

THE IMPACT OF MSAT ON THE RADIO COMMON CARRIER INDUSTRY

JANUARY 1985

VOLUME II - METHODOLOGY \& ATTACHMENTS

FINAL REPORT

1 © Kadar, Michael

 THE IMPACT OF MSAT ON
 THE RADIO COMMON CARRIER INDUSTRY
 JANUARY 1985

 VOLUME II - METHODOLOGY

 VOLUME II - METHODOLOGY \& ATTACHMENTS

 \& ATTACHMENTS}

FINAL REPORT

$$
\text { APRIL } 1985
$$

KVA

KVA Communications and Electronics Co.

Your the VillereferenceOut lise Nowereference6977-6-11DOC CONTRACTOR REPORTDOC-CR-SP-84-
\qquad DEPARTMENT OF COMMUNICATIONS - OTTANA - CANADA SPACE PROGRAM
TITLE: Study to Assess the Impact of MSAT on Radio Common Carriers
AUTHOR(S): Sheila Flynn Mike Kedar
ISSUED BY CONTRACTOR AS REPORT NO: 83-1215
CONTRACTOR: KVA COMMUNICATIONS AND ELECTRONICS CO.
DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: OSM83-00008
DOC REQUISITION NO: 36100-3-0150
DOC SCIENTIFIC AUTHORITY: John H.C. Braden

CLASSIFICATION: Unclassified

> This report presents the views of the author(s). Publication of this report does not constitute DOC approval of the report's findings or conclusions. This report is available outside the Department by special arrangement.

Canadä'

SPECIAL ACKNOWLEDGEMENT

As the study director, I would like to express my special thanks to Ward Mallette Chartered Accountants for their diligence and support, in particular, Phil Chop and Dr. D. Williamson, as well as to Tony Bonney, P. Eng., the MSAT/CRCCA working group and the D.O.C. MSAT Socio Economic team, in particular. J. Braden and E. Staffa, for their contributions.

MSAT/RCC Impact Study

Volume II

Table of Contents
10.0 Baseline Questionnaire
11.0 Baseline Questionnaire Results
12.0 MSAT/RCC Revised Study Plan and Methodology for ImpactAnalysis
13.0 In-depth Questionnaire
14.0 Economic Model
15.0 Economic Model Inputs - Derivation
16.0 The Socio-Economic Input Study Assumptions
17.0 Technology Review
18.0 MSAT Service Description and Competitive Environment
19.0 Canadian Distribution of RCCs
20.0 RCC MSAT Provincial Forecast Data and Financial Figures

Volume II - Introduction

Volume II includes all the background data used in the RCC MSAT Impact Study. Specifically, each Section is described below.

Section 10.0 includes a copy of the industry survey questionnaire sent to 200 of the 600 RCCs. The questionnaire was designed to review the current $R C C$ industry in terms of services provided and financial data, as well as to collect information on future trends within the industry.

Section ll.0 includes a copy of the aggregated results obtained. Of the 200 questionnaires sent, 80 responses were received.

Section 12.0 describes in detail, the methodology used to survey the RCC industry and to collect all the data required to assess the impact of MSAT. The in-depth interviews were based on this methodology.

Section 13.0 includes a copy of the in-depth questionnaires. Approximately 30 of the 80 initial respondents were interviewed in person and the questionnaire was completed at this time.

Section 14.0 includes a copy of the economic model. The data derived from the in-depth interviews was aggregated to represent the entire RCC population and provided many of the inputs to the economic model. The economic model includes all the equations necessary to calculate the impact of MSAT on the RCCs as determined from the net present value (NPV) of the project.

Section 15.0 describes the methodology used to aggregate the sample data collected from the in-depth RCC interviews to include the entire RCC population.

Section 16.0 includes a copy of the "Socio-Economic Input Study Assumptions", published by DOC. The study assumptions were derived based on input from DOC, Telesat, KVA, Telcos etc. This document provides inputs used in RCC study, as well as the overall socio-economic study.

Section 17.0 describes the future technologies and services as discussed in the Market Opportunities and Trends, Section 3.4, Volume I.

Section 18.0 provides a detailed discussion of MSAT services and the competitive environment in which they could potentially be offered. This document was presented to the RCCs prior to the in-depth interviews to provide background information and an introduction to MSAT.

Section 19.0 provides a summary of the RCCs Canadian distribution, both provincially and regionally. The data is based on information collected in the industry survey questionnaire and based on DOC licencing data, Dec 1982.

Section 20.0 presents the RCC MSAT data collected, including forecasts and financial figures, on a provincial basis.
Company name. \qquad
Address \qquad
Phone \# \qquad
Study Contact \qquad
Phone \# \qquad

1. Is Government interest in RCC operators as national providers of services such as Cellular, MSAT, and paging

YES

[]
a welcome trend?
2. Do you consider the present ROC position within the
Canadian Common Carrier Telecommunications Industry
adequately defined in light of proposed nation wide
services such as MSAT and Cellular.
3. Are you willing to participate in an in-depth evaluation

YES [] in light of nation wide services such as MSAT?
no []
the following questions are needed to prepare a propile of the roc industry.
4. How many employees do you have in total?
5. What were your gross revenues for the most recent 12 month period reported?
[000.]
6. What is the total estimated investment cost in your operating equipment (excluding real estate)?
[000.]
7. Provide (to the nearest whole number) percentage of gross revenues and investment involved in each of the following categories:
a) Radio Paging Service
b) Mobile Radio Service
c) Mobile Telephone Service
d) Radio Equipment Sales
e) Maintenance \& Installation
f) Others
$\%$ TOTAL

	Gross	
	Revenues (Q. 5 above)	Investment (Q. 6 above)
	\% []	[]
	\% []	[
	\% []	[]
	\% []	[]
	\% []	[
	8 []	[]
\% TOTAL	100	100

8. If you have specified others in question 7, provide the following information.

Type of Service or Activity

Percentage of Gross Revenue for this Category

Telephone Answering Service
Microwave Equipment Sales
Other: (Specify)
9.a) Do you compete with regulated* common carriers such as Telcos, CNCP, etc?

YES [] NO []
b) Would it help if you were regulated?

YES [] NO []
10. With regard to establishing and maintaining industry service standards should there be:

- an internal RCC industry committee?
]
or - a joint industry/government committee?
or - no standards at all?

11. What do you consider will be the effect of the creation of large nationwide RCCS through acquisitions, or licencing, on the RCC industry as a whole?

Positive [] Adverse []
12. Are you willing to accept new RCC applicants as customers on your channels until they have established a large enough base to be licenced for their own channels?

YES []

[^0]
PART B - CURRENT SYSTEMS \& SERVICES

In this part we are addressing the different services and systems that make up your enterprise. These are divided into:

$$
\begin{aligned}
\text { I } & \text { Radio Paging Service } \\
\text { II } & \text { Mobile Radio Service } \\
\text { III } & \text { Mobile Telephone Service } \\
\text { IV } & \text { Mobile Radio Equipment Sales } \\
\text { V } & \text { Maintenance and Installation } \\
\text { VI } & \text { Data Services, Radio Links, Personal } \\
& \text { Radio Comunications Systems. }
\end{aligned}
$$

Please answer the sections that apply to your business. It shouldn't take longer than 40 minutes even if you answer all sections.

A. Existing

1. Year service began? [19]
2. Number of units? []
3. Number of customer owned units? []
4. What percentage of units are: Display of Tone 8
Tone \& Voice 8
Total $\%$$\left[\begin{array}{ll}{[} &] \\ {[} &] \\ 100\end{array}\right]$
5. Number of radio paging channels?
6.a) List the locations (City, Town or Village) where you have hub transmitters and indicate whether system coverage from that location is predominantly urban [1] or rural [2]. Indicate the coverage in Km . from the hub transmitter of your channel with greatest coverage.

continue on separate sheet if necessary.
b) Please provide coverage maps for each system from your promotional kit and brochures.
B. Looking to the future
6. Over the next five years:
a) How much coverage expansion (8) do you expect to add to existing systems?
b) How many new market areas do you expect to open in total? in predominantly rural areas?
c) How many new radio channels will be added? $\begin{array}{lll}\text { in total? } \\ \text { in predominantly rural areas? } & {\left[\begin{array}{ll}]\end{array}\right]}\end{array}$
7. At the end of the next five years:
a) How many pagers do you expect to serve?
b) Estimate percentage of tone only units
c) Estimate percentage increase over a five year period of annual gross revenues for paging service (taking into account your expected increase in pagers served and any price changes that you can anticipate)?
8. Are you thinking about joining a national paging network, or integrating your paging system with other RCC operations to provide regional or national paging networks?
$\left.\begin{array}{rl}\text { YES } \\ \text { NO } & {[}\end{array}\right]$
9. In the next five years are you planning to offer enhanced service features such as -

$$
\begin{array}{llllll}
\text { - voice message retrieval? } & \text { YES } & \text { [} & \text {] NO }[&] \\
\text { - display paging receivers? } & \text { YES } & {[} &] \text { NO }[&]
\end{array}
$$

11.a) Is your system using digital paging? YES [] NO [] IF YES, go to Question llc
b) Can it be modified to add digital? \quad YES [] NO [] IF NO, Go to Question 12
c) Is the digital code POCSAG?*
$\underset{\text { NO }}{\text { YES }[]}$
12.a) Are your systems interconnected to give direct dial access?

YES [] NO []
IF NO, go to Question 12c
b) Do you feel that the rules and rates governing your dial access arrangements are reasonable? YES [] NO [] IF YES, go to Section II If not, please explain below.

Go to Section II
c) Do you intend to provide dial access?

IF NO, go to Section II
When do you think this will happen?
YES [] NO []
[19]
*POCSAG $=$ Post Office Code Standardization Advisory Group
II Mobile Radio ServiceDo you provide this service?IF NO, go to Section III
A. Existing

1. Year service began? $[19]$
2. Number of radio channels in operation? []
3.a) List the locations (City, Town or village) where you have repeaters and indicate whether system coverage from that location is predominantly urban [1] or rural [2]
Location Location
1) [1] or [2] 6) [1] or [2]
2) [1] or [2] 7) [1] or [2]
3) [1] or [2] 8) [1] or [2]
4) [1] or [2] 9) [1] or [2]
5) [1] or [2] 10) [1] or [2]continue on separate sheet if necessary.b) Please provide coverage maps for each system from your promo-tional kit and brochures.
4. Number of mobiles?[]
5. Number of customer owned mobiles? []
6.a) Do you have conventional single channel systems? YES [] NO [.....]
IF YES, go to Question 7
b) If not conventional single channel systems,explain type of system provided.
continue on a separate sheet if necessary.

B. Looking to the future

7. Over the next five years:
a) How many new service areas do you expect to open?
b) How many new radio channels do you expect to add?
c) How many of these new channels will be for trunked systems?
) How many new channels will serve predominantly rural areas?
8. At the end of the next five years:
a) What do you expect your number of mobiles to be? []
b) Estimate the percentage of:

Trunked Mobiles	\%	$[$	$]$
Conventional Mobiles	$\%$	$[$	$]$
TOTAL	$\%$	100	

c) Estimate the percentage increase over the five year period of your annual gross revenues from mobile radio services, taking into account your expected subscriber base and anticipated price changes.
9.a) Do you wish to offer limited interconnect* capability to your mobile radio subscribers?

IF NO, go to Question 10
b) Would you wish to offer this capability on a trunked system?

YES []
NO []
c) Do you prefer that this interconnect capability would be:

- manual patching by your operator? []
- automatic dial access to and from specific mobiles? []
10.a) Do you expect to see a significant increase in the use of portables on your MRS channels?

YES [] NO [] IF NO_{n} go to Section III
b) If so, on your current systems provide the percentage of:
c) What do you expect this to be at the end of five years:

Mobiles	\%	$[$	$]$
Portables	\%	$[$	$]$
TOTAL	\%	100	

Mobiles	\%	$[$	$]$
Portables	$\%$	$[$	$]$
TOTAL	$\%$	100	

*Limited Intercomect means calls in off-peak hours or on an emergency basis or less than 10% of all calls are connected to the switched network.

III. Mobile Teleqhone Service

Are you presently operating a mobile telephone system interconnected to the public telephone network, or carrying mobile telephone traffic on your two-way channels?

YES [] ND []
IF NO, go to Question 6

A. Existing

1. Number of radio channels handling radio-telephone traffic?
2. Number of mobile telephone units?
3. Number of customer-owned units?
4. Number of mobile telephone calls per month?
5. Is your interconnect agreement with your telco - experimental? - permanent?

B. Looking to the Future

6. Cellular padio Cellular radio will be a nationwide service, involving equity participation by local ROC operators. The top 23 markets have been applied for; the remaining markets can now be applied for. Do you intend to get involved in cellular?

YES [] NO [
IF NO, go to Question 7
a) What percentage of existing private system mobiles and RCC mobiles will be attracted to cellular in your market areas? Less than

5%	$[$	$]$
108	$[$	$]$
15%	$[$	$]$
15%	$[$	$]$

c) If you plan to be part of the nationwide cellular network please provide:

- estimated number of units in 1990
- percentage of portables/mobiles in 1990

d) Some of the factors affecting the implementation of cellular radio are listed below. please rank from 1 to 5 with 1 representing the factor you expect will have the most adverse impact on your cellular offering.
- telco facility agreements
- telco interconnect rates
- telco cellular pricing
- RCC implementation delays
- telco nationwide promotion
e) MSAT could provide extended coverage for cellular radio, linking together terrestrial coverage areas. In your market areas do you feel that MSAT is vital to the YES [] success of cellular:
f) Which of the following MSAT/cellular scenarios best meets your needs:

$$
\begin{aligned}
& \text { i) single standard mobile terminal working into corpatible, } \\
& \text { MSAI/terrestrial cellular systems, }
\end{aligned}
$$

ii) dual standard mobile terminal working into incoupatible MSAT/terrestrial cellular systems

7. a) Conventional Mobile Telephone If interconnect is permitted in your area, do you plan to implement narrowband FH or other types of single channel or trunked channel mobile telephone service during the next five years? YES [] NO [] IF NO, go to Question 8
b) Bow many service areas? []
c) How many radio channels?
d) Bow many units do you expect to have in service by the end of five years?
e) Will these systems have direct dial in both directions? YES []
f) What type of systems will they be:
i) single channel?

YES []
ii) trunked channels?

NO []

3. Air-Ground Padio Telephone Service There is a proposal to introduce an air-ground radio-telephone service in the 900 MHz band with much greater capacity than the 450 MHz systems already being operated in Canada by the telephone companies. These new channels would permit service to commercial and private aircraft.
a) Would you be interested in providing this service in your Yes [] principal areas of operation?

NO []
b) In other areas?

A. Existing

1. Current Sales Volume
a) mobiles/portables
b) pagers
c) fixed station equipment and others
TOTAL \% 100

B. Looking to the Future

2. Future Sales Volume

Over the next five years do you expect your gross revenues

3. Capabilities
$\begin{array}{lll}\text { a) Do you have trained sales employees that can handle system } & \text { YES } & \text { [} \\ \text { sales such as a mobile radio system using MSAT? } & \text { NO } & \text { [}\end{array}$
b) Are you willing to employ and train such people? , YES []

NO []
V Maintenance and Installation
Do you proved maintenance and installation services? YES [] NO [IF NO, go to Section VI

1. a) What is the percentage split of gross revenue between: Maintenance Revenues \% [.....] Installation Revenues
TOTAL \& 100
b) What is the percentage split of maintenance revenuesfor: Mobile Radios, Portables \& PagersFixed Equipment of [\% []TOIAL \% 100
c) Do you install and/or maintain systems and equipment YES you haven't sold? NO []
2. In comparison with the overall growth of your business, is revenue growth in maintenance and installation services expected to be:
Lower $\left[\begin{array}{ll}{[} &]\end{array}\right.$
3. How many of your locations have equipped shops and trained technical staff? []

VI.A Data Services

Proposals have been made that broadcast-type channels, similar to radio paging, will be used to send data messages such as stock reports, data retrieval from centralized banks (Telidon) to mobile and fixed radio receivers. These channels might use a sub-carrier on an FM broadcast station (FM-SC), or a transmission during the blanking interval of a TV broadcast signal (IV-VBI).

1 a) Would you be interested in providing such services YES [] NO [] If No, go to Question 2
b) Would you wish to use:

Your own message processor to interface with the local IV or FM broadcast transmitter
[]
Share a message processor with other common carriers
[]
2. Would you be interested in marketing the fixed data receivers, mobile data receivers and data display paging receivers required for the subscribers?
3. Do you see these services as a threat to your radio paging

YeS [] operations

VI.B Mobile Data

4. a) Do any of your customers need mobile data terminals to

YES [] improve their communications?

NO []
b) Do you envision a market for mobile data channels, YES [] separate from your two-way voice channels? NO []

VI.C Fadio Links

b) What alternatives are you considering to UHF links which are becoming increasingly scarce?
i) 960 MHz microwave?

YES	$[$	$]$
NO	$[$	$]$
YES	$[$	$]$
NO	$[$	$]$

ii) Low band VHF YES [] NO []
iii) Others: .. YES [] NO []

IF YES, Specify
c) Are you prepared to use newer 5 KHz bandwidth

YES [] technologies such as ACSB or PELPC/DMSK?*
*ACSB - amplitude compandored sideband (analogue)
PELPC/DMSK - pitch excited linear predictive coding/diphase minimum shift keying (digital).

VI.D Personal Radio Commuications Systems (PRCS)

Proposals have been made to introduce a Personal Radio Cormunication service (PRCS) in the 900 MHz band that will provide inexpensive mobile radio equipment to the general public offering:

- vehicle/vehicle direct calling
- vehicle/vehicle through repeaters
- limited interconnect through base stations at the users' home or office

6. Are you interested in providing the repeater systems and service for these operations in your territory?

YES []
NO []
7. Are you interested in selling PRCS nobile radios?

YES []
NO []
8. Are you interested in installing and maintaining PRCS mobile radios?

PART C
HSAT - RPILAED QUESTIONS
In a few weeks we shall be conducting in-depth interviews with those RCCs who have decided that MSAT may form part of their future and want to find out more by participating in this study to determine how MSAT is most likely to affect the RCC industry. Meanwhile, so we can obtain a good base knowledge of RCC interest please answer the following:

1. Do you agree to an in-depth personal interview during the next YES phase of our study - Nov/Dec. 19833
2. Are you willing to provide details of your current operations YES - [] and assess the most likely impacts resulting from MSAT?
3. Are you interested in participation in review trials on MSAT?

4. MSAT could provide new business opportunities for the ROCs by introducing new application areas, particularly in under served regions of Canada. The following identifies application areas for MSAT. Please rank each application area, based on your high medium or low interest as a future service provisioner

CHECK ONE ONLY
High Medium Low
MOBILE RADIO SERVICE
Despatch service to intercity trucking operations

Emergency commications systems for forest fire control, disaster relief.

Emergency communications in wilderness areas
Wide area distress commmications with vehicles, boats and aircraft.

MOBILE TELEPHONE SERVICE
Public telephone service on public transport
vehicles such as intercity buses, train, ferries and aircraft.

Remote and rural telephone service
Extension of the mobile cellular service
MOBILE PAGING SERVICE
True wide area paging [] [] [

MOBILE DATA SERVICE

Wide area voice and data communications for ambulance patient care.

Remote monitoring of cargo being transported by rail or road.

Monitor, alarm and control facilities for remote equipment, pipelines, waterpumps, etc.

Data acquisition and control.
[] [] []
[] [] []
[] [] []
[] [] []

MSAT/REC Impact Study Baseline Duestionnaire Results December 89

Part A - General

Total Respondents: | Canada | BC | Alta | Sask | Man | Ont | Que At lantic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

1) If Government interest in RCC operators as National providers of services is a welcome trend.

Reply	Of AlL Respondents
YES	
NO	
NOT STATED	
	TOTAL

2) If RCC position is adequately defined.

Reply
Of All Respondents
YES
37.1\%

NO
57.6\%

NOT STATED 5.3\%

TOTAL 100\%
3) Willingness to participate in an, in-depth evaluation.

Reply	Of All Respondents	
YES		BB. 4%
NO	B.9\%	
NOT STATEO	TOTAL	$\frac{2.4 \%}{100 \%}$
		Of ALL Respondents

4) Total employees

	BC	Alta	Man	Ont	Que	Atlantic	Canada	
UNDER 10	61.5	45.4	50.0	41.1	71.4	100.0	52.5	\%
10-49	23.0	54.5	50.0	41.1	21.4		$35 . \mathrm{B}$	\%
50-99	7.6			5.8	7.1		5.1	\%
100 OR MORE	7.6			5.8			3.8	\%
NOT STATED				5.8			2.5	\%

$\begin{array}{ccccccccc}\text { Total employees: } & \text { BC } & \text { Alta } & \text { Man } & \text { Ont } & \text { Que } & \text { Atlantic Canada } \\ & 315 & 105 & 41 & 1992 & 198 & 5 & 2656\end{array}$
5) Gross Revenues for most recent 12 month period.

Gross Revenues (000's) Of All Respondents

	BC	Alta	Man	Ont	Que	At lantic	Canada
UNDER 100	23.0		25.0	14.7	7.1	100.0	15.3\%
100-250	15.3		25.0	11.7	14.2		11.5\%
250-500	23.0	54.5	25.0	5.8	35.7		21.7\%
500-1,000	7.6	27.2		44.1	21.4		29.4\%
1,000 OR MORE	7.6	18.1	25.0	23.5	21.4		21.7\%
NOT STATED							0.0\%

| Totel Gross Revenues of all 8C respondents: | $\$ 14,516,500$ |
| :--- | :--- | ---: |
| Totel Gross Revenues of all Alta. respondents: | $\$ 7,630,000$ |
| Totel Gross Revanues of all Men. raspondants: | $\$ 7,440,000$ |
| Total Gross Revenues of all Ont. respondents: | $\$ 47,251,000$ |
| Total Gross Revenues of all Que respondents: | $\$ 14,288,000$ |
| Totel Gross Revenues of all Atlantic respondents: | $\$ 74,000$ |
| Total Gross Revenues of all respondents: | $\$ 85,199,500$ |

6) Totel estimeted investment cost in operating equipment.

Investment (000's)
Of All Respondents

Totel investment cost of ell 8 C respondents: $\quad \$ 9,041,000$
Total investment cost of ell Alta. respondents: \$4,596,000
Total investment cost of all Men. respondents: $\$ 1,125,000$
Totel investment cost of all Ont. respondents: $\$ 25,177,174$
Total investment cost of ell Que. respondents: \$10,596,000
Total investment cost of all Atlantic respondents: \$ 70,000
Total investment cost of ell respondents: \$50,605, 174

KVA Communications and Electronics Co.

7,8) Percentege of gross revenues per service cetegory.

Service Category	Parcentage of Gross Revenues *					
	UNDER 100 GROSS	$\begin{array}{r} 100-250 \\ \text { GROSS } \end{array}$	$\begin{array}{r} 250-500 \\ \text { GROSS } \end{array}$	$\begin{aligned} & \text { 500-1,000 } \\ & \text { GRoSS } \end{aligned}$	$\begin{aligned} & 1,000 \text { OR } \\ & \text { MORE GROSS } \end{aligned}$	gROSS REVENUES
	$\begin{gathered} \text { REVENUES } \\ \text { (000's) } \end{gathered}$	$\begin{aligned} & \text { REVENUES } \\ & \text { (000's) } \end{aligned}$	$\begin{gathered} \text { REVENUES } \\ (000 ' \mathrm{~s}) \end{gathered}$	$\begin{aligned} & \text { REVENUES } \\ & \text { [000's] } \end{aligned}$	$\begin{aligned} & \text { REVENUES } \\ & \text { (000's) } \end{aligned}$	\$ \%

tOTAL

radio paging	21.5	8.2	31.5	20.9	88.3	31057750	36.4
mobile radio	35.6	26.7	20.5	12.3	1.5	$83 \dot{181360 ~}$	9.8
mobile telephone		2.2	0.6	3.1		71750	0.8
RADIO EQPT SALES	18.0	44.3	19.0	29.2	3.5	17.504420	20.5
MAINT \& INST	17.1	17.9	17.9	16.4	1.3	8132480	9.5
OTHERS-TELEPHONE ANSWERING	7.5		2.0	14.4	3.7	$1960{ }^{\text {d }}$	22.7
-MICROWAVE EQPT							
-OTHEA		0.4	8.2	4.0	1.3		
TOTAL	100\%	100\%	100\%	100\%	100\%	85199500	99.9
NUMBER OF RESPONDENTS PER GROSS REVENUE CATEGORY	12	9	17	23	17		

*To determine the percentege thet eech service cetegory contributes to the totel gross revenue, responses were evereged for ell respondents in eech gross revenue cetegory.

BC

RADIO PAGING	47.5		60.5	12.5	31.2	4450000	30.6
MOBI LE RADIO	1.6	6.8	4.4	6.4	4.8	725100	4.9
MOBI LE TELEPHONE		3.1		5.8		96250	0.6
RADIO EOPT SALES	34.2	57.4	1.1	32.8	37.6	5103600	35.1
MAINT \& INST	2.7	30.6	10.3	22.7	10.2	1732850	11.9
OTHERS-TELEPHDNE ANSWERING	13.7		6.0		14.0	2408700	16.5
MICROWAVE EOPT		1.8	17.5	19.5	2.0		
-OTHER							

KVA Communications and Electronics Co.

Sarvice Cetegory	Percentage of Gross Revenues *					
	UNDER 100	100-250	250-500	500-1,000	1,000 OR	GROSS
	GROSS	GROSS	GROSS	GROSS	MORE GROSS	REVENUES
	$\begin{aligned} & \text { REVENUES } \\ & \text { (000' } \mathrm{s} \text {) } \end{aligned}$	REVENUES (000's)	REVENUES (000's)	REVENUES (000's)	REVENUES (000's)	\% \%

ALBERTA

radio paging
mobile radio
MOBILE TELEPHONE
RAOIO EOPT SALES
MAINT \& INST
OTHERS-TELEPHONE

29.5	33.4	1.1	1444750	18.9
10.2	7.7	20.6	10.14100	13.2
1.4	1.6		76000	0.9
30.3	43.1	64.3	3636810	47.6
23.4	12.6	13.8	1221340	16.1
			237000	3.1

ANSWERING
-MICROWAVE EOPT
-OTHER
TOTAL
4.9
5.0

100\%
100\%
100\% 7630000 100\%
NUMBER OF RESPON-
DENTS PER GROSS
revenue category
6
32

MANITOBA

Radio Paging	20.0		95.0	32.0	613000	42.5
mabile radio	20.0	25.0	5.0	15.0	198000	13.7
mobile telephone		5.0		4.0	45000	3.1
RADIO EQPT SALES	40.0	50.0		5.0	116000	8.0
MAINT \& INST	20.0	20.0		44.0	468000	32.5
OTHERS-TELEPHONE ANSWERING					-	
-MICROWAVE EOPT -OTHER						
TOTAL	100\%	100\%	100\%	100\%	1440000	100\%
NUMBER OF RESPONDENTS PER GROSS bevenue category						
REVENUE CATEGORY	1	1	1	1		

KVA Communications and Electronics Co.

Service Category	Percentage of Groee Revenues *					
	UNDER 100	100-250	250-600	600-1,000	1,000 OR	GROSS
	GROSS	GROSS	GROSS	GROSS	MDRE GROSS	REVENUES
	$\begin{aligned} & \text { REVENUES } \\ & \text { (000's] } \end{aligned}$	REVENUES (000's)	REVENUES (000's)	REVENUES [000's]	REVENUES (000's)	\$ \%

ONTARIO

RADIO PAGING	16.6	10.1		22.2	93.5	20071920	42.4
mobile radio	51.5	35.6	42.1	10.4	0.7	3888660	8.2
mobile TELEPHONE		2.4		1.3		243600	0.5
RADIO ERPT SALES	9.0	39.4	12.8	25.8	0.6	4780110	10.1
MAINT \& INST	22.7	12.3	45.0	16.4	0.6	3818270	8.0
OTHERS-TELEPHONE ANSWERING				20.8	3.1	14448440	30.5
-MICROWAVE EQPT							
-OTHER				3.0	1.0		
total	100\%	100\%	100\%	100\%	100\%	47251000	100\%
NUMER OF RESPONDENTS PER GROSS							
hevenue category	5	4	2	15	8		

OUEBEC

RADIO PAGING		15.3	18.0	5.6	39.1	4450080	31.1
MObiLE RADIO	45.0	27.7	37.8	30.8	11.7	2551000	17.8
MDBILE TELEPHONE			0.1	10.8	0.1	256900	1.7
RADID EOPT SALES	25.0	40.0	21.6	24.3	27.9	3854400	26.9
MAINT \& INST	25.0	16.9	6.1	17.1	3.5	892020	6.2
OTHERS-TELEPHONE ANSWERING						2283600	15.9
-MICROWAVE EQPT							
-OTHER	5.0		16.1	11.0	17.5		
TOTAL	100\%	100\%	100\%	100\%	100\%	14288000	100\%
NUMBER OF RESPONDENTS PER GROSS							
REVENUE CATEGORY	1	2	5	3	3		

KVA Communications and Electronics Co.

Sarvice Categary	UNDER 100 GROSS REVENUES (000's]	Percent $100-250$ GROSS REVENUES (000's)	$\begin{gathered} \text { tage of GI } \\ 250-500 \\ \text { GROSS } \\ \text { REVENUES } \\ \text { (000's) } \end{gathered}$	ross Reven 500-1,000 GROSS REVENUES (000's)	1,000 OR MORE GROSS REVENUES (000's)	GROS REVEN $\$$		
ATLANTIC PR.								
RADIO PAGING	37.8					28000	37.8	
MOBILE RADIO	6.0					4500	6.0	
MOBILE TELEPHONE						0		
RADIO EQPT SALES	18. 2					13500	18.2	
MAINT \& INST						0		
OTHERS-TELEPHONE ANSWERING -MICROWAVE EQPT -OTHER	37.8					28000	37.8	
-OTHER								
TOTAL	100\%					74000	100\%	
NUMBER DF RESPON-DENTS PER GROSSREVENUE CATEGORY								
To determine the percentage thet each service category contributes to the total gross revenue, responses were averaged for all respondents in each gross revenue category.								

KVA Communications and Electronics Co.

Percentage of investment cost classified by service category and gross revenues.

TOTAL

RADIO PAGING	38.6	23.4	61.5	38.6	59.1	27311330	53.9
MOBILE RADIO	38.9	37.9	18.7	17.5	15.1	8532430	16.8
MOBILE TELEPHONE	2.3	11.0	0.5	7.7	0.3	989750	1.9
RADIO EOPT SALES	10.0	$22 . B$	4.0	14.7	7.4	4564100	9.0
MAINT \& INST	8.6	4.6	13.8	15.9	5.8	4412500	8.7
DTHERS	1.3	0.0	1.1	5.7	12.3	4795063	9.4
TOTAL	100%	100%	100%	100%	100%	50605174	100%
NUMBER OF RESPON-	12	9	17	23	17		
DENTS PER GROSS							
REVENUE CATEGORY							

㫙

RADIO PAGING	80.4		96.9	25.7	65.3	5975100	66.0
MOBILE RADIO	1.8	19.0	1.7	9.6	11.3	899600	9.9
MOBILE TELEPHONE		18.1	0.9	11.9		97600	1.0
RADIO EQPT SALES	9.1	33.6	0.2	20.7	17.4	1409000	15.5
MAINT \& INST	3.6	28.6	0.1	18.4	3.3	382950	4.2
OTHERS	4.9	0.4		13.4	2.5	276750	3.0
TOTAL							
	100%	100%	100%	100%	9041000	100%	
NUMBER OF RESPON-							
DENTS PER GROSS							
REVENUE CATEGORY	3	2	3	2	3		

KVA Communications and Electronics Co.

Servica Cetegory	Percentage of Investment Cost*						
	UNDER 100 GROSS	$\begin{gathered} 100-250 \\ \text { GROSS } \end{gathered}$	250-500 GROSS	$500-1,000$ GROSS	1,000 OR MORE GROSS		
	$\begin{aligned} & \text { REVENUES } \\ & {[000 ' s]} \end{aligned}$	$\begin{aligned} & \text { REVENUES } \\ & (000 ' s) \end{aligned}$	$\begin{aligned} & \text { REVENUES } \\ & \text { [000's] } \end{aligned}$	$\begin{aligned} & \text { REVENUES } \\ & \text { [000'б) } \end{aligned}$	$\begin{aligned} & \text { REVENUES } \\ & \text { [000's] } \end{aligned}$	\$	\%

ALBERTA					
RADIO PAGING	80.8	51.3	1.4	1985400	43.1
MOBILE RADIO	16.5	24.3	24.1	984550	21.4
MOBILE TELEPHONE	0.4	5.4		108000	2.3
RADIO EOPT SALES	2.7	9.1	59.3	851100	18.5
MAINT \& INST	16.4	7.0	15.0	566950	12.3
OTHERS	2.9	2.7		100000	2.1
		100%	100%	100%	4596000
TOTAL					

NUMBER OF RESPON-
 DENTS PER GROSS

revenue category
6
32

MANITOBA

RADIO PAGING	20.0		95.0	40.0	652500	58.0
MOBILE RAOIO	20.0	25.0	5.0	20.0	160000	14.2
MOBILE TELEPHONE		5.0		5.0	27500	2.4
RADIO EOPT SALES	40.0	50.0		10.0	125000	11.1
MAINT \& INST	20.0	20.0		25.0	160000	14.2
OTHERS						
TOTAL	100%	100%	100%	100%	1125000	100%
NUMBER OF RESPON-						
DENTS PER GROSS REVENUE CATEGORY	1	1	1			

KVA Communications and Electronics Co.

ONTARIO

RADIO PAGING	33.0	12.5		50.8	66.7	15048130	59.7
MOBILE RADIO	52.3	37.9	24.2	14.6	8.4	2977250	11.8
MOBILE TEEPHONE	4.0	16.8		2.3	0.1	238650	0.9
RADIO EQPT SALES	1.2	30.3	3.9	14.9	0.8	1236800	4.9
MAINT \& INST	9.3	2.1	71.8	12.4	5.4	2087600	8.2
OTHERS				5.5	18.4	3594743	14.2
TOTAL	100%	100%	100%	100%	100%	25177174	100%
NUMBER OF RESPON-							
DENTS PER GROSS REVENUE CATEGORY	5	4	2	15	8		

OUEBEC

RADIO PAGING	50.0	50.9	39.4	0.4	43.7	3610200	34.0
MOBILE RADIO		43.0	43.2	21.9	34.3	3487030	32.9
MOBILE TELEPHONE	40.0		0.7	22.4		518000	4.8
RADIO EGPT SALES		3.0	12.0	16.9	5.7	942200	8.8
MAINT \& INST	10.0	3.0	3.8	31.4	6.5	1215000	11.4
OTHERS		0.5	6.6	9.5	823570	7.7	
TOTAL	100%	100%	100%	100%	100%	10596000	100%
NUMBER OF RESPON-							
DENTS PER GROSS							
REVENUE CATEGORY	1	2	5	3	3		

KVA Communications and Electronics Co.

Service	Percentage of Investment Cost*						
Cetegory	UNOER 100 GROSS	$\begin{gathered} 100-250 \\ \text { GROSS } \end{gathered}$	$\begin{gathered} 250-500 \\ \text { GROSS } \end{gathered}$	500-1,000 GROSS	1,000 OR MORE GRDSS		
	REVENUES [000's]	REVENUES (000's)	REVENUE (000's)	REVENUES (000's)	REVENUES (000' s)	\$	\%

ATLANTIC PR.

RADIO PAGING	57.1	40000	57.1
mobile madio	42.8	30000	42.8
MOBILE TELEPHONE			
RADIO EOPT SALES		,	
MAINT \& INST			
OTHERS			
total	100\%	70000	100\%
NUMEER OF RESPDN-			
DENTS PER GROSS			
REVENUE CATEGORY	2		

* To determine the percentage that each service category contributes to the total investment cost, responses were everagad for all respondents in eech gross revenue category.

9A) Competing with regulated common carriers.

Rep Ly	Of ALL Respondents	
YES		61.5%
NO		38.4%
NOT STATED	TOTAL	$\frac{\%}{100 \%}$

9BJ If RCC should be regulated.

Reply	Of All Respondents	
YES		16.6%
NO	69.2%	
NOT STATED	TOTAL	$\frac{14.1 \%}{100 \%}$

10) Industry service standards established and maintained by:

Of ALL Respondents

AN INTERNAL RCC INDUSTRY COMMITTEE		47.4%
A JOINT INDUSTRY GOV'T COMMITTEE		41.0%
NO STANDAROS AT ALL		11.5%
NOT STATED		$\frac{\%}{2}$
	TOTAL	100%

KVA Communications and Electronics Co.

11) Effect of creating large nationwide RCC's through aquisition or
(icencing.

12] Willingness to accept RCC applicants as customers on existing channaís.
Reply
Of All Respondents
YES
65.3\%

NO
30.7\%

NOT STATED
3.8\%

TOTAL $\quad \overline{100 \%}$

KVA Communications and Electronics Co.

Part B - I Radio Paging Gervice
Number of Respondents providing paging service:

A: Existing
1] Year service begen
Of All Respondents

	BC	Alte	Man	Ont	Que	At lantic	Cenede
BEFORE 1970	27.2		33.3	19.0			15.6%
$1970-1974$	18.1		33.3	19.0	$2 B .5$		17.6%
$1975-1979$	36.3	50.0		42.8	$42 . B$		39.2%
1980-PRESENT	18.1	50.0	33.3	19.0	28.5	100.0	27.4%
NOT STATED	$\overline{100 \%}$	$\frac{\%}{100 \%}$					

2) Number of units

Of All Respondents

	BC	Alte	Men	Ont	Que	Atlantic	Cenade
UNDER 200	36.3	50.0	33.3	19.0	14.2	100.0	29.4\%
200-499	18.1			19.0	42.8		17.6\%
500-1500	18.1	25.0	66.6	33.3	28.5		29.4\%
OVER 1500	27.2	12.5		23.8	14.2		19.6\%
NOT STATED		12.5		4.7			3.9\%
	100\%	100\%	$\overline{100 \%}$	100\%	100\%	100\%	100\%

Total number of units: $18,006.6,140 \quad 2,15053,72018,814 \quad 110 \quad 98,940$
3) Total number of customer owned BC Alta Men Ont Que At Canada units: $\quad 502517$ 55 6,237 1,757 96 9,164

Percentage customer owned units/total units:
$\begin{array}{llllll}2.7 & 8.4 & 2.5 & 11.6 & 9.3 & 87.2\end{array}$
13.2

Number of respondents serving ovar 50\% customer owned units: $\begin{array}{llllllll} & 5 & 4 & 1 & 5 & 2 & 1 & 18\end{array}$

4] Total number of \sim display units: 2,573

- tone units: 27,901
- tona \& voice units: 68,466

Percentage of display units/total units: 3.7
Percentage of tone \& voice units/tone units: 245.0
Percentage of respondants providing 50\% or more tone units: 0.0
Parcentage of respondents providing 80\% or more tone \& voice units: 7.8 Percantege surveyed with no response: 3.9

KVA Communications and Electronics Co.

5) Number of radio paging channels

Of All Respondents

	BC	Alte	Man	Ont	Que	Atl	Canada
1-2	81.8	B7.5	66.6	57.1	42.B	100.0	66.6\%
3-4	9.0	12.5	33.3	33.3	$2 \mathrm{B}$.		23.5\%
5-6				4.7			1.9\%
7-10	9.0				14.2		3.9\%
OVER 10				4.7	14.2		3.9\%
NOT STATED							

Total number of radio paging channels:
$\begin{array}{llllllll}21 & 13 & 7 & 61 & 27 & 130\end{array}$
6) Percentage of hub transmitters in Urban vs Rural Location.
Location Of All Respondents

	BC	Alta	Man	Ont	Que	AtL	Canada
URBAN	42.8	18.1	33.3	29.0	18.1	100.0	29.0\%
RURAL	57.1	81.8	66.6	71.0	81.8		70.9\%
	100.0	100.0	100.0	100.0	100.0	100.0	100.0\%

Total number of hub transmitters: $\quad 28 \quad 22 \quad 6 \quad 100 \quad 22 \quad 10179$

Percentage surveyed with no response:

B: Looking to the Future

7) Over the next five years:
a) Percentage increase in coverage expansion

UNDER 20
20-49
50-99
100 OR MORE
NOT STATED

BC	Alta	Man	Ont	Que	Atl	Canada
9.0			0.0	14.2	3.9%	
27.2	12.5	66.6	33.3	$2 B .5$		29.4%
9.0	12.5		$23 . B$	$42 . B$		19.6%
27.2	50.0	33.3	$23 . B$			25.4%
$\frac{27.2}{100.0}$	$\frac{25.0}{100.0}$			100.0	$\frac{19.0}{100.0}$	$\frac{14.2}{100.0}$
	$\frac{100.0}{100.0}$	$\frac{21.5 \%}{100.0 \%}$				

b) Percentage of rural/total
$\begin{array}{lllllll}\text { market areas to be opened: } 62.0 & B 0.0 & 40.0 & 40.2 & 43.2 & 49.6\end{array}$
Percentage surveyed with no response:
27.2
23.B 42.B
21.5

KVA Communications and Electronics Co.
c) URBAN

Current percentage of radio channels Future percentage of radio channele Percentage surveyad with no response:

RURAL

Current percentage of radio channels

| 42.8 | 61.5 | 42.8 | 27.8 | 33.3 | 35.3% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Future percentage of radio channels
$44.7 \quad 69.5 \quad 50.0 \quad 29.8 \quad 36.5 \quad 37.8 \%$ Percentage surveyed with no response:

Future number of radio paging channels Of All Respondents

1-2	45.4	25.0		42.8	28.5	100.0	37.2\%
3-4	36.3	75.0	100.0	23.8	28.5		39.2\%
5-6	9.0			19.0	14.2		11.7\%
7-10	9.0			4.7			3.9\%
OVER 10				9.5	28.5		7.8\%
NOT STATED							

Total future number of radio paging channels: $\begin{array}{llllllll}38 & 26 & 10 & 104 & 93 & 1 & 272\end{array}$

KVA Communications and Electronics Co.

8) At the end of the next five yeers:
a) Number of pagers to be served

Of All Respondents

	BC	Alta	Man	Ont	Que	At 1	Cenada
UNDER 200	18.1	25.0		9.5	14.2	100.0	15.6\%
200-499	27.2	12.5	33.3	23.8	42.8		25.4\%
500-1500	27.2	12.5		28.5	14.2		19.6\%
OVER 1500	27.2	37.5	66.6	33.5	28.5		35.3\%
NOT STATED		12.5		4.7			3.9\%
	100.0	100.0	100.0	00.0	$\underline{00.0}$	$\overline{100.0}$	100.0\%

Percentege growth in total pagers servad:
$130.3 \quad 384.9 \quad 104.7 \quad 87.6 \quad 21.5 \quad 101.4$
Total number of pegers: $41465 \quad 29777 \quad 4400100778 \quad 22866 \quad 110 \quad 199286$
b) Percentage of tone units/ $\begin{array}{lllllll}\text { totel units: } & 38.7 & 40.4 & 10.0 & 51.7 & 21.4 & 42.0\end{array}$

Number of respondents with 50\% $\begin{array}{llllllll}\text { or more tone only units: } & 2 & 1 & 0 & 8 & 1 & 0 & 12\end{array}$

Parcentage surveyed with no response:
$27.2 \quad 50.0$
$19.0 \quad 28.5$
27.4
c) Percentage increase of annual gross revenues for paging service.

Percentage Increase
Of All Respondents

	BC	Alte	Man	Ont	Que	Atl	Canada
UNDER 25	27.2			9.5	14.2	100.0	11.7\%
25-49	9.0			9.5	71.4		15.6\%
50-74	9.0		33.3	9.5			7.8\%
75-99							
100 Or More	36.3	87.5	66.6	57.1			49.0\%
NOT STATED	18.1	12.5		14.2	14.2		15,6\%
	100.0	100.0	100.0	100.0	100.0	100.0	100.0\%

9) Possibility of becoming a franchise or co-op.

10) Plans to provide enhanced service features.

b) If dial access arrangements are reasonable.
Number of respondents: 43
Reply Of All Respondents
YES 39.5\%
NO 53.4\%
NDT STATED 6.9\%
TOTAL 100\%
c) Intention to provide dial access.
Number of respondents: 8
Rep ly Of All Respondents
YES 50.0\%
NO 50.0\%
NOT STATED \% \%
Year in which dial access will be provided.
Number of respondents: 4
Year Of All Respondents
1983-1985 \%
BEYOND 1985 100\%
NOT STATED
TOTAL 100\%

KVA Communications and Electronics Co.

Part B - II Mobila Radio Service

Numbar of respondants providing mobila radio sarvica:

BC	Alta	Man	Ont	Qua	At lantic	Canada
8	8	4	28	12	1	61

A: Existing

1) Year servica bagan

Of All Respondants

	8C	Alta	Man	Ont	Qua	AtL	Canada
BEFORE 1970	25.0		25.0	39.2	33.3		29.5%
$1970-1974$	25.0	25.0		21.4	16.6		19.6%
$1975-1979$	37.5	62.5	25.0	10.7	41.6		27.8%
1980-PRESENT	12.5	12.5	50.0	28.5	8.3	100.0	22.9%
NOT STATED	$\overline{100 \%}$						

2] Number of radio channals

	BC	Alta	Man	Ont	Qua	AtL	Canada
$1-2$	37.5	12.5	75.0	32.1	25.0	100.0	32.7%
$3-5$	25.0	25.0		32.1	33.3		27.8%
6-10	25.0	25.0	25.0	7.1	8.3		13.1%
OVER 10	12.5	37.5		17.8	33.3		21.3%
NOT STATED							
	$\overline{100 \%}$	$\overline{100 \%}$		100%	10.7		
100%		100%	$\frac{4.9 \%}{100 \%}$				

Total numbar of radio channals:
$\begin{array}{lllllll}51 & 98 & 15 & 202 & 108 & 1 & 475\end{array}$
3) Parcantaga of urban and rural rapaatars

Location Parcantaga

	BC	Alta	Man	Ont	Qua	Atl	Canada
URBAN	36.3	6.5	28.5	29.0	23.8	100.0	24.4%
RURAL	63.6	93.4	71.4	70.9	76.1	0	75.5%
NOT STATED	$\overline{100 \%}$						

Total number of rapaatars:
$\begin{array}{lllllll}22 & 46 & 7 & 110 & 63 & 1 & 249\end{array}$
4) Number of mobiles

Of All Respondents

	BC	Alta	Man	Ont	Que	At ${ }^{\text {L }}$	Canada
UNDER 25	12.5	12.5	50.0	10.7	8.3		13.1\%
25-49			25.0	10.7			6.5\%
50-99	50.0	25.0		14.2	8.3		18.0\%
100-250	12.5	25.0	25.0	28.5	25.0		24.5\%
OVER 250	12.5	37.5		25.0	58.3		29.5\%
NOT STATED	12.5			10.7		100.D	8.1\%
	100\%	100\%	100\%	100\%	100\%	100\%	100\%

Total number of mobiles:

$$
1922 \quad 2610 \quad 234 \quad 8000 \quad 4795 \quad-\quad 17,561 .
$$

Percentage surveyed with 50 or more mobiles/channel: $12.5 \quad 25.0 \quad 58.3$ — 24.5
5) Total number of customer owned mobiles: $\quad 837 \quad 1429 \quad 191 \quad 5459 \quad 1650 \quad-\quad 9566$

Percentage of customer owned/ total mobiles: $\quad 43.5 \quad 54.7$ 81.6 $68.2 \quad 34.4 \quad-\quad 54.4$

Percentage surveyed servicing more than 50\% customer owned mobiles: $\quad 37.5 \quad 50.0100 .0 \quad 64.2 \quad 25.0 \quad-\quad 52.4$

Percentage surveyed with no response:
6) Conventional single channel systems.

Reply		Of ALL Respondents
YES - single channel only		70.5\%
YES - single channel plus others		1.6\%
NO		22.9\%
NOT STATED		4.9\%
	TOTAL	100\%

KVA Communications and Electronics Co.

B: Laoking to the Future

7) Over the next five years:

a)	${ }^{\text {BC }}$		Men	Ont		At 1	Canade
	Existing number of service 17 areas:				51		
	Number of service areas to be added:	25	2	44	44	8	132
	Percentage increase in ser- 52.8 vice areas:	64.1	28.5	48.3	86.2	800.0	64.0
	Percentage survayed with no 7.7		50.0	11.7	7.1		10.3

b) New radio chennels to be added

Of All Respondents

	BC	Alta	Man	Ont	Que	At L	Canade
<2	12.5	12.5	75.0	21.4			18.0%
$3-5$	25.0	12.5		25.0	33.3	22.9%	
$6-10$	12.5	62.5		28.5	33.3	29.5%	
OVER 10	12.5	12.5		7.1	25.0	11.4%	
NOT STATED	$\frac{37.5}{100 \%}$			$\frac{25.0}{100 \%}$	$\frac{17.8}{100 \%}$	$\frac{17.8}{100 \%}$	$\frac{8.3}{100 \%}$
	100.0	$\frac{18.0 \%}{100 \%}$	100%				

Total number of new redio $\begin{array}{llllllll}\text { chennels: } & 36 & 76 & 4 & 150 & 180 & \ldots & 446\end{array}$
c) New channels for trunked systems

Of All Respondents

	BC	Alta	Man	Ont	Que	Atl	Canada
$1-2$	62.5	37.5	75.0	42.8	33.3		44.2%
$3-5$				7.1	16.6		6.5%
6-10	25.0	37.5	25.0	25.0	16.6	24.5%	
OVER 10		25.0		21.4	25.0	19.6%	
NOT STATED	$\frac{12.5}{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	$\frac{3.5}{100 \%}$	$\frac{8.3}{100 \%}$	$\frac{100.0}{100 \%}$	$\frac{18.0 \%}{100 \%}$
	BC	Alta	Man	Ont	Que	Atl	Canada

Total number of new redio chennets for trunked systems:
$\begin{array}{lllllll}28 & 29 & 4 & 101 & 57 & - & 219\end{array}$
Percentege of new redio channels for trunked systems:

```
77.7 38.1 100.0
```

KVA Communications and Electronics Co.
d) Existing percentage of rural/total channels: Parcentage rural/total channels in 5 years: Percentage surveyed with no rasponse:

41.1	61.2	33.3	41.0	58.3	-	48.8
40.2	70.1	47.3	49.7	33.6	-	48.0
7.7		25.0	8.8	14.3	100.0	8.9

8) At the end of the naxt five years:
a) Number of Mobilas

Of All Respondents

	BC	Alta	Man	Ont	Que	At 1	Canada
UNOER 25							
25-49	12.5						1.6\%
50-99		12.5					1.6\%
100-250	25.0	12.5	25.0	14.2	25.0		18.0\%
OVER 250	25.0	75.0		60.7	75.0		57.3\%
not stated	37.5		75.0	25.0		100.0	21.3\%
	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Total number of							
Percantage growth in mobiles:	157.8	116.4	6.8	113.5	179.4	-	137.1
Percentage of trunked mobiles Of All Respondents							

	日C	Alta	Man	Ont	Que	Atl	Canade
UNDER 30\%	75.0	75.0	100.0	60.7	50.0	-	63.9%
30\% OR MORE	25.0	25.0		39.2	50.0	-	36.0%
NOT STATEO	$\overline{100 \%}$						

c) Annual gross revenues at the end of five years from mobile radio services

Gross Revenues (000's) Of All Respondents

	BC	Alta	Man	Ont	Que	AtL	Canada
UNDER 100	50.0	62.5	50.0	64.2	41.7	100.0	50.9%
$100-250$		37.5		17.8	25.0		18.0%
250-500					16.6		3.2%
500-1,000				3.5	8.3		8.4%
1,000 OR MORE	12.5					3.2%	
NOT STATEO	$\frac{37.5}{100 \%}$	100\%	$\underline{50.0}$	$\frac{14.2}{100 \%}$	$\frac{8.3}{100 \%}$	$\frac{100 \%}{100 \%}$	$\frac{16.3 \%}{100 \%}$

Percentage growth in gross revenues for all respondents:

$$
\begin{array}{ccccccc}
B C & \text { Alta } & \text { Man } & \text { Ont } & \text { Que } & \text { Atl } & \text { Canada } \\
204.3 & 81.8 & 15.6 & 113.1 & 77.3 & 100.0 & 103.8
\end{array}
$$

9eJ Future offering of limited interconnect.

Reply	Of All Respondente	
YES		88.5%
NO	4.9%	
NOT STATED		$\frac{6.5 \%}{100 \%}$

b) Future offering of limited interconnect on e trunked eyetem. Number of Reepondente: 54

Reply Of All Reepondents

YES		68.5%
NO		22.2%
NOT STATED		$\frac{9.2 \%}{100 \%}$

c) Preference for interconnect cepebility.
Number of Respondents: 54

Interconnect Capability Of All Reepondents

MANUAL PATCHING		3.7%
AUTOMATIC DIAL ACCESS		94.4%
NOT STATED		1.8%
	TOTAL	100%

10a] Significant increaes in portable use.

Reply	Of All Respondents	
YES		65.5%
ND		31.1%
NOT STATED	$\frac{3.2 \%}{100 \%}$	

b) Number of respondents: 40

Current system - percentage of Mobiles: 90.7
Portables: 9.2
c] Number of Respondents: 40
Future system - percentage of Mabiles: 71.7
Portables: 27.7

KVA Communications and Electronics Co.
Part B - III Mobile Telephone Service
Number of respondents providing mobile telephone service: 10
A: Existing

1) Total number of MRS channals carrying radio-telephone traffic: 48Percantage of MRS chennels carrying redio-telephone traffic: 10.1Percantage surveyed with no response: 0.0
2) Total number of mobile telephone units: 425
Percentage of Mobile radio units that are mobile telephone units: 2.4
Percentage surveyed with no response: 0.0
3] Total number of customer owned units: 298
Percentage of customer owned/total units: 70.1
Percentage surveyed with no response: 0.0
4] Number of mobile telephone calls per month/channel: 244
Number of mobile telephone calls per month/unit: 27
Number surveyed with more than 100 calle per month/channel: 10
Percentage surveyed with no response: 30.0
3) Interconnect agreament

EXPERIMENTAL PERMANENT NOT STATED

Of All Respondents

	40.0%
	30.0%
TOTAL	30.0%
100%	

$$
00
$$

$$
30.0 \%
$$

$$
30.0 \%
$$

tOTAL

$$
100 \%
$$

B: Looking to the Future
$\begin{array}{llccccccc}\text { 6a) } & \text { Number surveyed intending } & \text { BC } & \text { Alta } & \text { Man } & \text { Ont } & \text { Que } & \text { Atl } & \text { Canada } \\ \text { to get involved in cellular: } & 5 & 6 & 3 & 20 & 9 & 1 & 44\end{array}$
b) Percentage of MRS Users that could
Of All Respondents be attracted to cellular

LESS THAN 5\%
10\%
15\%
OVER 15\%
NOT STATED

BC	Alta	Man	Ont	Que	Atl	Canada
40.0	16.6	66.6	60.0	55.5		50.0%
20.0	50.0	33.3	15.0	22.2		22.7%
				11.1		2.2%
40.0	16.6		25.0	11.1	100.0	22.7%
$\overline{100 \%}$	$\frac{16.6}{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	$\frac{2.2 \%}{100 \%}$

KVA Communications and Electronics Co.

		BC	Alta	Men	Ont	Que	Atl	Caneda
c)	Estimated number of	113000	3200	1000	6520	252456	15000	391176
	Collular units in 1990:							
	Percentege surveyed with no response:	60.0	66.6	33.3	45.0			38.6
	Retio of Portebles/Mobiles in 1890:	1.8	0.3	0.6	0.4	0.9	4.0	1.2
	Percentage surveyed with	40.0	66.6	33.3	30.0	11.1		31.8
	no response: Number surveyed who feel				1	1		2
	10\% or more will be portable:							
	Number surveyed who feel	2			4		1	7
	50\% or more will be portable:							
d)	Fectors impecting e cellular offering:							
	Of All Respondents with Ranking Fector 1 (most adverse) 5 (leest edverse)							
	TELCO FACILITY AGREEMENTS			50.0\%				2\%
	TELCO INTERCONNECT RATES			20.4\%				5\%
	telco cellular paicing			11.3\%			11.	
	RCC IMPLEMENTATION DELAYS			9.0\%			15.	
	TELCO NATIONWIDE PROMOTION			6.8\%			43.	
e)	Dependence of cellutar success on MSAT							
	Rep ly		Of All Respondents					
	YES		54.5\%					
	NO NOT STATED		43.1\%					
			2.4\%					
			TOTAL		100\%			
f]	MSAT/cellular scenarios		Of All Respondents					
	SINGLE STANDARD		56.8\%					
	dual standard mobile terminal		22.7\%					
	NOT STATED		20.4\%					
			total		100\%			

Conventional Mobile Telephone

7e) Number surveyed plenning to implement mobile telephone service:

$B C$	Alte	Men	Ont	Oue	AtL	Cenade
3	8	2	17	8	1	39

KVA Communications and Electronics Co.
b) Number of service erees

Of All Respondents

	BC	Alte	Men	Ont	Que	AtL	Cenede
$1-2$		50.0	100.0	64.7	50.0		53.8%
$3-5$	100.0	37.5		35.2	25.0		35.8%
OVER 5					25.0	100.0	7.6%
NDT STATED		10.5					
	100%	100%	100%	100%	$\overline{100 \%}$	100%	$\frac{2.5 \%}{100 \%}$

Total number of service erees:
$\begin{array}{lllllll}11 & 17 & 2 & 36 & 37 & 8 & 111\end{array}$
c] Number of redio chennels
Of AlL Respondents
$1-2$
$3-5$
6-10
OVER 10
NOT STATED

BC	Alta	Man	Ont	Que	Atl	Cenede
	12.5	50.0	11.7	12.5		12.8%
33.3	25.0	50.0	47.0	37.5	38.4%	
	37.5		41.1	25.0	100.0	33.3%
33.3	12.5			25.0	10.2%	
$\frac{33.3}{100 \%}$	$\frac{12.5}{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	100%	$\frac{5.1 \%}{100 \%}$

Totel number of redio chennels:

20
59
98
100
10
293
d) Percentege surveyed with no response:
$33.3 \quad 12.5$
$11.7 \quad 12.5$
12.8

Percentege of conventional mobile telephone units/totel mabile radio:34.3 $22.1 \quad 140.0 \quad 34.1 \quad 208.6 \quad \begin{array}{lllllll} & - & 90.2\end{array}$ Total number of conventional mobile telephone units: $1700 \quad 1250350 \quad 582527958 \quad 500 \quad 37583$
e) Direct diel in both directions Reply

YES
NO
84.6\%

NOT STATED
12.8\%
total
2.5\%
f] Type of system
YES
NO
Of All Respondents

	YES	NO	NOT STATED	TOTAL
SINGLE CHANNEL				
TRUNKED CHANNELS	43.5%	20.5%	35.8%	100%
IMTS OR AMTS	64.1%	10.2%	25.6%	100%
DTMF	33.3%	28.2%	38.4%	100%
OTHER	58.9%	7.6%	33.3%	100%
	5.1%	30.7%	64.1%	100%

8) Air Ground Redio Telephone Service

Interest in providing service in;
e) principel eree
b) other erees

Of ALL Respondents
YES NO NOT STATED TOTAL
69.2\% 30.7\% 100\%
38.4\% $51.2 \% \quad 10.2 \% \quad 100 \%$

Of AlL Respondents

100\%

KVA Communications and Electronics Co.

Part B - IV Mabite Radio Equipment Sales

A: Existing

Number of respondents that sell radio equipment:

BC	Alta	Man	Ont	Que	Atl	Canada
7	8	3	27	12	1	58

1] SaLes Cetegory

Sates Category	Percentage			of Sa Lee Revenues			Canada
	8 C	Alta	Man	Ont	Que	Atl	
MOBILES/PORTABLES	70.0	B6.0	41.9	75.6	28.2	-	64.8
PAGERS	8.3	0.8	38.0	10.4	59.0	50.0	19.2
FIXED STATION EOPT \&							
OTHERS	21.6	13.1	20,0	14,0	12.6	50.0	15.9
TOTAL	100\%	100\%	100\%	100\%	100\%	100\%	100\%

B: Looking to the Future
2] Future Sales Volume
Expacted five year growth Of All Respondents
in gross revenues from equipment sales

	BC	Alta	Man	Ont	Que	Atl	Canada
SUBSTANTIALLY	$2 B .5$	25.0	100.0	62.9	66.6		55.1
MODERATELY	71.4	75.0		25.9	25.0	100.0	37.9
MINIMALLY					$B .3$		1.7
NOT STATED				11.1			5.3

CANADA

(3) Capabilitias	Of All Respondents				
	YES	NO	NOT	STATED	TOTAL
trained sales employees	67.2\%	31.0\%		1.7\%	100\%
WILling to train	89.6\%	3.4\%		6.B\%	100\%
B6					
Capabilities	Of All Respondents				
	YES	NO		STATED	TOTAL
trained sales employees	57.1\%	42.8\%			100\%
WIlling to train	85.7\%	14.2\%			100\%

KVA Communications and Electronics Co.

Alberta
Capabilities : YES NO Of All Respondents

TRAINED SALES EMPLOYEES WILLING TO TRAIN

MANITOBA
Capabilities

TRAINED SALES EMPLOYEES WILLING to train

ONTARIO
Capabilities

OUEBEC
Capabilities

TRAINED SALES EMPLOYEES WILling to train

ATLANTIC PR
Capabilities

TRAINED SALES EMPLOYEES WILLING TO TRAIN
trained sales employees WILLING TO TRAIN

```
Capabilitias
```

YES
58.3\%
91.6\%
41.6\%

Of All Respondents
77.7\% 92.5\% 18.5\% NO

Of All Respondents YES
33.3\% 66.6\%

Of All Respondents
YES 66.6\% NOT STATED TOTAL
75.1\% 25.0\% 100\% 100.0\% 100\%
33.3\%

100\% NO 100\%
8.3\%
3.7\%

100\%

Of All Respondents
YES NO NOT STATEO TOTAL 100.0\% 100\%
100.0\% 100\%

KVA Communications and Electronics Co.

Part B - V Maintenance and Installation

	BC	Alta	Men	Ont	Que	At	Canede
Number of respondents providing maintenance and inetelletion e日rvicee:	8	9	3	27	12	0	59

1e] Percentage split of grose revenues - meintenence:
$\begin{array}{lllll}78.5 & 72.7 & 65.0 & 81.1 & 54.1\end{array}$
74.8

- inetellation:
$\begin{array}{lllll}20.4 & 27.2 & 34.9 & 18.8 & 45.8\end{array}$
25.1

Percentage surveyed with no reeponse:
Number of respondents thet earn 50\% or more, groee revenues from instellation: $\frac{0}{100 \%} \quad \frac{0}{100 \%} \quad \frac{0}{100 \%} \quad \frac{0}{100 \%} \quad \frac{0}{100 \%} \quad \overline{100 \%} \quad \frac{0}{100 \%}$
b) Percentege eplit of meintenence revenuee - mobile redioe, portablee \& pagers:

- fixed equipment:

89.0	81.8	84.6	74.0	83.9		81.3
10.9	18.1	15,3	$\frac{25.9}{}$	16.6		18.6
100%	100%	100%	100%	100%	100%	100%

Percentege surveyed with no response:
Number surveyed with 10\% or lees of fixed equipment revenues:
$\begin{array}{lllll}5 & 4 & 0 & 17 & 5\end{array}$
31
c) Inetalletion and maintenence of equipment not sold by respondent

Heply
Of ALI Respondents

YES
NO
NOT STATED

> | BC | Al.te | Men | Ont | Que | AtL | Canede |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 87.5 | 100.0 | 100.0 | 81.4 | 83.3 | | 86.4 |
| 12.5 | | | 14.8 | 16.6 | | 11.8 |
| | | | | 3.7 | | |
| 100% | $\overline{100 \%}$ | $\overline{100 \%}$ | $\frac{100 \%}{100 \%}$ | $\overline{100 \%}$ | $\frac{1.6}{100 \%}$ | |

2) Revenue growth of maintenance and instellation services compared to overall growth

Growth
Of All Respondents

HIGHER
LOWEA
NOT STATED

BC	Alta	Man	Ont	Que	AtL	Canada
62.5	66.6	33.3	59.2	83.3		64.4
37.5	33.3	66.6	25.9	16.6		28.8
			$\frac{14.2}{}$			
$\overline{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	$\frac{6.8}{100 \%}$	$\overline{100 \%}$	$\overline{100 \%}$	$\frac{100 \%}{100 \%}$

3) Number of Locations with equipped shops and trained technical staff:

Percentage of Locations with equipped shops and trained technical staff/total Locations:

BC Alta Man Ont Que Att Canada
$\begin{array}{llllll}13 & 11 & 3 & 106 & 18 & 151\end{array}$
$68.4 \quad 27.5 \quad 42.8 \quad 75.7 \quad 36.0$
58.9

KVA Communications and Electronics Co.
Part B - VI Others
VI A Date Services
1a) Respondents interested in providing dete messege services: 52Total respondents: 78
b) Choice of data message processorOf All Respondents

OHN
SHARED NOT STATED
55.7\%
34.6\%

9,6\% 100\%
2) Interest in marketing receivers

Reply Of All Respondents
YES
82.0\%

NO
11.5\%

NOT STATED
6.4\%

TOTAL $\quad \frac{60 \%}{100 \%}$
3) Threat to radio paging operations.
Reply Of All Respondents

> YES
17.9\%
NO
69.2%
NOT STATED
12.8\%
TOTAL 100\%
VI B Mobile Data
4a) Customer nead for mobile data terminals.
Reply Of All Respondents

YES

52.5\%
NO
33.3\%
NOT STATED
14.1\%
total 100\%
b) Future markets available for mobile deta channels.

Reply		Of All Respondents
YES		60.2%
NO	.	23.0%
NOT STATED	TOTAL	16.6%
		100%

KVA Communications and Electronics Co.

VI C Radio Links

KVA Communications and Electronics Co.

KVA Communications and Electronics Co.

Part C - MSAT - Related Ouestions	BC-13				
	YES	Of All Respondents NO NOT STATED			TOTAL
1) Agreement to in-depth personal interview	76.9\%	\% 23.0			100\%
2) Willingness to provide necessery details	84.6\%	\% 15.3			100\%
3) Participation in service trials	84.6\%	\% 15.3			100\%
4] MSAT Business Opportunities	HIGH		All Re	ondents STATED	TOTAL
mobile radio service					
Despatch service to intercity trucking operations.	46.1	15.3	23.0	15.3	100\%
Emergency communications sytams for forest fire control, disaster reliaf.	38.4	38.4	7.6	15.3	100\%
Emargency communications in wilderness arees.	30.7	7.6	46.1	15.3	100\%
Wide aree distress communications with vehicles, boets end eircreft.	46.1	7.6	30.7	15.3	100\%
mobile telephone service					
Public telephone service on public transport vehicles such as intercity buses, treins, ferries and aircraft.	46.1	23.0	15.3	15.3	100\%
Remote end rurel telephone service.	53.8	15.3	15.3	15.3	100\%
Extension of the mobile celluler service.	30.7	23.0	38.4	7.9	100\%
mobile paging service					
True wide erea peging.	54.1	15.3	23.0	7.6	100\%
mobile data service					
Wide eree voice end dete communicetions					
Remote monitoring of cergo being trensported by reil or road.	30.7	30.7	30.7	7.6	100\%
Monitor, elerm end control facilities for remote equipment, pipelines, waterpumps, etc.	53.8	23.0	15.3	7.6	100\%
Date acquisition and control.	53.8	7.6	30.7	7.6	100\%

KVA Communications and Electronics Co.

Part C - MSAT - Related Duestions	ALBERTA - 11				
	YES 0		Of AlL Raspondents NO NOT STATED		TOTAL
1) Agreement to in-depth personal interview	90.9\%		9.0\%		100\%
2] Willingness to provide necessery details	100.0\%				100\%
3) Participetion in eervice trials	100.0\%				100\%
4) MSAT Business Opportunities	Of All Respondents				TOTAL
Mobile radio service	HIGH	MEDIUM		$\begin{aligned} & \text { NOT STATED } \\ & \text { TEREST } \end{aligned}$	
Despatich service to intercity trucking operations.	27.2	36.3	36.3		100\%
Emargency communications sytems for forest fire control, disester relief.	45.4	36.3	18.1		100\%
Emergency communications in wilderness ereas.	36.3	63.6			100\%
Wide aree distress communicetions with vehicles, boets and aircraft.	36.3	18.1	45.4		100\%
MOBILE TELEPHONE SERVICE					
Public telephone service on public transport vehicles such as intercity buses, trains, ferries and aircraft.	18.1	18.1	63.6		100\%
Remote and rural telephone service.	54.5	27.2	18.1		100\%
Extension of the mobile celluler service.	36.3	27.2	36.3		100\%
MOBILE PAGING SERVICE					
True wide area peging.	54.7	18.1	27.2		100\%
MOBI LE DATA SERVICE					
Wide eree voice end dete communications					
Remote monitoring of cargo being transported by reil or road.	9.0	54.5	36.3		100\%
Monitor, alarm and control facilities for remote equipment, pipelines, waterpumps, etc.	81. ${ }^{\text {B }}$	18.1			100\%
Date acquisition and control.	27.2	63.6	9.0		100\%

KVA Communications and Electronics Co.

KVA Communications and Electronics Co.

Part C - MSAT - Related Ouestions	ONTARIO - 84				
	YES	Of All Respondents NO NOT STATED			TOTAL
1) Agreement to in-depth personal interview	76.4\%	4\% 17.6		5.8\%	100\%
2) Willingness to provide necessery details	82.3\%	3\% 11.7		5.8\%	100\%
3) Participation in service trials	73.5%	5\% 17.6		8.8\%	100\%
4] MSAT Business Opportunities	Of All Respondents				
mobile radio service			INTE		
Despatich service to intercity trucking operations.	50.0	23.5	8.8	17.6	100\%
Emergency communications sytems for forest fire control, disaster relief.	23.5	26.4	26.4	23.5	100\%
Emergency communications in wilderness arees.	14.7	26.4	38.2	20.5	100\%
Wide area distress communications with vahicles, boats and aircraft.	26.4	35.2	14.7	23.5	100\%
Mobile TELEPHONE SERVICE					
Public telephone service on public transport vehicles such as intercity buses, trains, ferries and aircraft.	41.1	20.5	17.6	20.5	100\%
Remote and rural telephone service.	32.3	41.1	8.8	17.6	100\%
Extension of the mobile cellular service.	44.1	26.4	5.8	23.7	100\%
mobille paging service					
True wide area paging.	56.1	11.7	11.7	20.5	100\%
Mobile data service					
Wide area voice and data communications					
Remote monitoring of cargo being transported by rail or road.	14.7	32.3	29.4	23.5	100\%
Monitor, alarm and control facilities for remote equipment, pipelines, waterpumps, etc.	47.0	20.5	11.7	20.5	100\%
Data acquisition and control.	23.5	50.0	8.8	17.6	100\%

KVA Communications and Electronics Co.

Part C - MSAT - Releted Ouestions	OUEBEC - 14				
	YES	Of All Respondents NO NOT STATED			TOTAL
1) Agreement to in-depth personal interview	92.			7.1\%	100\%
2) Willingness to provide necessary details	85.			14.2\%	100\%
3) Participation in sarvice trials	92.			7.1\%	100\%
4] MSAT Business Opportunities	Of All Respondents				
MOBILE RAOIO SERVICE			INTE	EREST	
Despatch sarvice to intercity trucking operations.	57.1	35.7		7.1	100\%
Emergency communications sytems for forest fire control, disaster relief.	50.0	35.7	7.1	7.1	100\%
Emergency communications in wilderness areas.	64.2	14.2	14.2	7.1	100\%
Wide area distress communications with vahicles, boats and aircraft.	50.0	21.4	21.4	7.1	100\%
MOBILE TELEPHONE SERVICE					
Public telephone service on public transport vehicles such as intercity buses, trains, ferries and aircraft.	50.0	35.7	7.1	7.1	100\%
Remota and rurel telephone service.	42.8	42.8	7.1	7.1	100\%
Extansion of the mobile celluler service.	35.7	28.5	28.5	7.3	100\%
MOBILE PAGING SERVICE					
True wide araa paging.	35.9	28.5	28.5	7.1	100\%
Mobile data service					
Wide area voice and data communication for ambulance patient care.	42.8	35.7	21.4		100\%
Remote monitoring of cargo being transported by rail or road.	14.2	50.0	35.7		100\%
```Monitor, alerm end control fecilities for remote equipment, pipelines, waterpumps, etc.```	28.5	50.0	21.4		100\%
Oete ecquisition end control.	21.4	64.2	14.2		100\%

KVA Communications and Electronics Co.

Part C - heat - Relatad Ouestions	ATLANTIC - 2				
	YES	Of All Respondents NO NOT STATED			TOTAL
1) Agreement to in-depth personel interviow	50.0\%	50.0\%			100\%
2) Willingness to provide necessary details	50.0\%	\% 50.0\%			100\%
3) Participation in service trials	60.0\%	\% 50.0\%			100\%
4) MSAT Business Opportunities	HIGH M	$\begin{array}{r} \text { Of } \\ \text { MEDIUM } \end{array}$	All Re LOW	ndents STATED	TOTAL
mobile radio service			INTER		
Despatch service to intercity trucking operations.	50.0			50.0	100\%
Emargency communications sytems for forest fire control, disaster relief.	60.0		50.0		100\%
Emergency communications in wilderness araas.			50.0	50.0	100\%
Wide area distrese communications with vehicles, boats and aircraft.	50.0		50.0		100\%
mobile telephone service					
Public telephone service on public tranaport vehicles such as intercity buses, traing, ferries and aircreft.		50.0		50.0	100\%
Remote and rural telephone service.	100.0				100\%
Extension of the mobila cellular sarvica.	50.0			50.0	100\%
mobile paging service					
True wide area paging.	100.0				100\%
mobile data service					
Wide erea voice and data communicetions for embulance patient care.	50.0			50.0	100\%
Remote monitoring of cargo being transported by rail or road.	50.0			50.0	100\%
Monitor, alerm and control facilities for remote equipment, pipelines, waterpumps, etc.	100.0				100\%
Data acquisition and control.	50.0			50.0	100\%

## TABLE OF CONIENIS

## 1. Introduction

2. Demand Model
2.1 Methodology
2.2 ROC Units by Service Type
2.3 Demand Elasticity
2.4 RCC Demand Summary by Province

## 3. Definitions \& Assumptions

3.1 Rentals/Sales
3.2 Access Charges
3.3 Airtime Charges
3.4 Installations
3.5 Removals
3.6 Repairs
3.7 Displacements
3.8 Promotion
3.9 Selling
3.10 Billing \& Collection
3.1l Capital Requirements
4. Elements of Impact Analysis Model
4.1 Typical Worksheet
4.2 Revenues
4.3 Expenses
4.4 Capital Requirements \& Associated Costs
4.5 Sensitivity Analysis

Appendix I Rationale for Traffic Loading of MDS \& MPS
II Average Investment/Unit Analysis

1. Introduction This report describes how TASK 6 (Impact Analysis) of the Statement of Work (SOW) was carried out.

Data collected in our baseline study, TASK 3, which resulted in 80 replies from the 200 RCCs surveyed, was used in conjunction with our in-depth study of 30 RCCs (TASK 5) in early February 84 to provide the required input values for the impact analysis model.

The objective of the impact analysis was to assess the economic and financial effects of MSAT on the RCC industry in each province - the Atlantic provinces being grouped together as one entity of RCCs.

This document puts together assumptions, definitions and methodology that have been previously published to the Scientific Authority as separate documents or letters, and in addition provides the precise methodology used to derive input values for the model from data obtained through the indepth interviews and from the Scientific Authority.

## 2. Demand Hodel

### 2.1 Methodology

The methodology in arriving at MSAT market projections for the years 1989 to 2002, based on ROCS forecasts, was to derive as much information through interviews with the participating RCCs and to ascertain market projections based on historical trends and present RCC market conditions.

The opportunities that MSAT represent in terms of traditional RCC applications, private systems (traditionally out of reach of the RCCs) and the suppressed market (for which terrestrial systems do not meet the communication coverage requirements) were explored in detail with each participating ROC.
Based on the data obtained from the participating RCCs, the MSAT sample forecast was derived. Adjustments to collected data were made for:

- high forecasts in comparison to other inputs from RCCs of similar size and geographic location.
- unusual growth rates between various point years.

Special attention was given to ascertain airtime prediction per service category from the participating RCC in order to arrive at a realistic average usage per month.

### 2.1.1 Comparison of User Projections by Province

The total MSAT demand was derived by comparing the MSAT sample derived with the 1983 total and sample terrestrial demand. From our baseline questionnaire and the licensing data as provided by DOC, we could determine with reasonable accuracy, the number of licensed mobiles in each province that are served or have been sold by RCCs. Thus a ratio was derived for each service based on Terrestrial total demand/Terrestrial sample demand. This ratio when multiplied by the MSAT sample demand produces the MSAT total demand. Adjustments to total MSAT demand figures were made to account for minor RCCs (2 base stations or less). All metropolitan minor RCCs were excluded since the input results indicated demand could be satisfied by the larger metropolitan RCCS, who could more effectively finance and compete for MSAT services. One half of the minor rural ROCs were excluded since lack of demand and financial restrictions would inhibit them from becoming involved. The remaining minor rural RCCs are expected to take part in MSAT, since they will be the only service providers available in given areas.
2.1.2 Analysis of ROC Penetration by Province Within the provincial MSAT demand derived through the in-depth interviews, the following analysis (test) was conducted:

The RCC penetration was determined based on the modified Woods Gordon results as provided by Telesat. As a test of its validity, this ratio was compared to the RCC penetration of the current terrestrial market.

A second test involved utilizing the results of the in-depth questionnaire, in which the RCCS were asked to predict increases in demand if competition changed to exclude either Telesat or the Telcos. RCC penetration was thus determined from the additional demand to be served by Telesat or the Telcos, as predicted by ROCs.

KVA Communications and Electronics Co.
2.2 ROC Onits by Service Type Mobile Telephone Service (MIS) is assumed to be a one-on-one communication for the call duration. For example, one mobile telephone talking to a telephone in the PSIN. On the other hand, Mobile Radio Service (MRS), is assumed to be point-to-multipoint, with several users sharing a single MSAT channel for the call duration. For Data Aquisition and Control Systems (DACS) and Mobile Paging Service (MPS), an RCC paging teminal can request an MSAT channel and then send calls at rates of 10 or more per minute to receivers. This means that many more DACS and MPS units can be accommodated within the capacity of MSAT. Since MSAT is capacity limited to serve MRS and MLS units, we assumed that the ROC demand developed in 2.0 above represented the demand for MRS and MIS units only. MRS and MRS units with voice/data capability were presumed to offer as much traffic load as voice only units. DACS and MPS units were assumed to be data only units whose traffic load could easily be accommodated within the capacity of MSAT. See Appendix I for the rationale for this assumption. For MPS we assumed that every 190 MPS units served would reduce the MRS/MLS capability by 1 unit. For DACS this ratio was 3:1 for polling units and 106:1 for alarm units.

### 2.2.1 MRS/MIS Demand Within the total ROC penetration some units would

 be MIS, depending on the interconnection scenarios in each province. The MIS proportion of RCC units would vary. The present ratio of MRS within the total licensed radios in Canada was reported in Woods Gordon phase A at 12.5\%, and all these units are served by Telcos.By the time MSAT is operational cellular radio will be interconnected in all provinces except Manitoba. Woods Gordon's estimate for radio license in 2001 is $1,085,000$. Cantel, the RCC cellular licensee, has estimated the cellular market at $95,000-105,000$ by 1995. If we assume that 2001's MTS market is mostly cellular and that it will approach 140,000-150,000 units then the proportion of MDS to total licensed radios will still be in the order of 12.5\%. This was verified through KVA research. MIS was determined as specified in 2.1.1. in which the ratio of terrestrial total to terrestrial sample demand is multiplied by MSAT sample demand.
2.2.2 DACS Demand By presenting the benefits of DACS, in terms of reduced airtime charges per message and capability to interface directly with terrestrial data networks, we determined a ratio of DACS units sold to MRS \& MIS units sold. Each RCC in our in-depth survey was asked questions relating to his market from which KVA determined DACS/MRS and DACS/MIS ratios for each province. Care was taken to ensure that averaged results were for homogenous markets. We averaged the results from several RCCs operating in similar markets but only averaged results from dissimilar markets if they appeared to be unaffected by the nature of the markets, eg. urban-vs-rural.
2.2.3 MPS Demand From our baseline questionnaire, we detemmined the total RCC population of pagers on terrestrial systems by aggregating the responses of the 80 respondents in appropriate categories of urban-vs-rural and used this data in conjunction with DOC licensing data. On a provincial basis, we produced a reasonably close estimate of the number of pagers in service on RCC systems. By asking RCCs in our in-depth interview how many MSAT MPS units they could sell in proportion to growth in their existing services, we obtained a short term annual sales ratio, and by aggregating the units in service we obtained an estimate of MSAT/terrestrial MPS units for the long term (1995-2001). Judgement was used to calculate the expected demand in the early years.
2.3 Demand Elasticity Changes in MSAT market projections by service and province were determined through RCC input and KVA industry knowledge. The following methodology was used.

Each RCC was asked to determine the impact on his projected market demand (i.e. $+/-8$ change) when specific MSAT factors were varied. The impact was determined for each of the following factors:

$$
\begin{aligned}
\text { Terminal costs } & \text { - higher prices } \\
& \text { - lower prices } \\
\text { Airtime costs } & \text { - higher prices } \\
& - \text { lower prices } \\
\text { Access charges } & \text { - higher prices } \\
& \text { lower prices }
\end{aligned}
$$

and variations in the competitive scenarios.

KVA Communications and Electronics Co.

The RCCs were then asked to rank the factors in order of highest impact to lowest impact based on the variations above. Through data analysis KVA determined each factors impact on RCC market projections. Market projection curves were then derived considering the impact that these factors would have. The overall impact on market demand was determined by comparing these market projection curves to those derived initially when all factors were constant.
2.4 ROC Denand Summary by Province For each province we developed a table as follows:
a) MSAT Projections for Canada
b) MSAT Distribution to "This Province"
c) MSAT Units in Service with RCCs
d) MSAT MRS Units with RCCs
e) MSAI MIS Units with RCCs
f) MSAT DACS Units with RCCs
g) MSAT MPS Units with RCCs

Sect. 2.0
Sect. 2.0
Sect. 2.0
Sect. 2.1.1
Sect. 2.1.1
Sect. 2.1.2
Sect. 2.1.3

### 3.0 DEPTNITION \& ASSUMPTIONS

In the following sections many references are made to determining unit costs and ratios with the RCCs. These refer to incremental costs or revenues. For example, if an MSAT radio is expected to take $25 \%$ longer to install than an existing radio the incremental cost is $25 \%$ higher than the current RCC cost. As much as possible we have attempted to find an industry average and only used province or size differentiations where the answers were too significantly different to be averaged.
3.1 Bentals/Sales From our baseline questionnaire we determined the rental ratio on present RCC channels. We then determined how this will change with MSAT given the investment and carrying costs of an MSAT mobile are greater than the costs for equipment currently on rental.

A basic difference between MSAT and current operations is that RCCs sell equipment that is used on private systems as well as their own channels. This has resulted in a present situation where nationwide, of all licensed mobiles on MRS channels, approximately 50\%, are customer provided. In addition, the RCCS have sold and maintained a further percentage of all licensed mobiles. MSAT will change this situation somewhat because the RCCs will obtain a bigger percentage market share as service providers. This may affect their ability to penetrate the private and telco market shares by selling MSAT terminals into those market shares.

Consequently, we have assumed that because the RCCs have been very successful in not only selling and renting radios on their own channels but also in penetrating the market for private and telco channels that on MSAT they will at least hold their own. All MSAT terminals in service with RCCs will be presumed to have been rented or sold by ROCs.
3.1.1 Ratio of Rental/Sales By discussion with the sample ROCs, KVA determined an appropriate rental/sales ratio for RCC units in service. The existing ratio of mobile radios on terrestrial RCC channels is in the range 508 to $55 \%$ for rentals across Canada on a provincial basis. This was used as our starting point.
3.1.2 Revenues from Sales and Bentals Based on the price per terminal as provided by $D O C / T e l e s a t$, the net profit on each sale is the selling price less the cost of an MSAT temminal on delivery to an RCC. Where the gross margin varies from $R C C$ to $R C C$, we did not average significantly different answers.

The rental rate for an MSAT terminal was based on rental rates of $\$ 15 /$ month per $\$ 1000$ retail. Thus the rental rate of a $\$ 3,000$ terminal would be \$45/month.
3.1.3 Replacement Sales After several years MSAT radios must be replaced. Rental customers will have their units replaced on a regular basis by the RCC, based on new models, high failure rates and other factors. The replacement of these units is covered in capital require-ments to replace

KVA Communications and Electronics Co.
rental units. Sold units are replaced with some trade-in allowance which reduces the net profit/unit on the sale.

Assume that new MRS units always sell at $\$ 3,000+25 \%$. If a user trades in after three years, he might be offered $\$ 750$ for his old radio. The RCC will then sell this old radio at perhaps $\$ 1,000$ to another customer (including refurbishing costs). Assuming the $\$ 750$ offered as trade-in offsets completely the net profit on the sale then the net profit of $\$ 750$ is really earned on reselling the trade-in. We can assume that someone willing to pay $\$ 1,000$ for a trade-in is not a candidate for a new unit at $\$ 3,000+25 \%$ so there is no additional loss of profit.

If the user trades in after 5 years, we can assume the radio has less resale value. Assume the RCC discounts $\$ 250$ on the $\$ 3,000+25 \%$ to keep the user on his MSAT service. The RCC will resell the unit at a price which maintains his overall net profit. Between the MSAT and trade-in sale, the RCC will have earned overall net profit of $\$ 750$.

In almost all situations we can conclude and assume that the net profit on a replacement unit will be the same for the prices and margin we are considering in this study. This net profit was determined from the in-depth interviews.
3.2 Access Charges The revenue earned from an access charge was established with ROC input through the in-depth interviews. We assumed that those RCCs which don't invest in base stations would obtain access to MSAT for their customers through another RCC. As explained in Appendix II, the cost trade-off between ownership of MSAT bases or access through other RCCS should not result in higher costs. The RCC providing access will probably charge a lower access charge to the RCC who has the customers. This cost is about $50 \%$ of his own cost of owning the MSAT base which means that both RCCs have similar margins on access revenues to cover billing and collection and associated service costs. Consequently, we can assume that incremental costs of access charges within the ROC industry are adequately covered by the ownership costs associated with the average investment per unit in base station equipment. No separate line item was included for access charges paid to other RCCs by the serving RCC.
3.3 Airtime Charges As discussed in Attachment 9, the investment-vs-airtime cost trade off appears to favour SHF base stations over UHF base stations at almost all volume levels because a UHF base station call will incur double the airtime charge per minute of an SHF base station call to cover the Telesat cost of a double hop connection for UHF-UHF calls.

The average airtime used was determined based on the RCCS inputs. The airtime revenue per unit per month was based on:
a) ratio of SHF to UHF airtime
b) cost/minute of UHF \& SHF airtime
c) airtime minutes/unit/month

For DACS units, we have used the monthly airtime figure as provided by DOC and Telesat. Revenues were determined based on the ratio of SHF to UHF airtime.

For MPS units, we have projected only link applications and have used the airtime provided as specified in the "Study Assumptions", derived as follows:

2 pages $/$ day, 30 days $/$ month $=60$ pages $/$ month
60 pages $/$ month a $6 \mathrm{sec} . /$ page $=360 \mathrm{sec} . /$ month $=6 \mathrm{~min} . / \mathrm{month}$
3.3.1 Airtime Revenues An RCC to generate the necessary profit margin will add 258 to Telesat airtime charges. The airtime revenue will thus be $25 \%$ higher than the airtime costs.
3.3.2 Airtime Charges Between ROCS We assume that an RCC who does not own a base station and obtains MSAT access through another RCC will negotiate a revenue sharing agreement. For example, the serving RCC may collect $\$ 2.00$ per minute and the RCC providing MSAT access will pay Telesat $\$ 1.50 /$ minute. In whatever manner this 50 cents/minute is apportioned within the RCC industry does not affect our impact analysis and no attempt at apportionment is therefore made.

KVA Communications and Electronics Co.
3.3.3 Other Usage Related Charges MTS and DACS units making calls into the long distance networks from MSAT base stations and gateways will incur charges from the telephone and data network operators. We assume that these charges are transferred directly to the account of the user generating the charge, just as the Telesat charge is passed through on a per minute basis. However, we will assume no discount benefit to the RCCs from these charges since we have no reasonable basis to assume such a discount based on present regulations. Also, based on present regulations, we have no reasonable basis to assume that RCCs will be permitted to resell telephone calls at a premium. Thus, for these items, revenues equal costs as they flow through the RCC system.

### 3.4 Installations The model calculates installations by province for each service from the following formula: <br> Total annual installations = installation of sold units (S) <br> ```+ installation of rental units (R)``` <br> $(S)=$ increase in customer-provided units base from previous year plus replacement units [see Section 3.4.3] <br> $(\mathrm{R})=$ increase in rental units base from previous year plus removals during the year.

### 3.4.1 Installation Costs

In discussion with each RCC, we determined the average number of hours involved in installing trunk-mount radios and then obtained an estimate of the increase in hours that the RCC visualized for MSAT terminals. Using the RCC's loaded labour rate, we obtained an installation cost per terrestrial mobile and a comparative cost for an MSAT mobile.

### 3.4.2 Installation Charges

Each RCC was asked to assess a reasonable charge for an MSAT installation based on the comparative costs derived in 3.4.1. We assumed that installation charges would be levied for all installations, rental, new sales and replacement. The monthly cost of rental does not include the installation charge. This is assumed to be collected up front on all installations.

## KVA Communications and Electronics Co.

3.4.3 Replacement Installations This item, which appears in formula (3) above is calculated as follows: Equipment sold has a service life of 7 years so that after some years of the program we can assume that $15 \%$ of all equipment in the customer-provided base will be replaced annually, with an attendant installation charge. In the early years of the program, the equipment is new and replacement rates will be lower. Accordingly, we assumed the following replacement rates:

1988	18	1991	118
1989	48	1992	148
1990	78	1993 onwards	158

The replacement rate for each year is therefore the $\%$ from the above table of the total customer-provided units in service.

### 3.5 Bemovals

We assumed that every installation of a replacement radio is associated with removal of an old radio, [A].

From ROCs, we determined the ratio of rental terminations per year within the rental base. This percentage was applied each year to determine the number of removals per year, [B].

Total removals, therefore, equaled $[\mathrm{A}]+[\mathrm{B}]$.
3.5.1 Removal Cost In comparison with a trunk mount radio, each RCC was asked to determine the number of hours and costs using loaded labour rates to remove an MRS, DACS or MIS unit. Results were averaged to provide a typical removal cost for each province.
3.6 repairs While new equipment should require fewer repairs than the long term average, the length of repairs may increase due to unfamiliarity with the equipment. On balance, it was assumed that repair rates (failures per 100 units in service) would remain constant and that each repair had a fixed cost including parts and labour.

KVA Communications and Electronics Co.
3.6.1 Bepair (Failure) Rates While rental units were assumed to have higher failure rates than customer provided units (evidence seemed to point to ownership inducing more careful usage), RCC inputs indicated that failure rates amongst rental and customer owned units were consistent. Thus with each ROC we determined failure rates, or intervals between repairs for trunk mount radios and, by comparison, determined appropriate failure rates for MSAT terminals in terms of failures per 100 units per year. The categories were:
a) MRS, MIS, DACS, MPS rentals
b) MRS, MTS, DACS, MPS customer provided
3.6.2 Repair Cost Each RCC was asked to assess the repair cost of an MRS, MIS, DACS unit in terms of hours to repair x loaded labour rate. Results were averaged to determine the typical repair cost per service type.
3.6.3 Repair Charges Repairs to rental units are not billed directly. Repairs to customer provided units are billed directly. RCCs were asked to assess a reasonable charge for a repair costed as in 3.6.2. Since a reasonable concensus existed on a typical repair markup we marked up the average cost by the typical markup. Otherwise we would have averaged the results of the charge estimation from each ROC. The result was a typical repair charge for billable repairs to customer-provided units.
3.7 Displacements Our objective in displacements was to determine an average cost to the RCC industry for loss of one rental unit or one customer-provided unit. Each was treated separately. The displacement cost was assumed to include loss of revenue, reduction in expenses and changes in carrying costs to arrive at a net displacement cost.

### 3.7.1 Rental Units For each rental unit displaced from an existing

 channel, we asked the RCC the net cost/month assuming that the revenue source is lost forever. We assumed no capital costs associated with the displacement by assuming that the unit will be used to either serve a new growth user or replace an aging rental unit.3.7.2 Customer-Provided Dnits For end users who could use either MSAT or terrestrial systems, there will be a displacement cost associated with the purchase of an MSAT terminal. Assuming the revenues from installation and repair of an MSAT unit and terrestrial unit are similar, the net result of an MSAI unit sale displacing a sale onto a terrestrial channel would be a reduction in gross profit. This reduction in gross profit would be the displaced profit from the terrestrial sale.
3.8 Promotion Each RCC was asked to provide of of revenues devoted to promotion and advertising. The amount, in early years of the program, was determined by asking RCCs to estimate the increased $\%$ of revenues for early years of the program. Answers in terms of 8 of revenues were averaged across the RCCs by province.
3.9 Selling We presumed that the cost of selling a rental unit would be different than selling a customer-owned unit in that the sales commission plan and salaries might be different. Therefore, we asked RCCs to estimate, based on each individual RCC's sales projections, what their selling costs would be in terms of selling hours per mobile unit rented or sold and how the selling hours could be costed in terms of loaded labour rate or loaded labour rate + commission. The objective was to determine an average selling cost per unit rented, and per unit sold. Results were averaged by Province.
3.10 Billing and Collection Costs These are the incremental costs associated with billing and collection from MSAT customers. Billing airtime and access charges may be a new process for many RCCs. Their own bill from Telesat, or other common carriers, will have to be broken down to individual units that made or received the calls. With some RCCs this may involve the introduction of a computerized bill generation process which would not be contenplated except for MSAT. If so, then the costs of the mechanization are incremental to MSAT and are included. The RCC was also asked to include the cost of bad debts as a collection cost. Billing and collection is related to the number of customer accounts. Each account may represent more than one MSAT mobile, We obtained an RCC estimate of the billing and collection cost

KVA Communications and Electronics Co.
associated with an MSAT customer account and obtained an estimate of average numbers of MSAT mobiles expected per account. Our objective was an average billing and collection cost per MSAT mobile, which was derived by averaging cost per account divided by the average number of MSAT mobiles per account to provide the average billing and collection cost per mobile.
3.11 Capital Requirements The RCC will invest in SHF base stations, and mobile units required to provide rental service. This study does not take account of any investment in RCC sold units that become customer-provided units in service. This cost is assumed to be covered by customer capital or financial house capital on a third party lease arrangement. The profit on the sale is a source of working capital for the ROC.

Capital is required for new growth and replacement, and for inventory to support growth and rental service. The latter element is generally called non-revenue earning investment (NREI). Each element is discussed in the following sections.
3.11.1 New Growth Hobiles Each mobile terminal is assumed to cost the end user the prices as outlined in "The Socio-Economic Input Study Assumptions".

By establishing the required gross margin per MSAT terminal, through the in-depth questionnaire, the investment required by the RCC per terminal was determined.

The RCC has no investment in mobile terminals for customer provided equipment. For rental units in service, the model calculates the capital requirements in each year as follows:

Capital requirements for mobile terminals
= increase in rental units base during the year

- rental service terminations during the year
+ NREI to cover growth (\% of annual increase)
+ replacement (\% based on curves in Fig. 3.1)

If this result is negative, then there is no capital required to maintain rental service and the investment of previous years can be used to cover new growth and NRET requirements.

The over-investment will be carried forward to future years until it is "used up" in the capital requirements calculation for each year.
3.11.2 Inventory Each RCC was asked for his estimate of the inventory required to support a given annual increase in sales and rentals. The answer was requested in terms of units in stock to support annual sales and rentals of 100 units. The additional capital requirements for inventory in each year is therefore the number of units $x$ cost per unit per 100 units increase in the units in service less the inventory investment from the previous year.
3.11.3 NRESI This is expressed as 8 of units held in repair stock to support the rental units in service. Each RCC was asked to estimate an NREI percentage appropriate to MSAT rentals for each service. This percentage will be applied to the capital requirements calculation in 3.11.1.
3.11.4 Fixed Bquipment Investment RCC systems will require investment in fixed equipment which includes only SHF base stations, UHF base stations presumed to be customer owned. Appendix II explains how an average investment per unit in service is calculated. The total investment for each year is therefore the average investment per unit $x$ the number of units in service.

The average investment/unit calculated in accordance with Appendix II takes account of several possibilities: some RCCs serve small volumes of units through SHF bases at high average investment/unit; other RCCs obtain access through larger RCCs who serve 100 or more units at low average investment/unit; or larger RCCs who have their own customer base to support an investment in SHF base equipment.

The average investment/unit is a weighted average of several mixes of the possibilities described above. Also in the average investment used for each year, we included an allowance for spare capacity. In the early years of the

KVA Communications and Electronics Co.
program, many ROCS will invest in fixed equipment that will not reach capacity for two or three years. To capture this impact we have assumed that in the mature period after several years of growth, RCCs will on average run their systems with spare capacity in the order of $15 \%$ ie. $85 \%$ utilization. We assumed the longer term to be year 5 onwards. Utilization estimates for the earlier years were as follows:

Year 1.	$50 \%$	
Year 2	$60 \%$	
Year	3	$70 \%$
Year 4	$80 \%$	

3.11.5 Fixed Equipment-Capital Requirements The investment curve generated in 3.11.4 provided the total investment level for each year of the program for each province. The capital requirements for each year were:
> increase in investment level from previous year + replacement of obsolete or unrepairable equipment

Replacement was assumed to be zero since fixed radio equipment is assumed to have an average service life of 15 years.
3.11.6 Fixed Equipment-Maintenance The expense of maintaining SHF bases and associated fixed equipment was determined as a percentage of installed cost (investment value) and applied to the total investment value in each year to calculate the maintenance expense for that year. Each RCC was asked to provide estimates of this maintenance cost percentage and results were averaged to produce a percentage that was applied on a provincial basis.
3.11.7 Capital Cost Allowances For calculating taxes, any incremental operating profits must be reduced by the annual capital cost allowances to produce income taxable at the marginal tax rate. The two pools of capital, represented by total investment in mobile terminal rentals, and total investment in fixed equipment, were multiplied by the appropriate rates for classes of equipment of this nature. The sum of the two capital cost allowances are the total capital cost allowance for each year. The class rates were assumed to remain unchanged during the study period.

## 4. ELEARNIS OP THB IMPACT ANALYSIS MOOKL The specifications for the

 Impact Analysis Model are included in a separate document.Using the ROC demand tables generated in Section 2.3, and the values assumed or generated in the relevant sections of Section 3, KVA produced an input worksheet for each province for each service type.
4.1 Typical Worksheet A typical worksheet is included below.

Run No.
Date: $\qquad$ (in 1984 constant dollars)

			YEAR										
1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002

$$
\begin{array}{ll}
\text { unit/month } & - \text { MRS } \\
& - \text { MPS } \\
& - \text { MIS } \\
& - \text { DACS }
\end{array}
$$

- DACS

AC2: Telesat wholesale access fees/unit/month

- MTS
- DACS

ATl: Retail end user
airtime charges/unit/
minute (in current 1984
dollars) SHF - MRS

- MPS
- MIS
- DACS

AT2: Wholesale airtime costs/unit/minute
charged by Telesat (in
current 1984 dollars)
SHF - MPS

- MRS
- NRS
- DACS

SP: Retail selling price
of a mobile - MRS
terminal

- NPS
- PDS
- DACS

BP : Wholesale teminal
costs to

- MRS
service
- MPS
provider
- MTS
- DACS

Province:
Economic Model Input RCC Impact Study
(in 1984 constant dollars)


Scenario II - most
likely price
Total Units - MRS

- MPS
- MPS
- MDS
- DACS

A: Percentage of
Units Switching Over

- MRS
- MPS
- MRS
- MTS
- DACS
wo: \% of units
replaced per year
AP: Pronotional cost
- \% of revenue

AFI: Avg. fixed
investment/unit

PSHF: Proportion of total airtime minutes on SHP

- DACS

ACl : Retail access/ charge (current 1984 dollars)
Marked-up Telesat access
cost/unit/month

- MRS
- RPS
- MIS
- DACS

Capital investment
recovery component/

KVA Communications and Electronics Co.

Run No.
Date
$\qquad$

ECONOMIC MODET INPUTS
RCC Impact Study
(in 1984 constant dollars)
Province:
SERVICE
Revenue Expense \& Investment Components MRS MPS MTS DACS
LS: Percentage of Switchover MSAT mobile terminals rented out by service provider:

RA: Percentage of Additional MSAT mobile terminals rented out by service provider:

Scenario II - Optimistic Price + \% change in total units:

Scenario II - Pessimistic Price - \% change in total units:

Scenario I - Most Likely Price $+\%$ change in total units:

Scenario III - Most Likely Price $+\%$ change in total units:
p: proportion of fixed investment in common base stations and gateways that is replaced:

IR: Mobile Terminal installation charge/ installation:

REP: Mobile Terminal repair charge/ repair:

RF: Mobile terminal rental charges/unit/ month/\$1000 equivalent retail price:

CT: Average monthly profit per mobile displaced by MSAT:

IC: Mobile terminal
installation cost/installation:
URC: Mobile temninal removal cost/
renoval:
RPC: Mobile terminal repair cost/repair:

Run No. $\qquad$ Date $\qquad$
ECONOMIC MODEL INPUIS
RCC Impact Study
(in 1984 constant dollars)
Province:
SERVICE
Revenue Expense \& Investment Components MRS MPS MTS DACS

VII: Assumed value of a mobile terminal trade-in:

FR: Failures/100 mobile terminals

- rental:
- customer owned:

ISC: Selling cost/mobile terminal:
BBD: Billing \& collection cost/mobile terminal

- rental:
- custoner owned:

UHFP: Premium for UHF Airtime:
(ratio of UHF airtime cost to SHF
airtime cost)
MCFC: Maintenance cost fixed common
base stations and gateways

- \% of investment per annum:

NREI: $\%$ of rental mobiles held in repair stock:

ST:
\% of rentals that are terminations/year:
Y: \% of units installed that are reinstallation - rental: - custoner owned:

LTC: Labour training cost/mobile terminal/annum:

M: \# minutes of airtime/unit/annum:
Hotes: $\mathrm{CF}=\mathrm{ST}+\mathrm{Y}$ (Rentals)

KVA Communications and Electronics Co.

Province:
Economic Model Inputs RCC Study Inputs

Run No.: Date :

Discount Rate in percent:
Tax Rate in percent:
Debt Ratio:
Cost of Debt Capital:
Price Deflator:
Price Inflator:
Capital Cost Allowance Rate for Base
Stations and Gateways:
Capital Cost Allowance for
Mobile Terminals:
4.2 Revenues From worksheets developed by KVA in accordance with Section 4.1, the economic model generates the incremental RCC revenue projections by province by service type in the following categories for each year 1988 through 2001:

- Total revenue from equipment rentals and sales
- Access charges
- Airtime charges
- Installation
- Repairs

The annual revenue totals were present worthed.
4.3 Expenses Incremental annual costs in the following categories for each province, by service type, were generated by the model and present worthed.
o Access charges to Telesat or other providers

- Airtime charges to Telesat or other providers
- Installations
- Removals
- Repairs
- Selling costs
- Billing and Collection costs
- Net cost of displacements
- Maintenance of fixed equipment
- Advertising and promotion costs
4.4 Capital Bequirements and Associated Costs The model calculates the annual capital requirements for fixed equipment and mobile terminals, which includes new growth and replacement. The expenses associated with the total capital invested - taxes and capital cost allowances - are computed for each year. The present worth of capital requirements and associated expenses were also calculated.
4.5 Sensitivity Analysis By varying a few of the inputs, such as: units in service, price of MSAT mobile terminals and average investment/mobile, the model measures sensitivity to changes in these input elements.

KVA Communications and Electronics Co.

APPERDIX I

RATIONALE FOR TRARFIC LOADING

OR DACS \& MPS

## APPENDIX I

## RATIONALE FOR TRAFFIC LOADING OF DACS \& MPS

The user demand curves for MSAT are based on MRS and MIS traffic, which has message lengths of tens of seconds and blocking probabilities of P. 1 to P. 25

By contrast, DACS and MPS messages or calls are short in duration and can be stored for forwarding as airtime or processing time is made available.

For example, mobile paging calls are of three types - tone only, tone $\&$ voice or tone \& message display. None of these calls generally exceeds 8 seconds [tone \& voicel. With tone only pagers, 5 messages can be sent in 1 second. Thus MSAT, which can typically handle the busy hour traffic load of 0.0106 erlangs of message time per MRS or MIS mobile, can accommodate at least 190 MPS units for every MRS or MTS unit displaced, assuming each MPS unit receives one call per busy hour. Terrestrial paging systems typically have average call rates of 5 per day and 1 call per busy hour. Thus, the ratio of MPS/MRS units could be as high as 190:1 for the same traffic load effect. We expect that most paging traffic on MPS will be tone only. From our baseline study we find a very high penetration of tone only to tone \& message (voice or data display), over 808 on the larger systems. Therefore we assume the 190:1 ratio is reasonable for MPS.

Statistics on DACS are harder to find and we therefore relied on the assumptions provided by Telesat/DOC. The traffic assumptions for DACS busy hour peak range are: alarm - 0.0001 erlangs polling - 0.0035 erlangs

Thus, MSAT can accomodate at least 106 alarm units or 3 polling units for every MRS or MPS unit displaced, assuming each DACS unit receives one call per busy hour.

## KVA Communications and Electronics Co.

## APPEADIX II

AVERACE INVESTHENTI
PER UNIT
ANALYSIS

1. Fixed -vs- Mobile Equipment
2. Types of Fixed Equipment, and Costs
3. Selection Trade-offs
3.1 UHF -vs- SHF
3.2 Private Base -vs- Common Base
4. Fixed Equipment Capacities \& Utilization
5. Calculations of Avg. Investment/Mobile

KVA Communications and Electronics Co.

## 1. Fixed -vg-Mobile Bquipment

Mobile equipment is treated as a capital requirement at time of sale or rental, or replacement. The investment per unit is covered in the capital requirements section 3.11 .

Fixed equipment is studied on a provincial basis as an average investment per mobile spread across the RCC systems providing access to MSAT. This average investment must take account of the types of fixed equipment that can be used to serve MSAT mobiles, the capital involved in each installation, the mix of base station capacities installed by the RCCs and the percentage utilization of the systems as a whole. For each year of the study an average investment per mobile unit is generated, taking all these factors into consideration as discussed in the following sections.

## 2. Types of Rixed Equipment and Costs

The types of base stations available for ROC customers are as follows:
2.1 UBF Private Base: Used by end-user to communicate with his MSAT mobiles. The bases can be bought by the end user or rented to the end user by the RCC. Because of the relatively low cost of UHF base stations, we have assumed that all are customer owned. UHF private bases are assumed to be located at the customer's premises.
2.2 UFF Common Base An ROC could establish a UHF base that could be used by several end-users on a time-sharing basis to communicate with their mobiles. Because few economies can be realized by using a UHF common base,particularly given the premium for UHF airtime, we have assumed no UHF conmon bases in the system.
2.3 SHF Multicircuit Common Base SHF bases can be installed with two, or more circuit capability depending on traffic handling requirements. Interface equipment is required to connect end-users to any available circuit.

## 3. Selection Trade-Offs

3.1 UAP-OS-SAF UHF calls will require a double hop connection through the SHF central control station. Thus, there is a premium placed on UHF airtime compared to SHF airtime. In addition to the type of base station (UHF or SHF, private or common), the size and the distance of an end user to a common base, must all be considered in determining the mix of base station.
3.2 Private Base-vs-Common Base A user may be many miles away from the common base operated by an RCC. Several methods exist for connecting to the common base. He can rent a telephone line or use "voicecom" service; he can use an inexpensive VHF base to access an RCC repeater at the MSAT conmon base site, or he can use his existing radio system to talk directly to a radio at the common base site that is connected to the MSAT circuits by the RCC. The most expensive option is probably a dedicated telephone line. By trunking his traffic with other users' traffic, the common base can lower the overall investment per mobile.

Our conclusion, is that most users would access their MSAT mobiles through an RCC operated common base.

A percentage of users would, however, prefer to operate private base stations. The private bases are customer owned or leased. In calculating average investment for the RCC, we were only interested in base stations that are RCC owned.

KVA Communications and Electronics Co.
4. Spare Capacity In the early years of the program we can visualize many RCCs investing in common base equipment that will leave considerable spare capacity unused through the system. We projected a percentage utilization curve for years 1988 through 1992 as indicated below. From the 5th year onwards, we assumed that percentage utilization of investment on a provincial basis had reached the normal $85 \%$ utilization, $15 \%$ spare capacity. The spare capacity percentage for each year will be translated into increased average investment/mobile to serve the RCC users in each province.

Because SHF bases can be incrementally increased in capacity without any major stair steps, we assumed that once in business the RCC will increase capacity on a basis that keeps his \% utilization around 85\%. Also, because the minimum capacity is two circuits - a small number - we can expect that percentage utilization even in the early years will be quite high. Values in the order of $50 \%$ in 1988 reaching $85 \%$ in year 5 are therefore quite reasonable.

## 5. Calculation of Average Investment/Mobile

5.1 Private Bases Average investment/mobile was calculated with the use of an IBM PC and Lotus software. The total yearly investment was calculated based on the mix of stations and their costs including federal sales tax and installation. The total yearly investment was then divided by yearly incremental increase in mobile units, to arrive at an average investment/mobile.

## SECTION 13.0

IN-DEPTH QUESTIONNAIRE

MSAT/RCC Impact Study
In-Depth Questionnaire

Company Name:
Address:
Prov:
Postal Code:
Study Contact:
Phone No:

## SECTION I - hSAT MARKET PROJECIIONS

In this section, the market potential that you can identify and project for the period of 1988 - 2002 will be discussed.

Please refer to the MSAT SYSTEM CONCEPTS (Attachment I) prior to responding to these marketing questions.

## A Mobile Radio Service (MRS)

The MSAT market potential for the RCCS in terms of Mobile Radio Services can be determined according to three (3) types of applications:

1)     - New users (communication needs cannot be met without MSAT)
2)     - Displaced users (From private terrestrial systems to MSAT)
3)     - Displaced users (From RCC systems to MSAT)

Each customer (Company) could have MSAT users of all types. In forecasting the demand for MSAT MRS, you should consider your existing customer base, your terrestrial market demand for wide area coverage and the limitations and age of existing private systems in your territory.

Your forecasts will be based on a typical price level and the "most likely" competitive environment. Subsequently at the end of the interview these price levels and the competitive scenario will be varied to arrive at market elasticity curve.

MRS (ML)
Most Likely Price Level (RCC costs)
MRS Terminal Costs $\$ 4,500$
IMRS Airtime Costs (SHF to UHF)
MRS Access Costs
$\$ 135 /$ month (rental)
\$ 1.25/minute
\$ 7.5/month
Typical RCC monthly costs (200 minutes/month)/subscriber (Rental) $\$ 392.50$
Typical RCC monthly costs (200 minutes/month)
(Customer owned equipment) $\$ 257.50$

## Competitive Scenario: No. II

RCCs compete with Telcos, CNCP and Telesat, (Telesat only deals on a limited basis, directly with national and major accounts)
Please indicate in the table below your forecast for Terrestrial and MSAT MRS Terminals, considering the following typical applications of MRS.

TYPICAL APPLICATIONS

Dispatch - system where the mobiles are directed from a central base. Typical applications include taxi companies, utility companies and municipalities.

## Network

Services - typically, a system that assists in the maintenance and operation of a network. Included are oil and gas networks, road and railway networks, and communication networks.

Emergency - typically, a system required in any emergency situation, such as forest fires and medical or police emergencies.

KVA Communications and Electronics Co.

Performance Peporting - typically, a system where mobiles report in at regular intervals. Includes crews reporting daily results and salesmen reporting daily calls.

Traffic Management - typically, a system for keeping track of the movement of goods and people.

Other - uses not covered by any of the above.

KVA Communications and Electronics Co.


## B Hobile Telephone Services (HIS)

The MSAT market potential for the RCCs in terms of Mobile Telephone services can be determined according to two types of applications.

1)     - New Users (Mobile Telephone services are not available and can not be provided economically without MSAT)
2)     - Displaced Users (From existing or planned conventional IMTS or MTS as well as from planned cellular systems)

Your forecasts will be based on your knowledge of the demand for Mobile Telephone needs in your territory, the level of penetration of the MTS Telco services in your area, the coverage limitations of existing systems and the demand analysis conducted in your area for enhanced cellular MLS services.

MTS (ML)
Most Likely Price Level (RCC costs)

MHS Terminal Costs $\$ 4,500$
MIS Airtime Costs (SHF to UHF)
mis Access Costs
\$135/month (rental)
\$ $1.25 /$ minute
\$ $7.5 /$ month
Typical RCC monthly costs (135 minutes/month)/subscriber (Rental)
$\$ 311.25$
Typical monthly costs (135 minutes/month)
(Customer owned equipment) $\$ 176.25$

## Competitive Scenario: No. II

ROCs compete with Telcos, CNCP and Telesat, (Telesat only deals on a limited basis, directly with national and major accounts)

FOCC COSTS
Terminal Costs $\$ 4,500$, Airtime Costs $\$ 1.25 /$ Min (Minimum charge $\$ 0.75 /$ Call) Access Costs $\$ 7.5 /$ Month


## C Hobile Paging Service (HPS)

The MSAT market potential for the RCCS in terms of Mobile Paging service can be determined according to three types of applications.

1 - New Users - communities that do not have terrestrial RCC paging systems, could now become satellites of existing systems by using MSAT as a link. An MSAT receiver terminal will be used to input calls to a local VHFr or UHF paging transmitter. The entry point (Paging Terminal) will remain at the prime system.

2 - Displaced Onits - Similar to the link application described (Nationwide/wide area - link application) under category l. For remote paging, some users might change their local paging service and join a nationwide service which will be linking local paging systems via MSAT.

3 - Mobile Paging Receiver - This application would serve new users that are roaming in areas where no existing terrestrial or MSAT (link) paging services are available. The MSAT paging receiver could be transportable under certain conditions, but will be primarily designed to work with a vehicular antenna.
Most Likely Price Level (roc costs)
MPS Receiver (Direct Broadcast) - \$1,000 \$ 30/month (rental) MPS Airtime Costs (Direct Broadcast) MPS Access Costs (Direct Broadcast) \$ 7.5/month \$ $1.25 /$ minute

Typical RCC monthly costs ( 6.5 minutes/month)/subscriber (Direct Broadcast) \$45.63
Typical monthly costs ( 6.5 minutes/month)
(Customer owned equipment) \$15.63

## Competitive Scenario: NO. II

RCCs compete with Telcos, CNCP and Telesat, (Telesat only deals on a limited basis, directly with national and major accounts)

KVA Communications and Electronics Co.


## D Hobile Data Services (MDS)

The MSAT market potential for the RCCs in terms of Mobile Data services can be determined according to two types of applications.

1-New Users	- Applications for data communications in areas where terrestrial services are not economically feasible.
2-Enhancement to MRS Services	- Data capability added to MSAT applications as determined in MRS Market projection.
3 - Displaced User	- From terrestrial MDT (Mobile Data Terminal) to MSAT due to coverage requirements.

MDS (ML)

Most Likely Price Level (ROC costs)
MDS Terminal Costs $\$ 3,000 \quad \$ 90 /$ month (rental)
(Data Aoquisition and Control Service (DACS)
MDS Terminal Enhancement Costs (add on to an MRS/MES terminal) \$1,000 \$30/month (rental)
mDS Airtime Costs
DACS Airtime Costs

MDS Access Costs
\$ 1.25/minute
.35/minute
(based on 4 sec packets)
\$ 7.5/month

Typical RCC monthly costs ( 50 minutes/month/subscriber unit)-DACS (Rental) $\$ 115$
Typical RCC monthly costs ( 50 minutes/month/subscriber unit) -DACS (Customer owned equipment) \$25

Competitive Scenario: No. II
RCCs compete with Telcos, CNCP and Telesat, (Telesat only deals on a limited basis, directly with national and major accounts)

ROC COSTIS
DACS Terminal Costs $\$ 3,000$, Add on to MRS/MPS $\$ 1,000$, Airtime Costs $\$ 1.25 / \mathrm{Min}$
Airtime Costs (DACS) $0.35 / \mathrm{min}$ (based on 4 sec packets) Minimum charge \$.75/Call-(MRS/MLS) Access costs \$7.5/Month


## SBCITON II TNVESIHENT REVETUES AND EXPENSES

## A Investment

1. Fixed Equipment Investment. There are several options available for investment in fixed equipment. The types of base stations available to your customers are as follows:
a) UHF Private Base - is used by the end-user to communicate with his MSAT mobiles. The base can be bought by the end-user; or rented to the end-user by the RCC and the assumed wholesale cost is $\$ 4,100$. UHF base to mobile calls will incur double the airtime costs ( $\$ 2.00$ min ) due to the double hop connection. A small user of UHF bases rented from an RCC is defined as one with 3 MSAT mobiles, and a large user of UHF bases is defined as one with 13 MSAT mobiles.
b) UHF Cormon Base - established by the RCC and can be used by several end-users on a time sharing basis to communicate with their mobiles. The assumed wholesale cost including interface equipment is $\$ 6,100$. While UHF base to mobile calls will still incur double the airtime charge ( $\$ 2.00 \mathrm{~min})_{\text {g }}$ the common base can lower the overall investment per mobile.
c) SHF Single Channel Common Base or Gateway - similar to a UHF conmon base but uses the SHF side of the satellite. The expected cost is $\$ 40,000$ from SHF common base and $\$ 66,000$ for an SHF common gateway. Airtime costs are $\$ 1.25 / \mathrm{min}$. A single circuit SHF base or gateway can accommodate 13 mobiles.
d) SHF Multicircuit Common Base or Gateway - SHF bases or gateways can be installed with three, five or ten circuit capability. Interface equipment is more complex and costly. The assumed wholesale cost including interface equipment, is assumed to be $\$ 61,000$ for a three circuit base, $\$ 77,000$ for a five circuit and 112,000 for a ten circuit base. For gateways, the costs are $\$ 80,000$ (3 circuit), $\$ 96,000$ ( 5
circuit), and $\$ 133,000$ ( 10 circuit). Arrangements can be made between ROCs to share an SHF base station. The capacity of multicircuit common bases or gateways are:

3 circuits	92 mobiles
5 circuits	188 mobiles
10 circuits	455 mobiles

Based on your knowledge of your current MRS customer base and your projected MSAT MRS and MTS customer base, estimate the mix of private bases by allocating a percentage of the units to be in service to these categories.

- private base - customer owned..................................
- private base - rented from RCC - 3 mobiles/base ..... $\%$
- 13 mobiles/base .... \%
- served by common bases ....................................ee. $\%$

100\%
2. How many MRS units are kept in stock to support annual sales and rentals of 100 units on terrestrial MRS service?
3. Based on the current number of rental mobiles in service, what percentage of these mobiles is held in repair stock to support the rental mobiles on MRS terrestrial services?

## B Revenue and Expenses

4. Specify the ratio of rental units to customer owned units that you expect with MSAT, considering the increased cost of MSAT mobiles.

	MRS	MPS
Customer owned		
Rental		
	Total	$100 \%$

5. If the cost of a mobile to you is as indicated below, what would be your estimated markup? [ ]\%

Service	Most Likely Cost	Opti-   mistic   Cost	Pessi-   mistic   Cost
MRS	4,500	3,900	5,900
MPS	1,000	1,000	1,000
MIS	4,500	3,900	58,900
MDS	3,000	2,400	3,900

6a. Currently, on average, how many hours does it take to install a trunk-mount radio?
hours

6b. What is the hourly loaded labour cost for a trunk-mount radio installation?
\$............../hr

6c. Based on the costs of an MSAT mobile being higher than a terrestrial mobile and assumed increased complexity of an MSAT mobile, how many hours would it take to install an MSAT mobile?

Service Category	Average number of Hours   per Installation
MRS	
MPS	
MTS	

7. The hourly loaded labour rate $x$ the average number of hours per installation is equivalent to your cost for mobile installation. Based on this cost, what would a customer be charged for a mobile installation?

Current terrestrial terminal \$
MSAT Terminal MRS \$
MPS \$............

MDS $\$ . \ldots \ldots . .$.
MDS \$.............
8. Based on previous experience, what percentage of the mobiles rented by you must be removed as a result of rental terminations per year?

9a. To determine the cost of removal, we need to know for current terrestrial mobiles;

- the average number of hours required per removal .hours and
- the hourly loaded labour rate $\therefore / \mathrm{hr}$ associated with a terminal removal.

9b. Comparing this with an MSAT mobile removal, on average how many hours will be required to remove an MSAT mobile -

MRS MPS MDS MIS
 .hours .hours .hours .hours
10. Estimate the failure rate of mobile radios on your current terrestrial systems per 100 base units per year.

Service Category	Failures/100   Rentals units/year	Customer orned
MRS		

11. To determine the cost of repair, estimate

- the average number of hours required per repair .hours and
- the hourly loaded labour rate $\qquad$ and
- the average cost of parts per repair associated with a mobile repair.

12. What percentage of your yearly revenues do you spend on advertising and promotion? $\qquad$

MSAT being a new service offering, will require heavier expenditures on advertising and particularly promotion, during the early years of the program. Estimate the percentage of revenues you expect to spend on advertising and promotion for the following years.

Year Advertising \& Promotion Expenditure

\% of revenue		
\%	$[$	$]$
\%	$[$	$]$
\%	$[$	$]$
\%	$[$	$]$

13a. For MRS units on current terrestrial systems, estimate your selling costs by completing the following table.

	MRS
Rental Unit	
- selling hours unit	
- hourly loaded labour	
rate	
- \% sales commission/unit	
Customer owned Unit	
- selling hrs/unit	
- hourly loaded labour	
rate	
- \& sales commission/unit	

13b. Estimate your selling costs of MSAT mobiles by completing the following table and assuming the competitive scenario II and the most likely price level.

	MRS	MPS	MRS	MDS
Rental				
- selling hrs/unit				
- \% sale commission/unit				
Customer Owned				
- selling hrs/unit				
- \% sale commission/unit				

14a. Estimate an average billing and collection cost per year per customer account, and the average number of units per account. Include the cost of bad debts as a collection cost.

Customer account	Yearly Billing and         Collection Costs		Average Number of   Units per Account	
Rental	MRS	MPS	MRS	MPS
Customer Owned				

14b. With MSAT, billing airtime and access charges may be a new process. In addition, bills received from Telesat, or other common carriers, will have to be broken down to individual units that made or received calls and this may involve the introduction of a computerized bill generation process. Taking this into consideration, estimate the average billing and collection cost per year per MSAT customer account and the average number of units per account.

Customer account	Yearly Billing and Collection Costs				Average Number of Units per Account			
	MRS	MPS	MDS	MIS	MRS	NRS	MDS	MTS
Rental								
Customer Owned								

14c. What is the hourly loaded labour cost for clerical staff who process the billing and collection data?

15a. Expressed as a percentage of investment cost, what is your annual maintenance cost for fixed equipment?
\% [ ]

15b. Expressed as a percentage of the investment value to be made in MSAT fixed equipment, what will your yearly maintenance costs be?
16. Estimate what your labour training costs will be per annum for technicians and billing clerical staff, associated with MSAT services.

Technician
\$...........
Billing clerical staff
\$.
17. Estimate as a percentage of the units installed, the number of yearly reinstallations due to car change-overs on current terrestrial systems for: mobile rental units \% [ ] customer owned units \% [ ]

## C Other

18. Estimate the engineering or consulting fees paid for every $\$ 1000$ of capital investment placed.
19. To verify results from the baseline questionnaire, please complete the following question concerning your terrestrial radio equipment sales. In this question, we require the number of units to be sold that will not go into service on one of your systems.

YEAR	Mobiles/Portables   Terrestrial Forecast   Without MSAT	Terrestrial Forecast   Without MSAT
1984		
1988		
1992		
1996		
2001		

## SECIION III HSAT MARKET PROJECIIONS - Price and Competitive Enviroment Elasticity Analysis.

In Section I of this questionnaire we addressed the market potential for the RCC based on a most likely (ML) price level, and on competitive scenario No.II under which RCCs would compete with Telcos, CNCP and Telesat, (where Telesat will restrict its end user activities to selected national and/or security sensitive accounts). We would now like to investigate the effects of some of the prices and the competitive environment.

1. Your market projections for MSAT services as discussed in Section I could vary if the price to the end user would be higher or lower. Please indicate below the $\%$ change in total units to be served based on different price levels.

- If the cost of the terminals is to be $30 \%$ higher - your forecast
reduction will be
- If the cost of the teminals is to be $30 \%$ lower - your forecast increase will be [ ]\%
- If the airtime costs are $30 \%$ higher - your forecast reduction will be

o If the airtime costs are $30 \%$ lower - your forecast increase
will be

- If the access charge is $30 \%$ higher - your forecast reduction will be [ ]\%
o If the access charge is $30 \%$ lower - your forecast increase will be

2. Your market projections for MSAT services as discussed in Section I could vary if the competitive environment is different. please indicate below the \% change based on different competitive scenarios.

- Scenario I - Telesat is excluded

The total market is shared by RCCs, Telcos, CNCP and other possible new carriers.
Market projection per Section I will increase by [ ]\%

# o Scenario II is the competitive scenario on which Section I forecasts are based. 

- Scenario III - Telcos are excluded

The total market is shared by RCCs, CNCP, other carriers and Telesat (limited to national and security sensitive accounts).
Market projections per Section I will increase by [ ]\%
3. Which of the above variables, in order of priority, represent the most important impact on the MSAT market projection. (Indicate below from 1 to 4 with 1 representing the most important impact variable).

User Terminal Costs [ ]<br>Airtime Costs [ ]<br>Access Costs [ ]<br>Competitive Scenarios [ ]

## Section V - MSAT Trial Services

1) Are you interested in participating in a trial MSAT service in order to assess the performance and operating effectiveness of the system. YES [ ] NO [ ]
2) Would you wish to begin this trial service immediately upon launch in 1988?

YES [ ] NO [ ]

If no, at which time?
Within first six months [ ]
3) Which MSAT service offerings would you be interested in on a trial basis?

MRS	$[$	$]$
MRS	$[$	$]$
MPS	$[$	$]$
MDS	$[$	$]$

## SECTION 14.0

ECONOMIC MODEL

THE ECOMOMIC MODEL

## CONIENRS

EQUATIONS *1 - 115

1. GENERAL
2. MRS SECTOR
3. MIS SECIOR
4. MPS SECIOR
5. MDS SECIOR
6. SUMMARY OF ALIL SECIORS (MRS, MIS, MPS, DACS)
7. CAPITAL INVESTMENI

- FIXED CAPITAL ITEMS
- USER EQUTPMENT

8. CCA
9. TAXES PAID
10. SALVAGE VALUE
11. CASH FLOW

ELEATENS OR THE MOORS

Let $\mathrm{U}=$ total number of MSAT units registered for year in Province Let $u=$ proportion of MSAT units licensed to ROC's for year in Province Let $Y_{t}=U . u=$ total number of RCC licensed MSAT units for year in Province Let $R S=Y_{1} \cdot Y_{T}=$ MSAT MRS units licensed to RCC's in Province for year Let TS $=Y_{2} \cdot Y_{T}=$ MSAT MTS units licensed to RCC's in Province for year Let PS $=y_{3} \cdot Y_{T}=$ MSAT MPS units licensed to RCC's in Province for year Let $D S=y_{4} \cdot Y_{T}=$ MSAT NDS units licensed to RCC's in Province for year where $y_{1}+y_{2}+y_{3}+y_{4}=1.0$ and are specified

MSAT HRS Onits in Province to ROC's

Let $R S=a_{1} \cdot R S+\left(1-a_{1}\right) \cdot R S$

> where $a_{1}=$ Units switching to MSAT from Terrestrial for this service
> Total MSAT Units in this service.
and where $a_{1}<l .0$, and is specified in decimal notation.

Thus: $\mathrm{a}_{1} \cdot \mathrm{RS}=$ \# of Switchover units in total to MSAT, for this service $\left(1-\mathrm{a}_{1}\right) \cdot \mathrm{RS}=$ \# of Additional units to MSAT, this service.

KVA Communications and Electronics Co.

For RIRS MSAT Service: Stock Analysis and Flow Analysis

## Stock Analysis:

$\left.\begin{array}{ccc}\begin{array}{c}\text { Total MSAT MRS } \\ \text { Stock } \\ \text { RS }\end{array} & =\begin{array}{cc}\text { Total MSAT MRS } \\ \text { Switchover Units }\end{array} & +\begin{array}{c}\text { Total MSAT MRS } \\ \text { Additional Units }\end{array} \\ \left(1-a_{1}\right) \cdot R S\end{array}\right]$

Where:

$$
\begin{aligned}
& \mathrm{IS}_{1} \leq 1.0 \text { and } \geq 0 \\
& 0 S_{1} \leq 1.0 \text { and } \geq 0 \\
& \text { and } L S_{1}+O S_{1}=1.0 \\
& \mathrm{OA}_{1} \leq 1.0 \text { and } \geq 0 \\
& \mathrm{RA}_{\mathrm{I}} \leq 1.0 \text { and } \geq 0 \\
& \text { and } \mathrm{OA}_{1}+\mathrm{RA}_{1}=1.0
\end{aligned}
$$

Stock of User Owned MRS Units $=S U O M R=O S_{1} \cdot a_{1} \cdot R S+O A_{1} \cdot\left(1-a_{1}\right) \cdot R S$
Stock of Rental MRS Units $=S R O M R=L S_{1} \cdot a_{1} \cdot R S+R A_{1} \cdot\left(1-a_{1}\right) \cdot R S$

Flow Analysis

$$
\begin{aligned}
\mathrm{RS} & =a_{1} \cdot R S \quad+\left(1-\mathrm{a}_{1}\right) \cdot R S \\
\text { or: } \quad R S_{t}-R S_{t-1} & =a_{1} \cdot\left(R S_{t}-R S_{t-1}\right)+\left(1-a_{1}\right) \cdot\left(R S_{t}-R S_{t-1}\right)
\end{aligned}
$$

Annual Increment of User Owned Units $=I U O M R=O S_{1} \cdot a_{1}\left(R S_{t}-R S_{t-1}\right)$

$$
+O A_{1} \cdot\left(1-a_{1}\right)\left(R S_{t}-R S_{t-1}\right)
$$

Annual Increment of Rental Units

$$
\begin{aligned}
=I R O M R & =L S_{1} \cdot a_{1}\left(R S_{t}-R S_{t-1}\right) \\
& +R A_{1} \cdot\left(1-a_{1}\right)\left(R S_{t}-R S_{t-1}\right)
\end{aligned}
$$

## Bevenues to RCC's from MSAT HRS Service:

ADDIMIONAL UNIPS - AII revenues are a gain; no offsetting revenue losses.

1. Access Fees: EQMATION
$R_{I}=\left(1-a_{1}\right) \cdot R S \cdot\left(A C_{1} \cdot 12\right)$
where $A C_{l}=T$ The monthly Access Charge per unit of NRS. and $R_{1} \quad=$ The incremental $M R S$ revenues from access charges - additional units.
2. Airtime Fees:

Equation $\$ 2$
$R_{2}=\left(1-a_{1}\right) \cdot R S \cdot\left[A T \cdot\right.$ It $\cdot$ PSHF $_{1} \cdot M_{1}+U H F P_{1} \cdot A I_{I t}\left(I-\right.$ PSHF $\left.\left._{1}\right) \cdot M_{1}\right]$
where $\mathrm{Ar}_{\mathrm{I}}$ = Per Minute Air Time Charge to MRS user for SHF
PSHF $_{1}=$ Proportion of Total MRS Air Time Minutes on SHF vs UHF
$M_{1} \quad=$ Assumed annual \# Minutes of Air Time per unit for MRS service
$\mathrm{UHFP}_{1}=$ Price premium charged over SHF Air Time Charge to UHF user for each minute of Air Time
$R_{2} \quad=$ The incremental MRS revenues from Airtime Fees additional units.
3. Contribution from Sale of this Year's Additional Units:

EQUANION $\$ 3$

$$
R_{3}=O A_{1} \cdot\left(1-a_{1}\right)\left(\mathrm{RS}_{t}-R S_{t-1}\right) \cdot\left(S P_{1}-B P_{1}\right)
$$

where $O A_{1}=$ Proportion of new MRS additional units that are user owned $\mathrm{BP}_{1}=$ Buying Price to ROC of the MRS unit in $\$$ $\mathrm{SP}_{1}=$ Selling Price by RCC to User of MRS unit in $\$$ $R_{3}=\$$ Contribution to RCC from sale of MSAT MRS units to users per annum.
4. Contribution from Rental of Additional Units:

EqUATION ${ }^{-1} 4$
$R_{4}=R A_{1} \cdot\left(1-a_{1}\right) \cdot\left[R S \cdot\left(R F_{1} \times 12\right)\right]$
where $R A_{1}=$ Proportion of additional MRS units that are rented out as RCC owned
$\mathrm{RF}_{1}=$ Monthly Rental Fee to user for MSAT MRS user equipment $R_{4}=$ Dollar contribution per annum to ROC from rental of MRS MSAT units to users

SWITCHOVER UNITS - These revenues have some offsets to be taken into account. (Except for Equation \#5)
5. Access Fees:

EQUATION $\$ 5$
$R_{5}=a_{1} \cdot R S .\left(A C_{1} \cdot 12\right)$
where $R_{5}=$ Incremental MRS MSAT Revenues from access charges switchover units. There are no offsets. Other elements are as previously set out.
6. Aintine Fees:

EQUATION $\$ 6$

$$
\begin{aligned}
R_{6}= & {\left[a_{1} \cdot R S \cdot\left[A T_{1 t} \cdot P S H F_{1} \cdot M_{1}+U H F P_{1} \cdot A T_{I t}\left(1-\mathrm{PSHF}_{1}\right) \cdot M_{1}\right]\right.} \\
& \left.-a_{1} \cdot R S \cdot\left(C T_{1} \cdot 12\right)\right]
\end{aligned}
$$

where $C T_{1}=T$ average monthly contribution to an ROC from each terrestrial Mobile Radio served by him.
$R_{6}=$ Dollar contribution from airtime charges from switchover units.
Other elements are as have been described.
7. Contribution from Sale of this Year's Switchover Units:

EQUATION 77
$R_{7}=O S_{1} \cdot a_{1}\left(R S_{t}-R S_{t-1}\right) \cdot\left[S P_{1}-B P_{1}-V I I I_{1}\right]$
where $\mathrm{OS}_{1}=$ Proportion of Switchover Units in MSAT MRS that are User Owned
$\mathrm{VII}_{1}=$ Assumed Value of Trade In allowed to user on Terrestrial Mobile Radio
$R_{7}=\$$ Revenues from Sale of Units to this year's Switchovers.
8. Contribution from Rental of Switchover Units:

EqCattion \#
$R_{8}=L S_{1} \cdot a_{1} \cdot R S \cdot\left[\mathrm{RF}_{1} \cdot 12\right]$
where $L S_{1}=$ The proportion of MRS Switchover units that are rented
$R_{8}=\$$ Revenues from Rentals to Switchover Units
9. Repair Revenues:

## EQUATION 39

$\mathrm{R}_{9}=\left(\mathrm{REP}_{1} \cdot \mathrm{SUOMR} \cdot \mathrm{FR}_{1}\right)$
where $\mathrm{REP}_{1}=$ Repair Revenues per MRS MSAT Unit each repair, on average SUOMR = Stock in year, of user owned MRS MSAT Units

Equation \#25
$=O S_{1} \cdot a_{1} \cdot R S+A_{1} \cdot\left(1-a_{1}\right) \cdot R S$
$\mathrm{FR}_{1}=\#$ of times on average that MRS MSAT equipment is repaired. ie. \# of times per annum.
$\mathrm{R}_{9} \quad=$ Incremental MSAT MRS Income from Repairs.
10. Installation Revenues:

EqUATION \#10
$\left.\mathrm{R}_{10}=\left[\mathrm{IR}_{1} \cdot(\mathrm{IUOMR}+\mathrm{IROMR})+\mathrm{RS} . \mathrm{CF}_{1}\right)\right]$
where $I R_{I}$ = Average Installation Revenue per MSAT MRS Unit
IUOMR = Annual Increment of User Owned MSAT MRS equipment
IROMR = Annual Increment of ROC Rental Equipment Units
$\mathrm{CF}_{1}=$ The Relevant 'Churn Factor' < 1.0 for MSAT MRS Installations. Caused by Reinstallations - car changeovers, service terminations and worn-out items.
$R_{10}=$ Incremental MRS Income from MSAT Units Installation, per annum.

Equation \#23
Note IUOMR $=O S_{1} \cdot a_{1}\left(R S_{t}-R S_{t-1}\right)+O A_{1} \cdot\left(1-a_{1}\right)\left(R S_{t}-R S_{t-1}\right)$

Equation \#24
and $\operatorname{IPOMR}=L S_{1} \cdot a_{1}\left(R S_{t}-R S_{t-1}\right)+R A_{1} \cdot\left(1-a_{1}\right)\left(R S_{t}-R S_{t-1}\right)$

The Total Incremental Revenues to ROC from MSAT MRS = RRS

Where RRS $=\left[R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}+R_{7}+R_{8}+R_{9}+R_{10}\right] .1(1+i) t-1$
where $(1+i)^{t-1}$ is the Revenue inflation index appropriate to the year, for MRS Service

## Expenses to ROC's from MSAT MRS Service:

11. SHE Air Time Cost:

## EQTATION

$C_{1}=\left[R S_{. M} \cdot\left(1-\mathrm{PD}_{1}\right) \cdot \mathrm{AT}_{1 t} \cdot \mathrm{PSHF}_{1}\right]$
where RS $\quad=$ Total Stock of MSAT MRS units
$M_{1}=$ Assumed Annual \# Minutes of Air Time per MRS MSAT Unit.
$\mathrm{PD}_{1}=8$ Discount from user air-time charge at which RCC can purchase time. Discount in decimal notation.
$A I_{1}=$ Air Time charge per minute to end user for MRS MSAT' time

PSHF $_{1}=$ Proportion of MSAT MRS Air-Mime on SHF vs UHF
$C_{1} \quad=$ Incremental MSAT MRS Costs to RCC associated with buying SHF Air-Time
13. UHE Aic Time Cost:

EqUATION $\$ 13$
$\mathrm{C}_{3}=\left[\mathrm{RS}_{\cdot} \mathrm{M}_{1} \cdot\left(1-\mathrm{PD}_{1}\right) \cdot \mathrm{AT}_{1 \mathrm{t}} \cdot \mathrm{UHFP}_{1} \cdot\left(1-\mathrm{PSHF}_{1}\right)\right]$
where $\begin{aligned} U H F P_{1}= & \text { UHF Price Cost Premium over SHF } \\ C_{3}= & \text { Incremental MSAT MRS Costs associated with buying UHF } \\ & \text { Airtime }\end{aligned}$

## 14. Advertising \& Promotion: A Function of Revenues

EqUATION 114
$C_{4}=\left(A P_{1} \cdot R R S\right)$
where $A P_{1}=T$ The $\%$ of MSAT MRS revenues (in decimal terms) that is spent on advertising and promotion.
$\mathrm{C}_{4}=$ Incremental MSAT MRS Costs associated with advertising and promotions
15. Incremental selling Cost: for example - Selling Commission

EQUATION *15
$\mathrm{C}_{5}=\left[\mathrm{ISC}_{1} \cdot\left(\operatorname{IUOMR}+\operatorname{IROMR}+\left(S \mathrm{I}_{1} \cdot R S\right)\right)\right]$
where $\mathrm{ISC}_{1}=$ The per unit $\$$ Cost of Selling Conmission
$S T_{1}=$ Proportion of MSAT MRS stock of units that are service terminations each year (in decimal notation).
$C_{6}=$ Incremental MSAT MRS Costs associated with Billing and Bad Debts.
16. Billing and Bad Debt Expense:

EQUATION $\ddagger 16$
$\mathrm{C}_{6}=\left(\mathrm{BBD}_{1} \cdot \mathrm{RRS}\right)$
where $\mathrm{BBD}_{1}=8$ of MSAT MRS revenues (in decimal terms) that goes to service billing expense and bad debts.
$C_{6}=$ Incremental MSAT MRS Costs associated with Billing and Bad Debts.

## KVA Communications and Electronics Co.

17. Labour Training Costs:
$C_{7}=\left(L_{I C}, R S\right)$
where $\operatorname{LTC}_{1}=$ Labour Training Costs per annum per MSAT MRS unit, in Dollars
$C_{7}=$ Labour Training Costs in connection with MSAT MRS Service

Note: When aggregating Ars Labour Training Costs, guard against double or treble counting in adding all services.
18. Repair Expenses - User Equipment:

EQCATION $\# 18$

Repairs to both Rental Equipment and User Owned Equipment
$\mathrm{C}_{8}=\left(\mathrm{RPC}_{1} \cdot \mathrm{RS} \cdot \mathrm{FR}_{1}\right)$
where $R P C_{1}=$ Average repair costs per MSAF MRS unit, each repair
$\mathrm{C}_{8}=$ Incremental MSAT MRS Equipment Repair Expenses
19. Installation Expenses - User Equipment:

Installation expenses arise from both new installations and re-installations.
$C_{9}=\left[\mathrm{IC}_{1} \cdot\left[(I U O M R+I R O M R) .+\mathrm{CF}_{1} \cdot R S\right]\right] \quad$ EQUATION $\# 19$
where $\mathrm{IC}_{1}=$ Average Installation Cost per MSAT MRS unit
$\mathrm{CF}_{1}=$ The 'Churn Factor' as before regarding reinstallations
$C_{9}=$ Increnental MSAT MRS user-equipment installation expenses
20. Removal Expenses - User Equipment:

Costs of removing units from vehicles
EQUATION $\# 20$
$C_{10}=\left(C F_{1} \cdot R S\right) \cdot U R C_{1}$
where $\mathrm{CF}_{1}=$ The Churn Factor $<1.0$, caused by service terminations, units wearing out, and car changeovers.
URC $_{1}=$ Unit removal cost in $\$$ per MSAT MRS unit
$\mathrm{C}_{10}=$ Incremental MSAT MRS removal costs
21. Non Revenue Earning Inventory: Holding Expense:

NREI is assumed from industry knowledge to be 108 of the total \# of units
$C_{11}=\left[0.1 . S R O M R . \mathrm{BP}_{1}, O C F\right]$
EQUATION \#21
where $O C F=$ The opportunity cost of funds to an RCC, or the cost of borrowing
$\mathrm{C}_{11}=$ The holding expense on NRET MSAT MRS equipment

The Total Incremental Expenses to RCC from MSAT MRS = CRS
Where CRS $=\left[C_{1}+C_{3}+C_{4}+C_{5}+C_{6}+C_{7}+C_{8}+C_{9}+C_{10}\right.$ $+C_{11}+C_{12.1 .1(1+i)}{ }^{t-1}$

Where $(1+i)^{t-1}$ is the Cost Inflation Index appropriate to MRS expenses for the year.

## MSAT HIS Units in Province to ROC's

The analysis in this section proceeds in a similar way to that in the MSAT MRS section. The same cost and revenue items will be considered here, as before with MSAT MRS. The same symbols as before will be utilized - the only difference being that MRS items had the subscript ${ }_{l}$, and MIS items below have the subscript $2_{2}$. Later MPS will have the subscript 3 to its symbols, and DACS will have the subscript 4 .

Accordingly:

$$
\begin{aligned}
\text { Let } T S & =a_{2} \cdot T S+\left(1-a_{2}\right) T S \\
\text { Where } \mathrm{a}_{2} & =\frac{\text { Units switching to MSAT from Terrestrial this service }}{} \\
& \text { Total MSAT units in this service }
\end{aligned}
$$

, and where $\mathrm{a}_{2}<1.0$

Thus:

$$
\begin{aligned}
\mathrm{a}_{2} \cdot T S= & \# \text { of Switchover units in total to MSAT, for this } \\
& \text { service }
\end{aligned}
$$

$\left(1-\mathrm{a}_{2}\right) T S=\#$ of Additional units to MSAT, this service

By a similar Stock Analysis and Flow Analysis as before in the case of MSAT MRS:

Equation $\# 26$
Stock of User Owned MIS Units $=$ SUCMTI $=O S_{2} \cdot a_{2} \cdot T S+O A_{2} \cdot\left(1-a_{2}\right) \cdot T S$

EQCATITON $\# 27$
Stock of Rental MPS Units $=\operatorname{SROMT}=L_{2} \cdot a_{2} \cdot T S+R A_{2} \cdot\left(1-a_{2}\right) \cdot T S$

EQUATION $\# 28$
Annual Increment of User $=\operatorname{IUKMT}=O S_{2} \cdot \mathrm{a}_{2}\left(T S_{t}-T S_{t-1}\right)+O A_{2}\left(1-\mathrm{a}_{2}\right)$ Owned Units $\quad\left(T S_{t}-T S_{t-1}\right)$

BqUATION $\ddagger 29$
Annual Increment of $\quad=\operatorname{IROMT}=L_{2} \cdot \mathrm{a}_{2} \cdot\left(\mathrm{IS}_{\mathrm{t}}-\mathrm{TS} \mathrm{S}_{\mathrm{t}-1}\right)+\mathrm{RA}_{2} \cdot\left(1-\mathrm{a}_{2}\right)$

Where $L S_{2} \leq 1.0$ and $\geq 0$ $O S_{2} \leq 1.0$ and $\geq 0$ and $\mathrm{LS}_{2}+0 S_{2}=1.0$
$\mathrm{OA}_{2} \leq 1.0$ and $\geq 0$
AND
$\mathrm{RA}_{2} \leq 1.0$ and $\geq 0$ and $O A_{2}+R A_{2}=1.0$

## Revenues to ROC's from HSAT HIS Service Sector:

Proceeding in the same manner as with MSAT MRS, and using similar symbols, we have the following equations:

ADDITIOMAL UNISS

1. Access Fees:

$$
\mathrm{R}_{11}=\left(1-\mathrm{a}_{2}\right) \cdot T \mathrm{~S} \cdot\left(\mathrm{AC}_{2} \cdot 12\right) \quad \text { EQUATION } \geqslant 30
$$

2. Airtime Fees:

EqUATION $\$ 31$
$\mathrm{R}_{12}=\left(1-\mathrm{a}_{2}\right) \cdot \mathrm{TS} .\left[\mathrm{AT}_{2 t} \cdot \mathrm{PSHF}_{2} \cdot \mathrm{M}_{2}+\mathrm{UHFP}_{2} \cdot \mathrm{AT}_{2 t}\left(1-\mathrm{PSHF}_{2}\right) \cdot \mathrm{M}_{2}\right]$
3. Contribution from Sale of this year's Additional Units:
bquation $\$ 32$

$$
\mathrm{R}_{13}=\mathrm{AA}_{2} \cdot\left(1-\mathrm{a}_{2}\right)\left(T \mathrm{~S}_{\mathrm{t}}-\mathrm{TS} \mathrm{~S}_{\mathrm{t}-1}\right) \cdot\left(\mathrm{SP}_{2}-\mathrm{BP}_{2}\right)
$$

4. Contribution from Rental of Additional Units:

EqUAITION

$$
\mathrm{R}_{14}=\mathrm{RA}_{2} \cdot\left(1-\mathrm{a}_{2}\right)\left[T \mathrm{~S} \cdot\left(\mathrm{RF}_{2} \times 12\right)\right]
$$

## SWITCHONER CNLTS:

5. Access Fees:

EQCATITON $\ddagger 34$

$$
\mathrm{R}_{15}=\mathrm{a}_{2} \cdot T \mathrm{TS} .\left(\mathrm{AC}_{2} \cdot 12\right)
$$

6. Aithime Fees:

$$
\begin{gathered}
\mathrm{R}_{16}=\left[\mathrm { a } _ { 2 } \cdot \mathrm { TS } \left[\quad \mathrm{Ar}_{2 \mathrm{t}} \cdot \mathrm{PSHF}_{2} \cdot \mathrm{M}_{2}+\mathrm{UHFP}_{2} \cdot A \mathrm{~S}_{2 \mathrm{t}}\right.\right. \\
\left.\left.\left(1-\mathrm{PSHF}_{2}\right) \cdot \mathrm{M}_{2}\right]-\mathrm{a}_{2} \cdot \mathrm{TS}\left(\mathrm{CP}_{2} \cdot 12\right)\right]
\end{gathered}
$$

7. Contribution from Sale of this Year's Switchover Units:

EQCAATION \#36
$R_{17}=O S_{2} \cdot a_{2} \cdot\left(T S_{t}-I S_{t-1}\right) \cdot\left[S P_{2}-B P_{2}-V I I_{2}\right]$
8. Contribution from Rental of Switchover Units:

EqCATIION $\$ 37$
$\mathrm{R}_{18}=\mathrm{LS}_{2} \cdot \mathrm{a}_{2} \cdot \mathrm{TS}\left[\mathrm{RF}_{2} \cdot 12\right]$
9. Repair Revenues:

EQCATION $\# 38$
$\mathrm{R}_{19}=\left(\mathrm{REP}_{2} \cdot\right.$ SUOMI. $\left.\mathrm{FR}_{2}\right)$
10. Installation Revenues:

EQUATION $\# 39$
$\mathrm{R}_{20}=\left[\mathrm{IR}_{2}\left((\mathrm{TUOMIP}+\mathrm{IROMT})+\mathrm{TS} \cdot \mathrm{CF}_{2}\right)\right]$

The Total Incremental Revenues to pOC from MSAT MTS = RTS

Where RLS $=\left[R_{11}+R_{12}+R_{13}+R_{14}+R_{15}+R_{16}+R_{17}+R_{18}+R_{19}\right.$ $+R_{20} 1.1(1+i) t-1$

Where $(1+i)^{t-1}$ is the Revenue Inflation index for MTS Service, for the year.

## Expenses to ROC's from MSAT MIS Service:

11. SHF Air Time Cost:

EQUATION *
$\mathrm{C}_{13}=\left[\mathrm{TS} \cdot \mathrm{M}_{2} \cdot\left(1-\mathrm{PD}_{2}\right) \cdot \mathrm{AT}_{2} \cdot \mathrm{PSHF}_{2}\right]$
13. UHF Air Time Cost:

EQCATHON *
$\mathrm{C}_{14}=\left[\mathrm{TS} . \mathrm{M}_{2} \cdot\left(1-\mathrm{PD}_{2}\right) \cdot \mathrm{AT}_{2} \cdot \mathrm{UHFP}_{2} \cdot\left(1-\mathrm{PSHF}_{2}\right)\right]$
14. Advertising and Promotion:

EQUATION *42
$\mathrm{C}_{15}=\left(\mathrm{AP}_{2} \cdot \mathrm{RLS}\right)$
15. Incremental Selling Cost:

EQUATION * 43
$\mathrm{C}_{16}=\left[\mathrm{ISC}_{2} \cdot\left(\right.\right.$ IUOMT + IRONI $\left.\left.+\left(\mathrm{ST}_{2} \cdot T S\right)\right)\right]$
16. Billing and Bad Debt Expense:

EQUATION * 44
$\mathrm{C}_{17}=\left(\mathrm{BBD}_{2} \cdot \mathrm{RIS}\right)$
17. Labour Training Costs:

EQUATION *45
$C_{18}=\left(L T C_{2} . T S\right)$
18. Repair Expenses - User Equipment:

EQCAITION $\$ 46$
$\mathrm{C}_{19}=\left(\mathrm{RPC}_{2} \cdot \mathrm{TS} \cdot \mathrm{FR}_{2}\right)$
19. Installation Expense - User Equipment:

$$
C_{20}=\left[I C_{2} \cdot\left[(I U O M I+I R O M T)+C F_{2} \cdot T S\right]\right]
$$

20. Removal Expenses - User Equipment:

$$
C_{21}=\left(C F_{2} \cdot T S\right) \cdot U R C_{2}
$$

21. Non-Revenue Earning Inventory: Holding Expense: Equation $\geqslant 49$

$$
C_{22}=\left[0.1 \cdot \mathrm{SROMN}^{2} \cdot \mathrm{BP}_{2} \cdot \mathrm{OCF}\right]
$$

22. 

The Total Incremental Expenses to ROC from MSAT MIS = CNS

$$
\begin{aligned}
\text { Where CSS }= & {\left[C_{13}+C_{14}+C_{15}+C_{16}+C_{17}+C_{18}+C_{19}+C_{20}+C_{21}\right.} \\
& +C_{23.1} \cdot 1(1+i) t-1
\end{aligned}
$$

KVA Communications and Electronics Co.

## MSAT MPS Onits in Province to ROC's

The analysis proceeds in accordance with the pattern and format developed in the previous two sections. MPS items have the subscript 3 to the symbols.

Accordingly: Let $P S=a_{3} . P S+\left(1-a_{3}\right) . P S$

Where $a_{3}=$ Units switching te MSAT from Terrestrial this service. Total MSAT Units in this Service , and where $a_{3}<1.0$

Thus: $a_{3} . P S \quad=$ \# of Switchover Units in total to MSAT, for this service $\left(1-a_{3}\right) \cdot P S=\#$ of Additional Units to MSAT, this service

By a similar Stock Analysis and Flow Analysis as before for MSAT MRS, and MSAT MIS:

## EQUATITON \#51

Stock of User Owned MPS Units $=S U O M P=0 S_{3} \cdot a_{3} \cdot P S+O A_{3}\left(I-a_{3}\right) \cdot P S$

Rquation $\$ 52$
Stock of Rental MPS Units $=S R O M P=L S_{3} \cdot a_{3} \cdot P S+R A_{3} \cdot\left(1-a_{3}\right) \cdot P S$

RQUATION \#53
Annual Increment of User Owned Units $=\mathrm{IUOMP}=O S_{3} \cdot \mathrm{a}_{3} \cdot\left(\mathrm{PS}_{\mathrm{t}}-\mathrm{PS}_{\mathrm{t}-1}\right)$ $+0 A_{3}\left(1-a_{3}\right)\left(P S_{t}-P S_{t-1}\right)$

EGGATION ${ }^{\text {\# }} 54$
Annual Increment of Rental Units

$$
\begin{aligned}
=\operatorname{IROMP}= & \mathrm{LS}_{3} \cdot \mathrm{a}_{3}\left(\mathrm{PS}_{\mathrm{t}}-\mathrm{PS}_{\mathrm{t}-1}\right) \\
& +\mathrm{RA}_{3}\left(1-\mathrm{a}_{3}\right)\left(\mathrm{PS}_{\mathrm{t}}-\mathrm{PS} S_{\mathrm{t}-1}\right)
\end{aligned}
$$

Where
$\mathrm{LS} S_{3} \leq 1.0$ and $\geq 0$
$\mathrm{OS}_{3} \leq 1.0$ and $\geq 0$
and $\mathrm{LS}_{3}+\mathrm{OS}_{3}=1.0$

$$
\begin{array}{r}
\mathrm{OA}_{3} \leq 1.0 \text { and } \geq 0 \\
\mathrm{RA}_{3} \leq 1.0 \text { and } \geq 0 \\
\text { and } \mathrm{OA}_{3}+\mathrm{RA}_{3}=1.0
\end{array}
$$

KVA Communications and Electronics Co.

## Revenues to ROC's from MSAT MPS Service sector:

Proceeding in the same manner as before, and using similar symbols, we have the following equations:

## ADOITIONAL UNTXS

## 1. Access Fees:

EQUATION $\# 55$

$$
R_{21}=\left(1-a_{3}\right) \cdot P S \cdot\left(A C_{3} \cdot 12\right)
$$

2. Airtime Fees:

EQCAITION $\# 56$

$$
\begin{aligned}
R_{22}= & \left(1-a_{3}\right) \cdot P S \cdot\left[A T_{3 t} \cdot \mathrm{PSHF}_{3} \cdot M_{3}+U H F P_{3} \cdot A T_{3 t}\right. \\
& \left.\left(1-\mathrm{PSHF}_{3}\right) \cdot M_{3}\right]
\end{aligned}
$$

3. Contribution from Sale of this year's Additional Units: EQUATION \#57

$$
R_{23}=O A_{3} \cdot\left(1-a_{3}\right) \cdot\left(P S_{t}-P S_{t-1}\right) \cdot\left(S P_{3}-B P_{3}\right)
$$

4. Contribution from Bental of Additional Units: bquation \#58

$$
\mathrm{R}_{24}=\mathrm{RA}_{3} \cdot\left(1-\mathrm{a}_{3}\right) \cdot\left[\mathrm{PS} \cdot\left(\mathrm{RF}_{3} \cdot 12\right)\right]
$$

SHITCAOVER UNITIS:
5. Access Fees:

Equartion \#59

$$
R_{25}=a_{3} \cdot P S .\left(A C_{3} \cdot 12\right)
$$

## KVA Communications and Electronics Co.

## 6. Airtime Fees:

EQCATHON

$$
\begin{aligned}
\mathrm{R}_{26}= & {\left[\mathrm{a}_{3} \cdot \mathrm{PS}\left[\mathrm{Ar}_{3} \cdot \mathrm{PSHF}_{3} \cdot \mathrm{M}_{3}+U H \mathrm{HP}_{3} \cdot \mathrm{AT}_{3 t}\left(1-\mathrm{PSHF}_{3}\right) \cdot \mathrm{M}_{3}\right]\right.} \\
& \left.-\mathrm{a}_{3} \cdot \mathrm{PS}\left(\mathrm{CT}_{3} \cdot 12\right)\right]
\end{aligned}
$$

7. Contribution from sale of this Year's Switchover Units:

EQTAMTION $\ddagger 61$
$\mathrm{R}_{27}=0 S_{3} \cdot \mathrm{a}_{3} \cdot\left(\mathrm{PS}_{\mathrm{t}}-\mathrm{PS} S_{\mathrm{t}-1}\right) \cdot\left[\mathrm{SP}_{3}-\mathrm{BP}_{3}-\mathrm{VII}_{3}\right]$
8. Contribution from Rental of Switchover Units:

EQCATION $\$ 62$
$R_{28}=L_{3} \cdot \mathrm{a}_{3} \cdot \mathrm{PS}\left[\mathrm{RF}_{3} \cdot 12\right]$
9. Repair Revenues:

EqUATION $\# 63$
$\mathrm{R}_{29}=\left(\mathrm{REP}_{3} \cdot \mathrm{SUOMP}^{(\mathrm{FR}} 3\right)$
10. Installation Revenues:

EqCATHON $\$ 64$
$R_{30}=\left[\mathrm{IR}_{3}\left((\mathrm{IUOMP}+\mathrm{IROMP})+\mathrm{PS} . \mathrm{CF}_{3}\right)\right]$

The Total Incremental Revenues to ROC from MSAT MPS = RPS

$$
\begin{aligned}
\text { Where RPS }= & {\left[R_{21}+R_{22}+R_{23}+R_{24}+R_{25}+R_{26}+R_{27}+R_{28}+R_{29}+R_{30.1}\right.} \\
& (1+i) t-1
\end{aligned}
$$

Where $(1+i)^{t-1}$ is the revenue inflation index for MPS, appropriate to the year.

KVA Communications and Electronics Co.

## Expenses to ROC's from RSAT RIPS Service:

## 11. SHE Airtime Cost:

$$
C_{24}=\left[P S \cdot M_{3} \cdot\left(1-\mathrm{PD}_{3}\right) \cdot \mathrm{AN}_{3} \quad . \mathrm{PSHF}_{3}\right]
$$

12. No Equation
13. UHE Air Time Cost:

EQUATTON $\# 66$
$\mathrm{C}_{25}=\left[\mathrm{PS}_{3} \cdot \mathrm{M}_{3} \cdot\left(1-\mathrm{PD}_{3}\right) \cdot \mathrm{AT}_{3 \mathrm{E}} \cdot \mathrm{UHFP}_{3} \cdot\left(1-\mathrm{PSHF}_{3}\right)\right]$
14. Advertising and Bromotion:

EqUATION $\$ 67$
$\mathrm{C}_{26}=\left(\mathrm{AP}_{3} \cdot \mathrm{RPS}.\right)$
15. Incremental Selling Cost:

BquATION $\$ 68$
$\mathrm{C}_{27}=\left[\right.$ ISC $_{3} \cdot\left(\right.$ IUOMP $\left.\left.+\operatorname{IROMP}+\left(\mathrm{ST}_{3} \cdot \mathrm{PS}\right)\right)\right]$
16. Billing and Bad Debt Expense:

EQUATION \#69
$\mathrm{C}_{28}=\left(\mathrm{BBD}_{3} . \mathrm{RPS}\right)$
17. Labour Training Costs:

EqCATITON $\# 70$
$C_{29}=\left(L T C_{3} \cdot P S\right)$
18. Repair Expenses - User Equipment:

EQUATION $\geqslant 71$
$C_{30}=\left(\mathrm{RPC}_{3} \cdot \mathrm{PS} \cdot \mathrm{FR}_{3}\right)$
19. Installation Expense + User Equipment:

EQMATION $\$ 72$
$\mathrm{C}_{31}=\left[\mathrm{TC}_{3} \cdot\left[(\right.\right.$ IUOMP + IROMP $\left.\left.)+\mathrm{CF}_{3} \cdot \mathrm{PS}\right]\right]$

# 20. Rempyal Expenses - User Equipment: <br> $\mathrm{C}_{32}=\left(\mathrm{CF}_{3} \cdot \mathrm{PS}\right) \cdot \mathrm{URC}_{3}$ <br> 21. Non Reyenue Earning Inventory: Holding Expense: EquxuION 774 <br> $\mathrm{C}_{33}=$ [0.1. SROMP. $\left.\mathrm{BP}_{3} . \mathrm{OCF}\right]$ 

22. The Total Incremental Expenses to ROC from MSAT MPS $=$ CPS Where CPS $=\left[\mathrm{C}_{24}+\mathrm{C}_{25}+\mathrm{C}_{26}+\mathrm{C}_{27}+\mathrm{C}_{28}+\mathrm{C}_{29}+\mathrm{C}_{30}+\mathrm{C}_{31}+\mathrm{C}_{32}\right.$ $\mathrm{C}_{33}+\mathrm{C}_{34} \mathrm{l} .1(1+\mathrm{i})^{\mathrm{t}-1}$

## KVA Communications and Electronics Co.

hsar DACS Onits in Province to POC's

The analysis proceeds in accordance with the pattern and format developed in the previous sections. DACS items have the subscript 4 to the symbols.

Accordingly: Let $D S=a_{4} . D S+\left(1-a_{4}\right) . D S$.

Where $a_{4}=$ Units Switching to MSAT Erom.Terrestrial this service Total MSAT Units in this Service

Thus: $a_{4}$.DS $=$ of Switchover Units in Total to MSAT, for this Service $\left(1-a_{4}\right) . D S=\#$ of Additional Units to MSAT, this Service

By a similar Stock Analysis and Flow Analysis as before for MSAT MRS, and MSAT MDS, and MSAT DACS:

EqUATION 776
Stock of User Owned DACS Units $=S U O M D=O S_{4} \cdot a_{4} \cdot D S+A_{4}\left(1-a_{4}\right) \cdot$ DS

EQUATION $\# 77$
Stock of Rental DACS Units $=S_{R O M D}=L_{4} \cdot \mathrm{a}_{4} \cdot \mathrm{DS}_{\mathrm{S}}+\mathrm{RA}_{4}\left(1-\mathrm{a}_{4}\right) \cdot \mathrm{DS}$

BQUATION 778
Annual Increment of User Owned Units $=I$ UOMD $=O S_{4} \cdot a_{4} \cdot\left(D S_{t}-D S_{t-1}\right)$

$$
+O A_{4}\left(1-a_{4}\right)\left(D S_{t}-D S_{t-1}\right)
$$

EQUATION $\geqslant 79$
Annual Increment of Rental Units $\begin{aligned}=\text { IROMD }= & L_{4} \cdot \mathrm{a}_{4}\left(D S_{t}-D S_{t-1}\right) \\ & +R A_{4}\left(1-a_{4}\right)\left(D S_{t}-D S_{t-1}\right)\end{aligned}$

$$
\begin{array}{ll}
\text { Where: } & \mathrm{LS} S_{4} \leq 1.0 \text { and } \geq 0 \\
& \mathrm{OS}_{4} \leq 1.0 \text { and } \geq 0 \\
& \text { and } \mathrm{LS} S_{4}+O S_{4}=1.0
\end{array}
$$

$$
\begin{array}{r}
\mathrm{OA}_{4} \leq 1.0 \text { and } \geq 0 \\
\mathrm{RA}_{4} \leq 1.0 \text { and } \geq 0 \\
\text { and } \mathrm{OA}_{4}+\mathrm{RA}_{4}=1.0
\end{array}
$$

KVA Communications and Electronics Co.

Revenues to ROC's from MSAT DACS Service Sector:

Proceeding in the same manner as before, and using similar symbols with the subscript ${ }_{4}$ for DACS, we have the following:

## ADDITIOKAL UNITS:

## 1. Access Fees:

## EquATION $\$ 80$

$$
R_{31}=\left(1-a_{4}\right) \cdot D S .\left(A C_{4} \cdot 12\right)
$$

2. Airitme Fees:

EqUATION $\ddagger 81$

$$
\begin{aligned}
\mathrm{R}_{32}= & \left(1-\mathrm{a}_{4}\right) \cdot \mathrm{DS}_{\cdot}\left[\mathrm{AT}_{4 t} \cdot \mathrm{PSHF}_{4} \cdot \mathrm{M}_{4}+\left[\mathrm{UHFP}_{4} \cdot \mathrm{AT}_{4 t}\right.\right. \\
& \left.\left(1-\mathrm{PSHF}_{4}\right) \cdot \mathrm{M}_{4}\right]
\end{aligned}
$$

3. Contribution from Sale of this Year's Additional Units:

EqUATION $\$ 82$
$\mathrm{R}_{33}=\mathrm{OA}_{4} \cdot\left(1-\mathrm{a}_{4}\right)\left(\mathrm{DS}_{t}-\mathrm{DS} \mathrm{S}_{\mathrm{t}-1}\right) \cdot\left(\mathrm{SP}_{4}-\mathrm{BP}_{4}\right)$
4. Contribution from Rental of Additional Units: EQUATION $\$ 83$

$$
\mathrm{R}_{34}=\mathrm{RA}_{4} \cdot\left(1-\mathrm{a}_{4}\right) \cdot\left[\mathrm{DS} \cdot\left(\mathrm{RF}_{4} \mathrm{x} 12\right)\right]
$$

## SWITCHOVER

5. Access Fees:

EQUATION $\ddagger 84$

$$
R_{35}=a_{4} \cdot D S .\left(A C_{4} \cdot 12\right)
$$

6. Airtime Fees: EQUATION $\$ 85$

$$
\begin{aligned}
\mathrm{R}_{36}= & {\left[\mathrm { a } _ { 4 } \cdot \mathrm { DS } \left[\quad \mathrm{AT}_{4 t} \cdot \mathrm{PSHF}_{4} \cdot \mathrm{M}_{4}+\mathrm{UHFP}_{4} \cdot \mathrm{AT}_{4 t}\right.\right.} \\
& \left.\left.-\mathrm{a}_{4} \cdot \mathrm{DS}\left(1-\mathrm{PSHF}_{4}\right)\right]\left(\mathrm{CT}_{4} \cdot 12\right) \cdot \mathrm{M}_{4}\right]
\end{aligned}
$$

KVA Communications and Electronics Co.
7. Contribution from Sale of this Year's Switchover units: EQUATION $\$ 86$

$$
\mathrm{R}_{37}=\mathrm{OS}_{4} \cdot \mathrm{a}_{4} \cdot\left(\mathrm{DS}_{\mathrm{t}}-\mathrm{DS} S_{\mathrm{t}-1}\right) \cdot\left[\mathrm{SP}_{4}-\mathrm{BP}_{4}-\mathrm{VII}_{4}\right]
$$

8. Contribution from Rental of Switchover Units:
bquation $\$ 87$

$$
R_{38}=\operatorname{LS}_{4} \cdot a_{4} \cdot \mathrm{DS}^{2}\left[\mathrm{RF}_{4} \cdot 12\right]
$$

9. Repair Revenues:

EQUATION $\$ 88$

$$
R_{39}=\left(\mathrm{REP}_{4} \cdot \mathrm{SUOMD}^{2} \mathrm{FR}_{4}\right)
$$

10. Installation Revenues:

Equaition $\$ 89$

$$
R_{40}=\left[\mathrm{IR}_{4}\left((\operatorname{IUOND}+\mathrm{IROMD})+\mathrm{DS} . \mathrm{CF}_{4}\right)\right]
$$

The Total Incremental Revenues to ROC from MSAT DACS = ras

$$
\begin{aligned}
\text { Where } \text { RODS }= & {\left[R_{31}+R_{32}+R_{33}+R_{34}+R_{35}+R_{36}+R_{37}+R_{38}+R_{39}+R_{40}\right] } \\
& .1(1+i)^{t-1}
\end{aligned}
$$

Expenses to ROC's from MSAT DACS Service:
11. SHF Aix Time Cost:

EQUATION \#90

$$
\mathrm{C}_{35}=\left[\mathrm{DS}_{3} \cdot \mathrm{M}_{4} \cdot\left(1-\mathrm{PD}_{4}\right) \cdot \mathrm{AT}_{4} \cdot \mathrm{PSHF}_{4}\right]
$$

13. UHF Air Time Cost:

EQUATION \#91

$$
\mathrm{C}_{36}=\left[\mathrm{DS}_{4} \cdot \mathrm{M}_{4} \cdot\left(1-\mathrm{PD}_{4}\right) \cdot \mathrm{AT}_{4 \mathrm{t}} \cdot \mathrm{UHFP}_{4} \cdot\left(1-\mathrm{PSHF}_{4}\right)\right]
$$

14. Advertising and Promotion:

EQUATION \#92

$$
C_{37}=\left(A P_{4} \cdot R D S\right)
$$

15. Incremental Selling Cost:

$$
C_{38}=\left[I S C_{4} \cdot\left(I U O M D+I R O M D+\left(S T_{4} \cdot \mathrm{DS}\right)\right)\right]
$$

16. Billing and Bad Debt Expense: ..... EQUATION $\# 94$
$C_{39}=\left(\mathrm{BBD}_{4} \cdot \mathrm{RDS}\right)$
17. Labour Training Costs: ..... EQCATHON $\$ 95$
$C_{40}=\left(\right.$ INC $\left._{4} \cdot \mathrm{DS}\right)$
18. Repair Expenses - User Equipment: ..... EqCATHON 196
$C_{4 I}=\left(\mathrm{RPC}_{4} . \mathrm{DS}_{\mathrm{AR}}^{4}\right.$ )
19. Installation Expense - User Equipment: ..... EquATION $\$ 97$
$\mathrm{C}_{42}=\left[\mathrm{IC}_{4} \cdot\left[(\mathrm{IUOMD}+\mathrm{IROMD})+\mathrm{CF}_{4} \cdot \mathrm{DS}\right]\right]$
20. Removed Expenses - User Equipment: ..... EQCAMTION $\# 98$
$\mathrm{C}_{43}=\left(\mathrm{CF}_{4} \cdot \mathrm{DS}\right) \cdot \mathrm{URC}_{4}$
21. Non-Revenue Earning Inventory: Holding Expense: EQUATION $\$ 99$

$$
\mathrm{C}_{44}=\left[0.1 . \mathrm{SROMD}^{2} \cdot \mathrm{BP}_{4} \cdot \mathrm{OCF}\right]
$$

The Total Incremental Expenses to ROC from MSAT MDS = COS

Where $\begin{aligned} \text { CDS }= & {\left[\mathrm{C}_{35}+\mathrm{C}_{36}+\mathrm{C}_{37}+\mathrm{C}_{38}+\mathrm{C}_{39}+\mathrm{C}_{40}+\mathrm{C}_{41}+\mathrm{C}_{42}+\mathrm{C}_{43}+\mathrm{C}_{44}\right] } \\ & .1(1+\mathrm{i})^{\mathrm{t}-1}\end{aligned}$

KVA Communications and Electronics Co.

Sumary of MSAT Total Revenues and Expenses: MRS, MIS, MPS and DACS MRS Total Reyenues:

EQCATION *101
$R R S=\left[R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}+R_{7}+R_{8}+R_{9}+R_{10}\right] .1(1+i) t-1$
MIS Total Revenues:
EQUATION $\# 102$
$\mathrm{R} R S=\left[\mathrm{R}_{11}+\mathrm{R}_{12}+\mathrm{R}_{13}+\mathrm{R}_{14}+\mathrm{R}_{15}+\mathrm{R}_{16}+\mathrm{R}_{17}+\mathrm{R}_{18}+\mathrm{R}_{19}+\mathrm{R}_{20}\right] .1(1+\mathrm{i}) \mathrm{t}-1$

MRS Iotal Revenues:
Equation $\# 103$
$R P S=\left[R_{2 I}+R_{22}+R_{23}+R_{24}+R_{25}+R_{26}+R_{27}+R_{28}+R_{29}+R_{30}\right] \cdot I(1+i) t-1$
RACS Total Revenues:
EQUAITION $\# 104$

RDS $=\left[R_{31}+R_{32}+R_{33}+R_{34}+R_{35}+R_{36}+R_{37}+R_{38}+R_{39}+R_{40}\right] \cdot 1(1+i) t-1$

Total Revenue Increment from MSAT Services:
Equation $\$ 105$
$R E V=R R S+R D S+R P S+R D S$

MRS Total Expenses:
EQUATION $\# 106$

CRS $=\left[C_{1}+C_{3}+C_{4}+C_{5}+C_{6}+C_{7}+C_{8}+C_{9}+C_{10}+C_{11}\right] .1(1+i) t-1$

MTS Total Expenses:
EQUAITION $\$ 107$

$$
\begin{aligned}
\mathrm{CIS}= & {\left[\mathrm{C}_{13}+\mathrm{C}_{14}+\mathrm{C}_{15}+\mathrm{C}_{16}+\mathrm{C}_{17}+\mathrm{C}_{18}+\mathrm{C}_{19}+\mathrm{C}_{20}+\mathrm{C}_{21}+\mathrm{C}_{22}+\mathrm{C}_{23}\right] } \\
& .1(1+\mathrm{i}) \mathrm{t}-1
\end{aligned}
$$

MPS Total Expenses:
EQLATITON $\# 108$

CPS $=\left[C_{24}+C_{25}+C_{26}+C_{27}+C_{28}+C_{29}+C_{30}+C_{31}+C_{32}+C_{33}\right] . I(I+i) t-1$.

$$
\begin{aligned}
C D S= & {\left[C_{35}+C_{36}+C_{37}+C_{38}+C_{39}+C_{40}+C_{41}+C_{42}+C_{43}+C_{44}\right] } \\
& .1(1+i) t-1
\end{aligned}
$$

Total Expenses Increment from MSAT Services:

COST $=\mathrm{CRS}+\mathrm{CIS}+\mathrm{CPS}+\mathrm{CDS}$

## CAPITALI IMNESTHISNC:

## 

 (E.G. BASE EARUH STATIONS EIC.)1. Incremental Size in Required Capital Stock = Annual Investment to Accommodate Growth

The required size of the Capital Stock for any year is determined by the \# of units to be served in MRS, \# of MDS units, \# of MPS units, and \# of MDS units. Also making allowance for any necessary 'slack' due to scale factors, expected growth (especially in the early years), technological considerations, as well as the mix of SHF to UHF Systems.

KVA will take this items into account along with other considerations and provide Ward Mallette with a $\$$ figure for average fixed investment per unit (AFI), together with an operational specification of what the term 'unit' in this context encompasses. This will be provided for each year and by each province.

Thus the required fixed capital stock by RCC's in a particular province for any year is:

## EQ. $\$ 111$

$R F C S=A F I(M R S) \times R S+A F I(M T S) \times T S+A F I(D A C S) \times D S+A F I(D A C S) \times P S$

Where RFCS $=$ Required fixed capital stock in the year.
AFI = Average fixed investment per unit, in constant $\$$ tems. And,

Hence the required annual investment in fixed capital items in any year is:
$\mathrm{FCI}_{t}=\mathrm{RFCS}_{\mathrm{t}}-\mathrm{RFCS}_{\mathrm{t}}-1$
EQ. 1112

Where $\mathrm{FCI}_{\mathrm{t}}$ is the required fixed capital items investment in constant $\$$ terms.

## 2. Annual Replacement Investment

To maintain the size of the capital stock due to equipment wearing out, a certain replacement investment has to be made. This replacement investment is assumed to be zero due to the 15 year life of the equipment.

Thus Replacement Investment in Fixed Capital Items in any year $t$ is $\mathrm{RFI}_{t}$

EQ. $\$ 113$
Where: $\mathrm{RFI}_{\mathrm{t}}=\mathrm{p} . \mathrm{RFCS}_{\mathrm{t}-1}$ and where $\mathrm{p}=0.0$ by assumption
3. Total Annual Investment in Eixed Capital Items:

This is the total of Incremental Investment and Replacement Investment in Fixed Capital items in each year. It is equal to:
$T F C I_{t}=\left(\right.$ RFCS $\left._{t}-R F C S_{t-1}\right)+$ p. $R F C S_{t-1} \quad E Q . \$ 114$
Where $\mathrm{TFCI}_{t}$ is the Total Fixed Capital Investment in Year $t$.
$\mathrm{TFCI}_{\mathrm{t}}$ is a $\$$ figure in real terms. It will be calculated for each year and in each province.

Allowing for the impact of inflation on the cost of investment goods items, we have the following annual investment figure in current $\$$ terms.
$\operatorname{TFI}_{t}=\operatorname{TFCI}_{t} \cdot I(1+i)^{t-1}$
EQ. 1115
where $(1+i)^{t-1}$ is the Fixed Capital Inflation Index for any year $t$.
B. INCREMENIAL INVESIMENI BY THE RCC IN USER EQUTPMENT

1. The RCC's Incremental Investment in Rental Units.

Handling each of the four service areas of MRS, MIS, MPS and MDS, separately, we have:

KVA Communications and Electronics Co.

## MRS

The annual increment of RCC rental equipment units for MRS is IROMR, as previously specified Eq. \#24.

Where IROMR $=I S_{1} \cdot a_{1}\left(R S_{t}-R S_{t-1}\right)+R A_{1}\left(1-a_{1}\right)\left(R S_{t}-R S_{t-1}\right)$
and in $\$$, the annual incremental investment in MRS rental units equals

EQ. $\$ 116$
$I R C_{1}=\left[\left[L S_{1} \cdot a_{1}\left(R S_{t}-R S_{t-1}\right)+R A_{1}\left(1-a_{1}\right)\left(R S_{t}-R S_{t-1}\right)\right] \cdot B P_{1}\right]$

Where $\mathrm{BP}_{1}=$ Buying Price to RCC of the MRS unit in $\$$, as previously specified.

Likewise for the Other Service Sectors:
HIS
EQ. 1117
$I R C_{2}=\left[\left[I S_{2} \cdot a_{2}\left(T S_{t}-T S_{t-1}\right)+R A_{2} \cdot\left(1-a_{2}\right)\left(T S_{t}-I S_{t-I}\right)\right] \cdot B P_{2}\right]$

MPS
EQ. 118
$I R C_{3}=\left[\left[L S_{3} \cdot a_{3}\left(P S_{t}-P S_{t-1}\right)+R A_{3} \cdot\left(1-a_{3}\right)\left(P S_{t}-P S_{t-1}\right) \cdot B P_{3}\right]\right.$

DACS
EQ. $\$ 119$
$I R C_{4}=\left[\left[L S_{4} \cdot a_{4}\left(D S_{t}-D S_{t-1}\right)+R A_{4}\left(1-a_{4}\right)\left(D S_{t}-D S_{t-1}\right)\right] \cdot B P_{4}\right]$

TOIAL ANMUAL INCREAENLAL INVESTMENI IN RENILAL UNITS BY RCC'S IS:

EQ. $\$ 120$
TIPC $=\mathrm{IRC}_{1}+\mathrm{IRC}_{2}+\mathrm{IRC}_{3}+\mathrm{IRC}_{4}$
2. The RCC's Replacement Investment in Rental Units:

Each year some of the rental units wear out and require replacement for various. reasons.

## MRS

The annual replacement investment in units $=W_{1} \cdot R_{t-1}$ and in Dollars,

EQ. $\$ 121$
$\mathrm{RRC}_{1}=\left(\mathrm{WO}_{1} \cdot \mathrm{RS}_{\mathrm{t}-1} \cdot \mathrm{BP}_{1}\right)$

MIS
EQ. 122
$\mathrm{RRC}_{2}=\left(\mathrm{WO}_{2} \cdot \mathrm{TS}_{\mathrm{t}-1} \cdot \mathrm{BP}_{2}\right)$

MPS
EQ. 123
$\mathrm{RRC}_{3}=\left(\mathrm{WO}_{3} \cdot \mathrm{PS}_{\mathrm{t}-1} \cdot \mathrm{BP}_{3}\right)$

DACS
EQ. 1124
$\mathrm{RRC}_{4}=\left(\mathrm{WO}_{4} \cdot \mathrm{DS}_{\mathrm{t}-1} \cdot \mathrm{BP}_{4}\right)$

TOTAL ANMALL REPIACEMENI INVESTMENTI IN RENTIAL UNITSS BY ROC'S IS:
EQ. $\$ 125$

$$
T R R C=R R C_{1}+R R C_{2}+R R C_{3}+R R C_{4}
$$

3. The RCC's Investment in Non-Revenue Earning Inventory Required to Cover Both Rentals and New Sales:

From industry knowledge NREI is assumed to be $1 / 10$ of Total \# of User Units in the Service Category.
MRS:
$\mathrm{NREI}_{\mathrm{t}}=0.1 \times \mathrm{RS}_{\mathrm{t}}$ where NREI is the non-revenue earning inventory and $\operatorname{NRET}_{\mathrm{t}-1}=0.1 \times \mathrm{RS}_{\mathrm{t}-1}$

Accordingly $\triangle \operatorname{NREI}_{1}=\left(\right.$ NREI $_{t}-$ NREI $\left._{t-1}\right)=0.1\left(\right.$ SROMR $_{t}-$ SROMR $\left._{t-1}\right)$
and the $\triangle$ NREI is the required increase, or investment, in the number of units for NRET
In $\$$, the cost of $\triangle$ NREI $=\left[0.1 .\left(\right.\right.$ SROMR $_{t}-$ SROMR $\left.\left._{t-1}\right) \cdot B P_{1}\right]$
EQ. 126
and $\operatorname{NREI}_{1}=$ [0.1. SROMR $\left._{t}-\operatorname{SROMR}_{t-1}\right) \cdot \mathrm{BP}_{1}$ ] where NREI, is the cost of the MRS non revenue earning inventory in a year.

```
HINS
EQ. 意127
```



```
MPS
EQ. #128
```



```
DACS
EQ. $129
NREI}4=[0.1.(SROND (t- SROMD (t-1).BP44
```





4. Iotal Annual Investment by the RCC in User Equipment Capital Items:

This is the total of Incremental Investment, Replacement Investment, and NREI Investment in User Equipment Capital Items; for each of the four service sectors of MRS, MIS, MPS and MDS.

TUECI $_{t}=$ TIRC $_{\mathrm{t}}+$ TRRRC $_{\mathrm{t}}+$ TNREI $_{\mathrm{t}} \quad$ EQ. $\$ 131$

Where IUECI $t_{t}$ is the total User Equipment Capital Investment by the RCC's in year $t$.

IUECI ${ }_{t}$ is a $\$$ figure in real terms. It will be calculated for each year and in each province.

Allowing for the impact of general price changes specific to the cost of User Equipment items ( $+/-$ inflation), we have the following annual investment figure in current $\$$ terms.

$$
\mathrm{TUCI}_{t}=\mathrm{TUECI}_{t} \cdot 1(1+\mathrm{i})_{t-1} \quad \text { EQ. }+132
$$

where $(1+i)^{t-1}$ is the User Capital Inflation Index for any year $t$.

## KVA Communications and Electronics Co.

## C. TOIAL OVERALL INVESILIENI BY RCC IN ANY YEAR: FIXED CAPITAL IIEXS PLIS USER EQUIPMENI CAPITIAL:

$\mathrm{TAI}_{t}=\mathrm{TFI}_{t}+\mathrm{TUCI}_{\mathbf{t}}$
EQ. $\ddagger 133$

This is in Current $\$$ terms. Where $\operatorname{LAI}_{t}=$ Total Annual Investment by RCC in year $t$.

## Capital Asset Pool and CCA: Fixed Capital Items Pool

Let $\mathrm{FCAP}_{\mathrm{t}}=$ Fixed Capital Asset Pool at end of Year $t$
Let PSFC $_{t}=$ Proceeds of Sale of Fixed Capital Items during Year t. Assumed to be zero.
With $\mathrm{TFI}_{t}$, as before, the fixed capital investment going into the Pool during Year $t$.

Then the Pool Total in Year $t$ before C.C.A. deduction for fixed capital equipment is:

$$
\left(\mathrm{FCAP}_{t-1}+\mathrm{TFI}_{t}\right)
$$

And the CCA deduction for fixed capital equipment is CCAFC ${ }_{t}$ EQ. $\ddagger 134$
Where CCAFC $_{t}=z_{1}\left[F C A P_{t-1}+T E I_{t}\right]$
2
Where $z_{1}$ is the CCA rate on the fixed capital Pool in Year $t$, and recognizing that only one half of a new capital acquisition is eligible for CCA in the year of acquisition. $\mathrm{z}_{1}<1.0$.

EQ. 135
Then: $\mathrm{FCAP}_{t}=\left[\mathrm{FCAP}_{t-1}-\mathrm{PSFC}_{t}+\mathrm{TFI}_{t}\right]-\mathrm{Z}_{1}\left[\mathrm{FCAP}_{t-1}-\mathrm{PSFC}_{t}+\mathrm{IF} I_{t}\right]$

The Salvage Value at the end of the Project for Fixed Capital is
$\mathrm{FCSV}_{\mathrm{N}}=\sum_{\mathrm{X}=2}^{15} \frac{\mathrm{X}}{15} \quad\left(\operatorname{TFCI}_{(1978+\mathrm{X})}\right)$
Where $T F C I$ is the total incremental investment in fixed capital

Capital Asset Pool and C.C.A.: User Capital Equipment of ROC's

Let $U^{C A P} P_{t}=$ User Capital Asset Pool at end of Year $t$
Let PSUC ${ }_{t}=$ Proceeds of Sale of User Capital Items during Year $t$ by RCC's. Assumed to be zero.

With $T_{U C I}=$ as before, the user capital investment going into the Pool during year $t$.

Then the pool Total in Year $t$ before CCA deduction for user capital equipment is:
( $_{\left(W_{C A P}\right.}^{t-1}-$ PSUC $_{t}+$ TUCI $\left._{t}\right)$

And the CCA deduction for user capital equipment is CCAUC $C_{t}$
Where CCAUC $_{t}=z_{2}\left[\right.$ UCAP $_{t-1}-$ PSUC $_{t}+$ IUCI $\left._{t}\right]$
EQ. $\$ 136$
2
Where $z_{2}$ is the CCA rate on the user capital pool in Year $t$, and recognizing that only one half of a new capital acquisition is eligible for CCA in the year of acquisition. $\mathrm{z}_{2}<1.0$, and is in decimal notation.

EQ. $\$ 137$
Then: UCAP $_{t}=\left[U C A P_{t-1}-\right.$ PSUC $_{t}+$ IUCI $\left._{t}\right]-Z_{2}\left[U C A P_{t-1}-\right.$ PSUC $_{t}+\frac{\left.I U C I_{t}\right]}{2}$

The Salvage Value at the end of the Project is UCAP ${ }_{t}$, when $t$ is the finad year.

$$
\operatorname{UCSV}_{N}=\sum_{X=0}^{6}(100 \%-(X x 15 \%)) x \operatorname{TUECI}(t-X)
$$

Where TUECI $_{t}$ is the total incremental investment in user equipment capital items in year $t$.

Taxable Net Revenue for Year and taxes Paid: All In Incremental Terms

Taxable net revenue to $\mathrm{RCC}_{\mathrm{t}}=\left[\mathrm{REV}_{\mathrm{t}}-\operatorname{COST}_{\mathrm{t}}-\mathrm{CCAFC}_{\mathrm{t}}-\right.$ CCAUC $\left._{t}\right]$

EQ. 138
$T I P_{t}=$ Incremental total taxes paid $=y \cdot\left[R E V_{t}-\operatorname{COSI}_{t}-\right.$ CCAFC $_{t}-$ CCAUC $\left._{t}\right]$

Where $y<1.0$ and is in decimal terms, and is the appropriate assumed marginal tax rate on the incremental taxable net revenue to RCC.

Salvage Value of Fixed Capital Items and User Capital Bquipment

Fixed capital items salvage value in Final Year $N$ is $\mathrm{FCAP}_{t}$ when $t$ has the value $N$ and therefore is $\mathrm{FCAP}_{\mathrm{N}}$
$\mathrm{FCSV}_{\mathrm{N}} \quad$ ER. \#139

And similarly for User Capital Equipment Salvage value, UCSV:

$$
\mathrm{UCSV}_{\mathrm{N}} \quad \text { EQ. } \$ 140
$$

EQ. $\$ 141$
And Total Salvage Value Proceeds $T S V_{N}=\operatorname{FCSV}_{N}+\operatorname{UCSV}_{N}$

Cash Flow to RCC in Year T

Cash Flow $=$ Revenues - Expenses - Taxes Paid - Capital Expenditures
$C F_{t}=R E V_{t}-\operatorname{COSI}_{t}-\operatorname{TIP}_{t}-T A I_{t}$
for all years from $t=1$ to $N-1$., where $N$ is the final year of the Project

In Year $N$ : When $t=N$


KVA Communications and Electronics Co.

Each of these Cash Flows $\mathrm{CF}_{\mathrm{t}}$ from $\mathrm{t}=1-\mathrm{N}$ are Present Valued, and added together to give the Net Present Value (KPV) of the MSAT Project.
if NPV > 0 Accept Project
if NPV < 0 Reject Project

## Additional Equation to Model:

## Maintenance Expense on Fixed Capital Equipment:

This maintenance expense is related to the \# of units, or the commulative real capital stock. This latter iten is given by RFCS - the required fixed capital stock in year $t$.

From Equation \#lll. $\quad \mathrm{RFCS}_{\mathrm{t}}=A F I_{t} \times(R S+T S+0.1 D S)$

Setting this annual maintenance expense equal to cost Item $\mathrm{C}_{2}$, we have:
$C_{2 t}=\left(M C F C . R_{* C S}\right)$ EQ. 1142

Where MCFC = Annual Maintenance cost per dollar of Capital Equipment in Constant \$。
It is assumed that MCFC is a constant $\%$ each year and reflects preventative maintenance as well as any repairs.

This cost $C_{2 t}$ will therefore be a value that changes over time, and is not a constant. It is in real terms. In the model, it has been included as a cost element under section of MRS costs.

Additional Bquations to Provide Certain Sumary Items in Real Terns:
EQ. $\# 150$
Real Total Revenues to RCC from MSAT $=\frac{R E V_{t}}{(1+i)^{t-1}}$

## KVA Communications and Electronics Co.

$$
\begin{array}{ll}
\text { Real Total Expenses to RCC from MSAT }= & \frac{\text { COST }_{t}}{(1+i)^{t-1}} \quad \text { EQ. } \$ 151 \\
\text { Real Fixed Plus User Capital } \\
\text { Investment In MSAT Equipment } & = \\
\text { Real Incremental Taxes Paid } & =\frac{T F C I_{t}+T U E C I_{t}}{(1+i) t-1} \quad \text { EQ. } \$ 152 \\
& \left(T T P_{t}\right. \text { is specified in Eq. \#138 }
\end{array}
$$

Real Salvage Value of Fixed
plus User Capital Equipment

EQ. $\# 154$

$$
=\frac{\operatorname{TSV}_{\mathrm{N}}}{(1+i)^{N}-1}
$$

## ECOADAIC MODEL INPUIS - DERRIVATION

(1) IOTAL UNITS - MSAT

The total MSAT units to be serviced by the RCCs was derived as follows:

SISEP 1 - DERIVE $T_{S} T_{T}$ AND $M_{S}$
$T_{S}$ - TERRESTRIAL SAMPLE

- For each service the terrestrial sample was based on the RCC inputs
- Adjustments were made to sample data for:
- high forecasts in comparison to other inputs from RCCS of similiar size and geographic location
- unusual growth rates between various point years
$\mathrm{T}_{\mathrm{T}}$ - TERRESTRIAL AGGREGATED UNITS
MRS, MPS - 1983 Terrestrial Units were based on DOC licensee data total channels in rural and urban areas and the average units/channel based on the ROC inputs


## MPS - 1988 Terrestrial Units - RCC Inputs

MRS - (1988-2002) - Terrestrial Units This forecast was derived based on the $1983 T_{T} / T_{S}$ ratio x Terrestrial Sample forecast. ie (1983 $T_{T} / T_{S} \times T_{S}$ (of appropriate year) )

MPS - (1993-2002) - Terrestrial Units
This forecast was derived based on the $T_{T} / T_{S}$ ratio $x$ Terrestrial Sample forecast.

The $T_{T} / T_{S}$ ratio is an average of the $1983 T_{T} / T_{S}$ ratio and $1988 T_{T} / T_{S}$ ratio

## MS - MSAP SAMPLE

- For each service, the MSAT Sample was based on the ROC inputs
- Adjustments were made to sample data for:
- high forecasts in comparison to other inputs from RCCS of similar size and geographic location
- unusual growth rates between various point years

SIEPP 2 - DERIVE $M_{T}$

MT - AgGREGATED MSAT UNITS

MRS, MPS - Based on $T_{T} / T_{S} \times M S$
(For MPS, the $T_{T} / T_{S}$ ratio is an average of the 1983 $\mathrm{T}_{\mathrm{T}} / \mathrm{T}_{\mathrm{S}}$ ratio and $1988 \mathrm{~T}_{\mathrm{T}} / \mathrm{T}_{\mathrm{S}}$ ratio)

- Adjustments made:
- Reduction to exclude minor metropolitan RCCs and 1/2 minor rural ROCs

MIS - Based on $T_{T} / T_{S} \times M_{S}$

MDS - DACS only - Based on $\mathrm{T}_{\mathrm{T}} / \mathrm{T}_{\mathrm{S}} \times \mathrm{M}_{S}$

- The $T_{T} / T_{S}$ ratio used is the MRS $1983 T_{T} / T_{S}$
- Adjustments Made:

MTS - Reduction based on the percentage of respondents in Baseline Questionnaire not intending to get involved in MSAT MDS (PART C)

MDS - Reduction based on the percentage of respondents in Baseline Questionnaire not intending to get involved in MSAT MDS DACS - PART C
(2) $A_{1}$ : PERCENTAGE OF UNITS SWITCHING OVER

- Based on ROC inputs to In-depth Questionnaire
- Average of all inputs taken
- Adjustments made for high and low projections
- Between point years, a straight line projection was used.
(3) WO - 8 of Units Replaced per Year
- Based on MSAT/RCC revised study plan and methodology (attachment 3)
(4) AP - Promotional Cost - $\%$ of Revenue
- Based on an average of RCC inputs from In-depth Questionnaire
- Adjustments made for high and low projections
(5) AFI - Average Fixed Investment/Unit
- Methodology based on MSAT/RCC revised study plan and methodology

MRS - Attachment 8 explains how the ratio of UHF to SHF base stations was derived.

- Using the prices of the various sizes of SHF base stations as stated in the "Socio-economic Input Study Assumptions" (attachment 7), derive the average fixed investment/unit on SHF for the following utilizations.

89	90	91	92	$93-2002$
$50 \%$	$60 \%$	$70 \%$	$80 \%$	$85 \%$

- All UHF base stations are assumed to be customer owned.

KVA Communications and Electronics Co.

Example: Base Stations $\quad$| $\operatorname{SHF}(5$ channel) -2 |  |
| :--- | :--- |
|  | $\operatorname{SHF}(10$ channel) -2 |

Total investment in SHF Base Stations (includes federal sales tax and installation): $\quad 2 \times(\$ 100,000 \times 1.1+\$ 30,000)+$ $2 \times(\$ 150,000 \times 1.1+\$ 30,000)$ $=\$ 670,000$
Yearly Incremental Units Added $=1400$

$$
\begin{aligned}
\text { AFI (Overall) } & =\frac{\$ 670.000}{1400} \\
& =\$ 478.57 / \text { unit }
\end{aligned}
$$

DACS - alarm is $1 / 160$ of MRS average fixed investment because we can put 106 times as many DACS units per channel as MRS units. DACS polling is $1 / 3$ of MRS average fixed investment

MIS - All units are on SHF

- Use same percentage utilization as MRS to calculate AFI for 1989/1990/1991/1992 and 1993-2002

MPS - Linking applications only are considered since ROCs feel this is the only viable applications for MSAT MPS.

- All units are on UHF
- MPS is $1 / 190$ of MRS average fixed investment because we can put 190 times as many MPS units per channel as MRS units
(6) PSHF: PROPORTION OF TOTAL AIRTIME MINUTES ON SHF

MRS, MPS - Based on the ratio of UHF and SHF Base Stations and capacities

MLS - 0.95 since all units operate through SHF but some UHF mobile to UHF mobile calls are assumed.

DACS - 1.0 since all units operate through SHF
(7) $\mathrm{LS}_{1} \& \mathrm{RA}_{1}-\mathrm{PERCENIAGE}$ OF SWITCHOVER AND ADDITIONAL UNITS
RENTED OUT

MRS, MPS - Based on In-depth participants response to $\%$ of MSAT units to be rented out

DACS, MTS - Same ratio assumed as for MRS
(8) P: - REPLACEMENI OF FIXED INVESTMENT

- Based on MSAT/RCC revised study plan and methodology (Attachment 3)
(9) AC: - ACCESS CHARGE/UNIT/MONIH
- Based on the RCC charges of $\$ 19 / \$ 1000$ (2.48) of capital investment calculated on a monthly per unit basis
- Then adding to this recovery of the Telesat access charge marked up 25\%
(10) $A_{2}:-$ ROC AOCESS COST/UNIT/MONTH
- Telesat charge
- For MPS, the access cost is divided by the No. of units and works out to an insignificant amount.
(11) $\mathrm{AT}_{1}$ : - SHF AIRITME CHARGES/MINUIE
- Based on Telesat airtime charge marked up by $25 \%$
(12) UHFP 1 : PREMIUM FOR UHF AIRTIME
- Telesat UHF airtime cost divided by SHF airtime cost (1.6)

KVA Communications and Electronics Co.

## 13) $\mathrm{IR}_{1}$ : INSTALLATION CHARGE/INSTALLATION

MRS, DACS, MIS - Based on in-depth inputs averaged
MPS - \$0; no installation required
(14) REP ${ }_{1}$ : - REPAIR CHARGE/REPAIR

MRS, DACS, MLS - Based on in-depth inputs averaged
MPS - Based on repair charge for a terrestrial unit
(15) LHC $_{1}$ : - LABOUR TRAINING COSTS/UNIT/ANNUM

- The RCCs training costs were provided in the questionnaire.
- This was divided by total units to be served in year 2002.
- This was then divided by the 14 year study period to arrive at an average cost/unit/annum.

All other model inputs were based on the data collected in the in-depth interviews being averaged. Adjustments were made to unusually high or low inputs.

This document summarizes various key assumptions on the prices, costs, supply and demand for MSAT equipment and airtime to be used on the various socio-economic study contractors. It is based largely on information supplied by Telesat, the outputs of various internal and other studies, and on information supplied by the manufacturing industry to DOC. It updates and greatly expands upon the information contained in the February 1984 document entitled "Socio-Economic Study Assumptions on Costs, Services and Traffic."

For the purposes of these studies, it has been assumed that the first•MSAT spacecraft is launched as of January 1989. The study period covers two generations of satellites and contains information on a Canada Only option, and also on a Canada/US option where it is assumed that there would be some mutual procurement and backup of services. Furthermore, it has been assumed that for the first generation system, $2+2 \mathrm{MHz}$ would be available in Canada and for the second generation this would be increased to $4+4$ MHz.

The document contains: market projections for the demand for Mobile Radio, Mobile Telephone, Data Acquisition and Control (DACS), and Paging services; the capacity of both first and second generation satellite systems (some are power limited, others are spectrum limited); the assumed launch, type and ownership of the spacecraft; quantities and wholesale prices of the spacecraft, central control station, base stations, gateways and mobile terminals; the level and type of traffic; channel loadings; the assumed type and level of government supported non-recurring engineering needed; etc.

The material has been prepared with the co-operation of Telesat, Telecom Canada, KVA Communications Ltd., Canadian Marconi Company, ADGA, NovaTel, Spar, Scotcomm, SED, Sinclair Radio, Andrew Antenna, Mobile Data Inc., Glenayre, Motorola, and the MSAT Project Office.

Appreciation is extended to all those who have participated in this effort.
D. Sward
D. Look
K. Wilson
D. Showalter
M. Lok
A. Guibord
K. Mark vorsen
M. Kedar
S. Flynn
E. Derbyshire
E. Lavine
D. Alcock
A. Walt tho
M. Elbanna
M. Lillo
F. Grosswindhager
C. Everton
D. Bassett
B. Middlebrook
S. Tilden
D. Dewey
P. Driessen
A. Cott
R. Lettan
D. Athanassiadis
A. Maclatchy
E. Staffa
J. Braden

Telesat
Telesat
Telesat
Telesat
Telesat
Telesat
Telecom Canada
KVA Communications Ltd
KVA Communications Ltd
Canadian Marconi Company
Canadian Marconi Company
Canadian Marconi Company
ADGA
NovaTel
Spar
Spar
Scotcomm
SED
SED
Sinclair Radio
Andrew Antenna
Mobile Data Inc.
Glenayre
Motorola
DOC
DOC
DOC
DOC

CLASS/TYPE	CAPACITY   (no. of mobiles) 75 Percent Utilization	LABOUR HOURS			ANMUAL MATERIAL COSTS   IN CONSTANT 1984 DOLLARS		LIFE (YRS)	
		Installation	Annual   Mtce	Removal	Installation and Refurbish	Repair/Yr	Equipment	Locatiol
Base Stations								
UHF - Private								
- 1 - channel	50	4	6	2	50	100	7	7
2 - channels	100	4	6	2	100	100	7	7
3 - channels	150	6	12	2	200	100	7	7
4 - channels	200	6	12	2	200	150	7	7
5 - channels	250	6	12	2	200	150	7	7
SHF - Private								
1 - channel	50	450	24	26	11,000	2,500	15	15
2 - channels	100	450	24	26	11,000	3,000	15	15
3 - channels	150	450	24	26	11,000	3,500	15	15
4 - channels	200	450	24	26	11,000	4,000	15	15
5 - channels	250	450	36	26	11,000	5,000	15	15
SHF - Common   5 - channels	250	480	24	26	11,000	5,000	15	15
7 - channels	350	480	24	26	11,000	5,500	15	15
10 - channels	500	480	36	26	11,000	6,200	15	15
Gateways								
5 - channels	196	500	35	26	14,000	5,000	15	15
7 - channels	313	500	36	26	14,000	5,500	15	15
10 - channels	482	500	40	26	14,000	6,200	15	15

NOTE: Loading for Private and Common Base Stations, used for Mobile Radio Dispatcher are based on DOC Channel Loading Guidelines (Policy for Licensing of Mobile Radio Trunked Systems dated Decenber 1982). Gateway capacities are base on Modified Erlang C using a 15 percent blocking factor, and peak erlangs/mobile of . 0106.

TABLE 2: INSTALLATION, MAI NTENANCE AND EQUIPMENT LIFE ASSUMPTIONS FOR MOBILE TERMI NALS

CLASS/TYPE	LABOUR HOURS PER			MATERIAL COSTS IN CONSTANT 1984 DOLLARS PER		LIFE (YRS)	
	Installation	Removal	Repair	Installation \& Refurbish	Repair	Equipment	Location
Land Mobile Radio	3	1	3	100	50	7	3
Mobile Telephone	3	1	3	100	50	7	3
Fixed Link Paging*	0	0	1	--	0	7	0
DACS							
- Alarm   - Polling	8 16	7 15	8 16	200	50 50	7	7

NOTE: - Costs are in current 1984 dollars. Current dollar estimates can be obtained by inflating these costs by the cost deflator/inflator factors contained in the annual costs and quantities contained in a subsequent section of this report (a 5 percent annual growth rate)

- Labour hours and material costs include the antenna
- It is assumed that the equipment and service location life of the mobile antennas is the same as the radio itself.
* These are personal pagers operating through terrestrial base stations which interconnect with MSAT satellite for fixed communications.

TABLE 3: TRAFFIC ASSUMPTIONS BY CLASS OF SERVICE

Class/Type	Peak Usage Erlang/Mobile	Monthly Usage Avg Min/Mo/Mobile	Avg. Call Length in Minutes	Monthly Calls	Attempts Per Call
Mobite Radio	. 0106	150	1.0	150	1.2
Mobile Telephone	. 0106	150	2.0	75	1.2
Mobile Paging	smal 1	6.5	--	--	--
DACS					
- Alarm   - Polling	$\begin{aligned} & .0001 \\ & .0035 \end{aligned}$	50	. 067	30 750	--


	1985	1986	1987	1988	1989	1990	1991	1958	1993	1994	1996	1996	1997	1998	1999	2000	2001	2008
Total System Capacity in Number of MTS and MRS Users																		
- Canada only system								39,000		39,000	39,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000
- CanadaNLS system					17,500	$35,000$	35,000	35,000	35,000	35,000	35,000	54,500	$\begin{aligned} & 54,500 \\ & 74,000 \end{aligned}$	74,000	74,000	74,000	74,000	74,000
Wmber of Users-canada conly					1,835	6,505	13,126	20,593	27,843	28,752	28,72	35,973	42,579	47,953	51,832	54,175	55,632	56,854
- MIS					665	2,245	4,374	6,907	9,657	10,249	10,249	12,910	15,281	17,211	18,601	19,443	19,965	20,404
- Paging					31,150	37,760	45,707	54,839	65,209	75,880	88,060	101,343	114,140	12,536	146,223	168,159	190,556	224,817
- DACS - Alarm					935	1,095	1,318	1,693	2,28	2,736	3,361	4,112	4,900	5,804	6,703	7,656	8,499	9,362
- Polling					865	2,805	5,182	6,907	8,272	9,564	10,639	11,582	12,400	13,096	13,697	14,244	14,801	15,38
total dacs						3,900	6,500	8,600	10,500	12,300	14,000	15,700	17,300	18,900	20,400	21,900	23,300	24,700
- MRS					1,835	6,505	13,126	20,593	25,971	25,971	25,971	33,18	40,045	45,939	50,42	53,32	54,457	54,457
- MTS					. 665	2,245	4,374	6,907	9,030	9,030	9,030	11,885	14,372	16,487	18,098	19,138	19,543	19,543
- Paging					31,150	37,760	45,707	54,839	65,209	75,880	88,060	101,343	114,140	18,536	146,223	168,159	190,556	224,817
- DACS - Alarm					935	1,095	1,318	1,693	2,28	2,736	3,361	4,112	4,900	5,804	6,703	7,656	8,499	9,362
- Polling					865	2,805	5,182	6,907	8,272	9,564	10,639	11,582	12,400	13,096	13,697	14,244	14,801	15,38
TOTAL OACS					1,800	3,900	6,500	8,600	10,500	12,300	14,000	15,700	17,300	18,900	20,400	21,900	23,300	24,700
Percent Smintchover   - MRS																		
- MRS					19.3 5.0	13.7 3.0	12.2 2.0	10.7 1.0	7.9 0.0	6.5 0.0	4.6 0.0	2.6 0.0	2.4 0.0	2.4 0.0	2.4 0.0	2.4 0.0	2.4 0.0	2.4 0.0
- Paging					0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0.
- DACS						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0
ROTE: Switchovers are existing oustomers of Service Providers																		
(i.e. non-Private) who replace																		
their conventional terrestrial equiprent with MSAT.																		
equipment with MSAT.																		
Mix of MTS and MPS Traffic																		
Percert MRS Traffic					75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0
													25.0	25.0	25.0	25.0	25.0	25.0
Percert Uf-uf Traffic					9.5	9.7	10.0	10.3	10.5	10.8	11.0	11.2	11.4					
Percent UF-SF Traffic					90.5	90.3	90.0	89.7	89.5	89.2	89.0	88.8	88.6	88.4	88.2	$\underset{8.1}{ }$	\%.0	88.0
Percert UF-UF Traffic					7.1	7.3	7.5	7.7	7.9	8.1	8.3	8.4	8.6		8.8	8.9	9.0	
Percent UF-SF Traffic					92.9	98.7	9.5	9.3	92.1	91.9	91.7	91.6	91.4	91.3	9.2	91.1	91.0	9.0
NTE: All MTS Traffic is UFF-Stf																		
white MRS is a nixture of UFF-UF																		
and UF-SF as noted above. All MS traffic is carried via an Slf																		
served on a nixture of Private and																		
Conron Sif dases.																		



									Y									
	1985	1986	1987	1988	1989	1990	1991	1998	1993	1994	1995	1996	1997	1998	1999	2000	2001	2008
-SF (Nor-Redindant for half Deplex MRS)																		
- IChannel					0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 2 Channels					1	4	7	10	12	12	12	15	18	20	22	24	24	24
- 3 Channels					1	3	5	8	10	10	10	12	15	17	19	20	20	20
- 4 Channels					1	2	4	5	6	6	6	6	7	8	9	10	10	10
- 5 Channels					2	6	12	7	9	9	9	4	5	6	6	7	7	7
- 7 Chamels					1	2	4	6	8	8	8	3	4	4	5	5	5	5
- 10 Channels					2	7	14	25	31	31	31	46	55	63	69	73	75	75
TOTAL					8	24	46	61	76	76	76	86	104	118	130	139	139	139
Nurber of Gaterrays																		
( bro-Redundant Full duplex)																		
Canada Only Option																		
- 5 Channels					6	6	6	6	6	6	6	6	6	6	6	6	6	
- 10 Channels					6	6	7	12	18	19	19	24	29	33	36	¥	3	40
TOTAL					12	12	13	18	24	25	25	30	35	39	42	44	45	46
Canada/us Option																		
- 5 Chamels					6		6	6	6	6	6	7	8	8	8	8		
- 10 Chanmels					6	6	7	12	16	16	16	22	2	31	34	36	37	37
TOTAL					12	12	13	18	22	22	22	29	35	39	42	44	45	45
Spacecraft - Canada Only																		
Launch Date					Jan.	Ju1.						Jan.	Ju1.					
Type					PAM-D	PA1-0						PAM-D II	PAM- I 1					
Onmership					Can.	can.						Can.	Can.					
Spacecraft - CanadaNis																		
Launch Date					Jan.	Jut.						Jan.						
					PAY-D													
Onfership						U.S.						Can.	$\begin{gathered} P A Y-D \\ U . S . \end{gathered}$					
EQUIPIENT PIRCHASES																		
1. Canada Only Option																		
Terminals - Mobile Radio								7,467		909	0	9,056	11,276	11,995	11,346	9,593	2,366	1,000
- Mobile Telephone					-665	1,580	2,12	2,533	2,750	592	0	3,36	4,059	4,059	3,923	3,592	1,114	1,43
- Paging					31,150	6,610	7,947	9,132	10,370	10,67	12,180	44,433	19,407	22,343	26,819	32,306	33,068	46,441
- DACS					1,800	2,100	2,600	2,100	1,900	1,800	1,700	3,500	4,200	4,200	3,600	3,400	3,200	3,100
Base Stations-					32	86												
SIf - 2 Chamels					32 1	86 3	19	162	151	30	0	160	140	100	90	50	20	30
- 3 Channels					1	2	2	3	3 2	1	0	2 4	3 2	2	1	0	1	0
- 4 Channels					1	1	2	1	1	0	0	0	0	2	0	1	0	0
- 5 Chamels					$?$	4	6	0	0	0	0	0	1	0	2	0	0	0
- 7 Channels					1	1	2	2	0	0	0	0	1	1	0		0	1
-10 Chamels					2	5	7	6	11	2	0	5	10	6	6	2	1	2
SHF Gatewars - 5 Channels					6	0	0	0	0	0	0							
-10 Channels					6	0	.	5	6	0 1	0	0 5	0 5	0 4	0 3	0 2	0 1	0 1
Hbte: Add 10\% for imentory																		



IEAR




### 1.0 Technology Review

### 1.1 Trunked Mobile Radio System

## Description

A trunked radio system is a method of operation in which a number of radio frequency pairs are assigned to mobiles and base stations in the system, for use as a trunk group. Trunking pools radio channels so all users have automatic access to all channels. This reduces waiting time and increases the channel capacity. Trunked systems also provide additional security, so users cannot monitor calls other than their own.

Trunking was developed in response to a number of needs, currently unmet by conventional mobile radio system design. These include:

- multiple use of mobile repeaters by a number of users
- spectrum efficiency
- improved channel loading and waiting times on shared access repeaters.

To ensure this new technology is implemented in a manner that will not introduce long range problems, a group of frequencies protected from interference from other licensees will be exclusively assigned to one licensee. This licensee must be capable of managing and coordinating a trunked system for all its users.

### 1.2 Cellular Hobile Telephone

## Description

Cellular Mobile Telephone Systems are being developed to overcome the many problems associated with conventional mobile telephone service, which uses one centrally located set of high powered transmitters to communicate with all mobile units in the service area. Channels cannot be reused in the nearby service areas because the transmitted signals are strong enough to interfere with one another. The number of channels is limited and only a small number of simultaneous conversations can be handled. Thus the capacities of

KVA Communications and Electronics Co.
these systems are extremely small, less than 1000 users per service area.

A cellular system divides the service area into subsections, or cells. Each cell is served by low-power transmitters, separate receivers and control systems. The available radio channel.s, in the 800 MHz band, are allocated among the cell sites. Channels assigned to one cell site can be reused if the sites are far enough apart to prevent interference.

Cell sites are linked to a switching office which is equipped with an electronic switching system. This switch directs the mobile unit to one of the cell sites available voice channels and passes the call on to the telephone network beyond the cellular system to be processed as a conventional call. The major advantages to a cellular system are that a mobile unit has continuous service as it travels through the cellular service area and that the number of simultaneous conversations possible is extremely high because of the re-use of frequencies and the number of frequencies available for each service area. Capacities of 100,000 per service area are realizable.

### 1.3 Mobile Data

## Description

A typical mobile data terminal (MDI) system consists of the following elements, all of which are microprocessor based: host computer communication controller base station controller mobile data teminal (MDT)

The MDT is a computer terminal with a keyboard and display, located in the vehicle. The base station controller, which contains a radio modem and control equipment, is the interface between the radio transmitter and receiver. Acting as an interface between the host computer and MDTs, is the communications controller, which converts messages from the host computer protocol format to radio protocol format and vice versa. Dispatch type operations are the prime application for MDT systems. A dispatcher uses a computer terminal with a keyboard to view data transmissions from MDI's in the
field, and to enter dispatches to the computer and transmit them. Both dispatchers and MDIS may access information from the computer directly. The main benefits of digital conmunications include:

1] Speed - digital communication is much faster than voice transmission. A 2-3 minute voice transmission can be reduced to $10-20$ seconds using NDTS.
2] Accuracy - in digital communication, accuracy is ensured through error detection techniques and automatic retransmission when necessary.
3] Privacy - digital communication is almost impossible to intercept and decode without highly sophisticated decoding equipment.
4] Direct Data Base Access - MDIs can gain direct access to a computer data base for routine queries without the assistance of a dispatcher.

Typical applications of MDT systems include:

- courier services
- taxicabs
- fire and emergency medical services
- police
- gas and utility companies


### 1.4 Vertical Blanking Interval (VBI) and FM Subcarrier

## Description

Vertical Blanking Interval - the VBI of a TV transmission, is the period during which the IV picture starts over. It is part of every television signal but does not carry any part of the television picture. The VBI can thus be used to deliver information on consumer television sets. By encoding information into bit streams of digital data at a rate compatible with IV transmission, the bit stream can be multiplexed onto the TV transmission. This data is then broadcast on the unused lines of the VBI to the consumers television set. The information is continuously transmitted by the $T V$ station.

FH Sub Carrier - A portion of the spectrum used for FM broadcast is not used for the transmission of voice or music. In this portion of the spectrum a subcarrier can be used for a variety of point-to-point special services

KVA Communications and Electronics Co.
such as paging, electronic mail, electronic message service or other addressable services. The subcarrier is transmitted simultaneously with the main transmission. Further proposals have been made which would allow several subcarriers to be transmitted simultaneously with the main transmission. The subcarrier may be in operation even if the main channel is not being modulated.

### 1.5 Air to Ground - MIS

## Description

Air to ground mobile telephone has been proposed for operation on commercial aircrafts. Such a system exists today for private business aircraft but the limited number of channels available has prevented introduction of the system on comercial aircraft. While the system concept is simple enough, being a service whereby a passenger can place a telephone call to any telephone through the communication of radio, ground stations and public switched telephone network ${ }_{p}$ the regulatory issues to be addressed are extremely complex and include such items as:

- who should be the service provider
- interconnect agreements and rates
- ground station ownership.

In addition, the airlines have proposed that only calls from air to ground be allowed, since two way calling capability would likely require additional flight attendants.

### 1.6 Amplitude Compandored Sideband (ACSB) <br> Pitch Excited Linear Predictive Coding /Diphase Minimun Shift Keying (PESPC/DHSK)

ACSB

Anplitude Compandored Sideband technology developed from the need to improve spectrum efficiency. Prior to development of ACSB technology, single sideband modulation techniques were known to be spectrum efficient; conveniently fitting into 5 kHz of bandwidth, but poor sound quality prevented SSB from
becoming popular in land mobile radio. ACSB technology was thus developed as an enhancement to SSB technology, the basic difference being the addition of a pilot tone that is transmitted near the top of the audio band pass at 3 KHz . This pilot tone overcomes many of the problems associated with SSB by:

> 1] providing a reference for automatic tuning. This eliminates frequency translation errors which cause "Donald Duck" effects.
> 2] providing a reference for automatic gain control. This prevents the gain from increasing when there is a pause in the speaker's voice. The rapid up and down variation in gain results in poor sound.
> 3] provides positive squelch action. SSB systems do not exhibit the capture effect, therefore, where two or more systems use the same frequency in nearby cities, undesired signals while weaker are still heard. With ACSB, the capture effect causes the desired signal to completely eliminate interference from the undesired one if it is more than 8 dB stronger.
> 4] allowing for tone squelch and tone signalling. ACSB eliminates the frequency translation errors which result in complete scrambling of tone squelch codes as well as the codes associated with other types of signalling such as DINF.

Thus ACSB radios, while using only a fraction of the total spectrum space of FM, provide users with all the advantages of an FM radio system.

## PELLPC/DNSK

For speech to be digitized, the speech bandwidth must be in the order of 64,000 bits/second. This bandwidth cannot be transmitted over narrowband communication channels, which will typicaly support 2400 to 4800 bits/second with simple modems and 4800 to 9600 bits/second with more sophisticated modems.

To transmit digitized speech over narrowband channels, the 64,000 bits/second must be reduced to as much as 2400 bits/second. To accomplish this the speech banơwidth is compressed through analysis and synthesis techniques.

The analysis techniques extract a minimum of speech information. The -5-

KVA Communications and Electronics Co.
synthesis techniques such as PELPC and DMSK employ models of the speech production mechanism. From the minimum speech information obtained through analysis, synthesis can create synthetic speech almost as intelligible as natural speech.

### 1.7 Personal Redio Comumications Systems (PPCS)

## Description

Personal radio communication systems at 900 MHz have been designed to provide low cost mobile radio-telephone service for local area coverage and to complement existing or planned commmication services. A subscribers system would generally consist of a base station and one (possibly more) mobile(s).

Each subscriber would have access to simplex channels for party-line communication with capabilities similar to $C B$ service. In addition, full duplex local channels would provide a base-to-mobile or mobile-to-mobile communication range of approximately 5 miles. A subscriber would also have the option of becoming a paid subscriber to a repeater which may be privately owned. Repeater channels would operate in two-frequency simplex mode and ! repeater operation would extend the range of base-to-mobile and mobile-to-mobile communications up to 15 miles. Additional channels would provide system control of local and repeater talk channels. Control channels would assign a talk channel, which would be private, to each call.

Each station (mobile or base) would have a unique identification code and could only be contacted by another station knowing the code and entering it (by keypad or dialer). In addition, each station would have a unique transmitter identification number, automatically transmitted by the radio at the beginning of a transmission, thus allowing access to the system.

The PRCS system may also allow for automatic interconnection to the public switched telephone network (PSIN). Interconnection would be accomplished automatically through the subscribers base station. Enhanced interconnect features could include call forwarding from base to mobile after a designated number of rings or remote activation of a base station from a mobile unit.

### 1.8 Links

## Description

For quite some time, radio links have been used to extend area coverage for both paging and radio services. In many urban areas, congestion has led to the unavailability of radio link frequencies in both the 150 MHz and 450 NHz bands. As a result, links above 890 NHz may be the only future option for service providers wishing to extend coverage through links. Link applications include:

1) Extension of radio paging operations through:
i) radio linking into neighbouring areas to provide complete coverage over a subscribers travelled territory
ii) simulcasting (simultaneous in-phase activation of all linked transmitters) to provide "city-wide" coverage.
2) Extension of mobile radio operations into rural areas through radio links to RCC MRS operation in a nearby area.

# SECTION 18.0 <br> MSAT SERVICE DESCRIPTION <br> AND <br> COMPETITIVE ENVIRONMENT 

## MSAT Service Description and Competitive Environment

## Competitive Environment/Service Provisioning Scenario

The profitability and market share of the various services will depend on the competitive environment within which the RCC must operate. For the purposes of the MSAT study, the following competitive scenario was considered:

Both the RCCs and Telcos can provide end-user services. Telesat is restricted primarily to selling MSAT services through the end-user service providers but may sell directly to large nationwide users.

## Mobile Radio Service

1. RCC provides a system whereby a UHF private base station or an SHF private base station communicates with one or more MSAT mobile terminals. The base station could be located in an urban area with careful site selection. The mobile terminals would obtain some urban radio coverage though it may not be very reliable in certain areas, due to shadow effects of large buildings or structures.
2. RCC provides a system whereby a private system dispatcher has access to his MSAT mobile terminals through the RCCs common base station via the satellite. Two configurations are possible:
a) The dispatcher is connected via a dedicated telephone line or autodial capabilities via switched PSTN lines to the common RCC base station.
b) The dispatcher uses selective signalling on his existing terrestrial private radio channel or he can be offered access to a specified RCC MRS channel for connection by radio to the RCCs common site where the RCC has an equivalent station on the user's frequencies and connects this to the appropriate circuit on his MSAT common base station. This latter function could be manual or automatic. This provides replacement of land lines by radio links.
3. The user could be in one of three categories:
(i) a first time radio user, probably because no terrestrial system meets his needs;
(ii) a private system operator with a requirement for a few vehicles to roam extensively beyond his terrestrial coverage. This user may be an existing customer of the RCC, or a totally new business opportunity.
(iii) operators on an existing RCC MRS channel with a requirement for a few vehicles to roam outside the RCC MŔS coverage area.
4. UHF-to-UHF Communications paths will require a double hop connection, where mobile to mobile or UHF base to mobile communications are required.

Mobile Paging Service

1. RCC provides a system whereby a pager can be signalled through MSAT by repeating the signal in a distant location through an MSAT mobile. The paging unit could be 150 , 450 or 900 MHZ operating on the existing terrestrial RCC service. The MSAT mobile or Hybrid Terminal would be equipped with an 800 MHZ MSAT receiver and a 150 or 450 MHz paging transmitter.
2. Extended area coverage of existing systems could be achieved by connecting existing systems together through MSAT links. Existing paging base repeater equipment and units could be used. A base station would be required to allow receive and transmit capability to MSAT and would provide the interface to the paging terminal and the public switched telephone network (PSTN).
3. RCC provides a system whereby a pager is designed for operation on a single dedicated MSAT paging channel. There is some doubt that direct paging from MSAT to personal paging receivers is feasible. This service could be restricted to Vehicle-Based receivers only. It is also possible that the receiver could be transportable. In urban areas where MSAT signals may not be satisfactorily received, an RCC could enhance system coverage by establishing repeaters. The system would require a base station to allow access to MSAT and to the PSTN through the paging terminal.

## Mobile Telephone Service

1. RCC provides a system whereby a mobile telephone is signalled through MSAT. An SHF gateway is required to allow access to MSAT and to provide connection to the public switched telephone network (PSTN). A mobile telephone switch provides an interface to the SHF gateway and the PSTN, and enables the SHF gateway to have access to many circuits. Each mobile would use one circuit through the SHF gateway for the duration of a call.
a) All calls from an MSAT mobile telephone will be received downlink from MSAT by the nearest gateway to the destination as determined by the called party telephone number. This gateway will provide access to the local calling area or access to long distance circuits for which a toll charge will apply.
b) All calls from a fixed location (telephone) will enter the PSTN at the telephone serving office as determined by the originating telephone number and will be routed on to the PSTN

## Mobile Data Service

RCC provides a system allowing the following data services access to MSAT through an established base station:

1. DACS - Data Acquisition and Control Service
a) polling

Remote points are equipped with DACS terminals that send data when polled. These remote points send the data to the RCC's SHF base station which routes the information to the user's location by a choice of paths which might include common carrier packet switched networks, private user radio channels, dedicated telephone lines or autodial connection via the public switched telephone network. In this application regular data collection cycles will be initiated by the main central control statión (CCS) and the data can be sent to the RCC for distribution to his customer.
b) Alarm

Event-triggered data reporting could be sent over the MRS channels to the RCC base for distribution to the end user (not under CCS initiation)。

2a) Data Enhancement of MRS/MTS Terminals
The subscriber MRS or MTS terminal would be enhanced to provide data communication. Users can establish a two-way data communications path to the base station location using any of the same choices given in 1).
2b) Store and Forward MDS to MRS/MTS Terminals Users can establish a data communications path to the RCC's base station and leave messages to be forwarded to mobile data terminals, either individually or as a group. These messages,
which could take numerous forms such as written communications, coded commands, control sequences etc., will be batched by the RCC and transmitted so as to optimize use of MSAT airtime and minimize charges to the users.

Communication paths between base stations and MSAT mobile data terminals will have the same bandwidth as voice circuits and can carry data at speeds up to $2.4 \mathrm{~kb} / \mathrm{s}$. It is envisioned that communication paths through MSAT to MDS terminals will not be set up to carry very brief l or 2 second messages. Such messages will be combined onto an already established circuit by a number of techniques which include store and forward at the SHF base station, polling of remote stations, random access to an established UHF frequency being assigned by DAMA or a periodic basis known to the MDS terminals.

## CANADIAN DISTRIBUTION OF RCCs

The total population of RCCs in Canada as compiled from DOC licensing data was 587 in December 1982. Table 1.0 shows the national distribution based on the number of licensed base stations.

TABLE 1.0

Size Distribution of Base Station Licensees in the Restricted Public Commercial Service - December 1982

				NUMBER OF   LICENSEES $\qquad$ (1)	\% TOTAL   LICENSEES	$\begin{aligned} & \text { NUMBEI } \\ & \text { LIC. } \end{aligned}$	$\%$ TOTAL   LIC. FREQ.
1		Base	Station (2)	324	$55.2 \%$	597	13.68
2	- 5	5	"	191	32.5	1131	25.8
	- 10		"	35	6.0	597	13.6
11	- 20		"	29	4.9	949	21.7
$\geq$	$\underline{20}$		"	8	1.4	1104	25.2
			TOTAL	587	100	4378	100

(1) Paging plus mobile radio.
(2) A base station licensed for both paging and mobile radio is counted twice.

- Source DOC -

Table 2.0 provides a list of the major RCCs ranked by the number of base tations. Due to the confidential nature of the numbers of licensed base cations and licensed frequencies for each of the listed RCCs; actual numbers annot be provided in this report.

KVA Communications and Electronics Co.

TABLE 2.0
Major Licensees of Base Stations in the Restricted Public Commercial Service - December 1982

Shown below are the licensees operating more than 10 base stations, ranked by the number of base stations. Province or territory of operation is shown in brackets. Individual statistics are confidential and not public information.

Number of Number of
Lic. Base Sta. Lic. Freq.
(1)
(2)

MOTOROLA CANADA (BC, Alta, Sask, Man, Ont, Que, NS)

PAGETTE AIRSIGNALS (AIta, Sask, Man, Ont, Que)

MACLEAN HUNTER COMMUNICATIONS (Ont)
TIME COMMUNICATIONS (Ont)
OXFORD COMMUNICATIONS (Ont)
CANADIAN GENERAL ELECTRIC (BC, Alta, Sask, Man, Ont, Que)

MILLMAN'S COMMUNICATIONS SERVICES (Alta, Sask)

CANADIAN MARCONI (all provinces
except NB)
CHRISTIE AND WALTHER ELECTRONICS (Ont)
HARRISON-NOWELL MOBILE RADIO SERVICES ( $\mathrm{BC}, \mathrm{Man}$ )

PACIFIC COMTEL (BC, Yukon)
MESSAGE CENTRE (Ont)
ABICOM (Que)
JACK FRENCH LTD. (Ont)
YORK TELECOMMUNICATIONS (Ont)
AIR-PAGE COMMUNICATIONS (PEI, NB, NS)
COMMUNICATION SERVICES (ROYAL) (Que)
SCOTCOMM RADIO (Ont, Que)
CAPITAL COMMUNICATIONS (NB)
COLCOM COMMUNICTATIONS (Que)
TRANS-PROVINCIAL COMMUNICATIONS (Ont)
Number of Number ofLic. Base Sta. Lice. Freq.(I)(2)
M. LEDUC LTEE (Que)
BRANTFORD TELEPHONE ANSWERING (Ont)
TILL COMMUNICATIONS (Alta, Sask)
HASTINGS RADIO \& TV SERVICE (BC)
SYSTEL ELECTRONICS (Alta)
KARTRONIX (Alta)
WESTERN 2-WAY RENTALS (Man)
BEEPER PEOPLE (Ont)
COMMUNICATIONS SR (Que)
JET COMMUNICATIONS (Ont)
GORDON E. FREW LTD. (Ont)
TOMBS \& SONS LTD. (BC)
ESP ELECTRONIC DEVICES (Alta)
TASCO COMMUNICATIONS (BC, Alta, Sask)
MAYFLEX LTD. (Alta)
CHECKPOINT COMMUNICATIONS (Ont)
Licensees with more than 10 base sta. (37) ..... 781 ..... 2053
TOTAL LICENSEES (587) ..... 1912 ..... 4378
$\%$ TOTAL (6.3\%) ..... 40.8\% ..... $46.9 \%$
(1) A base station licensed for both paging and mobile radio is counted twice
(2) Paging plus mobile radio
(P) Paging

- Source DOC -The fact that about $41 \%$ of all RCC licensed base stations and about $47 \%$ of allCC licensed frequencies are concentrated within the operations of the 37 majorjCs is indicative of the makeup of the industry.

KVA Communications and Electronics Co.

TABLE 3.0

Number of Base Stations (3) and Frequencies Licensed in the Restricted Public Commercial Service - December 1982


The distribution of RCCs by province and by major MA is listed in Table 4.0 . This tabulation was derived from the records of 587 licensees provided by DOC. It is important to note that many of the RCCs have operations in a number of Canadian MAs and, as such, are counted a number of times in accordance with Fheir areas of operation. It should further be noted that the majority of major RCCs who represent almost $50 \%$ of the RCC business interests are members of the CRCCA and were included in the 130 members contacted for this study.

KVA Communications and Electronics Co.

TABLE 4.0
Distribution of RCCs by Province and Major Metropolitan Areas

Province/City	Population	No. of (1) No. of Major RCCs Minor RCCs
CANADA	24.646 K	223 - 558
MARITIMES	2.263 K	$7 \quad 24$
Halifax	550 K	$2 \quad 2$
St. John'so Nfld.	110 K	24
Saint Johno N.B.	100 K	12
Rural	1.303 K	$2 \ldots$
QUEBEC	6.315 K	30 -...... 143
Montreal	2.800 K	632
Quebec	600 K	416
Chicoutimi	100 K	12
Rural	$2 \times 815 \mathrm{~K}$	$19 \quad 93$
ONTARIO	$8 \times 800$ K	$90 \quad 187$
Hamilton	550 K	610
Toronto	$3,000 \mathrm{~K}$	823
St. Catharines	300 K	12
Kitchener	345 K	611
Oshawa	125 K	$1 \quad 2$
Ottawa	700 K	6 9
Sudbury	175 K	25
London	275 K	712
Windsor	250 K	28
Thunder Bay	115 K	3
Rural	2.965 K	14. . . . . . 107
SASKATCHEWAN	990 K	$12 \ldots 37$
Saskatoon	150 K	$4 \quad 8$
Regina	160 K	48
Rural	680 K	$4 \quad 21$
MANITOBA	1.045 K	5 -19
Winnipeg	580 K	$5 \quad 6$
Rural	465 K	13

KVA Communications and Electronics Co.

ALBERTA	2,345	K	17	100
Calgary	500	K	7	21
Edmonton	600	K	7	17
Rural	1,245	K	3	62
BC	2,818	K	13	48
Vancouver	1,200	K	6	32
Victoria	220	K	5	5
Rural	1,398	K	2	$\ldots \ldots .$.

1) The major RCCs as listed in Table 2.0 are listed in this column. The classification of "major" is based on national size of over 10 base stations.

- Source KVA -


## KVA Communications and Electronics Co.

Section 20.0

## RCC Provincial MSAT Forecasts - MRS, MTS, MPS and DACS

Provincial forecasts for the years 1989 to 2002 are shown on Graphs 1 to 7. As these graphs show, the RCCs MSAT forecast projections for MRS, MPS and MTS are highest for Ontario and Quebec. These two provinces have the largest concentration of RCCs and currently, the highest demand for RCC services, primarily due to the heavy traffic corridor that extends from Windsor to Quebec city. This trend is not expected to change and it is estimated that approximately $70 \%$ of the total MSAT demand for MRS, MPS and MTS will originate in these two provinces. It is estimated that the majority of MSAT users will be existing terrestrial users who require extended coverage beyond that already provided by terrestrial systems.

British Columbia and Alberta also contribute significantly to the MSAT forecast projections for MRS, MPS and MTS. Together they account for approximately $20 \%$ of the RCC forecasted demand. It is expected that the oil and gas exploration industry in Alberta and offshore drilling and fisheries industries in BC will have the largest requirements for MSAT services in these provinces. ?:

RCC DACS service forecasts are composed of both an alarm and a polling component. Polling demand accounts for over $2 / 3$ of the total DACS forecast. Because offshore exploration and environmental monitoring, ie. ice movement, fisheries, are expected to generate the greatest demand for DACS polling units, DACS forecasts are highest for British Columbia and the Atlantic provinces.

MSAT paging services will primarily be provided by the RCCs, who historically, have been major service providers of paging on terrestrial systems. In fact, it is expected that MSAT will primarily provide link frequencies between terrestrial paging systems. The paging units themselves, will therefore be the same or similiar to those units that exist or will exist for terrestrial paging and would therefore operate in VHF or UHF (450, 800 or 900 MHz ) bands.

DACS is envisioned to be a relatively new service offering for the RCCs and one that they have little experience with today. It is expected that DACS will be extremely competitive but that the RCCs will still achieve over $50 \%$ of the total market.


Graph 2
MSAT RCC Forecast
Alberta



Graph 4


MSAT RCC Forecast




## RCC Provincial MSAT Financial Results

The provincial distribution of the revenue，expense and investment components resulting from MSAT，as well as the cumulative NPV＇s are illustrated in Graphs 8 to 14．These financial components are in current dollars and the NPV is dicounted to the year 1984.


MSAT RCC Economic Results


## MSAT RCC Economic Results



MSAT RCC Economic Results



Graph 13

## MSAT RCC Economic Results



Graph 14

## MSAT RCC Economic Results



KEDAR, MICHAEL.
--The impact of MSAT on the radio common carrier industry: final report

## P

91
C655
K434
1985
v. 2



[^0]:    * Regulation and Regulated refer to the process, administered by government, to select and control public service providers. Regulation does not imply monopoly. There could be many regulated common carriers serving the same market. Regulation does mean meeting certain standards of service, and possibly filing tariffs and rates with the regulator.

