
P --1
91
C655
G6456
1985

•

GOMI, T.
--A proof-of-concept experiment
system for the spacecraft autonomy
management system (SAMS).

Elliedo, Government Gouvernement
of Canada 	du Canada 91

C655

G6456

1985

Department of Communications

DOC CONTRACTOR REPORT 	 DOC-CR-SP_85_045

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

TITLE: A PROOF-OF-CONCEPT EXPERIMENTAL SYSTEM FOR THE SPACECRAFT AUTONOMY
MANAGEMENT SYSTEM (SAMS)

AUTHOR(S): T. Gomi
N. Nakamura

ISSUED BY CONTRACTOR AS REPORT NO: 	AAIS-84-004

rrie"TitrY Canada

Libraiv Queen

Jun- 2 0 1996

Industrie Canada

Bibliothèq.ue Queen

PREPARED BY: Applied AI Systems, Inc.
P.O. Box 13550
Kanata, Ontario
K2K 1X6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 06ST.36001-3-4454

DOC SCIENTIFIC AUTHORITY: R.A. Millar

CLASSIFICATION: UNCLASSIFIED

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: 	6/5/85

CAnDA

1985

UCRin - CTII

/
T.? Gomi /

N. Nàikàmu'ra

Proof-of-Concept Experiment System

for the

Spacecraft Autonomy Management

System (SAMS)

Technical Report No. AAIS-84-004

Applied AI Systems, Inc.
P.O. Box 13550

Kanata, Ontario
K2K 1X6

Under DSS/DOC contract 06ST.36001-3-4454

Version 20APR85

1

L.?

1

1

1

gVH0 	 1

1-1

2- 1

:2-1
2-3

3-1

CONTENTS

Page

Glossary iii

Acknowledgements

Summary 	 Vi

1. Introduction

2. The SAMS Proof-of-Concept Experimental System

2.1 Objectives of the Experiments
2.2" Structure of the POC Experimental System
2.3 Methods of the Experiments

3. The High-Level Knowledge-based System (HLKS)

3.1 Objectives of the HLKS 	 3-1
3.2 Functional Structure of the HLKS 	3-1
3.3 Operation of the HLKS 	 3-3

3.3.1 The HLKS 	 3-3
3.3.2 The HLKS Interface and the OIU 	7-5

3.3.2.1 Interface with the OIU 	3-5
3.3.2.2 Interface with the LLKS 	3-7

3.3.3 The HLKS Execution Control 	3-7
3.3.4 The HLKS Autonomy Control 	3-9

3.3.4.1 The operation of the HLKS Autonomy 3-9
Control

3.3.4.2 The search command 	3-14
3.3.4.3 The continue command 	3-15
3.3.4.4 The terminate command 	3-15

3.3.5 The HLKS Command Module 	3-16
3.3.5.1 The suspend command 	3-16
3.3.5.2 The activate command 	3-16
3.3.5.3 The entrust command 	3-17
3.3.5.4 The relieve command 	3-17
3.3.5.5 The initialize command 	3-17
3.3.5.6 The check command 	3-18
3.3.5.7 The find_top command 	3-18

3.3.6 The HLKS Explanation Module 	3-19
3.3.6.1 The report command 	3-19
3.3.6.2 The probe command
3.3.6.3 The assess command 	3-27
3.3.6.4 The recommend command 	7-25
3.3.6.5 The explain command 	3-26

4-1
4-1
4-3
4-3
4-4
4-4
4-5
4-6
4-7
4-14
4-14
4-17
4-18
4-19

5-1

5-1
5-1
5-1

5-4
5-5

A.1 HLKS Listings
A.2 LLKS Listings
A.3 COMKB Listings
A.4 HLKB Listings
A.5 LLKB Listings

A-1
ri

A-33
A-53
A-54

4. The Low-Level Knowledge-based System (LLKS) 	4-1

4.1 Objectives of the LLKS
4.2 Functional Structure of the LLKS
4.3 Operation of the LLKS

4.3.1 The LLKS
4.3.2 The LLKS Interface Module and the EIU

4.3.2.1 The interface with the HLKS
4.3.2.2 Interface with the EIU

4.3.3 The LLKS Execution Control
4.3.4 The LLKS Inference Engine
4.3.5 The LLKS Explanation Module

4.3.5.1 The disp_tree command
4.3.5.2 The disp_ref command
4.3.5.3 The disp_exp command 	.
4.3.5.4 The check_loop command

5. The experiments

5.1 The LLKS tests and experiment
5.1.1 The objective of the experiment
5.1.2 The method of experiment
5.1.3 Data used in theexperiment
5.1.4 The results of the experiment
5.1.5 Discussion

5.2 Testing of the HLKS Autonomy Control search mechanism
5-10

5.2.1 The objective of the test 	5-10
5.2.2 The method of testing 	5-10
5.2.3 Data used in the experiment 	5-12
5.2.4 The result of the experiment 	5-12

5.3 Automatic generation of warning messages 	5-15
5.3.1 The objective of the experiment 	5-15
5.3.2 The method of the experiment 	5-15
5.3.3 Data used in the experiment 	5-17
5.3.4 Result of the experiment

5.4 An autonomous control loop 	 5-19
5.4.1 The objective of the experiment
5.4.2 The method of the experiment 	5-19
5.4.3 Data used in the experiMent 	5-20
5.4.4 Results of the experiment 	5-22

6. Conclusions

References

Appendices

6-1

R-1

A-1

GLOSSARY

AASC Advanced Autonomous Spacecraft Computer, a spacecraft
computer systèm concept developed at CRC (CRC/AASC)

ACC 	Autonomy Control Cluster (AASC/SAMS/ACC)

AI 	Artificial Intelligence (Computer Science/AI)

AOCS Attitude 	and 	Orbiting 	Control 	Subsystem
(Spacecraft/Subsystems/AOCS)

COMDB COMmon Data Base (AASC/SAMS/POC/COMDB). A data base
accessed by both the LLKS and the HLKS as a short term
memory

COMKB COMmon Knowledge Base (AASC/SAMS/POC/COMKB). A
Knowledge base accessed by both the LLKS and the HLKS
as a long term memory of knowledge

CRC 	Department of Communications, Communications Research
Centre (DOC/CRC)

DEVISOR
JPL's domain independent purpose automated planner
schedular (JPL/EPEERI/DEVISOR)

DOC 	Department of Communications, Government of Canada

EEM 	External Environment Manager (AASC/SAMS/AAC/EEM) A
SANS function that manages the spacecraft's response
to physical environmental parameters from external
sources

EIM 	External 	Interface Manager (AASC/SAMS/ACC/EIM) A
functional component of the SAMS' autonomy management
cluster. Manages the autonomy management aspects of
dealing with systems external to the spacecraft.

EIU 	Environment 	Interface Unit (AASC/SAMS/POC/EIU) An
element of the SAMS POC system that generates
simulated environmental conditions.

EMES Energy Management Expert System. 	An expert system
designed for managing on-board energy consumption by
spacecraft subsystems (martin Marietta)

FAITH Forming And Intelligently Testing Hypotheses, a JPL
expert system to diagnose spacecraft malfunctions
(JPL/PEER/FAITH)

iii

FIES Fault 	Isolation Expert System, an onboard fault
- isolation expert system for automating on-board power
subsystem (Martin Marietta)

FTM 	Fault-Tolerance Management, a generic name given to
the lower layers of the AASC hierarchy (AASC/FTM)

HLKB High Level Knowledge Base (AASC/SAMS/POC/HLKB). A
knowledge base for the LLKS

HLKS High Level Knowledge-based System (AASC/SAMS/HLKS)

JPL 	Jet Propulsion Laboratory, California Institute of
Technology (JPL)

KBS 	Knowledge-Based System (AI/KBS). Synonym for Expert
System, except in the KBS the knowledge source is not
'necessarily attributed to an expert.

LLKB Low Level Knowledge Base (AASC/SAMS/POC/LLKB). A
knowledge base for the LLKS.

LLKS Low-Level Knowledge-based System (AASC/SAMS/LLKS)

OIU 	Operator Interface Unit (AASC/SAMS/OIU). An element of
the SAMS POC system which interfaces the system with
the operator.

POC • Proof of Concept

SCC 	Subsystem Control 	Cluster 	(AASC/SAMS/SCC). 	An
adaptation 	of 	conventional 	on-board 	logistical
subsystems for the SAMS architecture.

PEER Planning and Execution with Error Recovery, a blanket
AI system with the objective of automating spacecraft
operation (JPL/PEER)

SA 	Subsystem Administrator (AASC/SAMS/SACC/SA)

SAMS Spacecraft Autonomy Management System, a substructure
of the hierarchical design of the AASC (AASC/SAMS)

SOM 	Spacecraft General Manager (AASC/SAMS/ACC/SGM)

i v

Acknowledgements

The Spacecraft Autonomy Management System (SAMS) was
developed by the authors for the Communications Research
Centre (CRC) of the Federal Department of Communications
(DOC) under contract to the Department of Supply and Services
(Contract Number 06ST.36001-3-4454). Authors are thankful for
the support given by Dr. S.P. Altman and Mr. R.A. Millar of
the Communications Research Centre. They would also like to
express their thanks to Mr. Dave Andean, also of the CRC, who
provided them with knowledge of spacecraft operations
management, and uponwhose expertise the experiments described
herein depended.

Summary

The SANS is conceived as the top layer of the Advanced
Autonomous Space Computer (AASC) hierarchy developed at the
CRC during the past three years. The AASC has the capacity
for further upward expansion. The SANS layers are
characterized by their use of Artificial Intelligence (AI)
techniques. The SANS is described in the report "Functional
Design of a Knowledge-based Spacecraft Autonomy Management
System (SANS)" (Technical Report No. AAIS-84-001, Applied AI
Systems Inc.).

This report describes a set of expert systems
developed as a Proof of Concept (POC) experimental system,
and a series of experiments conducted using them. The two
expert systems are called the Low-Level Knowledge-based
System (LLKS) and the High-Level Knowledge-based System
(HLKS). They are designed to prove the capability of
autonomously managing on-board anomalies, the premise of the
SANS concept. The experiments involved testing the expert
systems separately and testing operations run on the combined
expert system complex.

v i

1. Introduction

The SANS concept was developed as a method for

automating the management of a spacecraft. It can be applied
to spacecraft autonomy management tasks, the like of which,
conventional technology has been unsuccessful in automating.
To compensate for the shortcomings of existing automation
approaches which are based . on classical control system theory
theory, a new set of system control methodologies was
introduced: a collection of knowledge-based systems or expert
systems. Substantial structural and other renovations to the
existing expert system architecture was necessary to make the
knowledge-based expert systems acceptable as the POC

experimental system. The changes were necessary because the
existing systems are typically based on a fixed, narrowly
defined mode of operation which differs substantially from
the domain of autonomous spacecraft management.

As the need for autonomous spacecraft management

increases, the search for new approaches to manage spacecraft
operations intensifies. Many working in the field of

spacecraft autonomy have discovered the need to investigate
AI as a tool for autonomy management. There are several
similar but mostly unrelated system developement efforts
currently underway, mostly in the United States. Some have

reached the stage of constructing an experimental system and
actually conducting experiments [Wagner 93, 84], while others
are still in the planning stage [Mitchel and Lemmer 84]

[Dickey 84]. Very few have reached the stage of prototyping
as of this writing, except for a few military systems in the
U.S., details of which are not available.

Most of these development groups are running their
experiments on a simulator which typically is a

software-oriented computer simulation CSauers 841 [B ein 84].
This was the approach chosen for the testing of the SAMS POC

system.

In addition to autonomy management systems for
spacecraft, there are similar autonomy management systems
under development for avionics applications [Cross 04] [Milne
84] [Schundy 84] Ceirad 84]. There are more similarities than
differences between these systems and spacecraft autonomy
management systems. The developers are concerned with
building a system that operates in a dynamic, remote
environment in order to achieve objectives similar in their
attributes to those of the spacecraft autonomy systems. For

that reason, their developments are worth monitoring.

Experiments built and conducted by Pisano and Jones
[Pisano and Jones 84] on a dedicated computer system are
significant in their successful demonstration of the
capability of AI to control the plan guided behavior of an
autonomous system. - The project is also demonstrative of a
proof of concept model which has had substantial engineering
efforts already expended towards its eventual full scale
implementation. Anderson and his group at Texas Instruments
have also constructed and run an experiment in a similar
domain, but using a different approach, and with less
concrete results [Anderson, et al 843.

There are also a number of projects which involve the
development of autonomous ground or underwater vehicles. The
mode of operation and the functional architecture of autonomy
management systems for these vehicles are again very similar
to those of spacecraft or aircraft autonomy management
systems. A project at the Naval Ocean Systems Center by
Harmon and his group [Harmon 83] [Harmon, et al 84] is
probably the most advanced among systems in this application
domain. A convincing architecture for such a system has been
defined and presently the implementation of two systems which
realize the design is underway. Generally speaking, the
architecture and the operating principles of the NOSC system
are strikingly similar to those of the SAMS defined in the
functional design. Other autonomous vehicle projects of
significance which intend to build experimental systems for
testing are those by the University of New Hampshire
CBlidberg, et al 833, and by the Hughes Research Laboratory
[Bullock, et al 83] .

The SAMS adopted a combined layered and distributed
architecture, as detailed in the report. In the proof of
concept system, two expert systems are developed representing
two of the key layers. They are placed in two Knowledge
Engineering layers and named accordingly: the High-Level
Knowledge-based System (HLKS) and the Lower-level
Knowledge-based System (LLKS). A two-tiered expert system
architecture was adopted to accomodate two conflicting
requirements: the need to report to human operators and the
requirement to interface with lower level system elements
which in turn interface with the environment.

The mode of operation of a human operator, while
highly flexible, is typically asynchronous, relatively slow,
macroscopic, often irregular, and limited in judgemental and
dexterous precision. An enhanced goal-driven reasoning scheme
was adopted to interface the operator and overcome these
drawbacks. The lower level machinery on the other hand,
typically functions synchronously to inputs, fast and

regularly, with a high degree of precision, but greatly lacks
in flexibility. An approach called data fusion as a form of a
forward reasoning mechanism was employed at the heart of the
lower level expert system to interface with the lower level

system elements.

One important aspect of an autonomy system is that it
must cope with very dynamic environmental phenomena which

change rapidly. It thus must be constructed as a real-time

system. A successful and definitive notion of a real-time AI
system has yet to be developed and proven while such system
formalism has been well developed in conventional computing

systems during the past two decades. One obstacle is the
coordination of the distinctive operational characteristics
of the human and that of the lower level machines mentioned
above which must be provided. Many of the projects noted

earlier try to cope with this problem in various but often
drastically different ways. Again, the approach taken by the
NOSC group, which has its root in Carl Hewitt's distributed
control system model [Hewitt and Baker 77] and the
hierarchical architecture proposed by the HEARSAY projects
[Erman et al GO] [Lesser & Corkill 8 1] seems superior.

The lack of appropriate hardware to carry out the
real-time execution of an autonomy management system is

another obstacle to be overcome. While the approach for
selecting hardware and subservient system software differs
greatly among projects, the need for more computing resource
in a form appropriate to the operation is recognized by all
concerned. Various efforts to develop such hardware and its

accompanying system software seem to belong to so-called

Fifth Generation Computer System (FGCS) projects. There are a
number of different approaches proposed in this area.

However, the most promising ones for the next several years
seem to be those based on either dataflow machine or
reduction machine architectures. 	These massive parallel

computers are to be constructed using emerging Ultra Large
Scale Integrated circuit (ULSI) technology, which include

supporting developments in gallium-arsenide (GaAs) junctions
and submicrometer line width microcircuits to realize roughly
a 10,000 fold throughput improvement in the next several

years. 	This advanced hardware will be built mostly for and
used 	in non-numerical computations, the basic mode of

operation of AI computers.

The availability of such powerful hardware is said to
be at least five years away. In the mean time, it is expected
a great deal of research will have to be conducted on the
other issues described earlier, which, in many respects, are
harder to solve. For this reason, the current use of
non-realtime hardware and a slow software simulator for the

1 - 3

• purpose of developing fundamental real-time applications is
justified as an acceptable method of study. All existing
real-time expert systems are running slower than real-time,
except for IBM's YES/MVS [Hong et al 843, which performs the
functions of an operator of a large main-frame computer, and
Pisano's navigation expert system mentioned above. The former
deals with a problem which poses relatively non-critical time
constraints while the latter runs a simplified version of the
simulation on a powerful AI computer. However it cannot be
implemented for the intended target environment for at least
two years.

2. The SAMS Proof-of-Concept Experimental System

2.1 Objectives of the Experiments

A series of experiments have been planned and
conducted using the POC experimental system to test its
proper functioning and to demonstrate the effectiveness of
the SAMS concept. In order to realize these goals, the
following specific requirements have been established:

(1) To test the appropriateness of a two-tiered expert system
architecture as an effective method of asynchronously
coordinating 	the 	real-time physical 	operational
environment with the operator's environment using an
Artificial Intelligence approach,

(2) To define a real-time expert system architecture as an
effective structure for the LLKS,

(3) To define and test the HLKS as a management expert system
which oversees the functioning of the autonomy system,
and using it to identify attributes of an efficient high
level expert system formalism which interface with human
operators,

(4) To test the performance of the LLKS as a simulated
real-time expert system,

(5) To demonstrate that a knowledge-based control loop can
actually detect, report, analyze, and correct an on-board
anomaly.

2.2 Structure of the POC Experimental System

Figure 2.1 shows the over-all functional structure of
the POC experimental system. It contains the HLKS, the LLKS,
the COMmon Knowledge-Base (COMKB) for storing the fault tree
and object level diagnosis and recovery knowledge, a
knowledge base for the HLKS (HLKB), a knowledge base for the
LLKS (LLKB), the COMmon Data Base (COMDB) to contain the
results of the LLKS' activities and to provide a search space
for the HLKS, the Environment Interface Unit (EIU), and the
Operator Interface Unit (OIU). The main module of the SAMS
POC coordinates the operation of these modules. The main
module also controls an initialization module, a module for
restoring the internal state of the POC at the beginning of
each simulation cycle, and a set of input generation modules
employed to create simulated fault inputs.

0 I U

Autonomy
management
knowledge

1HLKB1
Operator interfacing

es.

L 1 	

>: K 1 Inference Engine
1 	S 1 	

•

Event propagation

1. 	.1 Experiment control and
11 Console 11 display of results
2 2 	 1 	 11 21
1 	 1 (ground controller's

console)

1 	. 	. 	 . Explanation;
, 	1 H : Explanation Modulel Report generation a
2 	1 	L 	1 	 1 ,
'---->1 K 1 Command Module 	1 Command execution

: 	S 	: 	 1 	 .

L 	1 Autonomy Control 1 Search mechanism;
	 ' Autonomous control

	

. 	• 	. 	.
. Domain 	. 	. 1 	1 Instantiated

	

. 	,

	

knowledge 1 	COMKB 	1 1 	COMDB 1 fault tree . 	. 	 . t 	I 	.

	

I 	 1 	I 	 1

	

n 	 r 	 n 	
'

V

1 L 1 Execution Control 1

1 Explanation Module!

1 LLKB 1

E I 1.1 	1 Environment generation
Propagation
control
knowledge

1. 	 .1
11 Console 11

21
2* 	 2*

•
1' 	 '1
2 	 2 2

Simulated environmental
parameter input

Figure 2.1 Functional Structure of the SAMS POC
experimental system

en 	 en

The HLKS is a goal-driven expert system for high level
fault processing and for managing autonomy procedures. It
supervises fault detection, fault containment, fault
analysis, and fault recovery processes. The generation of
various reports is arso controlled by this expert system. The
HLKS is also involved in altering the contents of the
knowledge bases, though this feature is not implemented in
the present POC system.

Being a goal-driven expert system, the HLKS searches
through an instantiated fault tree, which was developed in
the COMKB by the LLKS. The controller may specify the search
mode of the HLKS and give other instructions to the HLKS
through the OIU. Rules in the HLKB can also determine a
search mode. The knowledge-based system currently supports
the depth-first, a width-first, a beam, or a mixture of these
search modes. The HLKS interfaces the operator through the
Operator Interface Unit (OIU). Section 3 describes the HLKS

in further detail.

The LLKS is a data/event driven expert system
operating in the domain of low level fault handling. It
detects and analyzes faults caused by on-board and external
environmental changes and on-board or ground system
malfunctions. When authorized by the HLKS, and ultimately by
the controller, it may perform selected low-level fault
recovery functions. 	The LLKS obtains its inputs from the
Environment Interface Unit. 	The EIU generates simulated
environmental conditions using either internal generators or
inputs entered by the experimenter. Whenever a ne w event of
significance is detected by the LLKS, and its effect
propagated in the COMDB, the LLKS notifies the HLKS so that
the high level expert system acting as a manager can conduct
its own investigation into the COMDB. Details of the LLKS are
described in Section 4.

2.3 Method of the Experiments

The main control flow of the POC experimental system
is shown in Figure 2.2. Following the system wide
initialization, which includes setting up input modes for
each input terminal, the main simulation loop begins. During
one simulation cycle, the EIU generates assertions for all
input terminals. These input events are propagated through
the inference network by the LLKS. If the LLKS notices a
significant event that may threaten the normal operation of
the system, it notifies the HLKS and the HLKS begins its
investigation. Each time it discovers a serious fault during
the investigation, it issues a warning to the operator (a
ground controller) and issues a system prompt. The operator
may enter any of the system commands.

+ 	.

LLKS - -C Propagate events

(diagnosis cycle)

HLKS 	1- - -I Investigate
:_ faults

E SAMS POC Experiment

includes:
	. I Interactive

: System Initialization I -I environment
 	I_ set up

(propagation cycle) 	1

• 	 >I

I EIU Session 1- - -{ Set Input events

/ AnY
/ fault(s)\ 	(normal operation)
	 >.

. / No
Yes 1

>I 	(system faulty)

..

. 	 .

. 	
.
,

/ 	\ 	(Faulty but stable 1 	 1

f1
/ Serious \ 	operation) . 	 .

, 	\ faults ?/ 	 ..:-'i 1
	I No

Yes 1
(Faulty system)

: WARNING and/or 	1
a 	 ,

. 	 . 	1 	a 	 ,

. 	, .
g 	. 	 \ REPORT I 	 .

. 	1 (one fault

i 	. 	corrected) 	I 	 . _
. 	, .
1 	. 	. 	+ 	. 	: Interactive 	.
. 	'-::: 	 I OIU Session I- - - 1 or autonomous I
..
1 	 -4- 	:_ diagnosis 	.
,.
1 	(all faults 	I 	 .
, I 	corrected) v 	 v

Figure 2.2 The POC experiment system main control

The HLKS consults the meta-level knowledge base (the
HLKB) and the object level knowledge base (the COMKB) for

 rules applicable to the situation. Such autonomous diagnosis
may include corrective actions. 	In the absence of these
autonomous activities, the ground controller 	issues a
sequence of commands interactively to the HLKS analyses the
fault and attempts a fault recovery through the controller's
console.

The OIU acts as the interface between the controller
and the POC SAMS. Operator commands are entered through this
console and the results from the POC system are displayed.
Through the OIU the operator can access certain aspects of
the LLKS' operation as well. These commands are described in
detail in Sections 3 and 4.

The initialization module asks the user to select one
of three possible input modes for each of the terminal nodes.
When invoked by the main control at the beginning of a run,
it prompts the experimenter with the node identifier of the
terminal nodes. The experimenter may enter an 'r.' for the
random number generation, an 'f.' for a 'fixed' input of
'high' or 'low', or an 'm.' for a 'manual input. Only if 'm.'
is specified does the node ask for an input each time a
simulation cycle needs new values. The inputs for the other
two modes will be looked after automatically for the rest of
the experiment. If an 'm. was entered, the POC system
prompts the operator at every simulation cycle to obtain the
strength of assertion normalized between 0 and 100. The EIU
is used for this exchange.

If the ranadom number option is selected for a
terminal node, a random number is generated against the
probability of the event that terminal node represents at
each propagation cycle. Table 2.1 summarizes the current
probability values for the terminal nodes of the inference
network that represents the CTS/Hermes satellite's AOCS
domain. The entire knowledge base for this domain is in
Appendix A.3.

2- 5

11

ci

ii

fi

11

Ii

Table 2.1 Probabilities assigned to terminal events

telemetry_lost 	 .5

o4_previously_fired 	 • 975 8

nitrogen_used_to_pressure_tank 	1.0

impurities_in_tank 	 .035

fuel_in_tank_low

heat_dissipation_uneven 	 .745

harmful_sun_reflections 	 .0296

shf_radiation 	 .000425

unstable_NESA_A_pivot, 	I 	.025

motor_mechanism_contaminated 	.00252

motor_fails 	 .173

motor_overheats 	 .00295

control_electronics_fails 	.465

emi_to_electronics 	 .0015

power_needs_to_be_cut_ to_shut_NESA_A 	.92

sun_position_always_changes .914 1

anomalies_relates_to_sun_position 	.15

nesa_A_output_must_be_cut_out 	.8

2 - 6

3. The High-Level Knowledge-based Systems (HLKS)

3.1 Objective of the HLKS

The HLKS is a'goal-driven expert system which conducts
the following functions in the POC experiment:

- Interpretation of the ground controller's requests,

- Delivery of the controller's command to portions of
the FOC including itself,

- Monitoring of the execution of commands given by the
controller,

- Compilation of reports and messages to be given to
the controller,

- Survey and analysis of faults reported by the LLKS,

- Take actions necessary to contain the faults
reported by the LLKS,

- Takes action necessary to recover from the selected
faults reported by the LLKS.

3.2 Functional Structure of the High-Level Knowledge-based
System •

Figure 3.1 shows a functional structure of the HLKS.

The HLKS Interface exchanges messages with the OIU and
with the LLKS. The OIU passes commands and requests to the
HLKS entered by the controller through the interface. The
HLKS informs the OIU of LLKS events worth investigating. The
HLKS conveys those commands which affect or are destined for
the LLKS.

Using various search techniques, the HLKS controls the
execution of reasoning, explanation, and requested commands.

The HLKS Autonomy Control is the heart of the HLKS. It
conducts reasoning using goal-driven, backward-chaining
inference. Various search techniques are selectable depending
on the type of problem to be solved. Warning messages are
generated as it searches through the inference network. The
search process will be enhanced by a meta-rule processor in
the future.

To OIU

. 	To

'-->: HLKS 	. 	1 HLKS 	1< 	' 	:-'1 HLKS 	1<----.---> COMKB '
: Inter- 	1<-->1 Execution: 	1 Autonomy: 	1
1 face . 	1 Control 1 	1 Control 1 	. 	To . 	 .

.-->1 Module 	: ..->1 	I<--. 	.-->1 	V- 	> COMDB
' 	'

, 	 e 	0 	s 	 • 	 1 	 1 	 • 	1 	1
1 	 1 	 1 1 	 1 	1

1 	 1 	 .,.. 	 à 	 i 	 ^ 	 I 	I
1 	 1 	 1 1 	 I 	1

1 	 1 	 1 	 f 	 ! 	 ! 	 ! 	!
1 1 1

1 	 1 	 a
1

	

1 I 	1
	 > 1 	 1 	1

1 	1 1 HLKB 1 	 1

1 	 1 	1 	
1 	V 	 v 	: 	 f 	1 	1

1 	 1 	I 	 1 	1 	•

1 	 1 	1
1 	 1 	a 	 a 	' 	 ' 	1 	1 1 	1

1 	1 	1 	. 	>: HLKS 	..,
. 	11 1 	1 	1 Execution: 	1 	I 	1
1 	 1 	1

11 	1
1 	 V V V 	 1 	1 Data Base l 	v 	. 	1

I 	
" 	 ' 	

	

a 	: 	: 1 	 0

	

a 	1 	 a

1 	 1 	1 1 HLKS 	 : HLKS 	:<-' 	1 1 	 à 	I

1 	 ' 1 	 1 Explanationl 	' 	>1 Command 1 	.
' v 	: Module 	 : Module .
	' To LLKS 	'

Figure 3.1 Functional Structure of the HLKS

The HLKS Command Module processes commands and

requests, from ground control which are directed towards the

HLKS. It receives commands from the HLKS Interface and sends
back the results of processing. Report, Recommend, Assess,

and Probe are current commands supported. The module compiles

outputs from the COMKB, COMDB, and the HLKB.

The HLKS Explanation Module answers questions and

queries made by ground control on the reasoning of the HLKS
Autonomy Control, ie., the explanation of how meta-rules are

used in the reasoning and search process. The explanation

subsystem obtains its source for the explanations from the

HLKS Execution Data Base and the HLKB. This subsystem is not

implemented in the present version of the POC.

The HLKS Execution Data Base is a scratch pad storacle
facility used during the reasoning, determination of search

strategy, and during the composition of an explanation

output.

The HLKB is a knowledge base containing knowledge used
only by the HLKS for autonomy control and for processing

commands. The knowledge for autonomy control is

meta-knowledge for use by the HLKS Autonomy Control when

conducting heuristic searches. Other knowledge is for

selecting recommendations and compiling appropriate reports.

.4/
1

1 I 	 1

3

3.3 Operation of the HLKS

3.3.1 The HLKS

The HLKS performs various high level functions for the
ground controller. It informs the operator of anomalies,
advises him of the risk he is facing, notifies him of
corrective actions to be taken or evasive actions already
taken by the HLKS jointly with the LLKS. Upon request, the
controller is informed of the steps to be followed to recover
from a fault.

When invoked, the HLKS works on an instantiated fault
tree generated by the LLKS in the COMDB. This is mainly a
task performed by the HLKS Autonomy Control. It searches
through the fault tree and attempts to clarify the fault
already marked by the LLKS. The HLKS may use meta-rules
(rules concerning how to better conduct a search for
solutions, or reasoning) stored in the HLKB to aid the
operations of the Autonomy Control. The HLKS then conducts an
analysis based on knowledge nodes being searched stored in
the COMKB. A recovery action may be generated by invoking a
control sequence for a node defined in the COMKB. Upon
authorization from the HLKS, the LLKS may take direct
corrective action on selected local faults which require a
quick response. This feature is explained in Section 4.

The controller issues queries to the HLKS through the
OIU to obtain the following information:

- A status report which describes the logical status
of a specific element of the spacecraft and its
operation control system. An element can be the
entire system, a collection of 	subsystems, 	a
subsystem, or any portion of a subsystem represented
in the COMDB and the knowledge bases. The HLKS
compiles a report by collecting information from the
COMDB and the COMKB.

- A system failure report on a fault or faults whose
existence was reported by the LLKS. 	The HLKS
conducts its own search into the COMDB to clarify
the faults from the viewpoint of the manager of the
system. It also uses information in the knowledge
bases as reference.

- A recommendation for fault containment or recovery.
The HLKS compiles such a recommendation using
information in the COMDB and the knowledge bases.
The recommendation is in the form of recommended
action steps to be taken by the ground controller.

- An explanation of the reasoning steps taken by the
LLKS.

Figure 3.2 summarizes these functions in terms of the
input/output relationship between the HLKS and a controller.

Query (Status) 	. 	.----> Warning
Query (Failure) 	1. 	. 	I----> Report (Status)
Query (Recommendation) -:--->1 HLKS I--->1----> Report (Failure)
Query (Explanation) 	1 	1----> Report (Action Taken)
Command (HLKS) 	I 	I----> Report (Action
Command (LLKS) 	 Recommended) . .

'----> Explanation

Figure 3.2 Input/Output relationship of the HLKS

Is

II
E'

it
11

111

Ell
1,11
Ii
a
II

? The HLKS Interface and the OIU

The HLKS Interface performs message exchange functions
both with the OIU and the LLKS.

3.3.2.1 Interface with the OIU

A ground controller enters commands to the SAMS POC
system through the control console. This is the main access
to the POC experimental system by the experimenter. These
commands are received by the OIU and relayed to the HLKS. All

commands, which are described in the balance of this and the
following subsections, are implemented in the form of a
PROLOG predicate. As such, it must follow the predicate
syntax. In general, it has the following syntax:

Predicate (argument-1, argument-2, ..., argument-n).

The predicates are defined either in the HLKS or in
the LLKS. It must begin with a lower case letter if a
constant. If a variable is to be used for the arguments, it
must begin with an Upper case letter. The command line must
be terminated by a period. For example, a command to request
a status report from a node called 'voltage_balance_lost'
would look like this:

report (voltage_balance_lost).

Being a predicate, a command may be combined with
other predicates to form macro commands. A macro thus
created may even include rules.

The commands received are analyzed and processed by
the HLKS Interface. Some comands are meant for the LLKS.

Those addressed to the LLKS are immediately shipped to it by
the HLKS Interface. Others are handed over to the HLKS

Execution Control. The HLKS Execution Control dispatches each
of the HLKS commands to its subsystems. There are some
commands which have to be jointly processed by both the HLKS

and the LLKS. The notification to the LLKS of their receipt
is done through slots in the COMDB for specific nodes to
which the commands are issued.

Commands sent by the OIU and addressed to and executed
by the HLKS are the following:

3 - 5

- search: Initiates a search through the instantiated
fault tree (inference network) built in the COMDB by
the LLKS. Uses a search strategy set through its
argument. The length of a search is also set each
time by an argument. When used from outside, this
command activates the HLKS,

- continue: Prompts the search mechanism to resume an

interrupted search from a current node, using same
search parameters (strategy and length),

- terminate: Terminates a search currently underway.
The control returns to the top of the instantiated
fault tree,

- suspend: 	Temporarily suspends the data fusion

capability of a node in the inference network. 	The
LLKS will no longer perform reasoning activities on
that node until it is reactivated. Execution of this
command is carried out in cooperation with the LLKS,

- activate: activates the data fusion capability of a
node which was previously suspended, thus allowing
the node to participate in reasoning activities.
This command is carried out with the help of the
LLKS,

- entrust: Jointly with the LLKS, designates a node as
an autonomous action node. An autonomous action node
will 	take a predefined action when a set of

predetermined conditions are met. The condition for
taking such action is defined individually for each
of the autonomous action nodes.

- relieve: Relieves a node from being an autonomous
action node. 	This command is also carried out in
cooperation with the LLKS,

- initialize: Initializes the POC experimental system.
Initializes the HLKS and then 	issues 	an
initialization command to the 	LLKS for 	its
initialization,

- check: Checks and verifies the structure of a

designated knowledge base,

- find_top: Identifies a root node of the inference
network. Note there can be more than one root node
in an inference network.

3 - 6

- report: Reports the status of selected node(s) in

the inference network, serching the inference
network for supporting evidences,

- probe: Same - as report but reports on one node at a

time,

- assess: Assesses and reports on implication(s) of an

anomal y,

- recommend: 	Makes recommendation(s) on steps to
recover from a failure,

- explain: Explains the reason for a recommendation
obtained using the recommend comand.

It must be noted that in the future all of the above
commands may also be issued from within the HLKS as a result
of reasoning.

3.3.2.2 Interface with the LLKS

The HLKS Interface issues to the LLKS a number of

commands. Some of the commands are issued by the OIU and
redirected by the HLKS Interface. Others are generated by the
HLKS as a result of its operation. These commands and how
they are executed in the LLKS are discussed in Section 4.3.

If, as the result of event propagation by the LLKS,

there is an event worth investigating, the LLKS issues a

message to the HLKS. The HLKS accesses the COMKB directly
thereafter and investigates. In the investigation, the HLKS

applies instructions given by the ground or its own knowledge
to analyse the situation.

3.3.3 The HLKS Execution Control

The Execution Control 	supervises the over-all
operation of the HLKS. The following processes are scheduled
and their execution monitored in the HLKS:

- the HLKS Autonomy Control 	controlled by a

goal-driven search mechanism. Selection of a search
strategy and the shipment of outputs is controlled
by the Execution Control,

- the HLKS Interface. Its dealings with the OIU and

the LLKS are regulated,

3 - 7

- the HLKS Command Module. 	Selected commands are

dispatched to the module and a reply is relayed to

the HLKS Interface by the Execution Control,

- the HLKS Explanation Module. 	The HLKS Execution

Control dispatches the subsystem with selected

commands to explain system status. The results are

sent out via the Execution Control.(not implemented)

.7

3.3.4 The HLKS Autonomy Control

3.3.4.1 The operation of the HLKS Autonomy Control

Upon instruction from the Execution Control, the HLKS
Inference Engine scans through the instantiated fault-tree in

the COMDB using depth-first search, breadth-first search,
beam search, or a combination of these search methods. The

scan does not necessarily terminate when a goal (a faulty
node) is detected, rather it awaits further instructions from
the Execution Control and typically continues the search.

At each node the Autonomy Control performs one or more
of the following four things:

- acknowledges and executes any command(s) handed down
by the HLKS Execution Control, including a command
for further search,

- examines the situation at the node and issues a

warning message to the OIU if one is warranted,

- reasons about what corrective actions are to be
taken for a troubled node for which a warning has
been issued. (This function is not implemented in

the present POC experimental system.)

' - reasons about which search strategy to take next
using meta-knowledge stored in the HLKB, (This
function is not implemented in the present POC
experimental system.)

For every node in which the strength of assertion

exceeds a threshold, a warning message stored at the warning
slot of a node is retrieved by the HLKS Autonomy Control and

sent out to the OIU. 	Such warning messages make the

controller aware of an anomaly in the system. 	By adjusting
the threshold the message can be issued well before the
situation becomes critical. Currently one threshold is set

for the entire system. In the future, the threshold should be
set for each node in the form of a logical expression. Such a

logical expression may include procedural or functional
elements as its terms, thus combining computations with
deductions.

The data fusion model is effective in this regard as

it is capable of predicting with a probability figure, a very
slight possibility of something going wrong.

The reasoning for corrective actions will be carried
out by using both the meta-knowledge stored in the HLKB and

the local domain knowledge stored for eack node, in the
COMKB. 	An example of domain knowledge might be a set of .
conditions for disconnecting a suspiscious battery.

The reasoning process, which is executed by the
inference engine in the HLKS Autonomy Control, also
references various data in the data bases (eg., the strength
of the assertion - how faulty it is - of the faulty node, the
status of its neighbouring nodes - found in the COMDB, or
certain parameters such as temperature readings or amount of
fuel left).

A corrective action sequence itself is a part of the
action knowledge stored in the slots of a node. The HLKS, on
deciding upon an action, would request the LLKS to open these
knowledge stores and execute them as stated. Further
reasoning may take place locally as the sequence may include
rules. Each step of the execution will be recited as messages
to the HLKS and to the ground. The reciting of the reasoning
steps taken by the HLKS Autonomy Control to a human
controller is mandatory.

The reasoning for deciding on a search strategy is
carried out purely as meta-level reasoning. This is reasoning
for finding better ways to manage the autonomy process. The
meta-reasoning is executed apart from reasoning in the fault
handling domain. An example of the heuristics may be, "If
nothing, maintain breadth-first search", or "If 'warning' is
issued for a node, switch to beam search".

Alternative search methods are discussed below using
examples:

(1) Depth-first search

Figure 3.3 shows an example of a depth-first search.
Alternative nodes are chosen and tested in a strict
left-to-right order, from top to bottom. Backtracking is
repeatedly applied to the lowest possible untested
alternative node, until the entire fault-tree is searched, or
until the search is terminated by a command. This search
method is suitable when a certain branch of the tree is
believed to contain key facts for the solution of an anomaly
and its branches are not very long but are similar in length.
This approach, unfortunately, will lead the HLKS to an
extremely time-consuming and arduous search if improperly
applied. A fault that exists in a right-hand side branch
(eg., node 9 in Figure 3.3) may be picked up much faster if
a more suitable search strategy is used. Rarely does a ground

3 - 10

de 10

Node

ode 3

)111111

çpir ode 5 ede 6 (Node 7 tode 8 tide 9 ir

‘ 1,11\IL% ..8inik ‘r

No

Node 5 N ode 8 de 9

Node 13 Node 14) Node 15 Node 16 Node 17 Node 18 Node 19 Node

Figure 3.3 The depth-first search

controller or the POC knowledge bases have knowledge about
the likely location o+ a fault in the topology of a fault
tree. To avoid such a pitf al, depth-first search is used
rarely in the HLKS for this reason.

(2) Breadth-first search

All nodes at a given depth are examined before turning
to their siblings in breadth-first search, as demonstrated in
Figure 3.4. This approach is particularly suited for
performing diagnosis from a supervisor's point of view. It
allows the conductor of the search to examine events or
assertions impartially. For this reason, breadth-first search
is the default search scheme of the HLKS.

(3) Beam search

Beam search examines a selected group of nodes
belonging to a limited number of branches. 	Breadth-first

3 - 11

(Node 1

Node 3 Node 4

Node 5 	Node 6 	Node 7 	Node 8 	Node 9 	Node 10

	 \\\
	1111611Ia 	

Node Node 14 Node 15 Node 16 Node 18 11 Node 19

Figure 3.4 The breadth-first search

search is conducted within the chosen branch. All other
branches will be ignored. The HLKS selects only one node at a
given level when switching to beam search. All nodes in the
branch of the tree which are headed by the chosen node will
be searched breadth-first. In ordinary beam search, the
search terminates when all nodes in the chosen branch are
examined. As a twist to ordinary beam search, the control
after termination recommences the search at the node next to
the node which was chosen before. In subsequent beam searches
in the same tree, those nodes which are searched during
earlier searches may be re-visited, if they are also a part
of newly chosen branch. This variation is so that a number of
system problems may be examined in turn, and from different
points of view. The HLKS resumes breadth-first search each
time it completes a designated beam search. Figure 3.5 shows
the operation of the repeatable beam search adapted for the
HLKS.

Figure 3.5 The beam search

The approach described above may be explored to

accomodate various diagnostic situations. For example,

suppose a condition that is strongly linked to the eventual

loss of a spacecraft is detected during a routine

breadth-first search. The HLKS Autonomy Control also detected
at the same search level a condition which will likely result

in the loss of a payload function. The HLKS Execution

Control, under instructions from a ground controller or from

rules in the HLKB, may decide to investigate the first node

in further detail. Such an investigation will result in

examining all sibling nodes belonging to the first branch.

This may or may not remove the cause of the faulty situation

which threatens the life of the spacecraft. The second branch

headed by the fault which asserts that a loss of a payload

function is likely will be examined then regardless of the

result of the first investigation. The present implementation

does not include the automatic rule-controlled switching of

beam search in the middle of a search. It is being considered

for future implementation.

3 - 13

In Figure 3.5, the st ch began usinb the default
search (breadth-first search) strategy. As nodes 3 and 4 are
examine and determined to be representative of a faulty
condition, the Execution Control awaits at node 3
instructions from the controller as to what should be done.
If a beam search is specified, nodes 7, 0, 15, 16, and 17 are
then examined. After that control returns to node 4 and

awaits further instructions from the ground.

3.3.4.2 The search command

The search command initiates a search. It takes three
arguments, as shown below:

search (Node, Strategy, Length).

The node parameter Node specifies the node from which
the search begins.

The strategy selector Strategy sets a search mode for

the HLKS Autonomy Control. One of the (depth, breadth, or

beaml must be selected. Since any command may be entered at
any prompt, the search strategy can be altered after every
search step.

The length of a search may be determined by the Length
parameter. It can have one of the following values:

- node: The search is interrupted after each node is
visited,

- level: The search occurs for one level and the

Autonomy Control pauses after all nodes in the

current level of the tree are visited. If the

strategy is set to depth-first, the search stops
after visiting the first node in the current search
level,

- branch: The entire branch of which the root is the

selected node will be searched without interruption,

- tree: The rest of the tree from the specified node
down will be searched without interruption,

- <id>: If a valid node identifier is given, the

search continues until that node is encountered.
Else, the search exhausts the entire tree without
further interruption.

3 - 14

3.3.4.3 The continue command

The continue command is used to resume the search from
where it was interrupted, using the identical search strategy
and search length as - before. If either of the two is to be
altered before resuming the search, the search command must
be used.

3.3.4.4 The terminate command

A search may be terminated anytime by entering a
terminate command to a prompt. Similarly, a beam search may
be terminated and control returned to the default search
method at any point during the local search into a branch by
entering the terminate command to a prompt.

3.3.5 The HLKS Command Module

Some of the commands given to the HLKS are processed
by the HLKS Command Module. They are the: suspend, resume,
entrust, and relieve commands. The last two belong to a group
of commands for creating autonomous .action nodes for the
LLKS. They are implemented in the HLKS Command Module, but
parts belonging to the LLKS are not. This feature is beyond
the scope of the current ROC experimental system. Also, in
the future all commands will not only be executed by a human
operator but will also be made executable by the HLKS
Autonomy Control as a result of a reasoning process. Such a
reasoning process will operate on knowledge stored in the
COMKB and the HLKB. Currently, a limited number of commands
are made executable in this fashion.

In addition, there is a set of utility commands
handled by the HLKS Command Module to deal with the
maintenance of the system and the knowledge bases. They are:
initialize, check, and find_top.

3.3.5.1 The suspend command

The suspend command suspends the reasoning capability
of a node in the inference network during event propagation
by the LLKS. This results in the detachment of the node from
future event propagation. A faulty system element represented
by the node may be 'suspended' from the FOG system so that
the effects of the removal may be studied. This facility
allows the ground controller to examine such effects in
simulation. This will aid him in making a decision for or
against the actual removal of the element.

The command is executed by the HLKS Command Module by
asserting a 'suspend' status in the COMDB in the control slot
for the node. The LLKS, during the next propagation cycle
recognizes the suspension and in turn asserts a 'suspended'
status in the status slot for the node, also in the COMDB.

3.3.5.2 The activate command

The activate command performs the reversal of the
suspend command. It removes the 'suspend' assertion in the
control slot for the node in the inference network. The LLKS
then cancels the 'suspended' status, thus restoring the
reasoning capacity of the node again for the event
propagation process. This will allow a controller to
re-engage a previously suspended system element.

- 16

The facility can also be used to simulate the effect

of introducing an element of a system which has been kept

dormant since the beginning of the operation. System

redundancy components such as a 'hot' or a blank spare are of

this type. System elements, including these spares, can be

either hardware or software, as the node can represent both

entities equally well. The effect of introduction may be

observed in subsequent propagation cycles by the LLKS and by

the higher level functions of the HLKS.

3.3.5.3 The entrust command

The HLKS may delegate to the LLKS its authority to
autonomously recover from an anomaly, if such a decision will

benefit the over-all operation of a spacecraft. The entrust
command is used for this purpose. If there are situations in

which the LLKS might identify an anomaly with potentially

very negative implications, and if an examination by the HLKS
cannot be conducted quickly enough, a ground controller may
decide to allow the lower level expert system to take

corrective action without waiting for instructions from him

or from the HLKS. The node is said to become an autonomous
action node, and the entrust command is used to designate a
node to be one.

The execution of the command by the HLKS Command

Module results in the 'entrust' assertion in a control slot

for the node. This in turn results in the assertion of

'entrusted in the status slot for the node, which is

acknowledged by the propagation mechanism of the LLKS.
Further activation of the node during an event propagation

may result in an autonomous invocation of a sequence of

corrective or preventive actions defined for the anomaly.

Such actions are recorded in the COMKB in the form of rules,

procedures, and predicates.

3. 3 .5.4 The relieve command

The relieve command removes the ability to

autonomously act on an anomaly from an autonomous action

node. A change in the control slot is translated by the LLKS

into a change in the status slot. The node then becomes an

ordinary node which passively participates in the event

propagation.

3.3.5.5 The initialize commands

The initialize command initializes the entire FOC
experimental system. 	In particular, 	it resets three

3 - 17

databases: the COMDB, execution databases for the HLKS and
the LLKS. This results in the resetting of the status slots
of all the nodes of the inference network and the renewal of
short-term scratch pad memory for both the HLKS and the LLKS.
Some areas of the HLKS-EDB will be reset each time a new
search or reasoning takes place. Similarly, portions of the
LLKS-EDB are erased at the beginning of each event
propagation.

3.3.5.6 The check command

The check command takes an identifier of a node slot
as its sole argument. It scans through the slots of all nodes
and checks the completeness of the knowledge base and the
connections among the nodes. In the case of the slot that
defines the structure of the inference network, the
connectivity and the completeness is checked by trying to
account for all the evidences of causal relations among the
nodes defined in the form of rules. If an evidence is not
used in any of the rules or if a causal relationship depends
on an evidence that does not exist, an error condition is
asserted. The completeness and connectivity checking of all
other slots, which store elements of knowledge in various
forms, is conducted by using the taxonomy of the network
stored in the COMKB as a reference point.

If the check command is used without an argument, it
checks the structural consistency of all knowledge bases
known to the POC experimental system. This operation can take
a substantial amount of time.

3.3.5.7 The find_top command

The find_top command identifies all independent peaks
of the inference network. Such an operation becomes - necessary
when the HLKS or a ground controller wishes to start a search
from the highest local node of the network. There can be a
number of peaks in a inference network.

3 - 18

3.3.6 The HLKS Explanation Module (not implemented)

The HLKS Explanation Module answers questions or

request for additicinal information issued by a controller:
for further clarification of any of the inferences made by
the LLKS; on how or why the HLKS Autonomy Control took or
failed to take specific action(s). The answers to the

questions of the first type often takes the form of a report.
The HLKS Explanation Module investigates the inference
network, or 	the 	instantiated 	fault 	tree, 	retrieves
information from it, and compiles output.

The questions of the second type cannot be handled
presently as their processing is beyond the scope of the
current POC system and is left to future development. For
these questions, the explanation subsystem will re-trace and
explain the reasoning the HLKS Automy Control made using
meta-rules in the HLKB, the object-level (domain specific)
knowledge in the COMKB, the instructions given by ground
control, or their combination. The output will be composed
and formatted for easier interpretation.

The HLKS Explanation Module expects questions or
requests for the clarification of the following types of
reasoning made either by the HLKS or the LLKS:

- reasoning which resulted in a specific search path,

- reasoning which resulted in a message to ground
control,

- reasoning which resulted in autonomous contrai
 action(s) initiated by the HLKS.

3.3.6.1 The report command

The report command compiles a report on a specified
node of the fault tree. The fault tree represents the current
status of a spacecraft being monitored. The node corresponds
to the status of a portion of the spacecraft or an aspect. of

the spacecraft operation.

It describes the status of the node in question, and

how that status was obtained. The command processor re-enacts
the data fusion process that took place around the node

Node 1

Figure 3.6 Issuing a report command

during event propagation conducted by the LLKS. Contributing
assertions and their strengths are shown, as well as

dependency among supporting items of evidence and the type of

the fusion of assertions that took place. The report may be
generated 'for entire assertions and their supporting
assertions that altogether contributed to the status of the
node in question. Since this often results in a lengthy
output, the report generation may be focused to limit output.

In the partial network depicted in Figure 3.6, suppose
Node 3 has issued a warning, which was picked up by the HLKS
Autonomy Control and sent down to ground control. The ground
control then issued a report command, to which the HLKS
Command Module responded, as shown below:

(system) WARNING ** (Node 3) **

(ground) report (Node 3).

(system) Node 3 (description of Node 3) is true with probability .55.
The state is determined by the rule: Node 3 (or Node 7 Node 8).
Node 7 (explanation of Node 7) is true with probability .72.
Node 8 (explanation of Node 8) is true with probability .14.

Enter {report., report([Id1, Id2,...,Idn])., or no.}

The HLKS has described the meaning of the fault about
which a warning had been issued, and further described the
rule (hypothesis) that fired thé warning, and gave supporting
items of evidence and their strength. In actual cases 'Node
3' would be 'sensor_malfunction_2', and the its description
would be. "Star sensor has been generating intermittent
outputs". Note that rules are shown in the form:

[consequent (fusion-type antecedent-1, antecedent-2, ..., antecedent-n)]

where, fusion-type may be and, or, or not, and consequent and
antecedents are all identifiers of a node in the inference
network.

(ground) report([Node 7]).

(system) Node 7 (description of Node 7) is true with probability .72.
The state is determined by the rule: Node 7 (and Node 9 Node 10).
Node 9 (description of Node 9) is true with probability .76.
Node 10 (description of Node 10) is true with probability .78.

Enter {report., report(CId1, Id2,...,Idn])., or no.1

The report command is designed to report on all

- 21

relevant hypotheses and their items of evidence which have
contributed to the original assertion of a fault. Therefore,
it prompts the user each time a hypothesis and a set of
evidences are presented. When specifying a selected set of
nodes to be reported - on, the nodes are put into a list format
using C...]. If no nodes are selected, the reporting starts
from the items of evidence which support the last hypothesis
reported.

(ground) report.

(system) Node 9 (description of Node 9) is true with probability .76.
The state is determined by the rule: Node 9 (or Node 11 Node 13).
Node 11 (description of Node 11) is true with probability .05.
Node 13 (description of Node 13) is true with probability .98.

(system) Node 10 (description of Node 10) is true with probability .78.
The state is determined by the rule: Node 10 (or Node 12 Node 13)
Node 12 (description of Node 12) is true with probability .11.
Node 13 (description of Node 13) is true with probability .98.

By issuing a report command without specifying nodes,
the entire hypothesis-evidence relationship is reported. Note
the report does it by beam-searching the nodes involved.

By adding more knowledge based processing to the
report generation, the report command may be able to generate
output that is better focused. For example, using heuristics
such as:

"If there is a sudden detection of a fault at a highly
placed node, look for contributing terminal nodes. If
there is one with an abnormally strong assertion, say
more than .15, assume it is a cause of the reported
fault and report it next to the original faulty

node.",

the report process can generate a more to-the-point report.

Such improvement is considered for future versions.

3.3.6.2 The probe command

The probe command works similar to the report command,
except that it only reports an one hypothesis and a single
set of evidences supporting it. It is most useful for
spot-checking the inference network by traversing it and
probing suspected nodes free from any fixed search strategy.

The example below simulates an instance in which a
controller attempts to find out if an on-board thruster
maintained its firing after accidental ignition due to an
improperly controlled fuel valve, the malfunction of control
electronics, and the existence of multiface flow in a fuel
line. "04" is the thruster in question.

(ground) probe (o4_firing_continues).

(system) o4_firing_continues (The firing of the offset thruster 04 is
maintained) is true with probability .21.

(system) The state is determined by the rule:
04_firing_continues (and high_rate_command_continues

pressure_in_fuel_line_maintaines o4_fires)]

(system) high_rate_command_continues (The thruster 04 fire command
continues at a high rate) is true with probability .96.

(system) pressure_in_fuel_line_maintains (The pressure in the fuel line
is maintained) is true with probability .28.

(system) o4_fires (The negative pitch offset thruster 04 fires) is trile
with probability .51.

(system) Enter command:

The conroller would thus understand that there was a
relatively small possibility of the thruster having continued
firing, and the reason for that conclusion.

3.3.6.3 The assess command

The assess command displays the consequence(s) of an
existing fault, alone or when combined with other existing
faults. The command is used to assess how much impact the
fault might have had on further events. Nodes for which the
fault is a contributing assertion input are sought after and
their present status retrieved. Guided by the structure and
type of knowledge stored in the COMKB, the command processor
extracts values from the COMB and composes a report.

An example output of the assessment report is shown
below:

(ground) assess (large_cone_develops)

(system) (A large nutation cone develops around the pitch axis). This,
(On-board momentum control wheel has stopped) and
(The spacecraft's pitch changes greatly from nominal
negative pitch to a large positive pitch)

will jointly cause:

(Spacecraft is tumbling) with probability .13

(system) (A large nutation cone develops around the pitch axis). This,
(The spacecraft is not receiving command sequences), and
(The spacecraft's pitch changes greatly from nominal negative
pitch to a large positive pitch)

will jointly cause:

(Attitude control is no longer effective) with probability .15.

(system) (A large nutation cone develops around the pitch axis). This, and
(The spacecraft's pitch changes greatly from nominal negative
pitch to a large positive pitch)

will jointly cause:

(The solar arrays are not facing the sun) with probability .14.

(system) (A large nutation cone develops around the pitch axis). This, or
(The spacecraft's pitch changes greatly from nominal negative
pitch to a large positive pitch)

Will jointly cause:

(The command receive antenna is not properly aligned to the
ground) with probability .38.

(system) (A large nutation cone develops around the pitch axis). This, or
(The spacecraft's pitch changes greatly from nominal negative
pitch to a large positive pitch)

will jointly cause:

(The SHF communication channel is lost) with probability .31.

The present implementation only seeks implications one
level above the node in question. In future improvements, the

3 - 24

assess process can be designed to chase further implications
recursively to an arbitrary height in the hierarchy. This

will give a reverse-report facility. Similar protocol used
for the report command would be introduced to control the

extent of reporting.

3.3.6.4 The recommend command

A recommendation on how to contain a detected anomaly,
or how to restore the affected system elements from it, may
be obtained for a ground controller when he issues a

recommend command. Such information is stored also in the
COMKB and would be sent out to the OIU. The SAMS works as a
database in such instances, providing the ground controller
with advice. Although the controller may be aware of all the
implications and actions to be taken in given situation, he
may not be able to retrieve them in time, in a pressing
atmosphere of a control room which is coping with a serious
operational difficulty.

The recommend command is typically issued when a

ground controller notices a warning message from the SAMS and
requests a report on it. It may go as follows:

(system) WARNING: 	** (uvs_trips) **

(ground) report (uvs_trips).

(system) uvs_trips (Under voltage protection system is activated)
is true with probability .17.

The state is determined by the rule:

uvs_trips (and batteries_exhausted charging_limited)

batteries_exhausted (On-board batteries are exhausted)
is true with probability .93.

charging_limited (Solar array's ability to charge on-board
batteries is now limited) is true with probability .16.

(system) Enter (report., report(EIdl, 	IdnI)., or end.)

(ground) end.

(system) Enter command:

(ground) recommend (uvs_trips).

3 - 25

(system) RECOMMENDATION (Under voltage protection system is activated):

* * Disable UVS * *

(system) Enter command:
(ground) explain (uvs_trips).

(system) In the state of (Under voltage protection system is activated)
with probability .17, the UVS is known to malfunction.

The current POC implementation only retrieves such

information stored in the form of steps to be taken for each
anomalous situation. In the future, the recommendation would
be edited to create a more tailored output sensitive to

minute but essential situational differences that may exist

each time it is requested.

3.3.6.5 The explain command

The explain command is used when a ground controller

wishes to know the justification for a recommendation

obtained by the recommend command. See its use in the above
example. The present implementation of the explain command in
the POC experimental system retrieves a message composed of
stored texts, node variables, and some system variables. In
the future, the explanation will take a form of a description
of results from a simulated propagation-assessment session in
which the implication of implementing a recommendation is

explained by actually propagating events on a subnetwork
consisting of the recommended changes and nodes around it.

4. The Low-Level Knowledge-based System (LL(S)

4.1 Objectives of the LLKS

Through inferences the LLKS acts as an intelligent
agent overseeing the monitoring functions of a spacecraft
management system. The LLKS also executes commands sent from
the High Level Knowledge-based System (HLKS). In this
capacity, the LLKS accepts orders given in the form of a
fixed number of commands, executes them, and then reports the
results to the HLKS.

More specifically, the LLKS tries to accomplish the
following goals:

- Execute the data/event driven inference on data or
events collected from the environment, both external
and on-board, and report the results to the HLKS,

- Carry out a set of operations autonomously when
designated to do so by the HLKS,

- Process system control commands sent down by the
HLKS for execution,

- Provide explanations to the HLKS on the reasoning it
made.

4.2 Functional Structure of the LLKS

The functional structure of the LLKS is shown in
Figure 4.1.

The LLKS Interface links the LLKS to the HLKS and to
the Environment Interface Unit (EIU) of the POC experimental
system (See Figure 2.1). The LLKS Interface is responsible
for dispatching any arriving data/events, messages or
commands to an appropriate subsystem of the LLKS, and for
collecting and sending out messages and reports generated by
the LLKS to other components of the POC experimental system.

The LLKS Execution Control coordinates the over-all
operation of the LLKS. It schedules the operation of other
components of the LLKS by dispatching bath incoming commands
and commands generated by itself.

The LLKS Inference Engine performs propagation of
events through the inference network using probablistic
reasoning. Since the knowledge about the spacecraft system,
whose operation is to be monitored is structured into a fault
tree, the inference network after the propagation becomes an
instantiated fault tree. It is stored in the COMDB.

4 - 1

n•nnn

Ii

Ii

Ii

Ii

ti

It

Ii

II

it

II

II

To HLKB

	. 	. 	
' 	. s-->1 LLKS 	 1 LLKS 	 : LLKS 	:< 	> To COMKB , 	,

1 Interface 1<--->l- Execution 1<--->1 Inference l< 	> To COMDB
' .-->1 Module 	I Control 	1 	: Engine 	l< 	. .
' . 	• 	 ' 	, . 	 .

. 	 . . 	 .

.. 	. 	. I n 	 . 	 . .

. 	 . 	 v 	 v

. 	 .

..

n 4 	 . 	4 . : LLKS
. 	 . 	1 Execution 1 	1 LLKB 1 1 1
1 	 . . : Data Base 1 . 	 . 	,
. 	 v 	

.
' 	

,

I..' . 	, 	. . 	 .
' . 	. . : 	I LLKS . . 	.
' 	 1 Explanation I< 	 . 	 .

' ' 	 1 Module 	:< 	

To EIU

Figure 4.1 Functional Structure of the LLKS

The LLKS Execution Data Base is used by the inference
engine as a temporary storage for intermediate results of the
reasoning process.

The LLKS Explanation Module processes requests for
clarification of reasoning undertaken by the LLKS. The
requests are either issued by a ground controller and relayed
by the HLKS or generated from within the HLKS.

Ii

Ii
4- 2

4.3 Operation of the LLKS

4.3.1 The LLKS

The LLKS performs data/event-driven inference on the
inference network using knowledge stored at the node level.
It propagates the effect of detected events or incoming data
using a so-called data fusion model, a form of information
processing commonly used in the Signal Processing community.
Data fusion is, in short, a method of finding out how changes
in the operational environment will affect other aspects and
levels of the spacecraft management.

After evaluation of several available models of data
fusion, some sophisticated but not practical, others too
simplistic, Rauch's dependence sensitive model [Rauch 84] was

 chosen for the LLKS.

The LLKS responds to assertions of events such as
faults detected by sensors in on-board and external
environments. These changing assertions are supplied in the
POC experimental system in the form of simulated input
signals from the Environment Interface Unit (EIU). Selected
input may be entered manually through a console at the
begining of each simulation cycle through a console attached
to the EIU. This console differs from the operator interface
described in Section 3.3.1, in that, the former is for
controlling the process of the experiment, while the latter
is a simulated operator console dedicated to ground control
functions.

The LLKS then performs fusion of assertions through
probalistic gates, or nodes. A fusion is conducted by
attempting to prove a hypothesis (the invocation of a rule
defined at the node) by applying a forward inference on the
rule. A node typically corresponds to a fault or faulty
situation in a spacecraft. For example, it can be "Thruster
No.2 fires intermittently", "The sun sensor lost the sun from
its view", "The cylistor in the voltage regulator is stuck
open", or "The frame of the satellite is vibrating
vigorously".

These nodes are formed into what is called an
inference network, a network over which assertions are
propagated via inference. 	Each node contains rules which
dictate how the fusion should take place. 	These rules are
collectively stored in the Common Knowledge Base (COMKB). The
output of a data fusion process is the strength of assertion
that the node represents as supported by the input hypotheses

of the node. It ranges from zero (false) to one (true), and

can take a value between the two. These logical outputs
(assertions qualified by their strength) are propagated
upward in the fault tree (toward the root of the tree) to a
set of nodes at the riext higher level in the hierarchy. The

process repeats until all possible assertions are propagated
and the system reaches an equilibrium.

The objective of the fusion process is to determine
the implications of a set of changes that occurs in the
environment and within the system itself. To do so, symbolic
reasoning is used, not calculation or computation. This use
of symbolic reasoning on stored knowledge distinguishes the
method from other conventional signal processing techniques.

By applying inferences, rather than numeric calculations and
comparisons, therefore using Artificial Intelligence
techniques, one can hope to create a system that, after
several refinement cycles, would eventually match some of the
capabilities of human thought processes. Intelligent

cabilities that humans display are well above what existing
machinery so far has reproduced.

Operation of each of the component modules of the LLKS

is described in Sections 4.3.2 through 4.3.5.

4.3.2 The LLKS Interface Module and the EIU

The LLKS Interface Module exchanges data, events, and

messages with the POC system modules outside the LLKS.

4.3.2.1 The interface with the HLKS

The HLKS hands down commands that must be executed by
the LLKS. Some of them are from the OIU representing the
controller's requests, while others are generated from within
the HLKS by its reasoning process. Results of executing these
commands will be passed to the HLKS as they become available.

'Commands sent down by the HLKS and executed by the

LLKS are as follows:

- initialize_llks: Initializes the LLKS,

- disp_tree: Displays the inference network in a

simulated tree format, before or 	after 	e.ent
propagation,

- disp_ref: Displays references from which knowledge
was obtained.

- disp_exp: Displays a rule expression,

- check_loop: Finds a loop in the structure of a

knowledge base,

The following commands are issued or passed down by

the HLKS. However, their invokation has already been made and

the LLKS only adjusts its internal data structures in

accordance with a specific command.

- suspend: aiSpends the data fusion capability of a

node This command is executed implicitly through

slots. Full description of the command is given in

Section 3.3,

- activate: Engages a node to data fusion process.

Executed implicitly. Full description of the command

is given in sSection 3.3,

- entrust: Designates a node as an autonomous action

node. An autonomous action node will initiate a

predefined action when a set of predetermined

conditions is met,

- relieve: Relieves a node from being an autonomous

action node.

4.3.2.2 Interface with the EIU

Inputs from the environment come to the SAMS in the

form of data (eg., an input voltage) or logical assertions or

events (eg., contact sensor output, confirmation of object by

a vision system). The numerical values are converted into

strengths of assertions which have a nominal value between 0

and 1. The values are given to corresponding terminal nodes.

In the POC experimental system, the EIU generates

these values using a random number generator, or by prompting

the conductor of the experiment for values. In the case of

internal generation, an output from the random number

generator is modulated to reflect relative occurances of the

events to be generated. In favor of observing simulation

results faster than would be in real time, the absolute

probability of generating faults is amplified substantially

(say, 100 times) to create deliberately unstable spacecraft

operating conditions.

During the initialization of the ROC experiments, the
system initialization module requests the experimenter to
specify the mode of input generation. For each terminal node
the experimenter may choose from:

- randOm: input for the terminal is generated by using
a random number and the probability of the occurance
of the event assigned to the terminal,

- fixed: input for the terminal is fixed for the
entire duration of the experiment either to a high
or to a low. A high corresponds to the strength of
assertion for the event assigned to the terminal
being one, while a low corresponds to that being
zero,

- manual: input for the terminal will be entered
manually through the experiment control console at
each simulation cycle in the form of the strength of
assertion for the event the terminal is assigned to.

4.3.3 The LLKS Execution Control

The LLKS Execution Control coordinates the operation
by dispatching commands to other portions of the LLKS. Most
commands come from HLKS. .However, the most important command
of all for the LLKS, the propagate comand, is generated by
the LLKS Execution Control itself. The propagate command
maintains the regular propagation cycle. For each issuance of
the command, one full propagation cycle follows. It ends when
an equilibrium is reached in the inference network and no
further inference can be made for the given set of input
assertions. The process is detailed in Section 4.3.4 below.

Some of the commands the LLKS Execution Control
dispatches are executed by itself. For example, the
initialize_llks command gets executed by the LLKS Execution
Control initializing specific sections of the COMKB. The
suspend, activate, entrust, and relieve commands are all
initiated by the HLKS. The LLKS detects the assertions made
in the control slots of the node and makes appropriate
assertions in the status slot. If, for example, the entrust

command is issued to a node by a ground controller, an
'entrust assertion will be made by the HLKS in the control
slot for the node. This then is translated into 'entrusted'
assertion in the status slot for the node by the LLKS

Execution Control. The LLKS Inference Engine honors the new
status each time it propagates events thereafter.

4 - 6

4.3.4 The LLKS Inference Engine

The LLKS Inference Engine has the following functional
characteristics:

- Performs inference based on data fusion,

- Performs inference an an inference network of
arbitrary topology connected by AND, OR, NOT, and
terminal gates,

- Performs inference probabilistically,

- Performs inference on an inference network with a
loop - a chain of reasoning which returns to an
earlier premise - with some limitations.

To describe the operation of the inference engine,
simple inference network shown in Figure 4.2 is used.

In the inference network the following assumptions are
made. Note a terminal node is an input point for external
data and events:

a

Figure 4.2 An example inference network

- Node_1 is an OR gate with two items of evidence,
Node_2 and Node_3,

- Node_2 is an AND gate with two items of evidence,
Node_4 and Node_5,

- Node_3, Node_4, and Node_5 are terminal nodes with
only one input.

In propagation, each node is treated independently of
others. Inference is made solely based on the strength of a
node's supporting items of evidence, and stores the result
(an assertion) in its awn status slot. It is stored
structurally in the Common Knowledge Base (COMKB).

In one inference, the LLKS INference Engine retrieves
knowledge associated with a node from the COMKB. The order of
processing is arbitrary. Assuming in the example, knowledge
about the nodes is stored in the order of appearance in the
diagram, one cycle of propagation looks as follows:

(1) The inference engine finds out that items of evidence
needed to support Node_1 are Node_2 and Node_3. Since
Node_3 is a terminal node, its value is obtained without
delay from the EIU. However, no inference has happened
for Node_2 yet. Its strength is still undefined (the
status slot of the node is empty). No fusion can take
place for Node_1.

(2) At Node_2, items of evidence needed are found, from the
COMKB, ta be Node_4 and Node_5, and the type of inference
AND, as well as the degree of dependence. Since both
Node_4 and Node_5 are terminal nodes, the status slots
for these nodes are already filled. An AND fusion takes
place using Rauch's AND fusion model. 	The result is
stored in the status slot for Node_2 in the COMDB.

(3) Since Node_1 now has the needed items of evidence, an
inference in the form of fusion takes place in the way
described in the Rauch's OR fusion model. The resulting
strength of assertion is stored in the status slot of the
node in the COMDB.

The terminal nodes have no evidences to fuse by
themselves but assertions are obtained through an input
terminal of the inference network. A node connected to an
output terminal of a sensor is expected to convert its signal

into a logical assertion. In the POC experimental system,
terminal assertions are generated by simulation or through
manual input from the experimenter, and are provided through
the EIU. In the example, the strength of assertions obtained
through the terminalS is made available and stored in the

status slots for Node_3, Node_4, and Node_5, in the COMDB,
whenever necessary.

To improve the performance of the inference engine, a
mechanism which sequences inference to economize data

collection is devised. In the example of Figure 4.3, Node_1,
an AND node, can be asserted if all supporting items of
evidence, Node_2 through Node_5, have an assertion. Node 6
and Node_7 (terminal nodes) are examined first and the

strength of assertion collected. If the fusion at Node 5 does
not yield a positive assertion, no collection of values is
attempted for other terminal nodes.

The inference engine performs data fusion in an

'arbitrary order, picking a node as it appears in the

knowledge base. The network, in general, is highly irregular
in its topology. There will be some terminal nodes much
higher or lower in the hierarchy than other terminal nodes.
This eliminates the possibility of picking the nodes with

Figure 4.3 Sequencing of data fusion process

readily availaible items of evidence first. Following the
topology precisely and performing fusion strictly according
to the structure of a tree or a network creates an inhibitive
amount of house-keeping for an improvement which is not
guaranteed. Testing 'and repeating the fusion process until
all nodes are treated seems to be the only practical and

effective method.

If a node is in the state of being 'suspended', its
existence is completely ignored in the fusion process. It
simply does not exist.

Handling of uncertainty is one significant aspect of
human reasoning. It is generally accepted that the human
operator's ability to cope with incomplete information and

uncertain rules is a source of the flexibility, and the
strength of the human reasoning process. It is also
acknowledged that researchers are still very far away from
understanding precisely why and how a human's way of handling
uncertainty is effective [McCarthy 84]. There are only a very
limited number of methods and models of how it should be
done. These methods are grossly limited in handling various
aspects of uncertainty in reasoning. The recent rise of
knowledge based systems seems to have only hîghlighted the

lack of adequate approaches.

Three approaches are investigated for the LLKS. They
are:

- Fuzzy logic [Zadeh 76] [Winston 84],

Bayesian approach [Duda, et al 81],

- Tactical data fusion method CRauch 847,

- The MERIT model by James Slagle [Slagle 84].

Fuzzy set theory appears to be a special case of
Rauch's tactical fusion model. Bayesian approach, widely used
in expert systems, including MYCIN and PROSPECTOR, ignores
the treatment of dependence among supporting items of
evidence, a critical shortcoming in an application where the

use of redundancy is essential for creating fault-tolerance
in a system. For example, use of multiple sensors, such as

multiple earth sensors on-board a spacecraft, is common
practice for increasing the reliability of measurement.
However, it cannot be accurately modeled using Bayesian
approach.

The MERIT model used by Slagle in his BATTLE expert
system requires realtime computation of a system of partial
differential equations, an approach we could not adapt due to
resource limitations. Rauch's method of handling probability
and dependence at thé same time, which is a part of the data
fusion model already described, appears to be a reasonable
compromise, in comparison, for a prototype realtime expert
system.

Dempster-Shafer Theory is at the root of Rauch's
method. The authors did not get original material for the
theory [Shafer 76] until too late to study in detail for the
POC system. In all, it seems the study of uncertainty must be
continued in AI for much longer. Rauch's method, for example
has an obvious limitation, in that it can take only one
dependence value among inputs to a node. In practical cases,
dependence may differ among pairs of items of evidence that
support a node (hypothesis). Furthermore, dependence in
general can be directional between two items of evidence. For
example, evidence A may depend heavily on evidence B, but not
vice versa. The following is a summary of Rauch's tactical
fusion method.

Rauch's method calculates standard deviation, as well
as the probability of the strength of assertion after fusion,
and propagates both of them through data fusion. It can
handle cases where items of evidence are not necessarily
independent but where there is a statistical dependence among
supporting items of evidence.

Table 4.1 shows the probability of a hypothesis (or
the strength of assertion that a hypothesis is true)
calculated for probablistic AND and OR gates with two pieces
of evidence.

Table 4.1 Probability of hypothesis with two
items of evidence

Statistical 1 AND operation: 	OR operation:
Dependence 	I PROD (A and B) I PROD (A or B)

Independent 1 	Pa * Pb Pa+Pb-Pa*Pb

Maximum
Dependence 	1 	MIN (Pa, Pb) 1 MAX (Pa, Pb)

Negative Max 1
Dependence MAX (Pa, Pb) 	1 MIN (Pa+Pb, 1)

Pa and Pb are the probability that evidences A and B
are true, respectively. MIN and MAX are a selection function.
Consequence of logical AND and logical OR operations can be
obtained for various degrees of independence between
supporting items of evidence: independence, maximum
dependence, and negative maximum dependence. The last case
implies a situation when 'A is most unlikely if B is
asserted'. Interpolaration is used to obtain values between
extremes.

For a hypothesis with more than two items of evidence,
Rauch's model does not provide ways for calculation. Table
4.2 is an extension made by the authors for multiple items of
evidence.

For example, if there are two items of evidence,

PROB (A or B) = Pa + Pb - Pa * Pb

for three items of evidence,

PROB (A or B or C)
= Pa + Pb + Pc - Pa * Pb - Pb * Pc - Pc * Pa
+ Pa * Pb * Pc.

Table 4.2 Probability of a hypothesis with multiple items of
evidence

: AND operation: 	1 OR operation:
PROB (1,2, ..., and N 	PROB (1,2, ..., or N)

Independence 1 P1 * P2 *, 	* Pn Note 1 1

Maximum
Dependence 	: MIN (P1, P2, ..., Pn) 	1 MAX (P1, P2, ..., Pn)

Negative Max 1 MAX (P1 + P2 	+ Pn 1 MIN (P1 + P2 ... 	Pu,
Dèpendence 	1 - (N-1), 0) 	 1)

Note 1: Probability for independent OR may be obtained from
the Euler's chart.

The interploration is performed by first calculating
the probability under the assumption that the items of
evidence are independent (probability from these calculations
will be designated C1). When the dependence D is positive,
the second calculation is of maximum dependence (designated
C2). When D is negative, the two calculations are
probabilities under the assumption of independence (Cl) and

4 - 12

under the assumption of minimum dependence (03). 	The
resulting probability is a linear combination of the two
appropriate calculations:

P = CD * 02 + (1-D) * Cl, for 0 <= D <= 11
= CABS(D) * 03 + (1 - ABS(D)) * Cl, for -1 <= D <= 01

where, ABS is the absolute function.

One of the limitations of the Rauch's method, the lack
of universal treatment of dependency among items of evidence,
was discussed earlier. Another difficulty with the method is
that as the number of items of evidence increases, it becomes
cumbersome ta deliver an equation for calculating probability
for OR cases.

4 - 13

II

hi
11

Hi
11

HI

li

4.3.5 The LLKS Explanation Module

The LLKS Explanation Module provides low level
explanation to ground control. 	There are five commands
belonging to this module. 	They are the disp_tree, the
disp_exp, 	the disp_ref, the check, and the check_loop
commands. In the future the HLKS Autonomy Control may invoke
these commands on behalf of a controller from within a
reasoning process.

4.3.5.1 The disp_tree command

The disp_tree command displays the inference network
as a tree-like data structure. This conversion of formalism
is so that the hierarchical nature of an inference network
becomes visible. The display depicts both the structure and
the status of nodes in a network.

The command may be applied either 	to 	a
non-instantiated tree (before event propagation) or to an
instantiated (after event propagation) tree. An example of a
simple inference network is shown in Figure 4.4. An example
ouput which corresponds to the example network before
propagation is shown in Figure 4.5.

Figure 4.4 An example inference network

4 - 14

Note in Figure 4.5 that nodes 3, 6, 9, and 10 appear

twice in the display. This is because there is a link between
the output (assertion) of node 3 and input (evidence) of node
6, constituting a logical loop.

(user) disp_tree (node_1).

(system) node_l (and, 3) D=.8
node_2 (and, 2) D=.5

node_5 (terminal)
node_6 (or, 2) D=.4

node_7 (terminal)
node_3 (and, 3) D=.7

node_e (terminal)
node_9 (terminal)
node_10 (terminal)

node_3 (and, 3) D=.7
node_e (terminal)
node_9 (terminal)
node_10 (terminal)

node_4 (terminal)

Figure 4.5 The disp_tree command applied before propagation

The result of propagation is seen in Figure 4.6, in
which the disp_tree command was applied after the propagation
of events by the LLKS Inference Engine took place. The
outputs of the disp_tree command follow a format described in
Figure 4.7. Asterisks(*) placed in front of some of the lines
imply these node have fired as the result of propagation.
Probability P will not appear for nodes if propagation did
not affect them. Dependency D will not appear in terminal
nodes.

(ground) disp_tree (node_1).
(system) node_l (and, 3) D=.8

node_2 (and, 2) D=.5
node_5 (terminal)

* node_6 (or, 2) D=.4 P=.68
node_7 (terminal)

* node_3 (and, 3) D=.7 P=.86
* node_e (terminal) P=.75

* node_9 (terminal) P=.34

* node_10 (terminal) P=.91

node_3 (and, 3) D=.7
* node_S (terminal) P=.75

* node_9 (terminal) F'=.34

* node_10 (terminal) P=.91

node_4 (terminal)

Figure 4.6 The disp_tree command applied after propagation

4 - 15

* node_Id (logic, N) D=0 P=p
nnn nnn

'-- strength of assertion

	

t 	g 	 1

	

I A 	 (0 =< 	p =< 1) g

	

1 	 s I

I I 	1 I 	m
I I

	

I I 	t

	

, 	, 	, 	. , 	 statistical dependency I 	.

	

. 	t

	

I I I I 	 (0 =< d =,,;: 1)

	

S 	 S 	 1 	 S

	

I 	 I 	 I 	 1

	

I 	 I 	 I 	 1

, 	 I

	

I 	 . 	 number of evidences

	

I 	I 	I

I 1 I
I I I

	

. 	

	

I I 	 data fusion logic . .

1 	 node identifier

fault identifier
	 (strength of assertion

exceeded a threshold)

Figure 4.7 disp_tree display format

In figure 4.6, node 6 is marked by an asterisk,
meaning that a faulty condition exists at that node. To find
out what has caused it, contributing nodes, nodes 3 and 7
must be looked at. Thus node 3 is found to be faulty. Since
node 6 is an or node, this is a sufficient condition to cause
a faulty status in that node. Since node 3 is an and node,
all three contributing evidences, nodes 8, 9, and 10 must be
faulty. Nodes 1 and 2 are not affected as they are both and
nodes and only one of the contributing evidences is faulty in
each case. As shown here, the disp_tree may be used to trace
where a fault originates and how it has spread in the system.

Parameters may be given to the disp_tree command to
focus the area of display on the tree. There are three
command formats:

- disp_tree (NO)

All nodes of the tree directly or indirectly
subordinate to NO will be displayed,

disp_tree (NO, Ni)

Nodes that are directly or indirectly subordinate
to NO, but no deeper than Ni branchings away from
NO are shown, as seen in Figure 4.8,

4 - 16

disp_tree (node_1, 2).

node_l (and, 3) D=.8
node_2 (and, 2) D=.5

node_5 (terminal)
* node_6 (or, 2) D=.4 P=.68
node_3 (and, 3) D=.7
* node_8 (terminal) P=.75
* node_9 (terminaL) P=.34
* node_10 (terminal) P=.91
node_4 (terminal)

Figure 4.8 Nodes within 2 branchings from node_1

disp_tree (NO, Ni, N2)

The display begins at the depth Ni from NO and all
nodes no deeper than N2 from NO are displayed, as
shown in Figure 4.9.

disp_tree (node_1, 3, 4).

node_7 (termianl)

* node_3 (and, 3) D=.7 P=.86
* node_8 (terminal) P=.75
* node_9 (terminal) P=.34
* node_10 (terminal P=.91

Figure 4.9 Nodes 3 branchings away from node_1 but no
farther than 4 branchings away

4.3.5.2 The disp_ref command

The disp_ref command retrieves information regarding
the source of knowledge from the COMKB. This information is
stored in the reference slot of each node. The example below
shows the usage of the command:

(user) disp_ref (large_cone_develops).

(system) large_cone_develops (and, 2): D. Andean, Interview, 29 AUG 84.
o4_firing_continues (and, 3): CTS Operations Report 3.4.
negative_pitch_develops (or, 1): Earlier report, Sep. '78.

4 - 17

The report provides accountability to knowledge being
used in the SANS and aids the knowledge update or revision
process. The command has the same node-focusing mechanism as
in the display_tree command described in Section 4.3.5.1
above, and the following command formats, described there,
are acceptable:

display_ref (NO).

display_ref (NO, Ni)..

display_ref (NO, Ni, N2).

4.3.5.3 The disp_exp command

The disp_exp command retrieves a rule which supports a
hypothesis at a node. The rules are retrieved from the COMKB
and have the format show in the following example: The
disp_exp command displays only one node at a time.

(user) disp_exp (spacecraft_lost).
(system) E spacecraft_lost (and electronics_inert telemetry_lost

antenna_ineffective spacecraft_mechanically_frozen)]

The rule shown is equivalent in English to:

IF on-board electronics are inert,
and the antenna for the command link is ineffective,
and the telemetry from the spacecraft is lost,
and the spacecraft is mechanically frozen,
THEN the spacecraft is assumed to be lost.

The general format of a rule is as shown in Section
3.3.6.1, ie.,

I node (logic Evidence-I, Evidence-2, ..., Evidence-n)

where,

node: Node (hypothesis) identifier, or the name of the
rule,

logic: Data fusion logic, and, or, or not,

Evidence-i: identifier of a node which contributes to
the hypothesis.

4 - 18

(Node 14) Node 15 Node 14) ygode 15)

/\ 	

Node 16

4.3.5.4 The check_loop command

The check_loop command is for finding a loop in the
knowledge structure. A node is specified as the sole argument
and the command procèssor notifies whether the node is a part
of a loop or not. An example of a loop is shown in Figure
4.9. THe following sequence is an example of applying the
command on node_3 and node_4 of the example network.

(user) check_loop (node_13).

(system) Node node_13 is in a loop.

(user) check_loop (node_14).

(system) Node node_14 is not in a loop.

. 	Node 11

Node 12
Node 13

Figure 4.9 An example of a loop in an inference network

4 - 19

V

>1 LLKS

• 1

5. The Experiments

5.1 The LLKS test and experiment

5.1.1 The objective of the experiment

To test and confirm proper functioning of the LUS'
event propagation mechanism as the basis of the fault
inference methodology used in the POC experimental system.

5.1.2 The method of experiment

Using a configuration of Figure 5.1, conduct the
experiment in the +plowing order:

(1) Initialize the COMKB so that any previous knowledge is
eliminated,

1. 	.1
:1 Console 11 	Experiment control and

•I 	 I
I I 	1 	II

1 ' 	 '1
display of results

>: COMKB 1 . 	

Inference network

1 Event propagation
V

1 LLKB

Propagation
control
knowledge 	1 	E I U Environment generation

• •

V

1. 	 .1
1: Console 1: Simulated environmental
II 	II

Il parameter input

Figure 5.1 The event propagation test facility

5 - 1

(2) Establish in the COMKB, a set of knowledge each piece of

knowledge representing an 	inference node. 	Select

inference network (and domain) appropriate for testing

propagation of events. 	Use the disp_tree and other

commands to confirm the network in the COMKB,

(3) Using 	Console 	1, 	invoke the LLKS and start its

propagation mechanism,

(4) Enter simulated environmental inputs through Console 2

and let the values propagate,

(5) Wait till the propagation reach its equilibrium,

(6) Display on Console 1, the results of propagation using

the disp_tree command. 	Verify the results by hand

calculation.

The portions of the LLKS concerned with the

propagation process is described below:

propagate :-
.Find_executable_nodes (Node_list).
find_propagatable_nodes (Node_list,P_node_list).
mark_no_propagation (Node_list, P_node_list).

propagate_one_step (P_node_list).

change_terminal_status.

change_suspended_nodes.
find_executable_nodes (Node_list).

propagate_loop (P_node_list).

propagate_loop (P_node_list) :-
find_propagatable_nodes (Node_list, P_node_list).

mark_no_propagation (Node_list, P_node_list).

change_terminal_status.
find_executable_nodes (Node_list).

propagate_loop (P_node_list).

where,

find_executable_nodes:

Creates a list of those nodes that on which a

propagation may be conducted,

find_propagatable_node:

Creates P_node_list, which is a list of nodes

found in Node_list and whose value has changed

since last propagation,

mark_no_propagation:

Mark those nodes that were not selected in

Node_list as 'unchanged',

propagate_one_step:
Apply a single step data fusion on nodes in
P_node_list,

mark_terminal_:status:
Mark status of terminal nodes 'unchanged',

mark_suspended_nodes:
Mark suspended nodes 'unchaged'.

5.1.3 Data used in the experiment

The following knowledge (reproduced in English form)
was used in the experiment:

If 	(the relative position of the sun to the
spacecraft always changes)

And (heat dissipation around fuel tank is uneven)

Then (temperature within fuel tank cycles)

If 	(the sun reflection causes the spacecraft
electrically charged)

Or 	(radiation from the on-board Super High Frequency
equipment causes the charge)

Then (the spacecraft structure may be electrically
charged).

These two pieces of knowledge represents two inference
nodes, as shown in Figures 5.2a and 51.2b. The first knowledge
constitutes a probablistic logical AND gate, while the latter
a probablistic OR gate.

1 fuel_tank_temperature_
1 cycles

/- and -\

sun_position_
1 always_changes

1 heat_dissipation_
1 uneven

Figure 5.2a A probablistic logical AND gate

5 - 3

spacecraft_electrically_ I
I charged 	1

/ 	or \

. 	. 	. 	 .
' 1 sun_reflections 1 	1 SHF radiation 	.

. 	. 	. 	 ,
. , , 	.

Figure 5.2b A probablistic logical OR gate

5.1.4 The results of the experiment

The following are the results of the data fusion
experiments obtaqined by applying the disp_tree command to
the COWS after the propagation. There are four cases each
for the AND and OR gates:

?disp_tree(charged_energy).
* charged_energy (01-1 2) D=.8 P=.97

* sun_reflections (terminal). P=.86
shf_radiation (terminal) P=.16

Yes

?disp_tree(chargee_energy).
* chargedrenergy (or' 2) D=.8 P=.68

sun_reflections (terminai) P=..18
* shf_radiation (terminal) P=.52

Yes

?disp_tree(charged_energy).
* charged_energy (or, 2) D=.8 P=.98

* sun_reflections (terminal) P=.62
. - 	- * shf_radlation (terminal) P=.73

Yes

?disp_tree(charged_energy).
* charged:_einergy . (or,2) D=.8 P=.25

sun_reflections (terminal), P=.07
shf radiation (terminal) P=.19 _ 	_

Yes

.•••

5 - 4

?disp_tree(fuel_tank_temp_cycles).
-* fuel_tank_temp_cycles (and,2T-D=1 P=.57

* sun_position_always_changes (terminal) P=.86
• heat_dissipation_uneven (terminal) P=.57

Yes

?disp_tree(fuel_tank_temp_cycles).
fuel tank temp_cycles (and,2) D=1 P=.15

sun_position_always_Changes (terminal) P=.64
heat_dissipation_uneven (terminal) P=.15

Yes

, ?disp_tree(fuel=t<irikl-teMP-CYcles).
fuel_tank_temp_cycles (and,2) D=1 P=.17

sun_position_always_changes (terminal) P=.17
heat_dissipation_uneven (terminal) P=.52

Yes 	•

?disp_tree(fuel_tank_temp_cycles).
- fuel_tank_temp_cycles (and,2) D=1 P=.08
• sun_position_always_changes (terminal) P=.18

heat_dissipation_uneven (terminal) P=.08
Yes

5.1.5 Discussion

The following are the justification of the results

shown above obtained by comparing them with the results of
hand calculation:

(1) The verification of the AND data fusion process

Hand calculations were performed using methods

discussed in Section 4.3.4 on the AND fusion cases shown

below, and the results were successfully compared with the
outputs from the LLKS' fusion mechanism presented in 5.1.4
above:

Result:

* fuel_tank_temperature_cycles (and 2) D=1 P=.57
* sun_position_always_changes P=.86
* heat_dissipation_uneven F=.57

5 - 5

Verification:

Since the maximum dependence (D=1) is assumed between
the two supporting items of evidence,

Pe = MIN (Pa, Pb) = .57

where MIN is the minimum selection function.

Since PO = 0, P1 = 1,

Ph = (P1-PO) * Pe + PO = (1-0) * .57 + 0 = .57.

This value of Ph justifies the firing of the top
assertion of the output identified by an asterisk
attached in front of it, as the system-wide threshold
for firing a node is set at .20 and .57 is greater
than this value.

Result:

fuel_tank_temperature_cycles (and 2) D=1 P=.15
* sun_position_always_changes P=.64
heat_dissipation_uneven P=.15

Verification:

Using similar calculation as above, Pe = .15 is
obtained. Since

Pe = (1-0) * .15 + 0 = .1 5 ,

the top assertion of this case does not fire, as shown
by the absence of an asterisk (*) in front of it.

Result:

fuel_tank_temperature_cycles (and 2) D=1 P=.17
sun_position_always_changes P=.17
heat_dissipation_uneven P=.52

Verification:

Using the same set of equations, Pe = .17, Ph = .17
are obtained. Since the threshold is .20, the top
assertion does not register itself (no asterisk).

Result:

fuel_tank_temperature_cycles (and 2) D=1 P=.08
sun_position_always_changes P=.16
heat_dissipation_uneven P=.08

Verification:

Calculated results for Pe and Ph both equals only to
.08. Hence the the node fails to fire and the absence
of an asterisk on the top assertion is justified.

(2) The verification of the OR data fusion process

The results of the four runs made on the OR
propagation, shown in Section 5.1.4, are compared with
the results of hand calculation performed on each of
the cases.

Result:

* charged_energy (or 2) D=.-8 P=.97
* sun_reflections P=.85

shf_radiation P=.16

Verification:

The strength of assertion for a node of which
supporting evidences are fully dependent on each
other, Cl is:

Cl = Pa + Pb- Pa * Pb = .85 + .16 - (.85 * .16)
= .89.

Similarly, for the minimum dependency case C3 is
calculated as follows:

C3 = MIN (Pa + Pb, 1) = 1.

Therefore, applying interpolation on D, Cl and C3, the
strength Pe of assertion for the top assertion of the
example is,

Pe = ID: * C3 + (1 - IDI) * Cl
= .9 * 1 + (1 - .8) * .88
= .8 + .176
= .976

5 - 7

This matches with the result and the firing of the
node is justified as the threshold is still set at .2.

Result:

* charged_energy (or 2) D=-.8 P=.68
sun_reflections P=.18

* shf_radiation P=.52

Verification:

Cl = Pa + Pb - Pa*Pb = .18 + .52 - (.18 * .52)
= .606

C5 = MIN (Pa + Pb, 1) = .7

Pe = ID1 * C3 + (1 - :D:) * Cl
= 1-.81 * .7 + (1-.8) * .6
= .56 + (.2) * .6 = .68

Ph = (P1 - PO) * Pe + PO = .68

Therefore, the node fires at strength = .68.

Result:

* charged_energy (or 2) D=-.8 P=.98
* sun_reflections P=.62
* shf_radiation P=.73

Verification:

Cl = Pa + Pb - Pa*Pb = .62 + .73 - (.62 * • 73)
= .9

C3 = MIN (Pa + Pb, 1) = 1

Pe = 1-.8: * 1 + (1 - :-.81) * .9 = .8 + .18
= .98

The node has fired as its strength of assertion is
greater than the threshold.

Result:

charged_energy (or 2) D=-.8 P=.25
sun_reflections P=.07
shf_radiation P=.19

Veriftcation:

Cl = Pa + Pb - Pa*Pb = .07 + .19 - (.07 * .19)
= .25

C3 = MIN (Pa + Pb, 1) = .26

Pe = :DI * C3 + (1 - ID1) * Cl
= 1-.81 * .26 + (1 - 1-.81) * .25
= .2 + .05
= .25

Hence the node has fired.

5.2 Testing of the HLKS Autonomy Control search mechanism

The objective of the test

The three control modes of the search mechanism of the
HLKS Autonomy Control are tested. They are:

(1) depth-first search,
(2) breadth-first search,
(3) beam search.

5.2.2 The method of testing

Figure 5.4 shows the facility used for the tests.
Steps in the test are:

(1) Initialize the COMDB,

(2) Enter knowledge for the experiment in the COMDB,

(3) Activate Autonomy Control's search mechanism by issuing
an appropriate search command from Console 1. 	Search
takes place on the test tree in the COMDB,

(4) Observe the results of search displayed on Console 1 by
the HLKS as its search mechanism picks a new node.

	

Console II 	Experiment control and
1 	H 	display of results
	'1

V

HLKS

I Autonomy Control I Search mechanism

V

I COMDB 	Example fault tree

1

Figure 5.4 Facility for search mechanism test

5 - 10

The above procedure has been repeated for all three
search strategies.

The HLKS Autonomy Control searches the inference
network in the COMDB - and visits nodes according to the search
strategy.in effect and issues messages identifying which node
is visited. The order the messages are issued is studied to
confirm the correctness of the search.

For the depth-first search, PROLOG's backtracking
mechanism was used. The heart of the depth-first search
algorithm used in this experiment is shown below:

hlks_search1 (Node) :-
clock(N), write ("depth-first_search begins time =
write (N), ni, hlks_depth_first (Node).

This predicate starts a clock (for measuring the speed
of search) and initiates a depth-first search.

hlks_searchl (Node) :-
write ("depth-first search finished time = "), clock (N),
write (N), ni.

Upon completion of the search, this predicate reports
the current elapsed time.

hlks_depth_first (Node) :-
node_structure (Node, _, evidence (E_list), _),
hlks_test11_action (Node), hlks_decide_depth (Node, E_list).

This predicate collects evidences for current node and
initiates the action to decide which node to search next.

hlks_decide_depth (Node, 	:- fail.

hlks_decide_depth (Node, EE head n E_tail3) :-
hlks_depth (Node, E Flead);
hlks_decide_depth (Flode, E_tail).

Continues search until an end of a branch is reached.
The process backtracks then and tries an alternative at a
level above.

hlks_test11 action (Node) :-
writ; ("Searched: 	("), write (Node), write (")"),
write_time, ni.

This predicate identifies the node being searched and
prints out the elapsed time.

5 - 11

The algorithm for 	the breadth-first search is

documented in the HLKS listings in Appendix A.1, predicate

'flexible_breadth_first' being its entry point.

The beam search begins, as shown in Figure 3.5, first

as a breadth-first search and turns into a beam search half
way down (otherwise, it will be a simple breadth-first

search, if it were to begin from the top). The algorithm is
contained in the one for the breadth-first search.

5.2.3 Data used in the experiment

The identical node structure (inference network) was
used for all three search modes. It is the 102-node fault
tree structure developed for the Attitude and Orbiting

Control System of the CTS/Hermes satellite (See Appendix

A.3).

5.. 2 .. 4 The results of the experiment

The result of the depth-first search is presented in
Figure 5.5 below. The output consists of 'Seached:' followed
by the identifier of the node searched, followed by the
elapsed system time from an arbitrary origin. According to

the knowledge base shown in Appendix A.3, the order in which
the nodes are searched is appropriate. Search time is

measured in milliseconds. Average search time for a new node
is 40 ms approx.

Figure 5.6a is a part of the output from the
breadth-first search experiment. Again, the order of the
search was found to be correct after comparing it with the
knowledge base. 	The average per node search time was

considerably longer than the depth-first search 	(14c)ms
approx.). 	This was because the method could not take

advantage of the built in backtracking mechanism of the
PROLOG language system.

"'search(spacecraft_lost,depth,tree).

depth_first_search begin 	time = 8160

Searched: (spacecraft_lost) time = 8180

Searched: (electronics_innert) time = 8210

Searched: (heaters_ineffective) time = 8240

Searched: (electrical_shutdown) time = 8270

Searched: (uvs_trips) time = 8300
Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Figure 5.5

(batteries_exhausted) time = 8320

(power_loss_1) time = 8350

(catalyst_bed_heater_on) time = 8380

(recovery_procedure_begins) time = 8420

(nesa_a_output_saturates) time = 8450

(nesa_a_saturation_l) time = 84q0

(charged_energy) time = 8530

(sun_reflections) time = 8570

(shf_radiation) time = 8610

(mirror_stuck) time = 8660

(scan_mechanism_fails) time = 8700

(thermal_distortion) time = 8730

(sun_position_always_changes) time = 8780

(anomalies_relate_to_sun_pos) time = 8820

(unstable_pivot) time = 8870

(mechanism_contamination) time = 8910

(scan_motor_fails) time = 8950

(motor fails) time = 8990

Sample output from the depth-first search tet

esearcn%spacecrart_lost,deeadth,tree).
breadth_first_search begin time = 141490
Searched:

Searched:

Searched:

Searched:

Searched:
Searched:

Searched:

Searched:
Searched:

Searched:

Searched:

Searched

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

Searched:

(spacecraft_lost) time = 141790
(antenna_ineffective) time = 142140
(electronics_innert) time = 142160

(spacecraft_mechanically_frozen) time = 14218
(telemetry lost) time = 142200
(electrical_shutdown) time n 142560
(heaters_ineffective) time In 142580
(spacecraft_tumbles) time mg 142600
(electrical_shutdown) time = 143060
(large_cone_develops) time = 143090
(pitch_changes_greatly) time = 143100
(uvs_trips) time = 143120
(wheel_stops) time = 143150
ipatteries_exhausted) time = 143770
(charging_limited) time = 143780
(electrical_shutdown) time = 143800
(negative_pitch_develops) time = 143830
(04_firing_continues) time = 143850
(uvs_trips) time = 143870
(batteries_exhausted) time = 14E070
(charging_limited) time = 145090
(high_rate_command_continues) time = 145120
(o4 fires) time = 145140

5.6a A portion of output from the breadth-+r _
search test

5 - 1:

Figure 5.6b is a portion of the output from the beam

search experiment. In the diagram, the search strategy was
switched from the breadth-first to the beam search on the
seventh node (heaters_ineffective). The order of the search
was found to be correct before and after the switch.

The average per node search time was the same as the
breadth-first search time since it uses beam search.

?search(spacecraft lost,beam,tree).
-beam—eéalAcn-begIn--7-t-ime-=-61-350 	

Searched: (spacecraft_lost) time = 61660

Searched: (antenna_ineffective) time = 62010

Searched: (electronics_innert) time = 62030

Searched: (spacecraft_mechanically_frozen) time = 62040

Searched: (telemetry_lost) time = 62070

-Searched: (electricaT-shutdown) time-= - 62410 	Iffleerk -

Searched: (heaters_ineffective) time = 62430 	beiv»-
Searched: (electrical_shutdown) time = 625A0
Searched: (uvs_trips) time = 62780
Searched: (batteries_exhausted) 	= 63030
Searched: (charging_limited) time = 63050

Searched: (power_loss_1) time = 63440

Searched: (power_loss_2) time = 63460

Searched: (tracking partially_successful) time = 63480

Searched: (attitude:control_lost) time = 63940

Searched: (catalyst_bed_heater_on) time = 63960

Searched: (heavy_tracking_power) time = 63980

Searched: (solar_array_off_angle) time = 64010

Searched: (command_not_receivable) time = 64490

Searched: (continuous_tracking) time = 64520

Searched: (large_cone_develops) time = 64550

Searched: (pitch_changes_greatly) time = 64580

Searched: (recovery_procedure_begins) time = 64610
Searched: (attitude_control_lost) time = 65500
Searched: (negative_pitch_develops) time = 65530
Searched: (nesa_a_output_saturates) time = 65560
Searched: (04_firing_continues) time = 65570

Searched: (receive_antenna_off_angle) time = 65590
Searched: (solar_array_off_angle) time = 65620
Searched: (command_not_receivable) time = 66760
Searched: (excessive_nesa_a_power_cycling) time = 6679e
Searched: (high_rate_command_continues) time = 66810
Searched: (large_cone_develops) time = 66840

Searched: (nesa_a_saturation_l) time = 66870
Searched: (nesa_a_saturation_2) time = 66890

Figure 5.6b Sample output from the beam search test

5 - 14

5.3 Automatic generation of a warning message

5.3.1 The objective of the experiment

The HLKS Autonomy Control subsystem has, as a part of
its autonomous control function, an ability to detect a
situation for which a warning must be issued. This experiment
is to test and demonstrate that capability.

5.3.2 The method of the experiment

The experiment uses the test facility depicted in

Figure 2.1. The flowchart shown in Figure 2.2 is also
descriptive of the steps taken in this experiment. They are

summarized below:

(1) Initialize the COMKB and the COMKB. Load the COMKB with
the CTS/Hermes (AOCS) knowledge base,

(2) Initialize the HLKB and load it with the heuristic
knowledge to search, detect, and report a node whose
status warrants a warning,

(3) From Console 1, invoke the LLKS and start its event/event
propagation process,

(4) From Console 1, invoke the POC main control. 	After the

system level initialization, it will activate the EIU,

(5) Through Console 2 enter terminal events (sensor data) as
required by the EIU. Select parameters and values so that
a desired number of warnings are likely to arise. When
the 	EIU 	is satisfied, the LLKS begins its event
propagation process. The results of the propagation will
be stored in the COMDB,

(6) Let the POC main module invoke the HLKS. 	The HLKS
Autonomy Control will scan through the instantiated fault
tree in the COMDB, applying knowledge in the HLKB to
determine if a warning is warranted,

(7) Obtain a warning message issued by the HLKS Autonomy
Control. 	The HLKS will then automatically execute the

probe command under rule control (If the situation is bad
enough to warrant a warning, then issue a probe on it to
clarify the causal relationships between the anomaly and
its supporting evidences) so that more information is
generated on the node,

(8) Observe warning messages output by the Autonomy Control
and check if all messages are justifiable, and all that
have to be issued are there.

5 - 15

(9) Run the disp_tree command on the instantiated fault tree
in the COMKB to observe nodes with a positive assertion
greater than the threshold,

(10) Complete the experiment by issuing the terminate command
to a system prompt.

?main2(spacecraft_lost).
Enter simulation 	magnifier (1 ... 11000000):.
1
telemetry_lost
f.
Enter • h., or 1., Y.
1.
oik_previously_fired-
r.
diaphragm_leaks
r.
nitrogen_to_pressure
r.
impurities:in_tank - '
r.
fuel_in_tank_low
r.
heat_dissipation_uneven
r.
sun:reflections--
r.
shf:_radiation.
r.
unstable_pivot
r.
mechanismcontamination
r.
motOr_fails

motor_overheats
r.
contror_electronics_fails
r.
emi_to_e1ectronics

power_needs_to_be_cut_to_eliminate_output
r.
sun_position_always_changes
r.

• anomalies_relate to sun_pos

power_cut_to_eliminate_output
r.
neSa_a_output_must_be_cut_out
r.

Figure 5.7 The EIU input for the experiment

5 - 16

5.3.3 Data used in the experiment

The knowledge structure used for the previous
experiment is used for this experiment. In addition,
knowledge for the HLKS is added as shown in Appendix A.4.

Figure 5.7 is a record of the EIU interaction in which
environmental parameters are entered for 20 terminal nodes in
the experiment. It shows that all but one Ctelemetry_lost'
is fixed to 'low') parameters are generated under the control
of a random number generator, as marked by an 'r.'.

5.3.4 Result of the experiment

Figure 5.8 is the output from the experiment. It shows
that, after the EIU interaction, in which random number
generation was specified for all terminal nodes, the PDG main
module invoked the LLKS. It completed the event propagation
and handed over the control to the HLKS.

The HLKS picked up the first anomaly. 	A warning
message was generated by the HLKS Autonomy Control, using the
control knowledge in the HLKB. The ground controller then
issued the report command on the node on which an anomaly was
discovered. The result of the command is shown in the seven
lines that follow. Normally, an operator in this situation
would continue conversation with the system and further study
the anomaly. In the experiment, the session was terminated by
the terminate command. Notice that the sequence after the
warning was under the control of the human operator. The PDG
system acted only in the capacity of an autonomous advisory
system.

< LLKS starts >

< LLKS completes >

< HLKS .starts >

WARNINS:...**.(antenna_ineffective) **

Enter command:
. mert., 4nte_nna_ineffective).

antenna_ineffective (Command receive antenna is not functioning at all)
is true with probability 1.

,The state is determined by the rule:
C antenna_ineffective (and spacecraft_tumbles electrical_shutdown) 7

spacecraft_tumbles (Spacecraft is tumbling) is true with probability 1.

electrical_shutdown (On-board electrical system is shut down)
is true with probability 1.

Enter <report., report(CId4 	Idn7)., or end.>
end.

Enter command:
terminate.
< HLKS completes >

Figure 5.8 The result of the autonomous WARNING generation
experiment

5.4 An autonomy control loop

5.4.1 The objective of the experiment

Operation of the HLKS can either be under the explicit

control of the operator, or controlled by the meta-level

knowledge stored in the HLKB. In addition, it can be

controlled by domain level knowledge stored in the COMKB.
This experiment is to test the cooperation between the

knowledge-based control facilities of the HLKS and reasoning

mechanism of the LLKS. By designing knowledge structures in

these knowledge bases properly, one can construct a fault

management control loop which will autonomously identify,

analyse, report on, and correct an anomaly in the system.

5.4.2 The method of the experiment

The experiment is conducted using the entire POC
experimental system described in Section 2.2. As shown in

Figure 2.1, the two expert systems are linked with their

knowledge bases, the COMKB and the COMDB acting as

communication channels between them. The experiment roughly

follows the flowchart of Figure 2.2. Below is a scenario in

which pieces of knowledge are used to complete a control loop

in order ta salve an on-board anomaly:

	

An event propagation is conducted using the LLKS. 	It

	

discovers an anomaly and reports it to the HLKS. 	An

investigation by the HLKS follows, its search being

controlled by the meta-level knowledge in the HLKB. The HLKS,

also uses domain specific (object level) knowledge stored in

the COMKB for each of the nodes it visits and recognizes that

the anomaly reported by the LLKS is a serious one. It uses

the general (meta-level) control knowledge in the HLKB and

decides to take autonomous control of the node.

It first issues a warning message to ground control,

identifying the fault. All actions taken and commands issued

by the HLKS autonomously will be reported through the OIU, to
the operator with a distinctive message identification. The

HLKS then isues the probe command on the faulty node and

reports the result to ground control. The Autonomy Control of

the HLKS now consults the control knowledge in the CONKS,

reasons an the control options, and decides on appropriate

action. The node chosen for the experiment here autonomously

recommends that the node itself be disconnected from the rest

of the systems so as to contain the fault. The HLKS executes

the recommended action and reports the fact ta the ground.

The lower level expert system (LLKS) propagates input

events through the inference network again, and this

clarifies that the fault was eliminated from the system for

the time being. This fact is reported to the ground.

The steps in the experiment are summarized below:

(1) Initialize the COMKB and load it with the CTS/Hermes
(A°CS) knowledge base,

(2) Initialize the HLKB and load it with the heuristic

knowledge to search, detect, and report, and take

corrective action on a node whose status warrants

these actions,

(3) From Console 1, invoke the LLKS and start its event/event
propagation process,

(4) Through Console 2 enter terminal events (sensor data) as
required by the propagation process. Select parameters

and values so that a desired anomaly will arise. 	The

result of the propagation will be stored in the CGMDB,

(5) Run the disp_tree and other commands on the instantiated

fault tree in the CGMKB to study nodes with a positive
assertion greater than the threshold (fault),

(6) Activate the HLKS. The HLKS Autonomy Control will scan
through the instantiated fault tree in the COMDB,
applying knowledge in the HLKB to determine if 	a

corrective action is warranted. 	If so, the HLKS then
proceeds to access knowledge for the troubled node in

the COMKB so as to decide on the corrective action,

(5) Observe messages output by the Autonomy Control and study

the sequence of actions which the HLKS Autonomy Control

chose to execute,

(6) The LLKS automatically runs itself after the HLKS
completes its operations. The new cycle of propagation

must not report the same fault that was reported in a

previous cycle.

5.4.5 Data used in the experiment

The same inference network as in the previous two

experiments is used. This is enhanced by additional control

knowledge in the COMKB and meta-knowledge in the HLKB, which

is shown below. Some of the rules refer to knowledge stored

at node level in the COMKB:

5 - 20

hlks_action (warning, Node) :-
node_status (Node,_,_,t,P,_,_,_,_,w), number (P),
decide_true (Node,_,P), get_action_list (Node, Action_list),
check_warning (Action_list).

This rule determines if a warning message is
warranted. It checks if the condition at the node is serious
enough.

hlks_action (suspend, Node) :-
node_control (Node, C,_,Entrust,_,_,_), ne(C, suspend),

node_status (Node,_,_,t,P„ „ ,), number (P),
decide_true (Node,_,P), get_action_list (Node, Action_list),
check_warning (Action_list).

This rule decides if a suspension of a node is
appropriate. Among other conditions it checks if the node in
question is 'entrusted' to the HLKS for autonomous action.
The following two rules are action rules and are used by a
backward chaining inference engine local to the Autonomy
Control.

take_hlks_action (Node, warning) :-
write ("WARNING: ** ("), write (Node), write(") **"), ni,
write ("HLKS Autonomy Control: probe("), write (Node),
write ("")."), ni, probe (Node),
change_node_status_for (Node„ „ „ „done).

This rule is used to issue to the operator a warning
message on an anomaly.

take_hlks_action (Node, suspend) :-
suspend (Node), write ("HLKS Autonomy Control: suspend("),
write (Node), write (")."), ni, write("("), write (Node),
write (")"), write(" is autonomously suspended by HLKS."), ni.

This rule is invoked to actually suspend a node.

take_hlks_action(Node, breadth).

The default search scheme in the HLKS is a breadth
first search. This rule sets the default.

take_hlks_action (Node, beam) :-
(ask_continue_beam (Node,R),/,equal (R,y),

node_structure (Node, _, evidence (E_list),_)),
flexible_breadth_first (E_Iist),/;/.

5 - 21

This meta-rule determines when to switch to a beam
search, while executing other search strategy.

Other rules of the HLKB are shown in Appendix A.4 The
knowledge stored in the COMKB is listed in Appendix A.3.
Parameters are generated under the control of a random number
generator, as marked by an 'r.'.

5.3.4 Result of the experiment

Figure 5.9 is the output from the experiment. It shows
that, after the EIU interaction of Figure 5.7, in which
random number generation was specified for all terminal
nodes, the POC main module invoked the LLKS. Because the
probability for some of the terminal events is very high (See
Table 2.1), the LLKS must have found several faults in the
system.

The HLKS operation that followed picked up the first
and the most serious anomaly (Note that the HLKS searches
basically top-down). A warning message was generated by the
HLKS Autonomy Control. Using the control knowledge in the
HLKB, it then issued the probe command. The result of the
command is shown in the succeeding eight lines of the
diagram.

The HLKS then used another set of knowledge in the
HLKB and the COMKB and decided to suspend the node's
operation. This corresponds to the situation, in which a
faulty UVS (Under Voltage protection System) is removed from
the system. The HLKS again reports its action.

The HLKS completes an autonomy management session with
the system, and the LLKS starts a new propagation cycle. This
time, the removal of the faulty unit resulted in the
elimination of the key anomaly in the system, and the LLKS
does not report a fault. The propagation cycles that follow
proceed eventlessly.

< LLKS-startS >-

('LLKS completes >

HLKS starts >

WARNING: ** (uvs_trips) **

HLKS Autonomy Controlf probe(uvs_trips).

-uvs_triPs - (Unde-r- voltage- prOtiCtion stem is - aCtivated)
is true with probability 1.

-The state is determined by the ruie:
uvs_trips (and batteries_exhausted charging_limited)

batteries_exhausted (On-board batteries are exhausted) is true with probat

11- rging_1imited 	(Solar's array's ability to.-charge-eff=tuard-tiatteries
is now limited) is true with probability 1.

HLKS Autonomy Control: suspend(uvs_trips).
(uvs_trips) is autonomously suspended by HLKS.
< HLKS completes >

< LLKS starts >

LLKs—dblifiblètee-

< HLKS starts >

< HLKS completes >

< LLKS starts >

< LLKS completes. Y

< HLKS start's >

< HLKS'completes >

< LLKS starts >

.< LLKS -completes >

Figure 5.9 The result of the autonomous control loop
experiment

5 - 23

6. Conclusions and discussion

Through the development of and experiments using the
SAMS POC experimental system, the following conclusions can
be stated:

(1) The data fusion model proposed by Rauch is an important
contribution to a real-time knowledge-based system

paradigm. 	The model was taken and expanded to include
n-input AND gates and three-input OR gates, and was used
as the basis for the LLKS Inference Engine. This choice
was justified because no other methods exist which take
into account belief dependency among input signals, while

offering a high degree of implementability. Bayesian
theory, which is commonly used in expert systems (such as
MYCIN and PROSPECTOR) as a source for their uncertainty

handling mechanism, ignores the input dependency and thus
cannot be adopted. There appears to be other similar

approaches for handling dependent inputs, but none of

them are as amenable for reasonable implementation.

These other models will have to be studied further in the
future and a more elaborate data fusion model which

better represents the real phenomena may have to be
created by fully understanding the limitations of the
current model. For example, shortcomings such as the lack
of ways in the model to describe directional dependency
among inputs (Input A as an event may be dependent on
input B, and vice versa, but with a different degree of
dependency) can be studied more carefully.

(2) A data/event driven expert system paradigm is more suited
as a method for applying Knowledge Engineering to

real-time systems than its goal-driven counterpart and
its variations. 	There are attempts to interface a
goal-driven expert system to real-time events [Anderson
et al 84], but awkwardness is undeniable. In highly time
critical systems, it will become impossible to complete

any reasonable amount of heuristic search to prove goals
and subgoals, let alone ta conduct question/answer
sessions with a human operator. However, these are the
basic premises of the goal-driven systems.

(3) On the other hand, the existing methods for creating a
goal-driven expert system appear to be adequate for the
HLKS. It was felt that more user-friendly interfacing

approaches, 	such as adoption of 	an elaborated

icon-oriented graphic input/output facility, would be

highly desirable, considering the peculiarities of the
environment in which the autonomy management system will
be used.

6- J.

(4) An 	interesting analogy may be drawn between the

characteristics of the two types of expert system

architecture and knowledge processing conducted by

conscious and subconscious minds of human beings. 	The

data/event driven approach shares many aspects of

subconscious input acceptance and response giving that

the subconscious mind does. 	On the other hand, the

conscious mind often and continuously, if not always and

constantly, tries to resolve goals, one after another. A

human being in his/her mode of operation as a knowledge

processor is a real time system. It appears certain that

most realtime intelligent systems will 	require a

multi-tiered architecture for efficient processing.

(5) Therefore, the choice of combining these two different

paradigms to construct a system which has to interface

with a real-time environment, at the same time answering

the needs of the human operator in enquiring the status,

asking for control steps, and issuing instructions seems

to be justified.

(6) Faulty situations in a system which must be identified

and responded to faster than an operator can, should be

left to autonomous systems. This policy has been adopted

in most spacecraft subsystems already using conventional

approaches. But the concept should be expanded into areas

which require more elaborate judgements, which involve

ambiguities of 	judgement criteria and of incoming

information. An example of such judgement would be the

careful handling necessary in managing the on-board

charging system when a spacecraft emerges from an

eclipse. An autonomous system which knows the causal

relationships , as well as structural and functional

knowledge about the spacecraft may be instructed to take

precautionary measures.

(7) There are a number of potentially dangerous events which

a spacecraft operator identifies and applies his learned

techniques to avoid a catastrophe. Much of this knowledge

may be coded in a knowledge based system and made

autonomously available to execution vehicles and their

control software. Compared to a system in which high

level decisions are left solely to human operators, this

would reduce accidents by omission, and thus contribute

to an improved operational reliability. This benefit will

be in addition to the ability of a system so-equipped to

cope with high speed intelligent decision making needs

well beyond the ability of human operator. Emergency

situations in nuclear reactors and avionics systems are

prime examples of this type of potential application.

Increasingly more

6 - 2

delicate decisions should be left to autonomous systems

as the performance of the decision-making mechanism

improves with the advancing technology.

(S) Contrary to widespread myths in North America about its
limitations, programming using PROLOG, a logic

programming language, is an effective way, though may not
be an ideal way, to construct expert systems. The fact

that logic programming has been adopted as a foundation
for several fifth generation computer projects throughout
the world underwrites the satisfying experience the
authors had.

REFERENCES

[Anderson, B.M. 84] -
Anderson, B.M., et. al., "Intelligent Automation of
Emergency Procedures in Advanced Fighter Aircraft". Proc.

First Conference on Artificial Intelligence Applications,
Denver, Colorado, December, 1984 (CAIA-84), sponsored by
IEEE and AAAI.

[Bein 84]
Bein, Jonathan, "FIES: An Expert System for Isolating
Faults of Spacecraft Hardware". Proc. 'Conference on
Intelligent Systems and Machines', April 1984, Oakland
University, Rochester, MI. (to be published).

[Blidberg et al. 83]
Blidberg, D.R., Westneat, A.S., Corell, R.W., "Expert
Systems, A Tool for Autonomous Underwater Vehicles". In
Proc. Trends & Applications 1983, IEEE Computer Society,
May 1983, Washington D.C.

[Bullock, et al 83]
Bullock, B.D., et al, "Autonomous Vehicle Control: An
Overview of the Hughes Project". Proc. IEEE Trends &
Applications Conference, Washington D.C., May 1983, pp.
12-17.

[Cross 84]
Cross, Steve, "Expert Systems Architecture for Flight
Domain Applications". Proc. Conference on Intelligent
Systems and Machines, April, 1984, Rochester Michigan.

[Dicky & Toussaint 84]
Dicky, F. J., and Toussaint, Amy L., "ECESIS: An
Application of Expert Systems to Manned Space Stations".
Proc. The First Conference on Artificial Intelligence
Applications, December, 1984, Denver, Colorado,
December, 1984 (CAIA-84).

[Duda et al 81]
Duda, Richard, Hart, P.E., Nilsson, Nils j., "Subjective
Bayesian method for rule-based inference systems". In
Readings in Artificial Intelligence, Bonnie Webber, Nils
Nilsson ed., Tioga Publishing Company, Palo Alto,
California, pp. 192-199.

R - 1

EErman et al 80]
Erman, L.D., Heyeth-Roth, F., Lesser, V.R., and Reddy,
D.R., "HEARSAY-II Speech Understanding System:
Integrating Knowledge to Resolve Uncertainty". In
Computing Survey L Vol. 12, No. 2, 1980.

[Hong et al 84]
Hong, S.J., et. al., "YES/MVS: A Continuous Real Time
Expert System". Proc. National Conference on Artificial
Intelligence, Austin Texas, August, 1984 (AAAI-84), pp.
130-136.

[Girad 84]
Girad, Jerry, L., "Fighter Pilot Aid by Expert Systems
(Phase 1)". Proc. Conference on Intelligent Systems and
Machines, April, 1984, Rochester Michigan.

[Garni 84]
Somi, T., "Functional Design of a Knowledge-based
Spacecraft Autonomy Management System (SAMS)". Technical
Report, Communications Research Centre, Department of
Communications, Government of Canada, December, 1904.

[Harmon B]
Harmon, S.Y., "Coordination between Control and
Knowledge Based Systems for Autonomous Vehicle
Guidance". Proc. IEEE Trends & Application Conference,
Washington D.C., Mciy 1983, pp.8-11.

[Harmon et al 841
Harmon, S.Y., Gage, W.D., Aviles, W.A., Biancini,G.L.,
"Coordination of Intelligent Subsystems in Complex
Robots". Proc. The First Conference on Artificial
Intelligence Applications, Denver Colorado, December,
1984 (CAIA-84).

[Hewitt and Baker 77]
Hewitt, Carl and Baker, H., "Laws for Communicating "
Parallel Processes". Proc. 1977 IFIP Congress, IFIP

1977.

[Lesser and Corkill 81]
Lesser, Victor R., and Corkill, Daniel, "Functionally-
accurate, Cooperative Distributed Systems". IEEE Trans.
on Systems, Man and Cybernetics, SMC-11(1), January,
1981, pp. 81-96.

[McCarthy '841
McCarthy, John., "What is Common Sense" In Proc. AAAI
Presidential Address, August 1984, University of Texas
at Austin.

R - 2

[Milne 84]
Milne, R., "Maintenance Expert Systems for Analog
Circuits"-, Proc. Conference on Intelligent Systems and
Machines, April, 1984, Rochester Michigan.

; 111

il
II
ii

'111

FI
111
ii
Ei

18
II
11

[Mitchell and Lemmar,84]
Mitchell, Brian T., and Lemmer, John F., "RADES: A
Demonstration Expert System for Scientific, Space
Station Experiments". Proc. 'Conference on Intelligent
Systems and Machines 1984 Conference, April 1984,

Oakland University, Rochester, MI. (to be published).

[Pisano and Jones 84]
Pisano, A.D., Jones, H.L., "An Expert System Approach to
Adaptive Tactical Navigation". Proc. The First
Conference on Artificial Intelligence Application,
Denver Colorado, December, 1904 (CAIA-84).

[Rauch 84]
Rauch, Herbert E., "Probability Concepts For An Expert
System Used For Data Fusion". The AI Magazine, Fall
1984, pp. 55-60.

ESauers 847

Sauers, Ron, "EMES: An Expert System for Spacecraft
Energy Management". 	Proc. 'Conference on Intelligent
Systems 	and 	Machines 	1984', April 1984, Oakland
University, Rochester, MI. To be published.

[Schundy 84]
Schundy, Robert, "Expert Systems in Tactical Aircraft".
Proc. 'Conference on Intelligent Systems and Machines
1984', April 1984, Oakland University, Rochester MI. To
be published.

[Shafer 76]
Shafer, Glenn, "A Mathematical Theory of Evidence".
Princeton University Press, Princeton and London.

[Slagle 84]
Slagle, James, "BATTLE Expert System", Private note
presented at Smart Systems Technology's AI course in
July, 1984.

[Wagner 1983]

Wagner, Robert E.,"Expert Systems for Spacecraft Command
and Control". Proc. 'Computers in Aerospace IV'
Conference (AIAA-2372), Hartford, Conn., October 1903,

pp. 216-223.

R - 3

[Wagner 84]

Wagner, R., Private discussion on the progress of his
system development effort, December, 1984.

[Winston 84]

Winston, Partick H., "Artificial Intelligence", Second
Edition. Addison-Wesley Series in Computer Science,
Addison-Wesley Publishing Comapny, Inc., pp. 191-197.

[Zadeh 76]
Zadeh, Lotfi, "Fuzzy Systems Theory: A Framework for the
Analysis of Humanistic Systems". In Systems Methodology
in Social Science Research: Recent Developments, Kluwer-

Nijhoff Publishing, Boston, The Hague, London.

$ ty hlks. log

/* Hibh Level Knowledge based System 	Appendix A.1 HLKS Source Listings
I /*
report_to_hlks(fault) :-

node_status(X,_,_,t,P,_,_,_,_), number(P),
decide_true(X,ST,P) .

ar_t_tiljalks(xe_rfault) .

propagate t(STATE) :-
checZ_status, propagation, report_to_hlks(STPTE) .

1
• llks(STATE) :-

ni, write("(LLKS starts)"), ni, nl, propagate_t(STATE),
write("(LLKS completes)"), n1 .

ent rust _11 ks :-
node_control (X, _, entrust, 	_)

channe_node_stat us_for X, 	_, entrusted, _) , fa i 1 .
entrust_llks .

rel ieve_llks :-
node_control (X, _, re 1 i eve, _, 	_) ,

chanoe_node_status_for (X, _, 	rel i eyed, _) , fai 1
rel ieve_l 1 ks .

del_each_evidence
each_evidence(X), fdelclause(each_evidence(X)), fail .

del_each_evidence .

del_ro :-
route(X), fdelclause(route(X)), fail

del_ro .
del_ro

route(X), fdelclause(route(X)), fail
del_ro .

del_c_product :-
c_product(X), fdelolause(c_product(X)), fail

del_c_product .

del_sum :-
sum(X), fdelclause(sum(X)), fail .

del_sum .

set_status_resume(U) .
set_status_resume(NODE_LIST) :-

get_level_evidence(NODE_LIST,EVI_LIST),
(resume_breadth(NODE_LIST);
set_status_resume(EVI_LIST)) .

resume_llks :-
get_resume_node(NODE_LIST), set_status_resume(NODE_LIST)

get_resume_node(NODE_LIST) :-
bagof(N,get_resume(N),NODE_LIST)

get_resume_node(U) .

get _resume (NODE) s-
node_control (NODE, resume, _, 	_)

resume_breadth(U) :-
fail .

resume_breadth(CN_HIN_T7) : -
change_node_status_for (NU-hconnected.ective), I.

resume_breadth(N_T) .

._adjust_suspend_i-

get_top_node(TOP_NODE_LIST),
remove_extra_suspend(TOP_NODE_LIST)

remove_extra_suspend(C3) .
remove_extra_suspend(NODE_LIST)

art i ve..mmiden=e1NODE_L I ST, .E.Y. I _L I S11 4
 (remove_suspend(NODE_LIST);

remove_extra_suspend(EVI_LIST)) .

remove_the_suspend (N_H)
change_node_st at us_for (N_H, connected, at ive, 	_) .

get_active_evidence(C3,EVI_LIST) :-
addclause(each_evidence (11*)),

setof(E,each evidence(E),E LIST), del_each_evidence,
erase_first(i_LIST,EVI_LIST) .

get_active_evidence(CN HIN_TJ,EVI_LIST) :-
node_structure(N_P,_,evidence(EVIDENCE_LIST),_),

check_store_evi(EVIDENCE L/ST).,
det_active_evidence(N_T,EVI_LIST) .

check_store_evi(D) .
check_store_evi(CE_HIE_T1) :-

check_active(E_H,YES),
(equal(YES,yes),addclause(each_evidence(E_H)),/;/),
check_store_evi(E_T) .

check_active(E_H,no) :-
node_control(E_H,suspend,_,_,_,_,_) .

check_active(E_H,no)
node_status(E_H,suspended,_,_,_,_,_,_,_,_),

check_plural_input(E_H,plural), check_loop_of(E_H,loop)
check_active(E_H,yes) .

remove_suspend(U) :-
fail .

remove_suspend(CN_H1N_T]) :-
remove_the_suspend(N_H), /, remove_suspend(N_T) .

check_plural_input(NODE,RESULT) :-
bagof(N,plural(NODE,N),N_LIST), check_plural(N_LIST,RESULT) .

plural(NODE,N) :-
node_structure(N,_,evidence(EVIDENCE_LIST),_),

member(NODE,EVIDENCE_LIST) .

check_plural(N_LIST,plural) :-
length(N_LIST,L), L)1 .

check_plural(N_LIST,not_plural) .

check_loop_of(NODE,LOOP) :-
1oop_bf_search(CNODE3,NODE,LOOP)

check_loop(NODE) :-
check_loop_of(NODE,LOOP), write("Node "), write(NODE),

write(" is "), write_not(LOOP), write(" in a loop."), n1

' write_not(loop) .
write_not(not_loop)

write("not")

loom_bf_search(tn,NODE,LOOP) .

A -2

gez_levei_evloence(NODE_LIST,EVI_LIST>,
detect_loop(NODE,EVI_LIST,LOOP),

XequaL(LOOP.rnat-loop)-, 	
loop_bf_search(EVI_LIST,NODE,LOOP), I;

/) .

detect_loop(NODE,EV/_LIST,loop) :-
member(NODE,EVI_LIST) .

generate_llks_command(COMMAND_LIST) :-
bagof(X,11ks_command(X),COMMAND_LIST) .

generate_llks_command(C3) .

take_llks_action(C3) .
take_llks_action(CHIT7)

llks_action(H), take_llks_action(T) .

suspend_llks :-
set_llks_suspend .

set_status_suspend(D)
• set_status_suspend(NODE LIST) :-

get_level evidence7NODEj-IST,EVI_LIST),
(suspenii breadth(NODE LIST);
set_stiFits_suspend(E;1I_LIST)) 	.

suspend_breadth(C7) :-
fail .

suspend_breadth(CN_HIN_T3) :-
change_node_status_for(N_H,suspended,idele,_,_,_,_,_,_,_), /,

suspend_breadth(N_T) .

find_suspended_nodes(NODE_LIST) :-
bagof(X,find suspended_node(X),NODE_LIST) .

find_suspended_nollies(n) .

set_llks_suspend :-
find_suspended_nodes(NODE_LIST),
set_status_suspend(NODE_LIST)

find_suspended_node(NODE) :-
node_control(NODE,suspend,_,_,_,_,_) .

del_node_str :-
node_structure(_,_,_,_), fdelclause(node_structure(_,_,_,_)),

fail .
• del_node_str .

check_str(NODE) :-
depth_co(NODE) .

check str(NODE) :-
;Zrite(NODE), write(" check successuful."), n1 .

check(structure) :-
find_top(NODE_LIST), check_structure(NODE_LIST) .

check (type) :-
check_typ .

check(explanation) :-
check_exp .

Check("action") :-
check_act .

check.(control). :-
check_cnt .

check(status) _

checK(X) :-
write("### Argument("), write(X), write(") is undefined."),

ni .

check :-
check(structure), check(type), check(explanation),

check("action"), check(control), check(status) .

check_structure(C3) .
'check_structure(CHIT3) :-

check_str(H), check_structure(T) .

depth_co(NODE) :-
node_structure(NODE,_,eviaence(E_LIST),_),

decide_co(NODE,E_LIST) .
depth_co(NODE) :-

node_structure(NODE,_,_,_), /, fail;
write("### "), write("("), write(NODE), write(")"),

write(" does no t exist !"), nl .

decide_co(NODE,U) :-
fail .

decide_co(NODE I CE_HIE_M) :-
depth_serch_co(NODE,E_Hi;
decide_co(NODE,E_T) .

depth_serch_co(NODE,E_H) :-
cut(depth_co(E_H)) .

check_typ :-
mode_structure(NODE,_,_,_), check_type(NODE), fail

check_typ .

check_sta(NODE) :-
node_status(NODE,_,_,_,_,,_,_,_), / .

check_sta(NODE)
write("### "), write("("), write(NODE), write(")"),

write(" status was not generated "), ni, / .

check_type(NODE) :-
node_type(NODE,M,dependency(N),_,_,_,_,_,_,_), /, number(N),

N)= -10, N=(10, integer(N) .
cmeck_type(NODE) :-

node_type(NODE,M,dependency(undefined),_,_,_,_,_,_,_), / .
check_type(NODE) :-

write("### "), write("Type("), write(NODE), write(")"),
write(" does not exist or incorrect !"), ni, / .

check_exp :-
node_structure(NODE,_,_,_), check_explanation(NODE), fail .

check_exp .

check_explanation(NODE) :-
node_explanation(NODE,g_type(X),v_depth(Y),_,_,_,description(

CZ_HIZ_M)), /, integer(X), integer(Y), / .
check_explanation(NODE) :-

write("### "), write("("), write(NODE), write(")"),
write(" explanation does not exit or incorrect !"), ni, / .

check_explanation(C3,NODE) :-
fail .

check_explanation(C(AID,T,P,_,_,MSG)IA_T7,NODE)
equal(T,explanation), write_explanation(NODE,MSG);
check_explanation(A_T,NODE) .

node_structure(NODE,_,_,_), check_action(NODE), fail .
check_act .

check_action(NODE) :-
node_action(NODE,_,_,_,_,action(CHIT3)), 1,

check_content_of(CHIT]), / .
check_action(NODE) :-

write("### "), write("Action("), write(NODE), write(")"),
Lte(" does not exiP_t_On_inorrect !"), ni. /

check_content_of(0) .
check_content_of(C(AID,T,P,_,_,MP)IT3)

check_one_element(AID,T,P-,_,_,MP), check_content_of(T) .

check_one_element(AID,T,P,_,_,MP) :-
(equal(T,warm);equal(T,advice);equal(T,recommend);equal(T,

* report)), (number(P),integer(P),P)=0,P=(9), /,
check_mp_connection(MP) .

check_one_element(AID,T,P,_,_,MP) 1-
write("### "), write("Argument of action("), write(NODE),

write(")"), write(" incorrect!"), n1 .

check_mp_connection(MP)
node_messame(MP,C_D)

chebk_mp_connection(MP) ?-
write("### "), write("Message("), write(MA), write(")"),

write(" does not exist or incorrect!"), ni .

check_cnt
node_structure(NODE,_,_,_), check_control(NODE), fail .

check_cnt .

check_control(NODE) :-
node_control(NODE,_,_,_,_,_,_), / .

check_control(NODE) :-
1 	write("##S "), write("Control("), write(NODE),

write(") does not exist or incorrect!"), ni, / .

display_reference(NODE) :-
depth_re_search(NODE) .

display_reference-.

diso_ref(NODE) :-
display_reference(NODE) .

depth_re_search(NODE) :-
node_structure(NODE,logic(LOGIC),evidence(EVIDENCE),_),

addclause(re_route(NODE)),
bagof(N,re_route(N),INDENTY_LIST),
write_indenty(INDENTY_LIST), write_re_tree(NODE),
check_re_terminal(NODE), decide_re_way(NODE,EVIDENCE) .

write_re_tree(NODE) :-
node_structure(NODE,logic(LOSIC),_,REFERENCE), write(NODE),

write(" "), write(REFERENCE), ni .

check_re_terminal(NODE) :-
node_structure(NODE,logic("terminal"),evidence(n),_),

fdelclause(re_route(NCDE)), fail .
check_re_terminal(NODE) :-

node_structure(NODE,looic(LOGIC),evidence(EVIDENCE),_),
.(equal(LOSIC,"not");
equal(LOGIC,and);
re ,., al(LOSIC.or)) .

ceclae re_wayo.n.,u,LJ)
fàelclause(re_route(NODE)), fail .

decide,..re wayiNODE, CE9IDENCE_H I EVIDENCE_T])
(depti;_search_on(NODE,EVIDENCE H);

decide_re_way(NODE,EVIDENCE_T7 .

I depth_search on(NODE,EVIDENCE H) :-
; 	cut(dep;h_re_search(EVIDà.NCE_H)) .

read_ans(EVI_LIST,TRUE_OR_FAIL) :-
read(READ_DATA), syntax_check(READ_DPITA),

(check_tf(READ_DATA,TRUE_OR_FAIL);
check_why(READ_DATA,EVI_LIST,TRUE_OR_FAIL);
check_how(READ_DATP,EVI_LIST,TRUE_OR_FAIL))

check_why(why,EVI_LIST,TRUE OR FAIL) :-
why_explanation(EVI LIàT,I7JODE LIST,TRUE_OR_FAIL),

read ans(NODE LIS.-F,TRUE OR 	.
check_why(wRy(USER_Ei;I 	LIST),EI EI ST,TRUE OR FAI L) :-

why_explanation(UiER_EMI LIET,NODE_ LI'gTJRUE_DR_FAIL),
read_ans(NODE_LIST,TR'dg_OR_FAIL) .

check_tf(t,t)
check_tf(f,f) .

why_explanation(EVI_LIST,NODE LIST) :-
make_node_list(EVI_LISTOTIODE_LIST)

make_node_list(C3,NODE LIST) :-
set of(NODE,why_nàde(NODE),NODE_LIST), del_why_node

make_nodà_list(CEVI_HIEVI_T3,_) :-
all_node(EVI_H);
make_node_list(EVI_T,_) .

all_node(EVI_H) :-
node_structure(N,_,evidence(EVIDENCE_LIST),_),

member(EVI_H,EVIDENCE_LIST), write_why_messl(EVI_H,N),
addclause(why_node(N)), fail .

del_why_node :-
why_node(X), fdelclause(why_node(X)), fail .

del_why_node .

write_why_messl(EVIDENCE,NODE) :-
node_type(EVIDENCE,E_STPTE,_,_,_,_,_,_,_,_),

node_type(NODE,N_STATE,_,_,_,_,_,_,_,_), write(EVIDENCE),
write(is "), write(E_STATE), write(" cause of "),
write(NODE), write(" is "), write(N_STATE),..
write(" as showed bellow."), ni, disp_exp(EVIDENCE) .

breadth_first_serch(NODE_LIST) :-
breadth_first(NODE_LIST) .

breadth_first(C7) .
breadth first(NODE LIST) :-

ge; level evidence(NODE_LIST,EVI_LIST),
(àreadtR(NODE 	LIST);
breadth_firs7i(EVI_LIS T)) .

uet_level_evidence(U,EVI_LIST) :-
addclause(each_evidence(*4*)),

setof(E,each_evidence(E),E_LIST), del_each_evidence,
	 erasefirst(E_LIST,EVI_LIST) .
cet_level evidence(CN_HIN_T7,EVI_LIST) :-

node=structure(N_H,_,evidence(EVIDENCE_LIST),_),

A - b

111

iI
111
lt,
11

18

11
111
111
11

get_level_evicience (N_T, EV I_LI ST) .

re
1 ect,-storle__evi-LCIL

select st ore_evi (CE_H I E 1-3) :- 	 -

a:Tic:clause (each_eviiience (E_H)) , sel ect _store_ev i (E_T) .

get_node_result (N_H, T_OR_F)
node_stat us (N_H, 	T_OR_F, 	 _)

get_node_result (N_H, nt) .

take_act ion (N_H, t :-
get_act ion_list (N H, ACTION LIST) ,

messaae_pro(ACTiON_LIST, "i_OR_F)
take_act ion (N_H, T_OR_F) .

net _act ion_l i st (N H, ACTION_LIST) :-
node_act ion (IZI_H, 	 act ion (ACTION LIST))

message_pro (C3, T OR_F) .
message_pro (C (AIE), T, P, 	MP) I A_T], T_OR_F) :-

decide_control (T, P, MP, T_OR_F) messaae_pro (A_T, T_OR_F)

decide_control (T, P, MP, T_OR_F) :-
node_message (MP, MESSAGE_LIST) , write_raessage (MESSAGE_LIST)

decide_control (T, P, MP, T_OR_F) .

write_message(C]) :-
n1 .

write_message(CM_HIM_T]) :-
write(M_H), write_messame(M_T)

bf(NODE) :-
breadth_first_serch(CNODE7) .

read_node_stat us (ID, C, A, S, P, RT, CH, SR„)
node_stat us (ID, C, A, S, P, RT, CH, SR, 	.

change_node_status_for (ID, Al, A2, A3, A4, AS, AE, A7, AB, AS) :-
node_stat us (ID, C, A, S, P, RT, CH, SR, LE, WD) change_al (C, Al, X1),

chanoe_a2 (A, P12, X2) , chancte_a3 (S, A3, Xi), chanae_a4 (P, A4, X4) ,
change_a5 (RT, AS, X5), change_a6 (CH, AG, XE),

chanoe_a7 (SR, A7, X7) , chancie_a8 (LE, AB, X8) ,
change_a9 (WD, AS, X9) ,
fdelclause (node_stat us (ID, C, A, S, P, RT, CH, SR, LE, WD)) ,
addclause (node_stat us (ID, X 1 , X2, X3, X4, X5, XE, X7, X8, X9)), / .

chanoe_node_t yoe_for (ID, Al, dependency (A), pl (P3) p0 (A4), thresho I d (
P5), error_rate (A6) 	_)

node_type 	M, dependency (D) , pl (P1) , p0 (P0) threshold (T) ,
error rate (E), 	._), change_type_al (M, Al, X1),

changeSype_a2 (D, A2, X2) , change_type_a3 (P1, A3, X3),
chanae_type_a4 (P0, A4, X4), chanoe_type_a5 (T, AS, X5) ,
change_type_a6 (E, AE, X6),
fdelclause (node_type (ID, M, dependency (D) , pl (PI), 	(P0) ,

- 	 threshold (T) error_rate(E), 	_)),
addclause (node_type(ID, X 1, cependency (X2) , pl (X3), D0 (X4),

threshold (X5), error_rate (X6) 	_)) , / .

erase_first erase_first

1......--,J.a..irt% 	. - .hromadth(r11

fai 1 .
breadt h (CN - HI N-) :-

get_node result (N_H, T_OR_F), 1, take_act ion (N_H, T_OR_F), /,
breadtht- (N_T) .

A

il

18

II
 LI

créent;e_;:yu_a.:(1,4F-140-1:, :-
string (A1) .

f
.change_type_at(M. 	 _

; change_type ae (D, P2, A2) :-

1 	

number7A2) ;

string (A2) .

1 change_type_a2 (D, A2, ID) .

change_type a3 (P1, P3, A3) :-
1 	number7A3) .

chanoe_type_a3 (P1, A3, P1 .

change_type a4 (P0, P4, P4) :-

number7A4) .
change_type_a4 (P0, A4, P0) .

chanoe_type_a5 (T, PS, A5) :-

number (AS) .

change_type_a5(T, AS, T) .

change_type_aS(E, AS, AS) :-
number (PS) . 	•

change_type_a6(E, AS, E) .

change_a2 (P, A2, A2) :-

string (A2) .

change_a2 (P, A2, P) .

change_a3 (A, A3, P3) :-

string (A3) .

chanse_a3 (A, P3, A) .

change_a4 (P, P4, A4) :-
nurriber (A4) .

chanoe_a4 (CH, P4, CH) .

change_a5 (RT, AS, AS) :-

string (A5) .

change_aS (RT, AS, RT) .

change_aS (CH, PS, AS) :-

string (AS) .
change_a6 (CH, AS, CH) .

change_a1 (C, Pl, Pl) :-

string (P1) .
change_a1 (C, A1, C) .

change_a7 (SR, P7, P7) :-
string (P7) .

chanoe_a7 (SR, P7, SR) .

change_aB (LE, AB, AB) :-
string (PB) .

change_aB (LE, AB, LE) .

change_a9(WD, A9, P9) :-

string (A9) .

channe_a9(WD, A9, WD) .

	

read_node_control (ID, C, 	 _)

	

node_control (ID, C, 	 .

1

change_node_control for (ID, P1, P2, P3, P4, P15, PE)
r, F 	tr TM L-J! 	•-,-,ne.n. r`re

I 8
A -

change_control_a2 (LE, P2, X2), change_control_a3 (HE, A3, X3) ,
channe_control_a4 (TM, P4, X4) , channe_control_a5 (HL, AS, X5) ,

	fdelclauselriode_cont.r.ol ID, C, LE, HE, 1M, HL, _L) 	
addclause(node_control (ID, Xl, X2, X3, X4, X5, _)) .

change_node_cont rol _for (ID, P i, A2, A3, A4, P5, AS) .

init ialize_control (ID, Al, P2, P3, P4, PS, AS) :-

node_control (ID, C, LE, HE, IM, HL, _) change_control _al (C, Al, X1),

changg_contr.S.L.aULE, P2. X2) channe control a3 (HE4_A3, X3)
change_control_a4 (IM, P4, X4) ,• change_control_a5 (HL, AS, X5) ,
init ial ice node control (ID, Xl, X2, X3, X4, X5, _) , fai 1 .

init ial ize_controi(/D, F11, A2, P3, P4, P5, AS) .

channe_control_al (C, Pl, Pi) :-
string (A1) .

change_control_al (C, Al, C) .

change_control_a2 (LE, A2, A2) :-
string (P2) .

change_control_a2 (LE, A2, LE) .

change control a3 (HE, A3, A3) :-

• s :iring (P37 .

change_control_a3 (HE, A3, HE) .

change_control_a4 (IM, P4, A4) :-
string (P4) .

change_control_a4 (IM, P4, IM) .

channe_control_a5 (HL, P5, P5) :-
string (A5) .

chanoe_control_a5 (HL, P5, HL) .

disp_each :-

h_evi (X) , write("hypo --> "), write (X), fail .

disp_each .

node_top (TOP_NODE_LIST) :-

get_top_node (TOP_NODE_LIST)

get _t op_node (TOP_NODES) :-

setof (X, look_for_t op (X) , TOP_NODES) .

look_for_too (X) :-

node_structure (X, 	_) , check_node_x (X, F_OR_S) .

f ind_top (NODE_LIST) :-

get_top_notie (NODE_LIST) .

check_node_x (X, F_OR_S) :-

look_up_node (X, F_OR_S), /, check_success (F_OR_S)

look_up_node (X, fail)

node_st ruct ure 	_, evidence (EVIDENCE LIST), _),
(look_up (X, EVIDENCE_LIST, STATE) ; ST -qTE 	is 1), equal (STATE, 0),
/, /1 	 -

fail, / .

look_up_node (X, success) :-

/ .

1 ook_up (X, 	_)

fa i 1 .

look_up 	CE_HIE_T], Y) :-
equal (X, E_H), Y is 0, I;

,,t1e,tr T.) .

check successifail) 	.
fail

rcheck_success (success). 	_

I ask_user continue(HYPO_LIST,NEXT_LIST) :-
wri;-e("Enter {report., report(CIdl, 	Idn])., or end.>"),

ni, read(USER_RESPONSE), check_how_syntax(USER_RESPONSE),
ni,

(equAl(USEREES2DINSE,and),_/, /1
 decide_next_list(USER_RESPONSE,HYPO_LIST,NEXT_LIST)) .

' check_how_syntax(REPD_DATA) .

decide_next_list(report(NEXT_LIST),_,NEXT_LIST) .
decide_next_list(report,NEXT_LIST,NEXT_LIST) .

explain_how(C7) :-
fail .

explain_how(CN_HIN_T7) :-
explain_node_evidence(N_H), /, explain_how(N_T) .

explain node_evidence(NODE) 	•
/ .

explain_node_evidence(NODE) :-
explain_how_node(NODE), explain_how_evidence(NODE) .

explain how node(NODE)

no;e_type(NdDE,STATE,dependency(D),_,_,_ 1 _,_,_,_),
write_how_node(NODE,STPTE,D,PRO) .

write_how_node(NODE,STPTE,D,PRO) :-
node_explanation(NODE,_,_,_,_,_,description(D_LIST)), ni, ni,

write(NODE), write0 ("), write_description(D_LIST),
write(")"), write(" is true with probability "),
write_probability_only(PRO), write("."), ni, ni,

 write("The state is determined by the rule:"), ni,
 write("C"), disp_exp(NODE), write(J"), n1 .

• write_how_node(NODE,STPTE,D,PRO)
nl, write(NODE), write(" is true with probability "),

write_probability_only(PRO), write("."), ni, ni,
 write(" The state is determined by the rule:"), ni,

 write("C"), disp_exp(NODE), write("1"), ni .

how_pro(NODE_LIST) :-
how_breadth_first(NODE_LIST) .

report(NODES) :-
how_pro(CNODES1) .

how :-
node_top(TOP_NODE), how_pro(TOP_NODE) .

explain_how_evidence(NODE) :-
node_structure(NODE,lonic(LOGIC),evidence(E_LIST),_),

explain_how_lobic(LOSIC,E_LIST) .

explain_how_logic(and,E_LIST) :-
how_and(E_LIST) .

explain_how_logic(or,E_LIST) :-
how or(E_LIST) .

explain_Ftow_logic("not",E_LIST)
how_not(E_LIST) .

how_not(C3) .

node_st at us (E_H, 	TF, PRO,_, 	_)

node_type (E_H, STATE, dependency (D) 	_)
	 wmite_hoW_not 	STATE., D,PRO how_not (

write_how_not (E_H, STATE, D, PRO) :-
node_explanat ion (E_H, 	descript ion (D_LIST)) ni,

write (E_H) , write (" (") - write_descript ion (D_LIST) ,
write (") "), write ("is fais with probability "),

y monl yl2R01,_wr e (" . "
write_how_not (E_H, STATE, D, PRO) :-

ni, write (E_H) , write (0 is fale with probabi 1 ity ")
write_probabi 1 ity_only (PRO) , write (". ") , ni, ni .

how_or (C7) :-
ni •

how_or (CE_H I E_T3) -
get_or_data (E_H) •
how_or (E_T) . •

g et _or_data (E_H)
node_st at us (E_H, _, TF, PRO,

node_type (E_H, STATE, dependency (D) , 	_)
write_how_or (TF, E_H, STATE, D, PRO) /, fai 1 .

how_and (C7)
ni .

how_and (CE_H I E_T7) :-
node stat us (E_H, _, TF, PRO, _, 	_) ,

notie_type (E_H, STATE, dependency (D) 	_)
write_how_and (E_H, STATE, D, PRO) , how_and (E_T) .

write_how_or (t, E_H, STATE, D, PRO) :-
node_explanat ion (E_H, 	descript ion (D_LIST)) , ni,

write (E_H) write 0 (- ") - w- rite_descript ion (D_LIST)
write (") 1), write ("is true with probabi 1 ity "),
write_probabi 1 ity_only (PRO), write (". "), ni .

write_how_or (t, E_H, STATE, D, PRO) :-
ni, write (E_H), write (" is true with probability "),

writ e_probabi 1 ity_only (PRO) , write (". ") ni .
writ e_how_or (_, E_H, STATE, D, PRO) .

write_how_and (E_H, STATE, D, PRO) :-
node_exp 1 anat ion (E_H, 	deseript ion (D_LIST)) , ni,

write (E_H) , write (" (- ") - w- rite_descri Pt ion (D_LIST)
write (") ") , write (" is true with probabi lity ")
get_prob_range (PRO, W_TYPE) , write_prob (PRO, W_TYPE) ,
write(". "), n1 .

• write_how_and (E_H, STATE, D, PRO)
n 1, write (E_H), write (" is true with probabi lity "),

writ e_probabi 1 it y (PRO) , write (". ") , n1 .

get_prob_range (0, zero) .
oet_prob_range (100, hundred) .
get _prob_range (PRO, one_9)

PRO) =1, 10) PRO .
oet_prob_ranne (PRO, ten_99) .

write_probability_only(PROB) :-
get_prob_ranoe (PROP, W_TYPE) write_prob (PROS, W_TYPE) .

write_prob (PRO, hundred) :-
write ("1") .

we i te_prob (PRO, zero) :-
write ("0") .

write_nrob (PRO, ne_9)

write_prob(PRO,ten_99) :-
write("."), write(PRO) .

' how_breadth_first(C]) .
how_breadth first(NODE LIST) :-

get_foilow_hypo(NBE LIST,HYPO_LIST),
(explain_how(NODE_LIST);
ask_user_continue(HYPO LIST,NEXT_LIST),

how_bnmerlth_fiestSNEliT LIST11_. 	

get_follow_hypo(U,HYPO LIST) :-
addclause(h_eviffle7), setof(H,h ;_evi(H),H_LIST), del_h_evi,

erase_first(H_LIST,HYPO_LIST) .
get_follow_hypo(CN_HIN r.1,HYPO_LIST) :-

node structure(N_P,_,evidence(EVIDENCE_L/ST),_),
select store_hypo(EVIDENCE LIST),
get_foilow_hyp o(N_T,HYPO_LiST) .

select_store_hypo(C3) .
select_store_hypo(CE HIE TJ) :-

node_structure(E
(equal(LOGIC,4erminal"),/,haddclause(.h_evi(E_H))),
select_store_hypo(E_T) .

del_h evi :-
F_evi(X), fdelclause(h_evi(X)), fail

del_h_evi .

probe(NODE) :-
probe_pro(ENODE7) .

probe_pro(NODE_LIST) :-
probe_breadth_first(NODE_LIST)

probe_pro(NODE_LIST) .

probe_breadth_first(n) .
probe_breadth_first(CHIT)) :-

explain_how(CHIT]), probe_breadth_first(T)

suspend(NODES) :-
'suspend_nodes_hlks(ENODES7) .

suspend_nodes_hlks(n) .
suspend nodes_hlks(CHIT7) :-

seU_suspend(H), suspend_nodes_hlks(T) .

set_suspend(NODE) :-
node_control(NODE,suspend,_,_,_,_,_), write(' The "),

write(NODE), write(" is already suspended."), n1 .
set_suspend(NODE) :-

node_control(NODE,_,_,_,_,_,_),
change_node_control_for(NODE,suspend,_,_,_,_,_) .

set_suspend(NODE) :-
write("e*e "), write(NODE),

write(does not exist or misspelled!"), ni .

activate(NODES) :-
resume_nodes_hlks(CNODES]) .

check_status
nede structure(NODE,_,_,_), check_sta(NODE), fail .

check_sta:ius .

resume_nodes_hlks(0) .
resume_nodes_hlks(EHIT))

j

li

il

ii
il
II

.111

il
ii
11

111

111 .

set_resume(NODE) 	 •
"

write(NODE), write(" is already resumed."), n1 .
set_resume(NODE) :-

1 	
node_control(NODE,C,_,_,_,_,_),

change_node_control_for(NODE,resume,_,_,_,_,_) .

	 rmntrol :-
(node_control(NODE, 1 1 1 	1) 1

initialize_node_control(NODE,no_command,relieve,relieve,r,_
,_), fail .

initialize_control .

i nit i al ize_node_control (NODE, C, LE, HE, IM, HL, _) :-
fdelclause (node_control (NODE, 	_))

asserta (node_control (NODE, C, LE, HE, IN, HL, _)) .

initialize_status
node_st at us (NODE, _, 	_ _
mit i al i ze_node_st at usf NÔ DE, connected, at ive,

unchanged, breadth, rel ieved, w) , faia .
initialize_status .

initialize_llks :-
initialize_status .•

initia1ize_node_status(NODE,C,P,A1,A2,A3,CH,CS,LE,WD) :-
fdelclause(node_status(NODE,_,_,_,_,_,_,_,_,_)),
asserta(node_status(NODE,C,P,A1,P2,P3,CH,CS,LE,WD)) .

hlks(fault,NODE) :-
ni, write("(HLKS starts >"), ni, ni, search(NODE),

write("(HLKS completes >"), n1 .
hlks(no_fault,NODE) .

remove_the_evidences(ORI_EVI,NEW_EV/) :-
remove_the_evi(ORI EVI,NEW_EVI) .

remove_the_evidences(ORLEVI,E3) .

remove_the_evi(ORI_EVI,NEW_EVI) :-
bahof(X,check_for_remove(X,ORI_EVI),NEW_EVI) .

check_for_remove(X,ORI_EVI) :-
node_status(X,C,A,STATE,_,_,_,_,_,_), member(X,ORI_EVI),

string(STATE), equal(C,connected) .

flexible_breadth_search(ORI_LIST) :-
remove_by_control(ORI_LIST,NODE_LIST),

flexible_breadth_first(NODE_LIST) .

search(ORI_LIST) :-
ni, kill(each_evidence), flexible_breadth_search(CORI_LIST)) .

f1exib1e_breadth_first(C3) .
flexible_breadth_first(NODE LIST) :-

get_level evidence(NODLLIST,ORI_LIST),
remove_;y_control(ORI LIST,EVI_LIST),

• (flexible breadth(NEDE LIST,_);
(ask conilition(NODE_LiST),ask_user(R),decide_conti(

LIST,E LIST,R);decide_conti(EVI LIST,E LIST,
con;inuous7), 	flexible_breadth_firsU(E_LIS-7)) .

-
becideonti(EVI_LIST,EVI_LIST,continuous) .
ecide_conti(EVI LIST,EVI LIST,continue) .

A - 13

decide_conti(EVI_LIST,EVI_LIST,X) :-
X, /, fai.1 .

r ask_user•(R) :-
1 	ni, write("Enter command:"), ni, read(R),

(equal(R,continue);
equal(R,terminate);
equal(R,X)) .

n

flexible_breadth(Cl,terminate) .
' flexible breadth(C],_)

fail.
flexible_breadth(CN HIN_T7,_) :-

action_process7N H,FOUNDi, stop_node(FOUND,N_T,NN_T,R), /,
flexible_breadUh(NN_T,R) .

stop_node(_,N_T,N_T,continue) :-
db_pause(level) .

stop_node(FOUND,N_T,N_T,continue) :-
db_pause(branch) .

stop_node(FOUND,N_T,N_T,continue) :-
db_pause(tree) . 	 •

stop_node(not_found,N_T,N_T,continure) :-
db_pause(node) .

stop_node(found,N_T,NN_T,R) :-
pause(node), back, 'ask_user(R), decide_conti_node(R,N_T,NN_T)

decide_conti_node(continue,N_T,N_T)
decide_conti_node(terminate,N_T,[7)
decide_conti_node(X,N_T,N_T) :-

X, /, fail .

back :-
dummy;
back .

dummy .

del :-
del_each_evidence .

ask_conti_beam(N_H,R) :-
get_description(N_H,D_LIST),
write("Do you wish to continue a search from
write_description(D_LIST), write(") ?"), ni,

 write("Enter y. or n. ."), ni, read(R), .

remove_by_control(X,X) .

ask_condition(D) :-
fail .

ask_condition(CN_HIN_Tl)
• db_pause(level), get_action_list(N_H,(CTION_LIST),

check ask_cond(N_H,ACTION_LIST);
ask_coniiition(N_T) .

11 write("("),

oheck_ask_cond(N_H,C7) :-
fail .

check_ask_cond(N_H,C(AID,T,P,_,_,_)IA_T2) :-
(node_status(N_H,_,_,t,PRO,_,_,_,_,_),decide_true(N_H,_,PRO)),
/, check_stoo(T), /;

check_ask_cond(N_H,A_T) .

strategy(NODE,SEARCH) :-
check_inout_search(SEARCH),

check_input_search(SEARCH) : -
equelUSEARCI4breadtb/.4__
equal(SEARCH,beam) .

check_stop(warning) .
check_stop(X) :-

fail .

collect_action(N_H,A_LIST) :-
bagof(X,hlks_action(X,N_H),A_LIST) .

action_process(NODE,found) :-
collect_action(NODE,A_LI2T), /, execute_action(NODE,A_LIST) .

action_process(NODE,not_found) .

execute_action(N_H,C7) .
execute_action(N_H,CHIT]) :-

take_hlks_action(N_H,H), execute_action(N_H,T) .

check warning(C7) :-

Tail .
check_warning(C(AID,T,P,_,_,MSG)IA_T7)

equal(T,warning), /, /;
check_warning(A_T) .

threshold(0) .

db_pause(tree) .

magnifier(1) .

ne(X1,X2) :-
not(equal(X1,X2)) .

assess(NODE) :-
ni, get_parent_node(NODE,P_LIST), report_pro(NODE,P_LIST);
report_top(NODE) .

report_top(NODE) :-
write_the_node(NODE), write(" is top node.") .

get_parent_node(NODE,P LIST) :-
bagof(X,find_parjit_node(X,NODE),P_LIST) .

find_parent_node(X,NODE)
node_structure(X,_,evidence(E_LIST),_), member(NODE,E_LIST) .

report_pro(NODE,n) .
report_pro(NODE,CP_HIP_T7) :-

report_exp(NODE,P_H), report_pro(NODE,P_T) .

report_exp(NODE,P_H) :-
node_structure(P_H,logic(LOGIC),evidence(E_LIST),_),

remove_the(NODE,E_LIST,NE_LIST), write_the_node(NODE),
write_evi_of(LOGIC,NE_LIST), write_parent_node(P_H), ni .

write_evi_of(LOGIC,n) .
write_evi_of(LOGIC,CNE_HINE_T3) :-

length(CNE_HINE_T],LENGTH),
(equal(LENOTH,1),write(", "),write(LOGIC),write(" "),/:write

(", ")), write_each_node(NE_H),
write_evi_of(LOGIC,NE_T) .

write_each_node(NE_H)

wrIte.;nescription(D_LIST), write(")") .

emome_theINODE.,.E_LieUNE_UST) km
bagof(X,check_same_nodes(X,NODE,E_LIST),NE_LIST) .

check_same_nodes(X,NODE,E_LIST)
'node_structure(X,_,_,_), member(X,E_LIST),

check_same_node(X,NODE) .

check_same_node(X,NODE) :-
X==NODE, fail .

check_same_node(X,NODE) :-
X=/=NODE .

write_the_node(NODE) :-
write_each_node(NODE), write(". This")

report_demo :-
assess(large_cone_develops) .

write_parent_node(P_H) :-
node_status(P_H,_,_,STPTE,P,_,_,_,_,), nl, ni,

write("will jointly cause:"), ni, write_each_node(P_H),
(equal(STATE,t), write(" with "), write0 probability

wriie_probability_only(P), write("."), ni, /;
write("."), nl) .

pause(PR) :-
check_pause(PRO), kill(db_pause), addclause(db_pause(PRG))

pause(PRO) :-
write("iffle Prgument("), write(PIRG), write(")"),

write(" is undefined!"), n1 .

disp_db :-
db_pause(X), write("pause("), write(X), write(")"), ni, fail

diap_db .

kill(db_pause) :-
addclause(db_pause(X)), del_db_pause .

kill(magnifier) :-
addclause(magnifier(X)), del_magnifier .

kill(each_evidence) :-
addclause(each_evidence(X)), del_each_evidence

kill(route) :-
addclause(route(X)), del_ro .

kill(sum)
addclause(sum(X)), del_sum .

kill(c_product) :-
addclause(c_product(X)), del_c_product .

del_mannifier :-
magnifier(X), fdelclause(magnifier(X)), fail .

del_magnifier .

del_db_pause :-
db_pause(X), fdelclause(db_pause(X)), fail .

del_db_pause .

entrust (NODE) -
change_node_cont rol_for (NODE, _, entrust, _, 	_)

relieve (NODE) :-
channe_node_control_for (NODE, _, relieve, _, 	_)

check_pause(node) .

11)

check_pause(branch) .

check_pause(terminate)
ack-pauseÀtrem)

rch recommend(NODE) :-
get_action_list(NODE,ACTION_LIST),

check_recommendation(ACTION_LIST,NODE) .
recommend(NODE) :-

n wr.itp("RampiammendatiQn_ret_found_in_knemlgclge Pase.") t.
check_recommendation(C3,NODE) :-

fail .
check_recommendation(C(AID,T,P,_,_,MSS)IA_T3,NODE) :-

equal(T,recommendation), write_recommendation(NODE,MSG);
check_recommendation(A_T,NODE) .

write_recommendation(NODE,MSS) :-
get_description(NODE,D_LIST), ni, write("RECOMMENDATION ("),

write_description(D_LIST), write("):"), ni, ni,
outspaces(7), write0 	**"), outspaces(3),
get_recommendation(NODE,MSE,R_LIST),
write_description(R_LIST), write(" 	**"), ni .

oet_recommendation(NODE,MSS,FLLIST) :-
node_message(MSS,R_LIST) .

explain(NODE) :-
get_action_list(NODE,ACTION_LIST),

check_explanation(ACTION_LIST,NODE) .
explain(NODE) :-

write("### Explanation of recommendation not found!"), ni .

write_explanation(NODE,MSS) :-
get_description(NODE,D_LIST),

met_explanation(NODE,MSG,EX_LIST),
node_status(NODE,_,_,T,P,_,_,_,_,_), ni,
write("In the state of ("), write_description(D_LIST),
write(") with probability "), write_probability_only(P),
write(", "), write_description(EX_LIST), n1 .

get_explanation(NODE,MSS,EX_LIST) :-
node_message(MSG,EX_LIST) .

hlks_searchl(NODE) :-
clock(N), write("depth_first_search begin 	time =

write(N), ni, hlks_depth_first(NODE) .
hlks_searchl(NODE) :-

write("depth_first_search finished 	time = ")*, clock(N),
write(N), ni .

hlks_depth_first(NODE) :-
node_structure(NODE,_,evidence(E_LIST),_),

hlks_testl_action(NODE), hlks_decide_depth(NODE,E_LIST) .

hlks_decide_depth(NODE,U) :-
fail .

hlks_decide_depth(NODE,CE_HIE_TJ) :-
hlks_depth(NODE,E H);
hlks_decide_depth7NODE,E_T) .

h lks_testl_act ion (NODE) :-

h I ks_t est _act ion (warning, NODE) .

-

hlks_test_act ion (warning, NODE) :-

nocle_st at us (NODE, 	t, P, 	 , deci de_t rile (NODE, _, P) ,

7

decide_test_action(NODE,ACTION_LIST) .
hlks_test_action(_,NODE) .

write_time
• clock(N), write0 time 	"), write(N) .

action_test_hlks(N_H, warning, P, MSS) :-
get_description(N_H,D_LIST), write("WARNING: ** ("),
write_description(D_LIST), write(") **"), write_time, ni .

action_test_hlks(N_H,_,P,MSS) ,

decide test_action(N_H,n) .
decide=test_action(N_H,C(AID,T,P,_,_,MS2)1A_T])

action_test_hlks(N_H,T,P,MSG), decide_action(N_H,A_T) .

hlks_search2(NODE) :-
clock(N), write("breadth_first_search begin time =

write(N), ni, hlks_breadth_first(CNODE3),
write("breadth_first_search finished time = "), clock(T),
write(T), ni .

hlks_breadth_first(0) .
hlks_breadth_first(NODE_LIST) :-

get_level_evidence(NODE_LIST,EVI_LIST),
(hlks_breadth(NODE LIST);
hlks_breadth_firsU(EVI_LIST)) .

hlks_breadth(C7) :-
fail .

hlks_breadth(CN_HIN_T]) 1-
hlks_teste_action(N_H), /, hlks_breadth(N_T) .

hlks_test2_action(N_H) :-
hlks_test_action(warning,N_H) .

hlks_depth(NODE,E_H) :-
cut(hlks_depth_first(E_H)) .

testl :-
hlks_searchl(spacecraft_lost) .

main2(NODE) :-
initialize_suspend_system, execute_command_loop(NODE) .

execute_command_loop(NODE) :-
initialize_status_part, generate_llks_command(COMMAND_LIST),
take Ilks action(COMMAND LIST), set_terminal_data,
llksiSTPTE), 	hlks(STATE,FIODE), execute_command_loop(NODE) .

init ial ize_status_part
node_stat us (NODE, C, A, 	S, _) ,

in i t i al ize_node_stat us (NODE, C, A, 	unchanned, breadth, S, w
) 	fai 1 .

• init ial ize_status_part .

initialise :-
initialize .

initialize :-
-- 	kill(sum), kill(c_product), initialize_status,

initialize_control .

rtest2 :-
hlks_search2(spacecraft_lost) .

set_ranoom(5749.317), set_magnifler, set_mode .

set..magnifier «-
back, write("Enter simulation magnifier (1 ... 1000000):"),
ni, read(R), check_magnifier_range(R), kill(maonifier),
addclause(magnifier(R)) .

set_mode
==+_:iloput_mode. 	

' check_magnifier_range(R) :-
number(R), R)=1, R<1000000 .

check_magnifier_range(R) :-
write("### Magnifier ("),' write(R), write(")"),

write("is not number or not in the range!"), ni, ni, /,
fail .

set_input_mode :-
node_struct ure (X, log ic("t erminal") , _) ,

node_st at us (X, connected, _, 	_) , ask_ i nput_mode (X) ,
fai 1 •

set_input_mode .

ask_input_mode(NODE)
ask_check_mode(NODE,R,HL),

change_node_control_for(NODE,_,_,_,R,HL,_), / .

check_input_mode(m) .
check_input_mode(f) .
check_input_mode(r) .
check_input_mode(X) :-

write("### "), write(X), w rite(" undefined!"), ni,
write("Enter { m., f., or r., 	ni, /, fail .

ask_check_mode(NODE,R,HL) :-
write(NODE), ni, back, read(R), check_input_mode(R), /,

ask_hl(R,HL) .

initialize_system :-
initialize, check_status, check_cnt, environment

initialize_suspend_system :-
kill(sum), kill(c_product), initialize_status,

initialize_control(_,connect,_,_,r,_,_), check_status,
check_cnt, environment .

ask_hl(m,_)
ask_hl(f,HL) :-

write("Enter { h., or 1., I."), ni, back, read(HL),
check_hl(HL) .

check_hl(h) .
check_h1(1) .
check_hl(X)

write("### "), write(X), w rite(" undefined!"), nl,
write("Enter { h., or 1., >."), ni, /, fail .

set_terminal_data.:-
node_structure(X,logic("terminal"),_,_), set_status_data(X),

fail .
set_terminal_data .

set_status_aata(NODE) :-
node_status(NODE,connected,_,_,_,_,_,_,_,_),

. 	. 	. 	%-

111

111

II
ii
ii

Ii

nooe_type (NOLiE, , 	, error_rsaze
set_data (NODE, ER, IM, HL) / .

set _dat a (NODE, ER, m, HL) .
set _dat a (NODE, ER, f, HL) :-

get_fixed_data(HL, D) ,
change_node_status_for (NODE, _, t, D, t, changed, _, _) .

set _dat a (NODE, ER, r, HL)
D) ,

change_node_st at us_for (NODE, 	t, D, t, changed, _, 	.

tø
set_random(5749317), tl .

check_ i f_set (RN, ER, D) :-
magnify_rate (RN, MRN) , ER> =MRN, net_fixed_data (h, D) .

check_if_set (RN, ER, D) :-
magnify_rate (RN, MRN), ER <MRN, get_fi xed_data (1, D) .

maonify_rate(RN,MRN) :-
magnifier(M), div(RN,M,MRN) .

get_error_rate (ER, ER1) :-
maonif ier (M) , cal culateLerror_rat e (M, ER, ER1) .

net_fi xed_data (h, 100) . .
get_fixed_data(1, 0) .

get_random (RN) :-
random (R, 0, 999999) , rem (R, 10000, RR), t imes (RR, 100, RN) .

t 1 :-
get_random(RN), write_random(RN), outspaces(2), tl

writ e_random (RN) :-
RN <=9, write (00000") , write (RN) .

write_random (RN) :-
RN) 9, RN <=99, write ("0000") , write (RN) .

write_random (RN) :-
RN) 99, RN <=999, write ("000") , write (RN) .

writ e_random (RN) :-
RN) 999, RN <=9999, write ("00") , write (RN) .

write_random (RN) :-
RN> 9999, RN<=99999, write ("0"), write (RN) .

write_random (RN) :-
RN) 99999, RN <=999999, write (RN) .

execute (NODE) :-
set_termi nal_dat a, 11 ks (STATE) , hlks (STATE, NODE) .

mainO(NODE) :-
initialize_system, execute(NODE) .

mainl(NODE) 1-
initialize_system, execute_loop(NODE) .

execute_loop (NODE) :-
init ialize_status, set_terminal_data, 1 1 ks (STATE) ,

hlks (STATE, NODE) execute_loop (NODE) .

errar_rate :-
node_struct ure (X, logic ("terminal ") , _) , set _error_rat e (X) ,

fai 1 .
error_rate

A 2 0

write (X) , ni, back, read (R) , check_error_rate (R)
change_node_type_for (X, _, 	 error_rate (R) 	_) / .

check_error_rate (R)
number (R) R>, R(=999999

check_error_rat e (R) :-
1 	number (R),

write ("### Error-rate must be in the range (0 ... 999999) ! ") ,
t ell' Ent er.(.«._ 999999.) : ") 3_111, /, fail .

check_error_rate (R) :-
• string (R), write ("4#4e44 Error-rate must be number ! "), ni,

• write ("Enter (0. ... 999999.) ") ni, 1, fail . •
• check_error_rate (R) .

A -

S ty I lks. log
module unnamed_module,- Appendix A.2 ELKS Source Listings

/*Seject*/
body.
/* */•
/* Low Level Knowledge based System */

• /4 	*1

check_evidence (and, Cl .
check_evidence (and, CHEAD !TAIL]) :-

node_struct ure (HERD, logic (LOGIC) , evidence (EVIDENCE_LI ST) _) ,
/ I
(equal ("terminal ", LOGIC) ;node_stat us (HEAD, C, A, 	_

) , equal (C, suspended) ; node_st at us (HEAD, 	STATE, 	_
_) , string (STATE)) check_evidence (and, TAIL) .

check evidence (or, C]) -
-fai 1 .

check_evidence (or, [HEAD I TAIL]) :-
node_struct ure (HEAD, logic (LOGIC) , evi dence (EV IDENCE_LI ST) _) ,

((equal ("terminal", LOGIC) ;node stat us (HEAD, C, A, 	_
, _) , equal (C, suspended) ;nod'e_st at us (HEAD, _, STATE, _

_) , string (STATE))
check_evidence (or, TAIL) .

check_evidence ("not ", [HEAD I TAIL]) :-
node_st ruct ure (HEAD, log ic (LOGIC) , evidence (EVIDENCE_LIST) , _)

equal ("terminal ", LOGIC) ; •
node_stat us (HEAD, 	STATE, 	_) , string (STATE) ;
node st at us (HEAD, C, A, 	_) , equal (C, suspended) .

I check evi "dence ("terminal", C]
:Fai 1 .

member (ITEM, C/TEM I TAIL]) .
member (ITEM, CHEAD I TAIL]) :-

ITEM=/=HEAD, member (ITEM, TAIL) .

check evidence_change (C]) :-

7, fai 1 .
check evidence change (CE_H I E T]) :-

7node_staUus (E_H, 	STF1TE, _, X, _, _) , string (STATE)) , /,
(equal (X, changed) , /, / ; check evidence_change (E_T)) , 1;

 node_structure (E H, log i c (LOGIC) 	_) 	,
(equal (LOGIC, ";erminal) , /, I;
check_ev idence_change (E_T)) .

decide_propagatable node (X, NODE_LIST)
node_struct ureiX, _, evidence (E_LIST) , _) , member (X, NODE_LIST) ,

check_evidence_change (E_LIST) .

f ind_propagatable_node (NODE_LI ST, P_NODE_LI ST) -
bagof (X, decide_propagat ive_node (X, NODE_LIST) , P_NODE_LIST) .

f ind_propagatable_node (NODE_LIST, C]) .

decide_executable_node (NAME) :-
node struct ure (NAME, logic (LOGIC) , evidence (EVI DENCE_LI ST) , J>,

 no-cie stet us (NAME, C, A, 	_) , equal (C, connected)
checTc_evidence (LOGIC, EVIDENCE_LIST) .

remove_suspended_evidence(E_LIST,EVIDENCE_LIST) :-
bagof(X,check_suspended_arg(X,E_LIST),EVIDENCE_LIST) .

check_suspended_arg (X, E_LI ST) :-
node_st at us (X, C, A, _, 	_) , member (X, E_LI ST) ,

equal (C, connected) .

Tzna_execuuaole_ric.oetNüoc_ii :-
setof(NAME,decide_executive_node(NPME),NODE_LIST) .

- 	-
make_list(C),LIST,LIST) .
make_list(CHIT),X_LIST,R_LIST)

node_structure(H,_,_,_), quick bagof(H,X LIST),
shift one(X_LIST,S_LIST),
inserP list(H,R_LIST); __ 	makeListil., X_L I ST,. R_L

insert_list (X, CX)) .
insert_list (X, EX I T)) .

shift_one(CO_H10_73,CY,O_H10_73) .
shift_one(L1,L2) :-

reverse_list(L1,L2) .

quick_bariof(X,CX)) :-
decide_executable_node(X) .

quick_bagof(X,EXIT)) :-
decide_executable_node(X) .

• make_structure_list(LIST) :-
setof(X l make str_list(X1,LIST), write(LIST), ni,

make_list(F.IST I L,R), write(R), ni, n1 .

test :-
make_structure_list(LIST) .

make_str_list(NODE) :-
node_structure(NODE,_,_,_) .

propagate :-
check_status, display_input, propagation, report1 .

proclamation :-
find_executable_node(NODE_LIST),

find_propagatable_node(NODE_LIST,P_NODE_LIST),
• change_non_propagatable(NODE_LIST,P_NODE_LIST),

propagate_once(P_NODE_LIST), chanoe_terminal_status,
change_all:suspended_state,
find_executable_node(NEXT_NODE_LIST),

(equal(NODE_LIST,NEXT_NODE_LIST), /, /;
propaoate_loop(NEXT_NODE_LIST)) .

propagate_loop(NODE_LIST) :-
find_propagatable_node(NODE_LIST,P_NODE_LIST),
change_non_propagatable(NODE_LIST,P_NODE_LIST),
propaoate_once(P_NODE_LIST), change_terminal_status,
find_executable_node(NEXT_NODE_LIST),

(equal(NODE_LIST,NEXT_NODE_LIST), /, /;
propagate_loop(NEXT_NODE_LIST)) .

write_for_test(C))
nl, n1 .

write_for_test(CHIT)) :-
•write(" "), write(H), write_for_test(T) .

change_non_propagatable(C),P NODE_LIST) .
change_non_propagatable(CN HiN_T3,P_NODE_LIST) :-

member(N_H,P_NODE_LIF7),
channe_non_propagatable(N T,P NODE_LIST), /;

fdelclause(node_status(N
addclause(node_status(ti H,A,B,C,D,E l unchanged,S,H,I)),
chanoe_non_propagatableTN_T,P_NODE_LIST) .

cnange_termi na _ss at us :-
node_stat us (X, A, H, C, D, E, changed, _, _) , change_stat us_c (X) ,
	fatl. . • 	 __ _ 	_ _

change_terminalls-- 	

t at-

change_al l_suspencled state :-
node_struct ure (7, logic (LOGIC) , evidence (E LIST) _)

find_suspended by_evidence (X, LOG/C, E_LÏST),
	ch an ge_nord 	s_fon(X,. _, 	...t.tretlanged„)_, fai 1 .

chance_al l_suspended_state .

find_susmencled_by_evidence (X, LOGIC, E_L/ST) :-
ne (LOGIC, "terminal") , remove_the_evidences (E_LIST, NE_LIST) /,

length (NE_LIST, 0) / . •

change_status_c (NODE) :-
nocie_struct ure (NODE, logic ("terminal " 	_) ,

fdelolause (node_st at us (NODE, A,)3, C, D, E, F, G, H, I)),
addclause (node_stat us (NODE, A, B, C, D, E, unchanged, G, H, I)) .

• chanoe_status_c (NODE) .

delete_db
node status (NODE, „ „ „ , 1,

no-de_struct ure (NODE, 	_),
fdelclause (node_stat us (NODE, 	 _) , fai I .

delete_db .

report 1 :-
node_structure (NODE, logic (LOGIC) , _)

check_and_write (NODE, LOGIC) . •
report 1 .

check_and_write (NODE, LOGIC) :-
(equal (and, LOGIC) ; equal (or, LOGIC) ;equal ("not ", LOGIC)) ,

node_st at us (NODE, _, t, POST, _, 	_) ,
node_type (NODE, STATE, _, 	 _),
write_state (NODE, STATE, POST) /, fai 1 .

display_input
node_st at us (NODE, _, STATE, P, 	 _) ,

wr it e_st at e (NODE, STATE, P) , fa i 1 .
disolay_input .

cielet e_kb .

propagate_once([3) .
propaciate_once(ENODE HINODE T2) :-

node_structure(ii0DE_H,iogic(LOGIC),evidence(EVIDENCE_LIST),_),
propagate_one_level(LOGIC,EVIDENCE_LIST,NODE_H),
propagate_once(NODE_T) .

get_st ate (and, C]) .
get _st at e (and, [EVIDENCE HI EVIDENCE T2)

(node status (EVIDEN-CE_H, 	TitUE_OR_FRIL, PRIOR, LS, LN, 	_) ,
string (TRUE_OR_FAIL)node_struct ure (EVIDENCE H, logic (
"terminal ") , evidence ([3 	n , _) , ode_stat us (EVID-E.NCE H,

suspended, _, 	 _) ; node_structure (EVIDENEE H, log ic
("terminal") , evidence (, query_the user (EVIDENEE_H,
USER_STATE, CERTAINTY) , make m_node clata7EVIDENCE H,
USER STATE, CERTAINTY)), ge;_state7and, EV/DENCE 	.

oet _st at e (or,) .
oet_state ("not ", [EVIDENCE])

node_stat us (EVIDENCE, 	TRUE_OR_FAIL, PRIOR, LS, LN, 	_) ,
string (TRUE_OR FAIL) ;

node_struct ure (EIDENCE, logic ("t errni nal ") , evidence ([2) , _) ,

I

II

I-11 node_structure(EVIDENCE,logic("terminal"),evidence(0),_),

	

1 - 	 r-- 	-make•m_nocie_data(EVIDENCE,USESTATE,CERTAINTY), R_STATE,CERTAINTY).; 	
ouery_the user(EVIDENCE,USER

	

I 11 	
get_state7or,CEVIDENCE HIEV/DENCE T5-) :-

node sUructure(EVIDENCE,logic(),evidence(_),_) .

(node status(EVIDgNCE H,_,_,fRUE_OR FAIL,PRIOR,LS,LN,_,_),
s;ring(TRUE_OR_FAiL);node strujiure(EVIDENCE H,logic(-
"terminal"),evidence(C3),:),node_status(EVIDENCE H,

	

J 	 ("terminal"),evidence(C1),_),query_the user(EVIDENCE_H, •

n 	suspended,_,_ _,....,.,__,, .,.,__. 4._,._.). ;.node_str_ucture.(Z_VIDeNa_H, logic__

UeSvEi Rd::::::77
IN
IN:

YY)
 t):::::::(:r
	r

r
_STATE,CERTAT;node sUuctue VIDECE_H,log (EN 'c(_),

:::7ETV) IDENCE_H,
USER i

I 111

9 _ 	1 	_ enciE

•

•

get_description(NODE,DESCRIPTION) :-
node_explanation(NODE,_,_,_,_,_,description(DESCRIPTION))

get_description(NODE,C" ? "]) .

write_description(Cl) .
write_description(CD_HID_T3) :-

write(D_H), write_description(D_T) .

propagate_not(NODE) :-
node_structure(NODE,_,evidence(EVIDENCE LIST),_),

remove the evidences(EVIDENCE_LIST,E EIST),
length7E_LiST,L), 	L)0, reverse(EVIDEkE_LIST,TRUE OR FAIL),
calculate not_probability(NODE,TRUE_OR_FAIL,POSTJ,NgW_LS,

N EW_ LF.1),
change_node_status(NODE,TRUE_OR_FAIL,POST_P,NEW_LS,NEW_LN_,

,) .
propamate_not(NODE) :-

node_status(NODE,_,_,STATE,_,_,_,_,_,_), string(STATE);
write_suspended_all(NODE),
query_the user(NODE,STATE,CERTPINTY),

• make_m_nocie_data(NODE,STPTE,CERTAINTY) .

change_node_status(NODE,STATE,P,_,_,_,_,_) :-
node_status(NODE,C,A,ST,PR,_,_,_,_,_), string (ST),

 equsl(STATE,ST), number(PR), equal(P,PR),
chance_node_status_for(NODE,C,A,STRTE,P,_,unchanced,_,_,_) .

change_node_status(NODE,STATE,P,TS,TP,_,_,_) :-
node_status(NODE,C,A,_,_,_,_,_,_,_),

change_node_status_for(NODE,C,P,STATE,P,TS,changed,_,_,_) .
chance_node_status(NODE,STATE,P,TS,TP,_,_,_) :-

write("M "), write("("), write(NODE), write(")"),
write(" status is not exist."), ni .

caloulate_and_probability(NODE,E_LIST,TRUE_OR_FAIL,POST_P,_,_) :-
node_type(NODE,_,deoendency(D),_,_,_,_,_,_;_),

(less(0,D), calculate_and_positive(E_LIST,D,POST_P), /1
calculate_and_negative(E_LIST,D,POST_P)) .

A - at•

1
LI

ii
11

it

(.1

I

I

propagate_one_level(and,EVIDENCE_LIST,NODE) :- propagate_one_level(and,EVIDENCE LIST,NODE) :-
get_state(and,EVIDENCE LIST), propagate_and(NODE) .

propagate_one_level(or,EVIDiNCE 	LIST,NODE) :-
get_state(or,EVIDENCE LIST7, propa gate_or(NODE) .

propadate_one_level("not",gVIDENCE LI ST,NODE) :-
met_state("not",EVIDENCE_LIST7, propagate_not(NODE) .

query_the user(NODE_NAME,t,CERTPINTY). 	•
get_tiescription(NODE_NAME,DESCRI LIST), write(NODE_NAME), ni,
write("Enter probability for $17 "),
write description(DESCRI_LIST), write("$":"), ni,

 read(EERTAINTY), ml .

(less(0,D), calculate_or_positive(E_LIST,D,P), /;
calculàte_or_negative(E_LIST,D,P))

calculate_or_positive(E_LIST,D,P) :-
length(E_LIST,L), or_independence(E_LIST,L,C1),
max_or_dependence(E_LIST,C2),
resulting_probability(D,C1,C2,P,positive) .

? calculate or negative(E_LIST,D,P) :-
' 	lendih(E_LIST I L), or independence(E_LIST,L,C1), I

min_or_dependence(E LIST,C3),
I 	resulting_probabili;y(D,C1,C3,P,negative) .

calculate_and_positive(E_LIST,D,P) :-
and_independence(E_LIST,C1), max_and_dependence(E_LIST,C2),

resulting_probability(D,C1,C2,P,positive) .

' calculate_and_nepative(E_LIST,D,P) :-
and_independence(E_LIST,C1), min_and_dependence(E_LIST,C3),

resulting_probability(D,C1,C3,P,negative) .

reverse(CNODE3,t) :-
node_st at us (NODE, _, f, 	_) .

reverse(CNODE3,f) :-
node_st at us (NODE, 	t, 	_) .

calculate_not_probability(NODE,T_OR F,POST P,_,_) :-
node structure(NODE,_,evidence7CEVIDEkE HI_J),_),

nocie_status(EVIDENCE
minus(100,PROBABILIT nè,POST_P) 	.

propagate_or(NODE)
node_structure(NODE,_,evidence(EVIDENCE LIST),_),

remove the evidences(EVIDENCE_LIST,E_EIST),
length7E_LiST,L), L)0, check one true(E LIST,TRUE_OR FAIL),
calculate or_probability(NODE,E_EIST,TRûE_OR_FPIL,P,S,NN),
change nocie_status(NODE,TRUE_OR_FAIL,P,NS,NN,_,_,_) .

propagate_or(FIODE) :-
node_status(NODE,_,_,STATE, „ , „), string(STATE);
write_suspended_all(NODE),

query_the user(NODE,STATE,CERTAINTY),
make_m_no'de_data(NODE,STATE,CERTAINTY) .

write_suspended_all(NODE) :-
write("The node ("), write(NODE), write(") is not terminal."),

ni, write("But all the evidences of it "),
write(" have been suspending by the SUSPEND command."), ni,
ni .

check one_true(C3,t)
?ail .

check_one_true(CEVIDENCE HIEVIDENCE T],t) :-
node status(EV/DENCE 	 equal(STATE,t);
checi<' one true(EVIDEkE_T,t) .

check_onejrue7_,f) .

propagate_and(NODE) :-
node_structure(NODE,_,evidence(EVIDENCE LIST),_),

remove the evidences(EVIDENCE_LIST,E_F.IST),
length7E_LiST,L), L)0, check all_true(E LIST,TRUE OR_FAIL),
calculate and probability(NO5E,E LIS T,TieJE OR_F AIE,P,NS,NN),
change noele sUatus(NODE,TRUE_ORAIL,P,NSO-v.N,_,_,_) .

Propapate_and7NODE7 	
J

. node_st at us (NODE, _, STATE, _, 	_) , string (STATE) ;

sVSoeneed 1 1 (NODF) .

query_tme_user(NODE,'STATE,CERTAINTY),
make_m_node_data(NODE,STATE,CERTAINTY) .

check_a11_true(C3,t) .
• ' check_all_true(CEVIDENCE HIEVIDENCE T],t) :-

1 	node_status(EVIDENCE H,_,_,STAE,_,_,_,_,_,_), equal(STATE,t),
check_all_true(EVI5ENCE_T,t) .

check_all_true(_,f) .

make_m_node_data(NODE,USER STATE,PROBABILITY) :-
calculate_probability7NODE,USER_STATE,INT_STATE,PROBABILITY,

INT_PRO),
change node status(NODE,INT_STATE,INT_PRO,USER_STATE,

calculate_probability(NODE,USER_STATE,INT_STATE,PROBABILITY,
INT PRO) :-

equal(USER STATE,t),
(less(PRBEIPBILITY,0),

(change state(USER STATE,INT_STATE),minus(10@,
PROilABILITY,IN-7 PRO)), /:

unchange state(USER S -7ATE,IN T STATE),

INT PR6 is PROBAB ILITY) . -
calculate_progability(NODE,USER_STATE,INT_STATE,PROBABILITY,

INT PRO) :-
equal(USER 	STPTE,f) , ,

(1ess(PRBBABILITY,0),
(change state(USER STATE,INT_STATE),minus(100,

PROgASILITY,INT- PRO)), /;
unchange state(USER S -7ATE,INT _STATE),

INT_PR6 is PROGPB 7LITY) .

change_state(t,f) .
change_state(f,t) .

unchange_state(t,t) .
unchange_state(f,f) .

disp_pro :-
c_product(X), write(" c_product("), write(X), write(")"), ni,

fail .
disp_pro .

disp_max :-
maximum(X), write0 maximum("), write(X), write(")"), ni,

fail .
disp_max .

write_state(NODE,STATE,PROBERBILITY) :-
string(STATE), write("The "), write(NODE), write(" is "),

write(STATE), write(" with proberbility ("),
write_probability_only(PROBERBILITY), write(")"),
write("."), ni, / .

write state(NODE,STATE,PROBERBILITY)
I .

display_inference_net(NODE,N1,N2) :-
depth_first_serch(NODE,NI,N2) .

display_inference_net(NODE,N1,N2) .

depth_first serch(NODE,N1,N2) :-

node s;ructure(NODE,logic(LOGIC),evidence(EVIDENCE),_),
aclIclause(route(NODE)), banof(N,route(N),INDENTY_LIST),
length(INDENTY LIST,LENGTH),
check_ranne(LERiGTH,N1,N2,WRITE),
, ese••r' 	 i n••••-n .rek.-- ra•-• l! Ch.lr;71-1.

W t\IDENTY),wrIte_new_incenty(NEW_INDENTY),write_tree(
NODE),/),/;/), /,

	 check_te'rminel(NODE,_EVIDENCE I NEW EVID'ENCE,LENGTHI,N2) 	 _
decide_a_Way(NbDE,NEW_EVIbENCE,NT,N2) .

! write new_indenty(NEW INDENTY) :-

! 	;imes(3,NEW_INDEFJTY,PRODUCT), outspaces(PRODUCT) .

..ichPck_rarigelLEUGI.a..JULaila_Write)
LENGTH>=N1 . 1

check range(LENGTH,N1,N2,write)
• :ENGTH)=N1, LENGTH(=N2 .
; check_range(LENGTH,N1,N2,not_write) .

shift indentation(LENGTH,N1,NEW_INDENTY) :-
171inus(LENGTH,N1,NEW_INDENTY) .

write_tree(NODE) :-
node_structure(NODE,logic(LOGIC),evidence(CEVIDENCE_HI

EV/DENCE_T3),_), get_dependence(NODE,DEPENDENCE),
write mark(NODE), write(NODE), write(" "), write("("),
write7LOGIC),
write_evidence_number(CEVIDENbE HIEVIDENCE_T3), write(")"),
write(" "), write depèndence(DEENDENCE),
get_true_fail(NOD,TF),
(equal(TF,t),write_prolnability(NODE),/;/), n1 .

write_tree(NODE) :-
node_structure(NODE,logic("terminal"),evidence(C3),_),

write_mark(NODE), write(NODE), write(), write("("),
write("terminal"), write(")"), write_probability(NDDE), n1 .

get_true_fail (NODE, TF) :
node_stat us (NODE, _, TF, 	 _) .

get_true_fai 1 (NODE, nothing) .

write_probability(NODE) :-
node_status(NODE,_,_,_,PRO,_,_,_,_,_), /, write(" "),

write("P="), net_prob_range(PRO,W_TYPE),
write_prob(PRO,W_TYPE) .

write_probability(NODE) :-
1 .

write_denendence(DEPENDENCE) :-
write("D="), net_depend_rance(DEPENDENCE,D_TYPE),

write_depend(DEPENDENCE,D_TYPE) .

weite_depend(_,ninus_one) :-
write("-1") .

write_depend(_,zero) :-
write("0") .

write_depend(_,ten) :-
write("1") .

write_depend(D,ninus_9_1) :-
times(D,-1,N), write("."), write(N) .

write_deoend(Dione_9) :-
write("."), write(D)

net_depend_range(-10,ninus_one) .
net_depend_range(0,zero) .
get_depend_ranne(10,ten) .
get_denend_range(D,ninus_9_1) :-

D(04 0) -10 .
get_demend_range(D,one_9) :-

0>0, 0 (10 .
get_depend_range(D,d_range_eror)

0%

1 , write_number(0) .
• write_number(N) :-

writp(",212.__wnite(N)

write_evidence_number(E_LIST)
length(E_LIST,N), write_number(N) .

1, 	trur.Lue%I., ,,

write(' is must be in the rave -10...+10.") .

get_dependence(NODE,D) :-
node type(NODE,_,dependency(D),_,_,_,_,_,_,_) .

I get_depeniience(NODE,?) .
•

del_node_typ :-
nocie_tYPe 	_1_1_1 _1 	-,

fdelclause(node_type(_,_,_,_,_)), fail .
del_node_typ .

write_mark(NODE) :-
node_status(NODE,_,_,STPTE,P,_,_,_,_,_), string(STPTE),

equal(STPTE,t), decide_true(NODE,STPTE,P), /, write("* ")
write_mark(NODE)

string CC),
equal(C,suspended), /, write("s ") .

write_mark(NODE)
write(" 	"), / .

decide_true(NODE,STPTE,P)
• node_type(NODE,_,_,_,_,_,_,_,_,_), threshold(TH),

adjust(P,PN), PN)=TH, / .

adjust(P,P) .

disp_route :-
route(X), write("route -) "), write(X), ni, fail .

disp_route .

check_termina1(NODE,EVIDENCE,EVIDENCE,LENGTH,N2) :-
check_fail(LENGTH,N2),

node_structure(NODE,logic("terminal"),evidence(C3),_),
fdelclause(route(NODE)), fail .

check_terminal(NODE,EVIDENCE,C3,LENGTH,N2) :-
number(N2), LENGTH=:=N2, fdelclause(route(NODE)), fail .

check_terminal(NODE,E,E,LSNGTH,N2) :-
check_fail(LENGTH,N2),

node_structure(NODE,logic(LOGIC),evidence(EV/DENCE),_),
(eaual(LOGIC,"not");
equal(LOGIC,and);
equal(LOGIC,or)) .

check_fai1(LENGTH,N2) :-
number(N2), LENGTH=:=N2, fail .

check_fai1(LENGTH,N2) :-
number(N2), LENGTH)N2 .

check_fai1(LENGTH,N2) :-
number(N2), LENGTH(N2 .

check_fail(LENGTH,all) .

decide_a_way(NODE,C7,N1,N2) :-
fdelclause(route(NODE)), fail .

decide_a_way(NODE,CEVIDENCE_HIEVIDENCE_T7,N1,N2)
_

	

	depth serch(NODE,EVIDENCE H,N1,N2);
decid;_a_way(NODE,EVIDENCE_T,N1,N2) .

Fpl...hu\IODE,EVIDEMCE_,-!.N1.N121

X, / .

disp_tree(NODE) :-
kill(route), display_inference_net(NODE,1,a11)

_cLisp....treeiNODE,N) :-
 kill(route), display_inference_net(NODE,1,N) .

disp_tree(NODE,N1,N2) :-
kill(route), display_inference_net(NODE,N1,N2)

and_independence(EVIDENCE_LIST,AND_C1) :-
addclause(c_product(1)), multiply(EVIDENCE_LIST),

divide(EVIDENCE_LIST,AND_C1), fdelclause(c_product(_)) .

multiply(C7) .
multiply(CEVIDENCE_HIEVIDENCE_T3) :-

c_product(X), pet_probability_or(EVIDENCE_H,PROBPBJLITY),
times(PROBABILITY,X,PRODUCT), fdelclause(c_product(X)),
addclause(c_product(PRODUCT)),'multiply(EVIDENCE_T) .

or_independence(EVIDENCE_LIST,2,OR CI) :-
addclause(sum(0)), addition(EVIDENCE_LIST), sum(SUM),

fdelclause(sum(SUM)), addclause(c_product(1)),
multiply(EVIDENCE_LIST), divide(EVIDENCE LIST,PRODUCT),
fdelclause(c_product()), minus(SUM,PRODFJCT,OR_C1) .

or_independence(EVIDENCE_LIS7,3,OR 	C1) :-
addclause(sum(0)), addition(Ei7IDENCE_L IST), sum(P),

fdelclause(sum(P)), addclause(c_product(1)),
multiply(EVIDENCE_LIST), divide(EVIDENCE_LIST,PPP),
fdelclause(c_product(_)),
separate_arg(EVIDENCE LIST,CE_A,E B,E C1),
addclause(c_product(17), 	multiply7CEJi,E_B]),
divide(CE P,E_B],PPB), fdelclause(c_product(_)),
addclause7c_product(1)), multiply(CE_P,E_C1),
divide(CE A,E_C7,PAC), fdelclause(c_product(_)),
addclause7c_product(1)), multiply(CE_B,E_C7),
divide(CE B,E_C7,PBC), fdelclause(c_product(_)),
plus(P,PP,X), minus(X,PPB,X1), minus(X1,PAC,X2),
minus(X2,PBC,OR C1) .

or_independence(EVIDENEE LIST,1,OR C1) :-
one_evidence_pro(EVIDENCE_LIS-7,0R_C1) 	.

separate_arg(CE_A,E_B,E_CD,CE_P,E_B,E_C1) .

one_evidence_pro(CEVIDENCE3,0R_C1)
nocie_st at us (EVIDENCE, 	OR_Cl , 	_)

divide(EVIDENCE_LIST,RESULT) :-
length(EVIDENCE_LIST,LENGTH), minus(LENGTH,1,L),
power(100,L,X), c_product(Y), div(Y,X,RESULT) .

max_or_dependence(EVIDENCE_LIST,OR_C2) :-
addclause(maximum(0)), find_max(EVIDENCE_LIST),
maximum(OR_C2), fdelclause(maximum(X)) .

find_max(C1) .
find_max(CEVIDENCE_HIEVIDENCE_T7) :-

maximum(MPX_PRO), get_probability_or(EVIDENCE_H,PROBPBILITY),
. 	(less(PROBABILITY,MAX_PRO),/,/ifdelclause(maximum(MAX_PRO))

,addclause(maximum(PROBRBILITY))), find_max(EVIDENCE_T)

e.,ye:t/TD=MC.F. w.nPrIPARTL7)

noce_st at us t 	 _) .
get _probabi 1 ity_or (EVIDENEE_H, 	0) .

max_and_dependence(EVIDENCE_LIST,AND_C2) :-
addc1ause(minimum(100)), find_min(EVIDENCE_LIST),
minimum(AND_C2), fdelclause(minimum(X)) .

min_or_dependence(EVIDENCE_LIST,OR C3)
Adliclause1emm10)), addition(EIDENCE_LIST). sum(SUM)„ 	

fdelclause(sum(SUM)), less(SUM,100), OR_C3 is SUM, 11
OR_C3 is 100 .

addition(C3) .
addition(CEVIDENCE_HIEVIDENCE_T7) :-

sum(SUM), net_probability_or(EVIDENCE_H,PROBABILITY),
plus(SUM,PROBABILITY,NEW_SUM), fdelclause(sum(SUM)),
addclause(sum(NEW_SUM)), addition(EVIDENCE_T) .

disp_sum :-
sum(X), write0 sum("), write(X), write(")"), ni, fail .

disp_sum .

find_min(C7) .
find_min(CEVIDENCE H1EVIDENCE.T]) :-

minimum(MIN_Pk),
node_status(EVIDENCE H,_,_,_,PROBABILITY,_,_,_,_,_),
(less(MIN PRO,PROBABiLITY),/,/;fdelclause(minimum(MIN PRO))

,addc-fause(minimum(PROBABILITY))), find_min(EVIDERICE_T)

min_and demendence(EVIDENCE_LIST,AND C3) :-
adeiclause(sum(0)), addition(EVI5ENCE LIST), sum(SUM),

fdelclause(sum(X)), length(EVIDENCE_LIST,LENGTH),
minus(LENGTH,1,L), times(100,L,Y), minus(SUM,Y,Z),
less(0,Z), AND_C3 is Z, /;

AND_C3 is 0 .

resulting_probability(D,C1,C2,P,positive) :-
times(D,C2,X), minus(10,D,Y), times(C1,Y,Z), plus(X,Z,X1),

div(X1,10,P) .
resu1ting_probabi1ity(D,C1,C3,P,negative) :-

times(D,-1,X2), times(X2,C3,X), minus(10,X2,Y), times(C1,Y,Z),
plus(X,Z,X1), div(X1,10,P) .

display_expression(NODE) :-
addclause(ori_node(NODE)), addc1ause(ex_1ist(Cinit3)),

depth_first ex(NODE) .
display_expressionÎNODE) :-

fdelclause(ori node(X)), fdelclause(ex_list(X)) .
display_expression(kDE) :-

del_ex_l .

check_explainable(NODE) :-
node_structure(NODE,_,_,_), ori_node(O_NODE),

(equal(NODE,O_NODE), /, 11
fdelclause(ex_route(NODE)), fail) .

del_ori :-
ori_node(X), fdelclause(ori_node(X)), fail .

del_ori .

del_ex_r :-
ex_route(X), fdelclause(ex_route(X)), fail .

del_ex_r .

cel_ex_l
.v li,t(Y%, 	 1.1'1.t")).

del_ex_l .

_de-1 px ;-

del_ex_r, del_ex_1, del_ori .

reverse_list(L,R) :-
revO(L,C3,R) .

',_r_ev0(r1,ACCLIDI,ACCUML..

revO(CHEADITAIL],ACCUM,RESULT) :-
revO(TAIL,CHEADIACCUM3,RESULT) .

decide_ex_way(NODE,C3) :-
fdelclause(ex_route(NODE)), write(")"), fail .

decide_ex_way(NODE,CEVIDENCE_HIEVIDENCE_T3) :-
depth_ex_serch(NODE,EVIDENCE_H);
decide_ex_way(NODE,EVIDENCE_T). .

depth_ex_serch(NODE,EVIDENCE_H) :-
cut(depth_first_ex‘(EVIDENCE_H))

depth_first ex(NODE)
node sUructure(NODE,logic(LOGIC),evidence(EVIDENCE),_),

adijclause(ex route(NODE)), bagof(N,ex_route(N),EX_LIST),
reverse_list7EX LIST ,R LIST), get second(R_LIST,S NODE),

node_structure&NODE,iogic(S_LOGiC),_,_), ex 	lis.i(OLD),
fdelc lause(ex list(OLD)), addclause(ex_list(E)7 LIST)),

length(OLD,L07, length(EX_LIST, LN), ori_node(0iiI NODE),

(equal(L O,LN),/,/;less(LO,LN),(write(" ("),write7S_LOGIC)),
/;/),

(equal(explainable,explainable),(write(" "),write(NODE)),/;
/), check explainable(NODE),

decide_ex_way7NODE,EVIDENCE) .

disp_exp(NODE)
display_expression(NODE) .

get_second(R_LIST,S_NODE) :-
length(R_LIST,1), ori_node(S_NODE) .

pet_second(C_,S_NODEI_],S_NODE) .

read_pro(NODE_NPME,TRUE_OR_FPIL) :-
form_list(NODE_NME,EVI_LIST), read_ans(EVI_LIST,TRUE_OR_FPIL) .

form_list(NODE_NAME,CNODE_NAMEJ) .

$ ty comkb.log
Appendix A.3.COMKB Listings

/* Common Knowledge Base *
/*
node_structure(spacecraft_lost,logic(and),evidence(C

electronics_innert,antenna_ineffective,telemetry_lost, •
spacecraft_mechanically_frozen]),"dead") .

,node_strumturelelectronics_innert.,.logic (and),evidence(C
heaters_ineffective,electrical_shutdown]),"6.1)d.ii)2") .

node_structure(antenna_ineffective,logic(and),evidence(C
spacecraft_tumbles,electrical_shutdown7),"no antenna") .

node_structure(telemetry_lost,looic("terminal"),evidence(U),
"6.1).1****") .

node_structure(spacecraft_mechanically_frozen,logic(or),evidence(C
heaters_ineffective7),"frozen") .

node_structure(heaters_ineffective,logic(or),evidence(C
electrical_shutdownJ),"6.1>d.ii)1") .

node_structure(soacecraft_tumbles,logic(and),evidence(Cwheel_stops
,large_cone_develops,pitch_channes_greatly]),
"6.1)d.ii)1)1") .

node_structure(wheel_stops,logic(or),evidence(Celectrical_shutdown
7),"6.1)d.ii)1") .

node_structure(electrical_shutdown,logic(or),evidence(Cuvs_trips7)
,"6.1)d.ii") .

node_structure(uvs_trips,logic(and),evidence(Cbatteries_exhausted,
charging_limitedJ),"6.1)c.ii") .

node_structure(batteries_exhausted,logic(or),evidence(C
power_loss_l e power_loss_23),"6.1.c.ia") .

node_structure(charging_limited,logic(or),evidence(C
tracking_partially_successful]),"6.1>c.i") .

node_structure(power_loss_1,logic(and),evidence(C
catalyst_bed_heater_on,heavy_tracking_power]),"6.1)c") .

node_structure(power_loss_2,logic(or),evidence(C
catalyst_bed_heater_on,heavy_tracking_power7),"6.1)c") .

node_structure(catalyst_bed_heater_on,logic(or),evidence(C
recovery_procedure_beginsJ),"heater") .

node_structure(heavy_tracking_power,logic(or),evidence(C
continuous_tracking3),"hard work") .

node_structure(tracking_partially_successful,logic(or),evidence(C
solar_array_off_angle,attitude_control_lost]),"_") .

node_structure(continuous_tracking,logic(and),evidence(C
solar_array_off_andle,attitude_control_lostJ),"always") .

node_structure(attitude_control_lost,logic(and),evidence(C
command_not_receivable,pitch_chances_greatly,
large_cone_develops7),"no control") .

node_structure(command_not_receivable,logic(or),evidence(C
receive_antenna_off_angle]),"no rcv") . . 	•

node_structure(o4_firing_stops,logic(and),evidence(C
main_tank_valve_closes,fuel_in_line_becomes_scarce,
fuel_pressure_drops3),"firing stops") .

node_structure(solar_array_off_angle,logic(and),evidence(C
pitch_changes_greatly,large_cone_develods7),"off_angle") .

node_structure(receive_antenna_off_angle,logic(or),evidence(C
large_cone_develops,pitch_changes_greatly7),"no antenna"
) 	.

node_structure(shf_lost,logic(or),evidence(Cpitch_changes_greatly,
large_cone_develops3),"no SHF") .

node_structure(fuel_in_line_becomes_scarce,logic(and),evidence(C
limited_fuel_in_fuel_line,o4_firing_continues]),
"o4 cont") .

node_structure(pitch_changes_greatly,logic(or),evidence(C
o4_firinc_continues3),"pitch") .

node_structure(large_cone_develops,lopic(and),evidence(C
04_firinc_continues,negative_pitch_develops.1),"cone") .

,..r2ce_F.;tructure(o4_firinp_cc.ntinues,lopid-Cand),evidence(C

nign_rate_c ommano_ continues,
pressure_in_fuel_line main 	o tains,4_firesl),"big thrust") .

••node- structure(high rate_commang_continues,logic(and),evidence(C
nesa_a_ou;put_sat urates,nesa_a_has_earth_presence,
nesa_a_takes_over_roll_yaw_contro13),"long cmd") .

' node_structure(pressure_in_fuel_line_maintains,logic(or),evidence(
Caciditional_fuel_vaporizes7),"pressure") .

node_structure(additional_fuel_vaporizes,logic(and),evidence(C
	fuel_pressure_drops,multi_face*flow_in_fuel_line]), 	

"more") . 	•
• node_structure(fuel_pressure_drops,logic(or),evidence(Co4_fires]),

"drop") .
node_structure(o4_fires,logic(and),evidence(C

roll_yaw_command_isSued,limited_fuel_in_fuel_line3),
"o4 fired") .

node_structure(roll_yaw_command_issued,logic(and),evidence(C
nesa_a_output_saturates,
nesa_a_takes_over_roll_yaw_control]h"cmd") .

node_structure(nesa_a_takes_over_roll_yaw_cOntrol,lomic(and),
evidence(Cnesa_b_loses_earth_presence,
nesa_a_has_earth_presence3),"takeover") .

node_structure(fuel_control_inaccurate,logic(or),evidence(C
multi_face_flow_in_fuel_linel),"inaccurate") .

node_structure(nesa_b_loses_éarth_presence,logic(or),evidence(C
neriative_pitch_develops7),"lose earth") .

node_structure(multi_face_flow_in_fuel_line,logic(and),evidence(C
multi_face_flow_potential_in_tank,
limited_fuel_in_fuel_linel),"multiface") .

node_structure(negative_pitch_develops,logic(or),evidence(C
wheel_speed_drops3),"negpitch") .

node_structure(multi_face_flow_potential_in_tank,lomic(or),evidence
(Cnitrogen_in_hydrazine,unresolved_nitrogen_in_tank,
unspecified_gas_in_tankfl r"potential") .

node_structure(limited_fuel_in_fuel_line,logicAand),evidence(C
main_tank_valve_closes,o4_previously_fired]),
"limited fuel") .

node_structure(wheel_sbeed_drops,lomic(or),evidence(Ccws_mode_on])
,"6.1>a.iii>1") .

node_structure(nitrogen_in_hydrazine,logic(or),evidence(C
nitrogen_thru_diaphramm,fuel_tank_temp_cycles]),
"resolved") .

node_structure(unresolved_nitrogen_in_tank,logic(and),evidence(C
nitroeen_to_pressure,tank_pressure_low3),"unresolved") .

node_structure(unspecified_gas_in_tank,logic(and),evidence(C
fuel_tank_temp_cycles,impurities_in_tankl),"other gas") .

node_structure(main_tank_valve_closes,logic(or),evidence(C
afp_tripsl),"6.1)a.i") .

node_structure(switch_to_redundant_ace_and_mwc,logic(or),evidence(
Cafp_trips7),"S.1)a.ii") .

node_structure(cws_mode_on,logic(or),evidence(Cafp_trips7),
"6.1)a.iii") .

node_structure(o4_previously_fired,logic("terminal"),evidence(C7),

node_structure(nitrogen_thru_diaphragm,logic(and),evidence(C
diaphramm_leaks,nitrogen_to_pressurel),"leak") .

node_structure(recovery_procedure_begins,logic(or),evidence(C
nesa_a_output_saturatesl),"procedure!") .

node_structure(afp_trips,logic(or),evidence(C
nesa_a_output_saturates7),"S.1)a") .

node_structure(nesa_a_has_earth_presence,logic(or),evidence(C
nesa_a_output_saturates3),"earth") .

node_structure(diaphragm_leaks,louic("terminal"),evidence(n),
"material") .

node_structure(nitrogen_to_pressure,logic("terminal"),evidence(M)
,"nitromen") . 	•

F ue 1_1 	arK_). OW.)) " I OW_ uei '•) .
node_structure (f uel_t ank_t ernp_cycl es, logic (and) , evidence (
	sun_posi tj. on_al ways_changes, heat_dissi pat. i on_uneyen3)

"tank temp") .
, node_struct ure (irnpurit ies_in_tank, logic ("terminal ") , evidence

"impure") .
' node_structure (nesa_a_out put _sat urat es, logic (or) , evidence (

nesa_a_saturat ion_l, nesa_a_saturat ion_2,
	 excessive nesa_a_power_cyol i ng 3),") .

node_structure (nesa_a_sat urat ion_l, log ic (or), evidence (C
• charged_energy, mirror_st uck3) , "6. 1.4. b") . •

node_structure (nesa_a_saturat ion_2, logic (or), evidence (C
and_electronics, or_electronics3) , "6. 1. 4. b") .

node_structure (fuel _i n_t ank_16w, log ic ("terminal") , evidence (C3) ,
"fuel low") .

node_structure theat_d i ssi pat ion_uneven, logic ("terminal ") , evidence (
C3) , "uneven") .

node_structure (charged_energy, logic (or) , evidence C Csun_reflect ions,
shf_radiat ion3) , "6. 1. 4. 3") .

node_struct ure (mirror_stuck, logic (or) , evidence (
scan_mechanism_fails, scan_motor_fai 1s3) , "6. 1. 3. a") .

node_structure (and_el ectronics, logic (and) , ev i Pence (
control _el ect ronics_fai ls, èmi_to_electronics3) "6. 1. 4. 1"
) 	. 	 -

node_struct ure (or_electronics, logic (or), evidence (C
control_electronics_fai ls, emi_to_electronics3) "S. 1. 4. 2"
) 	.

node_struct ure (scan_mechanism_fails, logic (or) , evidence (C
thermal_distort ion, unstable_pivot,
mechanism_contaminat ion3) , "6. 1. 3. a") .

nocle_struct ure (scan_motor_fails,z logic (or) , evidence (Cmotor_fai I s,
mot or_overheats3) , "6. 1. 3. b") .

node_struct ure (sun_reflect ions, log ic ("terminal") , evidence (C3)
"6. 1. 4. 3. I") .

node_structure (shf_radiat ion, logic ("terminal ") , evidence (C3)
"6. 1. 4. 3. 2") .

node_struct ure (thermal_dist ort ion, log ic (and) , evidence (C
sun_posit ion_always_changes, anomal ies_rel at e_t o_sun_pos3
) "6. 1. 3. 1") .

node_structure (unstable_pivot, logic ("terminal "), evidence (C3)
"6. 1. 3. 2") .

node_structure (mechani sm_cont and nat ion, logic ("terminal ") , evidence (
C3), "6. 1. 3. 3") .

nocie_struct ure (motor_fails, logic("t erminal") , evidence (C3) ,
"6.1.3.4) .

node_structure (rnotor_overheats, logic ("terminal "), evidence (C3) ,
"6. 1. 3. 5") .

node_structure (control _electroni cs_fai ls, logic ("terminal ") evidence
(C3) , "6. 1. 4. 1. 1") .

node_struct ure (emi_to_electronics, lor ic ("terminal ") , evidence (E3) ,
"6. 1. 4. 1. 2") .

node_structure (excess i ve_nesa_a_power_cycl ing, logic (and), evidence (
Cpower_needs_to_be_cut_to_eliminate_out put,
nesa_a_out put :must _be_cut _out 3) , "overcycled") .

nocie_structure (power_needs_to_be_cut_to_el iminate_out put , I où ic (
"terminal ") , evidence (C3) ,*) .

node_structure (sun_posit ion_always_changes, log ic ("term trial "),
evidence (C3) , "6. 1. 3. 1. 1") .

node_struct ure (anomal ies_relate_to_sun_pos, log ic ("terminal ")
evidence (C3) , "6. I. 3. 1. 2" > .

node_structure (power_cut_to_el iminate_out put, iodic ("terminal ") ,
évidence (C3) , "****") .

node_structure (nesa_a_out put _must _be_cut_out , logic ("terminal ") ,
ev i dence (r. 3) , "****") .

r.occ• m np f 	1 	 tt

r.,;.c.e_ebLacget.ouu 	(iessamee - je .

node_messame(msg3,Cnmessage3"))
.nocia_message(nisg4,Imessage4"7)
node_messame(mso5, C"messa9e5"7> .

node_message(msg6,Cnmessage6"]) .
node_messame(msg7,C"message7 0 7) . "WWC...MC77pLd n M.2f,.. M CKMG, 	•

node_message(mse,Cfimessage8"7) .
node_message(ms09,E"message9"1) .

.-mode-messaQP (mg10.4_11!messagele3/_.._
node_message(msg12,Énmessage12"3) .

node_message(msg11,C"message11"3) .
node_messacie(msp13,C"message13"7) .

node_message(msg14,C"me5sage14"]) .

node_messame(msg15,C"message15"]) .

node_message(msg16,C"message16"]) .
node_message(msg17,C"message17"]) .
node_me5sage(msg18,["messagelE03) .
node_message(msg19,Cumessame19"7) .

node_message(msg20,r"message20"7) .

node_messame(msel,Cumessageal")) .

node_message(msg22,Umessage22"7) .
node_messame(msm23,Cumessape23"7) .
node_message(msg24,C"message24"3) .
node_messame(msc25,Cumessame25")) .

node_message(msg26,Cumessage26"3>

node_messane(mso27,Cnme5same27"3) .

node_message(msg28,Cnmessage28"7) .

node_messane(msg29,Cumessage29"]) .
node_message(msg30,C"message30"7) .
node_message(msm31,C"message31"7) .

node_message(msg32,C"message32"]) .
node_message(mso33,C"messane33"3) .

node_message(msg34,E"message34"3) .

node_message(mso35,Cumessage="]) .

node_message(msg36,C"message36"3) .

node_message(mso37,tumessaue37"7) .

node_message(msg38,Eumessane38"7) .

no1e_messame(msg39,E"messame39"7) .

node_message(msg40,E"message40"7) .
node_messame(msg41,Vmessage41"3) .
node_message(msg42,E"message42"]) .
node_messaae(msa43,C"messame43"]) .

node_message(msg44,C"message44"7) .

node_messame(mso45,C"messame4.9"7)

node_message(msg46,C"message4S"])

node_message(msg47,E"me5sage47"3) .

node_message(msg48,C"message48"3) .
node_messatte(mso49,Cumessame49"3) .
node_message(mse0,C"message50"7) .

node_message(mso5a,Enmessame52"3) .

node_messame(msg51,C"message51"])

node_messacre(ms953,Cnmessage53"3) .

node_message(msg54,Cnmessame54"7) .

node_message(nism.55“"messatre55"]) .
node_message(msg56,Enmessage56"3) .
node_me5same(msg57,[nmessage57"]) .
node_message(msg58,C"messageS/e7) .

node_me5same(msg59,C"message59"3) .

node_message(msg60,Cumessage60"3) .

node_messame(msel,E"message61"3) .

node_message(m5g62,r"message62"]> .

node_message(mso63,C"message63"7) .
node_message(msp64,C"messame64"]) .

node_messame(Ms965,C"messacie6.5"]) .

node_message(msg66,:"messame6E"]) .
,.ueArm..(....7.C"ree.1reF,7.11 .

II
II

Ii

il

El

li

[11
ii

Ji

node_messabe(mso69,C"messame69"7) .

,node_message(msg70,C"message70"]) . . 	• 	•

node_message(msg71,C"messaoe71"7) .
' node_message(msg72,C"message72"]) . 	•
node_message(msg73,C"message73"7) .

node_message(msg74,C"message74"])

• node_messame(msg75,C"messane75"]) .

_recte_inessage(msg76,Cleessage762_3_)__._ 	
node_message(msg77,C"message77"7) .

' node_message(msg78,["message7S"]) .
, node_messape(mso79,C"messame79"]) .

node_message(msgft,C"messageS0"]) .
node_messabe(msm81,C"messame61"7) .

node_message(msgS2,C"messageS2"]) .

node_messame(msgS3,C"message83"7) .

node_message(msgS4,["messageS4"]) .
• node_message(msoSS,C"messageSS"]) .
node_message(msge6,C"messageSS"]) .
node_message(msg87,C"message87"]) .
node_message(msgee,C"message88"3) .
node_messape(msga9,C"messageS9"]) .

node_message(msg90,C"message90"7) . •

node_messame(uvs_trips_rec,["Disable UVS"]) .

node_message(uvs_trips_exp, ["the UV S is known to malfunction."]) .

node_explanation(spacecraft_lost,g_type(1),v_depth(2),_,_,_,
description(["Spacecraft is lost"])) .

node_explanation(electronics_innert,g_type(1),v_depth(2),_,_,_,
description(C"Most on-board electronics are innert"])) .

node_explanation(antenna_ineffective,g_type(1),v_depth(2),_,_,_,
description([
"Command receive antenna is not functioning at all"7)) .

node_explanation(telemetry_lost,g_type(1),v_depth(2),_,_,_,
description(C"Telemetry from the spacecraft is lost 11 7)) .

node_explanation(spacecraft_mechanically_frozen,g_type(1),v_depth(

,,description(C
"Specacraft is mechanically frozen"7)) .

node_explanation(heaters_ineffective,g_type(1),v_depth(2),_,_,_,

description(C

"On-board equipment heaters are not functioning anymore"
7)) .

node_explanation(spacecraft_tumbles,g_type(1),v_depth(2),_,_,_,
description(["Spacecraft is tumbling"])) .

node_explanation(wheel_stops,g_type(I),v_depth(2),_,_,_,description
(['Or,-board momentum control wheel has Stopped"])) .

node_explanation(electrical_shutdown,g_type(1),v_depth(2),_,_,_,
description(C"On-board electrical system is shut down"7)
) 	.

node_explanation(uvs_trips,g_type(1),v_depth(2),_,_,_,description(

["Under voltage protection system is activated"])) .
node_explanation(batteries_exhausted,g_type(1),v_depth(2),_,_,_,

description(C"On-board batteries are exhausted"7)) .
node_explanation(charging_limited,g_type(1),v_depth(2),_,_,_,

description(t

"Solar arrayes ability to charge on-board batteries",
" is now limited"])) .

node_explanation(power_loss_1 e g_type(1),v_depth(2),_,_,_,.
description([""])) .

node_explanation(power_loss_2,g_type(1),v_depth(2),_,_,_,
description([""])) .

node_explanation(catalyst_bed_heater_on,g_type(1),v_oepth(2),_,_,_
,description([

"Catalyst bed heater for thruster is turned on":1)) .
nooe_explanation(heavy_tracking_power,e_type(1),v_depth(2),_,_,_,

mcnvÉse, rtr.in rhip tn tnac ..?e

A-37

$ino of solar array"])) .
node_explanation(tracking_partially_successful,g_type(1),v_depth(2

),_,_,„description(r
"Tracking of the sun by solar array",
" is only partially successful"])) .

node_explanation(continuous_tracking,g_type(1),v_depth(2),_,_,_,
; description(C 1

"The solar array is now tracking the sun continuously"])

node_explanation(attitude_control_lost,g_type(1),v_depth(2),_,_,_,
description(C"Attitude control is no longer effective"])
) .

node_explanation(command_not_receivable,g_type(1),v_depth(2),_,_,_
,description(r
"The spacecraft is not receiving command sequences"7)) .

node_explanation(o4_firing_stops,g_type(1),v_depth(2),_,_,_,
description(C"Firing of the 04 thruster is stopped"])) .

node_explanation(solar_array_off_angle,g_type(1),v_depth(2),_,_,_,
description(C"The solar arrays are rot facing the sun"])

.) 	.
node_explanation(receive_antenna_off_angfe,g_type(1),v_depth(2),_,

,,description(C
"The command receive antenna is not properly aligned",
" to the ground"])).'. .

node_explanation(shf_lost,g_type(1),v_depth(2),_,_,_,description(C
"The SHF communication channel is lost"])) .

node_explanation(fuel_in_line_becomes_scarce,g_type(1),v_depth(2),
,,_,description(C
"Residual fuel in the fuel line becomes scarCe"])) .

node_explanation(pitch_chanoes_greatly,g_type(1),v_depth(2),_,_,_,
•

	

	 description(C"The spacecraftSis pitch changes greatly f$
$rom nominal negative",
" pitch to a large positive pitch"])) .

node_explanation(laroe_cone_develops,g_type(1),v_depth(2),_,_,_,
description(C
"A large nutation cone develops around the pitch axis"])
) 	.

node_explanation(o4_firing_continues,g_type(1),v_depth(2),_,_,_,
description(C"The firing of the offset thruster ",
"04 is maintained"3)) .

node_explanation(hioh_rate_command_continues,g_type(1),v_depth(2),
,,_,description(C
"The thruster 04 fire command continues at a high rate"]
)) 	.

node_explanation(pressure_in_fuel_line_maintains,c_type(1),v_depth
(2),_,_,_,description(C
"The pressure in the fuel line is maintained"])) .

node_explanation(additional_fuel_vaporizes,g_type(1).;v_depth(2),_,
,,description(C
"An additional amount of fuel vaporizes"])) .

node_explanation(fuel_pressure_drops,o_type(1),v_depth(2),_,_,_,
description(C
"The pressure of fuel in the fuel pipe drops"])) .

node_explanation(o4_fires,g_type(1),v_depth(2),_,_,_,description(C
"The negative pitch offset thruster 04 fires"])) .

node_explanation(roll_yaw command_issued,g_type(1),v_depth(2),_,_,
_,description(C;The roll-yaw control command is issued"]
)) .

node_explanation(nesa_a_takes_over_roll_yaw_control,g_type(1),
v_depth(2),_,_,_,description(C
"NESA-P cross scan takes over the control of",
" the roll/yaw axes"])) .

node_explanationtfuel_control_inaccurate,p_type(1),v_depth(2),_,_,
_,description(C"Fuel flow control is no loncer accurate"
7.)) .

"NESA-B primary scan loses the sight of the earth"3)) .
node_explanatipn(multi_face_flow_in_fuel_line,g_type(1),v_depth.(2)

,_,_,_,description(C
"Multi-face flow of fuel exists in the fuel line"7)) .

; node_explanation(negative_pitch_develops,g_type(1),v_depth(2),_,_,
_,description(C"A nominal negative rotation begins arou$
$nd the pitch axix"))) .

•_node_explanatiordmulti_face_flow_potential_in_tank,g_tepe(1),
v_depth(2),_,_,_,description(C
"There is a potential fuel multi-flow situation",
" in the fuel tank"])) .

node_explanation(limited_fuel_in_fuel_line,g_type(1),v_depth(2),_,
,,description(C"There is a limited amount of fuel lef$
$t in the fuel line"7)) .

node_explanation(wheel_speed_drops,g_type(1),v_depth(2),_,_,_,
description(C"The speed of the reaction control wheel d$
$rops nominal 15 rpm"7)) .

node_explanation(nitrogen_in_hydrazine,g_type(1),v_depth(2),_,_,_,
descriotion(C
"Nitrogen gas is resolved in hydrazine fuel"])) .

node_explanation(unresolved_nitromen_in_tank,g_type(1),v_depth(2),
,,_,description(C
"Unresolved nitrogen gas permiates through diaphragm"3)) .

node_explanation(unspecified_pas_in_tank l m_type(1),v_deoth(2),_,_,
„description(C"Unspecified gas exists in the fuel tank"
2)) .

node_explanation(main_tank_valve_closes,g_type(1),v_depth(2),_,_,_
,description(C"The main fuel tank valve closes"])) .

node_explanation(switch_to_redundant_ace_and_mwc,o_type(1),v_depth
(2),_,_,_,description(C
"The ACE and MWC units are switched to redundant unit"])
) 	.

node_explanation(cws_mode_on,g_type(1),v_depth(2),_,_,_,description
(C"The Constant Wheel Speed mode is on"])) .

node_explanation(o4_previously_fired,g_type(1),v_depth(2),_,_,_,
description(C"The negative pitch offset thruster 04 has"
," previously been fired"3)) .

node_explanation(nitropen_thru_diaphragm,g_type(1),v_depth(2),_,_,
„description(C
"Nitropen gas permiates through the diaphragm"3)) .

node_explanation(recovery_procedure_beoins,o_type(1),v_depth(2),„
,,description(C
"A predefined NE5A-A saturation recovery procedure is",
" put into effect"])) .

node_explanation(afp_trips,g_type(1),v_depth(2),_,_,_,description(
C"The Automatip Failure Protection mode is enforced"7)) .

node_explanation(nesa_a_has_earth_presence,g_type(1),v_depth(2),_,
,,description(C"NESA-A has the earth presence"2)) .

node_explanation(diaphragm_leaks,g_tyme(1),v_depth(2),_,_,_,
description(C"The diaphragm material leaks nitropen gas"
7)) .

node_explanation(nitrogen_to_pressure,g_type(1),v_deoth(2),_,_,_,
description(C
"Nitrogen gas is used to pressure diaphragm"7)) .

node_explanation(tank_pressure_low,o_type(1),v_depth(2),_,_,_,
description(C"Pressure in fuel tank is low"7)) .

node_explanation(fuel_tank_temp_cycles,g_type(1),v_depth(2),_,_i_,
description(C"Temperature within fuel tank cycles"])) .

node_explanation(impurities_in_tank,o_type(1),v_depth(2),_,_,_,
descrimtion(C
"There are impurities in fuel and/or tank materials"7)) .

node_explanation(nesa_a_output_saturates,g_type(1),v_depth(2),_,_,
_,description(C
"Both NESP-A prime and cross scan cutouts saturate"])) .

node_exclanat,.on(fuel_in_tank_low,c_tycell).v_depth(2)._._,_.

uec.rspr—tc.riv.. - rceifia.,r.InQ rue.: 	.ù.,ar#H. 	4c,w'J» .

node_explanation(heat_dissipation_uneven,g_type(1),v_depth(2),_,_,

"Heat dissipation around fuel tank is uneven"])) . •
node_explanation(nesa_a_saturation_l,g_type(1),v_depth(2),_,_,_,

description(C""])) .
1 node_exp1anation(nesa_a_saturation_2,g_type(1),v_depth(2),_,_,_,

description(C""1)) .

`.-.1=Ae..2141.1anati.O.niCherg_egl_ené_raY.22_tYps(1).y depth (e>.1.-2._, 	
description(C"The structuré of the spacecraft is electr$
Sically charged"1)) .

node_exp1anation(mirror_stuck,g_type(1),v_depth(2),_,_,_,
description(C"The mirror scan mechanism is stuck"])) .

node_exp1anation(and_e1ectronics,g_type(1),v_depth(2),_,_,_,
description(C)) .

node_exp1anation(or_e1ectronics,g_type(1),v_depth(2),_,_,_,
description(C""])/ .

node_exp1anation(scan_mechanism_fails,g_type(1),v_depth(2),_,_,_,
description(C"The scanning mechanism fails"))) .

node_explanation(scan_motor_fails,g_type(1),v_depth(2),_,_,_,
description(C"scanning motor fails"])) .

node_exp1anation(sun_ref1ections,g_type(1),V_Flepth(2),_,_,_,
description(C
"The sun reflections causes the spacecraft charsed"])) .

, node_exp1anation(shf_radiation,g_type(1),v_depth(2),_,_,_ 7
description(C ,• 	 •
"Radiation froM the on-board SHF equipment causes",

" the spacecraft to chargre"1)) .
node_exp1anation(therma1_distortion,g_type(1),v_depth(2),_ 1 _,_,

desçription(C
"The scanning mechanism is thermally distorted"])) .

node_exp1anation(unstab1e_pivot,o_type(1),v_depth(2),_,_,_,
description(C
"The pivot of the scanning mechanism is unstable"])) .

node_explanation(mechanism_contamination,g_type(1),v_depth(2),_,_,
_,description(C 	 -
"The scanning mechanism is contaminated by particles"])
) 	.

node_explanation(motor_fails,g_type(1),v_depth(2),_,_,_,description
(C"The motor of the scanning mechanism fails"1)) .

node_explanation(motor_overheats,g_type(1),v_depth(2),_,_,_,
description(C
"The motor of the scanning mechanism overheats"])) .

node_explanation(control_electronics_fails,o_type(1),v_depth(2),_,
,,description(E"The control electronics of the scanni$
$ng mechanism fails"])) .

node_explanation(emi_to_electronics,g_type(1),v_depth(2),_,_,_,
description(C
"The electro-magnetic interference(EMI) causes",
" malfunction of the electronics"1)) .

node_exp1anation(excessive_nesa_a_power_cyc1ing,g_type(1),v_depth(
2),_,_,_,description(C
"NESA-A has power-cycled excessively"])) .

node_explanation(sun_position_always_channes,o_type(1),v_depth(2),
,,_,description(C
"The relative position of the sur to the spacecraft",
" always changes"])) .

node_exp1anation(anomalies_relate_to_sun_pos,g_type(1),v_depth(2),
• _,_,_,description(C

"There is a correlation between the position of the sun"

," to the spacecraft and the occurances of on-board ance

Smalies"1)) .
node_explanation(dower_cut_to_eliminate_outgut,g_type(1),v_depth(2

),_._,_,description(C
"In order to eliminate trie output from NESA,",
" 	 tl•e unit '"'".;,5

..,L.._..._=%na. , ur.:rieea_e_c.uuput_must_me_cum_out,p_type(.L;,y_deoth n c:
),_,_,_,description(C"Ther is a situation in which the $
$output of NESP-G..must.be",".

node_explanation(power_needs_to_be_cut_to_eliminate_output,g_type(
1),v_depth(2>,_,_,_,description(C
"This explanation does not defined yet"])) .

node_type(electronics_innert,fault,dependency(3),p1(1),p0(0),

thresholli(0).4.erron_rate.(121_,._330..331,_332 1.._. 	
node_type(antenna_ineffective,fau1t,dependency(3) 1 p1(1),p0(0),

thresho1d(0),error_rate(12),_338,_339,_340) .
node_type(spacecraft_mechanica1ly_frozen,fault,dependency(0),p1(1)

,p0(0),threshold(0),error_rate(12),_354,_355,_356) .

node_type(heaters_ineffective,fault,dependency(0),p1(1),p0(0),
threshold(0),error_rate(12),_362,_363,_364) .

node_type(spacecraft_tumb1es,fault,dependency(8),p1(1),p0(0),

threshold(0),error_rate(12),_370,_371,_372) .

node_type(wheel_stops,fault,dependency(0),p1(1),p0(0),threshold(0)

,error_rate(12),_379,_379,_380) .

node_type(electrical_shutdown,fault,dependency(0),p1(1),p0(0),
threshold(0),error_rate(12),_386,_387,_3138) .

node_type(uvs_trips,fault,dependency(7),p1(1).,p0(0),threshold(0),
error_rate(12),_394,_395,:. 396) .

node_type(batteries_exhausted,fault,dependency(5),p1(1),p0(0),

threshold(0),error_rate(12),_402,_403,_404) .

node_type(charging_limited,fault,dependency(0),p1(1),p0(0),

threshold(0),error_rate(12),_410,_411,_412) .

node_typé(power_loss_l,fault,dependency(5),p1(1),p0(0),threshold(0
),error_rate(12),_418,_419,_490) .

node_type(power_loss_2,fault,dependency(5),p1(1),p0(0),threshold(0
),errorrate(12),_426,_427,_428) .

node_tyme(catalyst_bed_heater_on,fault,dependency(0),p1(1),p0(0),

threshold(0),error_rate(12),_434,_435,_436) .

node_type(heavy_tracking_power,fault,dependency(10),p1(1),p0(ø),

threshold(0),error_rate(12),_442,_443,_444) .
node_type(trackinm_partially_successful,fault,dependency(8),p1(1),

pet(0),threshold(0),error_rate(12),_450,_451,_452) .
node_type(continuous_tracking,fault,dependency(0),p1(1),pe(Œ)),

threshold(0),error_rate(12),_458,_459,_460) .

node_type(attitude_control_lost,fault,dependency(7),p1(1),p0(0),

threshold(0),error_rate(12),_466,_467,_468) .

node_type(command_not_receivable,fault,dependency(8) -0711(1),p0(0),
threshold(0),error_rate(12),_474,_475,_476) .

node_type(04_firing_stops,fault,dependency(10),p1(1),p0(0),

threshold(0),error_rate(12),_482,_493,_484) .
node_type(solar_array_off_angle,fault,dependency(6),p1(1),p0(0),

threshold(0),error_rate(12),_490,_491,_492) .

node_type(receive_antenna_off_angle,fault,dependency(0),p1(1),p0(0

),threshold(0),error_rate(12),_498,_499,_500) .

node_type(shf_lost,fault,dependency(4),p1(1),p0(0),threshold(0),

errcr_rate(12),_506,_507,_508) .

node_type(fuel_in_line_becomes_scarce,fault,dependency(10),p1(1),p0

(0),threshold(0),error_rate(12),_514,_S15 1 _516) .
node_type(pitch_channes_preatly,fault,dependency(8),p1(1),p0(0),

threshold(0),error_rate(12),_522,_523,_524) .
node_type(large_cone_develops,fault,dependency(10),p1(1),p0(0),

threshold(0),error_rate(12),_530,_531,_532) .

node_type(o4_firinp_continues,fault,dependency(5),p1(1),p0(0),

thresho1d(0),error_rate(12),_538,_539,_540) .

node_type(hiph_rate_command_continues,fault,dependency(10),p1(1),p0
(0),threshold(0),error_rate(12),_546,_547,_549) .

node_type(pressure_in_fuel_line_maintains,fault,dependency(9),p1(1
),p0(0),threshold(0),error_rate(12),_554,_555,_556) .

node_type(additional_fuel_vaporizes,fault,dependency(1),p1(1),p0(0

),threshold(0),error_rate(12).,_562,_563,_564) .

mrei.sur5, eirro7..=.f.t,t.rig.n.=nrfimwrvem).,,(1).,olfel)

, -

nocle_type (04_fires, fault, dependency (0) , pl (1) , p0 (0) , threshold (0) ,

error_rate (12), 578, _579, _580) . 	. 	 _

node_t ype (rol l_yaw_commanii_ issued, fault, dependency (10) , pl (1), pel (el)

, threshold (0) , error rate (12), _586, 587, _588) .

node_type (nesa_a_takes_over_r -ol 1 _yaw_control ",- fault , dependency (10) ,

! 	' 	 _594, _5'35, threshold (0) , error_rat e (12) , _596, _597, _598) .

node_type (fuel _control_i naccurat e, fault, dependency (0) , pl (1) , p0 (0) ,

thrpq.hhl cea.,.er_ror_rate (_12J 4 _604, _605 4 606 	

. node_type (nesa_b_loses_earth_presence, fault, dependency (0), pl (1) , p0

(0) , threshold (0) error_rate (12) , _612, _613, _614) .

node_type (mult i_face_flow_in_fuel_l ine, fault, dependency (10) , pl (1) ,

pe (0) , threshold (0) error_rate (12) , _620, _621, _622) .

node_type (negat ive_pitch_develpps, fault, dependency (0) , pl (1) , p0 (0) ,

threshold (0) , error_rate (12) , _628, _629, _830) .

node_type (mult i_face_flow_potent ial_in_tank, fault, dependency (3) ,

• _636, _637, threshold (0) , error_rate (12) , _638, _639, _640) .

node_type (1 imited_fuel_in_fuel_l me, fault, dependency (B>, pl (1) , p0 (0

•) , threshold (0) , error_rate (12) , _646, _647, _648) .

node_type (wheel_speed_drops, fault, dependency (0) , pl (1), p0 (0) ,

threshold (0), error_rate (12), _654, _655, _656) .

node_type (nitrogen_in_hydrazine, fault, dependency (-4) , pl (1) , p0 (0) ,

threshold (0) , error_rate (12)., _662, _663, _664) .

nocie_type (unresOlVed_nitrogen_in_tank, fault, dependency (E) , pl (1) ,

(0), threshold (0) , error_rate (12) , _670, _671, _672) .

node_type (unspecified_gas_in_tank, fault, dependency (10) , pl (1) , pi?! (0)

, threshold (0) , error_rate (12) , _678, _679, _680) .

nocle_type (main • tank_valve_closes, fault, dependency (0) , pl (1) , p0 (0) ,

threshold (0>, error_rate (12) , _686, _687, _688) .

node_type (switch_to_redundant_ace_and_mwc, fault, dependency (0) , pl (1

) , 	(0) , threshold (0) error_rate (12) , _694, _695, _696) .

node_type (cws_mode_on, fault, dependency (0) , pl (1) , pel (0) , threshold (el)

error_rate (12) , _702, _703, _704) .

node_type (nitrogen_thru_diaphragm, fault, dependency (8) , 	(1) , p0 (0) ,

threshold (0), error_rate (12) , _718, _719, _720) .

node_type (recovery_procedure_beg ins, fault, dependency (0) , pl. (1) , p0(0

•) , threshold (0) , error_rate (12.) , _726, _727, _728) .

nocie_type (afp_trips, fault, dependency (0) , pl (1) , p0 (0) , threshold (0) ,

error_rate (1E) , _734, _735, _736) .

node_type (nesa_a_has_earth_presence, fault, dependency (0) , pl (1>, p0(0

), threshold (11) error_rate (12) , _742, _743, _744) .

node_type (tank_pressure_low, fault, dependency (0) , pl (1) , tc0 (0),

thr•eshold (0) , error_rate (12) , _758, _759, _760) .

node_type (fuel_tank_temp_cycl es, fault, dependency (10) , 	(1) , mel (0) ,

threshold (o), error_rate (12) , _774, _775, _77E) .

node_type (nesa_a_out put _sat urates, fault, dependency (-S>, pi (1) , p0(0)

, threshold (0) , error_rate (12) , _790, _791, _792) .

node_type (nesa_a_sat urat ion_l, fault, dependency (-5) , ol (1) , p0 (0) ,

threshold (0) , error rate (12), _814, _815, _816) .

node_type (nesa_a_sat urat ion_:._;„ fault, dependency (0) , pl (1) , p0 (0) ,

threshold (0>, error_rate (12) , _822, _823, _824) .

node_type (charged_energy, fault, deoendency (-8) , p1 (1) , p0 (0) , threshold

• (0) , error_rate (12) , _830, _831, _832) .

node_type (mirror_stuck, fault, dependency (-5) , pl (1), p0 (0) , threshold (

0) error_rate (12) , _838, _839, _840) .

node_t yme (and_electronics, fault, dependency (5) , p 1 (1) , p0 (0) , threshold

(0) , error_rate (12) , _846, _847, _848) .

node_type tor_electronics, fault, dependency (5), pl (1) , p0 (0>, threshold

• (0), error_rate (12) , _854, _855, _856) .

nocie_type (scan_mechanism_fails, fault, dependency (7) , pl (1) , tc0 (0) ,

threshold (0) , error_rate (12) , _062, _863, _864) .

node_type (scan_motor_fai Is, fault, dependency (B), ol (1) , p0 (0) ,

threshold (0) , error_rate (12) _870, _871, _B72) .

riccIe_type (thermal_distort ion, fault, dependency (B>, 21 (1) , p0 (0) ,

threshold (0). error_rate (12) , _89e, _897, _898) .

(&xcess ve_nesa_a_cower_cycl ind, eault, dependency (10) 	(1

_ 	.
node_type (spacecraft_lost, fault, depenaency (8) , pl (1) , p0 (0) , threshold

(A) i .error_rate (50) , _834, _835, _836). .
node_type (nitrogen_to_pressure, fault , dependency (undefined) , pl Ci), p0

(0), threshold (0) , error_rate (999999), _866, _867, _868) .

node_type (impurit ies_in_tank, fault, dependency (9) , pl (1) , p0 (0),

threshold (0) , error_rate (350LZI0), _874, _875, _876) .

node_type (fuel_in_tank_low, fault, dependency (0) pl (1) , p0 (0) ,

t hresholdiat,..er_r_=:_rat.e1300000.)., _882, _883, _884.L 	_
node_type (heat_d i ssi pat ion_uneven, fault, dependency (0) , pl (1) , p0 (0>,

threshold (0) , error_rat e (745000) , _890, _891, _892) .
node_type (sun_reflect ions, fault , dependency (_898), pl (1) , p0 (0) ,

threshold (0) , error_rate (2.9600) , _899, _900, _901) .

node_type (sh f_rad i at ion, faul t „dependency (_907) , pl (1) , p0 (0) ,

threshold (0>, error_rate (425) , _908, _909, _910) .

node_type (unstable_pivot, fault, dependency (_91E) , pl (1) , p0 (0) ,

threshold (0) , error_rate (25000) , _917, _918, _919) .

node_type (mechanism_contaminat ion, fault, dependency (.925) , pl (1) , p0 (

0) , threshold (0) , error_rate (6'520) , _926, _927, _928) .

node_type (motor_fails, fault, dependency (_934) pl (1) , p0 (0) , threshold

(0), error_rate (173000) , _935, _936, _937) .

node_type (motar_overheats, fault, dependency C_943), pi (I), p0 (0) ,

threshold (0) , error_rate (2950) , _944, .L945, _946) .

node_t yoe (control_electronics ._fai Is, fault, dependency (_9$2), pi (1) , DO

(0), threshold (0) , error_rate (465000) , _953, _954, _955) .

node_type (emi_to_electronics, fault, dependency (_961) , pl (1) , p0 (0) ,

threshold (0) , el"ror_rat e (1500) , _962, _963, _964) .

node_type (power_needs_to_be_cut_to_el iminate_out put, fault,

dependency C_970), pl (1>, p0 (0) , threshold (0) , error_rate (

920000) ,_971, _972, _973) .
node_type (sun_posit ion_always_chanoes, fault, dependency (_979) , pl (1)

pè) (0) , threshold (0) error_rate (914000) , _980, _981, _982) .

node_type (anomal ies_relate_to_sun_pos, fault, dependency (_988), pi (1)

p0 (0) , threshold (0) , error ._rate (150000) , _989, _990, _991) .

node_type (power_cut_to_el imi nat e_out put, fault, dependency (_997), pi (

1) , p0 (0) , threshold (0) , error_rate (la), _998, _999, _lino> .

noPe_type (nesa_a_out put _must_be_cut _out, fault, dependency (1006), p1

(1) , p0 (0) , threshold (0) , error_rate (800000), _1007, _1008,

_1009) .
node_type (telemetry_lost, fault, dependency (0) , pl (1) , p0 (0), threshold

(0) , error_rate (500000) , _991, _992, _993) .
node_type (o4_previously_fired, fault, dependency (undefined) , pl (1) , p0

(0) , threshold (0) , error_rate (975000) , _999, _1000, _1001) •

node_type (diaphraora_leaks, fault, dependency (undef ined) , 	(1) , p0 (0) ,

threshold (0) , error_rate (755000) , _1007, _101Z18, _1009) .

node_act ion (spacecraft _lost , 	 act ion ((a, advice, 8, 	msg1) 3

)) 	.
node_act i on lei ectroni cs_i nnert 	„ act ion (C (a, advice, 3,

msc2)3)) .
node_act ion (ant enna_inef feet ive, 	_, act ion (C (a, advice, 3,

msg3)3) 	.

node_act ion (telemetry_lost, 	_, action (C (a, advice, 0, 	mso4))

) 	.
node_act ion (spacecraft_mechanically_frozen, 	_, act ion (C (a,

advice, 0, _, 	ms115))) .

nocie_act ion (heat ers_inef fect ive, 	_, act ion (C (a, advice, 0, _,

msc6)3)) .
node_act ion (spacecraft _t umbles, 	_, act ion (C (a, advice, 8,

msc7)3)) .
node_act ion (wheel_st oos, 	„ act ion (C (a, advice, 0, 	umbra) 3)) .

rode_act ion (el ect r i cal_sh utdown, , _, act ion (C (a, advice, 0,

msc19)2)) .

node_act ion (uvs_t 	 _, act ion (C (a, warn i no, 1, 	msg10) , (r,

recommendat j on, 9. _, „ uvs_tri ps_rec) , (er, ex ol anat ion, 9,

p_ex p) J))

i) 	.

-node_act ion (chargina- 1 itait ed, 	_, act ion (Ca, advice, 0,._,
)3))

• node_act ion (power_loss_1, 	_, act ion (C (a, advice, 5, _, msg13))) .
node_act ion (power_loss_2, 	_, act ion(C (a, advice, 5, _, msg14))) .
node_act ion (cat al yst_bed_heat er_on, 	_, act i on(C (a, advice, 0, _

• , msg15) 3)) .

(

-na 	nrn 	 acking_power..., 	, act ion1C. a, 	 ,
msg16)3)) .

node_act ion (tracking_part i al ly_successful, 	_, act ion (C (a,

advice, 8, _, 	mso1.7) 3)) .
node_act ion (cont inuous_tracking, 	_, act ion (C (a, advice, 0,

mso18)))) .
node_act ion (att it ude_cont rol 	 _, act ion (C (a, advice, 7, _,

msg19))) .
node_act ion (command_not _receivable, _, 	act ion (C (a, advice, 6, _

,mso20)3)) .
node_act ion (o4_firing_stops, 	_, act ion (C (a, advice, 10, 	mse21

node_act ion (solar_array_off_angle, 	_, act ion (C (a, advice, 6,
msD22)))) .

node_act ion (receive_antenna_off_angle, 	_, act ion (C (a, advice, 6,

node_act ion '(shf_lost, 	 act iorr(C (a, advice, 4, _, „ mso24))) .
node_act ion (fuel_in_line_becomes_scarce, 	_, act ion ((a, advice,

10, _, 	msg25) I) .
node_act ion (pitch_changes_greatly, 	_, act ion (C (a, advice, 8,

msg26)))) .
node_act ion (laroe_cone_devel cos, 	 _, act ion (C (a, advice, 10, _,

msc27)))) .
node_act ion (o4_firinc_cont inues, 	_, act ion (C (a, advice, 5, _,

msc28)))) .
node_act ion (high_rate_command_cont mues, 	_, act ion (C (a, advice,

10, _, „ msa29) 3)
node_act ion (pressure_in_f uel _1 i ne_rnai nt ai ns, 	_, act ion (C (a,

advice, 9, 	msc30) D)) .
node_act ion (add i t ional_fuel_vaporizes, 	_, act ion (C (a, advice, 1,

msg.31))) .
node_act ion (fuel_pressure_drops, 	_, act ion ((a, advice, 0, _,

msg32) 3)) .
node_act ion (o4_fires, 	„ act ion (C (a, advice, 0, _, „ msg33) 3)) .
node_act ion (roll_yaw_command_issued, 	_, act ion (C (a, advice, 10, _

msc34) 3)) .
node_act ion (nesa_a_takes_over_roll_yaw_control, 	_, act ion (1.: (a,

advice, 10, _, 	mso35) 3)) .
node_act ion (f uel _control_ inaccurat e, 	_, act ion (C (a, advice, 120,

msc36)))
node_act ion (nesa_b_loses_earth_presence, 	_, act ion (C (a, advice,

0, _, „ rnso.37))) .
node_act ion (rnult 	 ine, 	_, act i on(C (a, advice

, 10, 	mso30))) .
node_act ion (negat ive_pitch_develops, 	_, act ion (r. (a, advice, 0, _,

„ msa 39))) .
node_act ion (mul t i_face_flow_potent i al_ i n_t ank, 	, _, act ion ((a,

advice, 3, _, 	msg40) 3)) .
node_act ion (1 i mit ed_fuel n_f uel_l i ne, 	_, act ion (C (a, advice, 8,

„ msg41)3)) .
node_act ion (wheel_speed_drops, 	_, act i 	C (a, advice, 0, _,

msP42))) .
node_act ion (nitrogen_in_hydraz ine, 	_, act i on(C (a, aciv ice, -4, _, _

, rnse43))) .
node_act ion (unresolved_nitrogen_in_tank, , 	_, action (E (a, advice,

0, „ 	rrisc44)))
node_act ion (unspeci fied_oas_in_tank, 	„ act ion ((a, advice, 0, _,

, :osc4b, 	.
_node_act ion (switchtoredundantaceandrowc, , ,, act ion (C (a,

advice, 0, _, 	msd47) 3)) .
nocie_act ion (cws_mode_on, 	_, act ion (C (a, advice, 0, 	mso48) J)) .
node_act ion (o4_previously_fired, 	„ act ion (C (a, advice,

undefined„ msg49)) .
node_act ion (nitrooen_thru_d iaphraom, 	_, act ion ((a, advice, 8, _,

- mS
node_act ion (recovery_procedure_beg ins, _, 	_, act ion ((a, advice, 0,

ms951))) .
node_act ion - (afo_trips, 	_, act ion (C (a, advice, 0, _, „ msg87) 3)) .
node_act ion (nesa_a_has_earth_presence, 	_, at ion (C (a, advice, 0,

msa52) 3)) .
node_act ion - (diaphragm_leak.s, 	_, act ion (C (a, advice, undef ned„ _

msg53)])) .
node_act ion (nitrogen_to_pressure, 	_, at ion (C (a, advice,

undefined„ mso54) 3) .
node_act ion (uel_t ank_temp_cycl es, 	 _, act ion (r (a, advice, 0, _,

msg55)3)) .
node_act ion (impur it ies_in_tank, 	_, at ion (C (a, advice, 0,

mso56) 3)) . '
node_act ion (nesa_a_out put _sat urat es, 	act ion (C (a, advice, -5, _

, 	msg57)3)) .
node_act ion (tank_oressure_low, 	_, act ion C (a, advice, 11,

msa58)3)) .
node_act ion (_, act ion (C (a, advice, 1, _, msg59

)3)) .
node_act ion (heat _d i ssi oat ion_uneven, 	_, act ion*(C (a, acivice, 1, _,

- mso60) 3)) .
node_act ion (nesa_a_sat urat ion_l, 	_, act ion (C (a, advice, -5,

msce..1))) .
node_act ion (nesa_a_sat urat ion_2, 	_, act i on (C (a, advice, 0,

mso62))) .
node_act ion (charged_eneroy, 	_, at ion (C (a, advice, -8, 	msg63)

J)) .
nod e_act ion (milstror_st uck, 	_, act ion (C (a, advice, -5, _, msc64) 3)

) 	.
nocie_act ion (and_electronics, 	_, at ion (E (a, acivice, 5, _, msg85)

3)) .
node_act ion (or_electronics, 	 at ion (C (a, advice, 5, 	msg68) 3

)) 	.
node_act in (scan_rnechanisrn_fai 	 _, act in (C (a, acK, ice, 7,

msg67))) .
node_act ion (scan_motor_fai 	 _, act ion (C (a, advice, 8, 	msgE8

)3)) 	.
node_act ion (sun_reflect ions, _, 	_, act ion (C (a, advice, 3, 	rnsg69)

3)) .
node_act ion (shf_radiat ion, _, 	_, act ion (C (a, advice, 3, _, „ mso70))

) 	.
node_act ion (thermal_distort ion, _, 	„ act ion (C (a, advice, 8,

mso71)3)) .
node_act ion (unstable_oivot, 	_, at ion (C (a, advice, 3, 	msg7E)

) 	.
node_act ion (mechani sm_cont i nat ion, _, 	act ion (C (a, advice, 3, _,

nisc, 73))) .
node_act ion (motor_fails, 	 act ion (r (a, advice, 3, _, mse.78) J)) .
node_act ion (mot or_overheat s, 	_, act ion (C (a, advice, 3, 	msg79)

])) .
node_act ion (control _elect roni cs_fa i ls, 	_, act ion (C (a, advice, 3,

msd80) J)) .
node_act i (emi_t ,n_electronics, 	_, act ion (C (a, advice, 3,

msg81)3)) .
n.ncie_act ion (excessive_nesa_a_power_cyc ing, 	, _, at ion ((a,

acvi ce, 10, _, „ raso82))) .
r:ocip_act ion (sun_oos it i nnn_always_chances, , „ act ion ((a, acvice,

node_act ion (anoma 1 i es_rel at e_t o_sun_pos, _, _, _, _, at ion (C (a, adv ice,

node_act ion (power_cut_to_el iminate_out put, _, _, _, _, act ion (E (a,
. 	 advice, 3, _, _, msg2.5) 3)) .

I nod e_act ion (nesa_a_out put _must _be_cut _out , _, _, _, _, act i on(E (a,

advice, 3, _, _, msgB6) 3)) .
' node_act ion (power_needs_to_ be_cut_to_e 1 imi nate_out put, _, _, _, _,

	

>" 	 .r.t.i_oxi.LE_(a., acivicei2, _,._.,.rasp 813) 	

$ ty corndb. log
_ 	 _ 	 • 	_ 	 _

/* Common Data Base */
/* 	 */
node_control (unresolved_ni t rog en_i 	ank, no_cornmand, rel ieve,

rel i eve, r, _326, _327) .
node_control (unspecif ied_oas_in_tank, no_command, re 1 i eve, re 1 eve, r,

node_control (ant enna_ineffect ive, no_command, rel i eve, re 1 i eve, r, _340
I _341) .

node_control (el ectronics_innert no_command, rel ieve, rel i eve, r, _347,

node_cont rol (spacecraft _rnechani cally_frozen, no_command, t•el ieve,
rel i eve, r, _354, _355) .

node_control (charged_energy, no_command, re 1 i eve, re 1 i eve, r, _361, _362
) .

node_control (heat ers_ineffect ive, no_command, rel ieve, rel ieve, r, _368

node_control (spacecraft_t umbles, no_command, rel i eve, rel i eve, r, _375,
_376) .

node_control (wheei_stops, no_command, rel ieve, relieve, r, _382, _383) .
node_control (electrical_shutdown, no_cornmand, re 1 i eve, re 1 ieve, r, _389

, _390) .
node_conteol (batteries_exhausted, no_command, rel i eve, rel i eve, r, _396

,_397) .
node_control (charging_l irhited, no_comrnand, relieve, relieve, r, _403,

_404) .
node_control (power_loss_1, no_cominand, rel ieve, rel i eve, r, _410, _411) .
node_control (power_loss_2, no_command, rel eve, rel eve, r, _417, _418) .

. node_control (cat alyst _bed_heat er_on, no_command, rel i eve, rel i eve, r,
• _424, _425) .

node_control (heavy_tracking_power, no_cornmand, re 1 i eve, rel ieve, r,
_431,_432) .

• node_control (tracking_part ially_successful , no_command, relieve,
rel i eve, r, _438, _439) .

node_control (cant inuous_t rack i no, no_comrnand, re 1 i eve, rel i eve, r, _445
,_446) .

node_control (at t it ude_control_lost , no_command, relieve, relieve, r,
_452, _453) .

node_control (command_not_receivable, no_cornmand, rel i eve, rel i eve, r,
_45,_460) .

node_control (o4_f iring_stops, no_cornmand, re 1 ieve, re 1 i eve, r, _466,
467) .

noce_cont rol (solar_array_off_angle, no_cornmand, re 1 i eve, rel i eve, e, _473, _474) .
node_control (receive_antenna_off_angle, no_command, relieve, rel i eve,

r, _480, _481) .
node_control (shf_lost no_command, re 1 i eve, rel i eve, r, «_487, _488) .
node_control (fuel_ in_l ine_becomes_scarce, no_command, re 1 i eve,

relieve, r, _494, _495) .
node_control (pit ch_changes._great ly, no_command, rel i eve, re 1 i eve, r,

_501,_502) .
node_control (large_cone_develoos, no_command, relieve, re 1 i eve, r, _508

node_control (o4_f i i 	 inues, no_command, re 1 i eve, re 1 ieve, r, _515
, _516) .

node_control (high_rate_comrnand_cont inues, no_comrnand, re 1 ieve,
rel i eve, r, _522, _523) .

node_control (pressure_in_fuel_line_maint ains, no_cornmand, re 1 i eve,
rel i eve, r, _529, _530) .

nclde_control (add it ione l_fuel _vapor I zes, no_command, re 1 i eve, re 1 i eve,
r, 	_537) .

node_control (fuel_oressure_drops, no_cornmand, Tel i eve, re 1 i eve, r, _543
,_544) .

Y: ,oce_control (o4_f ires, no command, 	leva. re 1 i eve. r. •550, _551) .

,L 	Li, a ..sec, ri,_._c...;.nraL,nc, 	leva, reI I eve, r,
_557, _558) .

node_control (nesa_a_t akes_over_roll_yaw_conerol, no_comrnand, re 1 i eve
rel i eve, r, _564, _565) .

node_control (fuel_control_inaccurat e, no_command, re 1 ieve, re 1 i eve, r,
_71,_72) .

node_control (nesa_b_loses_earth_presence, no command, rel i eve,
Tel i eve, r, _578, _579) .

_node. roratrol.(mult i_face_f 1 ow_i n_fuel_l ine, no_cornrnand,
rel i eve, r, _585, _586) .

node_control (negat ive_pit ch_develops, no command, re 1 i eve, re 1 i eve, r,
592 593) . _ 	, _

nocie_control (Inuit i_face_flow_pot ent i al _ i n_t ank, no_command, re 1 leve l
 rel i eve, r, _599, _600)' .

nocie_control (1 imit eci_fuel_in_fuel _1 ine, no_command, rel leve l re 1 i eve,
r, _606, _607) .

node_control (wheel _speed_drops, no_cormand, re 1 i eve, re 1 i eve, r, _613,
_614) .

node_control (rnain_tank._valve_closes, no_cornmand, re I i eve, Tel leve l r,
_620, _6'21) .

node_control (switch_t o red undant _ace_and_rnwc, no_cornrnand, re I i eve,
rel i eve, r, 	_628)

node_control (ews_mode_on, no_command,9^eli eve, re 1 i eve, r, _634, _635) .
node_control (nitrooen_thru_diaphrapm, no_command, rel ieve, rel ieve, r,

_641, _642)
node_control (recovery_zrocedure_beg iris, no_command, Tel leve e re 1 i eve,

r, _648, _649) .
node_control (afp_tri ps, no_command, re I i eve, relieve, r, _65,_656) .
node_control (nesa_a_has_earth_oresence, no_command, re 1 i eve, rel i eve,

r, _662, _663) .
node_control (fuel_tank_t emp_cyc I es, no_command, re 1 i eve, re 1 i eve, r,

669 670) . _ 	_
node_control (nesa_a_out put _sat urates, no_command, re 1 eve, re 1 i eve, r,

_676,_677) .
node_control (nesa_a_sat urat ion_1 1 no_cornmand, re 1 i eve, re I i eve, r, _683

node_cont 	(nesa_a_sat urat ion_2, no_conarnand, re 1 i eve, re 1 i eve, r, _690
,_691) .

node_control (rni rror_st uck, no_command, rel i eve, relieve, r, _697, _698) .
node_control (and_elect roni es, no_command, re 1 eve, rel i eve, r, _704,

_705) .
nede_control (or_electronics, no_command, re 1 i eve, rai java, r, _711, _712

) 	.
node_control (scan_rnechani srn_f a i Is, no_command, relieve, relieve, r,

_7:8, _719) .
node_control (scan_motor_fails, no_command, re 1 i eve, rel i eve, r, _725,

_726) .
node_control (thermal_dist ort ion, no_command, rai java, rel i eve, r, _732,

_733) .
node_control (excess ive_nesa_a_power_cyc li ne, no_command, relieve,

rel eve, r, _739, _740) .
node_control (t ank_pressure_l ow, no_command, Tel i eve, re 1 i eve, r, _74E,

747) .
node_control In i trooen_ in_hydraz ine, no_command, re I i eve, rel i eve, r,

753 754) . _ 	_
node_control (spacecraft _lost , no_command, Tel leve l re 1 i eve, r, _760,

_761) .
node_control (t el emetry_lost no_cornmand, re 1 ieve, re 1 i eve, r, _7E7, _768

node_control (o4_previ ously_f i red, no_command, rai leva, re 1 eve, r, _774
' _773) .

nocie_control (e aphraern_leak.s, no_command, relieve, re: i eve, r, _781,
_782) .

-.c.cle_ct.ritrt-, 1 	trorlen_tc•_oressure, no_command, Tel i eve, rai leva, r,
788 789) . _ 	e -

A -

_79E) .
nocie_contrc.1 (fuel_ i n_t ank_l ow, no_conunand, relieve, relieve, r, _802,

_803)
nocle_control (heat _d j as i pat ion_uneven, no_command, rail eve, rai java, r,

809 	. _ 	_810)
node_cont 	(sun_reflect ions, no_cornmand, rai lave, rai leva, r, _1316,

_817) .
nosie_control (ah f_rad i at ion, no_comrnand, relieve, re 1 i eve, r, _823, _824) .

_nope_co_rst_rol_(unst able_piyot, no_cornmand e re 1 i eve, rel i eve, r, _830, _831

node_control (rnechani sm_cont ami nat ion, no_cornmand, relieve, relieve, r,

_837, _838) .
nocie_cont ro I (mot or_fa i ls, no_command, relieve, relieve, r, _844, _845) .
node_corstrol (rnotor_overheats, no_command, relieve, relieve, r, _851,

_852) .
node_control (cont rol _elect ron cs_fa i Is, no_command, relieve, rel i eve,

node_control (erni _t o_elect rani cs, no_command, relieve, reli eve, r,

_866) .
nclbe_control (Dower_needs_to_be_cut_to_el imi rat e_out put, no_command,

relieve, relieve, r, _872, _873) .
node_control (sun_pos it ion_always_chanmes, no_coinrnand, rel i eve,

rel java, r, _879, _1380) .
node_control (anomal ies_relate_to_sun_pos, no_command, relieve,

relieve, r, _88E, _887) .
no.de_control (power_cut_to_eliminate_out put , no_cornmand, relieve,

re 1 i eve, r, _893, _894) .
node_contro I (nesa_a_out put _must_be_cut_out , no_command, rel java,

relieve, r, _900, _901) .
node_control (uvs_tri ps, no_conunand, relieve, entrust, r, _307, _308) .

node_st at us (excessive_nesa_a_oower_cycl i no, connected, act ive, _326,
_3E7, _328, unchanged, breadth, re I ieved, w) .

node_st at us (thermal_distort ion, connected, act ive, _334, _335,_36,
unchanged, breadth, rel ieved, w) .

node_st at us (scan_motor_fai Is, connected, act ive, _342, _343, _344,
unchanged, breadth, relieved, w).

nod e_st at us (scan_mechani sm_fa i Is, connected, act ive, _350, _351, _352,
unchanbed, breadth, relieved, w).

node_st at us (or_electronics, connected, act ive, _358, _359, _360,
unchanged, breadth, rel ieved, w) .

node_st at us (and_electronics, connected, act ive, _36E, _3E7, _368,
unchanned, breadth, rel ieved, w) .

node_st at us. (rnirror_st.uck, connect ed. act ive, _374, _375, _37E, uncnan bed

, breadth, relieveci, w) .

node_st at us (charned_eneray, connect ed, act ive, _38;2, _383, _384,
unchanned, brpadth, re 1 i eyed, 	.

nc.de_stat us (nesa_a_sat urat ion_2, connected, act ive, _391Z1, _391,

unchanbed, breadth, relieved, w) .

node_st at us (nesa_a_saturat ion_l, connected, act ive, _398, _399, _400,
unchanced, breadth, relieved, w) .

node_st at us (nesa_a_out put _sat urat es. connected, act ive, _406, _407,
_408, unchanbed, breadth, relieved, w) .

node_st at us (fuel_t ank_t emp_cycl es, connected, act ive, _414, _415, _416,
uncharsoeci breadth, relieved, w) .

node_st at Lts (tank_pressure_l ow, connect ed, act ive, _422, _423, _424,

unchanged, breadth, re I i eyed, w) .

nocie_st at us (nesa_a_has_earth_bresence, connected, sot ive, _430, _431,

_432, unchanbed, breadth, relieved, w) .

nod e_st at (afp_tr ins, connected, active, _438, _439, _440, unchangeci,

breadth, relieved, w) .
node_st at us (recovery_proced ure_bec i ris e col-sr-sect ed, act i ve, _44E, _447,

448, unchanr.ed, breadth, re: i eyed, w) .

r.-:.ce_st. at us (nitropen_thrt•_diaphratim, connected, act iva. _454, _45E.

1,1 	 •
noc e_st at us (switch to_redundant _ace and_rowc,.connected, act ive, _470,

_471,_472, unchanged, bread :Eh, relieved, w) .

nocie_stat us (ma i n_tank._valve_closes, connected, at ive, _478, _479, _480

, unchanged, breadth, rel i eyed, ty) .

node_st at us (unspeci fied_oas_in_tank, connected, active, _486, _487,

_488, unchanged, breadth, ,'e l i eyed, w) .

node_st at us (unresolved_nitrogen_in_tank, connected, act ive, _494, _495

	., _496, unchanged, breadth, relieved,.w) .
node_stat us (nitronen_in_hydran ine, connected, at ive, _502, _503, _304,

unchanged, breadth, relieved, v.!) .

node_st at us (wheel_speed_drops, connected, act ive, _510, _511, _512,

unchanned, breadth, re 1 i eyed, w) .

node_stat us (limit ed_fuel_in_fliel_l ine, connected, act ive, _51B, _519,

_520, unchanded, breadth, re I i eyed, ty) .

node_st at us (mult i_face_flow_notent i a l_in_t ank, connected, active,
_526, _527, _528, unchanded, breadth, relieved, w) .

node_stat us (neoat 	tch_deve lops, connected, act ive, _534, _535,

_536, unchanced, breadth, relieved, w) .

none_st at us (rnult i_face_f I ow_ in_f uel_l me, connected, act ive, _542,

• 	_544, unchanged, breadth, relieved, w) .

node_st at us (nesa_b_loses_earth_presence, connected, act i ve, _550, _551

,_552, unchanged, breadth, re I i eyed, w)

nocie_stat us (fuel_control_inaccurate, connected, act ive, _558, _559,

_560, unchanged, breadth, rel ieveci, w) .

node_st at us (nesa_a_takes.,..over_roll_yaw_control, connected, act ive,

_566, _567, _568, unchanged, breadth, relieved, ty) .

node_st at us (roll_yaw_cornmandissued, connected, act ive, _574,

_576, unchanned, breadth, rel eyed, w) .

node_st at us (04_f ires, connected, act ive, _582, _583, _584, unchantled,

breadth, rel eyed, w) .

norie_st at its (fuel_pressure_drops, connected, act ive, _590, _591, _392,

unchanged, breadth, rel i eyed, tu) .

node_st at us (add i t i onal _fuel _vapor ices, connected, act ive, _598, _599,

_600, unchanned, breadth, relieved, w) .

nocie_st at us (oressure_ i n_f uel _1 i ne_rna i nt ai ns, connected, act ive, _606,

_607, _ecos, unchanned, breadth, relieved, w) .

node_.st at ts('-ii oh_rat e_cornmand_cont mues, connected, act ive, _614, _615

,_616, unchanged, breadth, relieved, w) .

node_st at us (o4_f irino_cont inues, connected, act ive, _622, _6;-23, _624,

unchanged, breadth, relieved, IA) .

node_st at us (larrie_cone_develoos, connected, act i vs, _630, _631,

unchanned, breacth, relieved, tu) .

noce_st at LIE, Initch_channes_creatly, connected, act ive, _E38 , _629, _640,

unchanded, breadth, relieved, w) .

node_ste.t is (fuel_in_line_becomes_scarce, connected, act ive, _646, _647

, _648, urschanned, breadth, relieved, w) .

nOde_stat us (shf_lost, connected, active. _654; _655, _656, unchanned,

. inreadth, rel eyed, ty) .

nod e_st at us (rece i ve_ant enna_of f_ancle, connected, act ive, _662, _663,

664, unchanced, breadth, rai ieved, w) .

norie_st at us (so I ar_array_of f_ann le, connected, act ive, _670, _671,

unchanged, breadth, re 1 i eyed, 	.

node_st at us o4_f iring_stops, connected, act ive, _678, _679, _680,

unchanced, breadth, relieved, w) .

node_st at us (corarnand_not _rece j vab le, connected, act ive, _686, _687, _688

unchanned, breadth, re 1 i eyed, tu) .

node_st at us (at t it ude_cont ro I _lost , connected, act ive, _694, _695, _696,

unchanged, breadth, rel i eyed, w) .

nod e_st at us (corst i nuous_t rack i nn, connected, act ive, _702, _703, 704,

unchanged, breaath, relieved, w)
ncee_Sa'...ur,(-:rackinr._mart L al ly_successful, connected, act ive, _710,

_711, _712. unchanned, nreacth, rel ieven, w) .

-oci, e_st at us heavy_7. racrt:. rec....cower, connected, ect ive, _718, _719, _ 720,

tsrschars7ec, nreact 	I i eyed , tu)

, unchanced, oreadth, re 1 i eyed, w) .

node_st at us (power_loss_2, connected, act ive, _734, _735, _73E, unchanoed

, breadth, relieved, w) .

nocie_st at us (power_loss_1, connected, act ive, _742, _743, _744, unchanoed

, breadth, Tel i eyed, w) .

node_st at us (charoino_l imited, connected, act ive, _750, _751, _752,

unchanged, breadth, rel i eyed, w) .

node_st at us (batteries_exhausted, connected, act ive, _758, _759, _760,

	 uncharujed,. breadth, rel eyed, w)......_. _ _

node_st at us (uvs_trips, connected, act ive, _76E, _767, _768, unchanged,

breadth, re 1 ieved, w) .

node_stat us (electri cal _shutdown, connected, act ive, _774, _775, _776,

unchanoed, breadth, re). i eyed, w) .

node_st atlas (wheel_stops, connected, active, _7a.a. _783, _784, unchanoed,

breadth, re 1 i eyed, w) .

node_st at us (soacecraft_t umbl es, connected, active, _790, _791, _792,

unchanged, breadth, rel eyed, w) .

node_st at us (heat ers_i neffect ive, connected, act ive, _798, _799, _800,

unchanged, breadth, relieved, w)

node_st at us (spacecraft _rnechani cal 1 y_frocen, connected, active, _80E,

_807, _808, unchanoed, breadth, relieved, w) .

nod e_st at us (antenna_ineffect ive, connected, act ive, _814, _815, _81E,

unchaneed, breadth, re 1 ieved, w) .

nocie_st at us (electronics_ i nnert , connected, active, _8E2, _823, _824,

unchanoed, breadth, re 1 i eyed, w) .

nocie_st at us (power_cut_to_el iminate_out put connect cd, act ive, _830,

831, _832, unchanged, breadth, relieved, w) .

nocie_st at us (t elemetry_ lost , connected, active, _838, _839, _840,

unchanged, breadth, rel i eyed, w) .

node_st at us (spacecraft_lost, connected, at ive, _84E, _847, _848,

unchanded, breadth, re 1 i eyed, w)

noce_st at us (mult i_face_flow_in_l me, connected, act ive, _854, _855,

E156, unchanged, breadth, rd l i ever.), w) .

node_st at us (impurit ies_in_tank, connected, active, 882, _863, _8E4,

unchanged, breadth, Tel i eyed, w) .

node_st t us (o4_previousl y_f i red, connected, active, _870, _871, _872,

uncnanced, breadth, rel i eyed, w)

nocle_st at us (ciaphraom_leaks, connected, active, _878, _879, _880,

unchanded, breadth, re 1 ieved, w) .

nocie_st at us (f uel_ i n_tank_l ow, connected, act ive, _886, _887, _888,

unchanged, breadth, re 1 i eyed, w) .

node_st at us (heat_d ssi Pat ion_uneven, connected, act ive, _894, _895,

_89E, unchanceci, breadth, tel i evec, w) .

nooe_st at us initrocen_to_pressure, connected, act. ive, _902, _903, _904,

unchenoed, breadth, rel ieved, w) .

node_st at us (nesa_a_out put _must_be_cut _out, connected, act ive, _910,

911, _912, unchanoed, breadth, rel ieved, w) .

node_st at us (power_needs_t o_be_cut _t c_e li mi net e_out out, connected,

active, _918, _919, _920, uncnanoed, breadth, re 1 i eyed, w) .

noce_status (cont rol _elect ron i cs_fa 	cc.,nnected, act ive, _926, _927,

_928, unchanged, breadth, re 1 ieved, w) .

node_st at us (emi_to_electronics, connected, active, _934, _935, _93E,

unchanged, breadth, rd l icved, w) .

node_st at us (shf_rad i at ion, connected, active, _942, _943, _944,

unchanged, breadth, re 1 i eyed, w) .

node_st at us (sun_reflect ions, connected, active, _950, _951, _952,

unchanoed, breadth, relieved, w) .

node_stat us (rnechani sm_cont ern inat ion, connected, active, _9.58, _959,

960, unchanged, breadth, re 1 i eyed, w) .

nod e_st at us (mot or_fai ls, connected, act ive, _966, _967, _9E8, unchanded,

breadth, Tel ieved, w) .

node_st at us (rnotor_overheat s, connect ed, act ive, _974, _97S, _976,

unchanded, breadth. re 1 i eyed, w) .

nor. e_st at us (unst ab I e_d vot connect ed, active, _982, _993, _984,

!Inc -landed, breadth, Tel i eyed, w)

node_status(sun_position_always_chanoes,connected,active,_998,_999
,_100e,unchanged,breadth,re1ieved,W) .

endmod /* unnamed_module */ .

S ty hlkb.log .
/* 	 Appendix A.4 HLKB Listings
/* High Level Knowledoe Base *,
/* 	 *1

hlks_action(warning,NODE) :-
node_status(NODE,_,_,t,P,_,_,_,_,w), number(P),

decide_true(NODE,_,P), det_action_list(NODE,ACTION_LIST),
check_marninc(ACTION_LIST) 	-

hlks_action(no_action,NODE) :-
node_status(NODE,_,_,f,_,_,_,_,_,_) .

hlks_action(suspend,NODE) :-
node_control(NODE,C,_,ENTRUST,_,_,_), ne(C,suspend),

string(ENTRUST), equal(ENTRUST,entrust),
node_status(NODE,_,_,t,P,_,_,_,_,_), number(P),
decide_true(NODE,_,P), net_action_list(NODE,ACTION_LIST),
check_warning(ACTION_LIST) .

hlks_action(beam,NODE) :-
node_status(NODE,_,_,_,_,_,_,beam,_,_) .

hlks_action(breadth,NODE) :-
nodè_status(NODE, , 	, 	,breadth,_„) .

take_hlks_action(NODE,warning) :-
write("WARNINS: ** ("), write(NODE), write(") **"), nl, ni,

 write("HLKS Autonomy Control: probe("), write(NODE),
write(")."), rd, probe(NODE),
chanoe_node_statusfor(NODE,_,_,_,_,_,_,_,_,done) .

take_hlks_action(NODE,no_action)• •
take_hlks_action(NODE,suspend) :-

suspend(NODE), write("HLKS Autonomy Control: suspend("),
write(NODE), write(")."), ni, write("("), write(NODE),
write(")"), write(" is autonomously suspended by HLKS."),
ni .

take_hlks_action(NODE,breadth) .
take_hlks_action(NODE,beam) :-

(ask_conti_beam(NODE,R),/,epual(R,y),node_structure(NODE,_,
evidence(E_LIST),_)), flexible_breadth_first(E_LIST), /:

I.

S ty Ilkb. log
1* . 	 •

1* Low Level Knowledge Base
• 1*

; Ilks_command (suspend)

node_st at us (X, connected, at ive, 	 _) ,

node_control (X, suspend, _, 	_) .

-1-lks_command (.7a7ctivete").—

node_control (X, resume, _, 	_) .

1 I ks_act ion (suspend) :—
suspend 11 ks, init ial ize_Fontrol (_, connect , 	 _) .

11 ks_act ion (;esume) :—

resume_llks, init ial ize_control (_, resume, _, 	_) .

Appendix A.5 LLKB Listings

GOMI, T.
--A proof-of-concept experiment

system for the spacecraft...

II liii
85562

91
C655
G6456
1985

DATE DUE
DATE DE RETOUR

LOWE-MARTIN No. 1137

1

