PA-PBRBP+Q=0"7 (4.9)
The minimum cost of J subject to (4.3) is

J = xT P
-0 ~

x, (4.10)

For the dynamic performance index, the integral can be evaluated by

solving Px of the Lyapunov equation

&Y P Bk Q (4.11)

where

15






to the idealistic state feedback. Discussed here are three.methods:
of determining the control vector.vié output feedback. These methods
are minimum error excitation, minimum norm excitatioﬁ, and.the>Ka1ﬁén
state estimator. The minimum error excitation and minimum norm
approach to optimal control are described in detail by Kosut [13], )

and briefly outlined here.

Minimum Error Excitation

The objective of this method is to minimize

I= I el R e _ ‘ - (4.19)
~u ~ —u . -
where . ° .
Sa T ~(§cg - B)x

and GC is the gain matrix of the output feedback, where the control

vector is given by

6. =FP C(CP,CHT @2
where Pe satisfies
(A - BEB, + B A-BF) +1=0 R 2
17




Minimum Norm Excitation -

The objective of this method is to minimize
ll.c - Ell , (4.23)

by the output gain matrix Gc' The norm of (4.23) is defined by Kbsut

to be
o=/ 1§ '
e ll = e. . C o (4.24)
N i=1 j=1 S
" The resulting gain matrix under this minimization problem is
cECcch™ - (4.25)

. Kalman State Estimator

‘The preceding two methods determine the control vector by cbmparing
it to the full state feedback gain matrix under certaiﬁ minimization
assumptions. The Kalman filtering approach, howeﬁer, uses the-éxéct
gain matrix of the full state feedback system. Of course; sinée all of
the state variables are not necessarily available (or, in some casés,

a high degree of uncertainty is inherent in the state), a filteringﬂdf
the output information is required. Kalman filtering is one systemétic
method for state estimation. Although methods such as the use of a
Luenberger observer are quite popular, the resulting solution is difficult
to be quantitativély described. Nevertheless, the Kalman filter i$ a

special case of the Luenberger observer and in faét both have the .form
X(t) = A x(t) + B u(t) + Hly(t) - C x(t)] (4.262)

18




where.g(t) is the estimated state vector. .

The method for determining the matrix H is whaf separateé fh; two
estimafors' performances. Also, state estimation by Kalman filteriﬁg
is often referred to as anvoptimal observer. This reference owes itself
to the similitude with optimal control theory. Kalman filtering requires

the minimization of the dual system:

I = [ Q8 + Yy Ryy)de | - 42D
subjeét to . A
Sty = -ATe (1) - CTu (8) B
-k At 3 ~ Bk . . o R
CORES

where

w (£) = -H'ey (t)

Gk and Rk are determined by assuming the actual system equations to be:

X{t) = A x(t) + B u(t) + w(t) (4.292)
y(t) = C x(t) + v(t) N ‘ (4.29b)
where w(t) and v(t) are state excitation noise and observation noise .

respectively and they are assumed to be uncorrelated.

19




If white noise 1is assumed, then

Qé(t - 1 = EMOW (D} T (4.300)
RS(t - 1) = V()Y (1)} . (4.30D)

where E{+} denotes the expected value of {-}. A major advantage in
using a Kalman filter is that a quantitative measure of the observer
sensitivity can be described by

AL SLE @3 -
where x is defined as the ratio of disturbance noise to observation
noise.

' Once Q

k_and R, are specified by the designer, the observer gain, H,

_ can be calculated by solving for P of the matrix Raccati equation:

o T )
Al * P " Pk BRE P % =0 (4.32)
The resulting observer gain is
T, -1 '
H=PCRy ((4.33)

Now, to analyze the performance of an optimal 6utput feedback system,

define

e(t) = x(t) - X(t) ()
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Subtract (4.3a) from (4.26a) to give

iu)-gm=ggu)—gwlkggaﬁi—&ﬂ]  (4.35)

oxr

&(t) = (A - H Oe(t) - (4.36)

x(t) | |
E=1" » ' . (4.37)
e(t) - ‘

The augmented system is now given by

Define

£ = AE : - - (4.38)

where

d§w3>
il
1
>
ST
! o
.o
. .
| iw
= i
O
e

To calculate the dynamic performance index, consider

X = 8. | ‘ ' (4.39)

where
Sg = [Loxn Opxn]

where n is the number of flexiblevmodes. Then (4.1) can be written as

J:JEngdt - (4.40)

where
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Therefore, the performance index can simply be calculated by solving °

for P, of the Lyapunov equation:

T _ o
A P v PeAr = (4.41)

The dynamic performance index cost is

Jx = §0 BEEO | | A (4.42)
where ' ) i
E =
o

For the control éffort index, this can be found by calculating the total
performance index and themn using (4.17b) to obtain Ju.

The total performance cost can be written as =
J=J +AJ ] T (4.43)

where Jo is the performance index for full state feedback,
AJ is the increase of performance cost due to observer dynamics.

AJ is given by
T :
AJ = f e R.e dt (4.44)
o
where

The proof of this is given in Reference 5.
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Again AJ cost of this form can easily be calculated by solving

the Lyapunov equation;_

T
(A-HORy+PyA-HO) =R, (4.45)
The resulting performance cost is
J=x'Px +el Pe o - (4.46)
=0 ~x~0 -0 Mo _

The three controllers discussed here have certain distinct
properties. The minimum error excitation aﬁd minimum_norm controllers
do not ensure stability of the closedéloop system. In féét;“it hés no
filtering of observation noise, which is very impoitant whenimodal
uncertainty and modal order truncations as well as sensors' noise are
present. These two methods essentially work on.tQS inversion of the.
C matrix and in the case where there are as many state variables as
output variables, the resulting control law of both minimum error
excitation and minimum norm is

u=Fct | (4.47)
This relation between the state and the outpuf variables can easily be

realized during modal order reductions.

4.3 Passive Damping

A common type of passive damping is the use of VEM where no sophis-

ticated man-made mechanisms are employed to dissipate energy. Instead,
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damping is achieved by the natural internal fricticn in the materiai.'
The intrinsic nature of this type of damping requires little‘servicing
once it is implemented, except for the material's natural aginé. The
weight of a VEM passive damping system depends only on the amountAVEM,
and this amount affects the damping performance. Equally important,
the optimum positioning of these materials is extremely important to
effectively dissipate energy from the structure. In fact, if damping
materials are placed at a section where no strain energies are distri-
buted, then no damping enhancement will be experienced. .

The problem of placing VEM on the LSS such that-the.coﬁtroiidbjec—_

tive is optimized against weight can be posed as:

Minimize

3 = j x'Q x dt ' (4.48)
0 a2 ) :
subject to
. P .
X = A X, x{o)_ = x, M = m., m. 20 4.49
Leax  xl=x, M= Iw, om (4.49)

where ép is thé system matrix (including thé VEM),
M is the total mass of the VEM allowed,
my is the mass of the VEM placed at thg i~th section,
p is the number of sections allowed for VEM placement.
This minimization problem has (p-1) independent variables.
To simplify this minimization problem, three assumptions are made:

(1) 1light hysteretic damping,

14

(2) X + KV K (Kv is the stiffness matrix of VEM),

n

(3) M+ M_ =M (M is the mass matrix of VEM).
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There.are basically three methods for analyzing structures with dis- . " "7

tributed damping materials. These are: (1) direct frequency response
method, (2) complex eigenvalue method, and (3) modal strain energy
method. The method adopted in this design comparison is the modal

strain energy method. The main reason for this is that, for a partic-

ular LSS, a mathematical model usually has already been develqped'befqre~

Vimplementing a specific damping system. This is primarily due to the

fact that an initial knowledge of the flexible modes is requiféd.in
order for the designe¥ to know how much damping augmentation is needed,
and where. Furthermore, the effective use of‘VEMirequires an‘insight.
info how Strain‘energies are distributed and this mﬁy be achieved by ah~
initial mathematical mo&el. The modal strain energy meﬁhod, for light
damping enhancement, allows the flexibility of adding damping materials
onto the structure withoﬁt remodelling the whoie system.i |

With the assumption of light damping, J, can-Bé-simplifiéd to the

form (Reference 12)

JX =) Ixg | - (4.50)
a .
where . 2
5, =% Pa ' (4.51a)
= . a
o 2L w3
[0 e}
i? = {Q (4.51b)
O ~" Q0 . ’

La is the loss factor for mode o. The implementation of VEM will alter
La' Nominally La is determined by the structure's natural damping and

is related to the damping ratio by
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1

2t - f | (4.52)

The inclusion of VEM will alter the loss factor of the a-th mode by

L, = 20, + Ly, ' (4.53)

where Lv, is the loss factor for mode a which is due only to the VEM

- implemented. To determine La’ the modal strain energy method with the

assumption of hystéretic damping gives (Reference 15):

T
L En K3 oy o
Ly, = Ly — ~ D
[0

where LV is the material loss factor of the VEM,

E

Ej. is the i-th element eigenvector for mode o,
1 . .

K. is the i-th VEM element stiffness matrix.

-~

The dependency of LVa on the mass of the VEM comes from Ki’ thus,

LVOE. = Lva(ml, mZ’ LR ] mP) : V_ (4-55)

The optimal design problem can now be summarized and computer coded

based on the minimization problem:

Minimize 2 2
z lCX. bo‘i ) , .
Jx =5 3 ; (4.56)
subject to p :
M o= ) my (4.57)
P 351 "
and
m. 20
1
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To calculate Ji, the assumption of light damping allows the use of (4.56).

However, this assumption can be verified by solving the Lyapunov equation:

T ‘ o .
A" P+ PA = 4 .58
BE2rEHY (4.58)
where
A=A+
~P ~ ~V
and
0 0
v 0 D
~ ~V
where
D, = Dlag{Lva ma}

The subsequent cost index Jx is

T .
Jx = X, P X, (4.59)

Jx calculated by (4.56) should closely agree with (4.59) if the 1ight
damping assumption holds., Note that (4.59) does not assume light damping,

while (4.56) does.

5. POSITIVITY CRITERION

5.1 Comparison Approach

. The positivity comparison uses the theory positivity of operators to
assess the relative robustness of the LSS control. A major advantage of
this concept is the availability of a robust stability test which is

independent of the number of, and the exact numerical values of, modal
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frequencies and mode shapes. However, this robust stability test is
conservative, and the conditioms it demands for stability, though
sufficient, are not necessary. Nonetheless, for the purpose of com-

parison, the 'conservativism' is assumed to be of a similar magnitude

~ for each damping design and therefore serves as a useful comparison

measure of robustness.

The positivity concept fgéuires-first the definition of ’positiﬁe
redlness'. This involves the transfer matrix of the system Z(s)s which
must be square. This matrix is referred to as 'strictly poéiti?e realt
if | =

(1) g(s) has real elements for real s,

(2) z(s) has elements which are analytic foriRe(sj >AC,n

(3) g(jw) + ZH(jm) is positive definite for 311 real w;
If the transfer matrix describing a system is strictly posiﬁive feal,'this_
impiies that the 'system is energy dissipating. ihhz&ditiony for a feed-
back system of the form shown in Figure 2, where T(s) and E(s) are équare
matrices, the system is asymptotically stable in the inputwputput sense
if both transfer matrices are strictly positive real. The proof of this.
theorem is given in Reference 3. |

This positivity concept was employed by Iwens, Benhabib, énd
Jackson [4] in designing a robust controller. .In their work, the
concept of ‘embedding' was introduced in order to make use of the
positivity concept for controller design. Basically, the requirement
of both transfer matrices to be strictly positive real is often‘too
restrictive and thus the embedding technique is used to alleviate this.
Embedding is a block diagram transformation of the original system into

a system that has the same stability characteristics. This is shown
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in Appendix A. . Figure 3 shows the embedding transformation of Figure 2.

The embedding operator G can be considered as a measure of_how much

control is required by the plant matrix or, alternatively, how stable

the plant matrix is. It should be noted that embedding is a mathematical -

manipulation and its final goal is to use the stability theory éssbciated
with the closed-loop system Figure 2. |

Ih Reference 4, the embedding operator G was used in designing_the
controller gain, and positivity of the transfer matrices was used to
check for system robustness aﬁd spillover. This report. makes use of
that robust test. As indicated previously, the embedding operatoriis a
measSure using positivity theoiy to determine how stable the Systém isu'
Therefore, by subjecting the plant matrix to varying degrees of méﬁal_‘
errors, one can determine how stable the system is via the eﬁBedding
operator. -Using the embedding operator as a quantitative measuré;of‘
robustness, a comparison can be ﬁade between diffé?ént damping designs.

The determination of G requires the definition of a positivity

index:

_ 1 s . L
) = A {5_ rGe) + o1} (5.1)
where Amin{e} is the smallest eigenvalue {+}. Also define

One form of g can bg

G = —dminl_ - (6.3
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This embedding operator will set the plant matrix positive at the

expense of the controller. The transformed system for stability analysis

is -
i =T +G (5.4a)
-~ -1
L=1-L.6)"L ~ (5.4b)

A modal data error of the plant matrix may cause a change to‘fhe émbedding
operator. By normalizing the change of the positivity indexitb_mddél
errors; a.comparison cén'bé made of the sensitivity of the damping design
to modal data. g

Define a normalized delta positivity index 1>
§ = (Se - 60)/60‘ - | - (5.5)

where 6e is the positivity index with error in the modal‘éata,
60 is the positivity index without error in the passive damﬁing,
If is the plant matrix inclusive of the passive dampiﬁg sjstem,
and thus the matrix associated with I is ép' In addition, Ef is set to
a null matrix for passive damping. The embedding‘technique_transforms-
the block diagram of Figure la into Figure 4. Thefefore, the comparison
of robustness is based upon the penalty that Er has to pay in order to
maintain similar positivity of the nominal system when modal data error
is encountered. It should be noted that the flexible controller's spill-

over to the rigid body modes is neglected for the reasons given in_

Section 3.
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5.2 Active Damping

5.2.1 Full-State Feedback

To calculate the positivity index of the full state feedback system,
consider the block diagram of Figure 4. . The embed&ing operator is

determined by the characteristics of the'feedbécklloop having the tfansfer

matrix

Tee = @+ T2 7T, (5:8)
For the output feédback system -
If = (s} - é)—l : ‘ :f | | fs;éa):
Le=BFE - J o (5.9b)

The resulting plant matrix with flexible control can be determined by

subsﬁituting (5.9) into.(5.8)
e - pte -0t s
SimP?jfying gives
= (s1-A+BF) -:- B o .(5.1;)!
As frescribed by Equation (5.1), the positivity index is caiculaﬁgd-b?
S(w) = A

{é— [Te, (Gw) + z’;’c(mn} RN
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Substituting (5.11) giveé

o 1 .‘ -1 .' . —H Sl
..>.6(m) = Ao { 5 (Guwl -A+BFT + (jul - A+ B F) }A (5.13)

For ease in computer coding, this can be greatly simplified to

) - ' 7 T ‘ T , | .
8) = F Al WA - A +ju® -N} (5.1
where '
o) -
N ={(wl-A Ac) 1
=A-BF
~-C. «~ =~ ~

See Appendix B for this simplification.

5.2.2 Output Fesdback

The positivity index of the minimum~error or minimum-norm excitation

‘methods is similar to that of the full state feedback. The difference

is simply

b
f
13-
[ v}
g

hre  as)

L.=BFC(CC) C (5.16)

for minimum norm excitation.
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Therefore, the positivity index is the same as (5.14) excépt

for the modifications to A.. TFor minimum error excitatiom, . '*

clccpcHTCc - (5.17)

1
¢

!
[ lv )
[ e s

and for minimum norm excitation

i
b
1
e
2T
e

ccoy ¢ S (5.18)

When an observer is used such as a Kalman filtering state estimator,
the problem becomes slightly more complex. Proceeding as the‘full o

state feedback probiem, the transfer matrices Te and Lf are

' Te = (sl - A)"1 ' 1 (5.19a)
Le=BF(sl~A+BF+H g)'lﬂ C © o (5.19b)

The derivation of L, is a simplification of the blockAdiagram of Figure

£

5. It should be noted that these transfer matrices apply not only to

Kalman filtering observers but also to the Luenberger type observers.
Equation (5.19) leaves a rather complex system for calculating

the positivity index where the plant matrix with flexible control is

given>by

12>
+
e
IAp)
N
e
iXe
—t

Tge = [ - A+ BEGL-A+3
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To overcome this unnecessary complexity, consider the augmented systemA'
discussed. in Section 4}3.2, except that here, instead of using the

initial condition as the disturbance in the system equations, impulsive

“inputs are 'used which have the same effect. Therefore, by setting &
: 20

to zero, the augmented system is then given by

E= AL+ SLE | (5.21)
E(0) = 0

-The transfer function for this augmented system is

—IST

=(5}‘—A S¢ -

~€) (5“2?}“

Te

'where~gr is the input and § is the output.

Since x = Sgg then the transfer matrices T._ is related to T, by

Tee = §€ Te . , (5723)
or
Teo = Sg(sl - ~E) Sg - (5.24)

As can be seen, the form of ch given by (5.24) is much simpler than
(5.19b), especially when evaluating thé~positivity index. Using
(5.24) and substituting it into (5.12) the positivity index is

T

8(w) = %- IS, (ol - g) §g v SpGul - A" sT} (5. 25)
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after noting that (Sg) g. Upon simplificatioh for COmputér coding,

the positivity index can be evaluated by

5w = 34 {S[V 5c&&ﬁwjm§-§g@§‘_c&%r
where ' ‘ |
Y = @1+ 2™

‘See Appendix B.for this simplification.

5.3 Passive Damping.

As discussed in Section 5.1, the block diagram of Figure 4 represents =~
a passive damping system by setting Lf = 0. and including the VEM dynamics
in Tf . As such, the positivity index can be calculated by

8() = 5 hyiplUinl - A)7 +IW1-%T%.'L 5.2

where A_ is defined in Section 4.3.

Again this can be simplified (Appendix B) to

= i 3 ;f_ — T 41 T - »
S@) = 3 A (NA = AT ¢ ety - N)Y - (5.28)

where

N = (mzl + A_A )hl
P ~  ~pP~P

- 6. APPLICATION OF THE COMPARISON METHOD TO MSAT

A comparison of active and passive damping for the Operational

Mobile Communication Satellite (MSAT) shown in Figure 6 is conducted
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in this section to demonstrate the quantitative method Just outllned in
this report. The MSAT is a relatively flimsy. structure _composed of a -
44-meter diameter dish antenna, a 44-meter supporting tower boom, a ‘
cross boonm, a.solar array and a main bus. Of all»the main structural -
-components, only the bus can be'coneidered rigid." Thue; the MSAT moael
'poses a good example of a flexibletspace structure for damping(design
analyses. It should be noted that the availability of this'rather‘coﬁ-.
Aprehen51ve mathematlcal model of the vehicle's dynamlcs (developed by
P. €. Hughes and G. B. Sincarsin of Dynacon Enterprises Ltd. ) makes
possible this quantitative comparison of damping designs. - The basic |
dynamic objective of the MSAT while orbiting the'Earth is,to maintain
the focus of the paraboloid reflector nominally at the feeder horne
Jocated on the bus while aiming the communication beam at its target on
Earth. It was sugoested that some damping augmentatlon should be 1mp1e—
mented in order to upgrade its structural 1nte0r1ty -
leferent approaches to damping augmentation as outlined in thrs
report were applled to the MSAT for comparison. The various methods of
damplnU auomentatlon were computer coded, but are qulte complex to be
reused. This is because the comparison involves many varying input design
parameters, and the results of one program are required by several other
programs. AAlso,‘in the intermediate stages of some of the programs?
numerous data files were generated in order to reduce repetitive computa- ‘
tions. The ultimate reason for all this coﬁplexity was to minimize the
computing cost. Therefore, a listing of the programs used is not

provided.
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6.1 MSAT's Mathematical Model

The MSAT had originally a total of 108 modes which were reduced fo
a design model of four fléxible modes and eight rigid Bcdy modes.. The
comparison uses this model. Since the analysis only concerns,four
fléxible modes, the output vector (in physical coordinates) was chosen

to be

x_= col(ﬁl, 62, 045 az) o o | (6.1)

61 aﬁd Gz.are relative displacement of tower tip to towef foot, and-‘.

ai and a, are relative éngular displécement of the reflectér with rgspect
to frame fixed at tower root.. These-physical coordinates-wefe chdsén |
because they were complétely independent of.thé eight figid bﬁ&y mo&es.i

and are pervasive for all four flexible modes.

The modal output matrix C is - C o

C1.756x1070  -3.172x107° 2.786x107> '—2.0_75x1'o'73“ "
~ 2.418x10°%  -s5.019x10™%  -1.230x107%  -4.650x1077 '
E = -6 -3 -6 -6 (6~2)
4.200x10 3.425x10 -2.497x10 2.209x10 -
| _5,736x1o"5 1.776x107%  -1.050x107° —5‘.249x10‘4_

The natural frequencies of the design modes are:

w, = 0.124, 0.240, 0.341, 0.556 rad/sec (o =1, 2, 3, 4) (6.3)

A 1% damping was assumed in each of the substructures [10] and the.

modal damping matrix is:
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From a geometrical calculation of the relative importance of roll,

and yaw as well as

[R e

| 1.846x10

2.519x10°

-3

6

-1.700x10™°

| 1.237x10°°

calculated to be

Y b

[ 2.014x10

-6

8.746x10 >

-8.075x10

| 4.560x10

-6

-6

3.409x10 >

-6.900x10

-6

5._2'43x10‘6

1.711x1072

~6.647x1072

Symmetric

1.109x1072 |

(6.4)

pltch

internal flexibility, the modal we1ght1ng matrix was

1.115x10°°
-8

-4.195x10

2.283x10

-8

4.247x10"°

-2.203x10

-5

Symmetric |

1.176x10"°

(6.$j:

Using the light damping assumption, the matrix of (6.4) and (6.5) can be

51mp11r1ed to only eight modal parameters. They are the damping ratlos,

ga, and 'modal involvement indices', ia’ for the four flexible modes,

r = (7.421, 7.116, 5.013, 15.374) x 107> (6.6)

(@=1, 2, 3, 4

(1.419, 1.056, 0.105, 6.517) x 107> 6.7)

(=
il

The actuators aboard the MSAT consist of a total of eight thrusters,

three reaction wheels in the bus,

hub.

is given in Table 1.

and two torquers at the reflector

.The modal control distribution matrix, B, of this arrangement

To summarize the mathematical model uéed,'the

system in first-order assumes (note that this only includes the
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flexible modes)

n _— vf o
X = } o o " (6.8)
n ;

and the resulting system equation as prescribed in (4.3) and with the

following matrix definition:

0 1 0
A= - o B = :
h -0? -D - B

Q 0 N
Q=" s c=1[C 0]
X 0 o b o b

The dimensions for the various zero matrices follow directly from the

partitioning in (6.8).

6.2 Damping Designs

The type of damping designs that are considered here for the MSAT'
are active damping with full state feedback énd with oufput feedback,
and passive damping using.VfM. The mathematical design appfoaches Wefe_ :
all outlined in Sections 4 and 5. All the design'methodsfwere used.
explicitly from these sections éxcept for minimum error aﬁdiminimum
norm excitation method. This is‘beéause these two methods do not _

guarantee stability and have no filtering of the output noise as
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demonstrated when C is square in Section 4.3.2.

6.2.1 Active Damping

As outlined in Sectiom 4, two situations of active controls are

considered: active control with full state feedback and with output

feedback. Linear quadratic optimal control theory'was applied to both

these situations. For active damping with full state feedback, the

design of the contrpller involves solving (4.9) and then subétituting
P into (4.8). All the matrices were as prescribed in Section 6.1,i’t
Oniy the B matrix ﬁeeds to be determined, but as discussed in Sectioh

4.2, by varying r, defined by (4.5) will give a range of M which will -

. arrive at a relation between fuel expenditure and dynamical performance.

For ‘active damping with output feedback, the design of the.confrbliér
is similar to the full stéte-feedback case except that instead éf the
feédbé;k vector being x in (4.8) it is g, g_was égiﬁulateﬁ-by setting =
« defined in (4.31) which in tumn giveﬁ‘gk and Ry of (4.32) for the
observer gain given by (4.33). R
In order to use Equation (4.7), seﬁeral parameters were assuméd:_
6

ISP = 500 N-s, § = D.lN, and ny = 10 . The first two>parameters were

determined based on the use of a low thrust monopropellant hydrazine -

thruster sysfem while ng» the number of times the disturbance occurs

during the lifetime of the LSS, was selected to represént_a.long dura-

tion spacecraft.

6.2.2 Passive Damping

Some internal structural modelling is required for passive damping

- design and this would depend on where the VEM is to be applied. The .
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aim of having this intermal structural model is to uée-Equation (4.54)
which requireé the strain energy distribution. The»pptimal application
locations for the VEM depend on three aspecfs. They are: the deéign
objective; the strain energy distribution; and the disturbances.

An insight‘into some of these aspects can greétly simplify the problem.
Considering the objective of the control problem, the effect of flexi-
bility of the MSAT renders a major concern, fhe maintenance of correct-
positioning of the reflector and the féeder horns. This suggeéts that

the tower-cross boom is a good place to distribute the damping material.

Once the problem of applying the VEM has been narrowed down to the

tower-cross boom structure, a detailed modelling of this structure is
Tequired to ascertain a strain energy distributibn; -Since a model of
the tower—crosé boom was available in detail through Reference 10, the
coﬁstruction of the finite element model maf simply follow in this
Panner. - |

To begin with, the tower-cross boom was modelled as a four-element
rod étructure;as shown in Figure 7(a). The dynamics of this structure
can be completely described by q;5 & §, and w and gb’ where Wy and

S

bus, respectively, and a is the twoer's internal coordinates. o and §

are three translational and three rotational coordinates of the main

are three relative angular displacement and three relative displacement
of tower tip td tower root, respectively._iThisAgives a total’bf 26
coordinates. The strain energy that is distributed over this structure
for the flexible controller design only considers the four_flexible
.modes. Thus, the eigenvectors of these 4 modes were réquired, and they
were transformed to physical coordinates of the tower relative to the

inertial space. This transformation was devised by Reference 10,‘page 35,
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and the transformation has the relation

where’St is the transformation matrix, or the selection matrix as
referred to by the reference. It should be noted that ¥y anc"l'f)_]D are.

related to W and Qt (translation and rotatipn at the tower root) by_
a éimple rotation matrix. ¥ith the 32 tower coordinates qt;-thgn
eigenvectors are further broken down into elemental elgenvectoré Ea..
To relterate, the purpose of this is to facilitate the use of Equatlon
(4.54) or, more precisely, to determine the modal strain energy distri;
bution over the tower-cross boom structure. This distribution is 0i-\)en
in Table 2 for the four-element model of the twoer-cross boom structure.

Several input parameters were assumed, as follows.

.(1) Effective diameter of tower-cross boom = 1 Sm-

A(Z) Density of the VEM = 1.5x103 kg/ms.

'(3) Young's modulus = 6.2x106 N/mz.

(4) Shear modulus = 2.0?x106 N/mz.

(5) Material loss factor = 1.3.

(6) Equal impulsive input from all eight thrusters fired

indépendently.-

The basic algorithm used to determine the optimal placement of the VEM
followsAthe flow diagram shown in Figure 8. The result of thié optim-
ization yielded an arrangement where the damping material is most |
weight-cost effective when placed on element one, Figure 7(b). :HoﬁeVer,

this result is based on an equal impulsive input by the eight thrusters.

In the case where the disturbance is only an impulsive input generated. -
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by thruster two, the most effective placement of the damping material

was found to be on element two.

6.3 Damping Design Comparisons

Once the damping systems were designed, the next step was to
compare their damping éffegtiveness based.on thé.two criteria of weight-
and positivity. The candidate designs were éubjéctedAto an impﬁléive
disturbance fired independently from the eight thrusters on boafdvthe.
spacecraft. This was felt to best approximate ﬁhe type of disturbances
that may be. encountered by the structure, sinﬁe.there is no reaéon to
single out any one particular thruster orvcémbiﬁatiog of them;i It should
be noted that the optimal design of the passiVe damping system is depen—f
dent on the type of disturbances, whi}e the'active damping system is not

(at least so far as the control law is concerned).

6.3.1 Weight Criterion

"Figure 9 shows a weight comparison of three damping designé — passive,
active with full state feedback, and active with output feedbéck, In this ’
plot, it shows clearly that active damping with full staté feedback gives
the best dynamic performance to wéight-applied. 'Passive'damﬁing appears

~ to be the least effective, but it cannot be stressed stroﬁgly enough'that.
this ﬁlot assumes no hardware weight contribution for the acfive-damping
analysis and no credit is éiven the passive damping for damping the
'higher modes'. The active system with an obsérver designed for noise’
level of « = 103 shown in the same figure, agrees witﬁ thg physical
mechanics of noise filtering. That~i$, its control_perfoémaﬁces are

damped to account for the possible observation noise; thus the structural
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damping is less weight-cost effective as shown in this_figure; ‘Thisi

is further demonstrated in Figurés iO and 11, where the controllef was
designed for varying levels of obse;vation ﬁoise: E = lo‘énd K'=K2. 
Evidently, as k decreases (K iévinversely ﬁroportionél to the obsérver
noisej,_the dynamical performance index will reach a saturation péint |
much earlier at which increased fuel expenditure will nbt imprové damping.’
This is shown most clearly by Figure 11? where a controller designéd for

a low ratio of disturbance noise to observation noise exhibits a satura-

tion point quite abruptly at M = 2.5 kg.

6.3.2 Pdsitivity Criterion

A logical common denominator for comparing the robustness of several
damping designs is to have a common weight for each design. This way,

one can determine which damping system is most robust for a given weight. -

" A common weight of 10 kg was chosen and Figure 12"§ﬁows_§ as a function

of the error coefficient for Ee, defined as Ce = Aca/ca. This plot.
compares the passive, active with full state feedback, and active with ~

output feedback (k = 20) damping systems. Surprisingly, the passive

damping design shows more sensitivity to the modal data T than active

damping. However, the behaviour of the active damping design>agreés
with intuition in that the mofe filtering of the output vector, the less
sensitivity to modal data, and hence the more robustness. In facf,'this.'
was investigated further; Figure 13 shows that as'k decreases the ;oﬁust_
ness incredses (other things being equal).

To consider errors in the modal data m&; Figure 14 plots § versus
Ge<Which is defined as &é = Aw/w, . This plot is complgmentary_td Figure

12: it compares the positivity of three systems: passive, active with
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full state feedback, and active with outéﬁt'feedback'(K = 20). Again._,
the passive damping design shows more sensitivity to modal data,erfors.
Similarly, positivity is observed to increaée when thé observer incor-
porates a filtering process as shown in Figure 15. This filtering
process is shown to increase pbsitivity as fhe strength of the filtef
increases. This effect of filtering on positivity is further.confirmed
by Figures 16 and 17, where the weight of the fuel eﬁpenditure Qas{set.
at 5 kg.

There are several noteworthy characteristics of the plots in Figures

9f17:v

(1) It appears that for active damping where a filter is incofporated,
" there exists a saturation Value‘for‘AJx which is not zéro, but
which increases as « decreases,\
(2) The relation between S and Ee is rather linear wﬁile that
between 6 and ae is not. | -
>(3) The variafion of g with ae is about an order of magnitude
greater than the variation of § with Ee. This suggests, for
example, a 5% error in w, may be as important as a 50% error
in [
7. CONCLUSiONS
A quantitaﬁive.method for comparing active and passive damping

according to weight and positivity criteria has been presented} The

method assumes thruster actuators for active damping and viscoelastic

material for passive damping. Each of these damping techniques has

been implemented by optimizing the damping performance against weight.
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This method was applisd to the MSAT model and the results of fhe
comparison are shown in Figures 9 to 17. The following major coﬁditions
should be kept in mind when examining these figures: :

(1) The weight comparison was made based on impuléive disturbances
from all eight thrusters firing independently for avmiilion
times. Note that this is to modélvthe lifetime disturbanqeé
jmposed by the rigid body conifoller‘on the flexible system.

(2) The Weight of the active damping sysfem is calculated Qith :
the inclusion of only the 1ifetiﬁe fﬁel expenditure§ use&.

| Therefore, it should be clear that tﬁe hardware Weight:ié not
accounted for. |

(3) The positivity concept is a conservativevapproach to staﬁility‘
analysis.

The results of this comparison show active damping with,full state’

......

feedback to give much better damping performance for a given welcht than .“

does passive damping. This is accompanied also with. active damping

being superior in positivity when compared to passive dampiﬁg* 'Qf coﬁrse,
full stafe-feédback is an idealized situation where the entireAétate is
‘available and without noise. Although this is an unrealistic situation,
it defines a useful reference point for the best dampiﬁg—performance—to—'
fuel—weight.that the active approach can aéhieve- Hafing\this design in
perspective, a more realistic active controller was de51gned and compared
W1th passive damping. As expected, the more filtering was incorporated
into the confroller, the less effective was the damping pérformance,'but

the more robust the system became. Even with filtering of the feedback

vector, it appears that for the MSAT, active damping is much more efficient

per unit weight unless the disturbance (caused by'rigid.body control)_is
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‘of equal magnitude to observation noise. As-Figure>11~sugg¢sts,.only-

for a relatively low disturbance noise/observation noise ratio (x = 2},
passive damping shows a weight-cost benefit when. the damping systems

are allowed to weigh more than 7.5 kg. In general, however, it would

appear that for moderate filtering in the cqntrol system, active damping. .

is better under- the criteria considered. As well, if a system«of5- 
thrusters such és those_on MSAT are already in exisfence for rigid ﬁody
control, thenm only an adjustment iﬁ the_dontroller'svgain would greatly
enhance damping. This is because of the expoﬁeﬁtiéi drop of Jg.(incréase
in damping pérformance) that occurs for éma;l additional fﬁel‘éxpénditures.'
An interesting robustness‘aspect that should bevnoted is thatvuncértainfieé
,iﬁ natural frequencies have a much greater effect on systém‘stability than
uncertainties in damping ratios.

In applying this comparison.method, one must keép in mind the under-
lying mature of active and passive damping. - Active damping is an on-going -
weightiexpenditure, while péssive damping is an initial, nonrecurriné
weight investment; With this understanding, lifetime becomes a major
factor in the decisioﬁ. | |

Finally, this method was developed with the intention fo place the;;
trade-offs of active and passive damping on an objective level. As with
all non-tri?ial design problems, many criteria éxist and in EOSt céses,
it is not possible to quantify them all..nfhis problém»is no.exception, .

and final decisions will still require ample engineering judgement. V

47




REFERENCES

Athans’, M., Levine, . S., "Om the Determination of the Optiﬁal
Constant Qutput feedback Gains for Linear Multivariable Sysfems”,v
1EEE Transactions 6n Autnzatic Control, Vol. 15, pp. 44-48, Peb} ;
1970. | |
Balas,‘M. J., YActive Control of ?1exib1e SyétemS", ATAA Symﬁoéium:
on Dynamics and Control of Large Flexible Spacecraff", Blacksburg,i
Virginia, June 1977. | : ;

Benhabib, R. J., Iwens, R. P., Jackson, R. L., "Stability of Large

Aspace Structure Control Systems Using Positivity Concepts", J.

Guidance and Control, ¥ol. 4, No. 5, Sept-Oct. 1981.
Benhabib, R. J., Iwens, R. P., Jackson, R. L., "A Unified Approach -

to the Design of Large Space Structure Control Systems", Joint

e

Automatic Conference, August 1980.

'Boﬁgiorno, J., Youlaz, B., f@n Observers in Multi-Variable Confrol
Systems", Int, Jour. Control, Vol. 8, pp. 221-243, 1968.

Croopnick, S. R., Lin, Y. H., Strunce, R. Rt; "A Survey of Automatic
Control Techniques for large Space Structures', The ChailesVStafk
Draper Laboratory, Massachusetts, 1979; | |
Graham, W..B., "Material Damping and Its Role in Linear Dynamic
Equations”;\UTIAS Review No. 36, March 1973.

Henderson, T. C., "Dz=ping Augmentation for Large Space Structures*‘,

The Charles Stark Drzper Laboratory, Massachusetts, 1977.

Hughes, P. C., "“MSAT Structural Flexibility and Control Assessment",

‘Dynacon Report MSAT-1, March 1981.

48



10.

11,

12.

Hughes, P. C., Sincarsin, G. B., '"MSAT Structural Dynamics Model for

Control‘System Evaluation"; Dynacon Report MSAT-4, March 1982. -
Hughes, P. C., "Médeling of Energy Dissipation (Damping) in Flexible
Space Structures', Dynacon Report MSAT-6, March 1982. ‘

Hughes, P. C., "Modal Cost Analysis as an Aid in Control System Design

- for Lérge Space Structures", Proceedings of the Symposium on Large~

[
(93]

14,

Scale Engineering Systems, Taiwan, Dec. 26-28, 1981.

Kosut, R., "Suboptimal Control of LineariTime—Invarianf Systems
Subject to Control Structure Constraints'", IEEE Transactions‘on i
Automatic Control, Vol. 15, No. 5, Oct. 1970. .
Parin, M. L., "Material Property Measurement$ Aid Data Reduéfioﬁ :
Resonant Beam Measﬁrement Techniques', Vibration Damping $hortACQurs¢

Notes of University of Dayton, November 1979.

49



Modal Control Distribution Matrix (gT_)_

Table 1

Mode
Actuator
No. 1 2 3 4
1 -8.282x1077  -9.888x10™% 8‘859x10—7 -1.407x10"§ ’
2 -5.856x10™"  2.133x1077  -3.964x10™%  -3.743x107
3 1.157x1073  s5.812x107°  -5.932x107>  3.110x1073
4 -5.553x10"%  -1.500x107° 8.518x10°% . 1.688x107°
5 -2.199x10°  -2.577x1073 1.731x10°%  _g.184x1077
6 6.530x10™°  -3.368x1070  -2.485x10 2 1;358x10—?
7 -3.478x107° 3.370x107° 2.639x102 ~1.328x1072
8 35.488x107°  3.419x107°  -2.653x1072  1.336x10 2
9 6.539x107°  -3.421x10"°  2.499x10°2  -1.363x10"2
10 -1.039x107%  1.806x107%  4.926x10°0® ' -1.654x107%
11 102751072 1.s06x1072 2.497x107° ~1.687x107%
12 1.039x1072  -1.806x1072  -4.926x107°  1.654x107%
13 1.027x10 2 1.806x1072 -2.497x10™> 1.687x107%




Table 2

Relative Strain Energy Distribution -

Element
Mode 1 -. 2 3 4
1 | 1.00x10° . 1.0sx107t 432107 1.52x107
2 | 3.83102  5.96x1072 3.08x107% . 4.32x107
5| s.omxaol 1.74x1072 0 1.ox07® 1.01x1073
4 9.03x107%  3.06x107° 1.43x107% 1.02:;10"4-_
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Figure 1(a) System Block Diagram
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Figure 1(b) Simpiified System Block Diagram




Figure 3 Equivalent System After Embedding
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Figure 6(a)
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Figures 9-11 Comparison of Weight-Cost Effectiveness
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APPENDIX A

EQUIVALENT STABILITY CHARACTERISTICS

To prove that the transformation of the embedding technique maintains

the stability characteristics of the original system, one need only examine

their characteristic equations.

According to Figure 2, the closed-loop transfer matrix before embedding

is given by

T =@+TL ML
r=Qq+7TL TL
where
T=T+G
~ 1
L=(l-Lg L

Expanding (A-2) using (A-3) gives

¢

L+ @T+60-16 1 T+00-167L

[(1 -LG(T+6) L+ L]_lg

Premultiply by (T + G)(T + G) © to find

e

| (A-Z)

| (A.33)

(A.3Db)

(A-4) -

(A-5)




T, = (T+GT+&)  [A=-LET+ + g)"lg (a-6)

1

T+6Q+TL L (A-7)
which has the same characteristic matrix equation as (A-1):

(1L +TL) ' | (A-8)

~ ~ -~

Therefore, the block diagram transformation has equivalent stability char-

acteristics.




APPENDIX B

SIMPLIFICATION OF THE POSITIVITY INDEX
It is required to find the eigenvalues of

T=TGw) + T ()

where
CT

~

T(w) = CGwl - AL

and A and C are real matrices.

(B-1)

(B-2)

Some simplification can be made to minimize computing costs;“‘ 

T=c(ul - 87T + [cGu - 7"

‘Since C° = CH, then s

. - . -H,.T
T=clGul - A7+ Gul - A7TC
Now
. -1 e
(w - A) 7 = -N(Juwl + A)
- ©HT
Go - 07 = -Gul + AN
where

-1
= @148
Also note that

. T
Gul - A = (jul + A)

B-1

(B-3)

- (B-4)

(B-5)

(B-6)

(B-7)

(B-8)




Therefore, substituting (B-5, 6, 8) into (B-4) gives

= C[-N(Gwl + A) + (ol - ALNT]CT

-

or

T = A- AT+ et -NIch

o

[~

tz

. T . .
- Noting that N - N is skew-symmetric, T can be computer coded

efficiently.

(B-9)

(B-10)

quite
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