QUEEN P 91 .C655 P37

1985

RESTRICTED DIFFUSION RESTREINTE

ADVANCED ANTENNAS

THIS WHICH

C-BAND 500 MHz DUPLEXER

CE RA COM DOIT EMPL

UN BE

Report No. RML-009-85-71

Government of Canada
Department of Communication
THIS DOCUMENT CONTAINS INTELLECTUAL PROPERTY
WHICH IS NOT TO BE RELEASED TO PERSONNEL OTHER
THAN GOVERNMENT EMPLOYEES HAVING A
NEED - TO - KNOW.

CE RAPPORT CONTIENT DES DONNÉES CONSIDÉRÉES COMME ÉTANT DE LA FILOTRÉTÉ INTELLECTUELLE. IL

DOIT DONC ÊTRE D'STRIBUÉ UNIQUEMENT AUX EMPLOYÉS GOUVERNEMENTAUX QUI ONT UN DESOIN DE SAVOIR.

ADVANCED ANTENNAS

C-BAND 500 MHz DUPLEXER

Government of Canada Gouvernement du Canada epartment of Communication Ministère des Communications THIS DOCUMENT CONTAINS INTELLECTUAL PROPERTY WHICH IS NOT TO BE RELEASED TO PERSONNEL OTHER THAN GOVERNMENT EMPLOYEES HAVING A NEED - TO - KNOW.

CE RAPPORT CONTIENT DES DONNÉES CONSIDÉRÉES COMME ÉTANT DE LA PROPRIÉTÉ INTELLECTUELLE. IL

DOIT DONC ETRE DISTRIBUÉ UNIQUEMENT AUX EMPLOYES GOUVERNEMENTAUX QUI ONT UN BESOIN DE SAVOIR.

Report No. RML-009-85-71

Prepared for:

Department of Communications

Space Industry Development

Program

Journal Tower North 300 Slater Street,

Ottawa, Ontario K1A 0C8

Attn:

DSS File: Serial #: Mr. G. Booth 21 ST - 36100 - 3 - 0314

OST83-00381

Spar File:

SASD/DSS - DOC/3600G

May 23, 1985 Date:

Prepared by:

K.W. Passel. K.N. Patel,

J. SOU

23209

Approved by:

Whtenna Dev.

Approved by:

COMMUNICATIONS CANADA

C. R. C.

LIBRARY - BIBLIOTHÈQUE

Spar Aerospace Limited

Satellite & Aerospace Systems Division 21025 Trans-Canada Highway Ste-Anne-de-Bellevue, Quebec Canada H9X 3R2

Report Approval Request

	Date:M	ay 23, 1985
fitle: <u>Adva</u>	nced Antennas C-Band 50	O MHz Duplexer
Author(s): K.N.	Patel, C.K. Mok K.W. P	avel. CUM
Author(o).		
	na Dorrolonmont	10 Popular (1984)
	TIA DEVELOPMENT	
Approval:	J. SOUL 23203 5u1 (Supervisor's Supervice)	
Approval:	(Manager's Signature)	
Approved by Direc	etor, Engineering & Advanced Syster	ns (or designated representative):
	Brimt	
P. Bru	nt :	
		COMMUNICATIONS CANADA
		C. R. C.
		LIBBARY – BIBLIOTHÈOUE

DISTRIBUTION LIST

	· · · · · · · · · · · · · · · · · · ·	COPY NUMBER
G.	Booth	1 - 10
D.	Cox	11
R.	Whitehouse	12
J.	Soul	13
T.	Welt	14
c.	Mok	15
A.	Martin	16
G.	Larralde	17
ĸ.	N. Patel	18
Lil	orary	19 - 21

OWNERSHIP OF TECHNICAL DOCUMENTATION

HER MAJESTY THE QUEEN IN RIGHT OF CANADA 1985

as represented by the Minister of Communications .

Produced under Government Contract

FILE SERIAL NUMBER 21ST-36100-3-0314 OST83-00381

21ST - 36100 - 3 - 0314

Company Private Spar Aerospace Limited Technical Report Ste-Anne-de-Bellevue Abstract Report Number Title RML-009-85-71 Advanced Antennas C-Band 500 MHz Other Numbers (if any) Duplexer For Classified Reports Only. Type of Report Abstract Classification Technical Report Date. Author(s) May 23, 1985 K. N. Patel, C. K. Mok Department Issuing Report Number of Pages Location: Antenna Development 55 Author's Activity: MTS II Staff Scientist Project Number 3600G For Submission To (For Contract or Other Government Contract Number Customer Reports)

Abstract - Briefly summarize objectives, methods, results, & applications - Type single spaced.

Department of Communications, CRC

A design of a duplexer using non-uniform shunt stubs as resonators is presented in this report. The design procedure uses lumped element, low-pass prototype filters realized in TEM transmission line medium. The resulting duplexer is very compact, having relatively non critical manufacturing tolerances and a high stopband attenuation which is necessary to isolate transmit and receive frequency bands. The duplexer has been developed without inclusion of any tuning screws.

The theoretical performance of the duplexer and the measured results show good agreement.

This report is the property of Spar Aerospace Limited and is available only to authorized employees of the Company. Contents are Company Private and are not to be disclosed to other persons in any manner, in whole or in part, without written permission.

To see this report contact the Library, Spar Aerospace Limited, Ste. Anne de Bellevue.

ADNA-001(B)

TABLE OF CONTENTS

SECTION	·	PAGI
1.0	INTRODUCTION	1
2.0	FILTER SELECTION	3
3.0	THEORY	7
4.0	COMPUTER PROGRAMS	12
5.0	DESIGN OF DUPLEXER	15
6.0	RESULTS OF BREADBOARD DESIGN	23.
7.0	CONCLUSIONS	33
8.0	REFERENCES	34
9.0	APPENDIX Example Runs and Program Listings	35

1.0 INTRODUCTION

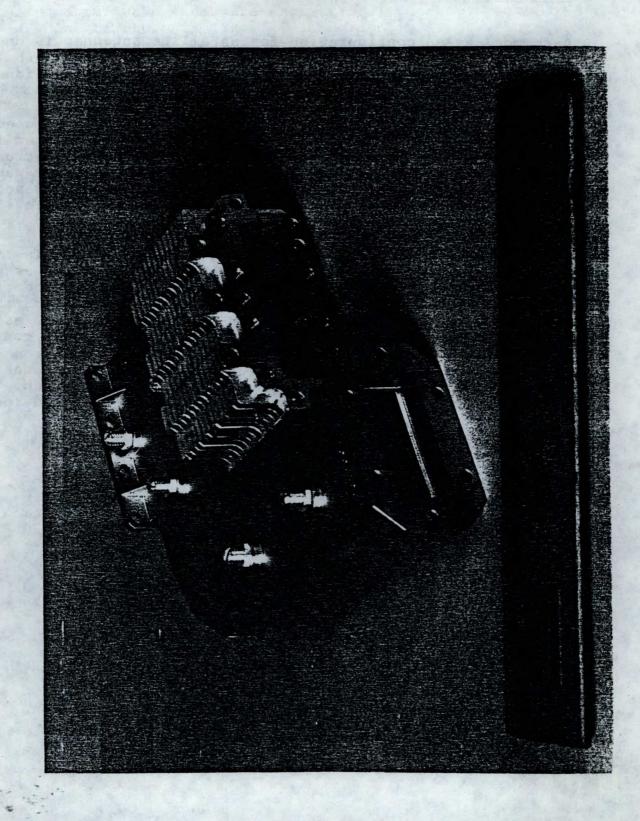

A commonly used configuration for satellite antennas is one where the feed horns and the reflector are shared by both the transmit and the receive signals. In such a situation a duplexer is required to separate out the two signals.

Figure 1.1 shows the current design of the duplexer as used on BRASILSAT. The design is in waveguide. The TX filter is realized as a series of alternating large and small aperture plates, while the RX filter is essentially a section of waveguide that is below cut-off to the TX frequency band. As a waveguide design, it is relatively compact, and of course it is low-loss, of the order of 0.1 dB in each band.

Antenna technology is progressing and at C-band there is the trend towards greater use of the TEM-line medium in other parts of the feed, other than the coupler networks, as was the case in BRASILSAT. A design in TEM-line or one that is compatible with TEM-line is therefore required in a component such as the duplexer. The waveguide design described above is not compatible.

This report commences with a survey of possible candidates, followed by the recommendation of the preferred approach, then by a description of the theory, breadboard and measured results of the selected design.

FIG 1.1 BRASILSAT DUPLEXER IN WAVEGUIDE

2.0 FILTER SELECTION

The main criteria in selecting the optimum filter candidate are firstly that the design is amenable to fabrication as part of an integrated assembly. Second, because of the integrated nature, it is equally important that the design requires minimum or no tuning, ie. the design must be rather insensitive to dimensional tolerances. Third, it must be realizable either in the TEM-line medium or in a medium that is compatible to TEM. The latter implies ease of interfacing and also similar size. Fourth, the design should be relatively small and low-loss.

A number of filter candidates could be considered to be realizable either in the TEM-line medium or in a medium that is compatible to TEM. These candidates are:

- a) evanescent mode filter
- b) interdigital filter
- c) combline filter
- d) coupled half-wave lines
- e) quarter-wave or half-wave stub filter.

The first three, which find wide application, may be considered quasi-TEM and they can be designed to interface with TEM-line. They are however rather sensitive and they require extensive tuning on an individual basis. They are therefore not very suitable and are eliminated from the selection.

Item (d), which is shown in Figure 2.1 is a TEM-line design. It is realizable either as open-circuited half wave lines or as short-circuited half-wave lines. Mechanically the short-circuit configuration is preferred because of its self-supporting nature, and also each short circuit serves as a heat conduction path. Electrically however, the short circuit can be problematic and care must be taken to ensure a good short. The design is compact and simple. However it is somewhat sensitive particularly in the coupling between lines and some adjustment is anticipated.

Filters classified under item (e) are readily implemented in TEM-line. A number of configurations are possible, These are shown in Figure 2.2. Figure 2.2. (a) shows a design, using series connected open circuit quarter wave lines. Each quarter-wave stub is realized within a quarter-wave connecting line, resulting in a very compact tubular design. However, this comes with a penalty; the quarter wave stub tends to be very thin, 0.010 to 0.030 inch in diameter for the application here. The small size, the dielectric sleeves, and the many piece parts make the design unattractive besides being sensitive.

Figure 2.2 (b) is the electrical dual of 2.2 (a) in that the quarter wave stubs are short circuited and connected This design is larger, but it in shunt to the main line. is much more amenable to fabrication and handling, and is not sensitive. No tuning is expected. The stubs are easily machined integral with the main line. Further, tolerances are easily maintained and the unit lends itself to easy inspection. One drawback however, is the need for a short circuit for each stub. But this short circuit can be avoided by using half-wave stubs as shown in Figure 2.2 (c). Replacing the quarter-wave lines by half-wave lines results in approximately 25% increase in area, but the design is still relatively small. An additional benefit with half-wave stubs is the increased flexibility in the design in that stub impedance level (hence stub size) can be changed by 'stepping', ie having the stub realized as two quarter wave stubs of different impedances, as shown in Figure 2.2 (d). This flexibility is useful because the realizable impedance range is not large. This limited range is often a design "Stepping" also permits relocation of attenuation constraint. poles and this can be applied to increase stop-band attenuation in a specific region.

Based upon the foregoing, the recommendation is the filter with open-circuit half-wave stubs, with "stepping" if required.

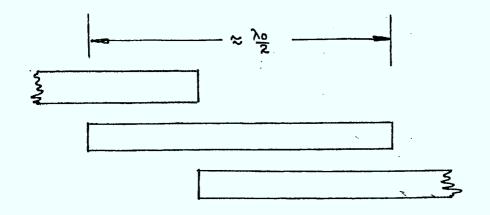


Fig 2.1 (a) PARALLEL-COUPLED FILTER (OPEN CIRCUIT RESONATOR)

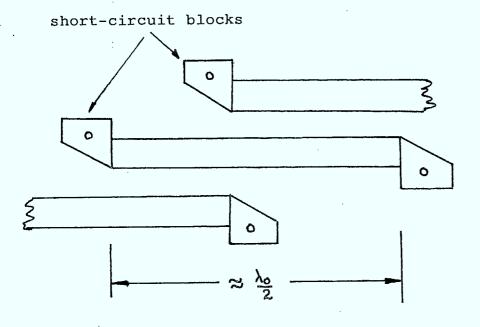


Fig 2.1 (b) PARALLEL-COUPLED FILTER (SHORT CIRCUIT RESONATOR)

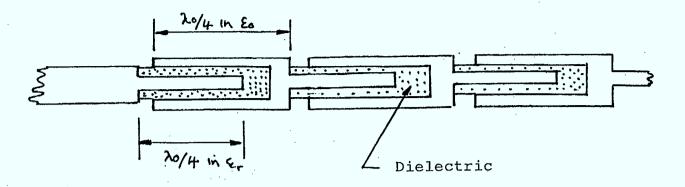


Fig 2.2 (a) SERIES STUBS

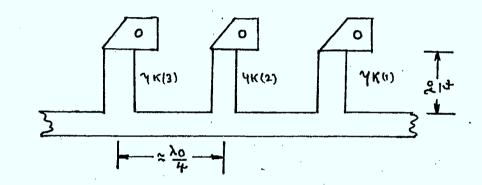


Fig 2.2 (b) 4 WAVE SHORT-CIRCUIT STUBS

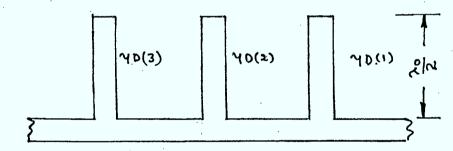


Fig 2.2 (c) ½ WAVE OPEN CIRCUIT STUBS

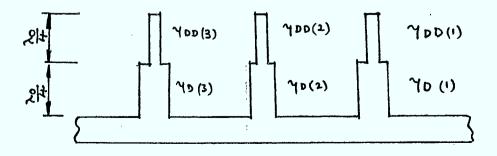
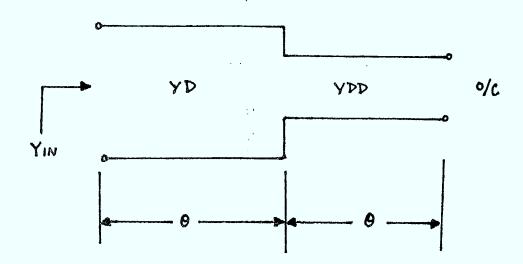


Fig 2.2 (d) $\frac{1}{2}$ WAVE OPEN CIRCUIT STEPPED STUBS



3.0 Theory

A method of design of duplexer combines the image and the insertion loss point of view to give approximate design method having simplicity and also precision.

The desired insertion loss characteristic is obtained by use of the lumped-element Chebyshev low-pass prototype. With the aid of the concept of impedance inverters, the prototype is converted to a cascade of symmetrical but differing sections. The image properties of the symmetrical sections are then related to corresponding sections of the prototype. The design equations has already been derived (Ref. 4) for a band-pass filter with quarter-wavelength shunt stubs and quarter-wavelength connecting lines.

The filter of the form in Fig. (2.2b) can be readily designed by modified use of the equations in Ref. (4). In this case, each shunt quarter-wavelength short-circuited stub of characteristic admittance YK is replaced by a shunt, half-wavelength open circuited stub (Fig. 2.2d) with modification to the characteristic admittance YD. (YK=2YD). Consider a case of non-uniform shunt open-circuited stub as shown in the figure below.

The ABCD matrix of each portion can be written as

The resulting matrix is

$$= \begin{bmatrix} c^2 - \frac{y_{DD}}{y_{D}} s^2, & \frac{j}{y_{DD}} s.c., & \frac{j}{y_{DD}} s.$$

This stub when connected to terminating resistance of unity as shown in Fig. 4.1 gives

$$\begin{bmatrix} E_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & jB \\ jc & D \end{bmatrix} \begin{bmatrix} E_2 \\ I_2 \end{bmatrix}$$

EI = AE2 Since
$$I_2=0$$
 0/C $I_1=jCE2$

Then input admittance γ_{in} , is given by

$$\gamma_{in} = \frac{I_i}{E_i} = \frac{jC}{A} = \frac{j \sin \theta \cos \theta (y_D + y_DD)}{\cos^2 \theta - \frac{y_D}{y_D} \sin^2 \theta}$$

$$y_{in} = \frac{j(\gamma_{00} + \gamma_0)}{\cot \theta - \frac{\gamma_{00}}{\gamma_0} \tan \theta} - (2)$$

Now, constraints are made to yield half-wavelength o/c shunt stubs to have exactly same suceptance at band edge frequency W_1 , as did the quarter-wave stubs that they replace with both kinds of stubs to have zero-admittance at W_0

i.e.
$$\theta = \frac{\pi}{2}$$
, $\gamma_m = 0$

and Yin= o at wo in eqn(2)

and we want Ym 1 = Ym 2 at w,

Yin 1 = - j Yo cot 0 i.e. 74 s/c shunt stub

$$\frac{j(y_0 + \gamma_{00})}{\cot \theta_1 - \frac{y_0}{\gamma_0} \tan \theta_1}$$

$$\gamma_0 = \frac{\gamma_0 \left(\alpha \tan^2 \theta - 1 \right)}{\left(\alpha + 1 \right) \overline{\ln^2 \theta}}$$
 (3)

The advantage of this transformation can be now seen. For uniform impedance stub, stop-band will have infinite attenuation at 0.4 and 0.4. But if stub is stepped, the frequencies of infinite attenuation (transmission pole) are made to occur at frequencies other than 0.4 and 0.4. Thus by proper choice of 0.4 0.4 can be made to occur to give maximum effectiveness in the stop-band. Thus by staggering 0.4 of the stubs, a broader high attenuation band is achieved.

A computer program has been written to synthesize and analyze such structure. Prototype elements for receive-transmit filters can be optimized. The optimization aims at maximizing attenuation level and maintaining impedance level in the range 26Ω to 100Ω to obtain reasonable stub dimensions.

4.0 Computer Programs

A computer program has been written to analyze the filters. This program computes transmission loss and return loss for any order of filter. The analysis is based on the ABCD matrix, that is, each element (assumed lossless) in network is represented by ABCD matrix of form

A cascade of the individual matrices results in combined ABCD matrix of the whole network, again of the above form.

This circuit is connected to terminating resistances of unity, Fig. 4.1. It can be readily shown that the return loss and the transmission loss are related to the matrix elements by

Return loss = - 10
$$\log_{10} \frac{(A-D)^2 + (B-C)^2}{(A+D)^2 + (B+C)^2}$$
 (d8)

and Transmission loss =
$$10 \log_{10} \frac{(A+D)^2 + (B+C)^2}{4}$$
 (48)

These parameters are computed by the program. The synthesis of the filters is followed by analysis of the integral duplexer, again using ABCD matrix analysis. Referring to Fig. (4.2), if the transmission line connecting the filter is transformed and then absorbed in the net ABCD matrix, then input admittance is given by

$$\gamma_{IN}(T) = \frac{D' + jc'}{A' + jB'} \qquad \gamma_{IN}(R) = \frac{D' + jc''}{A'' + jB''}$$

then

$$Y_{IN} = Y_{IN}(T) + Y_{IN}(R)$$

and the reflection coefficient is

$$\Gamma = \frac{Y_{in} - 1}{Y_{in} + 1}$$

Return loss = 20 Log | [(d8).

The computer program written enables manual optimization of the duplexer return loss by changing connecting line lengths and their characteristic admittances.

The analysis program for the duplexer can be run directly or via an input data file and the results of duplexer return loss printed out as shown in the computer run. A complete listing and example runs are included in the appendix.

Program 'SSS1' analyzes a single stepped stub. It assumes an ideal stub (lossless) and computes return loss, transmission loss and phase slope. This program is used to generate results that are then compared with measured values in order that correct stubs are realized.

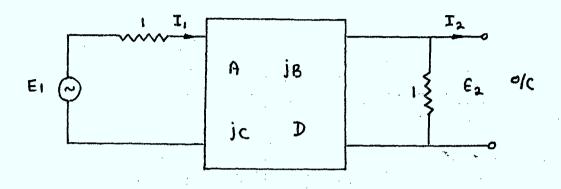


Figure 4.1 ABCD matrix representation of 2 port network

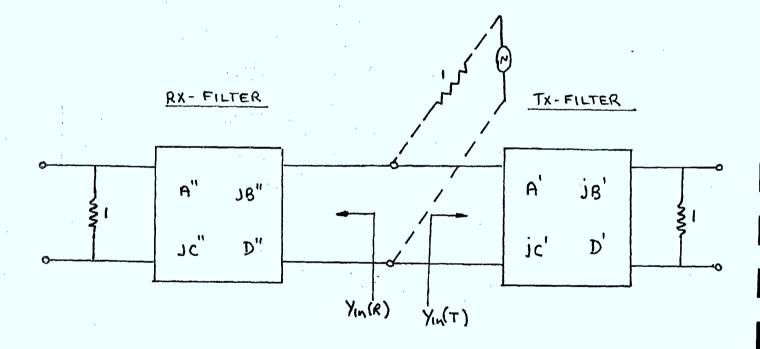
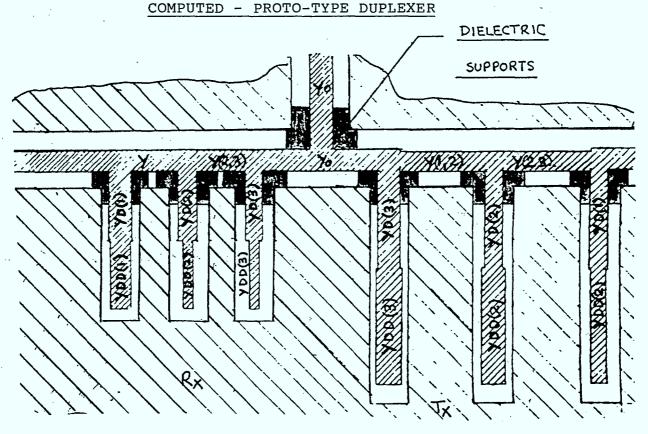


Figure 4.2 Equivalent circuit of the duplexer

5.0 Design of Duplexer


The prototype duplexer was designed using a computer program "CBDTEM". The prototype elements were optimized to give realizable stub impedance and at the same time meet the required design specifications. The computed values of the final prototype filter elements are given in Fig. 5.1.

From the computed realizable prototype stub impedances, a series of stubs were manufactured to provide the range of impedances required. These stubs were measured at transmit and receive frequencies and the impedance of each was calculated from the phase slope in the vicinity of stub mid-band resonance. The stubs were supported at the "T" junction by Teflon dielectric pieces. These were designed so as to give a transformer ratio close to unity. The measured results of the stub impedance for different width (W) and thickness (t) are presented graphically in Fig. 5.2 and Fig. 5.3.

Using the measured data, proto-type uniform stubs were manufactured and then transformed to stepped stubs. It can be seen from the inspection of equation (3) that the length of the first portion of the stub determines the mid-band frequency (fo), while the admittance ratio '\fo'/\overline{\psi}\psi\$ determines the position of the infinite attenuation pole. The length of each stub and the impedance ratios were adjusted empirically until poles and zeros were placed according to the computed proto-type design requirements. To ensure that correct stubs were derived, phase slope was computed for each prototype stub using computer program "SSS1" and was compared with the measured phase slope of actual stub.

Table 5.1 includes the final derivation of the stepped stubs and the transformer ratio used in this design. Initially stubs were manufactured assuming the transformer ratio ($\int A$) to be same for each portion of the stub. The actual dimensions based on this are included in Table 5.2. However, in the final realization, discontinuity of the stub altered the polezero positions. These were eventually adjusted for, by changing the dimensions of the stubs.

Finally, complete receive and transmit filters were manufactured and tested individually and then connected together to form a duplexer. The T-junction used for connecting the two filters was again dielectrically loaded to achieve close to unity transformer ratio.

RECEIVE FILTER

$$YD(1) = 1.4241 \qquad YDD(1) = .7758$$

$$YD(2) = 1.7165 \quad YDD(2) = .5501$$

YD (3) = 1.2203 YDD(3) = .5209

$$Y(2,3) = Y(1,2) = 1.080$$

TRANSMIT FILTER

$$YD(1) = 1.2335 \quad YDD(1) = .9068$$

$$YD(2) = 1.1391 \quad YDD(2) = 1.6749$$

$$YD(3) = 1.5322 \quad YDD(3) = 1.6543$$

 $Y(1,2) = Y(2,3) = .7468$

Fig 5.2 IMPEDANCE CHART AT TRANSMIT-FREQUENCY BAND

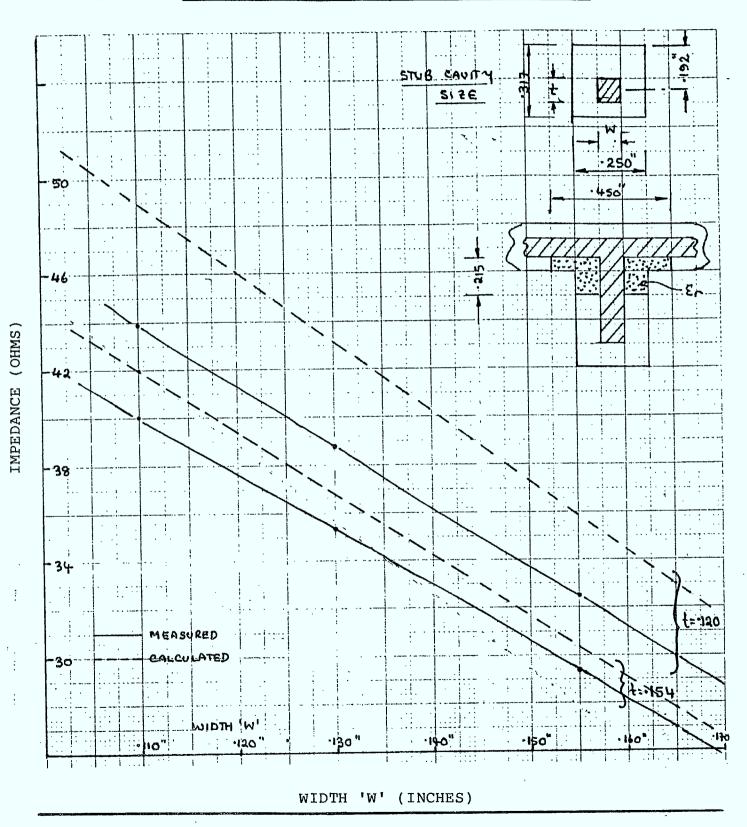
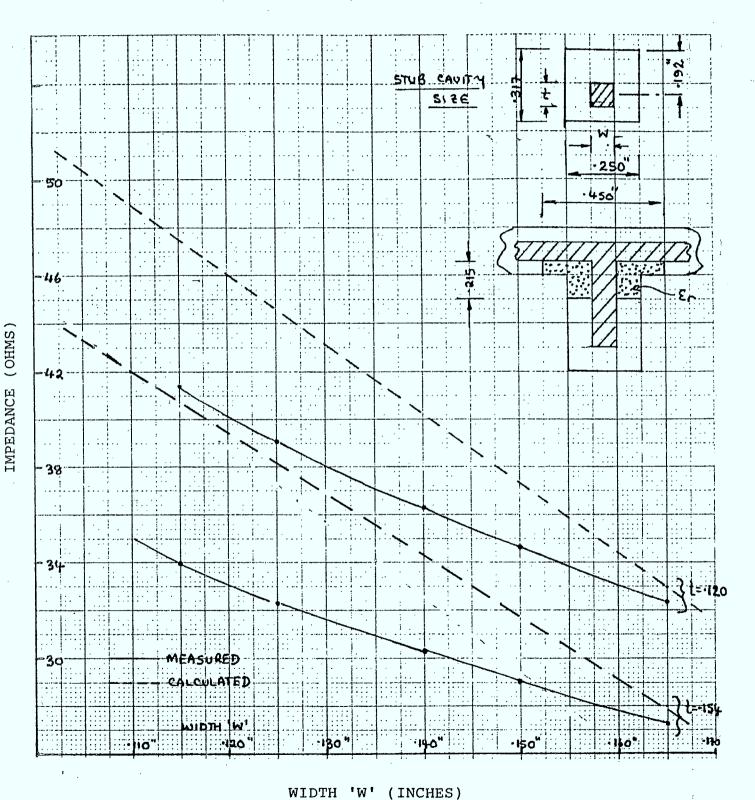
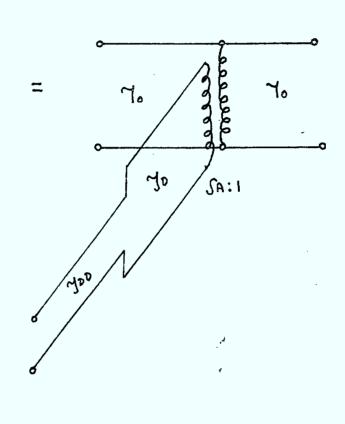




Fig 5.3 IMPEDANCE CHART AT RECEIVE-FREQUENCY BAND

STEP-STUB CONFIGURATION

EQUIVALENT CIRCUIT OF STUB

TABLE 5.1 FINAL DERIVATION OF DUPLEXER

STUBS		IMPEDANCE UIRED ZDD (ふ)	T-JUNCTION TRANSFORMER RATIO: A		USING DESIGN CHART TRANSFORMER RATIO: A W2xT2xL2 (INCHES)	FINAL DIMENSI W1xT1xL1 (INCHES)	ON OF THE STUBS W2xT2xL2 (INCHES)
RECEIVE FILTER							
1	35.11	66.16	. 1.051	.154 x .110 x .427	.077 x .077 x .427	.154 x .110 x .411	*.065 x .065 x .443
2	29.13	90.89	1.047	.154 x .139 x .427	.047 x .047 x .427	.154 x .139 x .415	*.039 x .039 x .439
3	40.97	95.99	1.07	.120 x .115 x .427	.045 x .045 x .427	.120 x .115 x .413	*.041 x .041 x .441
TRANSMIT FILTER	·						·
1	32.63	30.22	1.058	.120 x .154 x .667	.120 x .170 x .667	*.120 x .132 x .668	.120 x .170 x .667
2	43.89	29.85	1.055	.120 x .110 x .667	.120 x .169 x .667	*.120 x .093 x .684	.120 x .169 x .651
3 .	40.54	55.14	1.05	.120 x .124 x .667	.120 x .090 x .667	.120 x .124 x .645	*.120 x .104 x .690

^{*} In final design these dimensions were changed to locate pole-zero exactly

The separations of the transmit and the receive filters relative to common port were optimized using the computer program 'CBDTEM'. However final adjustments had to be made on the test bench to obtain good results.

5.1 Dielectrical-Loaded T-Junction

A symmetrical TEM-line T-junction of the type shown in Fig. 5.4 can be represented by an equivalent circuit shown.

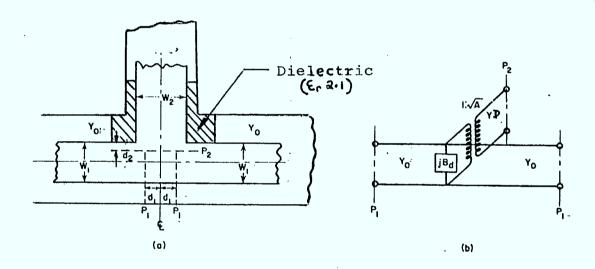


Figure 5.4

In practice, the T-junction introduces a number of effects which will alter the dimensions of the shunt stub. In relation to the equivalent circuit;

(1) The transformer ratio **fa**, will increase the stub impedance by a factor of 'A'. However by loading the junction with suitable dielectric, near unity transformer ratio can be achieved.

- (2) The reference plane off-set da which has an effect of decreasing the length of the stub by da, is further increased by length of the dielectric supporting the stub. In this design, resultant da was found to be .103" giving stub length L= \\ \frac{1}{2} 0.103\] (including the end-effects). It was found almost independent of width of the stub dimensions and frequency used for this design.
- (3) The reference plane offset d, will increase the spacing between two stubs by 2d,. However in this design this is compensated by length of the dielectric in that plane. This is evident from near zero phase offset at midband frequency measured for the stubs.

6.0 Breadboard Design and Results

Initially, development filters were made of piece parts to allow for optimization on the bench. This was then followed by fabrication of integral filters. In this case central conductor and the stubs were fabricated in one piece using Electric Discharge Machine (EDM) to achieve the desired accuracy. The results of the two models are summarized in Table 5.2. From the results it can be seen that there is very good agreement between each of the units and the computed values confirming that the design is not sensitive. However the receive filter isolation in stop-band was not as much as This was mainly due to large admittance ratio ()) () required to achieve correct pole-zero location thus reducing the effective attenuation in the stop-band. Results for the integral filters (in-band return loss and out-of-band isolation are shown in Table 5.2 and Figure 6.1 to The measured return loss for both filters was 25 dB.

Finally an integral duplexer (Fig. 6.5) was fabricated as verification model. The measured results of the duplexer are summarized in Table 6.1 and the detailed results are shown in Fig. 6.6 to 6.10. The return loss measured was better than From this it can be inferred that the computer model had not been fully optimized. Very good results were obtained on the bench by fine adjustment of dielectric loaded T-junction and the characteristic impedance of the transmission line connecting the filters. The isolation in the stop-band was improved by 6 dB. This is a known phenomenon and results from input admittance of the other filter being in parallel with that of reference filter. In general very good agreement between each unit has been achieved. attractive feature of this design is that it does not require any tuning screws. The design of the duplexer is detailed in Spar drawing numbers 2549240/43, 2523197/204 and 2614559.

TABLE 5.2 COMPARISON OF COMPUTED AND MEASURED RESULTS OF FILTERS

PARAMETER		TX-FILT	ER ME	ASURED	RX-FILTER MEASURED			
	DESIGN TARGET	COMPUTED	DEVELOPMENT FILTER	INTEGRAL FILTER	DESIGN TARGET	COMPUTED	DEVELOPMENT FILTER	INTEGRAI FILTER
Return Loss (dB) 3700 to 4200 (MHz)	25	28	26	27				
5925 to 6425 (MHz)		·			25	26	25	26
Isolation (dB) IN STOP-BAND 5925-6425(MHz)	40	52	40	40				
3700-4200(MHz)	·				40	63	34	35

PARAMETER	COMPUTED	VALUES	MEASURED	VALUES	
	TRANSMIT PORT	RECEIVE PORT	TRANSMIT PORT	RECEIVE PORT	
IN BAND (MHz)	3700-4200	5925-6425	3700-4200	5925-6425	
INSERTION LOSS (dB)	0.00	.01	.115	.213	
ISOLATION (dB) 5925-6425 (Min.)	58		46.65		
3700-4200 (MHz)		68		40.29	
RETURN LOSS (dB)	22.85	20.1	25	25	
GAIN SLOPE dB/MHz	-	-	.001	, .001	

TRANSMIT FILTER RESULTS

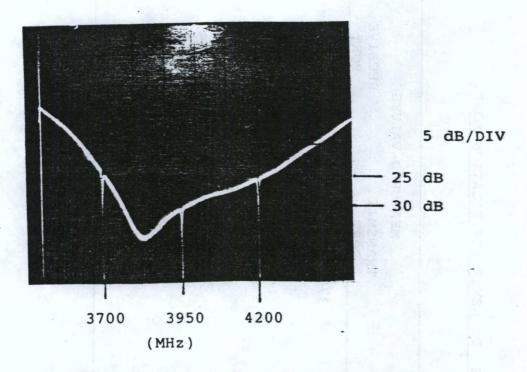


FIG 6.1 RETURN LOSS INBAND

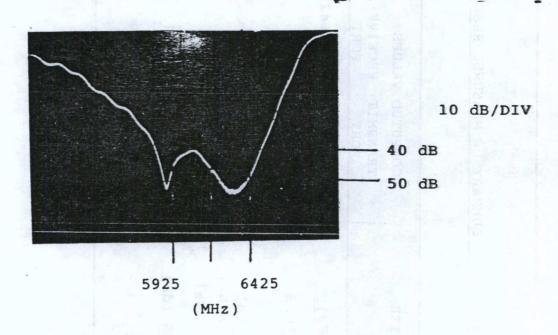


FIG 6.2 ISOLATION IN RECEIVE-BAND

RECEIVE-FILTER RESULTS

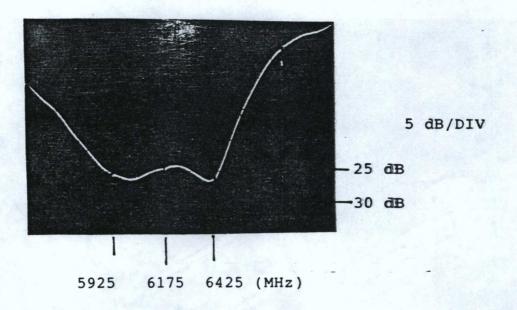
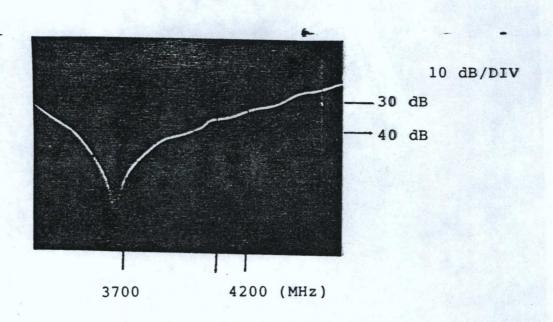
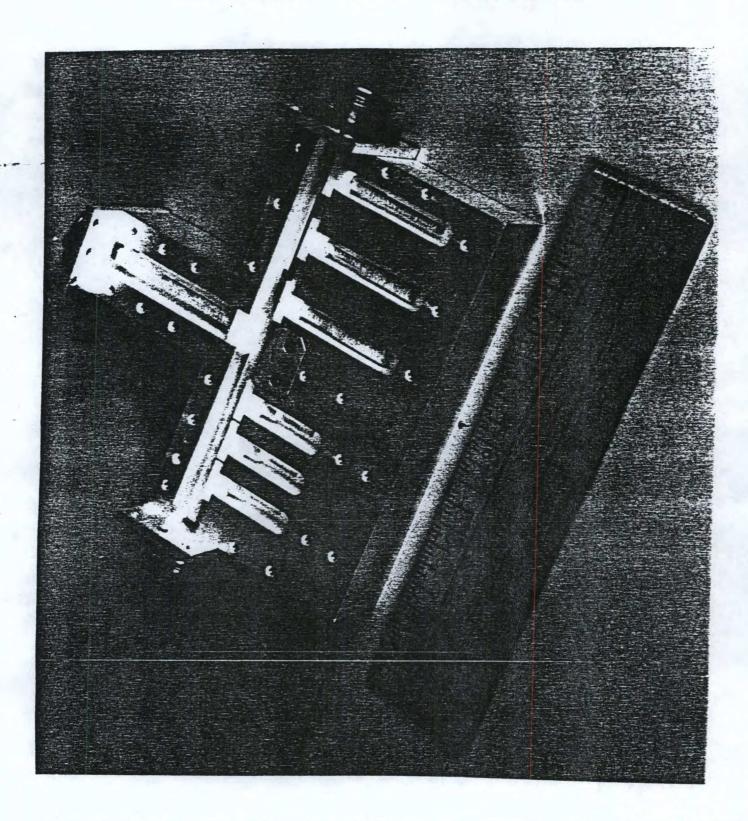


FIG 6.3 RETURN-LOSS INBAND

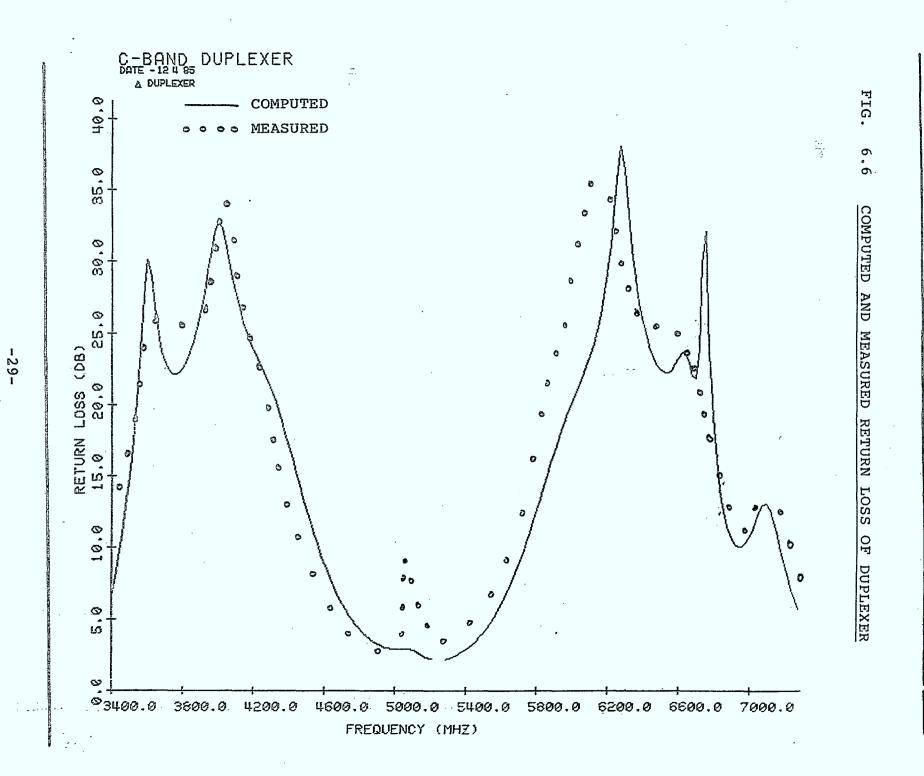

FIG 6.4 ISOLATION IN TRANSMIT BAND

FIG 6.5 TEM LINE C-BAND DUPLEXER

(Central conductor fabricated using EDM)

AND THE STATE OF THE STATE OF

MEASURED RESULTS OF DUPLEXER

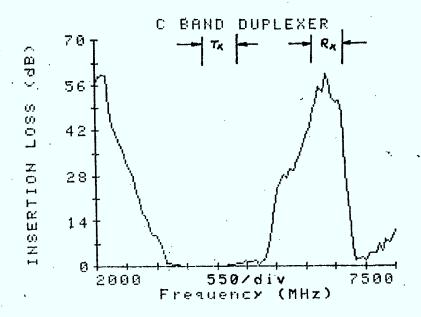


FIG 6.7 TRANSMIT-PORT INSERTION LOSS

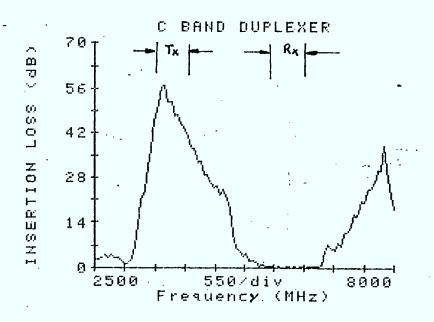


FIG 6.8 RECEIVE PORT INSERTION LOSS

MEASURED RESULTS

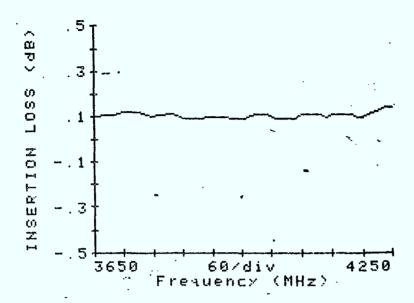


FIG 6.9 TRANSMIT-PORT INBAND LOSS

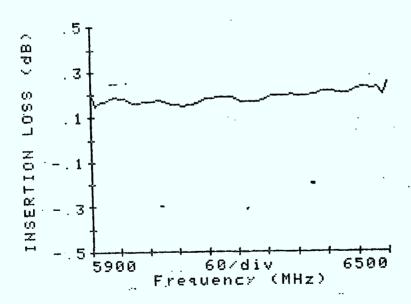


FIG 6.10 RECEIVE-PORT INBAND LOSS

MEASURED RESULTS

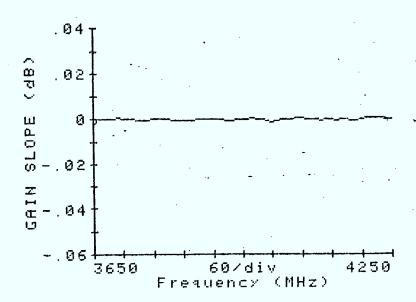


FIG 6.11 TRANSMIT-PORT INBAND GAIN SLOPE

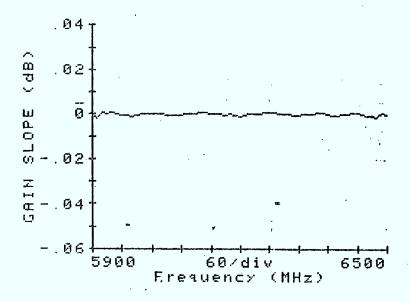


FIG 6.12 RECEIVE-PORT INBAND GAIN SLOPE

7.0 CONCLUSIONS

The development of a duplexer using non-uniform shunt stubs in TEM transmission line medium has been successfully completed. Target performance has been achieved over the operating bandwidth and measured results are comparable with theory.

The design is such that minimum and maximum stub dimensions which can be satisfactorily fabricated using EDM (Electric Discharge Machine) are employed. This type of design has inherent advantage of very significant size reduction and saving in weight in the critical region behind the horns.

Another major objective of this development is to have a design that is relatively unsensitive and therefore requires no tuning. This objective has been met. This is confirmed by close agreement between the results of the various models.

8.0 References

- 1. Exact Design of Band-Stop Microwave Filters. B.M. Schiffman and G.L. Mathaei, IEEE Transaction on Microwave Theory and Techniques January 1964 pp. 6-15.
- 2. A design of Wide-Band (and Narrow-Band) Band-Pass Microwave Filters on the Insertion Loss Basis.G.L. Matthaei IRE Transaction on Microwave Theory and Techniques Nov. 1960 pp. 580-593.
- 3. Microwave band-stop filters with narrow stop-bands. L. Young, G.L. Matthaei, E.M.T. Jones, IRE Trans. on Microwave Theory and Techniques, Vol. 10, pp. 416-427, Nov. 1962.
- Microwave Filters, Impedance Matching and Coupling Structures,
 G.L. Matthaei, L. Young, E.M.T. Jones, McGraw-Hill 1964 pp 595-608
- 5. General Theory and Design of Optimum Quarter-wave TEM line Filters. M.C.Morton, R.J. Wenzel, IEEE Transaction on Microwave Theory and Techniques. May 1965, pp. 316-327.

9.0 Appendix

- 1) Listing and an example run of program CBDTEM which;
 - (a) designs and analyzes prototype filter of any order
 - (b) analyzes duplexer by reading input data tape containing receive-transmit filter parameters. The program asks for separation of filters and the characteristic admittance of the connecting line and then prints out return loss of the duplexer. The program can also be run following the prototype design of filters.
- 2) Listing and an example of program 'SSS1' to analyze phase slope, return loss, transmission loss of a single stepped stub. The program asks for stub admittance and length of stub to be analyzed.

LISTING OF PROGRAM 'CBDTEM'

```
PROGRAM CBDTEM(INPUT, TAPE1, OUTPUT)
00100
00110C
             THIS PROGRAM DESIGNS AND ANALYSES STEPPED STUB DUPLEXERS
001200
001300
              (BASED ON HALF WAVE STUBS AND QUARTERWAVE CONNECTING LINES,
00140C
             PAGE 605 MATTHAEI, YOUNG, JONES)
00150C
001600
00170C
001800
              IMITTANCES ARE ADMITTANCE FOR FILTERS THAT USE SHUNT O.C. ...
00190C
              HALFWAVE STUBS AND IMPEDANCE FOR SERIES S.C. HALFWAVE STUBS.
              THE PROGRAM ASSUMES THAT THE TWO FILTERS ARE SHUNT CONNECTED...
002000
             IF THEY ARE MADE OF O.C. SHUNT STUBS AND SERIES CONNECTED IF ...
00210C
              THE FILTERS USE SERIES S.C. STUBS .
002200
              THE VARIABLES NAMED Y*** ARE IMITTANCES , NOT NECESSARILY ADM-...
002300
00240
             DIMENSION FL(2), FQ(2), FO1(2)
002500
              ANALYSIS IN TRANSMISSION LINE MEDIUM
             DIMENSION A(20), B(20), G(20), AJ(20), AN(20), YR(2), Y(20), FI(20)
00260
00270
             DIMENSION YD(20), YDD(20), Y1(2,20), Y11(2,20), AJ1(2,20), N1(2)
00280
             COMPLEX AA1(2), AA2(2), AA3(2), AA4(2), YIN1(2), YIN
00290
             COMPLEX AA, CC, AACC
00000
             01000
             PI=4. *ATAN(1.)
             PRINT 50
00320
             FORMAT(*DO YOU WANT TO ANALYSE DUPLEXER USING PARAMETERS ON TAPE1
OCCOO
             (ENTER 1) OR DESIGN AND ANALYSE NEW FILTERS (ENTER 0)*)
+04E00
00350
             READ, Q
03E00
             IF (Q.EQ.O) GD TD 7000
             DO 77 M=1,2
00370
0800
             READ (1,) N1(M)
00390
             READ (1,) FO1(M)
00400
             N=N1 (M)
00410
             DO 777 K=1, N
             READ (1,) Y1(M,K)
READ (1,) Y11(M,K)
00420
0E400
             CONTINUE
00440
       777
00450
             N=N1(M)-1
00460
             DO 7777 K=1,N
00470
             READ (1,) AJ1(M,K)
00480 7777
             CONTINUE
00490
       77
             CONTINUE
00500
             GO TO 522
00510
       7000
               PRINT 80
00520
       80
             FORMAT(/*----
                           ------RECEIVE FILTER----*)
00530
             M=1
             GOTO 1000
00540
00550 1500
             PRINT 90
00560
             FORMAT(/*----*)
00570
             M=D
00580
        1000 PRINT 100
00590
        100
            FORMAT(/*ENTER ORDER OF THE FILTER*)
00600
             READ, N
00610
            N1(M)=N
00620
             PRINT 110
0E400
             FORMAT (/*ENTER CENTRE FREQUENCY AND BANDWIDTH (MHZ)*)
0.0440
             READ, FO, BW
00650
             F01(M)=F0
```

```
00660
             PRINT 120
             FORMAT(/*ENTER PASSBAND RIPPLE (DB)*)
00670
00680
             READ, ALAR
00690CC
             COMPUTING G VALUES
00700
             AUX=ALAR/17.37
00710
             BETA=ALOG((EXP(AUX)+EXP(-AUX))/(EXP(AUX)-EXP(-AUX)))
             AUX=BETA/(2.0*N)
00720
00730
             GAMA=(EXP(AUX)-EXP(-AUX))/2.0
00740
             DO 150 K=1, N
00750
             A(K)=SIN((2.0*K-1.0)*PI/(2.0*N))
00760
             B(K)=GAMA**2+(SIN(K*PI/N))**2
        150 CONTINUE
00770
             G(1)=2.0*A(1)/GAMA
00780
             DO 160 K=2, N
00790
             G(K)=4*A(K-1)*A(K)/(B(K-1)*G(K-1))
00800
             CONTINUE
00810
             G(N+1)=1.0
00820
00830
             AUX=N-2.0*INT(N/2.0)
00840
             IF(AUX.NE.O) GO TO 600.
00850
             AUX=BETA/4.0
00860
             G(N+1)=((EXP(AUX)+EXP(-AUX))/(EXP(AUX)-EXP(-AUX)))**2
             COMPUTING CONNECTING LINE/STUB IMITTANCES
00870CC
00880
             PRINT 130
             FORMAT(/*ENTER IMITTANCE LEVEL FACTOR D (O(D(=1.0)*)
00890
        130
00900
             READ, D
00910
             PRINT 131
             FORMAT(/, *OBS-IMITTANCES ARE ADMITTANCES FOR SHUNT STUB*, /,
00920
+00930+
             *FILTERS, IMPEDANCES FOR SERIES STUB FILTERS, NORMALIZED*, /,
00940+
             *TO INPUT AND OUTPUT IMITTANCES*)
00950
        200
             TET1=(1.0-BW/(2.0*FO))*PI/2.0
00960
             TT1=TAN(TET1)
00970
             TT1S=TT1**2
00980
             CA=2.0*D*G(1)
00990
              AJ(1)=SQRT(CA/G(2))
01000
              AJ1(M, 1)=AJ(1)
              IF(N.LE.3) GO TO 230
01010
01020
              I=N-2
             DO 220 K=2, I
01030
              AJ(K)=CA/SQRT(G(K)*G(K+1))
01040
01050
              AJ1(M,K)=AJ(K)
01060
        220
             CONTINUE
01070
        230
             IF(N.LE.2) GO TO 240
01080
              AJ(N-1)=SQRT(CA*G(N+1)/G(N-1))
01090
              AJ1(M, N-1)=AJ(N-1)
01100
              I=N-1
        240
             DO 250 K=1, I
01110
01120
              AN(K)=SQRT(AJ(K)**2+(CA*TT1/2.0)**2)
01130
             CONTINUE
              Y(1)=(1-D)*G(1)*TT1+AN(1)-AJ(1)
01140
01150
              IF(N.LE.2) GO TO 270
01160
              DO 260 K=2, I
              Y(K)=AN(K-1)+AN(K)-AJ(K-1)-AJ(K)
01170
01180
        260
             CONTINUE
             Y(N)=(G(N)*G(N+1)-D*G(1))*TT1+AN(N-1)-AJ(N-1)
01190
        270
01200
              PRINT 300
01210
        300 FORMAT(//16X, *CHARACT. IMITTANCES OF THE STUBS, *, /,
```

```
01220+
              16X, *QUARTER WAVELENGTH STUB PROTOTYPE*)
01230
              DO 340 K=1, N
01240
             PRINT 330, K, Y(K)
01250
        330
             FORMAT(20X, *Y(*, I2, *)=*, F12, 4)
01260
             CONTINUE
        340
01270
              PRINT 400
01280
        400
             FORMAT(/16X, *CHARACTERISTIC IMITTANCES OF THE CONNECTING LINES*)
01290
              DO 440 K=1, I
01300
              L=K+1
              PRINT 430, K, L, AJ(K)
01310
01320
        430
             FORMAT(20X, *Y(*, I2, *, *, I2, *)=*, F12. 4)
01330
        440
             CONTINUE
01340
              PRINT 500
01350
        500
             FORMAT(/*DO YOU WANT TO CHANGE IMITTANCE LEVEL FACTOR D?*)
01360
              PRINT 505
             FORMAT(* 1=YES
01370
                                   2=NO*)
              READ, L
01380
01390
              IF(L.EQ.2) GO TO 310
01400
              PRINT 320, D
       480
01410
       320
              FORMAT(/*PREVIOUS VALUE OF D=*, F6.2)
01420
              GO TO 600
01430C
              STEPPING FILTER STUB IMITTANCES
01440
        310
             PRINT 710
01450
             FORMAT(/*ENTER INF.ATTEN.FREQUENCIES (MHZ)*)
        710
01460
              DO 140 K=1, N
01470
              PRINT 720, K
01480
        720
             FORMAT(5X, *STUB (*, 12, *)=*)
01490
              READ, FI(K)
        140
01500
             CONTINUE
01510
              DO 170 K=1, N
              AUX=(1./TAN(PI*FI(K)/2./FO))**2
01520
01530
              YD(K)=Y(K)*(AUX*TT1S-1.)/(AUX+1.)/TT1S
              YDD(K)=YD(K)*AUX
01540
01550
              Y1(M,K)=YD(K)
01560
              Y11(M,K)=YDD(K)
01570
        170
             CONTINUE
01580
              PRINT 180
01590
        180
             FORMAT(//16X, *CHARACTERISTIC IMITTANCES OF THE STEPPED STUBS*)
01600
              DO 190 K=1, N
01610
              PRINT 210, K, YD(K), K, YDD(K)
01620
        210
             FORMAT(20X, *YD(*, I2, *)=*, F12.4, 5X, *YDD(*, I2, *)=*, F12.4)
01630
       190
              CONTINUE
01640
              PRINT 280
01650
       280
              FORMAT(/*DO YOU WANT TO CHANGE INF.ATTEN.FREQUENCIES?*)
01660
              PRINT 290
       290
01670
              FORMAT(*1=YES
                                    2=NO+)
01680
              READ, L.
01690
              IF(L.EQ. 2) GO TO 410
01700
       490
              PRINT 420
01710
       420
              FORMAT(/*PREVIOUS INF.ATTEN.FREQUENCIES (MHZ)*)
01720
              DO 460 K=1, N
01730
              PRINT 470, K, FI(K)
01740
       470
              FORMAT(5X, *STUB (*I2, *)=*, F10.1)
01750
       460
              CONTINUE
01760
              GD TO 310
01770
       410
              PRINT 411
```

```
FORMAT(/*DO YOU WANT TO CHANGE FILTER PARAMETERS? 1=YES 2=NO*)
01780 411
01790
             READ, L
01800
            IF(L.NE.2) GO TO 1000
             PRINT 500
01810
01820
             PRINT 505
01830
             READ, L
01840
             IF(L.NE.2) GO TO 480
018500
             *----*
        354 PRINT 355
01860
             FORMAT(*ENTER FSTART, FSTOP, DELF (MHZ) FOR ANALYSIS*)
01870
       355
             READ, F1, F2, DELF
01880
01890
             PRINT 390
01900
       390
             FORMAT(//16X, *FREQ (MHZ)*, 5X, *RLOSS (DB)*, 5X, *TLOSS (DB)*)
01910
             F=F1
01920
       360
             CO=COS(F/FO*PI/2.)
             SI=SIN(F/FO*PI/2.)
01930
01940
             CT=CO/SI
01950
             A1=1
01960
             A2=0
             A3=(YD(1)+YDD(1))/(CT-YDD(1)/YD(1)/CT)
01970
01980
             A4≈1
01990
             DO 370 K=2, N
02000
             B1≂C∩
02010
             B2=SI/AJ(K-1)
02020
             B3=SI*AJ(K-1)
02030
             B4=C0
02040
             CALL AB(A1, A2, A3, A4, B1, B2, B3, B4)
02050
             B1=1
02060
             B2=0
02070
             B3=(YD(K)+YDD(K))/(CT-YDD(K)/YD(K)/CT)
02080
02090
             CALL AB(A1, A2, A3, A4, B1, B2, B3, B4)
             CONTINUE
02100
       370
02110
             AR=A1+A4
02120
             EA+SA=IA
             AA=CMPLX(AR, AI)
02130
             CC=CMPLX(A4, A3)
02140
02150
             AACC=AA-2. *CC
02160
             ACMOD=CABS(AACC)
02170
             AMOD=CABS(AA)
02180
             RL=20. *ALOG10(AMOD/ACMOD)
02190
             TL=20. *ALOG10(AMOD/2)
02200
             PRINT 380, F, RL, TL
02210
             FORMAT(/8X, 3(5X, F10, 2))
             F=F+DELF
02220
05530
             IF(F.LE.F2) GO TO 360
02240
             PRINT 521
             FORMAT(*DO YOU WANT ANOTHER FREQ ANALYSIS? 1=YES 2=NO*)
        521
02250
05590
             READ, L
02270
             IF(L.EQ.1) GO TO 354
02280
              PRINT 524
02290
        524
              FORMAT(*DO WANT ANOTHER FILTER ANALYSIS? 1=YES 2=NO*)
              READ, L
02300
02310
              IF(L.EQ.1) GO TO 1500
              PRINT 518
        522
02320
             FORMAT(/*----*)
02330 518
```

```
02340
        530
             PRINT 350
02350
             FORMAT(/*ENTER FSTART, FSTOP, DELF (MHZ) FOR ANALYSIS*)
02360
             READ, F1, F2, DELF
02370
             FQ(1)=F1
02380
             FQ(2)=F1
            FORMAT(//16X, *FREQUENCY (MHZ)*, 5X, *RETURN LOSS (DB)*)
02400
       392
02410
             PRINT 3000
02420 3000
              FORMAT(//*ENTER LENGHT FOR RX FILTER AND ADMITANCE*)
              READ, FRX, YRX
02430
              FL(1)=FRX
02440
02450
             YR(1)=YRX
              PRINT 3500
02460
02470 3500
              FORMAT(/*ENTER LENGHT FOR TX FILTER AND ADMITANCE*)
02480
              READ, FTX, YTX
02490
              FL(2)=FTX
              YR (2)=YTX
02500
              PRINT 392
02510
02520 4000
              M=1
              F=FQ(M)
02530
02540
              GOTO 5000
02550 4500
              M=2
02560
              F=FQ(M)
02570 5000
              N=N1(M)
02580
               F0=F01(M)
02590
              DO 4100 K=1, N
              YD(K)=Y1(M,K)
02600
02610
              YDD(K)=Y11(M,K)
02620
              (A M) LLA=(A) LA
02630 4100
              CONTINUE
02640
              WLF=29979.25/2.54/F
              CO=COS(F/FO*PI/2.)
02650
02660
               SI=SIN(F/FO*PI/2.)
02670
              CT=CO/SI
              CO1=COS((2.*PI/WLF)*FL(M))
02680
02690
              SI1=SIN((2. *PI/WLF)*FL(M))
02700
              A1=C01
02710
              A2=SI1/YR(M)
02720
              A3=SI1*YR(M)
02730
              A4=C01
02740
              B1=1.
02750
              B2=0
02760
             B3=YD(1)*(YD(1)+YDD(1))/(YD(1)*CT-YDD(1)/CT)
02770
              B4=1.
02780
              CALL AB(A1, A2, A3, A4, B1, B2, B3, B4)
02790
             DO 372 K=2, N
              B1=C0
02800
02810
              B2=SI/AJ(K-1)
02820
              B3=SI*AJ(K-1)
02830
              B4=C0
02840
              CALL AB(A1, A2, A3, A4, B1, B2, B3, B4)
02850
              B1 = 1.
02860
              B2≈0
            B3=YD(K)*(YD(K)+YDD(K))/(YD(K)*CT-YDD(K)/CT)
02870
02880
              B4 = 1.
02890
              CALL AB(A1, A2, A3, A4, B1, B2, B3, B4)
               CONTINUE
02900
         372
```

```
02910 87
             FORMAT(8X, 2(8X, F10.2))
02920
              AA1(M) = CMPLX(A1, 0.0)
              AA2(M)=CMPLX(0.0, A2)
02930
02940
              AA3(M)=CMPLX(0.0, A3)
              AA4(M) = CMPLX(A4, 0.0)
02950
              YIN1(M) = (AA3(M) + AA4(M))/(AA1(M) + AA2(M))
02960
               AAA=AA1(1)+AA1(2)
02970
               BBB=AA2(1)+AA2(2)
02980
02990
               CCC=AA3(1)+AA3(2)
               DDD=AA4(1)+AA4(2)
03000
03010
               IF(M.EQ.1) GO TO 5500
03020
              YIN=YIN1(1)+YIN1(2)
              REFL=CABS((YIN+CMPLX(1., 0.))/(YIN-CMPLX(1., 0.)))
03030
03040
              RLDSS=20.*ALDG10(REFL)
             PRINT 87, F, RLOSS
03050
03060 5500
              FQ(M)=FQ(M)+DELF
03070
              IF (FQ(2).LE.F2.AND.M.EQ.1) GO TO 4500
              IF (FQ(2).LE.F2.AND.M.EQ.2) GO TO 4000
03080
03090
              PRINT 520
              FORMAT(/*DO YOU WANT ANOTHER FREQ. ANALYSIS? 1=YES 2=NO*)
03100
        520
03110
              READ, L
03120
              IF(L.NE.2) GD TD 530
03130
              STOP
03140
              END
              SUBROUTINE AB(A1, A2, A3, A4, B1, B2, B3, B4)
03150
031600
              MATRIX MULTIPLICATION A*B
03170
              C1=A1*B1-A2*B3
              C2=A1*B2+A2*B4
03180
03190
              C3=A3*B1+A4*B3
              C4=-A3*B2+A4*B4
03200
              A1=C1 $ A2=C2 $ A3=C3 $ A4=C4
03210
03220
              RETURN
03230
              END
```


LISTING OF PROGRAM 'SSS1' (COMPUTES PHASE-SLOPE OF A STEPPED STUB)

```
00100
           PROGRAM SSS1 (INPUT, OUTPUT)
           THIS PROGRAM ANALYSES SHUNT STEPPED STUB 1 SECTION
00110CC
           (BASED ON HALF WAVE STUBS AND QUARTER WAVE SPACINGS, PAGE
00120CC
           MATTHAEI, YOUNG JONES. )
00130CC
             COMPLEX A, C, AC
00140
              DIMENSION APH(101)
00145
00150
            COMMON A1, A2, A3, A4, B1, B2, B3, B4
             PI=4, *ATAN(1.)
00140
00170
             PRINT 100
       100 FORMAT(/*ENTER FSTART, FSTOP, DELF (MHZ)*)
00180
             READ, F1, F2, DELF
00190
00200
             PRINT 110
        110 FORMAT(/*ENTER LINE LENGTH (INCH)*)
00210
00220
            READ, EL, ELS
             PRINT 120
00230
            FORMAT(/*ENTER Y1D Y1DD*)
00240
       120
00241
            READ, Y1D, Y1DD
             CEE=29.97925E+3
00260
00270
             PRINT 130
00280 130 FORMAT(//16X,*FREG MHZ*,5X,*RLOSS (DB)*,5X,*TLOSS (DB)*,5X,
00281+*PHASE (DEG)*)
00290
            F=F1
00295
              I = 1
        150 XLD=CEE/F/2.54
00300
             BETA=2.*PI/XLO
00310
00320
             CD=CDS(BETA*EL)
00330
             SI=SIN(BETA*EL)
00331
            CO2=COS(BETA*ELS)
            SI2=SIN(BETA*ELS)
00332
            CT2=SI2/CO2
00333
00340
            CT=CD/SI
           Y1IN=(Y1D+Y1DD)/(CT-Y1DD/Y1D/CT)
00350
00370
             A1=1.0
00380
             A2=0
00390
            A3=Y1IN
00400
             - A4=1.0
00610
             AR=A1+A4
00620
             AI=A2+A3
00630
             A=CMPLX(AR, AI)
00640
             C=CMPLX(A4,A3)
00650
             AC=A-2*C
00660
             ACMOD=CABS(AC)
00670
             AMOD=CABS(A)
             RL=20. *ALOG10(AMOD/ACMOD)
00480
00690
             TL=20. *ALOG10(AMOD/2.)
00695
            APH(I)=-1*ATAN2(AI,AR)*180/PI
              PRINT 140, F, RL, TL, APH(I)
00700
00710
            FORMAT(/8X, 4(5X, F10.2))
             F=F+DELF
00720
00725
              I = I + 1
00730
             IF(F.LE.F2) GO TO 150
00740
             STOP
00750
             END
00760
             SUBROUTINE AB(A1, A2, A3, A4, B1, B2, B3, B4)
00770CC
          MATRIX MULTICATION A * B
00780
             C1=A1*B1-A2*B3
```


COMPUTER RUN OF RECEIVE-FILTER DESIGN (PROGRAM CBDTEM)

```
BATCH
$RFL.rO.
/CFORT, I=CBDTEM, L=O, LN
  027000 OCTAL REQUIRED
/LGO
DO YOU WANT TO ANALYSE DUPLEXER USING PARAMETERS ON TAFE1
? 0
-----RECEIVE FILTER-----
ENTER ORDER OF THE FILTER
? 3
ENTER CENTRE FREQUENCY AND BANDWIDTH (MHZ)
? 6175 950
ENTER PASSBAND RIPPLE (DB)
? .01
ENTER IMITTANCE LEVEL FACTOR D (0<D<=1.0)
? .9
OBS-IMITTANCES ARE ADMITTANCES FOR SHUNT STUB
FILTERS, IMPEDANCES FOR SERIES STUB FILTERS, NORMALIZED
TO INFUT AND OUTPUT IMITTANCES
                CHARACT. INITTANCES OF THE STUBS,
                QUARTER WAVELENGTH STUB PROTOTYPE
                            4.2250
                    Y( 1)=
                    Y(2)=
                                7,4136
                    Y( 3)=
                                4.2250
                CHARACTERISTIC IMITTANCES OF THE CONNECTING LINES
                    Y( 1, 2)=
Y( 2, 3)=
                                1.0804
                                   1.0804
DO YOU WANT TO CHANGE IMITTANCE LEVEL FACTOR D?
            2=N0
1=YES
ENTER INF.ATTEN.FREQUENCIES (MHZ)
     STUR ( 1)=
? 3700
     STUB ( 2)=
? 4150
     STUB ( 3)=
? 3900
```

DO YOU WANT TO CHANGE INF.ATTEN.FREQUENCIES? 1=YES 2=NO ? 2 DO YOU WANT TO CHANGE FILTER PARAMETERS? 1=YES $2\pm N0$? 2

DO YOU WANT TO CHANGE IMITTANCE LEVEL FACTOR D? 1=YES 2=NO? 2
ENTER FSTART; FSTOP; DELF (MHZ) FOR ANALYSIS ? 5725 6625 25

FREQ (MH2)	RLOSS (DR)	TLOSS (DB)
5725.00	31.43	.00
5750.00	42.93	.00
5775.00	40.74	.00
5800.00	33.01	.00
5825.00	29.71	.00
5850.00	27.86	.01
5875.00	26.77	.01
5900.00	26.18	.01
5925.00	25.94	.01
5950.00	26.00	. •01
5975.00	26.33	.01
00,000	26.92	.01
6025.00	27,80	.01
6050.00	29.02	10.
6075.00	30.66	.00
6100.00	32.95	.00
6125.00	36.31	.00
6150.00	42.25	.00
6175.00	278.92	00
6200.00	42.25	.00
6225.00	36.31	.00
6250.00	32,95	.00
6275.00	30.66	.00

6300.00	29.02	.01
6325.00	27.80	.01
6350.00	26.92	.01
6375.00	26.33	.01
6400.00	26.00	.01
6425.00	25.94	.01
6450.00	26.18	.01
6475.00	26.77	.01
6500.00	27,86	.01
6525.00	29.71	.00
6550.00	33.01	.00
6575.00	40.74	.00
6600.00	42.93	.00
6625.00 OTHER FREQ	31.43 ANALYSIS? 1=YES 2=NO	.00

DO YOU WANT ANOTHER FRER ANALYSIS? 1=YES 2=NO ? 1 ENTER FSTART, FSTOP, DELF (MHZ) FOR ANALYSIS ? 3500 4400 25

FREQ	(MHZ)	RLOSS	(BB)	TLOSS	(DB)
3500.	00	. 0	0	35.6	50
3525.	.00	. ¢	io	38.2	28
3550.	.00	. 0	0	41.1	5
3575.	.00	.0		44.2	88
3600.	.00	. 0	0	47.8	31
3625.	. 00	• 0	o	51.9	4
3650.	00	• d	0	57.1	6
3675.	.00	. 0	0	64.9	77
3700.	.00	0.0	0	302.5	54
3725.	.00	• 0	0	68.8	. 88
3750.	.00	• 0	0	65.0	8
3775,	00	. 0	ο,0	64.(3

3800.00	• 00	61.39
3825.00	.00	65.89
3850.00	.00	68.80
3875.00	.00	74.50
3900.00	0.00	308.58
3925.00	.00	74.54
3950.00	.00	68.84
3975.00	.00	45.84
4000.00	.00	64.13
4025.00	.00	63,26
4050.00	.00	63.13
4075.00	.00	63.85
4100.00	.00	45.79
4125.00	.00	70.39
4150.00	0.00	310.55
4175.00	.00	67.91
4200.00	.00	60.78
4225.00	.00	56.23
4250.00	.00	52.75
4275.00	.00	49.89
4300.00	.00	47.43
4325.00	.00	45.26
4350,00	.00	43.29
4375.00	.00	41.50
4400.00 DO YOU WANT ANOTHER FREQ ANALYS ? 2		39.83
DO WANT ANOTHER FILTER ANALYSIST	? 1=YES 2=NO	

-47-

(PROGRAM CBDTEM) COMPUTER RUN OF TRANSMIT-FILTER DESIGN

-----TRAŃSMIT FILTER-----

ENTER ORDER OF THE FILTER ? 3

ENTER CENTRE FREQUENCY AND BANDWIDTH (MHZ) ? 4100 900

ENTER PASSBAND RIPPLE (DB) 7 .01

ENTER IMITTANCE LEVEL FACTOR D (0<D<=1.0) 7 .43

DBS-IMITTANCES ARE ADMITTANCES FOR SHUNT STUB FILTERS, IMPEDANCES FOR SERIES STUB FILTERS, NORMALIZED TO INPUT AND OUTPUT IMITTANCES

CHARACT.IMITTANCES OF THE STUBS, QUARTER WAVELENGTH STUB PROTOTYPE

Y(1)= 3,0367

1.9542 Y(2)=

Y(3)= 3,0367

CHARACTERISTIC IMITTANCES OF THE CONNECTING LINES

Y(1, 2)= Y(2, 3)= .7468

.7468

DO YOU WANT TO CHANGE IMITTANCE LEVEL FACTOR D? 1 = YES 2=N0

7 2

ENTER INF.ATTEN.FREQUENCIES (MHZ)

STUB (1)=

7 5950

STUB (2)=

7 6400

STUB (3)=

7 6200

CHARACTERISTIC IMITTANCES OF THE STEPPED STUBS

YDD(1)= YDD(2)= YD(1)= YD(2)= .9068 1.2335 1.1391 1.6749

YD(3)= 1.5322 YPD(3)= 1.6543

DO YOU WANT TO CHANGE INF.ATTEN.FREQUENCIES? 1=YES 2=NO

7 2

DO YOU WANT TO CHANGE FILTER PARAMETERS? 1=YES 2=NO ? 2

COMPUTER RUN OF TRANSMIT-FILTER ANALYSIS

DO YOU WANT TO CHANGE IMITTANCE LEVEL FACTOR D? 1=YES 2=NO? 2
ENTER FSTART; FSTOF; DELF (MHZ) FOR ANALYSIS ? 3500 4400 25

FREQ (MHZ)	RLOSS (DB)	TLOSS (DB)
3500.00	9.51	∙52
3525.00	10.93	.37
3550.00	12.51	.25
3575.00	14.25	.17
3600.00	16.19	.11
3625.00	18.39	.06
3620.00	20.91	.04
3675.00	23.92	.02
3700.00	27.70	.01
3725.00	33.01	.00
3750.00	43.26	.00
3775.00	44.80	•00
3800.00	36.25	.00
3825.00	32.93	.00
3850.00	31.23	. •00
3875.00	30.37	.00
3900.00	30.07	.00
3925.00	30.22	.00
3950.00	30.77	.00
3975.00	31.74	.00
4000.00	33.21	.00
4025.00	35.37	.00
4050.00	38.65	.00

COMPUTER RUN OF TRANSMIT-FILTER ANALYSIS

	4075.00	44.53	.00
	4100.00	283.68	00
	4125.00	44.53	.00
	4150.00	38.65	.00
	4175.00	35.37	.00
	4200.00	33.21	.00
	4225.00	31.74	.00
~	4250.00	30.77	.00
	4275.00	30.22	.00
	4300.00	30.07	.00
	4325.00	30.37	.00
	4350.00	31.23	.00
	4375.00	32.93	.00
.	4400.00	36.25	.00

DO YOU WANT ANOTHER FREQ ANALYSIS? 1-YES 2=NO ? 1
ENTER FSTART, FSTOP, DELF (MHZ) FOR ANALYSIS ? 5725 6625 25

FREQ (MHZ)	RLOSS	(DB)	11088	(DB)
5725,0	υ	• (00 -	35.7	' 3
5750.0	O	. (00	37.4	2
5775.0	0	. (00	39.2	27
5800.0	υ	• (0	41.3	3
5825.0	0	. (0	43,6	66
5850.00	0	. (o o	46,3	9
5875.0	υ	• 0	Ó	49.7	'2
5900.00	Ú	, (0	54.1	3
5925.0	υ	, 0	o´	61.1	.0
5950.00	υ	(0	315.5	13

5975.00	.00	63.25
6000.00	.00	58.47
6025.00	, 0 ,0	56.34
6050.00	.00	55.43
6075.00	.00	55.35
6100.00	.00	56.00
6125.00	.00	57,50
6150.00	.00	60.24
6175.00	.00	65,68
6200.00	00	314,23
6225.00	.00	A5.07
6250.00	00	59.07
6275.00	.00	55,83
6300.00	.00	53.98
6325.00	.00	53.26
6350.00	.00	53,90
6375.00	.00	57,27
6400.00	00	305.22
6425.00	.00	52+38
- 6450.00	.00	44.02
6475.00	.00	81,18
6500.00	.00	33.38
6525.00	.01	29.10
6550,00	.01	25.12
6575.00	.03	21.29
00.00	ão.	17.53
6625.00 DO YOU WANT ANOTHER FRED	ANALYSIS? 1=YE	13.78 0 2=N0
? 2 10 WANT ANOTHER FILTER AN ? 2	NALYSIS? 1=YES	S=4()

COMPUTER RUN OF DUPLEXER ANALYSIS USING DATA FILE (PROGRAM CBDTEM)

```
FILE CONTAINING FILTERS PARAMETERS
 OLD, CBDIPX2
/LIST
3
6175
1.424
.7558
1.7164
.5501
1,2203
.5209
1
1
3
4100
1.532
1.654
1.139
1.675
1.2335
.9068
.7168
.7468
/GET, TAPE1=CBDIPX2
/GET, CBDTEM
/BEGIN,, PF, CBDTEM
DO YOU WANT TO ANALYSE DUPLEXER USING PARAMETERS ON TAPE1
? 1
-----DUPLEXER ANALYSIS-----
```

ENTER FSTART, FSTOP, DELF (MHZ) FOR ANALYSIS ? 5725 6625 25

ENTER LENGHT FOR RX FILTER AND ADMITANCE ? .695 1.03

ENTER LENGHT FOR TX FILTER AND ADMITANCE ? .485 1.01

FREQUENCY (MHZ)	RETURN LOSS (DB)
5725.00	10.66
5750.00	11.73
5775.00	12+86
5800.00	14.04
5825.00	15.26
5850.00	16.50
5875.00	17.74
5900.00	18.95
5925.00	20.10
5950.00	21.18
5975.00	22.17
6000.00	23.10

COMPUTER RUN OF DUPLEXER ANALYSIS

გენ. 00	24.02
4050 . 00	24.99
6075 . 00	26.08
6100,00	27.40
6125.00	29.08
6150.00	31.32
6175.00	31.36
6200.00	37.79
6225.00	37.36
6250.00	33,37
6275.00	
6300,00	29,88
6325.00	27.22
6350.00	25.15
6375.00	23.49
6400.00	22.14
6125.00	21.05
6450.00	20.18
6475.00	19.50
4500.00	19.00
4525.00	18.67
	18,51
6550.00	18.52
4575.00	18.66
6600.00	18.86
6625.00	18.88

DO YOU WANT ANOTHER FREQ. ANALYSIS? 1=YES 2=N0? 1

ENTER FSTART, FSTOP, DELF (MHZ) FOR ANALYSIS ? 3500 4400 25

ENTER LENGHT FOR RX FILTER AND ADMITANCE ? .695 1.03

ENTER LENGHT FOR TX FILTER AND ADMITANCE ? .485 1.01

FREQUENCY (MHZ) 3500.00 3525.00 3550.00 3575.00 3600.00 3625.00 3675.00 3700.00 3725.00	RETURN LOSS (DB) 15.54 18.51 21.71 24.53 25.61 24.92 23.81 22.95 22.43 22.24
3725.00 3750.00 3775.00 3800.00	

DUPLEXER ANALYSIS (CONT)

3825.00	24,22
3850.00	25.39
3875.00	26.87
3900,00	28.73
3925.00	30.93
3950.00	33.14
3975.00	34.15
4000.00	33.05
4025.00	31.01
4050.00	29.06
4075.00	27.43
4100.00	26.13
4125.00	25.07
4150.00	24,21
4175.00	23,49
4200,00	22,85
4225,00	22,26
4250.00	21.66
4275,00	21.01
4300.00	20.27
4325,00	19.43
4350,00	18.50
4375.00	17,49
4400.00	16.43

COMPUTER RUN OF PROGRAM 'SSS1'

(Example of receive-filter stub phase-slope)

OLD, SSS1 /BATCH \$RFL, 0. -/CFORT, I = SSS1, L = 0, LN 020500 OCTAL REQUIRED /LG0

ENTER FSTART, FSTOP: DELF (MH2) ? 5925 6425 25

ENTER LINE LENGTH (INCH) ? .478 .478

ENTER Y1D Y1DD ? 1.7165 .5501

FREQ MHZ	RLOSS (DB)	11088	(DB)	PHASE (DEG)
5925.00	13.12		.22	12,75
5950.00	14.03		.18	11.47
5975.00	15.04		. 14	10.19
6000.00	16.20		.11	8.91
6025.00	17.54		• 08 [}]	7.62
6050.00	19.14		. 05	6.34
6075.00	21.10		.03	5.05
6100.00	23.65		.02	3,76
6125.00	27,29		.01	2.48
6150.00	33,67		.00	1.19
6175.00	55,08		.00	10
6200.00	32,30		.00	-1.39
6225.00	26.61		.01	-2.68
6250.00	23.20		.02	-3.57
6275.00	20.76		.04	-5.25
6300.00	18.87		,06	-6.54
6325.00	17.32		.08	-7.83
6350.00	16.01		.11	-9.11.
6375.00	14.88		. 14	-10.39
6400.00	13.88		.18	-11.67
6425.00	12,99		+22	-12.95

STOP / QUEEN P 91 .C655 P37 1985 Patel, K. N. Advanced antennas C-band 500

DATE DUE

DATE DI	DATE DE RETOUR		
APR 0 8 2010			
CARR MCLEAN	38-296		