
/:)EVELOPMENT OF SYSTEM ORDER 
REDUCTION TECHNIQUES 

APPLICABLE TO THIRD GENERATION 
SPACECRAFT/ 

DYNACON REPORT DAISY-12 

(DCO-CR-84-044) 



Dynacon Report DAISY-12 
[DOC-CR-84-044] 

October 84 

YNACON  

DYNAMICS AND CONTROL ANALYSIS 

18 Cherry Blossom Lane Thornhill, Ontario L3T 3B9 (416) 889-9260 

Industry ( -;anacla 

Library 'Queen 

JUIL 
JUL  2 3 1990 

Industrie Canada 

Bibilothànue Queen 

/DEVELOPMENT OF SYSTEM ORDER 
REDUCTION TECHNIQUES 

APPLICABLE TO THIRD GENERATION 
SPACECRAFT/ 

DYNACON REPORT DAISY-12 

(DOC-CR-84-044) 

by 

G.21/lest-Vukovich f 



91 
ei(p 

ne t+ 

• 

1 19011101E19 VC/WM 

\er) 	lEq 
Le (-E9 



I I  
Government Gouvernement 
of Canada 	du Canada 

. Department of Communications 

DOC CONTRACTOR REPORT 	 DOC-CR-84-044 

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA 

SPACE PROGRAM 

TITLE: DEVELOPMENT OF SYSTEM ORDER REDUCTION TECHNIQUES APPLICABLE TO THIRD 
GENERATION SPACECRAFT 

AUTHOR(S): G. West-Vukovich 

ISSUED BY CONTRACTOR AS REPORT NO: Dynacon Report DAISY- 12 

PREPARED BY: Dynacon Enterprises Ltd. 
18 Cherry Blossom Lane, 
Thornhill, Ontario 
L3T 3B9 

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 06ST.36001 -4- 0372 

DOC SCIENTIFIC AUTHORITY: M. E, Stieber (Communications Research Centre) 

CLASSIFICATION:. 	Unclassified 

This report presents the views of the author(s). Publication 
of this report does not constitute DOC approval of the reports 
findings or conclusions. This report is available outside the 
department by special arrangement. 

DATE: October 84 



SUMMARY 

This report is an extension of [1], which dealt with the 

application of closed-loop model order reduction methods to 

flexible spacecraft dynamics and control. Here the main method 

of [1], cost-decoupled coordinates, is extended to discrete-time 

systems and to continuous-time systems with state estimators in 

the feedback loop. In the latter case a numerical study is 

performed on "ZSAT," which is compared with the state 

feedback case performed in [1]. An extension to modal cost 

analysis for nonideal inputs is then presented. Lastly, 

environmental torques on ZSAT are discussed, and calculations 

of these influences presented. 

(iii) 
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1. 	INTRODUCTION 

This report is a continuation of [1], which discussed model 

reduction for spacecraft,and related topics. Several aspects of this 

subject are extended here, particularly those dictated by requirements 

of actual implementation of some of the proposed methods in [1]. The 

topics are somewhat diverse, so that each major section in this report 

is independent of the others 

The method of cost-decoupled coordinates is pointed out in [1] 

as an attractive model reduction method. Since it is most likely that 

any control scheme will contain discrete-time elements during actual 

implementation, it is of interest to determine how the Method of cost- 

decoupled coordinates is affected by application to discrete-time systems, 

and what modifications are necessary. This subject is discussed in 

Section 2, where it is shown that the method is basically unaltered 

from the continuous-time procedure; in fact, once the required correspon-

dences have been made, the method in the discrete-time case is identical 

to that in the continuous-time case. 

In [1] the concept of cost-decoupled coordinates was developed 

under the assumption of availability of the state -- generally an un-

attainable ideal. Section 3 of this report considers what happens when 

it is necessary to estimate the state. It is shown that some changes 

are required to the method discussed in [1], particularly in the evalu-

ation of controller competence. Some degradation in performance from 

the state feedback case for the "MAT" ( 1 Lazy-Z' MSAT configuration) 

model is shown to occur. 

Model reduction by modal cost analysis is intuitively appealing 

and has generally proven to be a worthwhile method. It bases the signifi-

cance of modes on modal frequency, modal damping, the importance of 

modes in the output, and on excitation of modes. This last criterion 

is based on the rather ideal notions of impulsive or white-noise input 

excitation. Section 4 of this report discusses modifications to modal 

cost analysis for more realistic inputs -- those with a finite contour 

in the frequency domain. This also includes the case of nonideal actuators. 

1 



5e =Ax +Bu -c -cc  -cc  

y = C x -c -c-c 

the corresponding discrete-time equation is a first order matrix dif-

ference equation 

(k+1) = Ad  x d  (k) + -d-d 

Yrd (k ) 	= C dxd (k)  

where 

A . ecT d:E1.1  A 
-d 	_d 

(2.1a) 

(2.1b) 

(2.2a) 

(2.2h) 

(2.3a) 

Section 5 contains an extension to the,modeling of ZSAT. Dis-

turbance torques to be included in the equations of motion of ZSAT due 

to gravity gradient and solar radiation are developed. The gravity 

gradient torque consists of a constant term and an attitude dependent 

term. The solar radiation torque term displays the variation of this 

disturbance on ZSAT with orbital anomaly. 

2. 	COST-DECOUPLED COORDINATES FOR DISCRETE-TIME SYSTEMS 

The method of model reduction via cost-decoupled coordinates 

for continuous-time systems was discussed in [1] along with criteria 

for evaluation of the quality of reduced models. It often happens that 

when dealing with a physical system it is desirable to observe and deal 

with the system only at a sequence of discrete instants rather than 

at  all  instants of time. If the system model is linear and time invari-
ant, the sampling instants equidistant, and if the sampled quantity 

remains constant between sampling instants, then a particularly simple 

correspondence exists between the continuous-time model and its discrete-

time counterpart. Representing the continuous-time system as the usual 

first order matrix differential equation 

2 



C = C 
—d —c 

(2.3h) 

and A= tk+1 
- tk' 

the sampling interval. 

It is of interest to see how to apply the method of cost-decoupled 

coordinates to a discrete7time system (2.2) and what modifications are 

necessary from the continuous-time case; this is what is done in this 

section. . Since the method of cost-decoupled coordinates is intimately 

related to the optimal linear regulator problem with quadratic cost 

criteria, it behooves us at this juncture to adumbrate the optimal con-

trol problem for discrete-time systems. 

2.1 	Optimal Control for Discrete-Time Systems  

We begin with system (2.2), in which for the remainder of this 

section we shall drop the subscript 'd', it being understood that we 

are discussing discrete time systems. Our object, analogous to that 

in the continuous-time case, is to find a control input u(k) which 

minimizes the following performance index: 

k -1 
1 

V = 	[Y i (k+1)QY(k+1) + uT (k)Ru(k)] 
k=k 

(2.4) 

It is to be noted that unlike the donti.nuous-time case, the arguments 

of y and u are different. This is because the initial value of the 

output, y(k 0 ), is unalterable over the first sampling interval, and 

can therefore not influence the performance index. Similarly the final 

value of the input, u(k 1 ), influences the output only beyond the terminal 

time and can also therefore be neglected. Another interesting contrast 

between (2.4) and its continuous-time counterpart is that the matrix R 

in (2.4) need not be positive definite. In the continuous-time case 

a positive definite R rules out the possibility of infinitely large 

control inputs taking the state to zero in an infinitely short time. 

In the discrete-time case it is not possible to drive the state to zero 

in an infinitely short time, thus allowing the requirement of positive 



1 im V = 
— 	k->o° 

xT (k+1)CTQCx(k+1) 

definite R to be relaxed. 

We wish to consider the infinite time problem, so we accordingly 

modify (2.4) to 

V = 	Ly i (k+1)QY(k+1) + uT (k)Ru(k)] 	 (2.5) 
b=o 

which can be rewritten as 

s + 	[xT(k)CTQCx(k) + uT (k)Ru(k)] 	(2.6) 
k=0 — 

Since we are assuming that our controller has successfully stabilized 

the system, the first term in (2.6) vanishes. 

Assuming now that feedback of the form 

u(k) = - Gx(k) 

has been applied, (2.6) becomes 

V = 	{x
T
(k)N

T
QC + G

T
RG]x(k)/ _ _ 

k=o 

(2.7) 

(2.8) 

Recognizing that the solution to the state difference equation 

x(k+1) = Àx(k) 	 (2.9) 

where 

Â = A - BG _ 

is given by 

x(k) = ex(o) 

4 



= x
T 
 (0)Px(0) (2.15) 

allows us to write (2.8) as 

v = xT (0)Px(0) 

T 
T 	I 	- k 	- 

= x (0) 	A [C
T 
 QC + G

T 
 RG]A

k 
	x(0) 

k=6—  

In a manner pleasingly analogous to the continuous-time situation in 

which an integral can be evaluated by solving a Liapunov equation, the 

sum in (2.10) can be evaluated by solving the following discrete-time 

matrix Liapunov equation: 

-T 
P = A PA + C

T 
 QC + G

T
RG 

Thus far we have only discussed a performance measure, but we 

have not yet considered the minimization of this performance index. 

This minimization is accomplished by the controller in (2.7) with G 

given by 

^ 	-1 	• 
G = R + B

T 
 [C

T 
 QC + P]Bi- B

T 
 EC

T 
 QC + P]A 

where P is the solution of 

P = A
T 
 EC

T 
 QC + PHA - BG] 

(2.10) 

2.11) 

(2.12) 

(2.13) 

Substituting (2.12) into (2.13) yields 

T T 	T 	T T 	-1 T 
P = A “C QC + P) - (C QC + P)B[R + B (C QC + P)B] B (C

T 
 QC + P)1A 	(2.14) 

which is the discrete-time version of the Matrix Riccati Equation. The 

corresponding optimal cost is 

5 



P è 	cTQc (2.16) 

G  = (R BT 15.8) -1B% 
(2.19) 

Equation (2.14) can be more simply expressed by making the substitution 

which yields 

- 	- 
P = A

T 
 PA - AT- PR[R + B

T-
B] -1 BTPA + C

T
QC 	 (2.17) _ 	_ _ 	_ 

and the corresponding cost 

- 
V = xT (0)Px(0) 	 (2.18) 

Let us refer to (2.11) for a moment. With G the optimal feedback, 

the correspondence between the Matrix Liapunov Equation (which is true 

for any stabilizing feedback), and the Matrix Riccati Equation (2.17) 

(which is true for the optimal feedback) becomes clear. The optimal 

feedback 

transforms (2.11) into (2.17), so that as in the continuous-time case 

the Matrix Liapunov Equation becomes the Matrix Riccati lquation. 

The preceding derivation demonstrates that the closed-loop cost 

for any stabilizing feedback can be obtained by solving a discrete-

time Liapunov equation, and that the minimum (optimal cost) is given 

by the full-order state feedback case, when the Liapunov equation becomes 

a Riccati equation. One would expect then, as in the continuous-time 

case, that as the model is successively reduced in order, the truncated 

feedback deviates more and more from the optimal. 

2.2 	Model . TrUntation 

The philosophy followed in [1] of transforming a system into 

a set of coordinates for which the optimal cost matrix is  diagonal  ized 

6 



can be repeated for discrete-time systems.  Fora  complete discussion 

of the continuous-time case the reader is referred to [1]. Given the 

system (2.2), the performance index (2.6) and the solution to the opti- 

mal control problem (2.7), (2.17), (2.19), an orthonormal transformation 

x = Tx 

can be defined such that the total , cost (2.18) becomes 

A 	̂ V 	x T  (0)TT-  PTx(0) 

We now define 

A T-
A - T PT 
—P — — 

(2.20) 

(2.21) 

(2.22) 

which is a diagonal matrix whose diagonal elements represent the relative 

importance of corresponding state variables to the overall model. We 

note th.at  in the usual case unique initial conditions can not be specified, 

so that rather than the exact performance measure represented by (2.21) 
we would more fruitfully consider an average performance measure, and 

the expected value of V. Following [1] we have 

EfV1 = trace A 
—P 

where E{ • 1 denotes the expected value of {.}. 

Applying (2.20) to (2.2) and (2.7) results in 

;(k+1) = Â;C(k) + riu(k) 

Y(k) = EX(k) 

u(k) =-L(k) 

(2.23) 

(2.24) 



T_BR  n••• 

u(k) 	(2.25) 

-BT 

where 

TTAT, 

2 .4  CT , 

^ p T 
B T B 

G - GT 

This transformed system can be partitioned into retained and truncated 

partions, determined by the relative sizes of corresponding elements 

of A , 
-P 

- -A A 
RR 	
— 

- 	-RT  

-ATR -ATT  
_ _ 

Y(k) =  

xT (k) 

(2.26) 

u(k) =  

xT (k) 

We also partition the diagonal cost matrix A : 
-P 

diag(ApR , ApT ) e 

(2.27) 

(2.28) 

2.3 	Truncated Model Evaluation  

The sum (2.6) can be evaluated by solving an algebraic (Liapunov) 

equation. Since this equation is analogous to the continuous-time evalu-

ation of an integral by solution of a Liapunov equation we can, without 

requiring a great leap of faith on the part of the reader, define a 

8 



trace A - trace A
pR 

MEI - 
trace A 

(2.29) 

,R R (k) 

3T (k) 

(2.30) 

model error index (MEI) and controller quantity index (CQI) in a manner 

entirely similar to that in the continuous-time case. The MEI is again 

defined as 

The MEI is a measure of the reduction of fidelity of the truncated system 

from the original model with respect to a specific performance measure. 

Again, as in the continuous-time case, it is desirable to assess in 

some measure the capabilities of controllers based on truncated models 

in handling the original model. A controller designed for a truncated 

system subsequently applied to the original system will have, instead 

of (2.27), the following form. 

which when applied to (2.25), (2.26) results in 

--xR ( k+1) 	rARR 12RP-R ART  

T (k4-1) 	
-8TR - IITPRI3TT 	L2ST(k) 

The corresponding performance index is a modified version of (2.6): 

V = 	[xT(k)CTQCx(k) 	UT(k)Ru (k)] 
k=0 - 	-R 

(2.31) 

(2.32) 

which has the associated discrete-time Liapunov equation: 

9 



-T - 
H = A HA 

—R 

R [G 	0] 
— —R — 

(2.33) •gcR c-r ]  

where A is the system matrix in (2.31). Taking note of the comments 

preceding (2.23) we define the cost expectation 

E{V} = trace H 

and the corresponding measure of suboptimality, the controller quality 

index, is defined as 

(2.34) 

trace A - trace A 
CQI -  	 (2.35) 

trace A 
—P 

Here again, we would expect an increase in CQI with a decrease in model 

order. 

In conclusion then, we can say that the method of cost-decoupled 

coordinates is identical in the discrete-time case to the continuous-

time version, with the same performance measures, after the required 

correspondences have been made. 

3. 	COST-DECOUPLED COORDINATES FOR OBSERVER STABILIZED SYSTEMS 

The method of cost-decoupled coordinates was discussed in [1] .  

where it was assumed that the state was available for feedback, and 

a numerical case study of model reduction was performed using the 

'Lazy - Z' MSAT configuration (ZSAT). This section extends the theory 

of [1] to the case in which an estimate of the state is used rather 

than the state itself, and the results of a numerical study for this 

case parallel to that in [1] are presented. 

3.1 	Observer Review 

As is well known, a controllable system can be stabilized by 

10 



state feedback, and it is common policy (at least in theory) to use 

an estimate of the state rather than the state itself if the latter 

is unavailable and the system is observable. 

We start with the usual linear time-invariant multivariable 

system in first order differential form, 

X = Ax + Bu 
(3. 1) 

y = Cx 

which is assumed controllable and observable. 

If the state x is unavailable, an estimate of it can be gener-

ated by using an observer, which is a dynamic system of the following 

form: 

X = Ax + Bu 	K[y  - Cx] 	 (3.2) 

A 

where x is the estimate of the state, and for many operations is used 

as though it is in fact the state. One might, for example, wish to 

apply state feedback 

u = -Gx 	 (3.3) 

to a system, where G is selected so that the closed-loop system has 

certain desired properties. If x is unavailable, the feedback 

A 	A 
u = -Gx 

is applied instead, where x converges asymptotically to x, depending 

on the K selected. 

This interconnection results in the following closed-loop aug-

mented system: 

(3.4) 

11 



).( 

= 
X 

- 

A 

A 	-BG 

(3.5) 

T  
V = [x - -o 

I -icTt - CTQC 	0 1 

0 	GTRG 

et  e- dt (3.8) 

le* 

-0 

X -o 

By the well known Separation Property, the controller and observer gains, 

G and K respectively, can be designed independently of one another. 

3.2 	Optimal Control for Observer Stabilized Systems  

The performance criterion associated with the infinite time 

optimal state feedback problem 

CO 

= 	(yTQy + uTRu)dt 0  

is no longer applicable when the state is unavailable, but must be 

modified to 

-T - V = 	(yTQy + u Ru)dt 

(3.6) 

(3.7) 

where u is given by (3.4). This can be written in terms of the closed-

loop augmented system (3.5) as 

r 

where 	x 	is the initial condition on the-controller and observer, -0 
A 	 . 
x -o -o - - 

and A is the system matrix in (3.5). This equation has the following 

Liapunov equation associated with it: 

12 



=LOD 

X 
-0 

V - Ex 	x ] P — —o --o — 
(3.10) 

_T 	_ 	[--C
T
QC 	0 

A I P + PA = 
0 	-G

T
RG 

(3.9) 

where 

is the cost associated with a particular initial condition. 

An immediate question which comes to mind is, will a G which 

minimizes (3.6) also in some sense minimize (3.7)? In a stochastic 

setting with (3.7) appropriately modified, an affirmative answer is 

afforded by the deceptively simple Separation Theorem which tells us 

that the gain which minimizes (3.6) will also minimize the modified 

(3.7) when applied to the output of the appropriate optimal observer. 

In deterministic case, it can still be stated that for a particular 

observer the feedback which minimizes (3.6) also minimizes (3.7) with 

the cost given by (3.10). This feedback is of the form (3.4) in which 

G is provided by the standard result. 

G 	R-1BTP 

where P is the solution to the Algebraic Riccati equation 

A
T
P + PA + C

T 
 QC - PBR-1 BT  P = 0 

(3.11) 

(3.12) 

3.3 	Model Truncation  

Thus far our discussion has been valid for any set of state 

variables. Henceforth, we shall assume that our system is in cost-

decoupled coordinates. As considered in [1] in some detail, it is often 

desirable to control a system With a controller designed for a reduced 

or truncated version of the system. System (3.1) can be partitioned 

into retained and truncated portions as 

13 



xR 

 xT  

TB 
—R 

—
B
T 

Y = [CR 	CT] 
x R  

xT  

A 
- x 

xT  

-
-
A
RR —RT A 

—ATR —ATT 

(3.15) 

r- B 
—R 

—
B
T 

X I  
--T— 

7.LtRR 	I3RT 

—ATR —ATT 

(3.13) 

(3.14) 

where 

R  (3.16) CT ] e c 

The rationale of this partitioning according to the method of cost-

decoupled coordinates is discussed in detail in [1] and will not be 

repeated here. 

Controller design is based on the truncated system 

;( =A x —RR  +Bu —R 	—R —R- 

y = C x —R —R-R (3.17) 

so that when this controller is subsequently applied to (3.13), the 

closed-loop system will  • ehave satisfactorily; in particular it must 

be stable. Since our controller design draws on optimal control methods, 

it is desirable to obtain a measure of suboptimality, or reduction in 

quality of the controlled system from the 'best' or optimal, as was 

done in [1]. 

14 



(3.18) 

(3.19) 

( 3. 2o) 

- 
VR = J_Ey'Qy + uRRuOdt  (3.22) 

3.4 	Closed-Loop System and COQI  

An observer based on (3.17) will have the form 

S'(12 = ARIÎR 	BRuR 	KR[YR 	C R]  

and a controller for (3.17) based on the state estimate from (3.18) 

will be of the form 

u = -G x -R -R-R 

It is pointed out in [1] that GR  can be obtained either by solving the 

optimal control problem for (3.17), or, since the system is assumed 

to be in cost-decoupled coordinates, more simply by taking an appro-

priate truncation of G in (3.11). 

In accordance with our intention to control (3.13), (3.14), 

with (3.19), we can express the augmented system with truncated feed-

back by combining (3.13), (3.14), (3.18) and (3.19) to give 

r-- )Z 	r-A 	A 	-B G -R 	-RR -RT -R-R 	-xR 

X 	= A 	A 	-B G -T 	-TR -TT -T-R T 

Kr,C, 	0 	Ar,n-Kr,C,,-8,-,Gr, 

r  

xR  

CT °] 1  xT 
1_ ;\<R_ 

(3.21) 

Another consequence of the input (3.19) being truncated is that 

the performance index with which we are dealing is no longer (3.7) but 

15 



T (0) 

xR (0) 

(3.24) 

AT 	A 
A H + HA = 

EtVR1 = E I[xT  OT] —1111 —12 

—1121 	2122 

= trace E11 (3.25) 

This cost can be evaluated by solving 

(3.23) 

for H, where A is the system matrix in (3.20). Furthermore, 

T 	AT = Ex
T (0) 	x (0) 	x —R  (0)] H —R 	—T 	— 

Expressions (3.20) - (3.23) enable us to produce one measure 

of comparison of controllers based on various truncations, analogous 

to the CQI of [1]. For a particular observer and set of initial con- 

ditions, the relative minimum of VR  will occur for the case of no trun-

cation, when (3.19) is identical to (3.4) and (3.20) reduces to (3.5) 

(in appropriate coordinates of course), and .G.R  becomes the full-order 

optimal gain. We would expect, as in the state feedback case, that 

as the model is successively truncated the controller based on these 

reduced models would perform increasingly poorly, with VR  increasing 

from its optimal value (V), finally becoming unequal to the task of 

stabilizing the full-order system. 

Following the reasoning set forth in [1] we can obtain an esti-

mate (expected value of VR  in (3.24). In this case we do not assume 

that all initial conditions are unknown, as we adopt the common practice 

of setting the observer initial condition to zero. We then find 

where E { .} is the expected value of {-}, and H il  is the appropriate 
partition of the solution of (3.23). We also define a similar partition, 

16 



P 	of P in (3.10). 

This immediately suggests a performance measure which closely 

parallels the CQI of [1]: the controller/observer quality index (COQI) 

trace 11 11  - trace P li 
 COQI - 	 

trace p
11 

(3.26) 

3.5 	Numerical Results 

We have decided the method of model reduction by cost-decqupled 

coordinates for observer stabilized systems in the previous pages, and 

while it looks attractive, whether or not it works has yet to be re-

solved. Although one can make theoretical arguments in support of the 

method, clearly the empirical approach is called for to settle the issue; 

after all, how better to judge the method than by trying it out! It 

would be most instructive to run a series of exhaustive tests on a variety 

of models, but we must settle for a relevant model of reasonable complexity. 

This is the modified ZSAT model of [1] which was used in [1] for a numeri-

cal study of model reduction using cost-decoupled coordinates for systems 

stabilized by state feedback. ZSAT is a third generation spacecraft -- 

large, flexible, and with significant flexible motion interaction with 

rigid body motion -- and as such is of sufficient significande and com-

plexity to be of interest to us. The open-loop eigenvalues of the model 

are given in Table 3.1, and can be seen to correspond to 5 rigid body 

modes and 11 elastic modes which are all passively damped. A controller 

for the spacecraft was obtained by using standard optimal control methods, 

and the system transformed to cost-decoupled coordinates. These details, 

including a full description of the ZSAT model are contained in [1]. 

Use of an observer is simple in principle: merely append system 

(3.2) to system (3.1). In reality, however, the matter is not quite 

so simple, as selection of K is not straightforward and is an active 

area of research in its own right. Under certain conditions (modeled 

noises) there exists an elegant theory for producing an optimal K 
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Table  3.1 

Open-Loop Eigenvalues of ZSAT 

-0.11746 x 10 1  ± 0.13804 x 10 2 j 

-0.52390 x 	± 0.10046 x 10 2j 

-0.75050 x 10-1  ± 0.15514 x 10 1 j 

-0.60635 x 10-2  ± 0.10873 x 10 1 j 

-0.80592 x 10-2  ± 0.10227 x 10 1j 

-0.21109 x 10 -1  ± 0.77943 j 

-0.55312 x 10-2  ± 0.69018 j 

-0.85574 x 10-2  ± 0.55632 j 

-0.85210 x 10-3  ± 0.15118 j 

-0.17045 x 10-2  ± 0.23952 j 

-0.92301 x 10-3  ± 0.12435 j 

0.0 ± 0.0 j (repeated 5 times) 
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(optimal in a very specialized sense). In the usual case there are 

no real guidelines for constructing a K, and although the phrase 'choose 

K to make the observer poles slightly faster than the controller poles' 

is often heard, finding a K which merely stabilizes the observer is 

no mean feat! In the present study K's were obtained by choosing arbi-

trary 'noise' matrices and treating the problem as though an optimal 

controller were needed. While an 'ideal' observer eigenvalue pattern 

might not result using this method, at least observer stability is 

guaranteed. The state 'noise' matrix was chosen as 1 32  while the ob-

servation noise matrix was 10
-5 

x 1
11' 

It was also found useful to 

multiply the resulting K by 10
5

. Here, of course, we were making quite 

free with observer construction and gains; in a 'real world' problem 

we would naturally be forced to respect constraints of all sorts. 

With observer feedback one would expect some degradation in 

system performance from the state feedback case, and this suspicion 

is borne out here. While in the state feedback case in [1] the full 

order system could be satisfactorily controlled (stabilized) by a con-

troller designed for the 15th order truncated model, in the observer 

feedback case the smallest acceptable design model is of 21st order. 

Tables 3.2, 3.3 and 3.4 display eigenvalues of the composite system 

(3.20) for the 21st, 20th and 32th order systems respectively. It can 

be seen that the full-order system controlled by the 21st order con-

troller seems no 'less stable' (slower) than when it is handled by the 

controller designed for the full order system: both are solidly stable. 

In cOntrast, when the controller designed for the 20th order system 

is applied to the full-order system, the resulting composite system 

is healthily unstable. Obviously some essential item of information 

was truncated out of model at this point. 

If the observer were speeded up enough the state estimate would 

converge virtually instantaneously to the state, and the results in 

this study would approach those of [1]. It was found, however, that 

increasing observer speed requires more than simply magnifying observer 

gain because very large gains caused the controlled system to become 

• unstable. 

19 



'Table 3.2 

Eigenvalues of-ZSAT with-21st-Order Controller - 

Real 	Imag 

- 0. 9403D+07 
- 0. 50981)+06 
-0. 4096D+06 
- 0. 4426D+06 
-0. 2988D+06 
- 0. 2119D+06 
- 0. 1087D+06 
- 0.  1570D+05 
-0. 1132D+05 
- 0. 7999D+04 
- 0. 6258D+02 

- 0. 1175D+01 
-0. 1175D+01 
-0. 5239D+00 
-0. 5239D+00 
- 0. 7494D-01 
-0. 7494D-01 
-0. 6407D-02 
- 0. 6407D-02 
-0.  901D-02 
- 0. 9501D-02 
-0. 2174D-01 
-0. 2174D-01 
-0. 1536D-01 
- 0. 1 536D-01 
-0. 4756D-01 
- 0. 4756D-01 
- 0. 7196D+00 
-0. 7114D+00 
-0. 8422D-01 
- 0. 8422D-01 
-0. 5873D+00 
-0. 5873D+00 
-0. 2573D+00 
-0. 2573D+00 
-0. 3123D-01 
-0. 3123D-01 
-O. 1786D+00 

- 0. 1388D-02 
-0. 1 388D-02 
- 0.  6547D-02 
- 0. 6547D-02 
- 1447D-01 
-0. 1447D-01 
- O. 1013D+00 
-0. 10130+00 
-0. 51250-02 

• -0. 47490-01 
-0. 50300-01 
- O. 5266D-01 

-0. 52660-01 

- O. 55760-01 
-O. 55760-01 

0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 0000D+00 
0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 0000D+00 

0. 13800+02 
-0. 1380D+02 

0. 100 50+02 
-0. 10050+02 

0. 15510+01 
-0. 15510+01 

0. 10870+01 
- 0. 10870+01 

O. 1023D+01 
-0. 10230+01 

0. 7793D+00 
-0. 7793D+00 

0. 68120+00 
- 0.  6812D+00 

0. 66650+00 
- 0. 666 50+00 
0. 00000+00 
0. 00000+00 
0. 5667D+00 

-0. 56670+00 
0. 1429D-01 

-0. 14290-01 
0. 29800+00 

- 0. 29800+00 
0. 23920+00 

- 0. 23920+00 
0. 00000+00 
0. 15540+00 

-0. 15540+00 
0. 1453D+00 

-0. 14530+00 
0. 1280D+00 

-0. 12800+00 
0. 8942D-01 

- 0. 89420-01 
0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 6153D-01 

-0. 61530-01 
0. 84580-01 

-0. 8459D-01 
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1 

II 

Table 3.3. 

Eigenvalues of ZSAT with 20th-Order Controller 

'Real 	Imag 
- 0. 94050+07 
-0. 50980+06 
-0.  40600+06 
-0. 43990+06 
-0. 29980+06 
-0. 21210+06 
- 0. 77960+05 
-0.  15700+05 
- 0. 1 1010+05 
- 0. 80170+04 
-0. 69680+02 

- 0. 1 1750+01 

- O. 1 1750+01 
-0. 52390+00 
- 0. 52390+00 
-0. 74940-01 
-0. 74940-01 
-0. 61780-02 
-0. 61780-02 
-0. 26270-01 
- 0.  26270-01 
- 0. 21820-01 
- 0. 21820-01 
-0. 17000-01 
- O. 17000-01 

0.  2560D-02 
0. 25600-02 

-0. 23320+00 
-0. 23320+00 
-0. 71960+00 
-0. 65790+00 
-0. 62170+00 
- 0. 41510+00 
- 0. 41510+00 
- 0. 31250-01 
-0. 31250-01 
- 0.  13530-02 
-0. 1353D-02 
0. 46410-01 
0. 46410-01 
0. 16970-02 
0. 16970-02 

•-0. 10130+00 
-0. 1013D+00 
-0. 89240-01 
-O.  89240-01 
-0. 12270+00 
- O. 52730-01 
-O. 52730-01 
0. 14390-01 

-0. 4 8190-02 
-O. 60010-01 

0. 00000+00 
0. 00000+00 
0. 00000+00 
O. 00000+00 
O. 00000+00 
0. 00000+00 
O. 00000+00 
0 , 00000+00 
0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 13800+02 

- O. 13900+02 

0. 10050+02 
-0. 10050+02 
0. 15510+01 

-0. 15510+01 
0. 10870+01 

-0. 10870+01 
0. 10210+01 

-0. 10210+01 
0. 77980+00 

- 0. 77980+00 
0. 68780+00 

-0. 68780+00 
0. 63800+00 

-0. 63900+00 
0. 57370+00 

-0. 57370+00 
0. 00000+00 
0. 00000+00 
0. 00000+00 
0. 16630+00 

-0. 16830+00 
0. 239213+00 

-0. 23920+00 
0. 15540+00 

-0. 15540+00 
0. 11430+00 

-0. 11430+00 
0. 12970+00 

-0. 12970+00 
0.  89440+01 

-0. 89440-01 
O. 86250-01 

-0. 86250-01 
0. 00000+00 
0. 61490-01 

-0. 6149D-01 
0. 00000+00 
0. 00000+00 
0. 00000+00 

21 



Table 3.4 

Eigenvalues of ZSAT with Full-Order Controller 

Real 	Imag 
- O. 99990+07 	O. 00000+00 
-O. 62240+06 	O. 0000D+00 

- O. 49860+06 	0. 00000+00 
- O. 40980+06 	0. 00000+00 
-O. 32550+06 	O. 00000+00 
-O. 14050+06 	0. 00000+00 
- O. 17920+06 	0. 00000+00 
- 0. 68670+05 	0. 00000+00 
-0. 19960+06 	0. 00000+00 
-O. 69640+05 	0. 00000+00 
-0. 59850+02 	0. 00000+00 

-0. 11750+01 	0. 13800+02 
-0. 11750+01 	-0. 13800+02 
- 0. 52390+00 	0. 10050+02 

- O. 52390+00 -O. 10050+02 
-0.18320+01 	0. 10560+02 

-0. 18320+01 	-O. 10560+02 

-0. 19520+01 	0. 00000+00 

- O. 75090-01 	O. 15510+01 

-0. 7509D-01 	-O. 15510+01 

- 0. 61630-02 	0. 10870+01 
- 0. 61630-02 	-0. 10870+01 
-O. 46600-01 	O. 10790+01 
-0. 46600-01 	-0. 10790+01 
-O. 9442D-02 	O. 10230+01 

-0. 94420-02 -0. 10230+01 
-0. 31180+00 	0. 90200+00 
-0. 31180+00 -0. 90200+00 
-O. 2175D-01 	0. 77940+00 

- 0. 21750-01 	-0. 77940+00 

- 0. 1511 0-01 	0.69130+00 

-0. 1511D-01 	-0. 68130+00 

-O. 5144D-01 	0. 66950+00 

-O. 514-40-01 	-0. 66950+00 
-0. 88620-01 	0. 57060+00 

-0. 8 862D-01 	-0. 57060+00 

- 0. 73670+00 	0. 00000+00 

-0. 69340+00 	0. 00000+00 

-0. 68690+00 	0. 00000+00 
-0. 64750+00 	O. 00000+00 

-0. 56120+00 	0. 40090-01 
-0. 56120+00 -0. 40090-01 

- 0. 48270+00 	0. 00000+00 

- 0. 18670+00 	0. 2938D+00 

-O. 18670+00 -0. 29380+00 

-0. 28930-01 	0. 23810+00 

- 0. 28930-01 	-0. 23810+00 

-0. 33530+00 	0. 00000+00 

-0. 33860+00 	0. 00000+00 

- O. 4742D-02 	O. 15320+00 

- 0. 47420-02 -0. 15320+00 

- 0. 2590D-01 	O. 13240+00 

-0. 25900-01 	70. 13240+00 

-0. 17790+00 	0. 00000+00 

-0. 96320-01 	0. 10080+00 

- 0. 96320-01 	-0. 10080+00 

- 0. 99170-01 	0. 9909D-01 

- 0. 99175-01 	-0. 98090-01 

-0. 57910-01 	0. 87620-01 

-0. 57910-01 	-0. 87620-01 

-0. 54370-01 	0. 5411D-01 

- 0. 54370-01 	-0.54110-01 

-O. 4970D-01 	0. 39970-01 

-0. 49700-01 -0. 39970-01 
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The model error index (MEI) is a measure of reduction in truncated 

model fidelity from the full-order model (see [1] for details). The 

MEI's for progressively reduced models are plotted against model order 

in Fig. 3.1. The MEI increases with the amount of information lost 

as the model is reduced. There - is no corresponding figure for COQI 

vs. model order because numerical difficulties in the solution of (3.23) 

were encountered with the Stewart-Bartels algorithm even for the smallest 

(21st order) stable case. The most interesting item of information, 

however, is the point at which instability occurs, which is already 

determined. 

4. 	HABLANI EXTENSION OF MODAL COST ANALYSIS 

The derivation of Model Cost Analysis as presented in [1] can 

proceed from the assumption of an impulsive input or equivalently from 

a white noise input. Since these are both rather ideal concepts, one 

wonders how the idea of modal costs would be affected by more 'real' in-

puts. In [2] Hablani has developed modal cost analysis from the frequency 

domain point of view, and in so doing extends the method of [1] to in-

clude the case when the input is not white noise (equal power at all 

frequencies), but rather has a nonuniform frequency profile. This of 

course leaves scope for the inclusion of actuator dynamics (actuators 

in [1] were assumed to be perfect i.e., infinitely fast, or possessing 

an infinite bandwidth). We no longer necessarily assume actuators affect 

affect all modes equally, but rather that actuators can have nonuniform 

power spectral densities, and therefore mode excitation depends on fre-

quency. The outcome of the analysis here is a result identical to that 

of [1] except that the input excitation term is modified, as one would 

anticipate. 

4.1 	Development of Modal Cost Analysis  

We begin with a mechanical system expressed in modal coordinates. 

The system consists of N equations of the form 	• 
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X 	col {n0.1} (4.2) 

ro 	ii 
n•nnn n•n•1 

A 
A = -P

2 	
-22 (4.3) 

giving 

= Ax + Bu (4.9) 

• 2 	-T 
+ w.n. = b.0 	, 	i = 1,...N 	(4.1) n i 

where 	and wi  are the damping and natural frequency of mode i 

repectively, u is a vector of input (disturbances or control inputs) 

and b 1  is an input ddstribution vector. This set of modal equations 

cari  be collected and written in standard first order matrix dif-

ferential form by defining 

(4.4) 
A 

0 

where 

n 	colln 1 ,..,no 

s2 4  diag {co 1 ,. • ,wN 1 

Z=  

(4.5) 

(4.6) 

(4.7) 

rn  
• 
AT 
b
N 

- A, 
B (4.8) 
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„ 	 „ „ 

i/..  

— — — 

C = [C C] - [c 	... 	. cm,c 1 ,..,ç4q ] —1' 	'--1,1 — 
(4.11) 

In the usual case it is necessary to define a companion to (4.9) to relate 

state variables to 'important' output variables. This is of the form 

y = Cx 	 (4.10) 

where 

Equation (4.10) relates modal coordinates to output variables, thus 

C and ê include the modal matrix used to transform from physical 

to model coordinates. Note that C is a constant matrix associated 

with the time derivative of n. We shall, for the remainder of the 

development, assume that the input vector u is a zero-mean weakly 

stationary process having a power spectral density matrix 

We take as a measure of cost the following criterion, which is appro-

priate for stochastic systems: 

V = E{y
T
Qy} (4.12) 

where El•} is the expected value of {•} and Q is an output weighting 

matrix, determined by the relative importance of the outputs. 

We are assured by linear system theory that with u a zero-

mean weakly stationary process, x and therefore y will also be weakly 

stationary zero-mean processes. We shall make use of this fact 

in a moment. We first note that under the condition of light damping, 

for which this analysis is intended to be valid, inter-mode coupling 

becomes negligible [3] so that any two modal coordinates can be 

considered independent processes. For zero-mean independent processes 

n. 9 	5 n. 	j 

E{n i (Oni (t + T)1= Efn i lEln i l — 0 	(4.13) 

for any t and T. The same holds true for any pair 171 i , 	i t j. 
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We further assume that ni  and 	are independent. We have then 

that thé variance matrix Rx  (T) of the process x is diagonal, -- 

Rx (T) = diag[EIn i (t)n l (t+Tfti ...,E{TI N (OnN (t+T)),ElYtA l (t+T)1, 

...,EUIN (tAN (t+T)1] 	 (4.14) 

The power spectral density matrix of the process x is the Fourier 

transform of the variance matrix of x, or, 

CO 

(T)ej TdT —x 

= diag[E 	(w),...E 	(w),E. (w),...,E • (w)] 	(4.15) 
n1 	nN 	n1 	nN 

where 

(w) 

00 

A f 
n i
Jw) - j Eln(t)r,(t+-dej erdT (4.15a) 

and E. (w) is corresponding power spectral density of 
n. 	 1 .  

Returning now to our performance index (4.12), the fact 

that y is a weakly stationary zero-mean process allows us to write 

V = E{YT(W }  

= E{xTCTQCx} 

	

. 	

, 	 dw 

	

= trace [CTQC 	tw) — — 

= trace [CTQC 	 (4.16) 

where 
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(4.18) 

'(4.19) 

f. = 
1 .1, 21-r[(..J4-032.)4 0 . 03 ][(w2 4- (02.).- j2.W 1 w] 

b.E (w)G.dw -T 
—u 

(4.21) 

(4.17a) 

f. E . (w) dw 

ni 	271 
(4.17b) 

Recognizing (4.11) and collecting terms with the same subscripts, 

we can rewrite (4.16) as 

A A 	 A A 

[21Wif l 	•-.. [42-ZieN -geeN ]  - 

It now remains for us to evaluate f 1 and, which requires us to f i  

find the power spectral densities of n i  and 171 i . We shall concentrate 

first on n i . 

Equation (4.1) can be expressed in the frequency domain 

(with zero initial conditions) as 

b.u(s) 
n.(s) 	

—  
2 s 2 + 2iwis  + w. 

By a well known result in Linear System Theory, the power spectral 

density of n i  is 

-T 
b.E (w)b. 

n
E 1 (w) - 	 

2 	2 	2 	2 
[(-w + w.) + j2.w.w][(w + w.) -j2 1 w.w] 

(4.20) 

where we recall that
u
(0 is the power spectral density of the K- 

input process and j e 1/71- . To calculate f i  therefore, we must evaluate 

terms of the form 

28 



z12 = ±w. + j.w. 
, (4.23) 

ir 
z3,4 

= 
- 	- (4.24) 

b i E't:1 (zi )b i  
Res(a l ) = Res(z i ) (4.25) 

1 6rj c i4 ( 1 

This integral can be evaluated via residue calculus by using the 

formula 

g(x)dx = 2rjE Res(a k ) 	 (4.22) 
; 

where Res(a k ) are the residues of g(z) at the points a k , which 

are the poles of g(z) in the upper half complex plane, with z the 

complex variable x + jy. Th é poles in the integral of (4.21) due 

to the structural modes are 

The latter two poles are in the lower half complex plane and are 

therefore not taken into consideration in the evaluation of (4.21) 

via (4.22). It can be shown that for (4.21) 

AT 
(z2  )b. Res(a 2 ) = Res(Z2 ) 

161-dyi (1 - j i ) 

The assumption of light damping 	÷ 0) now suggests that these 

two residues greatly overpower the residues due to any singularities 

of 	(z). We have therefore 

(4.26) 

(4.27) f i  = 2r-j[Res(a l ) + Res(a2)] 

Substituting (4.25) and (4.26) into (4.27) and recognizing that 

0 means that 
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where 
A "T ^ 	•T • • 

v.  -1-1 (4.36) 

(4.28) 

(4.29) 

(4.30) 

(1 + jc i ) 	1 

a
1 
 = w. + 	= w• 

a2 	- 	j(.w. = 
w i 

• T, 
and also that Eu (-wi ) = E u VOiJ 

yields 

f. - 
8c.w 	

[z (w) + E (w.)]b. 1 	3 _.1 	--u 1 --1 
. 1 1 

The evaluation of i  proceeds along parallel lines. Using 1 
the transfer function from the input to 1.11 (t) for (4.1) gives 

"T su(s) 
-  

sn i (s) s
2 
+ 2yis + w 1 

so that 

2"T 	̂ 
-1-u -1 

-  [(-w2 	2 	2 wi ) + j2yiw][(w
2 
 + w 	j i ) - 2c iw iw] 

Repeating the arguments leading from (4.20) to (4.31) results in 

1 	^ 
f. - 	

wi 
b.[

-u
E (w.) +  

i 	
-41 

We now return to (4.18), which we can rewrite as a sum of modal 

costs, 

V = 	v. 
i=1 1  

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 
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AT 
• -= 

3 
i
w 

2•T • 	-1 
1 9.9.1 	wi 	i 

(4.38) 

..••n•n• 

A A 

--T 	2•T • 
c„Qc, + w c.Qc 

3 
i
w 

(ga) 2 	 (4.39) V • = 

Substituting (4.31) and (4.34) into (4.36) results in 

-T " + 2•T • 
c.Qc, 	w.c.Qc. -1—  

v. - 	 b.[E (w.) + E
T
(w.)]b. 

1 	-u 
.w. 

(4.37) 

This expression can be further simplified by noting that E u (w) is 

a Hermitian matrix [4], giving finally 

This expression is very similar to that obtained in [1] and reproduced 

here as (4.39). The difference between the two is the inclusion of 

the power spectral density of the input in (4.38). 

.4.2 	Numerical Results  

Modal Cost Analysis was performed on the 'Lazy-Z' MSAT (ZSAT) 

configuration modeled by Dynacon [1], which consists of five rigid 

body modes and eleven elastic modes, giving a state of order 32. 

The model has nine inputs, due to thrusters and torque actuators, 

and eleven outputs, which are the rigid body rotations of the vehicle, 

and internal displacements and rotations. A complete description 

of the model is contained in [1]. 

In [1] open-loop modal cost analysis is developed under 

the assumption of impulsive system excitations of the form u = a6(t) 

where u is the input vector in (4.9) and 6(t) is the Dirac delta 

function. This results in the following formula for modal costs: 
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Table 4.1 displays the modal costs calculated using (4.39) with 

all elements of a arbitrarily chosen to be unity. These are pre- 

sented in descending order with the costs corresponding to the rigid 

body modes being set to infinity. Alongsld& the costs are their 

mode numbers in the original system ordering. The spread of modal 

costs indicates that the tenth elastic mode is a factor of approxi-

mately 10
6 

less important than the third elastic mode for the con-

trol problem envisioned. 

The extension of Modal Cost Analysis described in Section 

4.1 was used to generate Table 4.2, where now the excitation is 

no longer assumed uniform at all frequencies, but rather has some 

definite profile. The system inputs were assumed to be independent 

stochastic processes with power spectral density matrix arbitrarily 

chosen as 

E LI (w ) = dia g[c o s 2 (1 0 ),c 0 s 2 (1 t 0) ,...,cos 2 (11)] 	(4.40) 

The resulting modal costs and their accompanying mode numbers are 

given in Table 4.2. 

5. 	ENVIRONMENTAL DISTURBANCES FOR ZSAT 

At geostationary altitude the dominant environmental influences 

on a spacecraft are solar radiation pressure and gravity gradient 

torque. The magnitudes and variation of these two effects depend 

on the configuration and intended mission of the vehicle in question. 

The 'Lazy-Z' MSAT (ZSAT) spacecraft, for example, is a communications 

satellite with a large Earth-tracking reflector antenna and a Sun-

tracking solar array (Fig. 5.1). One would expect that the gravity 

gradient torque on the reflector would be approximately constant 

because of the latter's constant orientation with respect to the 

Earth, but that solar radiation pressure would vary with a daily 

periodicity because of the satellite's once-per-orbit rotation. 

Similarly, the solar radiation pressure on the array is constant, 
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Table 4.1  

Modal Costs for ZSAT with Uniform Input Excitation 

Mode No. 	Modal Cost 

0.10000+76 _ 
0.10000+76 
0.10000+76 
0.10000+76 
0.10000+76 — 

3 	0.12380-04 + 
1 	0.9671 0-05 
4 	0.31480-05 
5 	0.2000D-06 
7 	0.36780-07 
2 	0.32370-07 
6 	0.12840-07 + 
9 	0.2180 0-08 
8 	0.1898D-08 
11 	0.3932D-10 
10 	0.20880-10 

Rigid Body Modes 

Elastic Modes 
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Table 4.2 

Modal Costs for ZSAT with Non-Uniform Input Excitation 

Mode No. 	Modal Cost 

0.1000D+76 -  
0,1000D+76 
0,1000D+76 
0,1000D+76 
0,1000D+76 - 

1 	0.1418D-04 
4 	0,1075D-04 
3 	0,6703D-05 
5 	0,8188D-06 
2 	0,6259D-06 
7 	0,4010D-07 
6 	0.1857D-07 
8 	0,2767D-08 ,11, 
9 	0,1275D-08 v 
11 	0.1966D-10 
10 	0,1575D-10 

Rigid Body Modes 

Elastic Modes 
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Fig: 5.1: 'The ZSAT Spacecraft 
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but the once-per-day rotation of the array with respect to the rest 

of the spacecraft would be expected to affect the gravity gradient 

torque on the spacecraft. 

A description of the ZSAT spacecraft model is given in [1] 

and will not be repeated here. Our concern in this section is to 

develop additional input (disturbance) terms on the right hand side 

of the spacecraft motion equations to  mode] the two environmental 

effects discussed above, i.e., we wish to produce w d
g 
 and w d 

g- 	-s-s 
in the following equations written in terms of modal coordinates, 

corresponding to equation (3.9) in [1]: 

- 	- • 	2 	- 
n + (I) + G)n +0n= Su +Wd +wd 

where n is a vector of modal coordinates,  V and G are transformed 

damping and gyroscopic matrices respectively, 0 is a diagonal matrix 

of natural frequencies,E is a control distribution matrix, u is 

a control input vector, w and it
/s 

are gravitational and solar dis- 

turbances distribution matrices respectively, and d 
and-s 

are 
-g 

the corresponding disturbance inputs. 

5.1 	Gravitational Torque  

In the following discussion we treat ZSAT as though it were 

rigid, so that we neglect gravitational torques generated as a con-

sequence of flexible deformations. This simplifying assumption 

renders the problem more tractable than it would be otherwise, but 

still allows for the retention of the dominant portion of the gravi-

tational torque. We also assume a circular orbit of radius 

r
o 

= 42164 km (geostationary altitude) with orbital frequency 

/ 3 
w
o 

= yp/r
o 

5 3 
 where p = 3.9860 x 10 km/sec
2 
 is the gravitational constant of 

the Earth. We also take the first and second moments of inertia 

(5.1) 

(5.2) 
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• 1Ge 	-2G1 	-2G2 
(5.5) 

with 

[

c2  - c 3 0/b 

 -(c
1 

+ c
2

0
2b

) 

cielb 	c 2 e 2b_ 

(5.6) P 

ro  

of ZSAT, d and J, relative to Ob  (Fig. 5.2) and expressed in Fb , the 

bus frame. 

From [1] the vector of spacecraft coordinates for ZSAT, 

consisting of both physical and modal coordinates, is given by 

(5.3) q = col [wo ,.2b ,(3,6,a, 	,nr] 

where w and 0 are rigid translations and rotations of the bus, 

3 consists of two gimbal angles at the reflector hub, (3 is a vector 

of relative displacement of tower rib to tower root, cx is a set 

of reflector rotations, and le, q i , and nr  describe solar array, 

tower and reflector motions. 

The gravitational torque on ZSAT is assumed here to affect 

only the rigid rotations of the bus, so that the gravitational dis-

turbance vector corresponding to (5.3) with similar partitioning 

is 

siG  é col[ 0 ,2G0 ,0 , 0 ,0 ,0,0,0] 	 (5.4) 

where 

and 

J
23 

+ (J
22 

- 
33 ° 1b 	1202b 

a 	A 2 	1 	(1 

	

- '
Q w

o 	-'13 
,

11 - J 33 )62b 	J1261b 

J
13

0
1b 

+ 
 323

0
2b 

(5.7) 
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Fig. 5.2: ZSAT in Geostationary Orbit Illustrating  Orbital  Anomaly 

and Definitions of Solar Radiation Forces 
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(5.8) 
1Gr 

0 

where 

( 5. 9) 

Here  g 	on the first moments of inertia, c i , for the spacecraft, 

while those terms related to the second moments and products of 

inertia,  J 	J.. are collected in g G2 . The angular displacements ij 
of the spacecraft with respect to the bus axes are denoted by O il)

• 
 

Let Us now partition g G  according to the rigid motions of the bus 

and the remainder of the coordinates: 

To use (5.8) in (5.1) it is necessary first to premultiply it by 

ET , where E is the modal matrix. Partitioning ET to correspond 

to that of (5.8) yields 

âG = ETSb 

r_ETr 0_ rs,r1 

Le  —e 	
0 

—.ET 
g - —r—Gr‘ 

E 
re.Gr 

(5.10) 

We now note that g can be written as the sum of a constant term —Gr 
and a term that varies as a consequence of purturbations in the 

spacecraft attitude. From (5.6) and (5.7) 

g =g
Go 
 +Gq 

—Gr — —Gn—r (5,11) 
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G = 
—Gr 

23x3 

(5.13) 

0 

0 

q 
—r 

-

e

b 

where 

0 
=-3x1 

2 1  
- 'wou23 

r
o 

-p 	2 1  
—2-c 1 	'wou13 
r
o 

0 

(5.12) 

0 --03x3 I 	
—3x3 

1_  

3 
- 1,02 (J

22 
 - J

33 
 ) 

r
2 	o  

2 
3wJ 

0 12  

2 
3w

o
J
12 

2 
c s- 3wo (j 11 	J33 )  

r
o 

2 
c i  - 3w0J 13  

r
o 

1-1 r  

72. - 2 - 3wo'23 

and 

(5.14) 

follows from a partitioning of (5.3) consistent with that adopted 

in (5.8). 

The modal transformation can be written as follows, where 

the modal matrix is partitioned as in (5.10): 
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.Eeperene  

E n  
C c 

(5.15) 

• 	2.G  

and 

or „ 
9-G = 3-Go + %)-j- = wei g (5.17) 

'3Go 	 (5.18) 
r ETr  

where 

L-E-Tre 

s_Go 

x=  

Er f_reDe -1 e 

0 	E 	n --e 	--e 	—e 

Substituting the expression for q r  from (5.15) into (5.11) and using 

the result in (5.10) gives 

FETg + ETG E 	+ ETG E —e—Gn—n—n r —e—Grt—re—n e 
(5.16) 

ET g + 
e

E
T GEn+EGEn —ee—Go —e—Gn—n—r —re—Gn—re—e 

G —Gr 

ET —r 

Lere 
G 	E 	E —Gr [  —e —re

I 
 (5.19) 

When the equations of motion (5.1) are written in first 

order form with the state x defined as 

(5.20) 
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A 

and 

(5.22) 

-0
2 

nn• 

–0 
B =  (5.23) 

so that 

(5.21) 
– — — 

where 

0 	1 
--nxn 	--nxn 

Then the gravity gradient term W consists of a constant and a state 
–91 

dependent term: 

0  
--nxl 	0 nxn 	– 

0 
nxn 

W d ..= 	+ 	x 
–g--9 	A 	– 

G 
–
0
nxn 3-Go 	–Gr _ _ _ 	_ 

A 

The numerical values for g 
Go 
 and G 

–Gr 
 are given in Table 5.1. . 

–  

5.2 	Solar Radiation Pressure  

The calculation of torques on ZSAT due to solar radiation 

pressure is a complex task. The spacecraft contains several asym-

metric  substructure S among which is the antenna, which has a diffi-

cult geometry and a transmissitivity to solar radiation which varies 

during its daily rotation. In addition, the effect of the Sun's 

declination and the degree-per-day march of the Earth about the 

Sun can introduce further complications. Here it is assumed that 

the Earth is stationary with respect to the Sun, and that the space-

"craft is in an equatorial geostationary orbit, with all effects of 

(5.24) 
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x 
l'AfA (5.25) 

0 

21.1 

1.7 

AA = 

0 — 

PA2 

PA3 

(5.26) 

the Earth's shadow neglected, as is the declination of the Sun. 

The most significant portions of the spacecraft from the vi ewp o i n t of 

solar radiation calculations are the reflector antenna and the solar 

array; only these two components are included in the following. 

All torques are calculated in the spacecraft body frame Fb . 

The solar radiation pressure on the array is given by 

whereis the center of pressure of the array, 

and f is the solar radiation force on the array, - —A 

f =  (5.27) 

where P is the solar radiation pressure constant (4.5 x 10
-6

N/m
2
), A

A 
is the 

area of the solar array (152 m
2

) and n , is a unit vector normal to 

the array: 

r-cosn 

-n 	= 0 

L sinn  

(5.28) 

The orbital anomaly n, illustrated in Fig. 5.2 , is not to be confused 

with the modal coordinate n i  used in previous sections of this report. 

The skew symmetric 3 x 3 matrix 4, when post multiplied by f.A , 
produces the components of the vector cross product of f;,A  with 4. 

• ere we have 

44 



-PA3 PA2 —  
x _ 	

0 	0 2A - PA3 

A2 	
0 	0 

,- P 

so .Éhat for the array 	• 

= PSAA4P-a1 

—PA2 sinin 

= -PA3COSn 

PA2COSn 
1n1. 

••n•n• 

P
S
AA 

(5.29) 

(5.30) 

We now turn our attention to the reflector. The center of pressure 

of the reflector is 

0 7 

PR2 

PR3 

= 	-23.7 (5.31) = 

The reflector has a plan diameter of D = 44.4m and its focal length 

is f = 43.7m. The projected planar area of the reflector is 

A nD
2 

A - 
R1 —4-«  

and the projected area of the sideview (or top and bottom) can be 

shown to be 

A D
3 

A - R34  

Fig. 5.2 specifies the labeling of the solar forces on the space-

craft in the body frame. Since the inclination of the equatorial 

plane with respect to the ecliptic is neglected f 5  and f6 , which 

(5.32) 

(5.33) 
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= -1-1R2 (5.38) 

= _ n  
-R4 (5.39) 

face into and out of the page, are assumed to be zero in the present 

model. 

We can now use the solar array normal ne , to specify the 

SUR direction in the calculation of the solar forces f 1 through f4
: 

f 	= n (n
T 
n )(0 05)P A 

-R1 -a1 -al-R1 	• 	S R1 

f 	= n (nT h )(0 05)P 
-R2 -al -al-R2 • 	S

A 
 R1 

f 	= n (n
T 
n )P A 

-R3 -el -al-R3 S R3 

f 	- n (n
T 
n )P 

-R4 - -el -a1-R4 S
A 

 R3 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

The reflecton is assumed to have a transmissitivity in the flu  and 

f
R2 

direction of 0.05, hence the introduction of this factor into 

(5.34) and (5.35). The reflector is assumed opaque in the fe, 3  and 

f
R4 

directions. The n . are unit normal vectors in the four -R1 
directions, and in the spacecraft body frame these are 

ro  

-nR1 =  siny 

COsyj 

where y is the inclination of the reflector to the Zb  axis (14.2°), 

and 

— 

o 

O 

-nR3 =  
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f = - 
—R2 — 

f 
R1 (5.41) 

fR4 = -IR3 (5.43) 

TT 

n = -2-  - 

ri  =
3n. 

'Fr 

.9-SR = JAfR2 4f-R3 

-9-SR = 2eR2 *R4 

3SR = eR1 4f-R4 

(5.44) 

(5.45) 

(5.46) 

We can now rewrite (5.34) through (5.37) as 

— 
cosn 

0 

-sinn 

f
R1 

= (0
'
05) (-sinncosy)P A 

'S—R1 	 (5.40) 

_ 
cosn 

fR3  = 	0 	(cosn)P sAR3 	 (5.42)  

We have now found the solar pressure forces in the reflector. 

To calculate the resulting scalar torques we must find the cross 

product of these forces with the vector to the center of pressure 

(5.31). As only two surfaces of the reflector are exposed to the 

Sun at any time in ZSAT's orbit, we can most conveniently calculate 
the solar torques in the four quadrants of the orbit: 

= 

37F 	n  
= -2- - 	: 

xe 	x 
1SR = lag-R1 ' 2

e
g-R3 

Substituting (5.31) and (5.40) through (5.43) into (5.44) through 

(5.47) 
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P
S

A
R1

COS y (5.48) 

(5.47) and defining 

— 	2 
- PR2sin  n 

A 
g i  - 0.05 	pusinn cosn 

-PR2sinn cosn 

PR2s nn cosn 7  

P
S

A
R3 

(5.49) g2  - 	p 3co5
2n 

2 
- PR2c°s  n 

one obtains 

n  O  -  

9SR = 91 92 

n = -2- - 

9SR 7- 91 - 92 

3u 
n = 

9-SR = -91 - 92 

_ 371-  n - -2- - 271-  

9SR = -91 92 

The solar torques experienced by the reflector and the array 

can now be added 

nn 	n 
-9-SA 	SR 

and included in the equations of motion (5.21) by premultiplying 

(5.54) by the appropriate partitions of the modal matrix, as was 

done in (5.18): 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 
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[-ET  

•••n•n••11. 

—03x1 A 

—gs  Le i  

(5.57) 

n1n1. 

—ds = 

(5.55) 

so that 

—nx1 ro 

Li 
W d = 
—s—s 

(5.56) 

with W a constant matrix and d a vector dependent on the orbital . 
—s 

anomaly. The numerical values for .(2 (the lower half of W) are 

given in Table (5.2), with ds  given by 

fl 	sinn 

cosn 

cos n 

si n 2  [- sin n 

sinn  cosn 

L s nn cosn 

sinn cos rij 

sgn(sinn) 

cos 2 n 	se(cos) 

cos
2
n 

Here sgn (•) = +1 for positive values of the argument and -1 for 

negative values of the argument. 

6. 	CONCLUDING REMARKS 

This report is something of a potpourri of topics, some 

of which are loose ends from [1]. The major method of model re-

duction in [1], cost-decoupled coordinates, is extended in this 
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report to discrete-time systems in Section 2. It is shown that 

the method is basically unchanged from the continuous-time case. 

A second extension of cost-decoupled coordinates performed in this 

report is to systems stabilized by an observer. A measure of con-

troller quality comparable to the CQI of [1] is developed here for 

observer stabilized systems, and it is shown in a numerical case 

study using ZSAT that an observer has a deleterious effect on the 

extent to which a model can be reasonably reduced. 

A derivation of a version of modal cost analysis is pre-

sented in Section 4. It is interesting because it uses frequency 

domain considerations rather than exclusively time domain procedures 

as in previous derivations. Of greater interest, however, is that 

this version of modal cost analysis is valid for 'less ideal' inputs 

than that in [1] which was predicated upon impulsive inputs. 

In the final section of this report a discussion of the 

two main environmental disturbances on ZSAT is presented. These 

are gravity gradient torque, which is shown to consist of a constant 

part and an attitude dependent part, and solar radiation torque, 

which varies with orbital anomaly. The numerical values of these 

disturbances are calculated and presented as terms to be included 

on the right hand side of the equations of motion. 
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(A.2) 
AT 
b. rli 

1-1 ;7 

n. 

APPENDIX A 

Gregory Internal Balancing Transformation  

The concept of balanced realizations and balancing transfor-

mations as proposed by Moore [5] and others is briefly reviewed 

in [1]. The essential idea is that it is possible to transform 

a system into a set of coordinates such that the contribution to 

controllability of each state variable is equal to its contribution 

to observability. Gregory [6] has found a general balancing trans-

formation for mechanical systems in modal coordinates and has shown 

that a simplified transformation resulting from the assumption of 

light damping results in an approximately internally balanced system 

if the damping is in fact light. Ranking of state components due 

to this internal balancing is distinct from (although related to) 

ranking via modal cost analysis. 

The system in modal coordiantes with which we deal consists 

of N second-order systems of the form (4.1) 

2 	̂T • 
+ 	+ w.n. =  bu 	i = 1,...,N 	(A.1) ill 

where the quantities are defined following (4.1). These can be 

rewritten as N systems of the form 

2 
-w. 	-2

i
w 

1 

Each such system can also be assigned an output equation of the 

form 

n• 

ï = Lq. 1 ] 
n• 

(A.3) 
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(A.3) into internally balanced coordinates 
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The following transformation casts each subsystem of the form (A.2), 

n • r AbT. Ab. 
I -1-1 

4( i w i  
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(A.4) 

where 

"T 	1  
2  2 	2   ere 	-24A 	2 1 1  

1i 5 G21 	
[Liçi  + w i  _421 E1 - 2( i y 1 	+ (A.5), 

(A.6) 

n•n• 

and 

w •c •c • A  1 —1 —1 . -  	C l  Yi 	ATA 	1 
c.c. 

(A.10) 

The resulting internally balanced version of (A.2), (A.3) is 
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Now if the assumption of light damping is valid (( i  « f) the unwiedy 
balancing transformation and resulting system became far more tractable. 

With 

(A.4) becomes 

b.b. 

cc.  + W.
-2 

 C
T
.0 

1 -1 -1 

13 2i 	01i 

13 1i 	-132i 

(A.14) 

•and the resulting system is 
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•T 
c.c.+co. c.c. 

-21 	-1_1  

-0 .b. 21 
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(A.15) 
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The main point here is that if the light damping assumption is valid, 

system (A.15-16) is approximately internally balanced. 
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