GOMI, T.

—-=A proof-of-concept experiment
system for the spacecraft autonomy
management system (SAMS).

Iis
d

Govemment Gouvermement 5

ofCanada duCanada 91
C655
G6456
1985

Department of Communications _

DOC CONTRACTOR REPORT DOC-CR-SP -85-045

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: A PROOF-OF-CONCEPT EXPERIMENTAL SYSTEM FOR THE SPACECRAFT AUTONOMY
MANAGEMENT SYSTEM (SAMS)

AUTHOR(S): T. Gomi
N. Nakamura

e 20 1998

e — " B
il
|
|
E
i

ISSUED BY CONTRACTOR AS REPORT NO: AAIS-84-004

PREPARED BY: Applied AI Systems, Inc.
P.0. Box 13550
Kanata, Ontario
K2K 1X6 '

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 06ST.36001-3-4454

DOC SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: UNCLASSIFIED

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: 6/5/85

I

AS

P O 4 F1§7 é,A?f/

/ o
,/é Froaof—of-Concept Experiment System

for the
Spacecraftt Autonomy Management

System (SAMS)/

Technical Report No. AAIS-84-004

COMMCR'CATICES CATIADA

\

0C2S, 1985

LIBRARY — D:CLIGTH

By
,’T.qumi
N. Nakamura
Applied AI Systems, Inc.
F.0. Box 13550
Kanata, Ontario

KZ2K 1X6

Under DSS/DOC contract 0&65T.386001-3-4454

Version Z20APRBS

Ffd w1] BN BhE BE ha hd S I B S = B A B 0 AaE e

—

e P)

L

CONTENTS

Glaossary
Acknowl edgements
Summary
i. Introduction

2. The SAMS Proof—-of—-Concept Experimental System

2.1 Objectives of the Experiments
2.2 Structure of the POC Experimental System
2.2 Methods of the Experiments

3. The High—-Level Eknowledge-based System (HLES)
3.1 Objectives of the HLKS
3.2 Functional Structure of the HLKS
3.3 Operation of the HLKS

3.3.1 The HLEKS
3.3.2 The HLKS Interface and the OIU
3.3.2.1 Interface with the 0OIU
3.3.2.2 Interface with the LLKS
3.3 The HLKS Execution Control
3.4 The HLKS Autonomy Control
3.3.4.1 The operation of the HLKS Autonomy
Control

«3.4.2 The search command

e 3.4.3 The continue command

eZ.4.4 The terminate command
. The HLKS Command Module

The suspend command
The activate command
The entrust command
The relieve command
The initialize command
The check command

The find_top command
e HLKS Explanation Madule
The report command
The probe command

The assess command
The recommend command
The explain command

GG
Il R O

2
.
2

coocOrrJTUOUOOOULUUAT b S

-

AWH WD W WWHEWUWMWW XN

0 q".A L A

page

> 5 1 |

VRO T] OO Y Y (N 1
00NN e

LN I T I U P % I 2

4. The Low-Level Knowledge—-based System (LLKS)

4.1 0Objectives of the LLKS 4-1
4.2 Functional Structure of the LL&S 4-1
4.3 Operation of the LLKS 4-3
4.3.1 The LLKS 4-3
4.3.2 The LLKS Interface Module and the EIU 4—4
4.3.2.1 The interface with the HLKS 4—-4
4,.3.2.2 Interface with the EIU ' 4-5
4.3.3 The LLKS Execution Control 4—-&
4.3.4 The LLES Inference Engine 47
4.3.5 The LLES Explanation Module 4—-14
4.3.9.1 The disp_tree command 4—-14
4.3.5.2 The disp_ref command 4-17
4.3.5.3 The disp_exp command 4—-18
4.3.5.4 The check_loop command 4—-19
5. The experiments o-1
.1 The LLKS tests and experiment S-1
S5.1.1 The objective of the experiment S5—1
S5.1.2 The method of experiment 5-1
5.1.3 Data used in theexperiment S5—3
S.1.4 The results of the experiment o4
5.1.5 Discussion S-S
5.2 Testing of the HLKS Autonomy Control search mechanism
S—-10
S5.2.1 The obiective of the test S-10
S5.2.2 The method of testing S—-10
5.2.% Data used in the experiment S9—-12
5.2.4 The result of the experiment o-—-12
5.5 Automatic generation of warning messages 5—-15
S5.3.1 The objective of the experiment o195
S.3.2 The method of the experiment S—-15
S5.3.% Data used in the experiment S5-17
'5.3.4 Result of the experiment 5-17
5.4 An avtonomous control loop o—-1i9
S5.4.1 The obiective of the experiment 5—-19
5.4.2 The method of the experiment o-19
5.4.3 Data used in the experiment 5—-20
5.4.4 Results of the experiment o—-22
6. Conclusions . b1
References ' R—-1
Appendices a1
A.1 HLEKS Listings A—-1
A.2 LLKS Listings A-22
A.5 COMKB Listings A—-33
A.4 HLEKB Listings A-53
A-5 LLKB Listings A—-54

ii

$
[
[ary

"

‘-——" - N j

pre—. Py p—_

i

GLOSSARY

AASC Advanced Autonomous Spacecraftt Computer, a spacecraft
- computer system concept developed at CRC (CRC/AASC)

ACC Autonomy Control Cluster (AASC/SAMS/ACO)
Al Artificial Intelligence (Computer Science/Al)
AO0CS Attitude and Orbiting Control Subsystem

(Spacecraft/Subsystems/A0CS)

COMDR COMmon Data Base (AASC/SAMS/POC/COMDE). A data base
accessed by both the LLKS and the HLKS as a short term
memory

COMKR COMmon Knowledge Base (AASC/S5AMS/POC/COMKR) . A
Knowledge base accessed by both the LLKS and the HLES
as a long term memory of knowledge

CRC Department of Communications, Communications Research
Centi-e (DAOC/CRC)

DEVISOR
JPL ‘s domain independent purpose autumated planner -
schedular (JPL/LFEERI/DEVISOR)

nac Department of Communications, Government of Canada

EEM External Environment Manager (AASC/SAMS/AAC/EEM) A
SaAMS function that manages the spacecraft’'s response
to physical environmental parameters from external
sourrces

EIM External Interface Manager (ARASC/SAMS/ACC/EIMY A
functional component of the SAMS® autonomy management
cluster. Manages the autonomy management aspects of
dealing with systems external to the spacecraft.

EIU Environment Interface Unit {AASC/SAMS/FOC/EIW Aan
element of the S5AMS POC system that generates
simulated environmental conditions.

EMES Enerrgy Management Expert Gystem. An expert system
designed +for managing on—board energy consumption by
spacecraftt subsystems (martin Marietta)

FAITH Forming And Intelligently Testing Hypotheses, a JPL

expert system to diagnose spacecraft malfunctions
(JPL/FEER/FAITH)

iii

FIES Fault Isplation Expert System, an onboard fault
[- isplation expert system for automating on—-board power
\I subsystem (Martin Marietta)

FTM Fault-Tolerance Management, a generic name given to
the lower layers of the AASC hierarchy (AASC/FTM)

HLEB High Level knowledge Base (AASC/SAMS/FOC/HLKER). A
knowledge base for the LLKS

HLES High Level kKnowledge-based System (AASC/SAMS/HLES)

JFL Jet Propulsion Laboratory, California Institute of
Technology {(JFPL)

KRS Knowledge—Based System (AI/KBS)Y. Synonym Ffor Expert
System, except in the KBS the knowledge source is not
necessarily attributed to an expert.

LLKE - Low Level Knowledge Base (AASC/SAMS/POC/LLKB). A
knowledge base for the LLKS.

. ! -~ s “: d -
o aE I BN B BE N
r
r
(1]

Low—Level Knowledge—-based System (AASC/SAMS/LLKS)

oIu Operator Interface Unit (AASC/SAMS/0IU). An element of
the SAMS POC system which interfaces the system with
the operator. .

POC Proof of Concept

scC Subsystem Control Cluster {(AASC/5AMS/5CE) . An
- adaptation of conventional on—board logistical
subsystems for the SAMS architecture.

FEER Planning and Execution with Error Recovery, a blanket
Al system with the objective of automating spacecraft
operation (JFPL/FEER)

S5A Subsystem Administrator (AASC/SAMS/SACC/S5A)

SAMS Spacecraft Autonomy Management System, a substructure
of the hierarchical design of the AASC (AASC/SAMS)

SGM Spacecraft General Manager (AASC/SAMS/ACC/SGM)

i1v

i

-

ﬁi

Acknowl edgements

The Spacecratt Autonomy Management System (SAMS) was
developed by +the authors +for the Communications Research
Centre (CRC) of the Federal Department of Communications
(DOC) under contract to the Department of Supply and Services
{Contract Number 0&8T.Z6001-3-4454). Authors are thankful for
the support given by Dr. S.P. Altman and Mr. R.A. Millar of
the Communications Research Centre. They would also like to
express their thanks to Mr. Dave Andean, alsc of the CRC, who
provided them with knowledge of spacecraft operations
management, and uponwhose expertise the experiments described
herein depended.

Summary

The SAMS is conceived as the top layer of the Advanced
Autonomous Space Computer (AASC) hierarchy developed at the
CRC during the past three years. The AASC has the capacity
for further upward expansion. The SAMS layers are
characterized by their use of Artificial Intelligence (AL
techniques. The SAMS is described in the report "Functional
Design of a Knowledge-based Spacecratt Autonomy Management
System (SAMS)" (Technical Repoirt No. AAIS-84-001, Applied Al
Systems Inc.).

This report describes a set of expert systems
developed as a Proof of Concept (POC) experimental system,
and a series of experiments conducted using them. The two
expert systems are called the Low-Level Knowledge-based
System (LLKS) and the High-Level Knowledge-based System
(HLKS) . They are designed to prove the capability of
autonomously managing on—board anomalies, the premise of the
SAMS concept. The experiments involved testing the expert
systems separately and testing operations run on the combined
expert system complex.

vi

1. Introduction

The SAMS5 concept was developed as a method +For
automating the management of a spacecraft. It can be applied
to spacecraft autonamy management tasks, the like of which,
conventional technology has been unsuccessful in automating.
To compensate Ffor the shortcomings of existing automation
approaches which are based on classical control system theory
theory, a new set of system control methodologies was
introduced: a collection of knowledge—~based systems or expert
systems. Substantial structural and other renovations to the
existing expert system architecture was necessary to make the
knowledge—based expert systems acceptable as the FOC
experimental system. The changes were necessary because the
existing systems are typically based on a fixed, narrowly
defined mode of operation which differs substantially from
the domain of autonomous spacecratt management.

As the need Ffar autaonomous spacecraft management
increases, the search for new approaches to manage spacecratt
operations intensifies. Many working in the field ot
spacecraft autonomy have discovered the need to investigate
‘Al as a tool for autonomy management. There are several
similar but mostly unrelated system developement efforts
currently underway, mostly in the United States. Some have
reached the stage of constructing an experimental system and
actually conducting experiments [Wagner 83, 841, while others
are still in. the planning stage [Mitchel and Lemmer 841
[Dickey 841. Very few have reached the stage of prototyping
as of this writing, except for a few military systems in the
U.s., details of which are not available.

Most of these develapment groups are running their
~experiments on = simulator which typically is a
software—oriented computer simulation [Sauvers 841 [Bein 841.
This was the approach chosen for the testing of the SAMS FOC
system. :

In addition to autonomy management systems for
spacecraft, there are similar autonaomy management systems
under development for avianics applications [Cross 841 [Milne
841 [Schundy 841 [Girad 841. There are more similarities than
differences between these systems and spacecraft autonomy
management systems. The developers are concerned with
building a system that operates in a dynamic, remote
environment in order to achieve objectives similar in their
attributes to those of the spacecraft autonomy systems. For
that reason, their developments are worth monitoring.

——— ——
-

,

- A am S A am

-

s et
|

- S =

-
-' - -/‘

Experiments built and conducted by Fisano and Jones
[Fisano and Jones 841 on a dedicated computer system are

significant in their successful demonstration of the
capability of AI toc control the plan guided behavior of an
autonomous system. - The project is also demonstrative of a

proof of. concept model which has had substantial engineering
efforts already expended towards its eventual full scale
implementation. Anderson and his group at Texas Instruments
have also constructed and run an experiment in a similar
domain, but using a different approach, and with less
concrete resultsg C[Anderson, et al 841].

There are alsoc a number of projects which involve the
development of auvtonomous ground or underwater vehicles. The

- mode of operation and the functional architecture of autonomy

management systems for these vehicles are again very similar
to those of spacecraft or aircraft auvtonomy management
systems. A project at the Naval Ocean Systems Center by
Harmon and his group [Harmon 831 [Harmon, et al 841 is
probably the most advanced among systems in this application
domain. A convincing architecture for such a system has been
defined and presently the implementation of two systems which
realize the design is underway. Generally speaking, the
architecture and the operating principles of the MOSC system
are strikingly similar to those of the SAMS defined in the
functional design. Other autonomous vehicle projects of
significance which intend to build experimental systems for
testing are those by the University of New Hampshire
[Blidberg, et al 833, and by the Hughes Research Laboratory
[Bullock, et al 831.

The SAMS adopted a combined layered and distributed
architecture, as detailed in the report. In the proof of
concept system, two expert systems are developed representing
two of the key layers. They are placed in two EKnowledge
Engineering layers and named accordingly: the High-Level
Enowledge—-based System (HLKS) and the Lower-level
Knowledge—based System (LLKS). A two—tiered expert system
architecture was adopted to accomodate two conflicting
requirements: the need to report to human operators and the
requirement to interface with lower level system elements
which in turn interface with the environment.

The mode of operation of a human operator, while
highly flexible, is typically asynchronous, relatively slow,
macroscopic, often irregular, and limited in judgemental and
dexterous precision. An enhanced goal-driven reasoning scheme
was adopted to interface the operator and overcome these
drawbacks. The lower level machinery on the other hand,
typically functions synchronously +to inputs, fast and

-

-

-\

"- "i I Prn— i - e -

regularly, with a high degree of precision, but greatly lacks
in flexibility. An approach called data fusion as a form of &
forward reasoning mechanism was employed at the heart of the
lower level expert system to interface with the lower level
system elements.

One important aspect of an autonomy system is that it
must cope with very dynamic environmental phenomena which
change rapidly. It thus must be constructed as a real—-time
system. A successful and definitive notion of a real-time Al
system has vet to be developed and proven while such system
formalism has been well developed in conventional computing
systems during the past two decades. One obstacle is the
coordination of the distinctive operational characteristics
of the human and that of the lower level machines mentioned
above which must be provided. Many of the projects noted
earlier try to cope with this problem in various but often
drastically different ways. Again, the approach taken by the
NOSC group, which has its root in Carl Hewitt’'s distributed
control system model [Hewitt and Baker 771 and the
hierarchical architecture proposed by the HEARSAY projects
[Erman et al 801 [Lesser & Corkill 811 seems superior.

The lack of appropriate hardware to carry out the
real-time execution of an autonomy management system is
another obstacle to be overcome. While the approach for
selecting hardware and subservient system software differs
greatly among projects, the need for more computing resource
in a Fform appropriate to the operation is recognized by all
concerned. Various efforts to develop such hardware and its
accompanying system software seem to belong to so-called
Fifth Generation Computer System (FGCS) projects. There are a
numbet of different approaches proposed in this area.
However, the most promising ones for the next several vyears
seem o be those based on either dataflow machine or
reduction machine architectures. These massive parallel
computers are to be constructed using emerging Ultra Large
Scale Integrated circuit (ULSI) technology, which include
supporting developments in gallium—arsenide (GaAs) Jjunctions
and submicrometer line width microcircuits to realize roughly
a 10,000 fold throughput improvement in the next several
Years. This advanced hardware will be built mostly for and
used in non-numerical computations, the basic mode of
operation of Al computers.

The availability of such powerful hardware is said to
be at least five years away. In the mean time, it is expected
a great deal of research will have to be conducted on the
other issues described earlier, which, in many respects, are
harder to solve. For this reason, the current use of
non-realtime hardware and a slow software simulator Ffor the

-t
i
7]

-

.

e T]
au am

-

;

Ly

-~y

f

H | 5

F

- purpose of developing fundamental real-time applications is

justified as an acceptable method of study. All existing
real-time expert systems are running slower than real-time,
except for IBM's YES/MYS [Hong et al 841, which performs the
functions of an operator of a large main—frame caomputer, and
Pisano's navigation expert system mentioned above. The former
deals with a problem which poses relatively non—critical time
canstraints while the latter runs a simplified version of the
simulation on a powerful Al computer. However it cannot be
implemented for the intended target environment for at least
two vyears.

Y

- .

U

- e S e S o aw

,__

- S
7

2. The SAMS Proof-—of—-Concept Experimental System
2.1 Objectives of the Experiments

A series of experiments have been planned and
conducted using the POC experimental system to test its
proper functioning and to demonstrate the effectiveness of
the SAMS concept. In order to realize these goals, the
following specific requirements have been established:

(1) To test the appropriateness of a two-tiered expert system
architecture as an effective method of asynchronously
coordinating the real—-time physical operational
environment with the operator’s environment using an
Artificial Intelligence approach,

(2) To define a real—-time expert system architecture as an
effective structure for the LLKS,

(3) To define and test the HLKS as a management expert system
which oversees the functioning of the autonomy system,
and using it to identify attributes of an efficient high
level expert system formalism which interface with human
operators,

(4) To test the performance of the LLKS as a simulated
real—-time expert system,

(5) To demonstrate that a knowledge—based control loop can

actually detect, report, analyze, and correct an on—board
anomaly.

Structure of the POC Experimental'System

]
0]

Figure 2.1 shows the over—-all functional structure of
the POC experimental system. It contains the HLKS, the LLEKS,
the COMmon Enowledge-Base (COMKB) for storing the fault tree
and ob ject level diagnosis and recovery knowledge, a
knowledge base for the HLKS (HLKB), a knowledge base for the
LLKS (LLKB), the COMmon Data Base (COMDB) to contain the
results of the LLKS® activities and to provide a search space
for the HLKES, the Environment Interface Unit (EIU), and the
Operator Interface Unit (OIU). The main module of the SAMS
POC coordinates the operation of these modules. The main
module also controls an initialization module, a module for
restoring the internal state of the POC at the beginning of
2ach simulation cycle, and a set of input generation modules
employed to create simulated fault inputs.

8!
I
s

f
‘lllll‘ ‘iill'['IIII.

————————— i Experiment control and

H
im]
i! Console |{ display of results
i i HH
} —————— 1 (ground cantraoller s
) i cansale)
Autonomy ™
management H
knowledge .« .
- ——— - i O1u { Operator interfacing
{t HLEKEB | e :
e . ;
™ v
i " . - Explanations;
{ i H | Explanation Modulei! Repaort generation
i L !
f————*{ K | Command Module { Command execution
i 8 i H .
i i Autanamy Contraol i Search mechanism;
* * * Autanomous control
N 3
H i
Damain H H { i Instantiated
_knowledge | COMEB N COMDB 1 fault tree
i i H i
i i
v v
i L 1 Execution Caontrol |
i L - i
o ——— *1 K { Inference Engine |
i i 8 i - - i Event propagation
i d i Explanation Maodule!
1 . >
1
v -,
. . i
i LLEEB | . .
' ‘ H E I U { Environment generation
Fropagation P :
control H
knowl edge v
I « !
i Consaole {1 Simulated environmental
{ 2 R parameter input
: H

" - -

Figure 2.1 Functional Structure of the SAMS POC
experimental system

k3
|
3

o am

N W O A N e e S e

. The HLES is a goal—-driven expert system for high level
fault processing and for managing autonaomy procedures. It
supervises fault detection, fault containment, fault

analysis, and +Ffault recovery processes. The generation of

various reports is also controlled by this expert system. The
HLES is also invalved in altering the contents of the
knowledge bases, though this feature is not implemented in
the present POC system.

Being a goal-driven expert system, the HLKS searches
through an instantiated fault tree, which was developed in
the COMKR by the LLKS. The controller may specify the search
mode of the HLKS and give other instructions to the HLES
through the 0IU. Rules in the HLKB can alzso determine a
search mode. The knowledge-based system currently supports
the depth—+First, a width—-first, a beam, or a mixture of these
search modes. The HLKS intertfaces the operator through the

Operator Interface Unit (OIU). Section 3 describes the HLKS
in further detail.

The LLKS iz a data‘event driven expert system
aoperating in the domain of low level +Facrlt handling. It
detects and analyzes faults caused by on—-board and external
environmental changes and on—board or ground system
malfunctions. When authorized by the HLKS, and ultimately by
the controller, it may pertorm selected law-level fault
recovery functions. The LLKS obtains its inputs from the
Environment Interface Unit. The EIU generates simulated
gnvironmental conditions using either internal generators or
inputs esntered by the experimenter. Whenever a new event of
significance is detected by the LLES, and its eftect
propagated in the COMDE, the LLKS notifies the HLKES so that
the high level expert system acting as a manager can conduct
itz own investigation into the COMDEB. Details of the LLKS are
described in Section 4.

2.3 Method of the Experiments

The main control flow of the POC experimental system
is shown in Figure 2.2, Follaowing the system wide
initialization, which includes setting up input modes for
gach input terminal, the main simulation loop begins. During
one simulation cycle, the EIU generates assertions for aill
input terminals. These input events are prapagated through
the inference network by the LLKS. I+ the LLKS notices a
significant event that may threaten the normal operation of
the system, it notifies the HLKS and the HLKS begins its
investigation. Each time it discaovers a serious fault during
the investigation, it issues a warning to the operator (a
ground controller) and issues a system prompt. The operator
may enter any of the system commands.

i

M
1
2

)

ninl

~

- m e e oem oW S oW o

,

- -

r = po—

-

L

b e e e mm e o WM e e e M M M me e e S e e e R A e W e e R e M S e WA e W S e me §

I

{(propagation

£ 5AMS POC Experiment 1

includes:

- - H Interactive
{ System Initialization i - environment
* ’ i_ set up
cycle)

’

(diagnosis cvclel

"a’

e L

1
]

{ EIU Session {— - —{ Set Input events

: LLKS i-— - —{ Propagate events
/ Any \
/ fault(s)\ (normal operation?
\ ? / o
N / No
Yes

H
H
21 (system faulty)}

W e mn ee e ee me e e e me mm N Me e e e e = e e me e e e oo

} i HLKS i— - =i Investigate
: Y- + i_ faults
i H
| i
: !/ AN {Faulty but stable
H / Serious A\ opetratian)
i \ faults 72/ >
H N !/ No
H Yes |
: i (Faulty system)
1 - A -
i i WARMING and/or i
i 1 1
i \ REFORT |
{ (one fault N i
H carrected) H —
i - + - i Interactive
Y { 0IU Session - — —i or autonomous
* + ‘ i_ diagnosis
(all faults i
corrected) v
Figure 2.2 The FOC experiment system main control

hJ
|
kS

S NE G AN SN GE WS PR 45 SN We =

,‘
mE N

f

The HLES consults the meta—-level knowledge base (the
HLEE) and the object level knowledge base (the COMKER) for
rules applicable to the situation. Such autonomous diagnosis
may include corvective actions. In the absence of these
autonomous activities, the ground controller issues a
sequence of commands interactively to the HLKS analyses the
fault and attempts a fault recovery through the controller’s
console.

The 0OIU acts as the interface between the controller
and the POC SAMS. Operator commands are entered through this
console and the results from the FOC system are displayed.
Through the 0OIU the operator can access certain aspects of
the LLKS® operation as well. These commands are described in
detail in Sections 3 and 4.

The initialization module asks the user to select one
of three possible input modes for each of the terminal nodes.
When invoked by the main control at the beginning of a run,
it prompts the experimenter with the node identifier of +the
terminal nodes. The experimenter may enter an ‘r.’ for the
random number generation, an ‘f.° for a ‘fixed’ input of
‘high® or ‘low’, or an ‘m.’ for a "manual input. Only if "m.’
i specified does the node ask for an input each time a
simulation cycle needs new values. The inputs for the other
two modes will be looked after automatically for the rest of
the experiment. If an 'm.’ was entered, the POC svystem
prompts the operator at every simulation cycle to obtain the
strength of assertion normalized between 0 and 100. The EIU
is used for this exchange.

I+ the ranadom number option is selected forr a
terminal node, a random number is generated against the
probability of the event that terminal node represents at
each propagation cycle. Table 2.1 summarizes the current
probability values for the terminal nodes of the inference
network that represents the CTS/Hermes satellite’s AQOCS
domain. The entire knowledge base for this domain is 1in
Appendix A.3. :

\

——n—]
- s

-

-

= -

b N 5

-

> ! #

) sm o

Table 2.1 Probabilities assigned to terminal events

telemetry_lost i «9
o4_previously_fired i 975 o
nitrogen_used_to_pressure_tank i 1.0
impurities_in_tank i - 038

fuel _in_tank_low i -3
heat_dissipatiun_uneven i . 745
harmful _sun_reflections : . 0296
shf_radiation d - 000425
unstable_NESA~ﬁ_pivut,~~— 4 . 025)
motor_mechanism_contaminated _:‘ 00252
motor_fails i 173
motor_overheats ' i .0029; o
control _electronics_fails | i . 4465
;mi_tu_electranics ' ! 0018 o
power_needs_to_be_cut_ to_shut_NESA_A | .72
sun_pasitian:always_changes { =714 o
anomalies_relates_to_sun_position H .15
;;sa_é_autput_must_be_cut_nut H .8

tJ
1
o

] ———

-

o —

f

| ﬁl b II L e f Pl

-

3. The High—-Level Kknowledge-based Systems (HLKS)
3.1 Objective of the HLKS

The HLKS is a goal-driven expert system which conducts
the following functions in the POC experiment:

- Interpretation of the ground controller s requests,

— Delivery of the controller’'s command to portions of
the FPOC including itself,

~- Monitoring of the execution of commands given by the
controller,

—~— Compilation of reports and messages to be given to
the controller,

— Survey and analysis of faults reported by the LLES,

- Take actions necessary to contain the faults
reported by the LLKS,

— Takes action necessary to recover fraom the selected
faults reported by the LLKS.

3.2 Functional Structure of the High-Level Knowledge-based
System

Figure Z.1 shows a functional structure of the HLES.

The HLES Interface exchanges messages with the 0IU and
with the LLKS. The 0IU passes commands and requests to the
HLKS entered by the controller through the interface. The
HLKS informs the 0OIU of LLKS events worth investigating. The
HLKS conveys those commands which affect or are destined for
the LLES.

Using various search techniques, the HLKS controls the
axecution of reasoning, explanation, and requested commands.

The HLKS Autonomy Control is the heart of the HLKS. It
conducts reasoning using goal-driven, backward—chaining
inference. Various search techniques are selectable depending
on the type of problem to bhe solved. Warning messages are
generated as it searches through the inference network. The
search process will be enhanced by a meta—rule processor in
the future.

7
|
faey

r

| e] !

I LT S 1
N E oE a8 N g

To OIU

H
i e . e ————— - . ——————— To
‘——>1 HLKS i i HLKS i< 1 HLKS | {m——— —=2 COMEB

i Inter- i<—2>{ Executioni { Autonomy ! H

1 face i { Control i { Control . H To
«.—=>{ Module {3 {{—. -1 {{—-,=——=-——> COMDE
i e e — ©d P — e : i i e e iy i :
i : -~ ; i -~ i ‘
i H i i H i i H
! : i H : Y ! i
i i i i i . ————————— . i i
i . > H : i
i i i t i i i HLEKEFBE i i i
i H i : v v ; i i i
} i i i - « : ! H
i i i e >t HLKS i ~ H i
i I i i i Executioni i i i
H Vv vV ¥ H { Data Base!l v i H
] ¥ A L4 t)
1 - - 1 = - (] 1]
{ i HLKS | i i HLES HEE :
H i Explanationi * >t Command 1 i
v i Module H { Module {<——— ~

To LLKS : ‘ } —————— e — '
Figure 3.1 Functional Structure of the HLES
The HLKS Command Module processes commands and

requests, from ground control which are directed towards the
HLES. It receives commands from the HLKS Interface and sends
back the results of processing. Report, Recommend, Assess,
and Probe are current commands supported. The module compiles
outputs from the COMKB, COMDB, and the HLKB.

The HLKS Explanation Module answers questions and
queries made by ground control on the reasoning of the HLES
Autonomy Control, ie., the explanation of how meta-rules are
used in the reasoning and search process. The explanation
subsystem obtains its source for the explanations +from the
HLKS Execution Data Base and the HLKB. This subsystem is not
implemented in the present version of the POC.

The HLKS Execution Data Base is a scratch pad storage
facility used during the reasoning, determination of search
strategy, and during the composition of an explanation
output.

The HLKB is a knowledge base containing knowledge used
only by the HLKS for autonomy control and for processing

commands. The knowledge for autonomy control is
meta—knowledge for use by the HLKS Autonomy Control when
conducting heuristic searches. Other knowledge is for

selecting recommendations and compiling appropriate reports.

3 -2

ol

]

- - - - ‘ -l - - ‘v _ - -Y i y) . ' ! ‘
i

-

o

.3 Operation of the HLKS
3.3.1 The HLEKS

The HLKS performs various high level functions for the
ground controller. It infaorms the operator of anomalies,
advises him of the risk he is facing, notifies him of
corrective actions to be taken or evasive actions already
taken by the HLKS jointly with the LILKS. Upon request, the
controller is informed of the steps to be followed to recover
from a fault.

When invoked, the HLKS works on an instantiated fault
tree generated by the LLKS in the COMDB. This is mainly a
task performed by the HLKS Autonomy Caontrol. It searches
through the fault tree and attempts to clarify the fault
already marked by the LLES. The HLKS may use meta-rules
(rules concerning how +to better conduct a search for
solutions, or reasoning) stored in the HLKB to aid the
operations of the Autonomy Control. The HLKS then conducts an
analysis based on knowledge nodes being searched stored in
the COMEB. A recovery action may be generated by invoking a
control sequence for a node defined in the COMEB. Upon
authorization +from the HLKES, the ILKS may take direct
corrective action on selected local faults which require a
quick response. This feature is explained in Section 4.

. The controller issues queries to the HLKS through the
OIU to abtain the following information:

— A status report which describes the logical status
of a specific element of the spacecraft and its
operation control system. An element can be the
entire system, a collection aof subsystems, a
subsystem, or any portion of a subsystem represented
in the COMDR and the knowledge bases. The HLES
compiles a report by collecting information from the
COMDE and the COMEB.

- A system failure report on a fault or faults whose
existence was reported by the LLES. The HLKS
conducts its own search into the COMDB to clarify
the faults from the viewpoint of the manager of the
system. it also uses information in the knowledge
bases as reference.

- A recommendation for fault containment or recovery.
The HLES compiles such a recommendation using
information in the COMDB and the knowledge bases.
The recommendation is in the Fform of recommended
action steps to be taken by the ground controller.

4
I
|

=

e~

SN NN A AN A S SN G5 BN GBI AR O BN G0 Oh UGB B8 W &S

’

o

— An explanation of the reasoning steps taken by the

Figure 3.2 summarizes these functions in terms of the

input/output relationship between the HLKS and a controller.

Guery
Query
Guery
Guery

{Status)

(Failure)
(Recommendation)
(Explanation)
Command (HLKS)
Command (LLKS)

e

Figure 3.2 Input/Output relationship of

4

Warning

Report (Status)

Report (Failure)

Report (Action Taken)

Report (Action
Recommended)

Explanation

the HLES

-

\ , "]

1

(,

T eE W BE am O

m—— f] ”
an M e

3.3.2 The HLES Interface and the OIU

The HLKS Interface performs message exchange functions
both with the 0OIU and the LLKS.

J.3.2.1 Interface with the 0OIU

A ground controller enters commands to the SAMS POC
system through the control console. This is the main access
to the POC experimental system by the experimenter. These
commands are received by the 0IU and relayed to the HLES. All
commands, which are described in the balance of this and the
following subsections, are implemented in the form of a
FROLOG predicate. As such, it must follow the predicate
syntax. In general, it has the following syntax:

Predicate (argument—1, argument-2, ..., argument-n).

The predicates are defined either in the HLES or in
the LLKS. It must begin with a lower case letter if a
constant. If a variable is to be used for the arguments, it
must begin with an Upper case letter. The command line must
be terminated by a period. For example, a command to request
a status report from a node called ‘voltage_balance_lost’
would look like this:

rapart (voltage_balance_lost).

EBeing a predicate, a command may be combined with
other predicates to form macro commands. A macro thus
created may even include rules.

The commands received are analyzed and processed by
the HLKE Interface. Some comands are meant for the LLKS.
Those addressed to the LLES are immediately shipped to it by
the HLES Interface. Others are handed over to the HLES
Execution Control. The HLKS Execution Control dispatches each
of the HLKES commands to 1its subsystems. There are some
commands which have to be jointly processed by both the HLES
and the LLKS. The notification to the LLKS of their receipt
is done through slots in +the COMDR for specitfic nodes to
which the commands are issued.

Commands sent by the 0IU and addressed to and executed
by the HLKS are the following:

— gy
(]

-y

o t—

A\

5) K !

” » " K

search: Initiates a search through the instantiated
fault tree {(inference network) built in the COMDB by
the LLES. Uses a search strategy set through its
argument. The length of a search is also set each
time by an argument. When used from outside, this
caommand activates the HLKS,

continue: Fraompts the search mechanism tao resume an
interrupted search from a current node, using same
search parameters {(strategy and length),

terminate: Terminates a search currently underway.
The control returns to the top of the instantiated
fault tree,

suspend: Temporarily suspends the data fusion
capability of a node in the inference network. The
LILKS will no longer perform reasoning activities on
that node wuntil it is reactivated. Execution of this
command is carried out in cooperation with the LLKS,

activate: activates the data fusion capability of a
node which was previously suspended, thus allowing
the node to participate in reasoning activities.
This command is carried out with the help of the
LLKS,

entrust: Jointly with the LLKS, designates a node as
an autonomous action node. &n autonomous action node
will take a predefined action when a set of
predetermined conditions are met. The condition +or
taking such action is defined individually for each
af the autonomous action nodes.

relieve: Relieves a node fram being an autonamous
action node. This command is alsep carried out in
caoperation with the LLKS,

initialize: Initializes the POC experimental system.
Initializes the HLKS and then issues an
initialization command to the LLKS far its
initialization,

check: Checks and verifies the structure of a

designated knowledge base,

find_top: Identifies a root node of the inference
network. Note there can be more than one root node
in an inference network.

Ll

»

¥ b 3 13 H ¥ !] ol 3 e | -

-

- report: Reports the status of selected node(s) in
the inference network, serching the inference
naetwork for supporting evidences,

- praobe: Same as report but reports on one node at a
time,

- agsess: Assesses and reports on implication(s) of an
anomaly,

= recommend: Makes recommendation(s) on steps to
racover from a failure,

— exXplain: Explains the reason for a recommendation
obtained using the recommend comand.

It must be noted that in the future all of the above
commands may also be issued from within the HLKS as a result
of reasoning.

Fu3.2.2 Interface with the LLKS

The HLES Interface issues to the LLKS a number of
commands. Some of the commands are issued by the 0IU and
redirected by the HLKS Intertace. Others are generated by the
HLES as a result of its operation. These commands and how
they are executed in the LLKS are discussed in Section 4.3.

If, as the result of event propagation by the LLES,
there is an event worth investigating, the LLKS issues a
message to the HLKS. The HLES accesses the COMEB directly
thereafter and investigates. In the investigation, the HLEKES
applies instructions given by the ground or its own knowledge
to analyse the situation.

3.3.3 The HLES Execution Control

The Execution Control supervises the over-all
operation of the HLKS. The following processes are scheduled
and their execution monitored in the HLKS:

- the HLKS Autonomy Control controlled by a
goal—-driven search mechanism. Selection of a search
strategy and the shipment of outputs 1is controlled
by the Execution Control,

- the HLKS Interface. Its dealings with the OIU and
-the LLKS are regulated,

o]

— the HLKS Command Module. Selected commands are

dispatched +to the module and a reply is relayed to
the HLKS Interface by the Execution Control,

the HLKS Explanation Module. The HLKS Execution
Control dispatches the subsystem with selected
commands to explain system status. The results are
sent out via the Execution Control. (not implemented)

4

”

2

;-

’- -

Z.3.4 The HLES Autonomy Control
3.3.4.1 The operation of the HLKS Autonomy Control

Upon instruction from the Execution Control, the HLES
Inference Engine scans through the instantiated fault-tree in
the COMDB wusing depth-first search, breadth-first search,
beam search, or a combination of these search methods. The
scan does not necessarily terminate when a goal (a faulty
node) is detected, rather it awaits further instructions from
the Execution Control and typically continues the search.

At each node the Autonomy Control performs one or more
of the following +our things:

~ acknowledges and executes any command(s) handed down
by the HLKS Execution Control, including a command
for further search,

— examines the situation at the node and issues a
warning message to the 0OIU i+ one is warranted,

— reasons about what corrective actions are to be
taken for a +troubled node for which a warning has
been issued. (This function is not implemented in
the present POC experimental system.)

‘' — reasons about which search strategy to take next
using meta—knowledge stored in the HLEE, (This
function is not implemented in the present FOC
experimental system.)

For every node in which +the strength of assertion
exceeds a threshold, a warning message stored at the warning
slpt of a nade is retrieved by the HLEKS Autonomy Control and
sent out to the 0OIU. Such warning messages make the
controller aware of an anomaly in the system. By adjusting
the threshold the message can be issued well before the
situation becomes critical. Currently one threshold is set
for the entire system. In the future, the threshold should be
set for each node in the form of a logical expression. Such a
logical expression may include procedural o functional
elements as its terms, thus combining computations with
deductions.

The data fusion model is effective in this regard as
it is capable of predicting with a probability figure, a very
slight possibility of something going wrong.

The reasoning for corrective actions will be carried
out by using both the meta—knowledge stored in the HLKB and

A
|
-0

7

,._.

the local domain knowledge stored Ffor eack node, in the
COMEB. An example of domain knowledge might be a set of
conditions for disconnecting a suspiscious battery.

The reasoning process, which 1is executed by the
inference engine in the HLKS Autonomy Control, also
references various data in the data bases (eg., the strength
of the assertion — how faulty it is — of the faulty node, the
status of its neighbouring nodes - found in the COMDE, or
certain parameters such as temperature readings or amount of
fuel left).

A corrective action sequence itself is a part of the
action knowledge stored in the slots of a node. The HLES, on
deciding upon an action, would request the LLKS to open these
knowledge stores and execute them as stated. Further
reasoning may take place locally as the sequence may include
rules. Each step of the execution will be recited as messages
to the HLKS and to the ground. The reciting of the reasoning
steps taken by the HLKS Autonomy Control to a human
controller is mandatory.

The reasoning for deciding on a search strategy is
carried ocut purely as meta—-level reasoning. This is reasoning
for finding better ways to manage the autonomy process. The
meta-reasoning is executed apart from reasoning in the fault
handling domain. An example of the heuristics may be, "If
nothing, maintain breadth—first search", or "If ‘warning’ 1is
issued for a node, switch to beam search'.

Alternative search methods are discussed below uwsing
examples: ’

(1) Depth—first search

Figure 3.3 shows an example of a depth—first search.
Alternative nodes are chosen and tested in a strict
left-to-right order, from top +to bottom. Backtracking is
repeatedly applied to the lowest possible untested
alternative node, until the entire fault-tree is searched, or

~until the search is terminated by a command. This search

method is suitable when a certain branch of the tree is
believed to contain key facts for the solution of an anomaly
and its branches are not very long but are similar in length.
This approach, unfortunately, will lead the HLKS to an
extremely time-consuming and arduous search 1f improperly
applied. a Fault that exists in a right-hand side branch
(eg., node ? in Figure 3.3) may be picked up much faster if
a more suitable search strategy is used. Rarely does a ground

10

&
]

Ed

BE

S

Node 1

Node 15]\ Node 16/{Node 17 /| Node 18

Node 19

Figure 3.3 The depth—first search

controller or the POC knowledge bases have knowledge about
the 1likely location of a fault in the topology of a fault
tree. To avoid such a pitfal, depth—first search is used
rarely in the HLKS for this reason.

(2) Breadth—first search

All nodes at a given depth are examined before turning
to their siblings in breadth-first search, as demonstrated in
Figure Z.4. This approach is particularly suited Ffor
performing diagnosis from a supervisor’'s point of view. It
allows the conductor of the search to examine events or
assertions impartially. For this reason, breadth-first search
is the default search scheme of the HLKS.

(3} Beam search
Beam search examines a selected group of nodes
belonging to a limited number of branches. Breadth—+irst

4
I

i1

F

o

Node 1

mb— Vs n Y

(Node 2 (LNode 3) Node 4

AR

\. V4

. A
(Node) Node 6) (Node 7 (Node 8 (Node 9 Node 10

\N/ . ~\/
CNode 1})@&3 12 Node 1) Node ll) \Node 15) kNode 16)bde 17) \Node 18) \jde 197

Figure 3.4 The breadth—first search

search is conducted within the chosen branch. All other
branches will be ignored. The HLKS selects only one node at a
given level when switching to beam search. All nodes in the
branch of the tree which are headed by the chosen node will
be searched breadth-first. In ordinary beam search, the
search terminates when all nodes in the chosen branch are
examined. As a twist to ordinary beam search, the control
after termination recommences the search at the node next to
the node which was chosen before. In subsequent beam searches
in the same tree, those nodes which are searched during
earlier searches may be re-visited, if they are also a part
of newly chosen branch. This variation is so that a number of
system problems may be examined in turn, and from different
paints of view. The HLKS resumes breadth—first search each
time it completes a designated beam search. Figure 3.5 shows
the operation of the repeatable beam search adapted for the
HLES. '

e

? . o . f d 1 "

I3

o

——,—-P-
- N .

E]
-

/\. N

-
(Eode 5) (;Iode 6) Node 7 (Node 8 (Node 9) (Node D

Figure 3.5 The beam search

The approach described above may be explored to

accomodate wvarious diagnostic situations. For example,
suppose a condition that is strongly linked to the eventual
loss ot a spacecraft iz detected during & routine

breadth—first search. The HLES Autonomy Control also detected
at the same search level a condition which will likely result
in the loss of a pavyload function. The HLEKES Execution
Control, under instructions from a ground controller or from
rules in the HLKR, may decide to investigate the first node
in further detail. Such an investigation will result in
examining all sibling nodes belonging to the First branch.
This may or may not remove the cause of the faulty situation
which threatens the life of the spacecraft. The second branch
headed by the fault which asserts that a loss of a payload
function 1is likely will be examined then regardless of the
result of the first investigation. The present implementation
daes not include the automatic rule-controlled switching of
beam search in the middle of a search. It is being considered
for- future implementation.

A
i

-

(7

. / ‘
(Node 1>(§ode 19 (Node 13) (Node 1) ode 1 Node 16 Node 17 (ode 1;) Node ;) |
(|

- am

i

In Figure 3.5, the . :rch began using: the default
search (breadth—+first search) strategy. As nodes Z and 4 are
examine i and determined to be representative of a faulty
condition, the Execution Control awaits at node 3
instructions from the controller as to what should be done.
If a beam search is specified, nodes 7, 8, 15, 16, and 17 are
then examined. After that control returns to node 4 and
awaits further instructions from the ground.

Sedad.2 The search command

The searcﬁ command initiates a search. It takes three
arguments, as shown below:

search {(MNode, Strategy, Length).

The node parameter Node specifies the node from which
the search begins.

The strategy selector Strategy sets a search mode for
the HLKS Autonomy Control. One of the {depth, breadth, or
beam> must be selected. Since any command may be entered at
any prompt, the search strategy can be altered after every
search step.

The length of a search may be determined by the Length
parameter. It can have one of the following values:

- node: The search is interrupted after each node is
visited,

- level: The search occurs for one level and the
Autonomy Control pauses after all nodes in the
current level of the tree are visited. I+ the
strategy is set +to depth-first, the search stops
after visiting the first node in the current search
level, ‘

- branch: The entire branch of which the root 1is the
selected node will be searched without interruption,

— tree: The rest of the tree from the specified node
down will be searched without interruption,

—~ £id>»: I+ a wvalid node identifier is given, the
search continues until +that node is encountered.
Else, the search exhausts the entire tree without
further interruption.

Ry

[

——

F.3.4.3 The continue command

The continue command is used to resume the search from
where it was interrupted, using the identical search strategy
and search length as before. If pither of the two is to be
altered before resuming the search, the search command must
be used.

-

F.3.4.4 The terminate command

A search may be terminated anytime by entering a
terminate command to a prompt. Similarly, a beam search may
be terminated and control returned to the default search
method at any point during the local search into a branch by
entering the terminate command to a prompt.

A
|
-
Lﬂ

-

-

F.3.5 The HLKS Command Module

Some of the commands given to the HLKS are processed
by the HLKS Command Module. They are the: suspend, resuma,
entrust, and relieve commands. The last two belong to a group
of commands for creating autonomous .action nodes for the
LLKS. They are implemented in the HLKS Command Module, but
parts belonging to the LLKS are not. This feature is beyond
the scope of the current POC experimental system. Also, in
the future all commands will not only be executed by a human
operator but will also be made executable by the HLES
Autonomy Control as a result of a reasoning process. Such a
reasoning process will operate on knowledge stored in the
COMKB and the HLKB. Currently, a limited number of commands
are made executable in this fashion.

In addition, there is a set of utility commands
handled by the HLKS Command Module to deal with the
maintenance of the system and the knowledge bases. They are:
initialize, check, and find_top.

3.3.9.1 The suspend command

The suspend command suspends the reasoning ecapability
of a node in the inference network during event propagation
by the LLKS., This results in the detachment of the node from
future event propagation. A faulty system element represented
by the node may be ‘suspended’ from the POC system so that
the effects of the removal may be studied. This facility
allows the ground controller to examine such effects in
simulation. This will aid him in making a decision for or
against the actual remaoval of the element.

The command is executed by the HLKS Command Module by
asserting a ‘suspend’ status in the COMDB in the control slot
for the node. The LLKS, during the next propagation cvycle
recognizes the suspension and in turn asserts a “suspended’
status in the status slot for the node, alse in the COMDB.

3.3.9.2 The activate command

The activate command performs the reversal of the
suspend command. 1t removes the ‘suspend’ assertion in the
control slaot for the node in the inference network. The LLKS
then cancels the ‘suspended’ status, thus restoring the
reasoning capacity of the node again far the event
propagation process. This will allow a controller to
re-engage a previously suspended system element.

The facility can also be used to simulate the effect
of introducing an element of a system which has been kept
dormant since the beginning of the operation. System
redundancy components such as a ‘hot” or a blank spare are of
this type. System elements, including these spares, can be
either hardware or software, as the node can represent both
entities equally well. The effect of introduction may be
observed in subsequent propagation cycles by the LLES and by
the higher level functions of the HLEKS.

F.T.9.3 The entrust command

The HLKS may delegate to the LLKS its authority to
autonomously recover from an anomaly, if such a decision will
benefit the over—all operation of a spacecraft. The entrust
command is used for this purpose. If there are situations in
which the LLKS might identify an anomaly with potentially
very negative implications, and if an eramination by the HLES
cannot be conducted gquickly enough, a ground controller may
decide to allow the lower level expert system to take
corrective action without waiting for instructions from him
or from the HLES. The node is said to become an autonomous
action node, and the entrust command is used to designate a
node to be one.

The execution of the command by the HLKS Command
Module results in the ‘entrust’ asgertion in a control slot
for the node. This in turn results in the assertion of
‘entrusted’ in the status slot for the node, which is
acknowledged by the propagation mechanism of the LLKS.
Further activation of the node during an event propagation
may result in an autonomous invocation of a sequence of
corrective or preventive actions defined for the anomaly.
Such actions are recorded in the COMKB in the form of rules,
procedures, and predicates.

3.3.9.4 The relieve command

The relieve command removes the ability to
autonomously act on an anomaly from an autonomous action
node. A change in the control slot is translated by the LLKES
into a change in the status slot. The node then becomes an
ordinary node which passively participates in the event
propagation.

Y

J3.3.9.9 The initialize commands

The initialize command initializes the entire FOC
experimental system. In particular, it resets thi-ee

databases: the COMDE, execution databases for the HLKS and
the LLKS. This results in the resetting of the status slots
of all the nodes of the inference network and the renewal of
short—term scratch pad memory for both the HLKS and the LLES.
Some areas of the HLEKS-EDB will be reset each time a new
search or reasoning takes place. Similarly, portions of the
LLKS—-EDB are erased at the beginning of each event
propagation.

3.3.9.4 The check command

The check command takes an identifier of a node slot
as its sple argument. It scans through the slots of all nodes
and checks the completeness of the knowledge base and the
connections among the nodes. In the case of the slot that

. defines the structure of the inference network, the

connectivity and the completeness is checked by trying to
account for all the evidences of causal relations among the
nodes defined in the form of rules. If an evidence is not
used in any of the rules or if a causal relationship depends
on an evidence that does not exist, an error condition is
asserted. The completeness and connectivity checking of all
pther slots, which store elements of knowledge in various
forms, is conducted by using the taxonomy of the network
stored in the COMKB as a reference point. '

If the check command is used without an argument, it
checks the structural consistency of all knowledge bases
known to the POC experimental system. This operation can take
a substantial amount of time.

Z.3.8.7 The find_top command

The find_top command identifies all independent peaks
of the inference network. Such an operation becomes necessary
when the HLKS or a ground controller wishes to start a search
from the highest local node of the network. There can be a
number of peaks in a inference network.

2}

£

! ¢ ! " f v ’ L d
’ :] i -

F.3.46 The HLES Explanation Module (not implemented)

The HLKS Explanation Module answers questions or
request for additional information issued by a controller:
for further clarification of any of the inferences made by
the LLKS:; on how or why the HLKS Autonomy Control took or
failed to take specific action(s). The answers to the
questions of the first type often takes the form of a report.
The HLKES Explanation Module investigates the inference
network, or the instantiated fault tree, retrieves
information from it, and compiles output.

The guestions of the second type cannot be handled
presently as their processing is beyond the scope of the
current POC system and is left to future development. For
these questions, the explanation subsystem will re—trace and
explain the reasoning the HLKES Automy Control made using
meta—-rules in the HLKB, the object-level (domain specific)
knowledge in the COMKB, the instructions given by ground
control, or their combination. The ocutput will be composed
and formatted for easier interpretation.

The HLKES Explanation Module expects questions or
requests for the clarification of the following types of
reasoning made either by the HLKS or the LLKS:

~ reasoning which resulted in a specific search path,

- reasoning which resulted in a message to ground
control ,

- reasoning which resulted in autonomous control
action{s) initiated by the HLKS.

3.2.6.1 The report command

The report command compiles a report on a specified
node of the fault tree. The fault tree represents the current
status of a spacecraft being monitored. The node corresponds
to the status of a portion of the spacecraft or an aspect of
the spacecraft operation.

It describes the status of the node in guestion, and

how that status was obtained. The command processor re—enacts
the data fusion process that +took place around the node

i9

A
I

—

e

”

Node 10
Node 13

Node 11 Node 12

Figure 3.6 Issuing a répurt command

during event propagation conducted by the LLKS. Contributing
assertions and their strengths are shown, as well as
dependency among supporting items of evidence and the type of

¥

£

! f f L4 T F d d ' " 1 ’

the fusion of assertions that took place. The report may be
generated for entire assertions and their suppotr-ting
assertions that altogether caontributed to the status of the
node in guestion. Since this often results in a lengthy
autput, the report generation may be focused to limit output.

In the partial network depicted in Figure 3.6, suppoaose
Node 3 has issued a warning, which was picked up by the HLES
Autonomy Control and sent down to ground control. The ground
caontraol then issued a report command, to which the HLKS
Command Module responded, as shown below:

(system) WARNING #*#% (Node 3) *+#
. {ground) fepurt (Nade 3).

(system) Node 3 (description of Node 3) is true with probability .58.
The state is determined by the rule: Node Z (or Node 7 Node 8).
Node 7 (explanation of Node 7) is true with probability .72.
Naode 8 (explanation of Node 8) is true with probability .14.

Enter {repaort., report(fIldl, Id2,...,Idnl)., or no.?

The HLKS has described the meaning of the fault about
which a warning had been issued, and fuwther described the
rule (hypothesis) that fired the warning, and gave supparting
items of evidence and their strength. In actual cases “MNode

I’ would be ‘sensor_malfunction_2°, and the its descriptiaon
would be. "Star sensor has been generating intermittent
outputs". Note that rules are shown in the form:

Lconsequent (fusion-type antecedent-1, antecedent-2, ..., antecedent—n)1]
where, fusion-type may be and, or, or not, and conseguent and

antecedents are all identifiers of a node in the inference
network.

(ground) report(CNode 71).

(system) Node 7 (description of Node 7) is true with probability .72.
The state is determined by the rule: Node 7 (and Node 9 Node 1Q).
Node 9 (description of Node ?) is true with probability .76.
Node 10 (description of Node 10) is true with probability .78.

Enter {report., report(L{Idi, IdZ,...,Idnl)., or na.’

The report command is designed to report on all

i

relevant hypotheses and their items of evidence which have
cantributed to the original assertion of a fault. Therefore,
it prompts the user each time a hypothesis and a set of
evidences are presented. When specifying a selected set of
nodes to be reported on, the nodes are put into a list format
using [...J1. If no nodes are selected, the reporting starts
from the items of evidence which support the last hypothesis
reported.

{(ground) report.

(system) Node 9 (description of MNode 9) is true with probability .76.

The state is determined by the rule: Node ? (or Node 11 Node 13).
Node 11 (description of Node 11) is true with probability .05.
Node 13 (description of Node 13) is true with probability .%8.

The state is determined by the rule: Node 10 (ar Node 12

{(system) Node 10 (description of Node 10) is true with probability .78.

MNode 13)

Node 12 {(description of Node 12) is true with probability .11.
Node 13 (description of Node 13) is true with probability .%8.

By issuing a report command without specifving nodes,
the entire hypothesis—evidence relationship is reported. Note
the report does it by beam—searching the nodes involved.

By adding more knowledge based processing to the
report generation, the report command may be able to generate
output that is better focused. For example, using heuristics
such as:

"If there is a sudden detection of a fault at a highly
placed node, look for contributing terminal nodes. If
there is one with an abnormally strong assertion, Ssay

more than .15, assume it is a cause of the reported
fault and report it next to the original faulty
node. ",

the report process can generate a more to-the-point report.
Such improvement is considered for future versions.

3.3.6.2 The probe command

The probe command works similar to the report command,
except that it only reports on one hypothesis and a single
set of evidences supporting it. It is most useful for
spot—checking the inference network by traversing it and
probing suspected nodes free from any fixed search strategy.

i
1
1

P

I

-

-

The example below simulates an instance in which a

controller attempts to find out if an on—-board thruster
maintained its firing after accidental ignition due to an
improperly controlled fuel valve, the malfunction of control
electronics, and the existence of multiface flow in a fuel

line.

(ground)

(system)

{(system)

(system)
(system)
{system)

(system)

"04" is the thruster in guestion.

probe (o4_firing_continues).

04_firing_continues (The firing of the offset thruster 04 is
maintained) is true with probability .:21.

The state is determined by the rule:
£ 04_firing_continues (and high_rate_command_continues
pressure_in_fuel_line_maintaines od4_fires) 1

high_rate_command_continues (The thruster 04 fire command
continues at a high rate) is true with probability .%6&6.

pressure_in_fuel_line_maintains (The pressure in the fuel line
is maintained) is true with probability .28.

o4_fires (The negative pitch offset thruster 04 fires) is true
with probability .51.

Enter command:

The conroller would thus understand that there was a

relatively small possibility of the thruster having continued
firing, and the reason for that conclusion.

3.53.6.3 The assess command

The assess command displays the consequence(s) of an

existing fault, alone or when combined with other existing
faults. The command is used to assess how much impact the

fault

might have had on further events. Nodes for which the

fault is a contributing assertion input are sought after and

their

present status retrieved. Guided by the structure and

type of knowledge stored in the COMKB, the command processor
extracts values from the COMDEB and composes a report.

An example output of the assessment report is shown

below:

J

! .]]
| l I l l N i ‘ d

-

{(ground) assess {(large_cone_develops)

{system)

{systeam)

(system)

(system)

(system)

(A large nutation cone develops around the pitch axis). This,
{On—board momentum control wheel has stopped) and

(The spacecraft’'s pitch changes greatly fraom nominal

negative pitch to a large positive pitch)

will jointly cause:

{Spacecraft is tumbling) with probability .13

{A large nutation cone develops around the pitch axis). This,
(The spacecraft is not receiving command sequences), and

(The spacecraftt’s pitch changes greatly from nominal negative
pitch to a large paositive pitch)

will Jjointly cause:

o~

{(Attitude control is no longer effective) with probability .15,

(A large nutation cone develaps around the pitch axis). This, and
(The spacecraft’'s pitch changes greatly from nominal negative
pitch to a large positive pitch)

will jointly cause:

(The solar arrays are not facing the sun) with probability .14.

(A large nutation cone develops around the pitch axis). This, aor

(The spacecraft’'s pitch changes greatly from nominal negative

pitch to a large positive pitch)
will jointly cause:
(The command receive antenna is not properly aligned to the

ground) with probability .38.

(A large nutation cone develops around the pitch axis). This, ar
(The spacecraft’s pitch changes greatly from nominal negative
pitch to a large positive pitch)

will jointly cause:

{The SHF communication channel is lost) with probability .31.

The present implementation only seeks implications one

level above the node in question. In future improvements, the

- 24

A

' - I i - i]

h : f

- . .-

assess process can be designed to chase further implications
recursively to an arbitrary height in the hierarchy. This
will give a reverse-report facility. Similar protocol used
for the report command would be introduced to control the
extent of reporting.

J3.3.6.4 The recommend command

A recommendation on how to contain a detected anomaly,
or how to restore the affected system elements from it, may
be aobtained for a ground controller when he issues a
recommend command. Such information is stored also in the
COMKE and would be sent out to the 0IU. The SAMS works as a
database in such instances, providing the ground controller
with advice. Although the controller may be aware of all the
implications and actions to be taken in given situation, he
may not be able to retrieve them in time, in a pressing
atmosphere of a control room which is coping with a serious
operational difficulty.

The recommend command is typically issued when a
ground controller notices a warning message from the SAMS and
requests a report on it. It may go as follows:

(system) WARMNING: *%¥ (uvs_trips) *%

(ground) report (uvs_trips).

{(system) uvs_trips (Under voltage protection system is activated)
is true with probability .17.

The state is determined by the rule:
uvs_trips (and batteries_exhausted charging_limited)

batteries_exhausted (On—-board batteries are exhausted)
is true with probability .93. '

charging_limited (Solar array’'s ability to charge on-board
batteries is now limited) is true with probability .1é.

(system) Enter {report., report(fIdi, ..., Idnl)., or end.>

-({ground) end.

(system) Enter command:
(ground) recommend (uvs_trips).

1
4

e (2 F ’ d "
Il I “ o ; i f ! N S] " ' '

(system)

{system)
{ground)

{system)

RECOMMENDATION (Under valtage protection system is activated):
* ¥ Disable UVS * ¥

Enter command:
explain (uvs_trips).

In the state of {(Under voltage protection system is activéted)
with probability .17, the UVS is known to malfunction.

The current FOC implementation only retrieves such

information stored in the form of steps to be taken for each
anomalous situation. In the future, the recommendation would
be edited to create a more tailored output sensitive to
minute but essential situational differences that may exist

each time it is requested.

-

5

6.5 The explain command

. The explain command is used when a ground controller

wishes to know the justification for a recommendation
obtained by the recommend command. See its use in the above
example. The present implementation of the explain command in
the POC experimental system retrieves a message composed of
stored texts, node variables, and some system variables. In
the future, the explanation will take a form of a description
of results from a simulated propagation—assessment session in
which the implication of implementing a recommendation is
explained by actually propagating events on a subnetwork
consisting of the recommended changes and nodes around it.

h

4. The Low—-lLevel kKnowledge-based System (LLKS)
4.1 Objectives of the LLKS

Through inferences the LLKS acts as an intelligent
agent overseeing the monitoring +Functions of a spacecraft
management system. The LLKS also executes commands sent from
the High Level EKnowledge-based System (HLKS). In this
capacity, the LLKS accepts orders given in the form of a
fixed number of commands, executes them, and then reports the
results to the HLKS.

More specifically, the LLKS tries to accomplish the
following goals:

- Execute the data/event driven inference on data or
events collected from the environment, both external
and on-board, and report the results to the HLKS,

— Carry out a set of operations auntonomously when
designated to do so by the HLKS,

— Process system control commands sent down by the
HLKS for execution,

— Provide explanations to the HLKS on the reasoning it
made.

4.2 Functional Structure of the LLES

The functional structure of the LLKS is shown in
Figure 4.1.

The LLKS Interface links the LLKS to the HLKS and to
the Environment Interface Unit (EIU) of the POC experimental
system (See Figure 2.1). The LLKS Interface is responsible
for dispatching any arriving data/events, messages or
commands to an appropriate subsystem of the LLKS, and for
collecting and sending out messages and reports generated by
the LLES to other components of the FOC experimental system.

The LLKES Execution Control coordinates the over-—all
operation of the LLKS. It schedules the operation of other
components of the LLKS by dispatching both incoming commands
and commands generated by itself.

The LLKS Inference Engine performs propagation of
events through the inference network using probablistic
reasoning. Since the knowledge about the spacecraft system,
whose operation is to be monitored is structured into a fauit
tree, the inference network aftter the propagation becomes an
instantiated fault tree. It is stored in the COMDB.

|

.’ - -v _ -

To HLEH
{ -
tee—x1 LLES i i LLKS ! i LLES 1{————— ~ To COMEB
i Interface i<—>} Execution {<{——>! Inference {<{—————— ‘> Tao COMDB
«——X*1 Module i i Control i i Engine == -
H { i -
i i \V/ v
} H o ——————————— . . ——m——— .
i H i LLES : H }
i H { Execution i i LLK }
H H i Data Base | H i
; v . . N .
' . . -~ H
: i LLKS ; H H
! i Explanation {{————— : i
H { Module i< !
v . .
To EIU

Figure 4.1 Functional Structure of the LLKS

The LLKS Execution Data Base is used by the inference
engine as a temporary storage for intermediate results of the
Ireasaoning process.

The LLKS Explanation Module processes requests for
clarification of reasoning undertaken by the LLES. The
requests are either issued by a ground controller and relayed
by the HLES or generated from within the HLKS.

1

v "

~

‘-

- .

4.3 0Operation of the LLKS
4.3.1 The LLEKES

The LLKS performs datasevent—driven inference on the
inference network using knowledge stored at the node level.
It propagates the effect of detected events or incoming data
using a so-called data fusion model, a form of information
processing commonly used in the Signal Processing community.
Data fusion is, in short, a method of finding out how changes
in the operational environment will affect other aspects and
levels of the spacecraft management.

After evaluation of several available models of data
fusion, some sophisticated but not practical, others too
simplistic, Rauch’'s dependence sensitive model [Rauch 841 was
chosen for the LLKS.

The LLKS responds to assertions of events such as
faults detected by sensors 1in on-board and external
environments. These changing assertions are supplied in the
POC experimental system in the form of simulated input
signals from the Environment Interface Unit (EIU). Selected
input may be entered manually through a console at the
begining of each simulation cycle through a console attached
to the EIU. This console differs from the operator interface
described in Section 3J.3.1, in that, the former 1s Ffor
controlling the process of the experiment, while the latter
is a simulated operator console dedicated to ground control
functions.

The LLKS then performs fusion of assertions through
probalistic gates, or naodes. A Ffusion is conducted by
attempting to prove a hypothesis (the invocation of a rule
defined at the node) by applyving a forward inference on the
rule. A node typically corresponds to a fault or faulty
situation 1in a spacecraft. For example, it can be "Thruster
No.2 Ffires intermittently”, "The sun sensor lost the sun from
its view", "The cylistor in the voltage regulator is stuck
open”, or "“The frame of the satellite is vibrating
vigorously". ‘

These nodes are formed into what is called an

inference network, a network over which assertions are

propagated via inference. Each node contains rules which
dictate how the fusion should take place. These rules are
collectively stored in the Common Knowledge Base (COMKBY. The
output of a data fusion process is the strength of assertion
that the node represents as supported by the input hypotheses

’-

of the node. It ranges from zero (false) to one (true}), and
can take a value between the two. These logical outputs
(assertions gqualified by their strength) are propagated
upward in the fault tree (toward the root of the tree) to a
set of nodes at the next higher level in the hierarchy. The
process repeats until all possible assertions are propagated
and the system reaches an equilibrium.

The objective of the fusion process 15 to determine
the implications of a set of changes that cecurs in the
environment and within the system itself. To do sao, symbolic
reasoning is used, not calculation or computation. This use
of symbolic reasoning on stored knowledge distinguishes the
method from other conventional signal processing technigues.
By applying inferences, rather than numeric calculations and
comparisons, therefore using Artificial Intelligence
technigues, one can hope to create a system that, atter
several refinement cycles, would eventually match some of the
capabilities of human thought processes. Intelligent
cabilities that humans display are well above what existing
machinery so far has reproduced.

Operation of each of the component modules of the LLES
is described in Sections 4.3.2 through 4.3.95.

4.3.2 The LLKS Interface Module and the EIU

The LLKS Interface Module exchanges data, events, and
messages with the POC system modules outside the LLKSG.

4.3.2.1 The interface with the HLKS

The HLKS hands down commands that must be executed by
the LLEKS. Some of them are from the 0OIU representing the
controller ‘s requests, while others are generated from within
the HLES by its reasoning process. Results of executing these
commands will be passed to the HLKS as they become available.

‘Commands sent down by the HLKS and executed by the
LLKS are as follows:

— initialize_llks: Initializes the LLKS,
— disp_tree: Displays the inference network in a
simulated tree +ormat, before or after & .ent

propagation,

- disp_ref: Displays references from which knowledge
was obtained. :

 E R . N

— "

— disp_exp: Displays a rule expression,

- check_loop: Finds a loop in the structure of a
knowl edge b;se,

The following commands are issued or passed down by
the HLKS. However, their invokation has already been made and
the LLKS only adjusts its internal data structures in
accordance with a specific command.

- guspend: Suspends the data fusion capability of a
node This command is executed implicitly through
slots. Full description of the command is given in
Section 3.3,

— activate: Engages a node to data fusion process.
Executed implicitly. Full description of the command
is given in sBection 3.3,

-~ entrust: Designates a node as an autonomous action
node. An autonomous action node will initiate a
predefined action when a set of predetermined
conditions is met,

- relieve: Relieves a node from being an autoncmous
action node.

4,.3.2.2 Interface with the EIU

Inputs from the environment come to the 8AMS in the
form of data (eqg., an input voltage) or logical assertions or
events {(eg., contact sensor output, confirmation of obiect by
a vision system). The numerical values are converted into
strengths of assertions which have a nominal value between ©
and 1. The values are given to corresponding terminal nodes.

In the POC experimental system, the EIU generates
these values using a random number generator, or by prompting
the conductor of the experiment for values. In the case of

internal generation, an output from the random number
generator is modulated to reflect relative occurances of the
events to be generated. In favor of observing simulation

results faster than would be in real time, the absolute
probability of generating faults is amplified substantially
(say, 100 times) to create deliberately unstable spacecraft
operating conditions.

mE .

\

B —

i

=

frrme
-

Vs

o

-

During the initialization of the POC experiments, the
system initialization module requests the experimenter to
specify the mode of input generation. For each terminal node
the experimenter may choose from:

- random: input for the terminal is generated by using.

a random number and the probability of the occurance
of the event assigned to the terminal,

~ fixed: input for the terminal is fixed +for the
entire duration of the experiment either to a high
or to a low. A high corresponds to the strength of
assertion for the event assigned to the terminal
being one, while a low corresponds +to that being
zero,

— manual: input for the terminal will be entered
manually +through the experiment control console at
each simulation cycle in the form of the strength of
assertion for the event the terminal is assigned to.

4.3.3 The LLKS Execution Control

L

The LLKS Execution Control coordinates the operation
by dispatching commands to other portions of the LLKS. Most
commands come from HLKS. However, the most important command
of all for the LLKS, the propagate comand, is generated by
the LLKS Execution Control itself. The propagate command
maintains the regular propagation cycle. For each issuance of
the command, one full propagation cycle follows. It ends when
an equilibrium is reached in the inference network and no
further inference can be made +for the given set of input
assertions. The process is detailed in Section 4.3.4 below.

Some of +the commands the LLKS Execution Control

dispatches are executed by itself. For example, the
initialize_llks command gets executed by the LLKS Execution
Control initializing specific sections of the COMKB. The

suspend, activate, entrust, and relieve commands are all
initiated by the HLKS. The LLKS detects the assertions made
in the control slots of the node and makes appropriate
assertions in the status slot. I+, for example, the entrust
cammand is issued to a node by a ground controller, an
‘entrust’ assertion will be made by the HLKS in the control
slot for the node. This then is translated into ‘entrusted’

assertion in the status slot for the node by +the LLKS

Execution Control. The LLKS Inference Engine honors the new
status each time it propagates events thereafter.

s

o)
- ..

P

L—

4.3.4 The LLES Inference Engine

The LLKS Inference Engine has the following functional

characteristics:

simple

made.

Performs inference based on data fusion,

FPerforms inference on an inference network of
arbitrary topology connected by AND, OR, NOT, and
terminal gates,

FPerforms inference probabilistically,
Performs inference on an inference network with a

loop - a chain of reasoning which returns to an
earlier premise - with some limitations.

To describe the operation of the inference engine, a
inference netwark shown in Figure 4.2 is used.

In the inference network the following assumptions are
Note a terminal node is an input point +For external

data and events:

lstatusll

(o ()
Node 4 Node 5

Figure 4.2 An example inference network

o

— Node_1 is an OR gate with two items of evidence,
Node_2 and Node_ 3, '

— Node_2 is an AND gate with two items of evidence,
Node_4 and Naode_5,

-~ Node_3, Node_4, and Naode_ S are terminal nodes with
only one input.

In propagation, each node is treated independently of

others. Inference is made solely based on the strength of a
naode's supporting items of evidence, and stores the result
(an assertion) in 1its own status slot. It is stored

structuwrally in the Common Knowledge Base (COMKRB).

In one inference, the LLKS INference Engine retrieves
knowledge associated with a node from the COMKB. The aorder of
processing 1is arbitrary. Assuming in the example, knowledge
about the nodes is stored in the order of appearance in the
diagram, one cycle of propagation looks as follows:

(1) The inference engine finds out that items of evidence
needed to support Node_1 are Node_2 and Node_3Z. Since
Mode_3 is a terminal node, its value is cbtained without
delay Ffrom the EIU. However, no inference has happened
for Node_2 yet. Its strength is still undefined (the
status slot of the node is empty). No fusion can take
place for Node_1.

(2) At Node_2, items of evidence needed are found, from the
COMKB, to be Mode_4 and Mode_ S, and the type of inference
AND, as well as the degree of dependence. Since both
Node_4 and Node_ 5 are terminal nodes, the status slots
for these nodes are already filled. An AND fusion takes
place using Rauch's AND fusion model. The result is
stored in the status slot for Node_2 in the COMDBE.

(3) Since Node_1 now has the needed items of evidence, an
inference in the form of fusion takes place in the way
described in the Rauch’'s OR fusion model. The resulting
strength of assertion is stored in the status slot of the
node in the COMDR.

The terminal nodes have no evidences to fuse by
themselves but assertions are obtained through an input
terminal of the inference network. A node connected to an
output terminal of a sensor is expected to convert its signal

i - \ d A A

PN

. I ’ N b N 3 -

~

into a lpgical assertion. In the POC experimental system,
terminal assertions are generated by simulation. or through
manual input from the experimenter, and are provided through
the EIU. In the example, the strength of assertions obtained
through the terminals is made available and stored in the
status slots For Node_3, Node_ 4, and Node_ 5, in the COMDRE,
whenever necessary.

To improve the performance of the inference engine, a
mechanism which sequences inference to economize data
collection is devised. In the example of Figure 4.3, Node_1,
an AND node, can be asserted if all supporting items of
evidence, Node_2 through Node_ S, have an assertion. Node_o6
and Npde_7 (terminal nodes) are examined +First and the
strength of assertion collected. If the fusion at Node S does
not vield a positive assertion, no collection of wvalues is

attempted for other terminal nodes.

The inference engine performs data fusion 1in an
‘arbitrary’ order, picking a node as it -appears in the
knowledge base. The network, in general, is highly irregular
in its topeology. There will be some terminal nodes much
higher or lower in the hierarchy than other terminal nodes.
This eliminates the possibility of picking the nodes with

Node 6 Node 7

Figure 4.3 Sequencing of data fusion process

- Ul . =

—
L

¥ F M
.‘ "- "- - -

- -

readily availaible items of evidence first. Following the
topology precisely and performing fusion strictly -according
to the structure of a tree ar a network creates an inhibitive
amount of house-keeping +For an improvement which is not
guaranteed. Testing ‘and repeating the fusion process until
all nodes are treated seems to be the only practical and
effective method.

If a node is in the state of being ‘suspended’, its
existence is completely ignored in the fusion process. It
simply does not exist.

Handling of uncertainty is one significant aspect of
human reasoning. It is generally accepted that the human
pperator ‘s ability to cope with incomplete information and
uncertain rules is a source of the flexibility, and the
strength af the human reasoning process. It 1s also
acknowledged that researchers are still very far away from
understanding precisely why and how a human’s way of handling
uncertainty is effective [McCarthy 841. There are only a very
limited number of methods and models of how it should be
done. These methods are grossly limited in handling various
aspects of uncertainty in reasaning. The recent rise of
knowl edge based systems seems to have only highlighted the
lack of adequate approaches.

Three approaches are investigated for the LLKS. They
are:

- Fuzzy laogic [Zadeh 761 [Winston 841,

Bayesian approach [Duda, et al B11,

- Tactical data fusion methad [Rauch 841,

The MERIT madel by James Slagle [Slagle 841.

Fuzzy set theory appears to be a special case of
Rauch ‘s tactical fusion model. Bayesian approach, widely used
in expert systems, including MYCIN and FROSPFECTOR, ignores
the treatment of dependence among supporting items of
evidence, a critical shortcoming in an application where the
use of redundancy is essential for creating fault-tolerance
in a system. For example, use of multiple sensors, such as
multiple earth sensors on—-board a spacecraft, is common
practice Ffor increasing the reliability of measurement.
However, it cannot be accurately modeled using Bayesian
approach. '

4 — 10

Y

S

k]

R =

o

7 —

The MERIT model used by Slagle in his BATTLE expert
system requires realtime computation of a system of partial
differential equations, an approach we could not adopt due to
resource limitations. Rauch’'s method of handling probability
and dependence at the same time, which is a part of the data
fusion model already described, appears to be a reasonable
compromise, in comparison, for a prototype realtime expert
system.

Dempster-Shafer Theory is at the root of Rauch’'s
method. The authors did not get original material for the
theary [Shafer 761 until too late to study in detail for the
POC system. In all, it seems the study of uncertainty must be
continued in AI for much longer. Rauch’s method, for example
has an obvious limitation, in that it can take only one
dependence value among inputs to a node. In practical cases,
dependence may differ among pairs of items of evidence that
support a node (hypothesis). Furthermore, dependence in
general can be directional between two items of evidence. For
example, evidence A may depend heavily on evidence B, but not
vice versa. The following is a summary of Rauch’'s tactical
fusion method.

Rauch’'s method calculates standard deviation, as well
as the probability of the strength of assertion after fusion,
and propagates both of them through data fusion. It can
handle cases where items of evidence are not necessarily
independent but where there is a statistical dependence among
supporting items of evidence.

Table 4.1 shows the probability of a hypothesis (or
the strength of assertion that a bhypothesis is true’
calculated for probablistic AND and OR gates with two pieces
of evidence.

Table 4.1 Probability of hypothesis with two
items of evidence

Statistical | AND operation: | OR operation:
Dependence {i FROB (A and B) { PROB (A o B)
Independent | Pa * Pb i Pat+Pb-Pa*Pb
Max imum ' !

Dependence : MIN (Fa, Fb) { MAaX (Fa, Fb?

Negative Max
Dependence

- -

MAX (Pa, Pb) { MIN (PatfFb, 1)

4 - 11

1]
(i

——

", e 3 sl

b

X

Fa and Fb are the probability that evidences A and B
are true, respectively. MIN and MAX are a selection function.
Consequence of logical AND and logical OR operations can be
obtained for various degrees of independence between
supporting items ‘of evidence: independence, max i mum
dependence, and negative maximum dependence. The last case
implies a situation when ‘A is most unlikely if B is
asserted’. Interpolaration is used to obtain values between
extremes.

For a hypothesis with more than two items of evidence,
Rauch ‘s model does not provide ways for calculation. Table

4.2 is an extension made by the authors for multiple items of
evidence.

For example, if there are two items of evidence,
FPROB (A or B = Pa + Pb — Pa % Pb
for three items of evidence,
FROB (A or B or C)
= Pa +Pb + Pc — Pa ¥ Fb — Fb ®* Pc — Fc % Pa
+ Pa ¥ Pb = Pc.

Table 4.2 Probability of a hypothesis with multiple items of
evidence :

OR operation:

AND operation: .
PROB (1,2, ..., O M)

FROB (1,2, ..., and N

Independence | Pl * F2 %, ..., * FPn { Note 1
Max imum i H
Dependence i MIN (PL, P2, ..., Pn) i MAX (P1, P2, ..., Fm

Negative Max

MAX (P1 + P2 ... + Pn IMIN (P1 + P2 ... + Pn,
Dependence i

- (N-1), O) 1)

Note 1: Probability for independent OR may be obtained from
the Euler 's chart.

The interploration is performed by first calculating
the probability under the assumption that the items of
evidence are independent (probability from these calculations
will be designated C1). When the dependence D is positive,
the second calculation is of maximum dependence {(designated
c2). When D is negative, the two calculations are
probabilities under the assumption of independence (Cil) and

o

o— ——
- e

x

-

[I S

L

N % " H

‘'under the assumption of minimum dependence (C3). The

resulting probability is a 1linear combination of the two
appropriate calculations:

£D * C2 + (1-D) % C1, for © <= D <= 13
£ABS(D) * C3 + (1 — ABS(D)) * C1, for —1 <= D <= 0

T
u

where, ABS is the absolute function.

One of the limitations of the Rauch’'s method, the lack
of universal treatment of dependency among items of evidence,
was discussed earlier. Another difficulty with the method is
that as the number of items of evidence increases, it becomes
cumbersome to deliver an equation for calculating probability
for OR cases.

2
1
[y
A

3
¥

- am

~

ety

4.3.5 The LLKS Explanation Module

The LLES Explanation Module provides low level
explanation to ground control. There are +ive commands
belonging to this module. They are the disp_tree, the
disp_exp, the disp_ref, the check, and the check_loop
commands. In the future the HLKS Autonomy Control may invoke
these commands on behalf of a controller +From within a
reasoning process.

4.3.53.1 The disp_tree command

The disp_tree command displays the inference netwark
as a tree-like data structure. This conversion of formalism
is so that the hierarchical nature of an inference network
becomes visible. The display depicts both the structwe and
the status of nodes in a network.

The cammand may be applied either to a
non—-instantiated tree (before event propagation) or to an
instantiated (after event propagation) tree. An example of a
simple inference network is shown in Figure 4.4. An example
ouput which corresponds to the example network before
propagation is shown in Figure 4.5.

Node 1

Node 7

Figure 4.4 @an example inference networi

4 — 14

Note in Figure 4.5 that nodes 3, 8, 9, and 10 appear
twice in the display. This is because there is a link between
the output (assertion) of nade 3 and input (evidence) of node

&, constituting a logical loop.

{user) disp_tree (node_1).
(system) node_1 (and, 3) D=.8
. node_2 (and, 2) D=.5
node_3 {(terminal)
nade_& (or, 2) D=.4
nade_7 (terminal)
node_3 (and, 3) D=.7
node_8 (terminal)
node_% (terminal)
) node_10 (terminal)
node_3 (and, 3} D=.7
node_8 (terminal)
naode_9%9 {(terminal)
node_10 (terminal)
node_4 (terminal)

Figure 4.5 The disp_tree command applied before propagation

The result of propagation is seen in Figure 4.6, 1in
which the disp_tree command was applied after the propagation

of events by the LLKS Inference Engine took place. The

outputs of the disp_tree command follow a format described in
Figure 4.7. Asterisks(#) placed in front of some of the lines
imply these node have fired as the result of propagation.
Probability P will not appear for nodes if propagation did
not affect them. Dependency D will not appear in terminal
nodes.

(ground) disp_tree (node_l1l).
(system)} node_1 (and, 3) D=.8
node_2 (and, 2) D=.95
node_S (terminal)
node_& (or, 2) D=.4 P=.68
node_7 (terminal)
* node_3 (and, 3I) D=.7 P=.8646
* node_8 (terminall) P=.79
* node_9? (terminal) P=.34
% node_10 (terminal) P=.31
node_3F (and, 3) D=.7
node_8 (terminal) =.75
node_? (terminal) FP=.34
node_10 (terminal) P=.71
node_4 (terminal)

Figure 4.6 The disp_tree command applied after propagation

4 - 15

1
|
{
|
L

[
[
I
[
[
{

3
|
L
L
|

node_Id (logic, N) D=d P=p

i

: —— strength of assertion
H (0 =< p =< 1)
[

—————— statistical dependency
(0 =< d =¢ 1)

¢ Se em ew en oo o o

number of evidences

4 e @ e em wm G - ww -

data fusion logic

4w B em me me me Sw mn e e e

node identifier

fault identifier
- (strength of assertion
pxceeded a threshold)

t cm am on em e m- =n an e mm an - om - |

Figure 4.7 disp_tree display format

In figure 4.6, node & 1is marked by an asterisk,
meaning that a faulty condition exists at that node. To find
out what has caused it, contributing nodes, nodes 3 and 7
must be looked at. Thus node 3 is found to be faulty. Since
node &6 is an or node, this is a sufficient condition to cause
a faulty status in that node. 8Since node 3 is an and node,
all +three contributing evidences, nodes 8, 9, and 10 must be
faulty. Modes i1 and Z are not affected as they are both and
nodes and only one of the contributing evidences is faulty 1in
geach case. As shown here, the disp_tree may be used to trace
where a fault originates and how it has spread in the system.

Parameters may be given to the disp_tree command to

focus the area of display on the tree. There are three
command formats:

— disp_tree (NQ)

All nodes of the tree directly or indirectly
subordinate to NO will be displayed,

— disp_tree (NO, N1)
Nodes that are directly or indirectly subordinate

to NO, but no deeper than N1 branchings away from
NO are shown, as seen in Figure 4.8,

4 - 16

e

-_A‘I v I
S 4 O N a8 MU AN AW N W m Bk OGN B AR S B W s

s

-~

PUNS .

——, i e

-

disp_tree {(node_1, 2).

node_1 (and, 3) D=.8
node_2 (and, 2) D=.3
node 5 (terminal)

% node_é&6 (or, 2) D=.4 P=.648B
naode_3 (and, 3) D=.7

* node_B8 (terminal) P=.73S

#* node_% (terminal) P=.34

% node_10 (terminal) P=.%91
node_4 (terminal}

Figure 4.8 Nodes within 2 branchings from node_1

~ disp_trea (NO, N1, N2)
The display begins at the depth N1 from NO and all
nodes no deeper than N2 from NO are displaved, as
shown in Figure 4.%.
disp_tree (node_1i, 3, 4).
node_7 (termianl)
% node_3 (and, 3) D=.7 P=.86
node_B (terminal) P=.75

#* node_%9 {(terminal) =.34
node_10 (terminal P=.91

-

Figure 4.9 Nodes 3 branchings away from node_1 but no
farther than 4 branchings away
4.3.5.2 The disp_ref command
The disp_ref command retrieves information regarding
the source of knowledge from the COMEB. This information is
stored in the reference slot of each node. The example below
shows the usage of the command:

(user) disp_ref (large_cone_develops).

{(system) large_cone_develops (and, 2}: D. Andean, Interview,

4 - 17

29 AUG 84.
od4_firing_continues (and, 3): CTS Operations Report 3.4.
negative_pitch_develops (or, 1): Earlier report, Sep.

The report provides accountability to knowledge being

used 1in the SAMS and aids the knowledge update or revision

process. The command has the same node—focusing mechanism as
in the display_tree command described in Section 4.3.5.1
above, and the following command formats, described there,
are acceptable: :
digplay_ref (MO).
display_ref (NO, N1).

display_ref (MO, Ni, N2).

4.3.5.3 The disp_exp command

The disp_exp command retrieves a rule which supports a
hypothesis at a node. The rules are retrieved from the COMKB
and have the format show in the following example: The
disp_exp command displays only one node at a time.

(user) disp_exp (spacecraft_lost).

(system) [spacecraft_lost (and electronics_inert telemetry_lost

antenna_ineffective 5pacecra¥t_mechanically_frozen) 3

The rule shown is eguivalent in English to:

IF on-board electronics are inert,

and the antenna for the command link is ineffective,
and the telemetry from the spacecraft is lost,

and the spacecraft is mechanically frozen,

THEN the spacecraft is assumed to be lost.

The general format of a rule is as shown in Section

J.3.6.1, ie.,
[- node (logic Evidence-1, Evidence-2, ..., Evidence-n) 1-
where,

node: Node (hypothesis) identifier, or the name of the
rule, '

logic: Data fusion logic, and, or, or not,

Evidence—i: identifier of a node which contributes to
the hypothesis.

4 - 18

Pt i p——— e e

4.3.5.4 The check_loop command

The check_loop command is for finding a loop in the
knowledge structure. A node is specified as the sole argument
and the command processor notifies whether the node is a part
of a loop or not. An example of a loop is shown in Figure
4.9. THe following sequence is an example of applying the

command on node_3 and node_4 of the example network.

{user) check_loop {(node_13).
{(system) Node node_13 is in a loop.
(user) check_loop {(node_14).

(system)? Node node_14 is not in a loop.

Node 12
Node 13

Node 14

~ N ot 1

Figure 4.9 An example of a loop in an inference network

4 — 19

S. The Experiments
3.1 The LLKS test and experiment
S.1.1 The objective of the experiment

To test and confirm proper functioning of the LLES”
event propagation mechanism as the basis of the fault
inference methodology used in the FOC experimental system.

S.1.2 The method of experiment

Using a configuration of Figure 5.1, conduct the
experiment in the folowing order:

(1) Initialize the COMKB so that any previous knowledge is
eliminated,

1] 1
1 - 1
i1 Console i Experiment control and
HH 1 i display of results
e e s e :
E :
H . >i COMEB |
i H H i
v v e ,
. ——. Inference network
3 i
13 1
. m————— > LLKS b
i { i Event propagation
v . .
i LLKB i H
Propagation v
control . -
knowledge i EI U H Environment generation
:
v

! Simulated environmental
i parameter input
1

Figure S5.1 The event propagation test facility

9 -1

{4)

(3

(&)

Establish in the COMKB, a set of knowledge each piece af

knaowledge representing an inference nade. Select
inference network <{(and domain) appropriate for testing
propagation aof events. Use the disp_tree and other

commands to confirm the network in the COMKB,

Using Consale i, invoke the LLKS and start its
propagation mechanism,

<3

Enter simulated environmental inputs through Consaole 2
and let the values prapagate,

Wait till the propagation reach its equilibrium,
Display on Console 1, the results of propagation using
the disp_tree command. Verify the results by hand

calculation.

The partions of the LLES concerned with the

propagation process is described below:

propagate -
find_executable_nodes {(Made_list).
find_propagatable_nodes (Node_list,P_node_list).
mark_no_propagation (Naode_list, P_node_list).
propagate_one_step (P_node_list).
change_terminal _status.
change_suspended_nades.
find_executable_nodes (Node_ 11st).
prcpagate_lnnp (P_nnde_11st).

propagate_loop (FP_node_list) :2-

find_propagatable_nodes (Node_list, P_node_list).

mark_no_propagation (Node_list, F_node_list).
change_terminal _status.

find_executable_naodes (Node_list).
propagate_loop (P_node_list).

where,

find_executable_nodes:

Creates a list of those nodes that on which a
propagation may be conducted,

find_propagatable_naode:
Creates P_node_list, which is a list of nodes
found in Node_list and whose value has changed
mzince last propagation,

mark_no_praopagation:

Mark those nodes that were not selected in
Node_list as "unchanged’,

5 -2

propagate_one_step:
Apply a single step data fusion on nodes in
P_node_list,

mark_terminal _status:
Mark status of terminal nodes “unchanged’,

mark_suspended_nodes:
Mark suspended nodes ‘unchaged’.
S.1.3 Data used in the experiment
The following knowledge (reproduced in English form)

was used in the experiment:

If (the relative position of the sun to the
spacecratt always changes)
And (heat dissipation around fuel tank is uneven)

Then (temperature within fuel tank cycles)

If (the sun reflection causes the spacecraft
electrically charged)
Or {(radiation from the on-board Super High Frequency

equipment causes the charge)

Then (the spacecraft structure may be electrically
charged).

" These two pieces of knowledge represents two inference
nodes, as shown in Figures S.2a and 5.2b. The first knowledge
constitutes a probablistic logical AND gate, while the latter
a probablistic OR gate.

fuel _tank_temperature_
cycles

¢ w- wm-
o == wmw B

/ \
/— and -\
/ \
\

e

sun_position_

! heat_dissipation_
always_changes H

uneven

PR |
[P}
[

Figure S.2a A probablistic logical AND gate

()}
I
12}

I

’ A

spacecraft_electrically_
charged

¢ w. - S
“ e~ =&

~
rd

sun_reflections SHF radiation

PRE |
R —]
PR |
)

Figure 5.2b A probablistic logical OR gate

Sel.4 The results of the experiment

The following are the results of the data fusion
experiments obtaqined by applying the disp_tree command to
the COMKR aftter the propagation. There are four cases each
for the AND and.OR pates:

?disp_tree(charged_energy).
charged_energy (ory,2) D=.8 P=,97
#* sun_reflections (terminal). P=.86
shf_radiation (terminal) P=.16

Yes

?disp_tree (charged_energy)..
.. *_charged:_energy_ (or,2) D=.8 P=.68
sun_reflections (terminal) P=.18
#* shf_radiation (terminal) P=.52
Yes

?disp_tree (charged_energy).
charged_energy (or,2) D=.8 P=.98

. % sun_reflections (terminal) P=.62
#+ shf_radiation (terminal) P=.73
Yes - ‘ :

?disp_tree (charged_energy).
charpged_energy (or,2) D=,8 pP=.25
sun_reflections. (terminal). P=.27
i shf_radiation (terminal) P=.19
Voo Crakign Mikermal e

?disp_tree(fuel_tank_temp_cycles).

fuel_tank_temp_cycles (and, &) D=1 P=.57

* sun_position_always_changes (terminal) P=,86
heat_dissipation_uneven (terminal) P=.57

Yes

?disp_tree(fuel_tank_temp_cycles).
© _fuel tank_temp_cycles {(and,2) D=1 P=.15
* sun_position_always_changes (terminal) P=.64"
heat_dissipation_uneven (terminal) P=.15

Yes

.?disp_tree(fuel_tank_temp_cycles).
fuel_tank_temp_cyeles (and,2) D=1 P=.17
surn_position_always_changes (terminal) P=.17
. # heat_dissipation_uneven (terminal) P=,S52
Yes. = : =

Y S U T VNPT O SO T s RERERRC

?disp_tree(fuel_tank_temp_cyecles).

7 fuel_tank_temp_cycles (and,2) D=1 P=.08
sun_position_always_changes (terminal) P=, 16

._..heat_dissipation_uneven (terminal) P=.08

Yes

S.1.9 Discussion

The following are the Justification of the results
shown above obtained by comparing them with the results of
hand calculation:

(1) The verification of the AND data fusion process

Hand calculations weire performed using methods
discussed in Section 4.3.4 on the AND fusion cases shown
belaw, and the results were successfully compared with the
autputs from the LLKS® fusion mechanism presented in S5.1.4
above:

Result:s
% fuel_tank_temperature_cycles (and 2) D=1 F=.57

* sun_position_always_changes F=.86
heat_dissipation_uneven F=.37

-~

s

i

R

. - \
3 .

i,

o

p——

pr—— A e
s

Verification:

Since the maximum dependence (D=1) is assumed between
the two supporting items of evidence,

Pe = MIN (Fa, Pb) = .57
where MIN is the minimum selection function.
Since PO = 0, P1 = 1,

Ph = (P1-P0O) % Pe + PO = (1-0) *® .37 + 0 = .57.
This value of Ph Jjustifies the Ffiring of the top
assertion of the output identified by an asterisk
attached in front of it, as the system—wide threshold

for Ffiring a node is set at .20 and .57 is greater
than this value.

Result:
fuel _tank_temperature_cycles (and 2) D=1 P=.135
sun_position_always_changes P=.64
heat_dissipation_uneven P=.13
Verification:
Using similar calculation .as above, Pe = .13 1s

abtained. Since
Pe = (1-0) % .13 + O = .15,

the top assertion of this case does not fire, as shown
by the absence of an asterisk (#) in front of it.

Result:

fuel _tank_temperature_cycles {(and 2) D=1 F=.17
sun_position_always_changes P=.17
heat_dissipation_uneven P=.32

Verification:

Using the same set of equations, Pe = .17, Fh = .17
are aobtained. Since the threshold is .20, the top

assertion does not register itself (no asterisk).

-

R

| — —

-~

- H

‘-l

b Ly !

-

Result:
fuel _tank_temperature_cycles (and 2) D=1 P=.08
sun_position_always_changes P=.1&
theat_dissipation_uneven FP=.08
Verification:

Calculated results for Pe and Ph both eguals only to
.08. Hence the the node fails to fire and the absence
of an asterisk on the top assertion is justified.

{(2) The verification of the OR data fusion process

The results of the Ffour runs made on the OR
propagation, shown in Section S.1.4, are compared with
the results of hand calculation performed on each of
the cases.

Result:

* charged_energy {(or 2) D=.-8 P=.%97
* sun_reflections P=.835
sh¥_radiation F=.16

Verification:

The strength of assertion for a node of which
supporting evidences are fully dependent on each
other, Cl is: '

Pa + Pb-— Pa ®* Pb = .85 + .16 —- (.85 % .16)
- 88.

Ci

Similarly, for the minimum dependency case CI is
calcul ated as follows:

C3 = MIN (Fa + Pb, 1) = 1.
Therefore, applying interpolation on D, Ci and C3, the

strength Pe of assertion for the top assertion of the
example is,

Fe = {Di ®# C3 + (1 - iDI) % Ci
= .8 % 1 + (1 - .8) % .88
= .8 + .17
= .976
S -7

sl

-
— —

J— i

» ,7

-

‘_

[[emmnn] :
N e

-

-y Wy .

This matches with the result and the firing of the
node is justified as the threshold is still set at . 2.
Result:
charged_energy (or 2) D=—-.8 P=.68
sun_reflections P=.18

shf_radiation P=.32

Verification:

Cl = Pa + Fb — Pa¥Pb = .18 + .52 — (.18 % .33
= - &Ob

C3 = MIN (Pa + Pb, 1) = .7

Pe = iDI * C3 + (1 — D) * C1
= |—-.8! % .7 + (1—-.8) % .&
= .86 + (.2) * 6 = .68

Ph = (P1 — PO) % Pe + PO = .48

Therefore, the node fires at strength = .&68.

Result:
* charged_energy (or 2) D=-.8 P=.98
* sun_reflections P=.62
+ shf_radiation P=.73

Verification:

Cl = Pa + Pb — Pa*Pb = .62 + .73 ~ (.42 % .73)
= .9

C3 = MIN (Pa + Pb, 1) =1

Pe = {—.8! * 1 + (1 — {-.8!) % .9 = .8 + .18
= .98

The node has fired as its strength of assertion is
greater than the threshold.

Result:
charged_energy (or 2) D=—.8 P=.23

sun_reflections P=.07
shf_radiation P=.19

ﬁ-‘—.

i

-

- -

- e o Ee E

~

-

Verifications:

Ci

Fe

Hence the

« 23

=_.B=
.2 o+

- 23

*
03

Pa + Pb — Fa*Fb
MIN (Pa + Pb, 1)

{iDi ®# C3 + (1 -

26 + (1

node has +tired.

= .07 + .19

= I26
tD!) #* (1
- i—.81) *

- (.Q7 %

« 25

-19)

- o

1

-—

! : . o}

—

”

e
L

-~

2

lli\

[y s a3
-y . B

= 2
wldwoal

2

w

Testing of the HLKS Autonomy Control search mechanism

.1 The objective of the test

The three control mades of the search mechanism of the

HLKS Autonomy Control are tested. They are:

=5 2
e

(1) depth-first search,
(2) breadth—-first search,
(3) beam search.

.2 The method of testing

Figure 5.4 shows the facility used for the tests.

Steps in the test are:

(1)

4)

Initialize the COMDR,

Enter knowledge for the experiment in the COMDE,

Activate Autonomy Control ‘s search mechanism by issuing
an appropriate ssarch command from Console 1. Search

takes place on the test tree in the COMDB,

Observe the results of search displayed on Console 1 by
the HLKS as its search mechanism picks a new node.

{1 Console i1 Experiment control and
1] i i display of results
Vm——————— I
v
HLEKS

Autonomy Control Search mechanism

“ mm wm wm me e o
. mm me @ e @me

Example fault tree

0
]
4
=)
las)

[

—— oy ot . e ot

Figure 5.4 Facility for search mechanism test

S - 10

~ - »~
-‘) -] ~ a
~ ~

N

The above procedure has been repeated For all three
search strategies.

The HLKS Autonomy Control searches the inference
network in the COMDB and visits nodes accarding to the search

.strategy. in effect and issues messages identifying which node

is visited. The arder the messages are issued is studied to
confirm the correctness of the search.

For the depth—+irst search, PROLOG’'s backtracking

mechanism was used. The heart of the depth—Ffirst search
algorithm used in this experiment is shown below:

hlks_searchl (Node) 31—

clock(N), write ("depth—first_search begins time = “),

write (N), nl, hlks_depth_+irst (Node).

This predicate starts a clock (for measuring the speed
of search) and initiates a depth—First search.

hlks_searchl (Node) :1—
write ("depth—Ffirst search finished time = "), clock
wirite (M), nl.

. Upon completion of the search, this predicate reports
the current elapsed time.

hlks_depth_+first (Node) -
node_structure {(Node, _, evidence (E_list), _),

hlks_testll_action (Node), hlks_decide_depth (Node, E_list).

This predicate collects evidences for current node and
initiates the action to decide which node to search next.

hlks_decide_depth (Node, [1) :— +Ffail.

hlks_decide_depth (Node, [E_headiE_taill)
hlks_depth (Node, E_head);
hlks_decide_depth (Node, E_tail).

Continues search until an end of a branch is reached.
The process backtracks then and tries an alternative at a
level above.

hlks_testlil_action (Node) :—
write ("Searched: ("), write (Node), write (")"),
write_time, nl.

This predicate identifies the node being searched and
prints out the elapsed time.

o - 11

~

P e —

-

- The algorithm for the breadth—first gearch is
documented in the HLKS listings in Appendix A.1, predicate
‘flexible_breadth_first’ being its entry point.

The beam search begins, as shown in Figure 3.5, Ffirst
as a breadth—first gsearch and turns into a beam search half
way down ({(otherwise, it will be a simple breadth—first
search, if it were to begin from the top). The algorithm is
contained in the one for the breadth—first search.

S9.2.3F Data used in the experiment

The identical node structure {(inference network) was
used Ffor all three search modes. It is the 10Z-node fault
tree structure developed for the Attitude and Orbiting
Control System of the CTS/Hermes satellite (See Appendix
A.3).

5.2.4 The results of the experiment
The result of the depth—firét search is presented in

Figure 5.5 below. The output consists of ‘Seached: ’ followed
by the identifier of the node searched, followed by the

elapsed system time from an arbitrary origin. According to
the knowledge base shown in Appendix A.3, the order in which
the nodes are searched is appropriate. Search time is

measured in milliseconds. Average search time for a new node
is 40 ms approx.

. Figure S.6a is a part of the output Ffrom the
breadth—first search experiment. Again, the order of the
search was found to be correct after comparing it with the

knowledge base. The average per node search time was
considerably longer than the depth—first search (140ms
approx.). This was because the method could not take

advantage of the built in backtracking mechanism of the
PROLOG language system.

~——em

-

?search (spacecraft_lost,depth, tree).

depth_first_search begin time = 8160

Searched:
Searched:
Searched:
Searched:
Searched:

(spacecraft_lost) time = 8180
(electronics_innert) time = 8210
(heaters_ineffective) time = 8240
(electrical_shutdown) time = 8270
(uvs_trips) time = 8300

Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:

Searched:
Searched: _

Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:

= =

Figure S.5

(batteries_exhausted) time = 8320
(power_loss_1) time = 8350
(catalyst_bed_heater_on) _time = 8380
(recovery_procedure_begins) time = 8420
(nesa_a_output_saturates) time = 8450
(nesa_a_saturation_1) time = 84902
(charged_energy) time = 8530
(suri_reflections) time = 8570
(shf_radiation) time = 8610
(mirror_stuck) time = 8660
(scan_mechanism_fails) time = 8700
(thermal_distortion) time = 8730
(sun_position_always_changes) time = 8782
(anomalies_relate_to_sun_pos) time = 8820
(unstable_pivot) time = 8878
(mechanism_contamination) time = 8910
(scan_motor_fails) time = 89508

(motor fails) time = 8990

Sample output from the depth—-first search test

_(sSearcnispacecrart_i10s8t, birreadth, tree).
breadth_first_search begin time = 14149@

Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:

(spacecraft_lost) time = 141790
(antenna_ineffective) time = 142140
(electronics_innert) time = 142160
(spacecraft_mechanically_frozen) time = 14218
(telemetry_lost) time = 142200 N
(electrical_shutdown) time = 142560
(heaters_ineffective) time = 142580
(spacecraft_tumbles) time = 142600
(electrical_shutdown) time = 143060
(large_cone_develops) time = 143090
(pitch_changes_greatly) time = 143100
(uvs_trips) time = 143120

(wheel_stops) time = 143150
(batteries_exhausted) time = 143770
(charging_limited) time = 143780@
(electrical_shutdown) time = 143800
(negative_pitch_develops) time = 143830
(04_firing_continues) time = 143850
(uvs_trips) time = 143870
(batteries_exhausted) time = 145Q7Q
(charging_limited) time = 145090
(high_rate_command_continues) time = 145120
(o4 fires) time = 145140

“igure S.46a A portion of output from the breadth-+tirst

search test
S - 13

—

Figure S.&6b is a portion of the output from the beam
search experiment. In the diagram, the search strategy was
switched from the breadth—-first to the beam search on the
seventh node (heaters_ineffective)l. The order of the search
was found to be correct before and after the switch.

The average per node search time was the same as the
breadth—first search time since it uses beam search.

?search (spacecraft_lost, beam, tree).

Beam search begin time = 61350

Searched:
Searched:
Searched:
Searched:
Searched:

(spacecraft_lost) time = 61660
(antenna_ineffective) time = 62010
(electronics_innert) time = 62030
(spacecraft_mechanically_frozen) time = 62040
(telemetry_lost) time = 62070

Bearched:

(el.etrxcal_ihutdﬁwnT_“fime'i’62418"“‘5Nﬂﬁﬁ-

Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:
Searched:

(heaters_ineffective ime = a
(electrical_shutdown) time = &258n
(uve_trips) time = 62780
(batteries_exhausted) tiwe = 63030
(charging_limited) time = 63050
(power_loss_1) time = 63440

(power_loss_2) time = 63460
(tracking_partially_successful) time = 634802
(attitude_control_lost) time = 63940
(catalyst_bed_heater_on) time = 63960
(heavy_tracking_power) time = 63980
(solar_array_off_angle) time = 64010
(command_not_receivable) time = 64452
(continuous_tracking) time = 64520
(large_cone_develops) time = 64550@
(pitch_changes_greatly) time = 64580
(recovery_procedure_begins) time = 64610
(attitude_control_lost) time = 65500
(negative_pitch_develops) time = 65530
(nesa_a_output_saturates) time = 635560
(o04_firing_continues) time = 65570
(receive_antenna_off_angle) time = 65590
(solar_array_off_angle) time = 65620
(command_not_receivable) time = 66760
(excessive_nesa_a_power_cycling) time = 6679¢
(high_rate_command_continues) time = 668102
(large_cone_develops) time = 66840
(nesa_a_saturation_1) time = 668702
(nesa_a_saturation_2) time = 66890

Figure 5.6b Sample output from the beam search test

S - 14

.

 mn m s am

- O W e

3

-

LR

” ly 8 b -

[

S.% Automatic generation of a warning message
95.3%3.1 The objective of the experiment

The HLKS Autonomy Control subsystem has, as a part of
its autonomous control function, an ability to detect a
situation for which a warning must be issued. This experiment
is to test and demonstrate that capability.

S5.3.2 The method of the experiment

The experiment uses the test facility depicted 1in
Figure 2.1, The flowchart shown in Figure 2.2 is also
descriptive of the steps taken in this experiment. They are
summarized below:

(1) Initialize the COMKB and the COMKB. |Load the COMEB with
the CTS/Hermes (AOCS) knowledge base,

(2) Initialize the HLKB and 1load it with the heuristic
knowledge to search, detect, and report a node whose
status warrants a warning,

{3) From Console 1, invoke the LLKS and start its event/event
propagation process,

{4) From Console 1, invoke the POC main contraol. After the
system level initialization, it will activate the EIU,

{9) Through Console 2 enter terminal events {(sensor data) as
required by the EIU. Select parameters and values so that
a desired number of warnings are likely to arise. When
the EIU is satisfied, the LLKS begins its event
propagation process. The results of the propagation will
be stored in the COMDER,

(64) Let the POC main module invoke the HLES. The HLES
Autonomy Control will scan through the instantiated fault
tree in the COMDB, applying knowledge in the HLEB to
determine if a warning is warranted,

(7) Obtain a warning message issued by the HLKS Autonomy
Control. The HLKS will then automatically execute the
probe command under rule control (If the situation is bad
enough to warrant a warning, then issue a probe on it to
clarify the causal relationships between the anomaly and
its supporting evidences) so that more information is
generated on the node,

{8) Observe warning messages output by the Autonomy Control
and check if all messages are justifiable, and all that
have to be issued are there. ’

— vy

O T D e am sm S e

{(?) Run the disp_tree command on the instantiated fault tree

in the COMKB to observe nodes with a positive assertion
greater than the threshold,

(10) Complete the experiment by issuing the terminate command

to a system prompt.

?main2 (spacecraft_lost).

Enter simulation magniftior (I . 1eqaaad)
1.

telemetry_lost

FI

Enter { hoy or 1., }.

1.
wH_previcaoslty_fived
r.

d:aphragm leaks
e e e
niitrogen_to_pressure

‘A.

impurities_in_tank = " -

r.

fuel _ 1n tank low

B)

heat_dissipation_uneven

™.

SUn_ reFlect1ons
Pp'us

sht Pad1at10n.
B b e e e
unstable_pivat
e
mechanism_contamiration

rl :
motor_fails
A T e L

motor_overheats

FI
‘contror electronics fails

Y‘l ™
emi to electrcn:cs
T e T e et c e

power reeds to_be_cut_to_eliminate_cutput
™.

sun_position_always_changes

™. '

anomal;es Pelate to sSun_ pos
v T :
power_cut_to_eliminate_output

™.
nesa_a_output_must _be_cut_out

"‘l coT -

Figure 5.7 The EIU input for the experiment

5 - 16

I S | 4 N

=

9.3.3 Data used in the experiment

The knowl edge structure used for the previous
experiment is used for this experiment. In addition,
knowledge for the HLKS is added as shown in Appendix A. 4.

Figure 5.7 is a record of the EIU interaction in which
environmental parameters are entered for 20 terminal nodes in

“the experiment. It shows that all but one (‘telemetry_lost’

is fixed to ‘low’) parameters are generated under the control
of a random number generator, as marked by an 'r.’.

5.3.4 Result of the experiment

Figure 5.8 is the output from the experiment. It shows
that, after the EIU interaction, in which randam number
generation was specified for al1 terminal nodes, the FOC main
module invoked the LLKS. It completed the event propagation

and handed over the control to the HLKS.

The HLKS picked up the first anomaly. A warning
message was generated by the HLKS Autonomy Control, using the
control knowledge in the HLEB. The ground controller then
issued the report command on the node on which an anomaly was
discovered. The result of the command is shown in the seven
lines that follow. Normally, an operator in this situation
would continue conversation with the system and further study
the anomaly. In the experiment, the session was terminated by
the terminate command. Notice that the sequence after the
warning was under the control of the human operator. The FOC
system acted only in the capacity of an autonomous advisoary
system.

S - 17

.

.
.l an mx
. .

I\ !

JThe state is determined by the rule:

{ LLKS starts)

{ LLKS completes)

¢ HLKS starts)

NQRNINB::1**_(antenna_ineffective) **

Enter command:
report (antenna_ireffective).

[y

antanna_ineffective (Command receive anterma is not functioning at all)
is true with probability 1.

L anterma_ineffective (and spacecraft_tumbles eleééricai:éhutdoww) 3
spacecraft_tumbles (Spacecraft is tumbling) is true with prabability 1.

electrical_shutdown (On—-board electrical system is shut dowwn)
is true with probability 1.

Enter {report., report(llidl, ..., Idnl)., or end.’
end. '

Enter command:

“terminate.

{ HLKS completes ?»

Figure 5.8 The result of the autonomous WARNING generation
experiment

S - 18

~

3.4 An aﬁtonnmy cantrol loop
5.4.1 The objective of the experiment

Operation of the HLKS can either be under the explicit
control of the cperator, or controlled by the meta-level
knowledge stored in the HLKB. In addition, it can be
controlled by domain level knowledge stored in the COMER.
This experiment is +to test the cooperation between the
knowledge-based control facilities of the HLKS and reasoning
mechanism of the LLKS. By designing knowledge structures in
these knowledge bases properly, one can construct a fault
management control loop which will autonomously identify,
analyse, report on, and correct an anomaly in the system.

5.4.2 The method of the experiment

The experiment is conducted using the entire FOC
experimental system described in Section 2.2. As shown in
Figure 2.1, the two expert systems are linked with their
knowledge bases, the COMKB and the CoMDB acting as
communication channels between them. The experiment roughly
follows the flowchart of Figure 2.2. Below is a scenario in
which pieces of knowledge are used to complete a control loop
in order to scolve an on—-board anomaly: ’

An event propagation is conducted using the LLES. It
discovers an anomaly and reports it to the HLEKS. An
investigation by the HLES follows, 1its search being

controlled by the meta-level knowledge in the HLEE. The HLES,
also uses daomain specific (object level) knowledge stored in
the COMEB for each of the nodes it visits and recognizes that
the anomaly repaorted by the LLES is a serious one. It uses
the general (meta-level) control knowledge in the HLKE and
decides to take autonomous control of the node.

It first issues a warning message to ground control,
identifying the fault. All actions taken and commands issued
by the HLKS autonomously will be reported through the g1y, to
the operator with a distinctive message identification. The
HLKS then isues the probe command on the faulty node and
reports the result to ground control. The Autonomy Control of
the HLES now consults the control knowledge in the COMKEB,
reasons on the. control options, and decides on appropriate
action. The node chosen for the experiment here autonomously
recommends that the node itself be disconnected from the rest
of the systems so as to contain the fault. The HLKS executes
the recommended action and reports the fact to the ground.

-

|

——

-

-

a =y

- &= -

) \ AI l .

1

The lower level expert system (LLKS) propagates input
events through the inference network again, and this
clarifies that the fault was eliminated +rom the system for
the time being. This fact is reported to the ground.

The steps in the experiment are summarized below:

(1) Initialize the COMKB and load it with the CTS/Hermes
(AOCS) knowledge base,

(2) Initialize the HLKB and 1load it with the heuristic
knowledge to search, detect, and report, and take
corrective action on a node whose status warrants
these actions,

{(3) From Console 1, invoke the LLKS and start its event/event
propagation process,

{4) Through Console 2 enter terminal events (sensor data) as
required by the propagation process. Select parameters
and values so that a desired anomaly will arise. The

result of the propagation will be stored in the COMDE,

(53) Run the disp_tree and other commands on the instantiated
fault tree in the COMKE to study nodes with a pD51t1ve
assertion greater than the threshold (fault),

(&) Activate the HLKS. The HLKS Autonomy Control will scan
through the instantiated fault tree in the cCoMbDE,
applying knowledge in the HLKB +to determine 1if a
corrective action is warranted. 1f so, the HLKS then
proceeds to access knowledge +or the troubled node in
the COMKB so as to decide on the corrective action,

(8) Observe messages output by the Autonomy Control and study
the sequence of actions which the HLES Auatonomy Control
chose to execute,

(&) The LLKS automatically runs itself after the HLKS
completes its operations. The new cycle of propagation
must not report the same fault that was reported in a
previous cycle.

9.4.3 Data used in the experiment

The same inference network as in the previous two
experiments is used. This is enhanced by additional control
knowledge in the COMKE and meta-knowledge in the HLEB, which
is shown below. Some of the rules refer to knowledge stored
at node level in the COMKB:

a

e S e e e

o) a8 o & am

-

T

- .

hlks_action (warning, Node) :-—-
node_status (Node,_,_t.FP._s_s_y_sW), number (P},
decide_true (Node,_.P}, get_action_list (Node, Action_list),
check_warning (Action_list).

This rule determines if a warning message 1is
warranted. It checks if the condition at the node is serious
enough.

hlks_action (suspend, Node) :-—-
node_control (Node, C,_,Entrust,_,_,_}, nel(C, suspend),
node_status (Node,_,_ t,Ps_y_s_y_»_?}, number (F),
decide_true (Node,_,P), get_action_list (Node, Action_list),
check_warning (Action_list).

This rule decides if a suspension of a node is
appropriate. Among other conditions it checks if the node in
question is ‘entrusted’ to the HLKS for autonomous action.
The following two rules are action rules and are used by a
backward chaining inference engine local to the Autonomy
Control.

take_hlks_action {(Node, warning) - ;

write ("WARNING: #% ("), write (Node), write(") **x"), nl, T
write {("HLKS Autonomy Control: probe("), wite (Node),
write ("")."), nly probe (Node),

change_node_status_for (Nodey_,_s_s_+_s_s_3y_stdonel.

This rule is used to issue to the operator a warning
message on an anomaly.

take;hlks_action {(Node, suspend) -

sugpend (Node), write ("HLKS Autonomy Control: suspend (),
write (Node), write (")1."), nl, wite("("), write (Node),
wrrite (")"), write{" is autonomously suspended by HLES."),; nl.

This rule is invoked to actually suspend a node.

take_hlks_action (Node, breadth).

The default search scheme in the HLKS is a breadth
first search. This rule sets the default.

take_hlks_action (Node, beam) =-
{ask_continue_beam {(Node,R),/,egual (R,y),
node_structure (Node, _, evidence (E_list),_2),
flexible_breadth_first (E_list),/;/.

e S, — Se——— ——m———

T B S e N ON R 08 WR W

This meta—tule determines when to switch to a beam
search, while executing other search strategy.

Other rules of the HLKB are shown in Appendix A.4 The
knowledge stored in the COMKB is listed in Appendix A.3.
Parameters are generated under the control of a random number
generator, as marked by an ‘r.’.

5.3.4 Result of the experiment

Figure 5.9 is the output from the experiment. It shows
that, after the EIU interaction of Figure 5.7, in which
random number generation was specified for all terminal
nodes, the POC main module invoked the LLKS. Because the
probability for some of the terminal events is very high (See
Table 2.1), the LLKS must have found several faults in the
system.

The HLKS operation that followed picked wup the first
and the most serious anomaly (Note that the HLKS searches
basically top-down). A warning message was generated by the
HLES Autonomy Control. Using the control knowledge in the
HLKB, it then issued the probe command. The result of the
command is shown in the succeeding eight 1lines of the
diagram.

The HLES then used another set of knowledge in the
HLEB and the COMEKB and decided to suspend the node’s
operation. This corresponds to the situation, in which a
faulty UVS (Under Voltage protection System) is removed from
the system. The HLKS again reports its action.

The HLES completes an autonomy management session with
the system, and the LLKS starts a new propagation cyclie. This
time, the removal of the faulty unit resulted in the
elimination of the key anomaly in the system, and the LLKS
does not report a fault. The propagation cycles that follow
proceed eventlessly.

o
!

tJ

b

—

S Aw om == m

{ LLKS gstarts)
{ LLKS completes)

"¢ HLKS starts)

WARNING: #% (uvs_trips) #%

HLKS Autonomy Control: ' probe(uvs_trips).

“uvs_trips’ (Under voltape protection system is activated)
is true with probability 1.

The state is determined by the rules
[uvs_trips (and batteries_exhausted charging_limited) 3

batteries_exhausted (On—-board batteries are exhausted) is true with probat
1.

ehRargivy_Iimtted(Solar array's ati ity to ocharge oreboard batterigs—

is now limited) is true with probability 1.

HLKS Autaonomy Control: suspernd(uvs_trips).
(uvs_trips) is autoromously suspended by HLKS.
{ HLKS completes)

(LLKS starts)
¢ LLKS Gamplatas y

{ HLKS starts)

< HLRS :ompletés:)

{ LLKS starts {
{ LLKS campletes ¥

(HLKS starts)

{ HLKS completes)
{ LLKS starts)

. { LLKS completes)

PO LI ok sk e Y

Figure S.9 The result of the autonomous control loop
experiment

|

3

e B Bm B M

(|

| |

&a

Conclusions and discussion

Through the development of and experiments using the

B8AMS POC experimental system, the following conclusions can

be stated:

(1

The data fusion model proposed by Rauch is an important
contribution to a real-time knowl edge—-based system
paradigm. The model was taken and expanded to include
n—input AND gates and three—input OR gates, and was used
as the basis for the LLKS Inference Engine. This choice
was justified because no other methods exist which take
into account belief dependency among input signals, while
offering a high degree of implementability. Bayesian
theory, which is commonly used in expert systems (such as

MYCIN and PROSFPECTOR) as a saurce for their uncertainty

handling mechanism, ignores the input dependency and thus
cannot be adopted. There appears to be other similar
approaches for handling dependent inputs, but none of
them are as amenable for reasonable implementation.

These other models will have to be studied further in the
future and a more elaborate data fusion model which
better represents the real phenomena may have to be

created by fully understanding the limitations of the

current model. For example, shortcomings such as the lack
of ways in the model to describe directional dependency
among inputs (Input A as an event may be dependent on
input B, and vice versa, but with a different degree of
dependency) can be studied more carefully.

A data/event driven expert system paradigm is more suited
as a method +or applying Knowledge Engineering to
real-time systems than its goal-driven counterpart and
its wvariations. There are attempts to interface a
goal-driven expert system to real-time events [Anderson
et al 841, but awkwardness is undeniable. In highly time
critical systems, it will become impossible to complete
any reasonable amount of heuristic search to prove goals
and subgoals, let alone to conduct question/answer
sessions with a human operator. However, these are the
basic premises of the goal-driven systems.

On the other hand, the existing methods for creating a
goal—-driven expert system appear to be adequate for the
HLES. It was felt that mare user—-friendly interfacing
approaches, such as adoption of an elaborated
icon—oriented graphic input/output facility, would be
highly desirable, considering the peculiarities of the
environment in which the autonomy management system will
be used.

e

4)

(&)

{7)

An interesting anal ogy may be drawn between the
characteristics aof the two types of expert system
architecture and knawledge processing conducted by
conscious and subconscious minds of human beings. The
data/event driven approach shares many aspects af
subconscious input acceptance and respaonse giving that
the subcaonscious mind does. On the other hand, the

canscious mind often and continuously, if not always and
canstantly, tries teo resolve goals, one after ancther. A
human being in his/her mode of gperation as a knowledge
pracessalr is a real time system. It appears certain that
most realtime intelligent systems will reguire a
multi—-tiered architecture faor efficient processing.

Therefare, the choice of combining these two different
paradigms to construct a system which has to interface
with a real-time environment, at the same time answering
the needs of the human operator in enguiring the status,
asking for control steps, and issuing instructions seems
ta be justified.

Faulty situations in a system which must be identified
and responded to faster than an operateor can, should be
left to autonomous systems. This policy has been adopted
in most spacecraft subsystems already using conventional
approaches. But the concept should be expanded into areas
which reguire more elaborate judgements, which involve

ambiguities of judgement criteria and of incoming
infaormation. 6An example of such judgement would be the
careful handling pecessary in managing the on—-board
charging system when a spacecraft emerges from an

eclipse. @&n autonomous system which knows the causal
relationships , as well as structural and functional
knowledge about the spacecraftt may be instructed to take
precautionary measures.

There are a number of potentially dangerous events which
a spacecraftt ogperator identifies and applies his learned
technigques to avoid a catastrophe. Much of this knowledge
may be caoded in a knaowledge based system and made
autaonomausly available ' to execution vehicles and their
cantrol software. Compared to a system in which high
level decisions are left solelyv to human operators, this
would reduce accidents by omission, and thus contribute
to an improved operational reliability. This benefit wilil
be in addition to the ability of a system so-equipped tao
cope with high speed intelligent decision making needs
well bevond the ability of human operator. Emergency
situations in nuclear reactors and avionics systems are
prime examples aof this +type of potential application.
Increasingly more

-

Tl SE SN TH BS SN SN N B Wh WE SN Om Am

(8

delicate decisions should be left to autonomous systems
as the performance of the decision—making mechanism
improves with the advancing technalogy.

Contrary to widespread myths in North America about its

limitations, prrogramming using FROLOG, a logic
programming language, is an effective way, though may not
be an ideal way, to construct expert systems. The fact

that logic programming has been adopted as a foundation
for several fifth generation computer projects thiroughout
the world underwrites the satisfying experience the
authors had.

REFERENCES '

[Anderson, B.M. 841
anderson, B.M., et. al., "Intelligent Automation of
Emergency Procedures in Advanced Fighter Aircraft". Proc.
First Conference on Artificial Intelligence Applications,
Denver, Colorado, December, 1784 (CAIA-84), sponsored by
IEEE and AAAIT.

[Bein 841
Bein, Jonathan, "FIES: An Expert GSystem for Isolating
Faults of Spacecraftt Hardware". Proc. ‘Conference on

Intelligent Systems and Machines‘, April 1984, QOakland
University, Rochester, MI. (to be published).

[Blidberg et al. 831
Blidberg, D.R., Westneat, A.5., Corell, R.W., "Expert
Systems, A Tool for Autonomous Underwater Vehicles". In
Proc. Trends & Applications 1983, IEEE Computer Society,
May 1983, Washington D.C.

[Bullock, et al 831
Bullock, B.D., et al, "Autonomous Vehicle Control: An
.Overview of the Hughes Project”. Proc. IEEE Trends %
Applications Conference, Washington D.C., May 1783, pp.
12-17.

[Cross 841
Cross, Steve, "Expert Systems Architecture for Flight
Domain Applications". Proc. Conference on Intelligent
Systems and Machines, April, 1984, Rochester Michigan.

[Dicky & Toussaint 841
Dicky, F. J., and Toussaint, Amy L., "ECESIS: An
Application of Expert Systems to Manned Space Stations'.
Froc. The First Conference on Artificial Intelligence
Applications, December, 1984, Denver, Colorado,
December, 1984 (CAIA-84).

[Duda et al 811
Duda, Richard, Hart, F.E., Nilsson, Nils i., "Subjective
Bayvesian method for rule—-based inference systems”". In
Readings in Artificial Intelligence, Bonnie Webber, Nils
Milsson ed., Tioga Fublishing Company, Palo Alto,
California, pp. 192-199.

——,

G S5 Un G5 0N OF OB BN UB W W om

T)

[Erman et al B0l
Erman, L.D., Heyeth—Roth, F., Lesser, V.R., and Reddy,
D.R., "HEARSAY-I1 Speech Understanding System:
Integrating Knowledge to Resolve Uncertainty”. In
Computing Survey, Vol. 12, Na. 2, 1780.

[Hong et al 841
Hong, S.Jd., et. al., "YES/MVY5: A Continuous Real Time
Expert System". Proc. Mational Conference on Artificial
Intelligence, Austin Texas, August, 1984 (AAAI-84), pp.
130-134.

[Girad 841
Girad, Jerry, L., "Fighter Pilot Aid by Expert Systems
{Phase 1)". Proc. Conference on Intelligent Systems and
Machines, April, 1984, Rochester Michigan.

[Gomi 841
Gomi, T., "Functional Design of a Knowledge-based
Spacecraft Autonomy Management System (SAMS)". Technical
Report, Communications Research Centre, Department of
Communications, Government of Canada, December, 1%984.

CHarmon 831
Harmon, S.Y., "Coordination between Control and
Knowledge Based Systems for Autonomous Vehicle
Guidance". Proc. IEEE Trends % Application Conference,
Washington D.C., May 1983, pp.8-1l.

[Harman et al 841
Harmon, 5.Y., Gage, W.D., Aviles, W.A., Biancini,G.L.,
"Coordination of Intelligent Subsystems in Complex
Robots". Proc. The First Conference on Artificial
Intelligence Applications, Denver Colaorado, December,
1784 (CAIA-84).

fHewitt and Baker 771
Hewitt, Carl and Baker, H., "Laws faor Communicating
Parallel Processes". Proc. 1977 IFIP Congress, IFIF
1977.

[Lesser and Corkill 811
Lesger, Victor R., and Corkill, Daniel, "Functionally-—
accurate, Cooperative Distributed Systems". IEEE Trans.
on Systems, Man and Cybernetics, SMC-11(1), January,
1981, pp. B81-%4.

[McCarthy 841
McCarthy, Jaohn., "What is Common Sense" In Proc. AAAI
Fresidential Address, August 1984, University of Texas
at Austin.

CMilne 841

B

A\

ks 4 ‘4“‘4 - ’ ,‘4.‘ . U"
SN e 5 2N S8 05 N AN SR o SN O TR I W e S B e

L

-y e

Milne, R., "Maintenance Expert Systems for Analog
Citrcuits"., Proc. Conference on Intelligent Systems and
Machines, April, 1984, Rochester Michigan.

[Mitchell and Lemmar ,841
Mitchell, Brian T., and Lemmer, John F., "RADES: A
Demonstration Expert System +for Scientific, Space
Station Experiments". Proc. ‘Conference on Intelligent
‘Gystems and Machines 1984° Conference, April 1984,
Oakland University, Rochester, MI. (to be published).

[Pisanc and Jones 841
Fisano, A.D., Jones, H.L., "An Expert System Approach to
Adaptive Tactical Navigation". Proc. The First
Conference on Artificial Intelligence Application,
Denver Colorado, December, 1984 (CAIA-84).

LRauch 841
Rauch, Herbert E., "Probability Concepts For An Expert
System Used For Data Fusion". The Al Magazine, Fall
1984, pp. 9S5-60.

[Sauers 841
Sauers, Ron, "EMES: An Expert System for Spacecraft
Enerrgy Management”. Froc. ‘Conference on Intelligent
Systems and Machines i9g4°, April 1984, Oakland
University, Rochester, MI. To be published.

[Schundy 841
Schundy, Robert, "Expert Systems in Tactical Aircraft'.
FProc. ‘Conference on Intelligent Systems and Machines
1984°, April 1984, Oakland University, Rochester MI. To
be published.

CLShater 76&1
Shafer, Glenn, "A Mathematical Theory of Evidence".
Princeton University Press, Princeton and London.

[Slagle 8413
Slagle, James, "BATTLE Expert System", Private note
presented at Smart Systems Technology’'s Al couwse in’
July, 1984. '

CWagner 19831
Wagner, Robert E.,"Expert Systems for Spacecraft Command
and Control". Firoc. ‘Computers in Aerospace IV’
Conference (AIAA-2372), Hartford, Conn., October 1983,

M

pp. 216-223.

—————

\

.-—

LWagner 841
Wagner, R., Private discussion on the progress of his
system development effort, December, 1984.

[Winston 841

Winston, Partick H., "Artificial Intelligence’, Second
Edition. Addison-Wesley Series in Computer Science,
Addison-Wesley Publishing Comapny, Inc., pp. 171-197.

[Zadeh 761
Zadeh, Lotfi, "Fuzzy Systems Theary: A Framework for the
Analysis of Humanistic Systems"”. In Systems Methodology
in Social Science Research: Recent Developments, Kluwer-—
Ni ihoff Publishing, Boston, The Hague, London.

———

-~

F {

3

#

, [-

$ ty hlks.log
s

node_status(X, _, _»t,Py_y_y_y_3_), numberi{P),

decide_true(X, ST,P) .

/% Hiph Level Knowledge based Sf;%ga- Appendix A.l HLKS Source Listings =~ ™
/* R
report_to_hlks(fault) :-

f_nepnni=in=hlksino_fault) -

propagate_t (STATE) 11—
check_status, propagation, report_to_hlks(STATE) .

| 1lks(STATE) :- ~
: nl, write("(LLKS starts }"}), nl, nl, propagate_t (STATE),
write("(LLKS completes)"), nl .

entrust_llks :~
neode_control (X, _,entrust, _, _, _,y_
change_node_status_for(X, _,_s_y_s_y_s_sentrusted,_), fail .
entrust_1lks .

relieve_llks :-
i node_control (X, _,relieve, _,_y_,_),
i chanpe_node_status_for(X, _, _y_y_y_y_y_yrelieved,), fail .
relieve_llks . .

.

del_each_evidence :-

i ®ach_evidence(X), fdeleclause(each_evidence(X)), fail .

del_each_evidence .

del_ro -

route (X), fdelclause(route(X)}, fail .
del_ro .
del_ro -

route (X)), fdelelause(route(X)), fail .
del_ro .

del _c_produet -
e_product (X)), fdelelause{c_prcduet (X}), fail .
del_c_product .

del_sum :-
sum(X), fdelclause(sum(X}), fail .
del_sum .

set_status_resume(C]) .
set_status_resume(NODE_LIST) :- . R
get_level _evidence (NODE_LIST,EVI_LIST), .
(resume_breadth (NODE_LIST)
set_status_resume(EVI_LIST)) .

resume_llks :-
get_resume_node(NODE_LIST), set_status_resume(NODE_LIST) .

get_resume_node (NODE_LIST) :-
bagof (N, get_resune(N), NODE_LIST) .
get _resume_node(ll) .

get_resume(NODE) :-
node_control (NODE, resume, _, _y_y_y_) =

resume_breadth(L]) :-

fail .
resume_breadth (IN_HIN_T1) -
change_rinde_status_for (N_H, cormected.active,. « « « . . .). /.

™

'
i
!

i
‘

resume_breadth (N_T) .

.adjust,_suspend_:=

get_top_node(TOP_NODE_LIST),
remove_extra_suspend (TOP_NGDE_LIST) .

remove_extra_sﬁspend(t]) .

remove_extra_suspend (NODE_LIST) -~

=t _artive evidence(NODE_LIST,EVI_LIST),

(remove_suspend (NODE_LIST) ;
remove_extra_suspend(EVI_LIST)) .

remove_the_suspend(N_H) :~

:hange riode_status_for (N H,connected,act;ve,_,_,_,_,_,_,_)

get_active_evidence(L],EVI_LIST) :~
addelause(each_evidence (##)),
setof (E, sach_evidence(E),E_LIST), del_each_evidence,
erase_first (E_LIST,EVI_LIST) .
get_active_evidence (IN_HIN_TJ,EVI_LIST) -
node_structure (N_H, ,ev:dence(“VIDENCE LIST). Yy
check _store_evi (EVIDENCE_LIST),
net_act:ve avidence (N _TyEVI_LIST) .

check_store_evi (L]) .

check_store_evi(LE_HIE_TI) :-
check_active (E_H, YES),
(mqual (YES, yes), addelause (each_evidence(E_H)),/37/),
check_store_evi(E_T) .

check_active(E_H,no) :-

node_control (E_H,suspend, _, _y_s._1_) »
check_active(E_H, o) := -

node_status(E_H, suspended, _, _y _y_y_v—_v_1..)s

check _Plural_input (E_H, plural), check loop_of (E_H, loop)

check_active(E_H, yes) .

remove_suspend (L) -

fail .

remove_suspend(EN_HIN_TJ) 3=

remove_the_suspend(N_H), /, remove_suspend(N_T) .

check_plural _input (NOQDE, RESULT) :—

bagof (N, plural (NODE, N) ¢y N_LIST), check_plural (N_LIST,RESULT)

plural (NODE,N) -
node_structure (N, _, evidence (EVIDENCE_LIST),),
member (NODE, EVIDENCE_LIST) .

check_plural (N_LIST, plural) :-
lemgth (N_LIST,L), L)1 .

check_plural (N_LIST, not_plural) .

check_laop_of (NODE,LODP) 2=

loop_bf_search (INODEJ, NODE, LOOR) .

check_loop(NODE) :-

check_lcop_of (NODE,LOOP), write(“Node "), write(NODE),
write(" is "), write_not(LOOM), write(" in a loop."),

write_rot (leop) .
write_rot (riot_lcop) -

— write('not") .

loan_ bf search (L] NDDE,LDDD) .

——— cae N mme- _

nl

F‘-

p*”p,
- o a8 N .

[

B — equal (LOORviot. loop), ’

ges_aevel_ev:icence (MNODE_LIST,EVI_LIST),
detect_leop(NODE,EVI_LIST,LO00P),

loop_bf_ search (EVI_ _LIST,NODE, LOOP), /3
/) .

detect_loop (NODE,EVI_LIST, loop) :-
member (NODE, EVI_LIST) .
op (NODE,EVI LIST. et _loop) . o

generate_l1lks_command (COMMAND_LIST) s3-
bagof (X, ll1ks_command (X), COMMAND_LIST) .
penerate_llks_command(Ll) .

take_llks_action(Cl) .
take_llks_action(LHITI) :-
llks_actxon(H), take_ llks action(T) .

suspend_1llks :-
set_llks_suspend .

set_status_suspend([]) .. .
set_status_suspend(NODE_LIST) :- -
get_level _evidence (NDDE_LIST,EVI_LIST),
(suspend_breadth (NODE_LIST) ;
set_status_suspend(EVI_LIST)) .

suspend_breadth(L]) -

i fail .
suspend_breadth (IN_HIN_T1) -
change_node_status_for (N_H, suspended, ideley _, _, _y_s_s 1)y 74

suspend_breadth(N_T) .

find_suspended_ nodes(NDDE LIST) -
bagof (X, find_suspended_node (X), NODE_ LIST) .
find_suspended nodes(EJ) -

set_llks_suspernd :=-
find_suspended_nodes (NODE_LIST),
set_status_suspend(NODE_LIST) .

find_suspended_node (NODE) ;-
nade_control (NODE, suspend, _y _y_y v} -

del_rnode_str -
node_structure(_,_,_,_), fdelclause(node_structure(
fail .
del _node_str .

1),

PSS SRS [RS

check_str(NODE) :-—
depth_co(NODE) .

check_str (NODE) :-
write(NODE), write(" check successuful."), nl ,

check (structure) -
find_top(NODE_LIST), check_structure(NODE_LIST) .
check(type) :-
check_typ .
check(explanation) :-
check_exp .
check("action") :-
check_act .
check.(contrel). 2=
check_cnt .
check (status) :—
~henik ghatus L

-

F

H
i

checxia) 2= .
write ("### Argument ("), write(X), write(") is undefined."),
nl .))

check =
check (structure), check(type), check(explanation),
check("action"), check(control), check(status) .

re(fl) .

_sheck_structure
. check_structure(LHITI) :-

check_str(H), check_structure(T) .

' depth_co(NODE) :=-

node_structure (NODE, _, evidence(E_LIST),),
decide_co (NODE,E_LIST) .
depth_co (NODE) -
rnode_structure (NODE, _,_,_Y, /, failj
write("###% "), write("("), write(NODE), write(")"),
write(" does not exist '"), nl .

decide_co(NADE, [J) -
fail . .
decide_co(NODE, [E_HIE_T1) :—
depth_serch_co(NODE, E_H) ;.
decide_co(NODE,E_T) .

depth_serch_co (NODE,E_H) :—
cut (depth_co(E_H)) .

check_typ =
rode_structure(NODE, _, _,), check_type(NODE), fail .
check_typ .

check_sta(NODE) ==
node_status (NODE, _, _y 9 oy s oy oy
check_sta(NODE) :~
write ("### "), write(" ("), write(NODE), write(")"),
write(" status was nat generated "), nl, / .

Yy /.

check_type (NODE) :-
rode_type (NODE, M, dependency (N), _y s v os oy)y /7y number(N),
N)= -1@, N=(18, integer(N) .
check_type (NODE) -
nade_type (NODE, M, dependency (undefined)y _y _y_scrcrr)y 7 &
check_type (NODE) :-
write("### "), write("Type("), write(NODE), write(")"),
write(" deoes not exist or incorrect !"), nl, / .

check_exp =
ricde_structure(NODE, _, _,), check_explaration(NODE), fail .
check_exp .

check_explanation(NODE) =
riode_explaration(NODE, g_type (X),v_depth(Y),_, _,_,deseription(
CZ_HIZ_T3)), /, integer(X), integer(Y), / .
check_exblanation (NODE)Y s3-—-
write("### "), write(" ("), write(NODE), write(")"), -
write(" explanation does not exit or incorrect !"), nl, / .

check_explanation (L1, NODE) :-
fail .,
check_explaration(L(AID, T,P, _, _, MSG) IA_T3,NODE) :~
eaual (T,explanation), write_explanation(NODE,MSE) s
check_explanation(A_T,NODE) .

|
|
!

riede_structure (NODE, _, _, _), check_action(NODE), fail .
check_act .) .

f;heck_action(NDDE) -

vnode_action(NODE, _, _y s _saction(fHIT1)), /,
check_content_of(LHITI), / .

check_action (NODE) :-
write("### "), write("Action("), write(NODE), write(")"),

ite(! doms not exist or incorreect !"), nl, / .

check_content_of (L1) .
check_content _of (C(AID, Ty Py _y _ MM IT1) 2=
che:k_one_element(ﬂID,T,Py_,_,mp). check_content_of (T) .

check_ore_element (RID, T,P, _y _yMP) i~
(equal (T, warm) jequal (T, advice) jequal (T, recommend) jequal (T,
report)), (number(R),integer(P),m =0,r=(3), /,
check_mp_connection(MP) .
check_one_element (AID, T, R, _y _yMP) -
write("#%% "), write("Argument of a:t:on("), write (NODE),
write(")"), write(” incorrect!"); nl .

check_mp_connection(Mp) -
node_message (MR, £_1) .
check_mp_connection(MP) -
write("##% "), wr;te("Message(“), write(MP), write(")"),
write(" does not exist or incorrect!"); nl .

check_cnt -
node_structure (NODE, _,_,_)y check_contrel (NODE), fail .

check_cnt

check_control (NODDE) :-
rode_control (NODE, _, sy _yv)y / «
check_control (NODDE) :-
write("### "), write("Control ("), write(NODE),
write(") dees not exist or incorrect!"), nl, / .

display_reference (NODE) :-
depth_re_search (NODE) .

digplay_reference..

cdisp_ref (NODE) -~
display_reference (NODE) .

depth_re_search (NODE) :-
node structure (NODE, logic (LOGIC), ev:deh:e(EVIDENCE) 2y
addelause (re_route (NODE)),
bagof (N, re_route (N), INDENTY_LIST),
write_indenty (INDENTY_LIST), write_re_tree(NODE),
check_re_terminal (NODDE), decide_re_way (NODE, EVIDENCE) .

write_re_tree(NODE) :-

node_structure (NODE, logic(LOGIC), _, REFERENCE), write(NODE),

write(" ™), write(REFERENCE), wnl .

check_re_terminal (NODE) :-
riode_structure (NODE, logic ("terminal”),evidence (L1), _),
fdelclause(re_route (NODE)), fail .
check_re_terminal (NODE) -
nade stru:ture(NDDE,1ou1=(LDGIC),evxdence(EVIDENCE),_)
R . (equal (LOGIC, "rot") ;
equal (LOGIC, and)
eonal (LOBIC, ar))

— | e S

cecioe_re_way s, Ll 3=
fdelclause(re_route (NODE)), Ffail .
decide_re_way(NODE, L(EVIDENCE_HIEVIDENCE_T1) ":=-
depth_search_on (NODE, EVIDENCE_H) j;
decide_re_way (NODE, EVIDENCE_T) .

+ ———
~

depth_search_on(NODE, EVIDENCE_H) :-
N cut (depth_re_search (EVIDENCE_H)) .
\

“ read_ans (EVI_LIST, TRUE_OR_FAIL) :-

: read (READ_DATA), syntax_check (READ_DARTRA),

' (check_t f (READ_DATA, TRUE_OR_FAIL) ;

! check_why (READ_DATA, EVI_LIST, TRUE_OR_FAIL) ;
check_hew (READ_DATA, EVI_LIST, TRUE_OR_FAIL)) .

check_why (why, EVI_LIST, TRUE_OR_FAIL) :~
why_explanation(EVI_LIST,NODE_LIST, TRUE_OR FAIL),
. read_ans (NODE_LIST, TRUE_OR_FAIL) .
' check why(why(USER EVI_LIST),EVI_LIST, TRUE_OR_| FRIL) s
why_explaration (USER_EVI_LIGT, NODE_LIST, TRUE_OR_FAIL),
read_ars (NODE_LIST, TRUE_OR_FAIL) .

check_tFf(t,t) .
check_tf(Ff, f) .

why_explanation(EVI_LIST,NDODE_LIST) :-
make_node_list (EVI_LIST, NODE_LIST) .

make_node_list (L1, NODE_LIST) :-

set_of (NODE, why_node (NODE), NODE_LIST), del_why_ncde .
make_riode_list (LEVI_HIEVI_TIi,_) :-

all_rviode(EVI_H)j

make_rcde_list (EVI_T,) .

all_node(EVI_H) :-
niode_structure (N, _, evidence (EVIDENCE_LIST),),
nember (EVI_H, EVIDENCE_LIST), write_why_messi(EVI_H,N),
addeclause (why_node (N)), fail .

del_why_node :—
why_node({X), fdelclause(why_node(X)), fail .
del_why_ncde .

write_why_messl (EVIDENCE, NODE) :=-
rioce_type (EVIDENCE,E_STATE, _y sy rmroror)y
node_type (NODE, N_STATE, _, _; _,_,_,_,_,_), write(EVIDENCE),
write(" is "), write(E_STATE), write(" cause of "),
write (NODE), write(™ is "), write(N_STATE),
write(" as shawed bellow. "), nl, disp_exp(EVIDENCE) .

breadth_first_serch (NODE_LIST) :=-
breadth_first (NODE_LIST) .

breadth_first (L1) .
breadth_first (NODE_LIST) :~
get level evidence(NDDE LIST, EVI _LIST),
(breadth(NDDE_LIST),
breadth_first (EVI_LIST)) .

. pet_level_evidence([]l,EVI_LIST) :-
! addelause (each_evidence (##)),
setof (E, each_evidence (E),E_LIST), del_each_evidence,
erase_first (E_LIST,EVI_LIST) .
cet_level_evidence (IN_HIN_T1,EVI_LIST) -
nade_structure (N_R, _,eviderce(EVIDENCE_LIST),),
me’oct arsra avd IEYINENDE L YETY

A —

e

get_level_eviderce(N_T,EVI_LIST) .

1a:t=stane;eviLL1l.A4 ——— L
select_store_evi(LE_HIE_T3) :- -
addelause (each_evidence(E_H)), select_store_evi(E_T) .
erace_first ([E_HIE_TI,E_T) .

breadth (Ll) =

.o e e thresheid(T), error_rate(E), _,

fail .
breadth (CN_HIN_T3) :-
get_node_result (N_H, T_OR_F), /, take_action(N_H, T_OR_F), /,
breadth(N_T) . .

get_node_result (N_H, T_OR_F) :—
node_status(N_Hy _y _y T_OR_Fy _y_y_y_1_3_.) .
get_node_result (N_Hynt) .

take_action(N_H,t) :-
get_action_list (N_H,ARCTION_LIST),
messape_pro(ACTION_LIST, T_OR_F) .
take_action(N_H, T_OR_F) . .

get_action_list (N_H, ARCTION_LIST) .:-
node_action(N_H, _,_;_s_saction(ACTION_LIST)) .

message_pra(f), T_OR_F) .
message_pro([(RID, T,P,_, _,MP)IA_TI1, T_OR_F) :=-
decide_control (T,P,MP, T_OR_F), messape_pro(A_T,T_OR_F) .

decide_contrel (T,P,MP, T_OR_F) :-
riode_nessage (MP, MESSAGE_LIST), write_message (MESSAGE_LIST) .
decide_control (T,P,MP, T_OR_F) .

write_message(Ll) :-
nl .

write_message(CM_HIM_T1) :-
write(M_H), write_messape(M_T) .

bf (NODE) :-
breadth_first_serch{NODE]) .

read_node_status(IiD,C,R,5,P, RT,CH, SR, _,) :-
rode_status(ID,C,R,S,F, RT,CH, SR, _, _) .

change_ncde_status_for(ID,R1, A2, A3, R4, AS, AB,R7,AB,R3) :=-

node_status(ID,C, AR, S, P, RT,CH, SR, LE, WD), change_al(C, A1, X1),
chanpe_a2 (R, A2, X2), chanpe_a3(S, A3, X3), chanpe_a4(P, A4, X4),
ehange_ald (RT, A5, X5), change_a& (CH, R, X6},
change_a7 (SR, A7, X7), chanpe_a8(LE, A8, X8),
change_a% (WD, A9, X9),
fdelelause (nede_status(1D, C, A, 8, P, RT, CH, SR, LE, WD)),
addelause (node_status (ID, X1, X2, X2, X4, X5, X6, X7,X8,X8)), / .

change_node_type_for (1D, A1, dependency (A2), pl (R3), pR (R4), threshald(
AS), error_rate(RE), _, _,;_) -
node_type (ID, M, deperdency (D), pl {F1), pa(Pd), threshold(T),
ervor_rate(E)y _, _,_)y change_type_al(M,RAl, X1},
change_type_a2(D, A, X2), change_type_a3(F1, A3, X3),
chanpe_type_a4 (PO, R4, X4), chanpe_type_aS(T,AS, X5,
change_type_at& (E, RE, X6),
fdelclause (rode_type(ID, M, deperdercy (D), ol (F1), pR(FD),
—1.))y
addclause (node_type (ID, X1, cependency (X&), 01 (X3), bR (X4),
threshald (X9), error_ratel(X6)y_, _,_)), / .

ety

——

ey

[PESN—

Cliatige_SyDe_ad (My Hig M1
string (A1) .
change_type_ai (M, A1 M) .

change_type_a2 (D, A2, A2)
number (R2) 3§
string (R2) .
change_type_a2(D,R2,D) .

change_type_a3(P1, A3, A3)
numbew (R3) .
chanpe_type_a3(Pi,AR3,P1)

change_type_a4 (PQ, R4, R4)
number (R4) . '
change_type_a4 (PQ, R4, PQ)

chanpe_type_aS(T, AS, AS)
number (RS) .
change_type_aS(T,RS5,T) .

change_type_at(E, R, A6)
number (AS) .)
change_type_aB(E,R6,E) .

change_a2 (P, A2, AR) -
string(fR2) .
change_a2(P, R2,P) .

change_a3(R, A3, A3) -
string (R3) .
chanpge_a3 (R, A3, R) .

change_a4 (P, R4, R4) :—
nuniber (R4) .
chanpe_a4 (CH, A4, CH) .

change_aS (RT, A5, AS) =
string(RS) .
change_aS(RT,AS, RT) .

change_at (CH,R6,AR6) =
string(AB) .
change_a&(CH, A6, CH) .

change_al (C,AR1, A1) :
string (RL) .
change_al (CyR1,C) .

change_a7 (SR, A7, A7)
string (R7) .
change_a7(SR,AR7,SR) .

change_a8(LE, A8, A8)
string (R8) .
change_a8(LE,R8,LE) .

change_a9(WD,R9, AS) :-
string(RI) .
chanpe_a9(WDh, A9, WD) .

read_node_control (1D, C, _,
ememm—e . Rode_contral (ID, C, _,

ehange_node_control_for(

B N Y S S T A o T

—‘_1_1_) -
—!-1—1—) -

1D, A1, AZ, A3, A4, AS, AE) -

E LT TM UL Y mlnmnam mepnkaasm) at (5 04 VA

charnpe_control _a2(LE, A2, X&), change_control_a3(HE, A3, X3),

change_control_a4 (IM, R4, X4), chanpe_control_aS(HL, AS, XS5),

fdelclause(node_contrel (ID, Cy LEy HE, IM, HL, _)),

addclause (node_control (ID, X1, X2, X3, X4, X5, _)) .
1 change_node_control _for(ID, AL, AR, AZS, A4, AS, AE) .

initialize_control (1D, AL, A2, A3, A4, A5, AE) :-
node_control (ID,C, LE, HE, IM, HL, _), change_control_ail(C,Al1, X1),
e_pontrol al(LE,A2, X2), channe_control_a3(HE, A3, X3),
! change_control_a4 (IM, R4, X4)," change_control_aS (HL, AS, XS),
; initialize_node_control (ID, X1, X2, X3, X4, X5, _), fail .
initialize_control(ID,Ql,QE,QZtQ4,QS,QS) .

chanpe_control_al (CyA1,AL) :—
string (Al) .
change_control_al (C,A1,C) .

- change_control _az2(LE,A2,A2) :-
H string (A2) .
change_control _a2(LE, A2, LE) .

change _control_ad(HE,R3, A3) :-
string (R3) . E
change_control _a3(HE, A3, HE) .

change_control _a4 (IM, A4, A4) -
string (R4) .
change_control_a4 (IM, R4, IM) .,

chanpe_control _aS(HL, AS,AS) -
styring (AS) .
change_control_aS(HL, AS, HL) .

disp_each :-
h_evi(X), write("hypo —=)"), write(X), fail .
disp_each .

rinde_top (TOP_NODE_LIST) :-
get_top_node (TOP_NODE_LISTY .

get_top_node (TOP_NODES) :-
setof (X, look_for_top(X), TOP_NODES) .

laok_for_tap(X) :-
node_structure(X, _,_,_)y check_node_x(X,F_OR_S) .

find_top(NODE_LIST) - .
get _top_node (NODE_LIST) . ot

check_node_x (X, F_OR_S) -
look_up_node(X,F_OR_S), /, check_success(F_DOR_S) .

|
look_up_node (X, fFail) s~
node_structure(_, _,evidence (EVIDENCE_LIST),),
(look_up(X, EVIDENCE_LIST,STATE) ;STATE is 1), equal (STATE,d),
/y /3 .
fail, /
look_up_node (X, success) -
/

look_up(X, £3,_) -
fail .
look_up (X, [E_HIE_Til,Y) -
equal (X,E_H), Y is @, /;

Al mfYL T T 0

-l

check_success(tail) -
fail .
check_success(success). _

(’ask_user_continue(HYPD_LIST,NEXT_LIST) e
write (“"Enter {report., report(lIidi, ..., Idnl)., or end.}"),
nl, read(USER_RESFONSE), check_how_syntax (USER_RESPONSE),

nl,
\ ER_RESPONSE,end), 7/, /%

decide_next_list (USER_RESPONSE, HYPD_LIST, NEXT_LIST)) .

. check_how_syntax (READ_DATA) .
!
: decide_next_list(report(NEXT_ﬁIST),_,NEXT_LIST) -
decide_next_list (report, NEXT_LIST,NEXT_LIST) .

explain_how([l) :-—
fail .
explain_how(IN_HIN_Tl) -
explain_ncde_evidernce(N_H), /, explain_how(N_T) .
explain_node_evidence (NODE) s- . .
node_status(NDODE, _y _¢sFy oy s srsldy 7 &
explain_node_mvidence (NDDE) ==
explain_how_node (NODDE), explain_how_evidence (NODE) .

explain_how_node (NDDE) :-
node_status(NODE, _, _,t4PROy _y _y_9_y_),
node_type (NODE, STATE, dependency (D), _y s s v v v 0y
write_how_node (NDDE, STARTE, D, PRO) .

write_how_node (NDDE, STATE, D, PRD) :-
ricde_explanation(NODE, _, _y _, sy _ydescription(D_LIST)), nl, nl,
write(NDDE), write(" ("), write_description(D_LIST),
write(")"), write(" is true with probability "),
write_probability_only(PRD), write("."), nl, nl,
write("The state is determired by the rule:®*), nl,
write("C"), disp_exp(NODE), write(" J1"), nl .
write_how_node (NDDE, STATE, D, PRD) :- .
nl, write(NODDE), write(" is true with probability "),
write_probability_only (PRD), write("."), nl, nl,
write(" The state is determined by the rule:'), nl,
write("C"), disp_exp(NDDE), write("3"), nl .

how_pyro (NDDE_LIST) :-
how_breadth_first (NDDE_LIST) .

report (NDDES) :- .
fiow_pro (INDDESI) . N

how :=
node_top(TOP_NODE), how_bpro({TOP_NDODE) .

explain_how_evidence (NODE) :-
node_structure(NODE, lcpic(LDGIC),evidence(E_LIST),),
explain_how_lopic(LDGIC,E_LIST) .

explain_how_lopic(and, E_LIST) -
how_and (E_LIST) .
explain_how_lopgic(or, E_LIST) :-
how_or(E_LIST) .
explain_how_logic("not",E_LIST) :-
——— how_not (E_LIST) .

how_noat (21) .

A-1(D

_—

— s,

o i

L

rode_status(E_Hy _y _s TFyPROy s Ly n)y
node_type(E_H,STnTE dependency (D), _, _a s s g3y

write._how_not {E_H, STRTE, D, FRO),.. how_not (E_T).

write_how_not (E_H, STRTE, D, PRO) :-

write(E_H),

write(")

write(" ("), wr:te_descr1pt:on<D_LIST),

l node_explaration(E_H, __y_,_y_y_ydeseription(D_LIST)),
I

Il)'

write("is fale with probability "),

e

nl,

>________wn;ta_pnnbabzl13y ronly(PRO), write("."), wl, nl .
write_how_rot (E_H, STRTE,D, PRO) -
nl, write (E _H), write(" is fale with probability "),

how_or ([1) =-
nl .

how_or([E_HIE_TI)

write_probability_only(PRO), write(".'"), nl, nl .

get_or_data(E_H);

how_or(E_T)

' get_or_data(E_H)

rode_status(E_Hy _, _y TFyPROy _y _y 99)
node_type (E_H, STRTE, deperndercy (D), _y _y s v s 90y
write_how_or(TF,E_H, STRTE,D,PRO), /, fail .

how_and([1) :=
nl .

how_and (LE_HIE_T1)
node_ status(E _Hy s s TFyPRO, _y gy vy 0y
node _type(E_H, STRTE, dependency (D), _y _y g v 1t)y
write_how_and(E_H, STRTE, D, PRO), how_and(E_T) .

write_how_or(t,E_H, STRTE,D,PRO) :-—
riode_explanation(E_H, _s _y _y_y_,deseription(D_LIST)),
write(E_H),

write(")

u)’

write(" ("), write_deseription(D_LIST),
write("is true with probability ™),

write_probability_only(PRD), write("."), nl .
write_how_aor(t,E_H, STRTE, D,FRO) :-—

nl, write(E_H),

write(" is true with preobability "),

: write_probability_only(PRO), write("."), nl .
write_how_or(_, E_H, STATE, D, PRO) .

write_how_and(E_H, STATE, D, PRO) :—
node_explanation(E_H, _, _y_,s _yv_sdeseription(D_LIST)),
write(E_H),

write(")

u)’

write(" ("), write_deseription(D_LIST),
write("is true with probability "),

pet_prob_range (PRO, W_TYPE), write_prob(PRO,W_TYPE),
write("., "),
write_how_and(E H,STRTE,D,DRD) g
nl, write(E _H), write(" is true with probabxlxty "),
write_probability(RRO), write("."), nl .

nl .

gpet_prob_rarpe (@, zero) .
get_prob_rarpe (108, hurndred) .
get_prob_rarnge (PRO,ore_9) :-
FRO)=1, 1B)FRO .
get_prob_ranoe (PRO, ten_99) .

write_probability_only (PROE) s~
net_prob_ranpe (PROB, W_TYPE), write_prob(PROB,W_TYFE)

' write_prob (FRO, hundred) :-

write("i")

.

write_prab (FRO, zero) :-

write("2")

write_ nrnb(DRD one_93) :—

LRTIN

BEIT SRS - Lo i

A -

rl,

nl,

r

- - - - i
:

—t

write_prob(PRO,ten_99) :-
write("."), write(PRQ) . .

{

(

how_breadth fivst (L) .
how_breadth_first (NODE_LIST) -
get_follow_hypo(NODE_LIST, HYPQ_LIST),

(explain_how (NODE_LIST) 3
ask_user_continue (HYPO_LIST, NEXT_LIST),
ow_breadth_finst (INEXT L IST)) .

get_follow_hypo(Ll,HYPO_LIST) :-
addelause (h_evi (##)), setof (H,h evi (H),H_LIST), del_h_evi,
erase_first (H_LIST,HYPO_LIST) .
get_follow_hypo(IN_HiN_T2,HYPO_LIST) :—
node_structure(N_H, ,evidence(EVIDENCE_LIST),),
select_store_hypo(EVIDENCE_LIST),
get_follow_hypo (N_T,HYPO_LIST) .

select_store_hypa(ll) .
select_store_hypo(LE_HIE_T1) :-
node_structure(E_H, logic(LOGIC), _,_),
(equal (LOGIC, "terminal"), /, /jaddelause th_evi (E_H))),
select_store_hypo(E_T) .

del_h_evi -
h_evi (X), fdelclausé(h_evi(X)), fail .
del_h_evi .

:
probe(NGDE) g
probe_pro(CNODEY) . 3

probe_pro(NODE_LIST) :-
probe_breadth_first (NODE_LIST) .
probe_pro(NODE_LIST) .

probe_breadth_first ([1) .
probe_breadth_first (LRITI]) -
explain_how(THIT]), probe_breadth_first(T) .

suspend (NODES) =
‘suspend_nodes_hlks (INODES]Y) .

suspend_nodes_h1lks(L1) .
suspend_nodes_hlks(CHITI) -
set_suspend (H), suspend_ncodes_nlks(T) .

set_suspend (NODE) 2=
node_control (NODE, suspendy _y _y _y_y)y wWrite(" The "),
write(NODE), write(" is alreacdy suspended. "), nl .
set_suspend (NODE) -)
node_control (NODE, _, _y_y_vyo1)
change_node_contral_for (NODE, suspérd, _, _y_y_3.) =«
set_suspend (NODE) :-
write("##% "), write(NODE),
write(" does not exist or misspelled!")y nl .

act ivate (NODES) ;-
resume_nodes_hlks (INODES]) .

check_status -
node_structure (NODE, _, _,), check_sta(NODE), fail .
check_status . N
resumne_riodes_hlks (L) .
resume_nodes_hlks (CHITY) :- .

L

set _resume (NODE) :-
,f—————xmda.controlcNunz*resume,=,_,_,_ D wr:te! The_"),

write(NODE), write(" is already resumed."), nl .
set _resume(NODE) :-
node_control (NODE, Cy _y 9y 9 0y
change_node_control _for (NODE, resume, _, s _y_y.) -

H
i
¢

4
i
1

‘vdinitialize_control s-—
node_control (NODE, _y sy _y s 30,

. initialize_node_control (NODE, no_command, relieve, relieve,r, _
! y Yy Tail .
initialize_control .

initialize_rode_control (NODE,C,LE,HE, IM,HL,) :-—
fdelclause (riode _control INODE, _, _y_9_yv_2),
asserta (node_control (NODE, C, LE, HE, IMyHL, _)) .

initialize_status ;-
node status(NDDE,_ YR SR S S S N B
initialize_node_status(NODE, conmected, active, _,_,_y
unchanged, breadth, relieved,w), fail .
initialize_status .

initialize_l1lks :~
initialize_status .'

initialize_node_status (NODE, C, A, A1, A2, A3, CH,CS, LE, WD) :-
. fdelclause (node _status(NODE, _y _y _s_3_s—1 910,
i asserta(node_status (NODE, C, R, A1, A2, AZ, CH, CS, LE, WD)) .

hlks(fault, NODE) :- -
nl, write("(HLKS starts >"), nl, nl, search(NODE),
write("{ HLKS completes >"), nl .
hlks(no_fault, NODE) .

remove_the_evidences (QRI_EVI, NEW_EVI) :-
remove_the_evi (ORI_EVI,NEW_EVI) .
remove_the_evidences (ORI_EVI, []) .

remave_the_evi (ORI_EVI, NEW_EVI) :—
bagof (X, check_for_remove (X, ORI_EVI), NEW_EVI) .

check_for_remnove (X, ORI_EVI) :—
node_status (X, C, R,STRTE,_,_ oy 1)y member(X,ORI_EVI),
string(STATE)y equal (C, conmepted) .

flexible_breadth_searen (ORI_LIST) :-
remove _by_control (ORI_LIST, NODE_LIST),
flexible_breadth_first (NODE_LIST) .

search (ORI_LIST) :-
nl, kill(each_evidence), flexible_breadth_search(IORI_LIST]) .

flexible_breadth_first (L1) .
flexible_breadth_first (NODE_LIST) :~-
get_level_evidence(NODE_LIST,ORI_LIST),
remave_by_ control (QRI_LIST(EVI_LIST),
(flexible_ breadth (NODE LIST,);
(ask condzt:on(NDDE _LIST),ask_user(R),decide_conti(
EVI_LIST,E_LIST,R) declde_contz(EVI_LIST,E_LIST
contirnuous)), flexible_breadth first (E_LIST)) .
ceczde contz(EVI _LIST,EVI_LIST,continuous) .
.ec:ue_cﬁntz(”V!_LIST EVI_LIST, cortinue) .

A - 13

¢

4

‘T

P

!

decide_conti (EVI_LIST,EVI_LIST,X) :—
Xy /y Fail .

/’ask_user(R) -

I nl, write{("Enter command:"), nl, read{(R),
(equal {R, continue); .
equal (R, terminate) ;
equal (R, X)) .

7 flexible_breadth (L1, terminate) .
" flexible_breadth([3,_) ==

\ fail .

: Fflexible_breadth ([N_HIN_T3,) -

action_process (N_H, FOUND), stop_node(FOUND,N_T,NN_T,R),

flexible_breadth (NN_T,R) .

stop_rode(_,N_T,N_T,continue) -
db_pause{level) .

stop_node (FOUND, N_T,N_T, continue) :-
db_pause (branch) .

stop_node (FOUND,N_T,N_T, continue) -
db_pause (tree) . .

stop_node (not_found, N_T,N_T,continure) :-
db_pause (node) . N

stop_node(found, N_T,NN_T,R) :=-

pause (node), back, ‘ask_user(R), decide_conti_rode(R,N_T,NN_T) .

decide_conti_node(comtinue, N_T,N_T) .
decide_conti_node (terminate,N_T, L1) .

' decide_conti_node (X, N_T,N_T) -

X, /, fail .

back =
cdummy 3
back .

cdummy .«

del -
tdel_each_evidence .

ask_conti_beam(N_H,R) :~
get_description(N_H,D_LIST),
write("Do you wish to continue a searech fram "),
write_desecription(D_LIST), write(") ?"), nl,
write("Enter y. or n. ."), nl, read(R) .

remove_by_control (X, X) .

ask_condition(Ll) :- N
fail .
ask_condition(IN_HIN_T1) -
tb_pause(level), get_action_list (N_H,ACTIDON_LIST),
check_ask_cond (N_H, ACTION_LIST) ;
ask_condition(N_T) .

check_ask_cond (N_H, {3) ==
fail .
check_ask_cond (N_H, C(RID, T,P, _y _,) IA_TI) :-
(node_status (N_H, _, _yt, PRO,
" /4 check_stop(T), /3
check_ask_cond (N_H,A_T) .

¥t -t ot -

strategy (NODE, SEARCH) :—
check_inbut_search (SERRCH) ,

A~ 4

/s

write (" ("),

)y decide_true(N_H, _,FRD)),

'
|

r

o

— -

check_input_search (SEARCH) :— .

-equal{SEARCH, breadthls -
equal (SEARCH, beam) .

check_stop(warning) .
check_stop(X) -
fail .

N

! eollect_action(N_H,R_LIST) :-

bagof (X,hlks_action(X,N_H),R_LIST) .

action_process (NODE, found) t=
collect_action (NODE,A_LIST), /, execute_acticn(NODE,A_LIST) .
action_process (NODE, not_found) . ;

execute_action(N_H, [1) .
execute_action(N_H, THIT1) :—
take_hlks_action(N_H,H), execute_acticrni(N_H,T) .

check_warning (1) -
fail . .
check_warning (L(RID, T,Py _, _¢MSB) IA_TI) :~
equal (T,warning), /, 7§
check_warning (A_T) .

threshaold(Q) .
db_pause (tree) .
magnifier(l) .

rie(Xi,X2) :—
not (equal (X1, X2)) .

assess (NODE) =
nl, get_parent_nocode (NODE,P_LIST), report_pro(NODE,P_LIST)
report_top (NODE) .

report_top (NODE) :-
write_the_node (NODE), write(" is top node.") .

get_parent_node (NODE, P_LIST) :-
bagof (X, find_parent_node (X, NODE) ,R_LIST) .

find_parent_node (X, NODE) :-
node_structure (X, _, evidence(E_LIST),_), member (NODE,E_LIST) .

report_pro(NODE, £1) .
report_pro(NODE, LP_HIP_T1) :=
report_exp (NODE, P_H), report_pro(NODE,P_T) .

report_exp (NODE,P_H) :—
node_structure(P_H, logic(LOGIC),evidence(E_LIST),),
remove_the(NODE,E_LIST,NE_LIST), write_the_ncde (NODE),
write_evi_of (LOGIC,NE_LIST), write_parent_ricde(P_H), nl .

write_evi_of (LOGIC, £1) .
write_evi_of (LOGIC, INE_HINE_T]) :—
length (ENE_HINE_TJ, LENGTH),
(eoual (LENGTH, 1), write(", "), write(LOGIC),write(" "), /:write
("y ")), write_each_ncde (NE_H),

e Write_evi_of(LOBGIC,NE_T) .

write_each_rivde (NE_H) :—

. s Team s el e e NI TV D TOTN -y peva R dem £ 2

!,nemoxgdxhe(NDDE;E_LISILNE_LIST) e

write_aescription(D_LIST), write(")")

bagof (X, check_same_nodes (X, NODE, E_LIST),NE_LIST) .

- check_same_rodes (X, NODE,E_LIST) :=-

o

‘node_structure(X, ,_,_), member(X,E_LIST),
check_same_riode (X, NODE) .

check_same_node (X, NODE) 3=
X==NODE, fail .

check_same_riode (X, NODE) :-~
X=/=NODE .

write_the_rode (NODE) :-
write_each_rode (NODE), write(". This") .

report_demo :-
assess (large_cone_develops) .

write_parent_node(P_H) :-
node_status(P_Hy _; _, STRTE, Py _y _q_s_s)y nl, nl,
write("will jJointly cause:"), nl, write_pach_rode(P_H),
(equal (STATE, t), write(" with "), write(" probability ™,
write_probability_only(P), write("."), nl, /;
write(®. "), nly .

pause (ARG) :-
check_pause (RRG), kill (db_pause), addeclause(db_pause(RRG)) .
pause (ARG) :-—
write ("### Argument ("), write(ARRB), write(™)"),
write(" is undefined!"), nl .

disp_db :-—
db_pause(X), write("pause("), write(X), write(™)"), nl, fail .

disp_db .

kill(db_pause) :-
addelause(db_pause (X)), del_db_pause .
kill (magnifier) :-
addelause(magnifier(X)), del_magrifier .
kill (each_eviderce) :-
addeclause (each_evidence (X)), del_epach_evidernce .
kill (route) :—
addelause(route (X)), del_ro .
kill(sum) 3~
addclause(sum(X)), del_sum .
kill(c_product) :-— :
addelause (e_product (X)), del_c_product . . |

del_magnifier 21—
magrnifier(X), fdelclause(magnifier(X)), fail .
del_magnifier .

del_db_pause :-
db_pause(X), fdelclause(db_pause(X)), fail .
del_db_pause .

entrﬁst(NDDE) 1=
channe_nrode_ctontrol_for (NODE, _,entrust, _,_,_y_) .

relieve (NODE) :-
charipe_rode_control _for(NODE, _,relieve, _,_y_y.) =

check_pause (node) .

-k amiy soean Y seal)

7

i

(,checkzpauseitre-¥
1 recommend (NODE) :-

check_pause (branch) .
check _pause (terminate) .

get_action_list (NODE, RCTION_LIST),
check_recommendation(RCTION_LIST, NODE) .
recommend (NODE) :=

N write ("Recommendation not found_ in knowledge base.") .

1
|

check_recommendation(Ll, NODE) :-
fail .
check_recommendation(L(RID, T, P, _, _,MSB) IAR_TI,NODE) :-
equal (T, recommendation), write_recommendation(NODE,MSE) s
check_recommendation (R_T, NODE) .

write_recommendation (NODE, MSG) -
get_description(NODE,D_LIST), nl, write("RECOMMENDATION ("),
write_description(D_LIST), write("):"), nl, nl,
cutspaces(7), write(" *##") outspaces(3),
pet_recommendation (NODE, MSG, R_LIST),
write_description(R_LIST), write(" *#%")y nl .,

get_recommendation(NODE, MSG,R_LIST) :-
node_message (MSG, R_LIST) .

explain(NODE) -
get_action_list (NODE,ARCTION_LIST),
check_explanation(ACTION_LIST, NODE) .
axplain(NODE) 1~
write("### Explanation of recommendatiern not found!"), nl .

write_explanation (NODE, M5G) :-
get_deseription(NODE,D_LIST),
pet_explanation(NODE, MSG, EX_LIST),
node_status (NODE, _y _+TyPy_y 91 1)y nl,

write("In the state of ("), write_description(D_LiST),
write(") with probability "), write_probability_only(P),
write(", "), write_deseription(EX_LIST), nl .

get_explanation(NﬂDE,MSG.EX_LIST) 8-
node_message (MSG, EX_LIST) .

hlks_searchl (NODE) :-
clock (N), write("depth_first_search begin time = "),
write(N), nl, hlks_depth_¥irst (NODE). .
hlks_searchil (NODE) :-
write("depth_first_search finished time = "), cleck(N),
write(N), nl .

hlks_depth_first (NODE) :-
nade_structure (NODE, _,evidence(E_LIST),),
hlks_test!i_action(NODE), hlks_decide_depth (NODE,E_LIST) .

hlks_decide_depth (NODE, £1) &=~
fail . :
hiks_decide_depth (NODE, (E_HIE_T1) s~
hlks_depth (NODE,E_H) 3
hlks_decide_depth (NODE,E_T) .

hlks_testl_action(NODE) :-

hlks_test_action(warning, NODE) .
hiks_test_action(warning, NODE) -

nade_status (NODE, _, sty Py _y oy vy)y decide_true(NODE, _,F),

B Ay - ——

decide_test_action(NODE, ACTION_LIST) .
hlks_test_action(_,NODE) .

test2 -
hlks_searcha (spacecraft_lost) .

i write_time -
. elock(N), write(" time = "), write(N) .

\

7 action_test_hlks (N_H, warning, P, MSG) :—
get_description(N_H,D_LIST), write("WARNING: #% ("),

i write_description(D_LIST), write(") #%*"), write_time, nl .
' action_test_hlks(N_H,_,P,MSB) .

]

decide_test_action(N_H, T1) .
decide_test_action(N_H, [(RID, T\P, _y _yMSB) IR_TI) 1z~
action_test_hlks(N_H,T,P,M58), decide_action(N_H,R_T) .

hlks_search& (NODE) &~
clock(N)y write("breadth_first_search begin time = "),
write(N), nl, hlks_breadth_first (INODE1),
write ("breadth_first_search finished time = "), clock(T),
write(T), nl .

hlks_breadth_first (L]) .
hlks_breadth_first (NODE_LIST) -
get_level_evidence (NODE_LIST,EVI_LIST),
(hlks_breadth(NODE_LIST) 3
hlks_breadth_first (EVI_LIST)) .

hlks_breadth(Ll) 1=
fail .
hlks_breadth (IN_HIN_T1) i~
hlks_test2_actioni(N_H), /, hlks_breadth(N_T) .

hlks_test2_action(N_H) -
hlks_test_action{warning, N_H) .

hlks_depth (NODE,E_H) 3~
cut (hlks_depth_first(E_H)) .

testl -
hlks_searchl (spacecraft_lost) .

main2 (NODE) s—
initialize_suspend_system, execute_command_loop(NODE) .

execute_command_loop(NODE) -
initialize_status_part, generate_llks_command (COMMARND_LIST),
take_llks_action(COMMAND_LIST), set_terminal_data,
11ks (STRTE), hlks(STRTE, NODE), execute_command_loop (NODE) .

initialize_status_part :-
" rnode_status(NODE; CyRy _y_y _y_y_3s5s_),
initialize_ node_status(NODE,C, R, _, _y_yunchanged, breadth, S, w
)y, fail .
initialize_status_part .

initialise :-
initialize .
initialize :~-

kill{sum), kill(c_product), initialize_status,
initialize_contreol .

_..

A - IR

-

set_ranaocm(S7453217), set_magnifier; set_mcde .

~sek_magnifier_i= ——e
: back, write("Enter simulation magnifier (1 ... 1200202):"),
i nl, read(R), check_magnifier_range(R), kill(magnifier),

addclause (magnifier(R)) .

set_mode :-

>»_____sgt=input_mode4.

: check_magnifier_range(R) :-
number (R), R)=1, R({loe2223 .
check_magnifier_range(R) -
write ("### Magnifier ("), write(R), write(")"),
write("is not number or not in the range!"), nl, nl, /,
fail .

set_input_mcode :1-
node_structure(X, logic("terninal "), _,_),
node_status(X,commected, _; _y_y_1_y_1-1_)y ask_input_mode (X),
fail . :
set_input_mode .

ask_input_moede (NODE) :- s
ask_check_mode (NODE, Ry HL) ,
change_node_control_for (NODE, _, _,_,RsHL,), 7/ .

check_input_mode (m) .
check_input_mode (f) .
check_input_mode(r) .
check_input_made (X} -
write("### "), write(X), write(" undefined!"), nl,
write("Enter { mey foy, or r., ")y nl, /, fail .

ask_check_mode (NODE, Ry HL.) =~
write (NODE), wl, back, read(R), check_input_mcde(R), /,
ask_h1 (R, HL) .

initialize_system :-
initialize, check_status, check_cnt, envirorment .

initialize_suspend_system :-
kill(sum), kill(c_product), initialize_cstatus,
initialize_contrel (_,connect, _._,r,_,_), check_status,
check_cwt, envirconment .

ask_hl(r,_) .
ask_hl(m,_) . ..
ask_hl (fyHL) - N
write("Enter { h.y or 1., >.")y nl, back, read(HL),
check_h1l (HL) .

check_hl (h) .
check_h1(l) .
check_h1(X) - .
write ("###% "), write(X), write(" undefined!"), nl,
write("Enter { hey or l., > "), nl, /, fail .

set_terminal_data :~-
rnode_structure (X, logic("terninal "), ,_), set_status_data(X),
fail .
set_terminal_data .
set_sté;;;_nata(NDDE) -
node_status (NODE, connected, _y _y sy sy e Vs

vimRE cenbaslINADE. L T e)

A~ 19

—— - =

- s—

o —— ——— s,

1

roce_Type (NODE, _, 4 _y_y g EFPOr_rateizaly gy _/y
set_data (NODE, ER, IM,HL), / .

, set_data(NODE, ER, my HL) .
! set_data(NODE, ER, f,HL) :—

get_fixed_data(HL,D),
i change_ncde_status_for (NODE, _, _, t,D, t,changed, _, _,_) .
| set_data (NODE, ER, v+, HL) 2=

,_____geti:andnmiBNl+.check if_set(RN,ER,D),
change_node_status_for (NODE, _, _, t, D, t, changed, _,_,_? .

t@ -
i set_random(5749317), t1 .

check_if_set (RN, ER, D) :-

magnify_rate (RN, MRN), ER)=MRN, pet_fixed_data(h,D) .
check_if_set (RN,ER,D) :-—

magnify_rate (RN, MRN), ER(MRN, get_fixed_data(l,D) .

mapnify_rate (RN, MRN) -
magni fier(M), div(RN;M, MRN) .

get_error_rate(ER,ER1) :- .
magnifier(M), calculate_error_rate(M,ER,ER1) .

pet_fixed_data(h, 108) .
get_fixed_data(l,@) .

. get_random(RN) :-
: random (R, @, 993939), rem(R, 10029, RR), times(RR, 100,RN) .

t1 :-
get_random(RN), write_random(RN), cutspaces(a), t1 .

write_random(RN) :—

RN (=9, write("20223"), write(RN) .
write_random(RN) :—

RN> 3, RN(=99, write("2028"), write(RN) .
write_random(RN) :—

RN}» 99, RN (=999, write("Q2Q2"), write(RN) .
write_random(RN) :-—

RN)Y S99, RN(=9399, write("08"), write(RN) .
write_random(RN) :-

RN)> 99393, RN<(=93999, write("@"), write(RN) .
write_random(RN) -

RN)> 99999, RN(=9399993, write(RN) .

execute (NDODE) :- -
' set_terminal_data, 11ks(STATE), hlks(STATE,NODE) .

maind (NODE) :-
initialize_system, execute(NODE) .

mainl (NODE) :-
initialize_system, execute_locop (NODE) .

execute_loop (NODE) :-
initialize_status, set_terminal_data, 1lks(STATE),
hlks (STATE, NODE), execute_loop (NODE) .

error_rate -
node_structure (X, lagic("terminal™), _,), set_error_rate(X),

- fail .
error_rate .

wpmdn mgeimmye smmea YD . .

write(X), nl, back, read(R), check_error_rate(R),
change_riode_type_for (X, _, sy s _yerror_rate(R), _,

Yy

/ .

’ eheck_error_rate(R) =

: number (R), R)=Q, R{(=999939%9 .
check _error_rate(R) -

! number (R),

write ("### Error-rate must be in the range(® ... 3939939)'!'™M),

e nl, write("Enten(@. +...999998.):1"), nl, /, fail .

check_error_rate(R) :-—

string(R), write("### Error-rate must be number!"), nl,

write("Enter(d. ... 9993999.):"), nl, /, fail .
check_ervror_rate(R) . ’

A -2

=S —Nr—ar—ar-=

f

'*i ri - L _ zl. - i i

$ ty llks.log

module unnamed_moduler- - Appendix A.2 LLKS Source Listings

/nseject*/

body.

/% */
/% Low Level Knowledge based System %/

RPL " */

check_evidence (and, [1) .
check_evidence (ard, THEADITARIL]) -
node_structure (HEAD, logic(LOGIC), evidence(EVIDENCE_LIST),),
/y .
(equal ("terminal", LOGIC) jnode_status(HEAD, Cy Ay _y _y 5 vy s o
), equal (C, suspended) jnode_status(HEAD, _, _y STATE, _y _y _s
,_._).str;ng(STnTE)), check_evidence (ard, TARIL) .
check_evidence (or, 1) :-
fail .
check_evidence(or, LHEAD I TRILI) :-
node_struct ure (HEAD, logic (LOGIC), evidence (EVIDENCE_LIST),),
((equal(“termznal" LOGIC) jnode_status(HEAD, Cy Ry ¢ _y vy v v —
R I equal(C,suspended)-node status (HEAD, _, _; STATE, _, _
+ 11 _v_)ystring(STATE))
check_evidence(or, TRIL)) .
check_eviderca("not ", LHEADI TAIL1) :-
node_structure (HEAD, logic(LOGIC), evidence (EVIDENCE_LIST),),
equal ("terminal ", LOGIC) §

node_status (HEAD, _y _, STATE,y _y _y_y 1 =1)y String(STATE);

node_status (HEAD, C.Q._ Yot Y oty)y 2qual (G, suspended) .
check_evzden:e("term;nal" £3) =z :

fail .

member (ITEM, LITEMITAILI) .
member (ITEM, THEADI TAILI) -
ITEM=/=HEAD, member(ITEM, TRIL) .

check_evidence_change (L1) -
/, fail .
check_evidence_change(LE_HIE_T1) :-
(rnode_status(E_H, _, _,STATE; _y .y Xy _y_y)y 5tring (STATE)), /,
tequal (X, changed), /, / jcheck_evidence_change(E_T)), /3
node_structure(E_H, logic(LOGIC), _,),
(equal (LOGIC, "terminal'), /, /3
check_evidence_change(E_T)) .

decide_propagatable_node(X, NODE_LIST) :-
node_structure (X, _,evidence(E_LIST),), member(X,NODE_LIST),
check_evidence_change (E_LIST) . :

find_propagatable_node (NODE_LIST,P_NODE_LIST) :-—
bagef (X,decide_propagative_nade(X,NODE_LIST),P_NODE_LIST) .
find_propagatable_ncde (NODE_LIST, [1) .

decide_executable_node (NAME) :-
node structure(NﬁME,loglc(LOGIE),evzdence(EVIDENCE LIST) Dy
node_status(NAME, C, Ay _y _s s vy o109 equal(C,connected),
check_evidence (LOGIC, EVIDENCE_LIST) .

remove_suspended_evidence (E_LIST, EVIDENCE_LIST) :-
bagof (X, check_susperded_arg (X, E_LIST), EVIDENCE_LIST) .

check_suspended_arg (X,E_LIST) -
ricge_status (X, Cy Ay _s _y s
equal (C, connected) .

)y member(X,E_LIST),

-3 = e -

® -

Tino_execuvanie_nooe \NUpe_wiait) ¢
setof (NAME, decide_executive_ncde (NAME), NODE_LIST) .

make_list([l,LIST,LIST) .
" make_list (EHITI, X_LIST,R_LIST) :=- .
node_structure(H, _, _,_), quick_bagef(H,X_LIST),
shift_cne(X_LIST,S_LIST), make_list(T,S5_LIST,R_LIST),

1 insert_list (H,R_LIST)

;______make=ListJJ;X_LIST,R_LISIlu. _ -
!

insert_list (X, [X1) .

insert_list (X, [XIT1) .

shift_cre(LO_HIO_TI, LY,0_HIO_T1) .
shift_one(lLi,L2) -
reverse_list (L1,L2) .

quick_bapaof (X, [X1) =~
decide_executable_node(X) .

auick_bagef (X, LXI1TI) :-
decide_executable_ricde (X) .

make_structure_list(LIST) :~—
satof (X, make_str_list (X),LIST), writel(LIST), nl,

make_1list (LIST,L,R), write(R), nl, nl .

test -
make_structure_list (LIST) .

make_str_list (NODE) :-
node_structure (NODE, _, _,_) .

propagate := .
check_status, display_input, propagation, reportl .

prooapation -

Ffind_executable_ricde (NODE_LIST),
find_propagatable_ncde (NODE_LIST, P_NODE_LIST),
change_non_propagatable (NODE_LIST, P_NODE_LIST),
propagate_once (P_NODE_LIST), chanpe_terminal_status,
change_all_suspended_state, .
find_executable_node (NEXT_NODE_LIST),

(equal (NODE_LIST,NEXT_NODE_LIST), /, /%
prepagate_loop (NEXT_NODE_LIST)) .

propagate_loep(NODE_LIST) =
find_propagatable_node (NODE_LIST, P_NODE_LIST),
change_non_propagatable (NODE_LIST, P_NODE_LIST),
propapate_once(P_NODE_LIST), charnge_terminal_status,
find_executable_riede (NEXT_NODE_LIST),
(equal (NODE_LIST, NEXT_NODE_LIST), /, /3%
propagate_leop (NEXT_NODE_LIST)) .

write_for_test (f{l1) :-

nl; nl .
write_for_test (LHIT1) -
write(" "), write(H), write_for_test(T) .

change_non_prapagatable([],P_NODE_LIST) .
change_ron_oropagatable (IN_HIN_T1,P_NODE_LIST) :=-
member (N_H,; P_NODE_LIST),
chanpe_nor_prapagatable (N_T, P_NODE_LISTY), /3
fdelclause (node_status(N_H,A, B, C.D.E,F, G, H, 1)),
addclause (node_status (N_H, A, B, C,; D, E, uncharnged, G,H, 1)},
chanoe_non_propagatable (N_T,RP_NODE_LIST) .

A - 25

change_terminali_status :i—
node_ status(x A, B,C, D, Eychanged, _, _,_), chanpe_status_c(X),
fa3l . - :

{ charge_terminal status .

charpe_all_suspended_state :-
node_structure(X, logic(LOSIC),evidence (E_LIST),),
find_susperded_by_evidence (X, LOGIC,E_LIST?,
change_node_status_far(Xy _y s —rws _sunchanped, y oy s fail .

chanpe_all_suspended_state .

find_suspehded_by_evidence(X,LDBIC,E_LIST) il
ne(LOGIC, "terminal®), remove_the_evidences(E_LIST,NE_LIST), /,
length (NE_LIST,®), 7/ .

change_status_c(NODE) :-
riode_structure(NODE, lcgic("terminal™), _,_),
fdeleclause (node_status (NODE, A, B,C, D, E, Fy G, H, 1)),
addelause (node_status (NODE, A, B, C, D, Ey unchanged, G,H, I?) .
chanpe_status_c (NODE) .

delete_db :-—
rnode_status(NODE, _y _y s s or iy v)y
node_structure (NODE, _y_y _?,
fdelclause (node status(NDDE,_ et ettty v)y Fail
delete_db . .

reportl -
rnode_structure (NODE, logic(LOGIC), _, _),
check_and_write (NODE, LOGIC) .
repartl .

check_and_write (NODE, LOGIC) :-
(equal (and, LOBIC) jequal (or, LOGIC) jequal ("net", LOGIC)),
node_status (NODE, _, _y t4POST, _4 e v 1)
riode_type (NODE, STATE, _y_y 1 st v)y
write_state (NODE, STATE, POST), 7/, fail .

display_input :-
node_status (NODE, _; _y STATE; Py s 911 0
write_state (NODE, STATE,P), fail .
display_input .

delete_Kkb .

propagate_once(L1) .
propapate_once (CNODE_HINDODE_T1) -
node_structure (NODE H,log:c(LDBIC) eviderce (EVIDENCE _LISTY),),
propagate_one_level(LDGIC EVIDENCE_LIST,NODE_H),
propapate_once (NODE_T) .

pet_state(ard, [1) .
get_state (and, LEVIDENCE_HIEVIDENCE_T1) :-
(node_status(EVIDENCE_H, _, .y TRUE_OR_FAIL,PRIOR,LS, LN, _, _,_),
string (TRUE_OR_FAIL) jnode_structure (EVIDENCE_H, logic(
"terminal"), evidence(Ll),), node_status (EVIDENCE_H,
suspended, _y Ly oy _1 oy =3 3) $node_structure (EVIDENCE_H, lopic
("terminal™),evidence(L1),), query_the_user(EVIDENCE_H,
USER_STATE, CERTAINTY),, make_m_node_data (EVIDENCE_H,
USER_STATE, CERTAINTY)), get_state(and, EVIDENCE_T) .
get_statelor, L1 .
get_state("not", LEVIDENCE]) :=-
rode_status (EVIDENCE, _, _, TRUE_OR_FAIL,FRIOR, LSy LNy _y s)1
string (TRUE_OR_FRIL) ;
rizde_structure (EVIDENCE, logic(Yterqinal ™), evidernce (L1),),

v een mEgEas ITUTNENME curomavmos ANy

A- 24

\

=y

L]

- -

-

]
/

- A wm o

~

,d)

13

pos

node_structure (EVIDENCE, logic("termiral "), evidence (1),),
cuery_the_user(EVIDENCE, USER_STATE, CERTARINTY),

[’——~——nAmake m_ node _data (EVIDENCE, USER_STATE, CERTAINTY) 35—
i node struﬁture(EVIDENCE,logxc()yevidence(_),_) .
| pet_state(or, LEVIDENCE_HIEVIDENCE_TI) :=
| {node_status (EVIDENCE_H, _, _, TRUE_DR_FAIL, PRIOR, LS, LNy _, _y_),
|
!

string (TRUE_OR_FAIL) jnode_structure (EVIDENCE_H, logie(
"termxnal"),evzdence(EJ),)y node_status (EVIDENCE_H,
N suspended, .. s s v _Yinode_struct ure (EVIDENCE_H, logic
: ("terminal"),evidence(L]),_),query_the_user (EVIDENCE_H,
) USER_STRTE,CERTRINTY),make_m_node_data(EVIDENCE_H,
; USER_STATE, CERTRINTY) jnode_structure (EVIDENCE_H, logic(_),
E evidence(_),_)), pget_state(or,EVIDENCE_T) .
propagate_one_level (and, EVIDENCE_LIST,NODE) :-
get_state(and, EVIDENCE_LIST), propagate_and(NODE) .
propagate_one_level (or, EVIDENCE_LIST,NDODE) :=
get_state(or, EVIDENCE_LIST), propapate_or (NODE) .
propagate_one_level ("not", EVIDENCE_LIST,NODE) :=-
" npet_state("not", EVIDENCE_LIST), propagate_riot (NODE) .

ouery_the_user (NODE_NAME, t, CERTRINTY), - .
gpet_description(NODE_NAME, DESCRI_LIST), write(NDDE_NAME), n1il,
write("Enter probability for s$""),

H write_description(DESCRI_LIST), write("$":;"), nl,

read (CERTAINTY), wl .

get_descoription (NODE, DESCRIPTION) ==

node explanat:on(NDDE,_,_,_,_,_,descrzptlon(DESCRIPTIDN)).
get_description(NODE, L" ? "]) .

write_description(fl) .
write_description(I[D_HID_T1) :-
write(D_H), write_description(D_T) .

propagate_not (NODE) :-
rode_structure (NDDE, _, evidence (EVIDENCE_LIST),),
remove_the_evidences (EVIDENCE_LIST,E_LIST),
length(E_LIST,L), L)@, reverse(EVIDENCE_LIST, TRUE_OR_FAIL),
caloulate_not_probability (NODE, TRUE_DR_FAIL, POST_P, NEW_LS,
NEW_LN),
change_node_status (NODE, TRUE_OR_FAIL, POST_P, NEW_LS, NEW_LN_,
1) .
propanate_not (NODE) :-
node_status (NODE, _, _,STATE, _y_s_y_y—s)y String(STATE);
write_sUSpended_all(NDDE)
query_the_user (NODE, STATE, CERTAINTY),
make_m_rode_data (NDDE, STATE, CERTAINTY) .

change_node_status (NODE, STATE, Py sy oy _y_) =
node status(NDDE,C,R,ST PRy _s s —y_91_2s sString(sST),
equal (STATE, ST), number(PR), equal (P,PR),
change_node_status_for (NODE, C, A, STATE, P, _, unchanged, _, _,_) .
change_node_status (NODE, STATE, P, TS, TPy _y _y) :—
node _status (NODE, Cy Ay _y _y 9 v et)y
charge_rode_status_for (NODE, C, A, STATE, &, TS, charged, _, _,_) .
change_node_ status(NDDE STRTE Py TSy TRy Ly v) &-
write (T ")y write(" ("), write(NODE), write(")"),
write(" status is not exist."), nl .

calculate_and_probability (NODE,E_LIST, TRUE_OR FRIL,PDST P,
node_type (NODE, ,denendency(D),_,_,_,_,_ 1),
(less (@, D), calculate_and_positive(E_LIST,D,ROST_F), /3%
calculate_andnnegatxve(E_LIST D, DDSTnp)) .

T

BT I e T B N AT L e Sl e e T -

—— ——a

e R——

——

-l -

)

-

OO _ Sy e NGy CEREPNORNCY \W) y gy 39y _3_71
(less (@, D), calculate_or_peositive(E_LIST,D,P), /3

/_______..calculéte ar negat;ve(E LIST,D,P)) .f"__ e

|
A

calculate_or_positive(E_LIST,DyP) := -
length(E_LIST,L), or_independence(E_LIST,L,Cl),
max_or_dependence (E_LIST,C2),
resulting_probability(D,C1,C2,P, positive) .

/'calculate_or_negative(E_LIST,D,P) -

i
H

1

H
i

length(E_LIST,L), or_irdependence(E_LIST,L,Cl),
min_or_dependence(E_LIST,C3),
resulting_probability(D,C1,C3, P,negative) .

calculate_and_positive(E_LIST,D,P) :—
and_independence (E_LIST,C1l), max_and_dependence(E_LIST,C2),
resulting_probability(D,C1,C2,P, positive) .

calculate_and_nepative(E_LIST,D,RP) :-
and_indeperderce (E_LIST,Cl), min_and_dependence(E_LIST,C3),
resulting_probability(D,Ct,C3, Pynegative) .

reverse (INODEJ, t) 31—
riode_status (NODE, ,_,f,i,_,_,_,_,_) .
reverse ([NODE], f) - '
node_status(NODE, _y s by _yvsosar) »

calculate_rot_probability (NODE, T_OR_F, POST_P, _,_) -
node_structure(NDDE,_,evidenca(EEVIDENCE Hi_3),
node_status (EVIDENCE_H, _ ,_,DRDBQBILITY,_,_,_,
minus(1@w,DRDBQBILITY,DDST_P) .

)y

propagate_or (NODE) :~
node structure(NDDE, _1evidence (EVIDENCE_LIST),),
remove_the_evidences(EVIDENCE_LIST,E_LIST),
langth(E_LIST, L), L)@, check_cre_true(E_LIST, TRUE_OR_FAIL),
calculate_or_probability (NODE,E_LIST, TRUE_OR_FAIL, P, NS, NN),
change_riade_status (NODE, TRUE_OR_FARIL,P,NS NN, ,_,_) .
propagate_or (NODE) :-
node_status (NODE, _, _,STATE, _y_y_y_y_s)y String(STATE);
write_suspended_all (NODE),
query_the_user (NODE, STATE, CERTAINTY),
make_m_node_data (NODE, STATE, CERTAINTY) .

write_susperided_all (NODE) :-
write("The rode ("), write(NODE), write(") is not terminal."),
nl, write("But all the evidences of it "),
write (" have been suspending by the SUSFEND command. "), nl,
nl .

check_one_true(lfl,t) -

fail .
check_one_true (LEVIDENCE_HIEVIDENCE_T1,t) :-

node status (EVIDENCE H,_,_,STQTE,_,; 111 -)y 2qual (ETATE, t) 3
check_one_true(EVIDENCE_T) . : :
check_one_true(_, f) .

propagate_and (NODE) :=—

- nede_structure (NODE, _, evidence (EVIDENCE_LIST),),
remove_the_evidences (EVIDENCE_LIST,E_LIST),
length(E_LIST,L), L)@, check_all_true(E_LIST,TRUE_OR_FAIL),
calculate_and_probability (NODE,E_LIST, TRUE_OR_FAIL, F, NS, NN),

- change_node_status (NODE, TRUE_OR_FAIL, P, NS, NN,_,_,) .
Dramauate and (NODE) -
. node_status (NODE, _, _,STATE, _, _y_s 3201 sString(STATE);
write cumnewcded all (NADE) .

A -2

query_tne_user (NODE, STATE, CERTAINTY),
make_m_vode_data(NODE, STRATE, CERTRINTY) .

check_all_true(Cl,t) .
check_all_trus(LEVIDENCE_HIEVIDENCE_T1,t) :=- :
node_status (EVIDENCE _H, _ ,STRTE,_ —t vty)y €qual (STRTE, t),
check_all_true(EVIDENCE_T t) .
check_all_true(_,f) .

—

3

-

e

— B B

-

make_m_node_data (NODE, USER_STRTE, PROBRBILITY) :=-
caleulate probab;lxty(NDDE,USER STRTE, INT_STATE, PROBABILITY,
INT_PRO),
change_node_status (NODE, INT_STARTE, INT_PRO, USER_STATE,
PRDBQBILITY,_,_,_) .
calculate_probability (NODE, USER_STARTE, INT_STRTE, PROBARILITY,
INT_PRO) :-
equal (USER_STRTE, t),
(less (PROBABILITY, @),
(change_state (USER_STATE, INT_STRTE}, minus (100,
PROEBABILITY, INT_PRO)), /3
unchanpe_state (USER_STATE, INT_STRTE),,
INT_PRO is PROBABILITY) . °
caleulate_probability (NODE, USER_STRTE, INT_STRTE, PROBABILITY,
INT_PRO) :-
equal (USER_STATE, f),
(less(PRDBRBILITY),
(ehange_ state(USER _STRTE, INT_ STRTE),m:nus(i@@,
PROBABILITY, INT_PRO)), /3
unchange_state(USER_STRTE,INT_STQTE),
INT_PRO is PROBARBILITY) .

change_state(t, f) .
change_state(f,t) .

uncharge_state(t,t) .
unchange_state(f, f) .

disp_pro s~
c_product (X)), write(" c_product ("), write(X), write(")"), nl,
fail .
disp_pro .

disp_max :-
maximum(X), write(" maximum("), write(X), write(")"), nl,
fail .
disp_max .

write_state (NODE, STRTE, PROBERBILITY) :=
string (STATE), write("The "), write(NODE), write(" is "),
write(STATE), write(" with proberbility ("),
write_probability_only(PROBERBILITY), write(")"),
write("."), nl, 7/ .
write_state(NODE,STATE, PROBERBILITY) :-
I

display_infererice_net (NODE,N1,N2) -
depth_first_serch(NODE, N1i,N2) .
display_inference_net (NODE, N1,N2) .

depth_first_serch (NODE,Ni,N2) :-
node structure (NODE, logic(LOBIC), ev:dence(EVIDENCE)),
R addclause(route(VDDE)), bagof(N,rmute(N),INDENTY_LIST),
length (INDENTY_LIST,LENGTH),
check_ranpe (LENGTH, N1, N2, WRITE),

sV LB TTE gwikm) fekRiFR fwriamiead et ENGTR, N

A =27

R A B -

A

...‘

;e -

I

e _‘——-._ s,

NEW_INDENTY) ywrate_rnew_inoenty (NEW_INDENTY), write_tree(
NODE), /)y /3/)y /7y .
check_terminal (NODE, EVIDENCE, NEW_EVIDENCE, LENGTH, N2), .
f decide_a_way (NDDE, NEW_EVIDENCE, N1, N2) .

write_new_indenty (NEW_INDENTY) :—
times (3, NEW_INDENTY, PRODUCT), outspaces (FRODUCT) .

" check_range(LENGTH,Ni,all,write) :—

! LENGTH) =Nt .
check_range (LENGTH, N1, N2, write) -

! LENGTH) =N1, LENGTH({(=N2 .,

. check_ranne (LENGTH, N1, N2, not_write) .

shift_indentation(LENGTH, N1, NEW_INDENTY) :-
minus (LENGTH, N1, NEW_INDENTY) .

write_tree(NODE) :-
node_structure (NODE, logic(LOGIC), evidence (LEVIDENCE_HM1
EVIDENCE_TI),), gpet_dependence (NODE, DERFENDENCE),
write_marKk (NODE), write(NODE), write(" "), write("("),
write(LOGIC), .
write_evidence_numberﬁEEVIDENCE_HIEVIDENCE_TJ), write(")"),
write(" "), write_dependence (DEFENDENCE),
get_true_fail (NODE, TF),
(equal (TF, t),write_probability(NODE),/3/), nl .
write_tree (NODE) :- ’
node_structure(NODE, logic("terminal”), evidence (L),),
write_mark(NODE), write(NODE), write(" "), write(“("),
write('terminal™), write(")"), write_probability(NODE), nl .

get_true_fail (NODE,TF) -

get_true_fail (NODE, nothing) .

write_probability (NODE) :-
rninde_status (NODE, _, _y _s PROy _y_y_y_y_)y /7y wWrite(" "),
write("pP="), pet_prob_range (FPRD, W_TYFE),
write_prob(PRD, W_TYPE) .
write_probability(NODE) :z2-

write_decgendence (DEPENDENCE) :-
write("D="), get_depend_range (DERENDENCE,D_TYFE),
write_depend (DEPENDENCE, D_TYFE) .

write_depend(_,ninus_ocne) -
write("-1")
write_depend(_, zerc) :-
write("a")
write_depend(_,ten) :-
write("i")
write_depend (D, ninus_9_1) :—
times(D,-1,N), write("."), write(N) .
write_denend (D, one_3) =
write(". "), write(D) .

pet_depend_range (=10, ninus_cne) .
get_depend_ranpe(2, zero) .
pet_depend_ranpe(id, ten) .
get_devpend_range(D,nivwus_9_1) :-

D{(a, D ~1Q .
pet_depend_range(D,orve_9) -

D), D12 .
net_degend_rannpe (D, d_range_evrar) -

P WAL T S Y ek (Y HaanvAorra warmee o 1Y .t

A - 2%

Wita wes ry wWiaveE \Me gy

write(" is must be in the rarpe -10...+10.")
fﬁwrite_evidence_number(E_Lfg?;';:Tm. oot T mm e
length(E_LIST,N), write_number(N) .

¢ write_number(®) .
write_number(N) :-—
. write(t, "), write(N) .

- get_dependence (NODE,D) :~
s node_type (NODE, _, deperdency (D), s _yorvyyor) -
get_dependence (NODE, ?) .

del_ncde_typ :-
riode_type(_, s a1y et wrorarn)y

9
fdeleclause (node_type(_, _y vy)0y Fail .
del_ncode_typ .

write_mark (NODE) :-~
node_status (NODE, _, _,STATE, Py _y _y_y 1)y sString(STATE),
equal (STATE, t), decide_true (NODE, STATE,F), /, write("x ") |
write_mark (NODE) - :)
node_status (NDDE, Cy _y Ly s vty 1)y SEring(0),
equal (C, suspended), 7/, write('"s ") ,
write_mark (NODE) -
write(" "), /.

decide_true (NODE, STATE,P) 2-
noede_type (NODE, 4y _y 3y vy v_soy)y threshold(TH),

adjust (Fy PN), PN)=TH, / .
adjgust (P R) .

disp_route :-—
route (X), write("route =) "); write(X), nl, fail .
disp_route .

check_terminal (NODE, EVIDENCE, EVIDENCE, LENGTH, N2) :—
check_fail (LENGTH, N2),
node_strueture (NODE, logic{("terminal"), evidence(ll),),
fdelclause (route(NODE)), fail .
check_terminal (NODE, EVIDENCE, C1, LENGTH, N2) :-
number (N2), LENGTH=:=N&, fdelclause (route(NODE)), fail .
check_terminal (NODE, E, E, LENGTH, N&) :-
check_fail (LENGTH, N2),
node_structure (NDDE, logic (LOGIC), evidence (EVIDENCE),),
(equal (LOGIC, "nat") ;
equal (LOGIC, and) ;
equal (LOGIC, or)) .

check_fail (LENGTH, N&) :=-

number (N2), LENGTH=:=N2, fail .
check_fail (LENGTH, N2) :-

number (N2), LENGTHIN2 .
check _fail (LENGTH, N&) =

number (N2), LENGTH (N2 .
check_fail (LENGTH,al1l1) .

decide_a_way(NODE, L1, N1, N&) -
fdelclause (route (NODE)), fail .,

decide_a_way (NODE, CEVIDENCE_HIEVIDENCE_T1,N1,N2) :-

.- denth_serch (NODE, EVIDENCE _H, N1, N2) 3
decide_a_way (NODE, EVIDENCE_T, N1, N2} .

Aonth gaven (NDDE, EVIRENCE H, N1 N2Y 2=

-,

ey

‘

LB

- e

- e

—

- e A

:
i
i
!

/_disn_tneeLNDDE.N)g;—

Ly LB RVH_ T A0S _SErCT BV IMENLE_My N1y NE)) .

Leub(0. i . ——— ..
Xy 7/ &

disp_tree(NODE) :-—-
kill{(route), display_inference_net (NODE, 1,all) .

kill (route), display_inference_net (NODE, 1,N) .,

disp_tree(NODE,N1,N2) :-
kill{route), display_infererce_net (NODE,N1,N2) .

and_independence (EVIDENCE_LIST,AND_C1) :=
addclause(c_product(1)), multiply(EVIDENCE_LIST),
divide (EVIDENCE_LIST,AND_Ci), fdelclausel{c_product(_)) .

multiply(Ll) .
multiply (LEVIDENCE_HIEVIDENCE_TI) ==
c_product (X), pet_probability_er (EVIDENCE_H, PROBARILITY),
times (FROBARILITY, X, PRODUCT), fdelclause(c_product (X)),
addclause {c_product (PRODUCT)), " multiply(EVIDENCE_T) .

or_independence (EVIDENCE_LIST,2,0R_Ci) :-
addolause (sum(@)), addition(EVIDENCE_LIST), sum(SuUM),
fdelclause (sum(SUM)), addclause(c_product(l)),
multiply (EVIDENCE_LIST), divide(EVIDENCE_LIST,PRODUCT),
fdelclause (c_product (_)), minus(SUM,PRODUCT,OR_C1) .
or_independence (EVIDENCE_LIST, 3,0R_C1) =-
addclause(sum(@)), addition(EVIDENCE_LIST), sum(P),
fdelclause (sum(P)), addclause(c_product(l1)),
multiply (EVIDENCE_LIST), divide(EVIDENCE_LIST,FPRF),
fdelclause(c_product (_)),
separate_arg (EVIDENCE_LIST, LE_A,E_B,E_C1),
addelause (o_product (1)), multiply(LE_RA,E_E1),
divide(LE_RA,E_BEJ,FPAR), fdelclause(c_product(_)),
addclause(c_product (1)), multiply(L{E_A,E_CI1),
divide(LE_A,E_CJ,PAC), fdelclause(e_product(_)),
addelause(c_product (1)), multiply(LE_B,E_C1),
divide([E_R,E_C1,PBC), fdelclause(c_product{(_)),
plus (P, PPP, X}, minus (X, PAR, X1), mirnus (X1, PAC, X2),
minus (X2, PEC, OR_C1) .
or_independence (EVIDENCE_LIST, 1,0R_C1) :—
one_evidence_prao(EVIDENCE_LIST,0OR_CI1) .

separate_arg(LE_A,E_ByE_C1,LE_AE_B,E_C1) .

ane _evidence pro{[EVIDENCEl,OR_C1) :— "

divide (EVIDENCE_LIST, RESULT) :-—
length (EVIDENCE_LIST, LENGTH), minus(LENGTH, 1,L),
power (108, L, X}, c_product(Y), div(Y, X, RESULT) .

max_or_dependence (EVIDENCE_LIST,0OR_C2) :—
addclause (maximum(®)), find_max(EVIDENCE_LIST), . |
maximum(OR_C2), fdeleclause(maximum(X)) . |
!

Find_max(LI1) .
find_max (CEVIDENCE_HIEVIDENCE_T1) :—
maximum (MAX_PRO), pet_probability_or (EVIDENCE_H, FROERRILITY),
(less (FROBARILITY, MAX_PRO), /, /; Ffdelclause (maximum (MAX_FRO))
yaddelause (maximum(FROBARILITY))), find_max(EVIDENCE_T) .

smb swanahilitw ow (SUIDENGE U, ORARARTL TTYY 1 -

=

S e GW AR Sh AR DY aS OB WR O N W AD & W

-~

s —

-

. e i r

~

-

-

noge_Status (BEVIUENLE_M, _ -,_,HQLUHHlLLTY,_ JETT A
get_probability_or(EVIDENCE_H,Q) .

max_and_deperdence (EVIDENCE_LIST, AND_C2) :—
addelause (mininum(i@d)), Find_mnin(EVIDENCE_LIST),
minimum(AND_C2), fdelclause(minimum{X)) .

min_or_dependence(EVIDENCE_LIST,OR_C3) -
>___*_add=1auseisumiﬂlL;_add;&AoniEVIDENCE LIST), sum(SUM),

fdelelause (sum(SUM)), less(SUM, 1@@), OR_C3 is SUM, /;
OR_C3 is 100 .

addition(L]) .
addition(LEVIDENCE_HIEVIDENCE_TI1) -
sum(SUM), pet_probability_or(EVIDENCE_H, PROBARILITY),
plus (SUM, PROBABILITY, NEW_SUM), fdelclause(sum(SUM)),
addelause (sum (NEW_SUM)), addition(EVIDENCE_T) .

disp_sum -
sum(X), write(" sum("), write(X), write(")"), nl, fail .
disp_sum . :

Find_min(L3) .
fFind_min({EVIDENCE_H!EVIDENCE_.T1) :-
minimum (MIN_PRO), ’
rode status(EVIDENCE Hy _y g e PROBARILITY, .y sy)
(less(MIN_DRD, RDBRBILITY)./ /i fdelelause (minimum (MIN_FRO))
,addclause(m;nlmum(PRDBRBILITY))), fznd_mxn(EVIDENDE_T)

min_and_dependence (EVIDENCE_LIST, AND_C3) &~
addelause(sum()), addition(EVIDENCE_LIST), sum(SUM),
fdelclause(sum(X)), length(EVIDENCE_LIST,LENGTH),
minus (LENGTH, 1,L),. times(i@@,L,Y), minus(SUM,Y, Z),
less(@,Z), AND_C3 is Z, /3
AND_C3 is @ .

resulting_probability(D,C1,C2,P, positive) -
times(D,C2, X)), mirus(id,D,Y), times(Cl,Y,2), plus(X,Z,X1),
div(Xi,10,P) .
resulting_probability(D,C1,C3,P, negative) :-

times(D, -1, X2), times(X2,C3,X)y minus(1Q, X2,VY), times(CTl,Y,2),

plus(X,Z, X1), div(X1,18,P) .

display_expression(NODE) :-
. addelause(ori_riode (NODE)), addeclause(ex_iist(firitl)),
depth_first_ex (NODE) .
display_expression(NODE) :-~
fdelclause (ori_rnode (X)), fdelclause(ex_list(X)) .
display_expression{NODE) :-— '
del_ex_1 .

check_explainable (NODE) :-
node_structure (NODE, _, _,_), ori_nocde (0_NODE),
(equal (NODE, O_NODE), /, /3
fdelclause (ex_route (NODE)), fail) .

del_ori :~ .
ori_rode(X), fdelclause(ori_ncde(X)), fail .
del_ori .

del_ex_r :=-
ex_route(X), fdelclause(ex_rcoute(X)), fail .
del_ex_r .

del_ex_1 :- .
v Ti=e (Y)Y Fdalmniapgesfoav T{iet YY), Fail

A- 3

s

RO R R TR A O e AR R W W W W S

del_ex_l .

;,dﬁl_gx Ho ——

del_ex_r, del_ex_l, del_ori .,

!
. reverse_list(L,R) -
rev@(L, [I,R) .

' eev@(L1, ACCLM, ACCUM). . .

revi2 (LHERDI TRILJ, ACCUM, RESULT) =

reva@ (TAIL, LHEAD|ACCUM], RESULT) .

decide_ex_way (NODE, [1) ==
fdelelause (ex_raute (NODE)),

write("™)"), fail .

decide_ex_way (NODE, [EVIDENCE_HIEVIDENCE_TJ) :-

depth_ex_serch (NODE, EVIDENC

E_H) 3

decide_ex_way (NODE, EVIDENCE_T) .

depth_ex_serch (NODE, EVIDENCE_H)
cut (depth_first_ex (EVIDENCE

depth_firast _ex (NODE) - .
node_structure (NODE, logic(L
addclause (ex_route (NODE))
reverse_list (EX_LIST,R_LI
node_structure (S_NODE, lon
fdeleclause (ex_list (OLD)),
length(OLD,L0O), length(EX

_HY) .

DGIC), evidernce (EVIDENCE), _),

y» bagof(N, ex_raute(N), EX_LIST),

ST), get_secornd(R_LIST,S_NODE),
ie(S_LOGIC), _,_), ex_list(OLD),
adtclause(ex_list (EX_LIST)),

_LIST,LN), ori_node(DRI_NODE),

(equal(LO,LN), /,/5less{LO,LN), (Wwrite (" ("),write(S_LOGIC)),
/37), .
(equal (explainable, explairable), (write(" "), write(NODE)),/;

/), check_explainable

(NODE) ,

decide_ex_way (NODE, EVIDENCE) .

disp_exp(NODE) -
’ display_expression(NODRE) .

pet_second (R_LIST, S_NODE) :~
length (R_LIST, 1), ori_node(
get_second(L_, S_NODEI _1,S_NODE)

read_pro (NODE_NAME, TRUE_DR_FAIL)
form_list (NDDE_NME, EVI_LIST

form_1list (NODE_NAME, INODE_NAME])

S_NODE) .

), wead_ans(EVI_LIST, TRUE_OR_FAIL)

~

i

[r——

s Sh on om WA OSSO OB MR BN G UR AR ON e

-'
N

7

- e

-

$ ty comkb.log

I w Appendix A.3.COMKB Listings
/# Common Knowledge Ease # '
/* *

? node_structure (spacecraft_lost, logic(and),evidence (L
electronies_innert, antenna_ineffective, telemetry_lost,
spacecraft_mechanically_frozenl), "dead") .

-node_structure(electreonics_innert, logic(and), evidence(L
. heaters_ineffective,electrical_shutdownl), "8.1)d. ii)a") .

node_structure(antenna_ineffective, logic(and),evidence (Ll
spacecraft_tumbles, electrical_shutdewnl), "no antenna")

node_structure(telemetry_lost, lopic("terminal"), evidence(L]),
8. 1), dNwn") .

rnode_structure (spacecraft_mechanically_frozen, logie (or), eviderce (T
heaters_ineffectivel), "frozen")

node_structure theaters_ineffective, logic(or), eviderce(L
electrical_shutdownl), "6. 1)d.iid1") .

riode_structure(spacecraft_tumbles, logic(and), eviderce (twheel_cstops
: large_cone_develops, pitch_chanpoes _greatlyl),
"E.1ddaidid 121"y

ricde_structure (wheel stops,logic(or),ev;den:e([electr;cal _shutdown
Iy "B 1ddadiid1™)

node_structure(electrical shutdown,logzc(or),evzdencetruvs tripsl)

y "6 1)d.1i") .

node_stru:ture(uvs_trips,1ogic(and).eviden:e(Ebatteries_exhausted,
charging_limitedl), "E.1)c. ii"™) .

node_structure(batteries_exhausted, logic(or),evidence(L
power_loss_1, power_loss_23), "6.41.c. ia") .

node_structure(charging_limited, logic(or),evidence({
tracking_partially_successfull), "6.1)e.i") .

node_siructure(power_loss_1, logic (and),evidence ([
catalyst_bed_heater_on, heavy_tracking_pawerl),"6.1)e") .

node_structure (power_loss_2, logic(or),evidence(l
catalyst_bed_heater_on, heavy_tracking_powerl), "6. 1)e") .

node_structure (catalyst_bed_heater_or, logic (or), evidence (L
recaevery_procedure_beginsl), "heater") .

rode_structure (heavy_tracking_pcwer, logic (or), evidence (T
cont inuous_trackingl), "hard wark") .

node_structure (tracking_partially_successful, logic(or),evidence (L

selar_array_off_angle, attitude_centrol_lostl), v_"
node_structure (continucus trackzng,logzc(and),ev1dencett
solar_array_off_arnple, attitude_control lost]),“always") .

node_structure(attitude_control_lest, logzc(and),ev1dence(t
command_not_re:exvable,pxtch_changes_"reat’y,
large_cocne_develapsl), "no control") .
node_structure (command_not_receivable, logic(er),evidence(L
receive_antenna_off_anglel), "no rev') .
nade_structure (o4 _firing_ stops,lngzc(and),evxdence(t
main_tank_valve_closes, fuel _in_lirve_becames_scarce,
fuel_pressure_dropsl), "firing stops")
node_structure(sclar_array_off_angle, logic(and),evidence (L
pitch_changes_greatly, large_cone_developsl),"off_angle")
node_structure (receive_antenna_off_angle, logic(or),evidence (L
larpe_cone_develops, oitch_changes_greatlyl), "no anterma"
Y.
node_structure(shf_lost, logic(or),evidence ([piteh_charnges_ greatly,
large_cone develops]),"no SHF")
rode_structure (fuel_in_line_becones_scarce, logic (and),evidence (L
limited_fuel_in_fuel_line,oc4_firing_continuesl),
"o4 cont")
rode_structure(pitch_changes_greatly, logic(or), evidence (T
a4 _firing_continuesl), "pitch") .
nmde structure(large cone_develops, lopic{and), evidence (L
a4_firing_continues, negative_pitch_developsl), "core")
vaee etructure (ob4_firing _continues, logicdl{and),eviderce ({

A -3

-

- em W

rode_structure (pressure_irn_fuel_line_maintains, logic{or), eviderce(

N1gn_rate_command_Cont 1nues,
pressure_in_fuel_line_maintains, c4_firesl), "big thrust")

-node._structurelhigh_rate_command_continues, logic(and), evidence(l . _

rnesa_a_output_saturates,nesa_a_has_earth_preserce,
nesa_a_takes_over_roll_yaw_controll), "long cmd”) .

fadditional_fuel_vaporizesl), "pressure")

node_structure(additional _fuel_vaporizes,logic({and),evidence(l

node_

riode_

riode_

riode_

fuel_pressure _drops,multi_face_flow_in_fuel_linel),

"more”) o

structure(fuel_pressure_drops, logic{(or),evidence(lo4_firesl),
"drop") .

structuref{o4_fires, logic{and),evidence(L
roll_yaw_command_issued, linited_fuel_irn_fuel_linel),
"o4 fired")

structure(roll_yaw_command_issued, leogic(and), evidence ([
nesa_a_ocutput_saturates,
resa_a_takes_over_roll_yaw_controll), Yemd")

structure(resa_a_takes_over_roll_yaw_contrel, logic(and),
eviderice {[nesa_b_loses_earth_presence,
nesa_a_has_earth_presencel), "takeover") .,

node_structure(fuel _control_inaccurate, logic(or),evidence(L

rode_

multi_face_flow_in_fuel_linel), "inaccurate")
structure(resa_b_loses_earth_presence, logic(or),evidence(l
nepative_pitch_developsl), "lose earth") .

rode_structure(multi_face_flow_in_fuel_line, logicland), evidence (L

multi_face_flow_potential_in_tank,
limited_fuel_in_fuel_linel), "multiface")

rode_structure (negative_pitch_develops, logic(or), evidence({

rnade_structurel{multi_face_flow_potential_in_tank, logic{or),eviderce

rade_

wheel_speed_dropsl), "negpiteh”) .

(Cnitroger_in_hydrazine, unresclved_nitroger_in_tark,
unspecified_pas_in_tankl),"potential") .

structure(limited_fuel_irn_fuel_lire, logicland),evidence(l
main_tank_ valve closes o4 prevxously_FxredJ),
“limited fuel™) .

node_structure(wheel speed_drops, logic(or), evidence(lcws_made_cnl)

rode_

"B Ldaliiid) .

structure (nitrogen_in_hydrazine, logic(or), evidence (L
nitrogen_thru_diaphragm, fuel _tank_temp_cyclesl),
Yracolved!) .

riode_structurel{unresolved_nitrogen_in_tark, logic(and), eviderce({

node_

rode_
rode_
riode_
rode_
node_
rnode_
node_

riode_

node

ﬁode

e

nitrogen_to_pressure, tank_pressure_lowl), "unresolved")

structure(unsoecxfxed _pas_in_tarnk, lagic(and), evidence ([
Fue}_tank_temp_cycles,1mpur1t1es_1n_tahk’),“other gas")

structure(main_tank_valve_closes, logic{cr),eviderce ([
afp_tripsl),"6.1)a.i") .

structure (switch_to_redurndant_ace_and_mwe, logic(or), evidence (
Lafp_tripsl),"6. 1Na.ii") .

structure (cws_mode_on, logic(or), evidence (Lafp_tripsl),
"E.1dal.iid™)

structure(o4_previously_fired, logic ("terminal®),evidence([l),
n NN W ”")

structure (nitrogen_thru_diaohvragm, logic{and), eviderce (L
diaphragm_leaks,nitrogen_to_pressurel), "leak") .

structure (recovery_procedure_beging, logic(or),evidernce([
nesa_a_output_saturatesl), "procedure!")

structurelafp_trips, logic(or), evidence({
nesa_a_output_saturatesl), 6. 1)a") .

structure{nesa_a_has_earth_presence, legic{or), eviderce ([
nesa_a_cutput_saturatesl), "earth®) .
_structure(diaphragm_leaksylogic("terminal "), evidence (1),
"material")
_structure{nitrogen_to_bressure, logic("terminal"), eviderce (1)
y "nitrogen”) . -
=-.‘:r-uu—+. pre fhanl Aavsesnire low, tonisten) eviternces (T

'
H

TUMEL_IN_TanK_Llowd), "1ow_juel") .

node_structure(fuel _tank_temp_cycles, logic(and),evidence (L

suh_gggggion_agwgys_ghanges,beat_dissipation_uggyen]),.
“tank temp") .

rode_structure(impurities_in_tank, legic("terminal "), evidernce (L),

S
node_structure (nesa_a_saturation_1, logic(or),evidence(l

"impure") .
rnode_structure(nesa_a_output_saturates, logic (or), eviderce (L
nesa_a_saturation_1, nesa_a_saturation_2,

—excessive_nesa_a_power_cyclingl),"6€.1")

charged_ernergy, mirror_stuckl), "6. 1. 4. b")
riode_structure (nesa_a_saturation_2, logic(or),evidernce(l
and_electronics, or_electranicsl), "6. 1. 4. b") .
rode_structure (fuel _in_tank_16w, logic(“terminal"),evidence (1),
“fuel low") .

node_structure (heat_dissipation_ureven, logic{("terminal"), evidence(

[, "uneven™)

node_structure (charged_energy, logic(or), eviderce ([sur_reflections,

shf_radiationl), “6.1.4.3") .
riode_structure (nirror_stuck, logic(or),evidence (L
scan_mechanism_fails, scan_motor_failsl), "6.1.3.a")
node_structure(and_electronics, logic(and), eviderce (L

control_electronic;_fai15,émi_to_electronica]),“6.1.4.1"

) . .
rode_structure(or_electronics, logic(or), evidevnce ([

control_electronics_fails,emi_to_electronicsl), "6.1.4.3"

) .

node_structure(scan_mechanism_fails, logic(or),evidence(l
thernal_distortion, unstable_pivot,
mechanism_contaminationl), "6.1.3.a") .

node_structure (scan_motor_fails; logic(or),evidence (Imotor_fails,

motor_averheatsl), "6. 1. 3. b") .
node_structure(sun_reflections, lagic("terminal"), evidence (1),
"€ola4e3.1")
node_structure(shf radzatzon,1091:("term1na1“),evxden:a(tl),
"Galdb.2.2") .
node_structure(thermal _distortion, logic(and), evidence (Ll

sur_pasition_always_changes, aromalies_relate_to_sun_pos)

Yy "Bal1.3.1M)
node_structure(unstable_pivet, logic("terminal'), evidence (1),
"6.1.3.2")

node_structure (mechanismn_contamiration, logic("terninal"), evidernce (

[1),"6.1.3.3") .

rnode_structure(motor_fails, lagic("terminal"), evidernce (1),
“Be 1. 3u &™)

node_structure (motor_overheats, logic("terninal"), eviderce (L1),
"6.1.3.8") .

node_structure(control_electronics_fails, logic("terninal"), evidence

(L1, "6.1.4.1.1") .

node_structure{emi_to_electronics, legic("terminal™),evidence(L1),

"B.1.4.1.2")

node_structure(excessive_nesa_a_power_ cyclzng,logzc(and),evzdence(

Cpower_rieeds_ to be_ cut to_eliminate_output,
nesa_ahoutput_must_be_cut_outJ),"overcycled") .

node_structure(power_rieeds_to_be_cut_to_eliminate_cutput, lofic(
"terminal'),evidence(ll),*) .

nade_structure(sun_position_always_changes, logic("termivnal"),
evidence(I[J), "6.1.3.1.1")

node_structure(arnomalies_relate_to_sun_pos, logic("terminal'),
evidence(ll), "6. 1.3.1.2")

node structure(power_cut_toc_eliminate_cutput, lopic("terminal'),
ev1dence(t]),"****")

node_structure (nesa_a_cutput_must _be_cut_out, logic("terminal"™),
evidence (L), "#kex')

mme mocesme {nan, Tlnaccamgl T

W e e W wm e .

' o o=

-

L

' x - r-

|
{

i

:_node=messageimsg1QFLﬂmessagelQ“lL_L
1

G E_EoDage \LNSTHS,
node_messape (msg3,

_ node_massapge (nsgé4,

node_message (mspS,
node_message (msg6,
node_messape (msg7,
node_message (msg8,
node_message (msp9,

node_message(mspla,
node_messapge{mspll,
node_message (msgl3,
node_message (msglé,
node_messape (msglS,
node_message(msgl6,
node_message (msgl7,
node_message (mspl8,
node_message(mspl9,
rnode_message (msp2a,
node_messape (msg2l,
node_messape (msp2a,
node_messape (msg23,
node_message (msg24,
node_messape({mspaS,
node_message (msga26,
node_messape (msp27,
node_message (msga8,
node_messape(msg29,
node_message (msp3Q,
node_messapge (mso31,
node_message (msp32,
node_message (msg33,
node_message (msg34,
node_message (msg39,
node_message (msg36,
node_messape(msg37,
rnode_message (msp28,
node_messane (msg39,
node_message (msg4@,
node_messape (msg4l,
node_message (msp42,
node_messapne(msp43,
nade_message (mspas4,
node_messape (msp4S,
node_message (msg46,
node_message(msp47,
node_message (msg48,
node_messape (msp49,
node_message (msgSd,
node_message (msgSe,
node_messape(mspSi,
mode_messaoe (mspS3,
node_message (mspS4,
node_message (msgSs,
node_message (msgSE,
node_messape(msgS7,
node_messapge (msnS8,
node_message (msgSS,
node_message (msg&,
node_messape(mspbl,
node_message (msg&s,
node_message (msp&3,
node_message (msopbab,
node_messane (msg6S,
node_message (msg&é,
veee meaoare fneng 7,

- messagesTil .
["message3"l) .

{"messapge4"l) ..

{"messageS"]) .
["messages™]) .
["message7"]) .
["message8”"l) .
["messape9"]l)

["messagel2"])
["messagell”"])
["messagel3"])
["messagel4"])
["message15*])
["message16t])
["message17"])
[“messape18"l])
["messane19"])
["message2"])
["messapel1"])
["messageza"])
["messagea3"])
["messagez4"])
["messapel5"1)
["message=E£"])
["messapez7"])
["messagez8"])
["messagez3"])
{"message3@")
[“"messape31"1)
["messape32"l)
["messape33"1])
["message34"l)
["message3zs"l)
["messages6")
["message37"1)
["messane38”])
["messapge33d™l)
["message4d¥])
U'message41*])
["message42"l)
[Ymessane43"])
["message44"])
["messane4S"l)
["message46"l)
["messapge47t])
["message48"1])
["'messape49'])
["messageSa"d)
["messapeS52Y1])
["messapeSinl)
["messageS3"l)

U'messapeS54"]) -

["messapeS5"])
["messageS6"1)
["messageS7"])
["message=8"1)
["messageS9"1])
["messaget@™])
["message&1"])
["message&2"))
["messagees”l)
["message&4"])
["messagesS5"])
{"messane&E"])
['measaref7"7)

A~ 36

'4 -

Gl am oy SN O N UN AN SR SR NN WD Gm W

ey

f

p—

NoLE_igesago dislod,y ¢ mebsdueod a1/
rode_messape (msp€9, ["messapetd"1)
.node_message (msg70, ["message7@"1)
" node_message (msg71, ["messape71i"])
node_message (msg72, ["message72"1)
node_message (msg73, ["message73"])
node_message (msg74, ["message74"]1) .
node_messape (msg7S5, ["messape75"1)

-.node_messagel{msg76. [message?6"1) .

" node_message (msg77, ["message?7"]) .
node_messapge (msg78, ["message78"1) .,
node_messape (msp79, ["messape79"]) .
rnode_message (msg8d, ["messages8d"l) .
node_messane (msp8i, ["messape8l"l) .
rnode_message (msp82, ["message82"]) .
node_messape (msp83, ["messagea3"l) .
node_messapge (msg84, ['message84"])
node_message (msp8Y5, ["messages8S"])
node_message (msg86, ["messageB8&"])
rnode_message (msg87, ["message87"])
rnode_message (msg88, ["messagef8"1)
node_messape (msg83, ["messane89"]) .
node_message (msg30, ["messaged@™l)
node_messape (uvs_trips_reec, ["Disable UVS"]1)
node_message{uvs_trips_exp, ["the UVS is known to malfunction. ") .

= » s a e

node_explanationispacecraft_lost,g_type(l),v_depth(2), _,_, .,
description([“Spacecraft is lost"l)) . .
node_explanation(electronics_irnert, g_type(l), v_depth(2), _, _, _,
deseription(["Most orn—board electronics are irmert"l)) .
node_explanation (antenna_ineffective, g_type (1), v_depth(2), _y_,_,
description(l ’
"Command receive anterma is viot funectioning at alli“l)) .,
node_explanation(telemetry_lost,g_type(l),v_depth(2),_, _,_,
description(f"Telenetry from the spacecraft is lost"l)) .
node_explanation(spacecraft_mechanically_frozen, g_type(1),v_depth(
Dy _y_ysydeseription(l
"Specacraft is mechanically fraozen"l)) .
node_explanation(heaters_ineffective,g_type(l),v_cepth(2),_, _,
deseription(l
"Or—-board equipment heaters are not functioning anymore®
1)) .
node_exnlanation(spacecraft_tumbles, g_type(l),v_depth(2), _, _,_,
description(["Spacecraft is tumbling"l)) .
rigde_explanation(wheel stops,g_type(l),v_depth(2), _,_y_ydescripticn
(L"Or—board momentum control wheel has stopped®l)) .
node_explanation(electrical shutdown,g_type(l),v_depth(2), _, _, _s
description(["On—-board electrical system is shut downl)
) .
node_explanation(uvs_trips,g_type(l),v_depth(2),_,_,_,description
["Under voltape protection system ig activated"l)) .
nade_explanation(batteries_exhausted,g_type(l),v_depth(2), __y_,_»
description(["On—board batteries are exhausted"l)) .
node_explanation(charging_limited, g_type(l),v_depth(2), _,_4_,
description(t) :
"Selar arrays’'s ability to charge ari-board batteries™,
" is now limited" 1)) .
node_explanation(power_loss_1,g_type(1),v_depth(S)y _y_s_y -
deseription(L""1)) . .
node_exnlanation(power_loss_2, g_tyre(l),v_depth{(2), _, _,_;
deseription(L""1)) .
riade_exolanation(catalyst_bed_heater_on,g_type(1),v_oepth(S), _,_,_
ydeserinticn (L
"Catalyst beg heater for thnruster is turned on"l)) .
nooce_exnlanation(heavy_tracking_power, g_type(l), v_deoth(2), _, _y_,
Aoarrint imar (TEThewe 2 a3 bSeavy Acowss frain due Bo Spracks

-t

A -37

5 W R . W

P

. N ..
, \

$ing of scoiar array"l)) .
node_explanation(tracking_partially_sucecessful, g_type(i), v_depth (2
— Yy _y 9y .qdeseription(i___ .

"Trank:ng of the sun by solar array“,
" is only partially successful'l)) .
riode_explanation(continuous_tracking, g_type(l),v_depth(2)y _y_y_
description(l
"The solar array is now tracking the sun continuously"l)
)

node_explanation(attitude_control_lest,g_type(l),v_depth(2), _, _,_,
deseription(["Attitude control is no lenger effective'"l)
) .
node_explanation (command_not _receivable,g_type(l),v_depth(2), _, _,_
,deseription(t
"The spacecraft is not receiving command sequerces"l)) .
node_explanation(o4_Tfiring_stops, g_type(l), v_depth(28), _y_,_,
desceription(["Firing of the 04 thruster is stopped"l)) .
node_explanation(seclar_array_off_angle, g_tyne(l), v_depth(2),y _,_4_,
description(["The sclar arrays are roet facing the sun"l)
L) .
node_explaration(receive_antenna_off angle,g_type(i) v_depth(2), _,
—y_sdeseription(l
"The command receive antenna is rot properly aligred",
" to the ground"l)).’
node_explanation(shf_ lost,g_type(i) v_depth(2), _y_,_ydeseription(l
"The SHF communication channmel is lost"1)) .
node_explarnation(fuel_in_line_becomes_scarce, g_type(l),v_depth(2),
1oy deseription(l
"Residual fuel in the fuel line becomes scarce'"l)) .
node_explanation(piteh_chanpes_greatly, g_type(l), v_depth(2), _s_, _,
deseription(L"The spacecraft$'s piteh changes greatly f$
$rom riominal negative',
" piteh to a large positive piteh'1)) .
node_explanatien(large_corne_develons, g_type(l),v_depth(2), _, _y_,
deseription(l
"A large nutation cone develops around the piteh axis"1)
Y .
node_explanation(c4_firing_continues, g_type(l),v_depth(2), _s _, _
description(f"The firing of the offset thruster ",
"04 is maintained"l)) .
node_explanation(hiph_rate_command_continues, g_type(l), v_depth(2),
_1_y_sdescription(l
"The thruster 04 fire command continues at a high rate"l
) .
node_explanaticn{pressure_in_fuel_lire_maintains,c_type (1), v_depth
(2)y _y_y_ydeseription(l
"The pressure in the fuel line is maintained"l)) .
node_explanation(additional _fuel_vaporizes,g_type(1l),v_depth(2),_,
~1-ydeseription(C
"An additional amount of fuel vaporizes®])) .
node_explanation(fuel_pressure_drops, o _type(i),v_depth(2), _,_,_,
description(l
"The pressure of fuel in the fuel pipe drops"l)) .
node_explanation(o4_fires, g_type(1),v_depth(2), _,_,_,description(l
"The negative pitch offset thruster 04 fires"l)) .
node_explanation(roll_yaw_command_issued, g_type(1),v_denth(2), _, _,
_ydeseription(["The roll-yaw control command is issued"]
)) .
node_explanation(resa_a_takes_over_roll_yaw_contral,g_type(l),
v_depth(2), _y_y_sdescription(l
"NESA-A ecross scan takes over the control af",
" the reli/yaw axes"1)) .
rode_explanation(fuel _contrel_inaccurate,p_type(l),v_depthi2), _, _,
ydeseription({"Fuel flow control is rno loricer accurate"
1)) .

A - 2%

prsa————

-

r

”

ke

" node_explanation(multi_face_flow_potential_in_tank,g_typali), _

"NESA-E primary scan loses the sight of the earth"l)) .
node_explanation(multi_face_flow_in_fuel_live,g_type(l),v_depth(2)

11y sdescription(l

"Multi-face flow of fuel exists in the fuel line"l)) .
node_explanation(negative_pitch_develops, n_type(1l),v_depth(2),_, _,

_sdescription(["A nominal repative rotation begins arous

$nd the pitch axix"l)) .

v_depth(2), _y_y_ydescription(l

"There is a potential fuel multi-flow situation,

" in the fuel tank"l1)) .
node_explanation(limited_fuel_in_fuel_line,g_type(l),v_depth(2), _,

—yoydescription(f”There is a limited amount of fuel lef$

$t in the fuel line"l)) .
node_explanation(wheel_speed_drops, g_type (1), v_depth(2), _y _, s

description(["The speed of the reaction control wheel ds

$rops nominal 15 rpm"1)) .
note_explanation(nitrogen_in_hydrazine, g _type(l),v_depth (&), ,_,_,

descriotion(C

“"Nitrogen gas is resolved in hydrazine fuel®l)) .
node_explanation (unresolved_nitrogen_in_tank, g_typoe(1l),v_depth(2),

s sdesceription(l . .

"Unresolved nitrogen gas permiates through diaphragm"l))
node_explanation(unspecified_pas_in_tark,o_type(l),v_deoth(2), _, _,

_,descr;pt:on([“Unsneczf;ed gas exists in the fuel tark"”

1)) .
node_explanation(main_tank_valve_closes,g_type(1),v_depth(2), _,

ydeseription(L"The main fuel tank valve closes"l)) .
node_explanation(switch_to_redundant _ace_and_mwe, g_type(1),v_depth

() _y ,descrlptaon(t

"The QCE and MWC units are sw:tched to redundant unit"l)

) .
node_explanation(cws_mode_on, g_type (1), v_depth(2), _, _,_.description

(["The Constant Wheel Speed mode is on'"l)) .
node_explanation(o4_previcusly_fired,g_type(l),v_depth(2), _, _y..s

description(["The negative pitch offset thruster 04 has"

" previously been fired"l)) .
node_explanation{nitrogen_tHru_diaphragm, g_type(1),v_depth(2), _,_,

_ydescription(C

"Nitropen pas permiates through the diaphragm”"l)) .
node_exnlanation (recovery_orocedure_bepins, g_type(1),v_depth(2), _,

s ydeseription(l

"A predefined NESA-A saturation recovery procedure is”,

" put into effect”])) .
node_explanation(afp_trips, o_type(l),v_depth(2), _, _, _,descripticon(

["The Automatipg Failure Protection mode is enforced"l)) .
node_explanation(nesa_a_has_sarth_presence, g_tyoe(l),v_depth(2), _,

_»_ycescription (["NESBA-A has the earth presence'l)) .
node_explanation(diaphragm_leaks, g_type (1), v_depth (2), _y 4

cdesceription(["The diaphragm material leaks nitropen gas"

1)) .
node_explanation(nitrogen_to_pressure, g_type(l),v_depth(2), _, _s s

description(L

“Nitrogen gas is used ta pressure dzaphragm"))) N
node_explanation(tank_pressure_low, o_type (1), v_denth(2), _, _, _,

description(["Pressure iv fuel tank is low"1)) .
node_explanation(fuel _tank_temp_cycles,g_type(l),v_depth(2), , _+_:

description(C"Temperature within fuel tank cycles"l)) .
node_explanation(impurities_in_tank,g_type(l), v_depth(2), _, _,_,

description(l

"There are impurities in fuel and/or tank materials"l)) .
node_exolanat:on(resa_a_cutout_saturates, g_type(l),v_depth(2), _, _,

_sdescripntion(l

"Both NES5A-A prime and cross scan outouts saturate”"l)) .
vede exnlanatiom(fuel _in_tank_low. o_tyeoe(l),v_desth(2), _, _, _.

— -

_3?

-

GEesSCraPTICn L XENAaaranYg TURL 41N Ladnd 15 20w’ 'JJ)2 .,
node_explanation(heat_cdissipation_uneven, g_ type(l),v depth(2), _, _,
— 2 dascription(l . . _._._ e e
. “Heat dissipation around Fuel tahk 15 uneven“])) .
i node_explaration(nesa_a_saturation_1i,g_type(l), v_depth(2), _, _,_,
i daseription(C*"1))
node_explanation(nesa_a_saturation_2,g_type(l),v_depth(2),_, _, _,
description(f""])) .

_ngde_gxpjanaikqni:harggg-engrgy,g type(l),v depth(2), s _s_s
description({"The structure of the spacecraft is electr$

$ically charged"])) .

node_explanation(mirror_stuck, g_type(i),v_depth{(2), _,_,_,
| dascripticn(["The mirror scan mechanism is stuck"l)) .
node_explanation{and_electronics, g_type(i),v_depth(2), _, _y_,
description(f""31)) ,
node_explanation(or_electronics, g_type(l),v_depth(2), _,_,_,
description(L[""1)) .
rnode_explanation(scan_mechanism_fails, g_type(l),v_depth(@), _, _, _,
description(l"The scanning mechanism fails"l)) .
node_explanation(scan_motor_fails,g_type(l), v_depth(2), _,_, _,
deseription([Vscanning motor fails"l)) .
node_explanation(sun_reflections,g_ type(l) V_depth(2), 4 _,_,
descriptien(l
"The sun reflections causes the spacecraft charged"l)) .
node_explanaticon(shf_ rad1at1on,g type(1), v_ depth(a),_,_,_,
daeseription(l
"Radiation from the cri—bocard SHF equ:pment causas",
" the spacecraft to charge"l)) .
node_explanation(thermal_distortion, g_type(1),v_depth(2), _,_s_9
description((l
! "The scanning mechanism is thermally distorted"l)) .
' node_explanation(unstable_pivet, p_typel(l),v_depth(2), _,_,_
' description(C

"The pivot of the scanning mechanism is unstable®"l)) .
node_explanation(mechanism_contamination, g_type(i),v_depth(2),_,_,

_sdescription(l -

“"The scanning mechanism is contamminated by particles®l)

) .
node_explanation(mator_fails, g _type(l),v_depth(&),_,_,_,descripticn

(L"The motor of the scarming mechanism fails"l)) .
node_explanation(motor_overheats, g_type(l),v_depth(2), _,_,_,

descrintion((

"The motor of the scarming mechanism overheats"l)) .
rade_explanation(control _electronics_fails, p_typell),v_depth(2), _,

s deseription(i"The control electronics of the scanris

$ng mechanism fails"l)) .
node_explanation(emi_to_electronics, g_type(l),v_depth(2), s _y_,

description(l

"The electro-magnetic interfererice(EMI) causes"

" malfunction of the electronics"l)) .
node_explanation(excessive_riesa_a_power_cyeling, o_type(l), v_depth(

2)y_y_y_sdescription(l

"NESA-A has power—cycled excessively"l)) .
node_explanation(sun_position_always_chanpes, g_type (1), v_depth (2),

1.y _sCescription(l

"The relative positien of the sun to the spacecraft®,

" always changes"l)) .
rode_explanation(ancmalies_relate_to_sun_pos, g_typel(l), v depth(d)
. _1.y sy Description(C

"There is a correlation between the position of the sun®

s " to the spacecraft and the occurarces of en—-board ancs

$malies"l)) .
node_explanation(oower_cut_to_eliminate_cutsut,g_tyvoe(l),v_desth (&

Ve _s_y_y0escription(l

"In erder to eliminate tne cutoput from NESA, ™,

Yokhe Anwer o bhe arit basg R he i)

—y

e

-

-

o

el AL e ANy AU NIRSE_a_ LT JUL _iUST _D&_CUT_OUT, O_lyD2i1/,Vv_0edtn i
)y _yoysdescription{l"Ther is a situation in which the $
— e $output. of NESA-A. must be"," eliminated"1))_ _.

node_explanation(power_rieeds_to_be_ :ut to_eliminate output,g type(. h

1),v_depth(2), ,_,_,des:r;ptzon(t

"This explanation does not defined yet"1)) .
1
i node_type(ele:%roni:s irmert, fault, dependency(3), pl (1), p@ (@),
\ thresheld(Q),error rate(1°l+ 330, _331, _332) .

! node tdypelantenna_ineffective, fault, dependency(S),pl(1),pm(@),

! threshold (@), error_rate(12), _338, _339, _34Q) .

" node_type (spacecraft_mechanically_frozen, fault,dependency (@), pl (1)
y PA(D) ; threshold (@), error_rate (12), _354, 355, _ZS€) .

rnode_type (heaters_ineffective, fault, dependency (0), pi (1), p@(d),
threshold(®), error_rate(l12), _3I62, _363,_ZI64) .

node_type (spacecraft_tumbles, fault, dependercy (8), p1 (1), p@ (@),
threshold (@), error_rate (i), _37@,_371,_372) .

nade_type (wheel_stops, fault, dependency (@), pl (1), pR(Q), threshold (@)
s @rror_rate (1), _378, _379, _38Q) .

node_type(electrical _shutdown, fault, dependency (@), pl (1), p2 (@),
threshold (&), error_rate(lz2), 386, _387,_388) .

node_type (uvs_trips, fault, dependency (7), pl (1), p@ (@), threshold (@),
error_rate(l2), _394, _395, “396) .

node_type(batteries_exhausted, fault, dependency (5), pt (1), pB (@),
threshaold (@), error_rate(12), 402, _403, _404) .

rnode_type (charging_limited, fault, dependency (@), pi (1), p2 (@),
threshold (@), error_rate (1), _418, _411, _412) .

node_type (power _loss_1, fault, dependency (5), p1(1), p@(@), threshald (&
),error_rate(12), _418, _419, _42Q) .

node_type (power_loss_2, fault, dependency (5),p01(1), p2(d), thresheld (@

) Yyerrar_rate (1), _426, _427,_428) .

node_type(catalyst_bed_heater_on, fault,dependency (@), pl (1), p@ (@),
tnraeshold (Q), error_rate(12), _434, _435, _436) .

node_type (heavy_tracking_power, fault, dependency(l@),nl(l),p@(@),
threshold (@), error_rate(12), _442, _443, _444) .

node_type (tracking_partially_ su::essful fault dependency (8), pl (1),
p@(m),threshold(@),error_rate(l&),_45@,_451,_458) .

node_type (cont inuous_tracking, fault, dependercy (@), pl (1), pR(Q),
threshold (®), error_rate (12), _458, _459, _460) .

node_type(attitude_control _lost, fault, dependency (7),pl (1), pa(@),
threshaold (83), error_rate(12), _466, _467,_4E68) .

node_type (command_not _receivable, fault, dependency(8), ol (1), p2(d),
threshald (@), error_rate (12), _474, _475, _476) .

nade_type(o4_firing_stops, fault, dependency (12), pt (1), p@(2),
threshold (@), error_rate(ld), _482, _483, _484) .

node_type (solar_array_off_angle, fault, dependency (6), pl (1), pa(d),
threshaold (@), error_rate(12), _439Q, _491,_492) .

node_type(receive_antenna_off_angle, fault, dependency (@), pl (1), p@ (@
), threshold (@), error_rate(12), _498,_499, _S5av) .

rode_type (shf_lost, fault, dependency (4), pl (1), pa (@), threshold (@),
error_rate (12), _506, _5S07,_5@8) .

nade_type (fuel_in_line_becomes_scarce, fault, dependency (1), ol (1), p@
(@), threshold (@), error_rate(12), _Si4, 515, _S16) .

nade_type (pitch_charnpes_greatly, fault, dependency(8), pl (1), p@ (@),
thresheold (@), errar_rate(12), 522, _523,_524) .

rnode_type(large_cone_develops, fault, dependency (10), p1 (1), p@(Q),
thkeshold(@),error_rate(l&),_530,_531,_532).

node_type(o4_firing_continues, fault, dependency(5), p1 (1), p2 (@),
threshold (@), error_rate(12), _£38, _539,_540) .

node_type (hiph_rate_command_continues, fault, dependerncy (1@), pl (1), p@
(&), threshold (2), error_rate(12),_S46, _547,_548) .

node_type(pressure_in_fuel_line_maintains, fault, deperidency (9), ol (1
), pA(D)Y, threshold (1), error_rate(l12), _554, 535, _5S6) .

node_type(additional _fuel_vaporizes, fault, dependency (1), pl (1), p2 (@
)ythreshold (), error_rate(12), SE2, _SE3, _SE4) .

worie fvas{Fael Aaracgure dvmne, Fanly, denevrdencviB) At (1Y /R 0D)

p— r ! ! . . .

vniode_type (a4 _ fxres,fault dependency(@) pi(l),p@(m) threshold(@)
— error_rate(i2), 578, _573, _ cBIZ') —_—

node_type (roll_yaw_ command 155ued fault dependency(i@),pl(1),pm(m)
, thresheold (@), error Pate(le),_SBS, .sa7,_g5es8) .

node _type(nesa_a_takes_over_roll_yaw_control, fault, dependency (1@),
594, _ 595 threshold(m),error rate(la),_SBS, 597, .598) .

node_type (fuel _ control _inaccurate, fault, dependeney(@),pi(1),p®(0)
threshold(ml,enro: rate(d2),_604, 605, _6@6) .

node_type(nesa_b_loses_parth_preserce, fault, dependency (@), pi<1), p@
(m),threshold(m) errcr_rate(i2), _612,_613,_614) .

node_type(multi_face_flow_in_fual_line, fault,dependency (1@), pi(l),
p@(@),threshold(m),error_rate(l&),_680._681,_622) .

rnode_type (negative_pitch_develeps, fault, deperndency (@), pl (1), pa (@),
threshald(@), error_rate(l2), 628, _623,_630) .

node_type(multi_face_flow_pdtehtial_in_tank,fault,depewdency(B),
_636, _637, threshold(®) ,error_rate(i2), 638, 639, _64@) .

node_type(limited_fuel_ir_fuel_line, fault, dependency(8),pl (1), p2(@
), threshold (), error_rate(12), _646, _&47, _648) .

node_type (wheel_speed_drops, fault, dependency (2), p1 (1), p@(2),
threshald (@) error_rate(l2), €54, _ €55, _656) .

node_type (nitrogen_in_hydrazine, fault, dependency (=4), p1 (1), p2(2),
threshold (@), error_rate(12), 662, _663, _664) .

node _type (unraesclved_nitrogen_ir_tark, fault, dependency (€), p1 (1), p@
(@), threshcald(®), error rate(la),_67@, _671,_672) .

node_type(unspec;f:ed_gas_ln_tank fault, dependency (1@), nl (1), p@ (@)
,threshold(@),error_rate(i&),_679,_679,_68@) .

node_type(main_tank_valve_closes,fault,dependency(@),px(1),p@(@),
threshold (@), error_rate(i2), 686, _687,_688) .

nade_type (switch_to_redundant_ace_and_mwe, fault, dependency (@), pl (1
), p2(Q) y threshold (@), error_rate(i2), 634, 695,_696) .

node_type (cws_made_or, fault, dependency (@), pl (1), p2 (@), threshald ()
y error_rate(12), 702, 723, _704) .

node_type (nitrogen_thru_diaphragm, fault, dependency(e),pi(l),p@(@)
threshold (@), error_rateci2), _718,_719,_72@) .

node_type(recovery_procedure_begins,Fault,dependency(@),pl(l),p@(@
)y threshold (), error_rate(12), 726, _727,_728) .

rcde_type(afo_itrios, fault, dependency (), pl (1), p@ (), threshold (@),
error_rate (12}, _734, _735, _736) ..

rode_type (nesa_a_has_earth_presence, fault, dependency (@), pl (1), p@(@
)y threshold (@), error_rate(12), 742, _743, _744) .

rode_type (tank_pressure_low, fault, dependency (2), p1 (1), n@(2),
threshold (@), error_rate(12), 758, _75%7,_76Q) .

rode_type (fuel_tank_temp_cycles, fault, deperndercy (1@, 01 (1), n2(Q),
threshold(),error_rate(l12), 774, _775, 776) .

nade_type (resa_a_output_saturates, fault, dependerecy (~-5), pl (1), 08(Q)
, threshold (@), error_rate(12), _7%@, _791, _792) .

node_type (nesa_a_saturation_i, fault, dependency (=5), 0l (1), p2(@),
threshold (@), error_rate(12), 814, _815,_816) .

node_type (resa_a_saturation_2, fault, dependency (2, pl (1), p2(@),
threshold(@), error_rate(12), 822, _823,_824) .

riade_type (eharped_energy, fault, desendency (=8), p1 (1), 00 (), threshald
(), error_rate (12),_830, 831, _832) .

node_type (mirror_stuck, fault, dependency(u),pl(l),p@(@) threshold(
), error_rate(12), _838, _833, _840Q) .

nade_tyne(and_electrnnzcs,fault dependency(S),pl(1),p@(®),threshold
(@), error_rate (12), _846, _847,_848) .

node_type (or_electronics, fault, dependency (5), pl (1), p2(2), threshald

(@), error_rate(12), 854, 855, _8%6) .

rode_type(scan_mechanism_fails, fault,deoendency (7), pl1 (1), o@(2),
threshold (@), error_rate(12), _862, _863,_864) .

noce_type (scan_motor_fails, fault, dependerncy (8), pi (1), (),
thresheld (2),ervror_rate(12), 87, _871, _872) .

rade_tyne (thermal_distortion, fault, decendercy(8), 01 (1), n2(@),.
*Hreshuldxm_errar_rate(l&),_896,_857,_898) .

rade_tyvoelexcessive_vesa_a_dower_cyeling, fault, denerndency (1@}, o1 (1

42

>
!

fo—

P

an aE S e

t

\

node_tyoe {spaceerafi _lost, Tault, depe;oency(a),hi(1):p0(¢;,threshold

o (@), @rron_ rate(..nz«), E,..,A _835, _aze).
(@), threshold (D), error_rate(399333), _866&, _867, _868) .
nnde_type(impurities_in_tank,Fault,dependency(s),p!(1),p0(0),
threshold (@), error_rate (Z500Q0), _874, 873, _876) .
node_type (fuel_irn_tark_low, fault, dependercy (@), pl (1), pa(@),

reshold (B) , error_ratel(300000), 882, _883, _884) . . _ ..

node_type (heat_dissipation_uneven, fault, dependency (2), pl (1), pg(2),
thresheld (@), error_rate(745000), 8902, _a91,_a92) .
rode_type (sun_reflectiens, fault, dependency (_83a8), pl (1), pa(d),
threshold (@), error_rate (29600), _893, 508, _3521) .
rode_type (shf_radiation, fault,deperdency(_907), p1 (1), p2 (@),
threshald (@), error_rate (425), _5@8, _90%, _91@) .
node_type (unstable_pivot, fault, dependency (_916), p1 (1), p2 (@),
threshold (), error_rate (25022), _317, _5918, _919) .
node_type (mechanism_contaminat ion, fault, dependercy (_925), p1 (1), p@(
), threshold (@), error_rate (2520, _326, 327, _528) .
vnde_type (motor_fails, fault, dependency (_334), 01 (1), p@ (@), threshold
(@), error_rate (173002), _393S, _336, _337) .)
ncde type(motor overheats, fault, dependency (_ S4u).p1(1),pm(@),
threshold (@), error_rate (2950), _344, 1 945, _D4E) .
nnde_ty:e(cantrol_electronics;Fai15,Fault,dependency(_SSE),Dl(i),p@
(@), threshold (2), error_rate (4E5000), _953, 354, _253) .
rode_typelemi_to_electronics, fault, dependency(_961), pl (1), p2(2),
thrashnld (@), error_rate (1500), 362, 963, _P64) .
node_type (power_reeds_to_be_cut_to_eliminate_output, fault,
dependency (_972), pl (1), pa (@), threshold (@), error_rate(
92@2), _971, _97&8, _973) .
node_type (sun_ nosxtlon _always_chanpes, fault, dependency (_979), pl (1)
, P2(Q), threshold (M), error_rate(314200), 980, %981, _5382) .
node_type(anomalies_relate_to_sun;pos,fault,dependency(_?BB),px(1)
, PB(®) , threshold (@), error_rate (150002), 983, 93¢, _591) .
node_type (power_cut_to_eliminate_output, fault, dependency (_937), pl¢(
1), 00(2), threshold (B, error_rate(12), 998, 999, _1o2a) .
noce_type (nesa_a_ocutput_must_be_cut_out, fault, dependency (_1226), ol
(1), p@ (@), threshold (@), errar_rate (820000, 1207, 10228,
1029 .
node_type(telemetry_last,fault,dependency(@),pl(1),p@(0),thrashold
(2), error_rate (500002), _3991, _392, _¥93) .
node_type (o4 _ prev1ously fired, fault, deoendency(undef1ned) pl(1), p2
(@), threshold (@), error_ rate(975®@0) 999, _ioeo, _iaal) .
nmde_type(diaphragm_leaks,Fault,dependency(undeflned) n’(l),p@(@),
thrashold (@), error_rate (7SS20Q), _L10@7, _ioaa, _i2e?) .

node_action(spacecraft_lost,_,_,_,_yaction(tla,advice,B,_,_,msgi)]
) .
node_action(electronics_innert._,_,_,_,action([(a,édvice,E,_,_
mso2)3)) .
rinde_action(anterma_ 1neffect1ve,_,_,_,_,act;un(t(a,advxce,u,_ "y
msg3)1)) .
rode_action(telemetry_lost, _y_y _y s action(l(a, advice, @, _, _,Msp4) 1)
) .
node_act1on(spacecraft_mechanically_Frozen,_,_,_,_,action(t(a,
adviee, 0, _, _,msg5)1)) .
node_action(heaters_ineffective, _,_y_s_s@ction(l(a,advice, d _, _,
msgB)l)) . :
node_action(spacecraft_tumbles,_,_,_,_,action(E(a,advice.a._,_,
msg7)1)) .
node_action(wheel_stons,_,_,_,_gaction(t(a,advice,@,_,_,msga)l)) -
ﬁode_actiun(electrical_shutdown,_,_,_,_,action(t(a,advice,@,_,_,
msa3)3)) . .
node_action(uvs_bvi:s,_._._,_,action(E(a,warning,1,_,_,msg1@),(r,
reccmmendatiomn, 9. _y _, uvs_trips_ree), (er,exnianation, 9, _,
_-uve_trios_exn)l)) . .

rode type(nltvogen to_pressure, fault, deoendenc?(undef;ned),pl(1) o@

Y

as BN = .

|

{.node”actioniheax¥=tra:klngdpowe:,_,_,_._,a:t1mniﬁﬁa|ad¥}ﬂﬁa1@;_:_u__ —

ABLA1IA) I .

—node_action(cnarging;limited,_,_,_,_,action([(a.advice,@,‘,_,maglaw._mu_

Y1y L
node_action(power_loss_1, _, s _y_saction(i(a, advice, S, _,_ymsg1i3)1))
node_action(power_loss_28, _y_y.y saction(l{a, advice, 5, _,_,msgl4)3))
ricde act1on(cata1yst bed_heater_on, _y_s_y s action{l{a,advice, @, _, _
amsglS)l))

msgle)l)) .
node_action(tracking_partially_successful, _,_,_y_saction{l{a,
advice,8, ,_,msgl7)1)) .
node action{continucus_tracking, _, _y .y sattion(l{a,advice, @, _, _,
mspiglly)y .
riode_action(attitude_control_lost, _,_,_s_,action(l(a,advice,7, _, _
msgl9)ly) .
node_action(command_rot _receivable,_, _,_,_raction(i{a,advice,8, _, _
s Ms020)1))
rzde_action{o4_Tfiring_stops, _,
Y3i)) .
node_action(solar_array_off angle,_,_,_,_,actxon([(a,advxce,e,_,_,
- mspE2)J)) .
rode_action(receive_antenra_off angle,_,_,_,_,act;on(t(a,adv1ce,6,
,msn&a)])) .
node_actxon<5ﬂf logst, _, _4_y_racticrr(l(a, advice, 4, _,_,msgE4)1)) .
node_actiorn(fuel_in_lire_bercomes_scarce, _; _,_,_saction(l{a, advice,
1@y _, _ymsg25)1)) .
node_action(pitch_changes_greatly,
msg26)J)) .
node_action(large_tone_develops, _,_,_,_saction(l(a, advice, 12, _, _,
mspl7) 1)) .
rnode_action(o4_firino_continues, _y_,_,_jaction(l(a,advice, S, _, _,
msp28)1)) .
riode_action(high_rate_command_continues, _,._, _; _yaction(l(a, advice,
10, _,_ymsp239)1)) .
node_action(pressure_in_Tuel_line_maintains, _, _,_,_raction(l(a,
advice, 3, _, _,msg3@A)1)) .
node_ actiontadditional _Tuel vaporzaes,_,_,_,_,act1an(£(a,adv1ce,1,
,,msgul)l)) .
riode_action(fuel _pressure_drops, _,_,
Msg32)3)) .
node_action(o4_fires, _, ;. ._raction{(f(a,advice, @, _, _,msg3311)) .
node_action(roll_yaw_command_issued, _, _,_y_jyaction(l(a, advice, 12, _
y_1MsSn34)1)) .
rode_actiosn(nesa_a_takes_over_roll_yaw_cortroly _, _, _,_jaction(i(a,
advice, 18, _, _,msp3S) 1)) . ’
node_action(fuel _control_inaccurate, _, _y_y_saction({l(a, advice, 122,
s _yMsp36)1)) .
node_action(nesa_b_loses_earth_presence, _, s _y _saction(l(a, advice,
@y _y_,msg37)1)) .
rnode_action(multi_face_Tlow_in_Tuel_line, _y_,_y_jsaction(l(a, advice
s 18, _, _ymsn38)1)) .
rode_action(negative_pitch_develops, _,_,_y_;action(l(a, advice, @, _,
_msp39)1)) .
nade_action(multi_face_flow _potential_in_tark, _,_;_s_sacticn(l(a,
acviece, 3, _, _ymsg4)1)) .
node_action(limited_fuel_in_fuel_lire, _,
~r_ymsg41)1)) .
node_action(wheel_speed_drops, _, _,_y_;action(l(a, advice, @, _, _,
msp432)1)) .
rioge_actiord{nitrogen_in_hydrazine, _,_;_y_action(l(a, advice, =4, _, _
sMsp43)3)) .
roge_acticn(unresolved_nitroger_in_tarik, _.s _s_,_sacticn(l (8, aavice,
Dy _._ymsSE44)1)) .
vizde_action(unsoecified_gas_in_tank, _,_,_;_,action(I(a, advice, @,
_emsST4&S)1)) ..

_yaction({(a,advice, 12, _, _, msp1

-t

raction(l(a, advice, 8, _, _,

—? . -

saction(l{a, advice,d, _, _,

-

raction(l(a, advice, 8,

-t -t

A -4

f h " l r ! : ’ ’ : : : : ’)
G5 &S SN N N & G BN G AN N G O B R e e W

v

,SCHt) 1)) .

node_action(switeh _to_redundant_ace_ard_mwe, _y _, _s_, action(i(a,

advice, @y _, _,Msg47)1))

rode_action (ews_mode_ony _y _, _s s aCtion ([(a, advice, @, _,_,ms048)3))
rnode_action (o4 _previcously_fired, _, _,_,_,action([(a,advice,

rede_action(nitrosen_thru_diaphrapm, _, _,_,_,action(L(a, advice, 8, _,

undefined_, _,msQ49)1))

e MSOSI)) .

12 mspS1)1))

rode_action(recovery_procedure_begins, _,

_,actioﬁkt(a,aéQfEE;EE

rnode_action(afp_trios, _,_, _y_saction(L(a,advice,2,_,_,msg87)1)) .

rode_action(nesa_a_has_earth_presernce, _,
rode_action({diaphragm_leaks, _,
rnode_action(nitrogern_to_pressure, _, _, _

rinde_action(fuel tank_temp_cycles,_, _,_,_,action(i(a,advice,, _, _,

_y oy fspS2)3)) .
ymsgS3)1)) .
undefined_, _,mspS4)1))

msg8S5)1)) .

—_t -t

.

—_t -y

~saction(l(a, advice, 0,

y saction(f (s, advice,

node;action(impurities_in_tank,_,_,_,_,actiom(l(a.advice,@,_,_,

.

mspS6Y3)) .

,action(E(a,advice,undefined,_

rode_action(resa_a_cutput_saturates,_,_,_,_saction(l (a,advice, -5,

node_actian(tank_oressure_laws _y _, _,
rode_action (fuel _in_tank_low, _,

rode_acticn(heat_dissipation_uneven, _, _, _,_,action(l(a, advice,1,_,

vy .1 s857)3)) .
msgS8)1)) .
-

Y1) .

_emsp6A)Y)) .

_saction(L(a,advice, 11, _,_,

saction(l(a, adgvice, 1y _y _, MsgS9?

riede_action(nesa_a_saturation_1, _, _,_y_,action(l(a, advice,~3, _,_,

msp&1)3)) .

rnocde_action(nesa_a_saturation 2, _,_,_y_yaction(l(a, advice, @, _,_,

riode_act ion(charged_erneray,
rode_acticn (midhror_stuck, _y_y _,_;action(l(a, advice, =5, _,_, msc64)])

rixde_acticm(and_electronics, _y .y sy action(l(a, advice, 5, _, _y msg&S)

mspgB2)1))

= enl ==t
1)) .

) .

) .

rnode_action(or_electronics, _, _y

node_action (scan_mechanism_fails, _, _,
node_action(sean_motor _Fails, ,_,_,_,acticn(l(a, advice, 8,_, _, msg&8
rode_action(sun_reflections, _y _y_y_yacticn(l(a, advice, 3, _, _ymsgbd)

rizde_action (shf_radiation, _, _y _r_saction(L(a,advice, 3, _,_,msa7@) 1)

) .
msg&7))) .
Y1)) .

1) .

) .

saction(l(a,advice, -8, _, _, MsgEZ)

_saction(l(a,advice, S, _, _,msgbBE)J

N

yactien ([(a, advice, 7,

- -

riade_acticn(thermal _distortion, _, _,_s_jyaction([(a, advice, 8, _y_,

riade_actionfurstable_pivot, ,_,_,_saction(l(a,advice,3,_,_,msg72)1]

msg71)1)) .

») .

rixde_action(mechanism_contanination, , _y_,_,acticn(i(a;adviee, 3, _,

_aMsp73)2)) .

node_actien (motor_fails, _, _y _y_saction(i(a,acvice,3,_,_,msa?78)1))

rode_action{motor_overheats, _,

1)) .

syactioen(l{a,advice, 3, _y _ymsg79)

node_action{contral _electronics_fails, _,_,_,_saction([(a, advice, 3,

1 _ymsp82)3))

rote_actiar(eni_to_electivrorics, _,

msc81)31)) .

- =9

actioni{i{a,advice, 3. _; _.

rinde_actimm (excessive_rnesa_a_power_oyeliing, _y_y_:_ractiam(lia,

acvice, {2, _, smspb2)1))

wade_action(suan_oosition_always_chanaes, -, .

- -

actionm(l(a, acviece,

Oy

a8 e

s

node_acticon(ancmalies_relate_to_surn_pos, _, _, _y _yacticn(l(a, advice,

'Anode_action(power_cut_to_eliminate_output,_,_,_,:;actiok(fzé,

~. 7

advice, 3, _, _ymsg85)J)) .
ricde_action(nesa_a_output_must_be_cut_out, _, _,y_,_saction(i(a,
advice, 3, _,_ymsgB6)J)) .
node_action (power_needs_to_be_cut_to_eliminate_output, _, _,_y _,
—actionll{a, advice,3, 4 _,msg88)1)) .

e Sy e MSHBAITIY . - e pp—

A - 46

ettty

s

”

h

$ ty comdb. iog

VL —_— ®L . e - - e e
/+ Camnmon Data Base %/
/% */

node_control (unresolved_nitroger_in.tank, no_conmand, relieve,
relieve,r,_ 326, _387) .
node_caontrol (unspeci fied_pas_in_tank, no_command, reliesve, relieve,r,
233, _334) _,

noade_control (antenna_ineffective, no_commard, relisve,relieve, r, 340
341) .
L .
node_control (electronics_innert, no_command, relieve, relieve,r, 347,
_348) .
node_contral (spacecraft_mechanically_frozeny, no_command, relisve,
relieve, r, _354, _355) .
node_control (charged_energy, no_command, relieve, relieve, r, _361,_3&2
) .
node_control (heaters_ineffective, no_command, relieve, relieve, r, _Z68
369) .
’_U
rnode_contral (spacecraft_tumbles, no_commard, relieve, relieve,r, 275,
_376) .
node_control (wheel_stops, no_cammand, relieve, relieve, r, _282, _283) .
nade_control (electrical_shutdown, no_command, relieve, relieve,r, 289

29Q) . .

L

node_contraol (batteries_exhausted, no_command, relieve,relieve,r, 396
» 397) .

node_control (charging_limited, no_command, relieve, relieve, r, _403,
_4a4)y .

node_control (power_lass_1, no_command, relieve,relieve,r, _410,_411) .

node_contral (power_loss_g, no_command, relieve,relisve,r, _417,_418) .

node_contral (catalyst_bed_heater_on, no_commard, relieve, relieve,,
_4R4, _42T) .

node_control (heavy_tracking_power, no_command, relieve, relieve,r,
_431, _433) . ’

nade_coritrol (tracking_partially_successful, no_command, relieve,
relieve,r, _438,_439) .

node_control (continucus_tracking, no_caommand, relieve, relieve, r, _44%
y 446) .)

node_contral (attitude_control_lost, no_command, relieve, relieve,r,
_452,_453) .

node_cortrol (command_not_receivable, no_command, relieve,relieve, r,
_459, _460) .

node_cortrol (a4_firing_stops,no_conmmand, relieve, relieve,r, _466,
_4B7) .

roee_control (salar_array_off_angle, ric_command, relieve, relieve, r,

. _4TZ, _474) . o

node_control (receive_antenna_off_angle, no_command, relieve, relieve,
ry, _48Q, _481) .)

node_control (shf_lest, no_commard, rel ieve,relieve,r, _487,_488) .

rede_contraol (Fuel_in_line_becomes_scarce, no_command, relieve,
relieve, r, _494, _495) .

node_contral (pitch_changes_greatly, no_command, relieve,relieve,r,
_Sei, _sez) .

node_coritrol (large_cone_develoos, no_command, relieve, relieve, r, _S28
y _S@9) . -

nade_cortrol (o4_Ffiring_contirnues, no_command, relieve, relisve,r, _Si5
y 316) . .

noede_contral (high_rate_command_cont i nues, no_command, relieve,
relieve, r, 528, _523) .

node_contral (oressure_in_fuel_line_maintains, ric_command, relieve,
relieve,r, _S29,_53@) .

nade_control (additional_fuel _vaooeizes, no_command, relieve, relieve,
r, S53&, _S37) .

node_corntrol (fuel_pressure_cdroos, no_commarnd, relieve, relisve, r, 543
y _T44) .

raace_comtral (aé_ Fires, no_conmand, relieve,relieve.r, S50, 551) .

il

funns

-

L e R LRI RN 2 Y Wl

_857,_558) .

RIIL L LESLEC, NL_COmianc, resleve, relieve, r,

riode_contral (nesa_a_takes_over_roll_yaw_centrel, no_ccommand, relieve

srelieve, v, _S64, _SES) .

node_cantrol (Fuel_contrel_inaccurate, no_command, relieve, relieve, r,
971, _572) .

node_tontrol (nesa_b_lases_earth_preserce, no_command, relieve,
relieve,r, 578, _573) .

sode_controll(multi_face_flow_in_fuel_line,nc_command, relieve, .
relieve, v, 585, _S86) .

node_control (negative_pitch_develops, no_command, relieve,relieve, r,
592, _583) .

nade_centrel (multi_face_flow_potential_in_tank, ne_command, relieve,
relieve,w, 593, _600) .]

node_contreol (limited_fuel_ir_fuel_line, ro_commarnd, relieve, relieve,
r, _606, _607) . '

nade_control (wheel _speed_drops, no_command, relieve, relieve,r, _613,

614) .

node_corntrol (main_tarnk_valve_clases, no_command, relieve, relieve, r,
_ez2e, _s821) .

ricde_control (switeh_to_redundant_ace_and_mwe, no_command, relieve,
relieve, v, _627, _628) . .

‘riode_control (cws_maode_con, no_command, velieve, relieve,r, _634, _635) .

node_contrel (nitrogen_thru_diaphraom, no_commard, relieve, relieve,r,
_641,_642) .

node_contral (recavery_srocedure_bepins, no_command, relieve, relieve,
r, 648, _643) .

rwde_control (afp_trips, no_command, relieve,relieve, r, 655, _656) .

node_contrael (nesa_a_has_earth_oresence, no_command, relieve, relieve,
r, _B62, _B663) .

rade_cantrol (Fuel _tank_temo_cycles, rno_command, relieve, relieve, r,
_663, _67a) .

node_control (resa_a_output_saturates, no_command, relieve, relieve, r,
_E76, _8677) .

node_ceontrol (nesa_a_saturation_1, no_command, relieve, relieve, r, _683

684) .
¥ -
nade_cantrol (resa_a_satuwratior_2, no_commarnd, relieve, relieve, r, _692
6391) .
Y -

node_corntrol (mirrer_stuck, no_command, relieve, relieve,w, _£37, _638)

nade_control (and_electronics, no_command, relieve, relieve, r, 704,
_7e5) .

‘viade_control (or_electronics, no_command, relieve,relieve, v, _711, _712
) .

node_caontrol (secarn_mechanism_fails, no_command, relieve, relieve,r,
_7:.8,_713) .

nade_contral (scan_motor_fails, no_command, relieve, relieve, r, _725,

7e6) .
node_control (thermal_distortion, no_commarnd, relieve, relieve,r, _732,
733) .

node_control (excessive_nesa_a_opower_cycling, no_commard, reliesve,
relieve,r, 733, _74Q) .

node_contrel (tank_pressure_low, no_command, relieve, relieve, v, _746,
_747) .

node_control (nitroger_in_hydrazine, no_command, relieve, relieve, r,

. _753, _754) .

node_cordrol (spacecraft_iost, no_command, relieve, relieve, w, _7&0,
_761) . .

rde_control (telemetry_lost, no_command, relieve, relieve, r, _767, _768
) .

rizde_contval (o4_previcuwsly_firved, no_commarnd, relieve, relieve, r, _774
. 775 .

rivde_contval (diapnragm_leaks, nic_command, relieve, relieve, v, _781,
_7az) .

vade_oonmtrol (nitrozern_So_oressuwre, no_coonmand, relieve, relieve, r,
_788,_789) .

R tamps ki me v ol e memarasvm am Y Smem sem e some.

A -4Y

”

-

| s

b

. | .
-

_728) .
node_contral (Ffugl_in_tank_low, no_command, relieve, relieve,r, 82,

——- _8e3) .

node_ cont»ol(heat _dissipation_unever, nc_ command,relxeve,relxeve,r,
aa9, _Bl@).

nade_cantrol (sur_reflections, no_command, relieve,relieve, r, 816,
_817) .

rmmdge_control {shf_radiation, nc_ccommand, relieve, relieve, r, _B8&3, _824)

node_cantrel (ungtable_pivot, no_ceommand, relieve, relieve, r, 832, 831

) .

node_control (mechanism_contamination, no_commard, relieve, relieve,r,
_az7,_8z8) .

rode_control (motor_fails, mo_commarnd, relieve, relieve, r, _844, _845) .

noce_control (nator_overheats, no_command, relieve, relieve, r, _831,
_8s2) .

rode_control (control_electronics_fails, no_command, relieve, relieve,
r, 858, .85%) .

node_contral {emi_teo_electronics, no_ command,rel;eve,relzeve,r _BET,
_BE&) .

node_contvul(nuwer_needs_to_be_cut_to_eliminate_autaut,no_command,
relieve, relieve, v, 872, _873) .

node_control (sun_position_always_changes, no_command, relieve,
relieve, r, _873, _882) .

node_cantrol (ancmalies_relate_to_sun_pos, no_command, rel ieve,
relieve,r, B88&, _887) .

nnde_contral (oower_cut_to_eliminate_cutoud, no_command, relieve,
relieve,r, _833, _8%4) .

nade_coritrol (nesa_a_output_must_be_cut_out, noe_command, relieve,
rel:eve,r,_BDB, 01) .

node centrol (uvs_trios, no_ command,relxeve,entrust,r,_u@7, IQ8) .

node_status(excessive_nesa_a_nowev_cycling,connected,act1ve,_3&6,
327, _228, unchanged, breadth, relieved, w) .

node_status (thermal_distertion, connected, active, _234, _235
urichanged, breadth, relieved, w) .

node_status (scan_motor_fails, conmected, active, _342, _343, _344,
uncharnged, breadth, relieved, w) .

noce_status (scan_mechanism_fails, connected, active, 350, _38¢, _Z58,
uncharnoed, breadth, relieved, w) . '

node_status (or_electronics, connected, active, _358, _253, _361,
unchanged, breadth,relieved,w) .

node_status (and_electronics, cormected, active, _386, 387, _368,
unchanped, breadth, relieved, w) .

node_status (mirror_stuck, connected, active, 374, _378, _37E, uncnhanced
y breadt h,relxeveu,w) .

node_status (charped_energy, connected, active, _382,
urnchanped, brepadth, relieved, w) . .

node_status(nesa_a_saturation_g, cormected, active, _392, _331, 3233,
uricnangped, breadth, relieved, w) .

node_status (nesa_a_saturation_i, connected, active, _3398, 399, 4020,
unchanged :readth,welzeved w) .

node“status(nesa_a_output_saturates,ccnnected,active,_AWS,_#@?,
_4@8, unchanged, breadth, relieved,w) .

node_status {fuel_tark_temp_cycles, connected, active, _4l4, _4135, _416,
uncharviped, breadth, relieved,w) .

rode_status (tanik_pressure_low, connected, active, 423, _433, _4&4,
unchanged, breadth, relieved, w) .

node_status {resa_a_has_earth_oresence, connected, active, 432, 431,
_432, unchanped, breadth, relieved,w) .

node_status(afp_trios, connected, active, 438, _ 433, 449, unchanoed,
breacdth, relieved, w) .

node_status(recavery procedure_pecing, cormected, active, 446, _447,
_448, unchanged, breacth, relieved, w) .

roce_status (nitragev_thry_diaonrapm, conrected, active, 454, 45T,

LTE greoanrec, 2esacin, selisven. wl

[

83, _384,

€.

’

¥

GEAUL. iy VR LB VRC, W .
nace_status(switch_to_redundant _ace_and_mwe, conrected, active, _47Q,
471, _478, urchanged, dreadth,relieved, w) .
nooe_status(main_tank_valve_closes, conrected, active, _478, _479, _48Q
y uncharnged, breadth, relieved, w) .
noce_status (unspecified_pas_in_tank, conrected, active, _486, _487,
_488, unchanged, breadth,relieved, w) .
rode_status (unresolved_nitrogen_in_tank, connected, active, _434, _495
_4%9€, unchanged, breadth,relieved,w) . _
ode_ status(n;trouen in hydra-1ne,connected,act:ve,_Sm 50¢, 4@4,
unchanged, breadth, relieved, w) .
ricde_status (wheel _speed_drops, conmected, active, _510, _S11, _S512
unchanped, breadth, relieved,w) .
noade_status (limited_fuel_in_fuel _line, conrected, active, _5i18,_519,
S22, urichanged, breadth, relieved, w) .
node_ status(mult: face Flow_potential_in_tank, connected, active,
_S 6,_5h7, S,Unchanued,Dreadth.rel1eved w) .
node_status(negative_cztch_develops,connected,act1ve,_434,_535,
_336, uncharced, breadth, relieved, w) .
nooe-status(multi,Face_Flow_in_Fuel_line,connected,active,_S#E,
" _543, _S44, uncharped, breadth, relieved, w) . '
nace_ sta*us(nesa b_loses_earth_oresence, connected, aetxve,_Sum,_551
' ug_,unchanged breacth,relieved, w) .
ruode_ status(Fuel _contraol 1naccurate,connected active, 558, _S59,
_56@, urichanged, breadth, relieved, w) .
nade_statms(nesa_a_taxes_nver_rnll_yaw_controi,connected,active,
_SE€, _567, _T68, urichanged, breadth, relieved, w) .
nade_status (roll_yaw_commard:issued, connected, active, 574, _S75
_576, uncharnged, breadth, relieved, w) .
node_status (o4_fires, connected, active, _582, _S83, _584, unchangped,
breadth,relieved,w) .
rincde_status (fuel pressure_drops, connected, active, _59@, _S91, _532&,
unchanged, breadth, relieved,w) .
nocde_status(additional_fuel_vaporizes, connected, active, _S98, 5993,
_62@, unchanped, breadth, relieved, w) .
niade _status (oressure_in_fuel_line_maintains,connected, active, _6E6,
_B&a7, _6a8, uncharnped, breadth, relieved, w) .
rnode_status (hiph_rate_command_continues, cormected, active, _614,_6:15
y E16, unchanged, breadth, relieved,w) .
rxce_status(cé_firing_continues, connected, active, _622, _623, _624,
unichanged, breadth, relieved, w) .
node_status (large_cone _develoos, connected, active, _£30, _631, _633,
urchanged, breacth, relieved, w) .
wiace_status(niteh_chanpes _greatly, connected, active, _&38, _€33, _640Q,
unchanged, breadth, relieved, w) .
roce_status(fuel _in_line_becomes_scarce, ccnrected, active, _846, _647
» 648, urichanped, breadth, relieved,w) .
ndde_status(shfﬁlost,eonnected,active,_654;_655,_656,unchanged,
. areadth, relieved,w) .
node_ status(recezve antenna_off_anple, connected, active, _663, _E63,
_n64,uﬂcnangea breadtn relieved,w) .
node_status(solar_arvay_off_angle,cannected,active,_B?G,_B?l,_B?E,
unchanged, breadth, relieved,w) .
nece_status(cé_Firing_stops,cornmected,active, _678, 679, _680,
unchanced, breadth, relieved,w) .
node_status (command_not_receivabile, cormected, active, _686, _687, _686
s Wnichanped, breadth, relieved, w) .
node_status(attitude_control _lost, connected, active, _694, 693, _696,
unchanged, breadth, relieved, w) .
nofe_status (continuous_tracking, connected, active, _7@28, _7@3, . 724,
uncnanped, braacth, relieved, w) .
roce_ssatus(Tracking_sartially_successful, cornectec, active, _71
71, 7 l_.unc:anged,nreacth,relievec,w) .
~ree_status (Nneavy_sracuing_ power, convnecsed, active, 788, 7:%, 72e,
unehantec, :"Dahtﬂ,“e<\e‘"ed,w) -

- . te s e et mE eme s omaT= e “vt e e e o we

54

—

—y

”

-

. r- { ’

node_status(uvs_trips,connected,active,_766,_76%;;5&3::;53;5@;&,

, uricharvigec, oreadgtn, relisvec, w) .
rnode_status (power_less_g&, connected, active, _734, 735, _726, unchangec
. s Oreadith, vrelieved,w) .
rode suatus(puwer less_1, conmected, active, 748, 743, _744, unchanped

s Oreadih, reixeved,w) .
nocde_status (charginp_limited, connected, active, 750, 751, 752,

urichariged, breadth, relieved, w) .
node_status (batteries_exhausted, connected, active, 758, _753, 760,

unchanged, breadth,relieved,w) .. ._. _

breadth, relieved, w) .

node_status (electrical _shutdowr, connected, active, 774, 775, _77&,
unchanped, breadth, relieved, w) .

ncoe_status (wheel_staps, connected, active, 782, 783, 784, unchanged,
breadth, relieved,w) .

node_status (spacecraft_tumbles, connected, active, 730, 731, 732,
unchanged, breadth, relieved,w) .

rnoce_status (heaters_ineffective, connected, act:ve,_7d8,_799 _8ua,
unchanged, breadth, relieved,w) .

node_status(spacecraft_mechanically_Fro:en,connected,aetive,‘Bme,
_Bwo7, _8ws, urnchanped, breadth, relieved,w) .

node_statuslantenna_ineffective, connected, active, 814, 815, 816,
unchanced, breadth, relieved, w) .

node_status (electronics_innert, connected, active, _882, _823, _824,
unchanged, breadth, relieved, w) .

node_status (power_cut_to_elimirate_output, cormected, active, B8ZQ,
_831, _828, unchanged, breadth, relieved,w) .

nede_status (telemetry_lost, connected, active, 838, _833, _840,
unchanned, breadth, relieved, w) .

node_status (spacecraft_lost, connected, active, 846, 847, _848,
uncnharged, breadth, relieved, w) .

rnoce_stasus (multi_face_flow_iv_line, connected, active, 854, _8SS,
_85&, unchanged, breadth, relieved, w) .

node_status (impurities_in_tank, connected, active, 862, _863, _8&4,
unchangead, breadth, relieved, w) .

node_status (o4 _previousliy_fired, connected, active, 873, _871, _8782,
uncnanoed, breadth, relieved, w) .

nade_status (ciaphraocm_ -eaks.connected,act;ve,_B7B,_B79, _88a,
unchanped, breadth,relieved, w) .

node_status(fuel _in_tarnk_ 10w.connect9d,act1ve. .8ae, _aa7v, _aas,
uncharnged, breadth relieved,w) .

node_status(Heat_dissiﬁation_uneven,cnnnected,active,_sgk,_ags

_8%&, urichanced, breadth, relievec, w) .

naoe_status‘n trogen_to_pressure, connected, active, 502, _T2E, 204,
urichanoed, breactn, relieved, w) .

riode_status (nesa_a_nutput _must _be_cut _out, connected, active, _31@,
_911, _91&, unchanped, breadth, relieved, w) .

node_status(power_needs_to_be_cut_to_eliminate_outoﬂt,conne:ted,
active, 918, 913, _920, uncnarnged, breadth, relieved, w) .

mace_status (eantral _electronics_ _fails, cormected, active, 286, %27,
_928, unchanged, breadth, retievad, w) .

necde_status (emi_to_eiectroniecs, connected, active, 334, 335, 326,
unchanged, breadthy relicved, w) . .

node_status (shf_radiation, conmected, active, 343, 343, _344,
unchanped, breadth, relieved, w) .

noce_status (sun_reflections, cannected, active, 550, 951, _335E&,
urichanged, breadth, relieved, w) .

node_status (mechanism_contaminatien, connected, ac*;ve, 258, _B93,
_969, unchanged, breadth, relieved, w) .

node_status(motor_Fails,connected,active,_966,_967,_968,uﬂchahged,
oreadth,relieved,w) .

rade_status (motor_overheats, connected, active, 374, _375, _37¢,
urnchanoed, breadth, relieved, w) .

mace_status (umstable_pivot, connected, active, 382, 9383, _S84,
nrcnanced, breadth, relieved, w)

A -F§l

~ '

@ TSy A ASU DR AU G g TR iRV Ly W) .
nede_status (sun_pasition_always_chanpes, cormected, active, _998, _999
: - . 1022, unchanged, breadth, relieved, w) .

endnicd /% unriamed_module %/ .

HE N . I EE E .

P

h

o

-

$ ty hlkb. lop

/% */ Appendin': A.4 HLKB Listings
/% High Level HKnowledpe Base %/
/% * s

hlks_action(warning, NODE) :-~
node_status (NODE, _y _styPy_s_y_y_y W)y, number(P),
decide_true (NDDE, _,P), pet_actien_list (NODE,ACTION_LIST),
— check_warning (ACTION_LIST) .— - TTTITmIN T smesmt s e e e
hlks_action(no_action, NODE) :=-
hlks_action (suspend, NODE) :~
rede_contral (NODE, T, _, ENTRUST, _,y _,), ne(l, suspend),
string (ENTRUST), equal (ENTRUST, entrust),
rniode_status (NODE, _y _ytyFy _y vy _y s)y number(f),
decide_true (NODE, _,P), get_action_list (NODE,ACTION_LIST),
check_warning (ACTION_LIST) .
hlks_action(beam, NODE) :~-
hlks_action(breadth, NODE) :~
riode_status(NODE, _, _y _y s 1 _y breadth, _, _) .
take_hlks_action (NODE, warning) - .
write ("WARNING: *% ("), write(NODE), write(") #x"), nl, nl,
write ("HLKS Autornomy Control: probe("), write(NODE),
write("). "), nl, probe(NODE),
change_node_status_for(NODE, _, _y sy _yy —1 —y_sdome) .
take_hlks_action(NODE, no_actiocn) . ‘
take_hlks_action(NODE, suspend) :-
suspend (NODE), write("HLKS Autonomy Control: suspend("),
write (NOQDE), write(")."), nl, write(" ("), write(NODE),
write(")"), write(" is autonomously suspended by HLKS. "),
nl .
take_hlks_action (NODE, breadth) .
take_hlks_action (NODE, beam) :-
(ask_conti_beam (NODE, R), /, equal (R, y), nade_structure (NODE, _,
evidence(E_LIST), _)), flexible_breadth_first(E_LIST), /;
/. :

>
]

a7

QY

m—

|

$ ty 1llkb.log .

/e T T o :

/% Low Level Knowledge Base 9 Appendix A.5 LLKB Listings
/% L]

llks_command (suspend) -
node_status (X, connected, actxve,_,_,_,_,_,_,_),
node_control (X, suspend, _, _,_,_,_) .

‘IIRS command (activata) = -

node_control (X, resune, _, _,) .

-t ¥ -
llks_action(suspend) :-—
suspend_l1lks, initialize_cortrol (_,connect, _, _y_,
llks_action(resume) ==
resume_llks, initialize_control(_,resume, _y_y_y_y_) «

) .

A - 54

wiin

system for the spacecraft...

DATE DUE

DATE DE RETOUR

LOWE-MARTIN No. 1137-

