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ABSTRACT 

A main objective in the present study is to develop adaptive techniques for 

communications over a jammed fading channel. An adaptive rate control policy has 

been introduced in section 2 to compensate for channel fading. An algorithm to 

implement the adaptive rate control policy is described in section 3. It is shown 

that the adaptive rate controlled FH/MFSK signals exhibit similar cutoff rate per-

formance as transmissions through an unfaded channel. In an adaptive rate con-

trolled environment, coding offers superior performance to multichannel diversity 

transmission. An adaptive quantizing approach, which can potentially compensate 

for signal fading, is also proposed. 
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1. Introduction 

Communication in a highly stressed environment can be viewed as a game played 

by the communicator and the jammer. The success of either can be measured in 

terms of the bit error probability. While the jammer tries to maximize this bit 

error probability, the communicator seeks to minimize it in the presence of jam-

ming and additive noise. 

An effective way that the communicator can employ to evade the jammer is to 

hop its transmitted signal over a relatively wide bandwidth. This mode of commun-

ication is normally referred to as frequency-hopped spread spectrum communica-

tion. The basic modulation may be M-ary frequency shift keying (MFSK) or M-ary 

differential phase shift keying (MDPSK). From the detection point of view, non-

coherent detection can be used to detect the MFSK signals and differentially 

coherent detection for the MDPSK signals. In either case, there is no need to main-

tain phase coherency at the receiver for demodulation purposes. 

The jammer will devise strategies that will maximize the bit error probability. 

One way to accomplish this is to concentrate its available power to hit the 

communicator's signal as heavy as possible. That .is,  the jammer may choose to jam 

only a fraction p of the total spread spectrum bandwidth, W.,. Thus, a fraction 

(1—p) of the total spread spectrum bandwidth will be free of jamming. This mode 

of jammer operation is referred to as partial-band noise jamming. With probability 

p, the communicator's signal will be jammed; with probability (1—p), it will be jam-

ming free. 

A second mode of jamming against frequency hopping is multitone or multiple 

CW tone interference. In this case, the jammer splits its available power into Q 

distinct, equal power, random phase CW tones and distribute these over the 

communicator's spread spectrum bandwidth in such a manner as to exert worst 

case jamming. Analogous to the parameter p in partial-band noise jamming, we 
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may define a parameter it as the Pr{any symbol in an M-ary band is jammed). It is 

apparent that, in the above jamming models, the parameters p and p. are the vari-

ables that the jammer can change to maximize its effectiveness. 

Initial work on the derivation of error probability expressions under both 

partial-band noise and multitone jamming models was done by Houston [1].. Presen-

tation of similar error probability performance also appears in [2]. Houston [1] has 

focused attention on the maximization of the symbol or bit error probability from 

the jammer's point of view. In this study, we examine coding and diversity stra-

tegies that the communicator may employ to combat jamming. To set the stage for 

our investigation, we first define the relevant parameters and describe the bit error 

probability expressions given by Houston [1] for FH/MFSK and FH/MDPSK 

transmission plans. 

The following notations describing the communicator and jammer parameters 

will be used throughout the report: 

1 

1 

W88 = total spread spectrum bandwidth in Hz 

J = total jammer power in watts 

Nj J/W88 is the jammer noise power spectral density 

S = the signal power in watts 

Eb = the bit energy 

Rb = the bit rate 

PG = W../R b  is the processing gain 

S/J = the signal-to-jamming power ratio 

4/NJ = (.9  /.1)'(Wes/Rb) 
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.= the bit energy-to-jammer power spectral density ratio 

i= the chip rate 

R8  the M-ary symbol rate 

RH = the hop rate 

11, = 	Rb/K > Rh 

where K is the number of binary digits that comprises an M-ary symbol, i.e., 

M = 2K . The received symbol energy is then  E8  =-- S/R, = KE b , where 

Eb = S Mb is the bit energy. 

1.1 FH/MFSK Signalling 

With MFSK signalling in which the communicator's signal is hopped over a wide 

frequency band, it is impractical to attempt to maintain phase coherency. Non-

coherent detection using a bank of energy detectors is normally employed. How the 

outputs of the energy detectors may be combined depends on the metric used. This 

is true for both partial-band noise and multitone jamming. 

1.1.1 Partial-Band Noise Jamming 

With M-ary signalling, the noncoherent receiver consists of a bank of M energy 

detectors. Let U1 , be the outputs of the energy detectors. For con-

venience, assume that symbol 0 is sent. The jammer may choose to jam a fraction 

p, 0<p<1, of the total spread spectrum bandwidth, W88 . If p=1, then the jammer 

attempts to jam the entire spread spectrum band. In this case, the jamming 

interference may be viewed as having the effect of Gaussian noise. The output U0  

of the first energy detector will be the only one with a specular component so that 

it is a non-central chi-square random variable. If the background additive noise is 

negligible compared to the jammer power spectral density, the probability density 
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function (pdf) of U0  is given by 

l exp(—u 0—EdNj)/0 (2Vu 04,ffij ); 
Puc,(110) 	0;  

u0>0 
u0<0 

where /0 (.) is the zeroth order modified Bessel function of the first kind. The other 

(M-1) energy detector outputs, u i , i=1,...,(M-1), will not have a specular com-

ponent. These are identically distributed central chi-square random variables with 

pdf given by 

{ exp(—ui ); tti >0 

Pujui) =-- 0; 	u • <0 ' 4 

for i 	1,...,(M-1). On the basis that the M signals are orthogonal, the ui 'a are all 

statistically independent. The symbol error probability is then given by 

= Pr U (ui?.t.io)} 
i-1 

1 M-1. 	-(E./Nixi 
- E (-ir. . e 	 1  . 7.4-1 

The leading term on the right hand summation gives the union upperbound as fol-

lows: 

< (M-1)Pr {u iku0} 

M-1 —E,ANJ —e  
2 

Since E, = KEb , the bit error probability is given by 

Pb = 	P 
2(M,1) 

< M e—KEbAN, 
4 

If the jammer chooses to jam only a fraction p of the total spread•spectrum 
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bandwidth, it can do so with power spectral density Nj/p. However, only with 

probability p the jammer hits the communicator's signal and the bit error probabil-

ity becomes 

M-1 	1M 1 --(pKEOVJX1- j+1  1 )  P  E  Pb — 2(M-1) j...1 

The jammer can choose p to maximize pb , i.e., 

(M)-(PKE6/NA L--j-i  
Pb max 	E 	e 

Oc.p<1 2(M-1) 

Houston [1] has shown that 

pb  = I  a 
1 	M  [M] --(KE6/Nix i--4-) 

E • e 2(M-1) ".2  2  

Ebej 9 	

s 	 Eb 
; un:th p 0=1;-3 

Nj  

0 	Et, 
with p o. Ebej , N j  

where p o  is the optimum fraction of the total spread spectrum band that the jam-

mer can exert the worst damage to the communicator's signal, and a and f3 are 

parameters to be determined depending on the size of the M-ary alphabet, or m, 

the number of bits mapped onto the M-ary alphabet. The values of a and /3 

corresponding to different values of m has been computed by Houston [1] as shown 

in Table 1.1. 

1.1.2 Mutt it one Jamming 

For MFSK, the frequency between the M-ary symbol keying tones is R, Hz, which 

we shall refer to as a frequency slot. The hopping frequency bandwidth during any 

one use of the channel, which we shall refer to as the M-ary band, is then equal to 

Mlic  Hz. It is noted that the communicator places at most one symbol keying 

tone in one of the 114 slots within the M-ary band of Mg?, Hz. An intelligent 



— 6 — 

Table 1.1 Values of a and f3 for Worst Case 
Partial-Band Noise Jamming 

m 	a 	/3  

1 	0.3679 	2.000 
2 	0.2329 	1.170 
3 	0.1954 	0.030 
4 	0.1803 	0.872 
5 	0.1746 	0.798 

jammer is assumed to have perfect knowledge of the communicator's hopping 

bandwidth, but not the hopping sequence, i.e., the jammer knows neither the loca-

tion of the hopping band within the total spread spectrum bandwidth  W the 

symbol keying tone within the hopping bandwidth. The total number of frequency 

slots is Nt  W,„/R,. If the jammer divides its available power into Q distinct 

tones, assuming that each jam tone is of a power level slightly exceeding the 

communicator's signal power S, and is placed exactly within one frequency slot, the 

fraction of frequency slots jammed will be Q/Nt . On the basis that the 

communicator's tone is said to have been jammed if the jam tone is placed in one 

or more of the (M-1) unkeyed slots, the jammer has to choose one of two jamming 

strategies: to place one or two jam tones within an M-ary band. If the jammer 

chooses to place only one jam tone per M-ary band, there is a finite probability that 

the jam tone coincides with the communicator's keyed tone, in which case, the 

communicator's signal is declared unjammed. Placing two jam tones within one 

M-ary band can potentially increase its jamming effectiveness. However, the 

number of M-ary bands it can place two jam tones for a given value of Q is propor-

tionately reduced, i.e., to Q/2. 
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Strategy 1: One Jam Tone per M-ary Band 

The probability that the communicator's keyed symbol tone is jammed is 

1 	 
= (1 	) M W88/M•Re  • 

The factor (1-1/M) is the conditional probability that the jam tone falls in one of 

the (M-1) unkeyed frequency slots within the hopping frequency bandwidth. The 

remaining fraction is the probability that Q of the total hopping frequency bands 

are jammed. 

Strategy 2: Two Jam Tones per M-ary Band 

With two jam tones per M-ary band, the conditional probability that the 

communicator's keyed symbol tone is jammed given that the jammer has placed its 

jam tones in the correct M-ary band is 1. Thus, in this case, the probability that 

the communicator's keyed symbol tone is jammed is simply given by the probability 

that the jammer places its jam tones in the correct M-ary band. Hence, 

Q /2  
— 

W88/M'Rc • 

In either case, Q is the parameter with which the jammer may vary to optimize its 

effectiveness. Define 

PH  = Wes/M.R, 

as the probability'that any of the M-ary band is jammed. Then, (1.3) and (1.4) can 

be written as 

(1.3) 

(1.4) 

(1.5) 

and. 
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It is noted that p i  > 1.42  with equality if M = 2. That is, with BFSK the condi-

tional probability that the communicator's keyed tone is jammed given that the 

jammer has placed its jam tone in the correct binary band is 1i2, which is the same 

fraction that Q has been reduced. In general it will not be beneficial for the jam-

mer to place more than one jam tone per M-ary band. Thus, on the assumption 

that the jammer places jam tones in non-overlapping M-ary bands over the total 

spread spectrum  band,  placing only one jam tone per M-ary band is more effective. 

1.2 Detection of FH/MFSK Signals 

If the receiver is supplied with the jammer state information, one can introduce 

metrics for diversity combining and decoding in an optimal way. From the 

receiver's point of view, the objective is to reduce the bit error probabilities given 

by the expressions shown in section 1. Here, we will address the problem of how to 

devise methods or algorithms to estimate the jammer state information. The 

underlying assumption is that the jammer state is estimatable and is, therefore, a 

deterministic quantity. Since the received signal is a mixture of signal and interfer-

ence, the jamming interference must possess certain identifiable feature or features. 

For fast frequency hopping, the symbol to be transmitted is partitioned into L 

segments, generally referred as chips. The chips are ultimately frequency hopped 

over the spread spectrum bandwidth, W.. Hz. If L represents a repeat of the 

transmitted symbol L times, as opposed to partitioning the symbol into L chips, 

then one symbol occupies L frequency hops. The L repeats provide an L-fold 

increase in bit (symbol) energy. In a severely fading channel, in may be necessary 

to increase the bit energy as a means to increase the signal-to-noise ratio. In either 

mode of operation, the L-fold transmission of the same symbol is referred to as 

diversity transmission. For FH/MFSK signalling, we are concerned with fast 

(1 .7) 
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frequency hopping and the parameter L represents L partitions of a single symbol. 

If the decoder input is comprised of a set of sufficient statistics, then a max-

imum likelihood type of detection can be used to affect optimal decoding. It is thus 

desirable that the coding channel appears memoryless to the decoder. Specifically, 

the L transmitted chips should be received as independent symbols. i.e., the 

interference corrupts the L chips in an independent manner. The type of interfer-

ence channel dictates the complexity necessary to render the channel memoryless. 

For an unfaded channel, frequency hopping alone may provide sufficient randomiza-

tion to make the channel appearing memoryless. If the channel exhibits fading, it 

may be necessary to use interleaving render the channel memoryless. The inclusion 

of an interleaver and a deinterleaver in the system undoubtedly increase the system 

complexity. With interleaving, each encoded symbol is partitioned into L chips 

first and then interleaved before passing them to the MFSK modulator. At the 

receiver, the reverse operations are performed. Without interleaving, the encoded 

symbols are first MFSK modulated and then partitioned into L chips. Thus, in the 

former case partitioning is done to the encoded symbol, whereas in the latter case, 

it is performed on the M-ary symbols. As discussed below, where partitioning takes 

place has a profound effect on the complexity of the diversity combining process. 

In this report, it is assumed that the communicator's signal is jammed if and 

only if the jam signal or tone falls in the same M-ary band as the communicator's 

signal or keyed tone, whether the jammer employs a multitone or a partial-band 

noise jamming model. 

With L > 1, L uses of the channel can be used to arrive at a decision of each 

information bit. Although it is possible that all of the L uses may experience jam-

ming, the probability of such occurrence over a number of L uses of the channel is, 

hopefully, very small. 
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Consider the transmission of the igh  chip, i 	1,...,L. After frequency dehop- 

ping, the received signal is input to a bank of M non-coherent detectors. The '11  

non-coherent detector produces an energy level Uij . Suppose that the Oth  of the 

M-ary symbols is sent. If the ith  chip is jamming-free, we should have 

Uio  > e• , • j+0. If the i th  chip were jammed, then one or more of the (Vs, j#0 .1 

would be as large or larger than Uio. Under this situation, decisions based on the 

the observation of the Uila for any ith  chip can potentially introduce significant 

error. By postponing the decision making process until all L chips have been 

received should enable the making of a more intelligent decision. The question is 

how the L received corrupted chips should be processed. This is a diversity com-

bining problem, which has a direct bearing on how the L chips are converted to 

M-ary symbols. 

Consider the following scenario: The encoded binary symbols are mapped into 

M-ary FSK symbols, where M = 2K . Each M-ary symbol is partitioned into L sub-

symbols or chipa with energy  E  = KEb/L. The individual chips are then fre-

quency hopped over the spread spectrum bandwidth of Wm, Hz. A tacit assumption 

here is that the frequency hopping operation provides sufficient randomization of 

the L M-ary symbol chips for protection against partial-band noise or multitone 

jamming. In the absence of interference, consecutive blocks of L outputs, 

U10, i L, from the Oth  energy detector, assuming that the Oth  M-ary symbol 

was sent, will be the same, and the outputs of the other (M-1) energy detectors will 

be zero. The presence of jamming and background noise will disrupt this idealized 

condition. The net effect is that, for a given i, more than one of the M energy 

detectors may have a high energy output. One detection strategy is to store the 

energy detector outputs for L time slots, i.e., store the 

i =1,...,L, j =0,1,...,M-1, in an array. Discard all columns having more than 

one high energy levels. What remains is a reduced matrix; the row with the largest 
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number of high energy levels is declared the estimate of the transmitted M-ary sym-

bol. If all L chips are jammed, then all columns would have been deleted. Under 

this condition it would be necessary to introduce a suitable metric to extract the 

signal. Simon et al [2] have suggested a linear combining metric where the rows of 

the array are summed and the maximum of these sums is declared as the transmit-

ted M-ary symbol. This detection procedure is a form of majority logic detection. 

The transmission and reception scheme described in the preceding paragraph 

makes the detection process rather simple. However, the only protection against 

jamming is the frequency hopping mechanism. Specifically, 

interleaving/deinterleaving is not employed and diversity combining is done before 

MFSK demodulation. 

If interleaving is to be used, it should be done to the bsseband information 

symbols rather than the MFSK symbols. In this case, the encoded symbols should 

be partitioned into L chips, which are then interleaved before passing them to the 

MFSK modulator. Here, diversity combining must be performed after MFSK demo-

dulation and deinterleaving. What this means is that the outputs from all energy 

detectors need to be MFSK demodulated and deinterleaved. The complexity thus 

increases many folds. 

The added protection through interleaving/deinterleaving is sometimes needed 

when the channel exhibits fading. In a communications situation where fading is 

not a problem, frequency hopping provides sufficient randomization and the detec-

tion process is much simpler. The functional block diagrams of the two scenarios 

are shown in Figures 1.1 and 1.2. 

Although the scheme of Figure 1.2 offers added protection by the 

interleaver/deinterleaver units, it is necessary to perform MFSK demodulation 

before diversity combining. This means that each of the A/ output energies 

Uii, for all i and j will have to be MFSK demodulated and deinterleaved before 
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diversity combining. In this way, all of the M energy detector outputs have to be 

passed through the MFSK demodulator and the deinterleaver before combining. 

The complexity of the detection process of Figure 1.2 is thus many folds of that of 

Figure 1.1. 

jamming 
channel 

Figure 1.2 Diversity Signalling with Interleaving 
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1.3 Coding and Diversity Tradeoffs 

The performance of a communications channel is governed by the channel capacity. 

Communication can be made reliable if the transmission rate is less than channel 

capacity. However, the capacity is a concave function with, pos-sibly, a long tail. 

The cutoff rate Ro  appears to be a more sensible parameter for the design of 

coding/modulation systems. With orthogonal signalling and soft decision detection, 

the cutoff rate Ro  is given by the following parametric form: 

1 = 1— —log2(1 + (M-1)D) 
log2M 

where D represents the uncertainty in the detection process. Let 

y = v2, ym) be the coding channel output vector, z be a symbol of the 

correct sequence, and î be a symbol of the incorrect sequence. Let n be the 

number of times an incorrect symbol must be hit by the jammer so that the associ-

ated decision variable will be tie or exceed the keyed symbol decision variable. 

Then, the probability that a hop is jammed is 

Mn  
PH — rib  (n )log 2M 

where r is the code rate and l b (n) is the bit energy-to-noise ratio. If maximum 

likelihood metrics are used in the diversity combining, we have 

(1.8) 

(1.9) 

Let x = (x0, xi , ..., sm_i) denote the number of times that each M-ary symbol 

has been hit by the jammer during the L transmissions of one symbol. Suppose the 

transmitted tone always occupies the Oth  subchannel (corresponding to x 0). Let 
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P(
max xk i<k<m-1 

be the probability that the maximum number of jamming tones hitting any symbol 

other than the keyed symbol equals j. On the assumption that s o  = 0, j is in the 

	

range (L/M-11  <  a  < L. Assuming that ties are broken at random, the symbol 	111 
error probability conditioned on that at least one of the L transmissions of the 

keyed symbol has not been jammed is given by 

P.(M,n) P(j > n) -I- P(error Ij=n)P(j=n) . 	 (1.11) 
1 

P(j=n) is the probability of tie, which can occur only if the jammer tone power 

equals that of the communicator's keyed symbol power. Ties can be avoided if the 

jammer uses a slightly larger tone power. 

The bit energy-to-noise ratio, lit,(n), with diversity L, can be expressed as: 

(M-1)n  1—P8(M,n))'  ((M-1)P8 (M,n)) %  — 1 
"lb(n) = . (1 .12) R 1)logekt r log2M 	 — 1 

The jammer chooses n such that, at r = Ro , 

n = arg max 11,(n) . 

The required bit energy-to-noise ratio for operation at r =  R0  is 

^1b(n
*
) • 	 (1.13) 	1 

It has been shown [9] that the worse case bit energy-to-noise ratio required for 

coded operation at the cutoff rate is expressible as 

M(n *  —1)  
%V) — 	 0 <1 < 	 (1.14) 

RO*(1)log2M 	— 	M-1 

For binary signalling, the bit energy-to-noise ratio becomes 
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'lb=> 21i/Ro - 
R0(2 1—R.  — 1)1/L  (1.15) 

It is noted that p(y Ix) in (1.9) is the conditional density when all L subbands 

are jammed and is given by 

p (r le) = 6 (Yz LE8)11 8 (Y£ ekEJ) 
k-1 
faex 

where Ej  is the jammer tone energy. Then, the expression for D becomes 

M-1 „ „ D = (---PH(n)) P(z) 

where 

Pt (n)= Pr (y1  = LE, In) 

(1.16) 

is the probability that the decision variable corresponding to a particular incorrect 

symbol will tie the keyed symbol decision variable. This probability depends on n, 

the number of times an incorrect symbol must be jammed to cause a tie and is 

given by 

Pt (n) — ELni(m_2),„ 
( 1-1)" 	• 

For an unfaded channel with an unfaded partial-band noise jammer, the cutoff 

rate Ro  for BFSK signalling is given by 

(1.17) Ro  =1 — log2(1 D) 

where 
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— 
D(X) —P  

e  

D min D(X) 
o<x<1 

and 

(1.18) 

1.4 Summary 

This section presents the error performance of FH/MFSK signalling over a partial-

band noise jamming channel and a multitone channel. The cutoff rate Ro  is used 

as a communications parameter. Coding and diversity tradeoffs are culminated in a 

parametric equation relating R, and D, which governs the error uncertainty due to 

errors in the detection process. 

If interleaving is not used, diversity transmission repeats the M-ary symbol 

rather than the encoded symbol. In this manner, diversity combining can be per-

formed prior to MFSK demodulation, so that the receiver complexity can be 

reduced. By examining the received signals corresponding to the L transmissions at 

a time, a form of majority capture procedure can be used to declare jamming-free 

conditions. Alternatively, suitable weights can be applied to the stored array ele-

ments and then combine the results using a suitable metric, e.g., a linear sum 

metric or a maximum likelihood metric. 

Attention has been focussed on unfaded channel and unfaded jammer tone 

conditions. In the presence of channel fading, it will be necessary to estimate the 

fading channel and compensate for channel fading. Section 3 addresses the channel 

estimation problem and shows that, under an adaptive rate control policy, it is pos-

sible to render a time-varying channel to behave like a time-invariant channel. In 

this manner, the results of transmission through an unfaded channel can be applied. 
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2. Adaptive Transmission Over a Jammed Fading Channel 

This section presents an analysis of the performance of an adaptive rate control 

technique for jammed fading channels. The performances of both uncoded and 

coded systems are examined in the presence of jamming. Adaptive signalling 

schemes are shown to offer negligible improvement for uncoded systems. However, 

for coded systems they provide substantial improvements both in the performance 

and the receiver implementation. 

Adaptive rate control adjusts the duration of a signalling interval according to the 

channel fade state. Adjusting the signalling rate requires adjustment of the MFSK 

subband width, and in turn the spread spectrum bandwidth. It is assumed for the 

remainder of this section that the jammer has complete knowledge of the instan-

taneous spread spectrum bandwidth. This eliminates the improvement resulting 

from the increase in processing gain over a fixed rate system, caused by the 

bandwidth expansion required for the adaptive rate system. Only the improvement 

resulting from the rate adaptation is of interest. Furthermore, the limiting case of 

allowing an infinite instantaneous spread spectrum bandwidth is examined. This 

allows the determination of the maximum possible improvement of an adaptive rate 

system over a fixed rate system. The implications of using a finite bandwidth 

expansion are considered in section 3. 

If the instantaneous spread spectrum bandwidth is W('-y), then the instantane-

ous total jammer power is J(1) = NNW(i). The average total jammer power is 

= Njw, where W  NM  ii with N being the number of subbands and .17 the 

average symbol rate. 
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2.1 Performance of Adaptive Rate Control in Noise Jamming 

With partial band noise jamming, the MFSK symbol error probability conditioned 

on PH, 'y and the symbol rate r = RH, iS 

ri + 1[
M. — 1 ) 	PRnS1  

M-1 (—  1)  

n + 1 
	  (n + 1)Ne 

PM' PH, r = PH E 
n-1 

If the symbol rate is adjusted as a function of the channel fade state, then 

(M- 11 	PHnS1  
Af-1 

41 1 PH,  *el) PH E 	 (n + 1)N,,r(1) 

n + 1 1  

Both the receiver and transmitter must know the current symbol rate exactly. As 

in [6], •y(t) is assumed to be an ergodic process, and therefore in a long time interval 

I, 'y(t) will be between 'y and 'I + cfry for / p(y) d'y seconds. The average symbol 

rate is 

— I I — 	rey) p(•y) d'y 	f rey) p(y) .d'y . 
0 	 0 

For a specified average symbol rate, the average symbol error probability is calcu-

lated by summing the error probability for each symbol in a very long string and 

dividing by the total length of the string. The contribution to the sum of the sym-

bol error probabilities when the channel fade state is between 'y and Py + d'y is 

/ p(y) r(y) pm ' pH  r(1) dry. This assumes that the feedback channel is delayless 

and the symbol rates are changed instantaneously. The symbol error probability 

averaged over the distribution of channel fade states is just 

00 
1 

MI PH,  rey) = 
R 

f r('7) Pml PH, 1, r('y) P(/) d'Y • 
0  

For convenience, define e(1):. r(y)//i and x 	S-1/ NJ?. If L th  order selective 

(2.3) 

(2.4) 

1 



(2.8) 

(2.9) 

— 1 9 — 

diversity is used, then 

z  IL-1 
1 

P(x) = — L  1—  e— 5". 	— (2.5) 

where 

5:0 	SEP-yl  
Njiï 

is the average equivalent received symbol energy-to-noise ratio. The instantaneous 

symbol error probability from (2.2) is 

M-1 
 (

i)n lt

M — 1 1 	Pnizz  — 
  	(n + 1y.(z) e   

P  IP 	)= PH E m H, 2,T X 	 n 	1 n-1 

The task is to find the normalized rate function e(x) which minimizes the average 

error probability 

00 

Pm I pH,  f(z)=  f e(X) E I PHx  I 	f(z
) 

p (x) dx 
o  

subject to the constraints 

oo 
Ex [e(x)1 = f e(x) p(x) dx = 1 

and 

(2.10) 

This is a simple variational problem. To minimize P.mi  f(x) 

 ipH, 	+ ILE z ie (4] 

oo 

= f fr (s) Pmipe ;14 + ge(x)) p(x)dx 	 (2.11) 

(2.6) 

(2.7) 

is minimized where et is a Lagrange multiplier. Clearly, to minimize H G (i(s)) is 



PHIl X 

(n + 1)(x) = —  1.1 (2.13) 

e(x)= kx = 
X.e(L) (2.15) 
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minimized for each normalized channel fade state x where 

G(e(x)) = t(z) Penpe  .)«.)+ ite(x ) 

n+1EM  PH=  
— 1 

(— 1)  
(x) PH E 	 e n 	1 	

(n + l)(z) 	ii(x) (2.12) 

Using differential calculus results in 

Fir + 1 r 17 1 1 
dG(e(x))  p 	1 	 + PHs n 

f(x) 	
+ 1 e 

de(x) 	n.1 	n + 1  

By noting that the right side of the above equation is only a function of x/e(x), 

the solution is of the form e(x) kx. By using the average value constraint (2.9), 
it can be verified that 

1  
k — 	 (2.14) 578 0  (L )  

and 

where 

L 	lr +1  [1:11  
O(L)= E 

n-1 
(2.16) 

The second derivative of G(e(x)) is positive for all e(x), so that e(x) = kx is indeed 

the solution. An important property of adaptive rate control is that the optimal 

normalized rate function f(x) is independent of the distribution of modified channel 

fade states p(x). 



m_1(_1).+ir_1 n 	— 
P11n5;• (L)  

PM I PH = Pll E 	 n + 1 n — 1 

+ 1  

(2.17) 
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The average symbol error probability conditioned on the jamming fraction, 

obtained by substituting (2.7) and (2.15) into (2.8), is 

The worst case jammer will choose the jamming fraction that maximizes Pm . This 

problem has bee well studied in the literature. For BFSK, it is easy to see from 

(2.17) that 

2  P*  — 
H >b 9 (L) 

resulting in 

—1  

Pb 	5n-b  0(L)  • 

(2.18) 

(2.19) 

It is clear from (2.17) that the improvement resulting from selective diversity is 

0(L). The bit error probability using selective diversity signalling with a constant 

transmitted signal power is given by [17] 

+ 1 
h.._ 1 

— a21L! 	 n 	L1 	1 
Pb = max Pb (a) = max 	 (2.20) 

a 	 a 	bl°g2M n-1 	n + 1 	i—o  2na  
+ 2(i + 1) 

n + 1 

where a = P5 6 log2M. This expression can be used to determine the improvement 

resulting from adaptive rate control with selective diversity, over a nonadaptive sys-

tem using selective diversity. 

To summarize, Table 2.1 presents the bit error probability Pb, optimal fraction 

of bandwidth jammed and the improvement resulting from selective diversity 

0(L), for BFSK. Also included is the improvement over selective diversity signaling 

with a constant signaling rate. For L = 1, the adaptive rate system results in a 



1 
1 

1 

1 
1 

1 

1 
(2.21) 	1 

PH, 1 

M- 1 

{

P 19,1 I PH, i , I'M= 	0 	 , 	-IS > :51  • 

PH , ^IS < 

1 
1 
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lower bit error probability than the fixed rate system. 

As a final comment, note that the optimal rate function and optimal jammer 

fraction constitute a saddle point solution. This is evident from (2.13), where the 

optimal rate function does not depend on the jamming fraction. 

Table 2.1 Performance of Adaptive Rate Control 

Against Partial Band Noise Jamming 

Adaptive Rate Control 	Improvement over 

Pb 5; 	P.1fat; 	0(L)  (dB ) 	Selective Diversity 
(constant rate) 

(dB)  

1 	.36788 	2.00000 	0.00000 	 — 
2 	.24525 	1.13578 	1.76091 	1.45685 
3 	.200066 	.75976 	2.63241 	.07213 
4 	.17658 	.62743 	3.18759 	.75278 
5 	.16112 	.55777 	3.58569 	.64692 

2.2 Performance of Adaptive Rate Control in Tone Jamming 

With partial band tone jamming, the symbol error probability conditioned on 

and r(1) = RH(ry) is 

Defining 

E H(1') 	8(1)/RH 
Xl ('Y) •— 

j 

and • 

J/W., 

1 



(2.22) 

M 
 MIÉ 	 P  
— 1 	 IX‘PH og 2,M" 

P 	= 	H 	e — H L  
(2.25) 
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PH = 	 
W88 /MRH 

where S(1) is the instantaneous transmitted signal power and ies is the jammer tone 

power, and letting RH = r(1), (2.21) becomes 

Pm I PH, /, r( 	Iry) = 

M -1 	 MNJ  

	

PH e  PI  < 	  
(.9/ r(/))PH 

MNJ 
0 	9  PI> 	 

(51 r(/))PH 

If i(-y) :=r(PI)/  i7 and x := 	N1/7, then the density of x is given by (2.5) and 

(2.6). With  these definitions, the conditional error probability from (2.22) is 

M  ••• 1 (5)) 

PMI PH, e f(X) 	M PHU E + Pl i 
(2.23) 

Once again Pmipii, f(z)  is minimized subject to the constraints (2.9) and (2.10). 

That is, H is minimized in (2.11) where Pmipe f(r)  is given in (2.23). To minim-

ize H, G(e(x)) is minimized for each modified channel state x where 

G(e(x)) = e(x) MPHz(x) + tif (X) 

—  e(x) M1
m 

PHu x 	(x) ) 	(x) . 
PH  

(2.24) 

It is clear that making e(x) as small as possible minimizes G(e(x)). That is, 

f(x) = k and the average value con,straint in (2.9) requires that k 1. Once again 

this is a saddle point solution, because the optimal rate function does not depend 

on the jamming fraction. Using the density defined by (2.5) and (2.6) results in 

This is exactly the same error probability as L th  order selective diversity [17]. 

Therefore, adaptive rate control gives no additional improvement in performance 



PH  
p 	9 (L)  

2  

Hr b 
(2.28) 
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against an unfaded tone jammer. 

2.3 Coded Performance 

The previous subsections have shown that the uncoded performance of adaptive 

feedback signalling techniques is very poor. However, it will be shown that signifi-

cant improvements can be obtained by using coding in conjunction with these tech-

niques. The main assumption made in evaluating the coded performance is that the 

coding channel is memoryless from hop to hop. 

First consider a coded adaptive rate control system. Observe from section 2.1 

and 2.2 that the optimal transmitted symbol rate depends on the type of jamming 

present (tone or noise). This can present some difficulties when implementing a 

practical system. To alleviate these difficulties, suppose that the transmitter uses 

the same normalized rate function for both tone and noise jamming as described by 

(2.15). 

With binary signalling the cutoff rate is 

= 1 — log2(1 + D) . 	 (2.26) 

For soft decision decoding using a weighted linear sum metric with jammer state 

information, the parameter D as a function of the normalized channel fade state is 

given by [21. 

D (x) = "LEI— 	x 21 (x)  
2 	 e-H 

when tone jamming is present. Using the rate function in (2.15) results in 

(2.27) 

where r is the code rate. The worst case jamming fraction that minimizes Ro , or 

maximizes  D,  is 



2 
r  '‘b 	(L) • (2.30) 
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2  P*  = 
H 	rY4,1 (L) 

leading to D 1/ r">7b 0 (L) and 

= 1 — log2 [1 + 	_ 1 	I 
rX b O (L) 

(2.29) 

When r = R,, (2.30) can be rearranged in the form 

1 	 2 
— 

 R0 (2 1 	— 1)9 (L) 	R05:b  > 	
(2.31)• 

If Ro; < 2/ 0 (L), then P:4 = 1 and R:= 1 — log2(1 +  1/2). At this cutoff rate 

= 2/ KO (L). 

With partial band noise jamming, 

X PH 	z  oo pH  
1  D 	 + X PlI fTxT p(x)  = max min f 	 dx 

PH  X 0  1 — X2 

Using (2.32) and (2.26) along with (2.15), (2.5) and (2.6) yields 

T 	
4e—  1 	

> 	3  «> b = 	— 
R0 (2 1 	1)0 (L) e 	b 	R0 0 (L) • 

If the condition on 5; in (2.33) is not satisfied, then 5; is obtained by solving 

Ro  = 1 — log2 1 + min [ 	1  
X  1 — x2 

	1 — Q% b. (L) 1 + X I 	
. 

(2.32 ) 

(2.33) 

(2.34) 

The ; required for coded communication at r = Ro  using this adaptive feed-

back rate control technique is shown in Figures 2.1 and 2.2 for partial band noise 

and partial band tone jamming respectively. Included in these diagrams is the per-

formance of a system using only selective diversity [17]. Note the improvement 

resulting from the rate adaptation. Also the performance is much worse for partial 

band noise jamming than for partial band tone jamming. Therefore for binary sig-

naling, the performance of the proposed adaptive rate control system will be limited 
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by noise jamming. 

As a final comment, the rate control technique proposed here results in a cod-

ing channel where the received signal energy is a constant. This makes the selec-

tion of appropriate code structures and the generation of jammer state information 

relatively easy, because the coding channel is reduced to a time-invariant partial 

band jammed channel. 

2.4 Summary 

The adaptive rate control system described in the section is attractive in that it 

makes aa otherwise time-varying coding channel to appear time-invariant. This 

aspect simplifies the problem of generating jammer state information, as it allows 

us to use the techniques already available for estimating the jammer state for sta-

tionary partial band jammed channels. It also allows us to make use of coding 

option evaluations for these channels such as those in 121 and 19]. 
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Figure 2.1 Performance of Coded FH/BFSK with Adaptive Rate Control 
and Selective Diversity for Soft Decision Decoding with Jammer 
State Information Against an Unfaded Partial Band Noise Jammer 
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3. Channel State Estimation 

3.1 Introduction 

The objective of channel state estimation is to render the time-varying coding chan-

nel time-invariant and memoryless. This can be achieved by using the channel 

state information to control the coding rate which, in turn, greatly simplifies the 

generation of channel state information, since it allows the decoupling of the fade 

state and jammer state estimation aspects of the communication system. 

The proposed system generates a linear predictive (LP) estimate of the channel 

fade state, and uses a thresholding technique to mitigate the effect of partial-band 

interference. Generating an LP estimate of the fade state is equivalent to obtaining 

a maximum entropy Doppler power spectral estimate. The receiver is assumed to 

have no prior Doppler power spectral information. If prior spectral information 

were available, then other techniques, such as minimum cross entropy spectral esti-

mation, could be used to estimate the Doppler power spectrum. This would reduce 

the required order of the channel fade state predictor. 

The proposed interference rejection technique uses errors and erasures decod-

ing. Erasures are generated by using a linear threshold that generalizes the differ-

ence and ratio thresholds proposed by Berlekamp [11] and Viterbi 110] respectively. 

Several factors will cause the performance of the proposed adaptive rate con-

trol system to deviate from the ideal performance with perfect jammer state infor-

mation. These stem from the use of imperfect estimates of the channel fade state, 

which in turn are caused by the inherent randomness of the fading process that is 

being tracked, the finite predictor order, the estimation error resulting from partial 

band interference, the finite rate change period and the feedback channel delay. A 

further source of imperfection results from "noisy" estimates of the jammer state. 

As a result, the behaviour of the system is very complex and best evaluated by 
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simulation studies. 

Figure 3.1 illustrates the system under consideration. The receiver function 

will become clearer with the ensuing analysis. One aspect that should be clarified 

now is the waveform channel model. The spread spectrum bandwidth Ws, is 

divided into MFSK subbands of width  MB,  where Ft is the average transmitted 

code symbol rate and B is the bandwidth expansion defined by the ratio 

B=12,,,,,./.17 with Rmax  being the maximum transmitted code symbol rate. Since 

orthogonal MFSK signalling is used, the separation of the subchannels in a subband 

must be adjusted along with the transmitted code symbol rate to maintain ortho-

gonality. 
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Figure 3.1 Coded FH/MFSK System with Adaptive 
Feedback Rate Control 
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During each signalling interval, the MFSK modulator uses only a fraction of a 

subband. A key assumption is that the exact portion of the subband used by the 

MFSK modulator is unknown to the jammer. In the analysis to follow, only 

partial-band noise jamming is considered. The jammer would probably prefer to 

use noise jamming over tone jamming because of the large degree of uncertainly the 

jammer would have in the frequency positions used by the transmitter resulting 

from the rate adaptation. 

With our model the jammer always jaras an entire subband. Consequently, 

the effectiveness of the jammer is expected to be reduced by a factor of B com-

pared to a fixed rate system operating with rate h.-. However, to allow a fair com-

parison, it is assumed that both systems are operating at the same average signal-

ling rate, and therefore the fixed rate system can increase its bandwidth by a factor 

of B by increasing the number of subbands in the spread spectrum bandwidth. 

This also has the effect of reducing the effectiveness of the jammer by a factor of 

B. 

Finally, the fading is assumed to be uniform and the partial-band interference 

is much stronger than the background noise. Therefore, ambient noise is neglected 

in the analysis. 

3.2 Receiver Formulation 

For convenience, we consider BFSK signalling, although the method described in 

this section can be extended to the MFSK case, for M > 2. The receiver formula-

tion consists mainly of defining the memory contents required for the M th  order 

LP estimate. The structure of the proposed channel state estimation and BFSK 

demodulation is shown in Figure 3.2. A vector characterization is first obtained for 

the received signal  r(t)  during each signalling interval by letting {8 1(t )).0  be a 

complete complex orthonormal basis for 0 < t <T.  The received signal for the kt'  



Zk 

select 
largest 

insert 
erasures 

1-410 

- 32 - 

r(t) from 
dehopper 

E%(0) 

to 
deinterleaver 

Zk 

compute 
(n), n-0,1,...,m 

solve 

kn-f 

to BFSK 
modulator 

„ esêR. 
— 

0(0) 
ettg- 

Figure 3.2 Channel State Estimation and BFSK Demodulation 



— 33 — 

interval is completely described by the vector r k  with complex components 

rk (j) , j 	0, 1, 2, ..., defined by 

(k+1)T 
3(j) =f r(t)0 7(t)dt . 	 (3.1) 

kT 

Suppose that 00(t) = f 0(t) and 0 1(t) f 1 (t), so that on hypothesis H(i),  j  = 0,1, 

rk (0) = (1 — i)E1,4 ak  nk (0) 

r* (1) = inak nk (1) 

k (j) , j = 2, 3,.. 

where {nk(j)}. o  is a set of i.i.d. zero-mean complex Gaussian random variables 

having E[Ink (j)1 2] = 0 with probability 1 — p, and E[Ink (j)1 2] --= Nj/ p with pro-

bability p. Note that at time t = kT, all the information concerning the fading 

gain ak  in the past reception r(t), (k — m)T < t < kT, is summarized by the con-

ditional density p(cek  r1 (0), r/ (1) , k—m<1<k-1) since ak  is independent of 

nk (j) for all k and j. Therefore the receiver only needs to retain the finite set of 

sufficient statistics {1.1 (0), r1 (1)}itk1_m . 

It is assumed that the receiver does not employ decision feedback and there-

fore is unable to decide whether the signal term nak  is present in rk (0) or rk (1). 

The use of decision feedback may not be successful for interference channels 

because of the relatively low signal-to-noise ratios. The receiver forms the variable 

zk  := rk (0) 	rk (1) 	 (3.3) 

so that regardless of the hypothesis, 

zk = Ecxk ek  , 	 (3.4) 

where iik  has twice the variance of nk (j). At time t = kT, the information set at 

the receiver is defined as 

(3.2) 
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zk 	tzi ri (0) ri (1) , k m <1  <k —1) . 

3.3 Estimation of the Channel Covariance Function 

Suppose that r(xk ) represents the signalling rate for the k th  signalling inter-val, 

where xk  Sc/  NA is the normalized channel fade state and S is the average 

transmitted code symbol power. The theoretical analysis of adaptive rate control 

[17] shows that the optimal normalized rate function e(œk ) r(xk )/  if,  assuming 

perfect knowledge of the channel fade state and a delayless feedback channel, is of 

the form 

(3.5) 

— 
where x depends upon the bandwidth expansion B, and rye  is defined as the aver- 

age equivalent received code symbol energy-to-noise ratio, obtained with nonadap-

tive transmission. However, rye  = SE[4]/NJE where Ê[4] = E[4/ 2 is the 

average energy in the bandpass signal. Therefore the signalling rate for the kth 

interval is 

rk(Cek) =  ek(ek) —R 

2 
ek 

= E[a2] - ' 

However, E[4] = OM where 0(n) = E[ak ak+n ] is the channel covariance function. 

Without prior information concerning the channel covariance function e(n), the 

receiver mue.'t generate an estimate of the mean square value denoted as i(0). In 

addition, the receiver must generate an estimate of ak , denoted as bk. Hence dur-

ing the k th  interval, the signalling rate is 

(3.7) 



Zk = 1 e(0)e  

ek +74 
‘-ck 

âk 5_ (B.i.b(o)) 

âk > (Be))' 

(3.9) 

âk 

,E,5,‘( (0) 
	Zk 

—Zk 
4,5‘ 

âk ..(13 îb(0)) 

âk > (.13 e)(0))1/2  
(3.10) 1 œk 
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I 	. 2 
ak 	 * 

—re-  9 âk < a 
e40) 

rk(eek) = 	ce*2 	 (3.8) • 
* 

(20) 

Since B is the bandwidth expansion, a*  = (13 .i5(0)). Therefore if E8  is the average 

transmitted code symbol energy, then n = (E8 .171/ rk(êtk))' and the received 

statistic zk  in (3.4) is 

To derive an estimate of the channel covariance function 0(n), the receiver first 

normalizes the zk . To do so, the receiver forras the new variables 

The normalized information set at the receiver at time t = kT is 

xk := {xi ,k—m<1<k-1} . 

The receiver estimates the channel covariance function by forming the sum 

(3.11) 
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1 le–n 
3(n) — E xi x,+„ , n 0, 1, ...., m 

N 

1 N-n 
ai +n  

N-n 

NE839)1/2(0) iE
.na+nlîii-n (3.12) 

N-n 	 1 	Nt-,-n 
+nnii+n E ai+nékei + NE80(0) - 	aicein e (0) 

Observe that as N-400 

N-n 
e)(n) = 0(n) lim 	E N-.00NE8 0(0) i_ 1  

(3.13) 

because ak  and iii  are independent for all k,i. Recall that the noise is uncorre-

lated, and therefore for n .96 0, (2.13) results in the asymptotically unbiased esti-

mate 

ik(n). 0(n) . 	 (3.14) 

Unfortunately (3.12) will result in a biased estimate of 0(0). To determine the 

value of (0), it is noted that with the bandwidth expansion constraint B, the sig-

nalling rate is actually adjusted by using a clipped version of ak , that is 

If the channel gain ak  is Rayleigh distributed, the approximation is made that âk , 

before clipping, is also Rayleigh distributed. That is 

2..6k.2 ^ 

P(eek) 
	2k_/(0) 

 (3.16) 

so that after clipping 
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âk = E cixic _i  
1-1 
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E 	s(0)e — B  + (240)(1 — B  (B + 1)) 

— B  ) . 

From (3.13) 

N  2 2 
(2 (0) = «C» 	

1
E ni 

N--.00 NE op(0) 

2 	.2 = 	+ 	E [(le [nk ] • E 8  OM 

Using (3.17) along with E[4] = 2Nj  results in 

2/VjEgl 
?'(0) -= 	+ 

3(0)E, 

2 N 
= + —(1 — e—  B ) . 

E 

(3.17) 

(3.18) 

(3.19) 

Therefore by using knowledge of the average transmitted signal energy  E8  and the 

jammer noise spectral density Nj , an improved estimate of OM can be obtained by 

subtracting the bias term or at least an estimate of the bias term from 3(0). 

3.4 Estimation of the Channel Fade State 

The receiver generates an LP estimate of the channel fade state. Specifically, the 

fade level estimate for the k ih  signalling interval is given by the linear combination 

where the c1  are the predictor coefficients and the xk  are given by (3.10). To deter-

mine the predictor coefficients c1 ,  the mean square prediction error 4. is minimized 

where 
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4. . Elai I 
nak - eekri 	 (3.21) 

I and âk  is given by (3.20). Using simple differential calculus leads to the following 

set of linear equations for the predictor coefficients 
I 

m 	 m E[âk_ienk_ 1E[ii
2---- 

k_i tîk_ i] 
O«J) -  E ce - j) - E ci------ 	 - 	 . () , 	 (3.22) 

1.1 	 1.-1 	 E.<7)(0) 	 I 
j . 1, 2, , . . . , m . I 

However, instead of using the actual values of 0(1 — j), the estimates '(/ — j) are 

	

used. Therefore, if (3.13) is used to substitute for 0(1 — j) in (3.22), the following 	I 

set of linear equations is solved to obtain the predictor coefficients ci : 

I 

3(j) = Em  ci (/ — j) , 	j = 1, 2, ..., m . 	 (3.23) 
I-1 

I 

An estimate of the fade level for the (k + j)th  interval can be calculated recursively 

by using 	 I 

ci .ezk+i—i + Ên  eiek-fi-1 	f i + 1 ...5. m 
I-1 

âk+j 	

,,Clk+jI 

i, 	., 

1 
2., a- 	

l=j+1 

7 i ± 1 > In 

1=1 	
. 	

(3.24) 	

I 
I 
I 

3.5 Generation of Side Information 

The performance of coded antijam communication systems is tremendously 

improved by supplying the decoder with side information. In this section, the pro-

posed method of generating side information is examined. Basically, the receiver 

uses errors and erasures decoding to mitigate the effects of partial band interfer-

ence. The task is to determine an effective method of generating erasures that will 

improve the coded performance in the presence of partial band interference. A 
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linear thresholding technique is proposed for generating erasures. The receiver tests 

the following condition: 

21  > aZo  + b 	 (3.25) 

where Z1  = max(Uo, U1), Z0  = min(Uo, U1 ), and the decision variables, 

Ili  = Irk (i) I 2  , i = 0, 1, are at the output of the noncoherent detector. If the con-

dition in (3.25) is not satisfied, then an erasure is generated. Otherwise a hard 

decision is made on the received code symbol. 

The linear threshold is a generalization of Viterbi's ratio threshold [10] where 

b .= 0, and Berlekamp's difference threshold [11] where a = 1. We now proceed to 

evaluate the performance of the linear threshold for a stationary partial band noise 

jammed channel. The rationale for this procedure is that adaptive rate control 

tends to neutralize the effects of fading. 

The decision variables U0  and U1  at the detector output for hypothesis H(0) 

are 

Uo = I akEe + no I 2 	 (3.26) 

U1=  I ni  I 2  

The densities of the decision variables are 

uo+ arEk  [ 

P -- e 
2.1V j/ p 1  Vt -Fop  ak  Ek%  

P (uo) = 2/V1 	 N1  I 
p(u i) = —e---e– uip/2N, 

2NJ  

The probability of a code symbol being in error is 

(3.27) 



- 40 - 

	

P, . pP(U 1 > ail°  + b) 	 (3.28) I 
. p f P(U i  > aU0  + b lUo = uo)Kuo)duo • 

R I 
It can be shown that 

I 

	

1. 	 , b < — auo  
P(Ui  > aU 0  + b I U 0  = u0)  = 	--p(au o  + b)/ 2.1%1 J 	 (3.29) 

I 

	

e 	 , b > — auo  

Therefore, 	 11 
— b/a 	 ce 

Pe = P f Kuo)duo  + p f e-  P(auo + 1)- 
I/ 

21v1p(uo)du o  . 	 (3.30) 	I 
o 	 -  t'a  

Substituting the density p(u0) into (3.30) and simplifying results in the expression 	I 

i; , 	a 	 à 
n — — -r — oo 

Fe  = p f f(u, ejdu + —1--' -e  
o 	

E 4 	1 4" a ] f 	f (u , €2)du , 	 M 
1 + a 	

(3.31) 
(1+4  

a I 
where 

u+4e 

f (u,e) = 12172-e-  Pl. 4  I0 (fry 8V -E7) , 	 (3.32) 
4 

= 1,  6  = 1/(1 + a), g = 4b/an, and 	= cek / N j  is the code symbol 

energy-to-noise ratio with Êk Eki 2. 

The probability of a code symbol being erased is 

U0  — b  )1 
1'erP 	P[U < 	— 

a 	
P, 	 (3.33) 

= p 1 — f P(U 1  < — 2-)U
a 

I Uo  uolp(uo)du o  — P . 

But, 



PI. [—I; 	4 
4 a + 1 + a 

00 

f f (u , €3)du — Po  
(1+a)6  

a 

+ 
pa 

 e
- 

1+a  

= 1 — log2 (1 + Per  + 2 (Pe( 1  — Pe — Per) (3.37) 
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U b 
P[Ul < ° 

a 

{

1 Uo 1= tiol= 
0 	 , 	b 

PH itio — b) 
2N., 	a 

1 — e 	 , uo  > b 

(3.34) 

Therefore 

00 	
tx, 	p  

Per  = p — p f Ku o)du o + pf e 2N1  a 
)1, (Uo)dUo — P, 

Using the density  p(u0) and the expression for Pe  in (3.30) results in 

00 

per  . P  — pf f(u,e i)du 
6 

(3.35) 

(3.36) 

where e l  = 1,  e = a/ (1 + a), and f (u, e) is given by (3.32). The cutoff rate of a 

binary erasure channel is 

If (2.37) is rewritten as 

Per  +  2(P(1  — Pe _Per))  = 21 — R  e  —1, (3.38) 

and both sides of (3.38) are multiplied by --y, = Ro lb where "lb  is the bit energy-to-

noise ratio, then (3.38) can be rearranged in the form 

2/5e +  P r  X — 2 ( Pe(15e + X (Per — X(15e + Per )) ] f 
'Mg, a, 6) 

›c2 
(3.39) 

where 



— és+ 
1+a  

f f (u , e2)du 	 (3.40) 
(1+4  

a 

00 
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X = 21 	—1  

—6/a 	 .e. 
Pe 	f f , ei)du + 	e  4  

0 	 1 + a 

00 
15„ 	— gf f (u, ejdu 

6 

_ 	6 	4 
e  4 a + 1+ a + 	 ] e°  

1 + a 	
f f (u , €3)du — 

(i-Fa)6  
a 

with 

u + 4£ 
ei 4 f (u , 6) = --e 	I (tAljt) 

4 

(3.41) 

(3.42) 

and p = /2/ r'y. With worst case jamming and the best threshold parameters, the 

bit energy-to-noise ratio required for coded operation at r =  Ro  is 

= min max 'Yb(ii, a, 6)  I r — 14 • 
a ,C) 05.145.1416 

(3.43) 

Optimal threshold parameters have been computed for the linear and ratio thres-

hold mitigation techniques. These are tabulated in Table 3.1 along with the 

required bit energy-to-noise ratios and worst case jammer parameters. Figure 3.3 is 

a plot of "lb  against Rj 1  for these techniques, where the linear threshold apparently 

performs the best. Observe from Table 3.1 that the best performance is achieved 

at Rj1 P--1 3.00. Also, at 47 1  3.00, the minimax solution for the ratio threshold 

mitigation technique occurs at a = 2.52 and p 0.73, requiring 9.576 dB. This will 

be important when the adaptive rate control algorithm is considered. 

For implementation purposes, it is desirable to keep the threshold parameters 

constant. In the sequel, the receiver is assumed to use a linear threshold with 

parameters a = 1.45 and C= 1.72 corresponding to Ro-1  = 3.00. To study the 
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Table 3.1 Parameters for Threshold Interference Mitigation 
Techniques Versus a Partial-Band Noise Jammer 

R2,4 Linear 	 Ratio 
a 	i's 	lb (dB ) 	P 	a 	'lb (dB) 	p  

1.25 	2.00 	3.07 	13.398 	0.18 	- 	- 	- 
1.50 	1.81 	2.69 	11.173 	0.32 	- 	- 	-- 
1.75 	1.70 	2.43 	10.223 	0.44 	- 
2.00 	1.62 	2.23 	9.739 	0.54 	3.51 	10.238 	0.46 
2.50 	1.52 	1.93 	9.343 	0.70 	2.86 	9.723 	0.61 
3.00 	1.45 	1.72 	9.272 	0.83 	2.52 	9.576 	0.73 
3.50 	1.40 	1.56 	9.333 	0.93 	2.28 	9.586 	0.84 
4.00 	1.38 	1.48 	9.454 	1.00 	2.12 	9.671 	0.92 
5.00 	1.35 	1.73 	9.711 	1.00 	2.01 	9.926 	1.00 
6.00 	1.34 	1.97 	9.943 	1.00 	2.01 	10.169 	1.00 
8.00 	1.31 	2.40 	10.345 	1.00 	2.01 	10.586 	1.00 

10.00 	1.29 	2.79 	10.680 	1.00 	2.01 	10.937 	1.00 

effect of using these parameters at other cutoff rates, the worst case jamming frac-

tions and signal-to-noise ratios have been computed and are presented in Table 3.2. 

Comparison of Tables 3.1 and 3.2 shows that the performance is insensitive to the 

use of suboptimal threshold parameters, except at higher cutoff rates. 

3.6 Rate Control Algorithm 

Several assumptions are made concerning the implementation of the adaptive rate 

control system. First, the receiver generates rate change requests every ./V,. channel 

uses. When a rate change is requested, it requires Nr  code symbols to take effect. 

This is intended to model the delay characteristics of the feedback link, although in 

an actual system the rate change period and channel delay will probably be dis-

tinct. The receiver computes a short time autocorrelation every Na  = KN, chan-

nel uses. Finally, it is noted that the receiver only needs to retain the information 

set X k  in (2.11), because the autocorrelation can be computed as the code symbols 

are received. The algorithm basically proceeds as follows: 
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hard decision decoding 

linear threshold 

ratio threshold 

soft decision decoding 

INVERSE CUTOFF RATE 1/R0  

Figure 3.3 Performance of Threshold Interference 
Mitigation Techniques 
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I. 

Ne-n 
E z i z i ,„ 
i-1 

N. 	N1 
E z? - --(1 - e—/3 ) 

s 
 j-1 

1 

1 
(n) = 

, n=1, 2, •••, 

. 	 (3.44) 
n 

Table 3.2 Performance of Linear Threshold 
Interference  Mitigation Techniques 

with Suboptimal Parameters 

Rj1 	p 	'lb(dB)  

1.50 	0.122 	12.256 
1.75 	0.227 	10.750 
2.00 	0.340 	9.993 
2.50 	0.582 	9.384 
3.00 	0.838 	9.272 
3.50 	1.000 	9.355 
4.00 	1.000 	9.472 
5.00 	1.000 	9.715 
6.00 	1.000 	9.947 
8.00 	1.000 	10.360 

10.00 	1.000 	10.713 

1. The receiver generates an estimate of the channel covariance function 

0(n), n = 0, 1, 2, ..., m. During this time the receiver has no initial estimate 

of the channel fade state and consequently the value of b is unknown. It 

therefore uses the ratio threshold to generate erasures with the parameter 

a = 2.52. 

Since neither the receiver nor the transmitter has an initial estimate of ak , the 

initial value ete E[4] ?)(0) is used. This implies that the transmitter ini-

tially signals with the average rate TR-  and average lowpass energy Ea  = S/E. 

After the reception of Na  code symbols, the receiver computes the initial chan-

nel covariance estimate 

Note that the receiver must know the average transmitted signal energy Ea , 

and be supplied with an estimate of the jammer noise spectral density  N.  It 
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rk+Nr-1 =  

0(0) 
(3.45) 

(3.47) e)(n) 
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is assumed here that the receiver knows these values exactly. 

2. After estimating the channel covariance function, the current channel fade 

state is estimated by solving the system of linear equations in (3.23). This can 

be done very efficiently by using Durbin's recursive procedure [16, pp. 411-12]. 

The fade level estimate â is computed using (3.20). An improved fade level 

estimate for the (k N,. —1) th  interval can be computed recursively by using 

(3.24). 

3. The receiver then generates a rate change request 

where the rate change request is assumed to take effect N,. channel symbols 

later. 

4. Since the receiver can now estimate the channel fade state, it uses the linear 

threshold to generate erasures with the values of a and 1.; at the optimal 

operating point Rir 1  Pe' 3.00. From the previous section b = ek ii/ 4. How- 

ever Ek a= 41(0)E8/ tse, and therefore the receiver tests the condition 

. 2 OP)E8   
> aZo 	 b . 

4 â 
(3.46) 

5. The receiver continues to request rate changes every N,. code symbols until a 

new channel covariance estimate is to be computed. 

6. VVhen estimating the channel covariance function, the receiver averages the 

last P covariance function estimates. Therefore, 

P-1 
• 	 E îbi-i (n) 

where e(n) is the i th  covariance estimate. This enables the receiver to track 

slow variations in the Doppler spectrum. 
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3.7 Simulation Study 

For the simulation study the assumed fading model is 

cfr(n)02Ç 1 n 1 , 0<<1 . (3.48) 

This model implies that the piecewise constant fading process {ak }, is a Markov 

process with the state equation 

(64-1-1, bk+i) = (ak, bk) 	(wik, w2k) • 	 (3.49) 

In (3.49), - lk and w2k  are i.i.d. zero-mean stationary white Gaussian sequences 

with E[wik  wit ] = 02(1 — Ç2)S ki  , i = 1, 2. The model in (3.48) can also be rewrit-

ten in the familiar form 

where v = ln(ç) is the fading bandwidth and /3 = 202. 

Throughout the simulation study, it was arbitrarily assumed that  02  = 0.25, 

ç = 0.95, m = 10,  Na  = 500, and P = 10. The results of the simulation study are 

summarized in Figure 3.4. Figure 3.4 shows the performance of a nonadaptive sys-

tem with hard decision decoding and no side information, the performance of a 

nonadaptive system using the ratio threshold, and the steady state performance of 

the adaptive system with the linear threshold. For the adaptive system, the steady 

state performance is plotted for several rate change periods. In all cases p =1, or 

broadband jamming, resulted in the worst performance. 

Observe from Figure 3.4 that the performance is improved by about 3 to 4 dB 

by using the adaptive rate control algorithm, if the channel coherence time is large. 

The effectiveness of adaptive rate control is largely determined by the vr and vNr  

products, where r is the channel propagation delay in units of code symbols. As Ç 

increases or u  decreases, the performance will improve. When Nr  = 1, 

vr =VN.  0.51, and some additional improvement is expected with a smaller 
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1 

R0  = 1 — log2(1 4- D) 	 (3.51) 

where 

1 •  

R,,ry b  
(3.53) 

and 

e(x) (3.54) 

I. 

fading bandwidth. 

In Figure 3.5 we plot the performance of FH/BFSK signalling for a Rayleigh 

fading channel with varying degrees of fading. In all cases noncoherent detection is 

used, and decoding is performed using a weighted linear sum metric with perfect 

knowledge of the jammer state. 

When the code symbol rate is changed very frequently to match the channel 

conditions, the performance is best, as expected. If the receiver has a perfect esti-

mate of the channel fade state and performs soft decision decoding with a weighted 

linear sum metric, then the cutoff rate is 

Xp x  co 

D = max minf 1+ A  e(z)p(x)dx , 	 (3.52) 
P 	X 0 1 x 2  

By using (3.52) and (3.53) in (3.51) the value of D simplifies to 

, 0 < X < 1 . 	 (3.55) 
1 — X 2  - 

This is exactly the same as an unfaded channel with an unfaded partial-band noise 

jammer prescribed by (1.17) and (1.18). 

D= 	
p e  1+ x 
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Figure 3.4 Performance of the Adaptive Rate Control Technique 
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+ Faded Signal. Unfaded Jammer 
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Figure 3.5 Minimum ^/b Required for Coded Operation at the 
Cutoff Rate with Soft Decision Decoding 

and Jammer State Information Using 
a Weighted Linear Sum Metric 
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However at low rates the performance digresses from ideal. This is because 

the receiver is generating a noisy estimate of the channel fade state. The estima-

tion error is due to the finite order predictor, and the partial band interference. 

Furthermore as the rate change period becomes large, it is expected that the actual 

and estimated channel states will be independent. When this happens, the value of 

D becomes 

	

00 00 	 X 	X 1, r 
p e— 	p 

	

D max minf
f 	

e 
x 

 e_dx dy . 
X  001  - X 2  

(3.56) 

where x and y are i.i.d. with the density in (3.53). This is identical to the expres-

sion describing the performance of constant rate signalling over a Rayleigh faded 

channel with a Rayleigh faded noise jammer, assuming that soft decision decoding 

is used with a weighted linear sum metric and perfect jammer state information. 

The performance curves for this channel and decoder in Figure 3.5 are similar to 

the ones that characterize the system at hand. 

3.8 Summary 

In this section an adaptive rate control algorithm was presented for jammed fading 

channels. The algorithm tracks variations in the received signal strength, and by 

doing so dynamically changes the transmitted code symbol rate. It also generates 

side information by using a linear thresholding technique. The adaptive rate con-

trol algorithm was shown to offer significant improvement in the range of 3 to 4 dB 

over a nonadaptive system. Even when the actual and estimated channel fade 

states are (nearly) independent, the performance is improved by about 2 dB. 

No attempt has been made to determine the effects of rate quantization, back-

ground noise, tone jamming, faded jamming, and the problem of generating an esti-

mate of N.  These problems are for future research. 
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4. FH/MDPSK Signalling 

4.1 Generation of the FH/MDPSK Signal 

In DF'SK signalling, the phase Information is carried by the differential phase 

between the phases of the adjacent signal symbols. It follows that the determina-

tion of the information carrying phase is obtained by estimating the difference in 

phase between adjacent received signal symbols, and the need to acquire the abso-

lute phase for each transmitted symbol is circumvented. This mode of detection is 

referred to as differentially coherent detection. Since detection requires two adja-

cent received symbols, there will be an uncertainty in the detection of the first 

symbol. Further, error in the detection of the first symbol may propagate, the 

result of which may be viewed as a transient behaviour. 

Since the information is carried in the phase, the envelope of a DPSK signal in 

maintained constant. The MDPSK signal can be represented by 

8k(t) .= A cos(co +O )) (k —1)T,  <t  < kT, 

where T„ is the symbol duration and elk) is the accumulated phase up to the 

transmission of the kt h  signal symbol. We have 

ec) e --1 ) + ) 

where 02-1)  is the accumulated phase up to the (k-1)8t  transmission interval and 

O (k)  is the differential phase that takes on one of the M possible phases from the 

set 

(4.1) 

(4.2) 

which can also be written as 



m27r 	 M-2 M 
e m = 0  ±1,  •••9 • 2 	2 10. (4.3b) 
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Let R„ and Rh be respectively the symbol rate and the hopping rate. Define 

Rh 
L = 	. 

R, 

Slow frequency hopping implies that L<1 (for fast frequency hopping L>1). The 

parameter r = 1/L represents the number of symbols per frequency hop. There will 

be r data symbols contained in any one frequency hop. That is, r MDPSK signal 

symbol intervals are mapped onto one hop interval. Let Th be the hop interval and 

(—v-1Th , vTh  ), where7--1 := (v-1), be the Vth  hopping interval. We then have 

vTh  = (v-1)Th E kT8  . 

Define 1-2 to be the set of r symbol intervals. Let  8h(t)  denote the transmitted 

signal during the Vth  hop, i.e., during the interval [(v-1)Th , vTh ]. Then the signal 

set in the lith  hop is given by 

8h,v(t)= E 8k(t) (v-1)Th  < t < vTh • 
k e 

4.2 Differentially Coherent Detection 

The reason that the differentially encoded and difference detected system works 

well is due to the tacit assumption that the received carrier phase during any one 

hop is constant. As mentioned earlier, the first data symbol in each hop is either 

lost or contains a phase uncertainty, since a phase reference has not yet been esta-

blished for its detection. Because of this uncertainty, the information rate of an 

MDPSK system is reduced. It is necessary to make r large to minimize this loss in 

information rate. On the other hand, a larger value of r also means that more data 

symbols are affected by jamming during any one hop interval. 

(4.4) 
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Let kk,)  and â2-1)  be respectively the estimates of 02) and Olk,-1). Let ink)  
and Oa  be respectively the unambiguous estimate and the ambiguous phase (which 

may include the carrier phase). Then 

ê (k) 	b(k) 	b(k—i) 

	

ac 	ac 

( (k
)  + os) — (nk + os) 

(k) 	;14 (k—i) 
u 	u 

Thus, within any one hop interval only the errors in the unambiguous estimates of 

the phases in successive symbol intervals give • rise to an event error when a given 

hop is jammed. Here, it is assumed that when a given hop is jammed, all r symbols 

in that hop are affected. A simplified MDPSK demodulator is shown in Figure 4.1.  

(4.5) 

I 	 r(t) 	frequency »  
dehopper 

Figure 4.1 Differentially Coherent Demodulator 

Each decision region in the differentially coherent detection of an MDPSK sig-

nal is of size 7/M. An error event occurs if a given hop is jammed. Then, in terms 

of phase error estimates, an error event occurs if 

Suppose that the actual value of t9 (k ), k E 	IS On , where the value of On  is speci- 

fied by (4.3b). Then, the error event can be written as 
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ê(k)i > 1;47  (M-2 I M n = 0,±1,±2,...,± — 
2 	

-- , k e n . 	(4.7) 
' 2 

Let Ék), k e II denote the signals received corresponding to the Vth  hop. 

Assuming that the jammer signal in any one hop interval is constant, both in ampli-

tude and phase, the jamming signal can be represented, in complex notation, by 

j(v) 

where 0.1  is a random phase uniformly distributed in the interval (0, 2r) and the 

superscript (I') denotes jamming occurrence in the Vth  hop. Then, successive 

received signals corresponding to the symbols transmitted in the Vth  hop are given, 

in complex notation, by 

Ac'  2-1)  + 	 (4.8a) 

and 

Z(k) = A ein , (k) 	 (r) 

+Ie" , 	 (4.81o) 

where k  e fi.  it is noted that, if O (k)  equals 0, i.e., 0 is the transmitted phase, then 

the received signals corresponding to consecutive MDPSK symbols in which the dif-

ferential phase is zero will be identical. In this event, there can be no phase error. 

Define the phase estimate 0)  by 

(k)  := arg(e )  —  2(k-1)) , k e  fi  . 	 (4.0) 

Following the notation of [2], let 

Qzrn/m = Pr liSbn — e (k)  11 (4.10) 

M-2 M 
for n = 0, ±1, 	

2 	j—  be the probability of error. By symmetry, we 

have 



(M-2)I2 
+ 2 E C hem /M1 2(M-1) 	n•-.1 

(4.14) 
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2ffn/M  Q-2/M;  
M-2 

n = 1, 2, ..., 	. 
2 

(4.11) 

It is noted that the above formulation of error events and error event probabil-

ities is equally applicable to partial-band noise or multitone jamming. 

4.3 Multitone Jamming 

In the presence of multitone jamming, the symbol error probability is given by [2] 

(M-2)I2 
Po (M) = --e- [Q. + Q, + 2 E ch.n/m1 • • Ad 

n n=1 
(4.12) 

If 00  = 0 is a transmitted phase, then the received signals corresponding to the 

(k-1) th  and k th  symbols that have been transmitted during the vth  hop are equal. 

That is, if 0 (k)  = 0, then ek)  also equals 0 and Qo  = O. The symbol error probabil-

ity then becomes 

(M-2)/2 
P8 (M) 1- [Q -I- 2 E 2rn/M1• 

n-1 

It follows that the bit error probability is approximately given by 

M  
 Pb(M) = 	
p 

2(M-1) 8

(M) 

(4.13) 

Let Q be the number of distinct jamming tones. Then the jamming power per 

tone is Jo  J/Q . Let 02 denote the jamming power per tone to signal power 

ratio, i.e., 
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12Ebej 

Pb(2) = 1 

-2- 	, Ebej  < 1 

1 , Ebej  > 1 

(4.15) 

Eb 
> 1.85 

1 	El) 
2 
 <--- < 1.85(4.16) 

NJ  

Eb 	1 

< 

1 

The probabilities 0 -v2Irn/Ilf need to be evaluated using a geometric consideration [1], 

[2]. For the 2 and 4-ary FH/DPSK signals, the worst case bit error probabilities are 

given by 

and 

1 1 pb  (4) = 	icos q.  [  2EbiNS 1  j 2Eb  

0.5 	

2V2Eb/Nj 	4VEb /Nj  + cos-1
[ ej+1  

37r 

0.2592  
Ebej  

1 

a 
1 

4.4 Partial-Band Noise Jamming 

The derivation of the symbol error probability involves a geometric consideration. 

Pawula et al 123] have derived a concise expression for the average symbol error 

probability performance in an additive white Gaussian noise channel: 
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Sill—  2742 	 No 	M 

	

M  r 	  
P e(M) — 	J 

 
d a. 

ir 	 ir 

	

o 	1 — cos—cos a 
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(4.17) 

The average symbol error probability performance of FH/MDPSK in partial-band 

noise jamming is obtained by replacing Eb/No  in the above equation by pEb/Nj 
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and multiplying the result by p, where p is the fraction of the spread spectrum 

bandwidth the jammer chooses to concentrate its jamming power. The bit error 

probability performance of FH/MDPSK in partial-band noise jamming is then given 

by 

Pb(M) 2(m_1) P8(M, P) 

	rEb 
= 2(M-1) N j  

is the bit energy-to-jammer noise power spectral density ratio. In (4.18) the param-

eter p has been absorbed into the effective bit energy-to-jammer power spectral 

density ratio, 'lb . For a fixed value of Ebej , the bit error probability is maxim-

ized when  'Yb  attains its maximum value, and the optimal value of p is given by 

Po 
= EaNi 

The maximum bit error probability is then given by [2] 
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where 

Pm. := IbmxP8(M) • 

For binary FH/DPSK transmission in partial-band noise jamming, the bit error 

probability is given by 

pEb 
Pb(2) = P8 (2) = i-exp [-7,..7) • (4.21) 

The worst case bit error probability performance is obtained by differentiating the 

right-hand side of (4.20) and equating the results to zero. The resultant optimal 

jamming fraction,  p0 ,  is given by 

1  
Po 

Eb/Nj 

and the maximum bit error probability is given by 
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4.5 Adaptive Quantization 

While the adaptive rate control policy discussed in section 2 is from the MFSK sig-

nalling point of view, a similar approach can be used with MDPSK signalling to 

render a fading channel seemingly stationary. In this subsection, we consider an 

adaptive quantization strategy as a means of coping with channel fading. 

It was pointed out in an earlier subsection that, to reduce the complexity of 

Since a group of r M-ary symbols will experience similar distortion during any one 

use of the channel, the channel will appear to the encoder/decoder pair as having 

memory. To render the channel memoryless, it will be necessary to use interleaving 

at the transmitter and deinterleaving at the receiver. With a sufficient depth of 

interleaving, the information symbols sent via a single use of the channel would be 

randomized and the coding channel will appear memoryles,s to the encoder/decoder 

pair. 

Interleaving/deinterleaving increases system complexity. To reduce the com-

plexity of the deinterleaver, it is necessary to quantize the demodulated signal to at 

least 8 levels (for soft quantization). 

If the channel exhibits fading, the demodulated signal will fluctuate. The 

quantizing threshold should follow the signal fluctuation. This implies a necessity 

to adaptively adjust the quantizing thresholds. Let there be 2N quantizing levels 

and let y(t) be the input to the quantizer. The quantizer output is given by 
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if TN__1(t)(t) 

1 	if 0<r (t Kri(t ) 

where Ti (t),  i 	1, 2, ..., N-1, are the dynamic threshold values. In practice, we 

choose a set of fixed threshold values and amplitude scale the input y(t) based on 

an estimate of the fade level of the channel. A crude approach is to use a moving 

average of the demodulator output as the scaling factor. That is, the moving aver-

age i(t) is given by 

T. 

U(t) = f y(t)dt . 

Let y*i (t) be the sample value of the i th  chip. The moving average e(t) is then 

given by 

i-1 

where I is the moving average window size and  y(t) 	y(t—i7;), with 7', being the 

encoded symbol interval. The quantizer is as shown in Figure 4.2. Here, the esti-

mation of the fade level and the quantization operation are independent. A more 

efficient approach is to use feedback to generate an estimate of the scaling factor. 

We propose to compute the quantizer range factor an  (the quantizer range fac-

tor is a factor used to normalize the quantizer input so that the actual quantizer is 

a fixed device) using an iterative formula, 
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Figure 4.2 Quantization of Normalized Input using Moving Average 

en+1 Mi en P 	 (4.23) 

where {Mi } is a set of multiplicative constants that satisfy the condition 

1 > < M2 < • • < MN > 1 . 

Intuitively, if an  is too small, the quantizer input amplitude will be too large and 

the output will have a magnitude larger than the correct value. The Mi  selected to 

compute an+1  should be larger than unity, so that an+i  > an . On the other hand, 

if an  is too large, the quantizer input would be small compared to the correct value. 

Then an Mi  <1  should be selected to yield an an+i  < an . Equation (4.23) is thus 

a random walk process. The trick is to execute the random walk in an efficient 

manlier. This amounts to making a suitable assignment of the set {Mi }  and select-

ing the M1 18 in a correct way. 
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With a correct normalization factor (quantizer range factor), we expect the 

magnitude of the quantizer input to be unity. VVith a 2N-level midriser symmetric 

quantizer, we only need to consider the positive excursion half. Let us consider the 

positive half, i.e., a positive amplitude pulse has been transmitted. If the input is 

within a quantum perturbation, i.e., (±k5), of unity, where k > 1, the output will 

be the level NA, where k and 8 are chosen to making the random walk process of 

(4.23) converge. The quantum size referred to above in thus 2k8. Thus, the input 

in the range [1-1c8,1-1-k8) is mapped onto the output level NA. 8 may be deter-

mined as a function of k as follows: 

2ks  
N/2 

or 

For an 8-level quantizer, N = 4. Choosing k = 2 in (4.24), we have 8 = -1- and the 
6 

threshold settings are 0, 2/3, 4/3, 6/3, with the mappings 

[0, 2/3) 	1 

[2/3,  4/3)-2 

[4/3, 2) 	3 

and 

[2,  o4—+4.  

The M'a are chosen such that 

MN/42 = 1 .09 MN /2±i =1 ±i5, = 1, 2, • • • ,N/-1.  

For . 	the 	N = 4 	case, 	the 	,multiplicative 	constants 	are 

= 1-1/6, M2 =  1,  M3 = 1+1/6, and M4 = 1+1/3. The output, !in  = level i, 
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is used to select M. The adaptive 8-level quantizer is shown in Figure 4.3, where 

the initial value, ao, is to be obtained by averaging the first few received chips. 

It is noted that choosing a value of k in (4.24) greater than unity has the effect 

of decreasing 8, and hence the values of the Mi 'a will be closer to unity. The net 

effect is that the random walk process takes a smaller step size during each itera-

tion. For a slowly fading environment, slow quantizer adaptation would be desir-

able. A computer simulation study of the adaptive quantizer described in this sec-

tion has been discussed in [24] for a similar application. Adaptive quantization can 

potentially compensate for signal fading. 

a n 
MN  

ch  

Figure 4.3 An 8-Level Adaptive Quantizer 
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4.6 Summary 

This section has examined the error probability performance of FH/MDPSK signal 

transmission in the presence of multitone and partial-band noise jamming. Since 

differentially coherent demodulation requires two adjacent received M-ary symbols 

to generate one information symbol estimate, at least two M-ary symbols per fre-

quency hop are needed. This is referred to as slow frequency hopping, which has 

applications in, for example, the Nffisatcom program [25]. 

The derivation of the bit error probability expressions presented in this section 

under the influence of multitone and partial-band noise jamming assumes an 

unfaded channel. Practical channels normally exhibit some form of fading. Adap-

tive rate control algorithras of the form proposed in section 2 can be used here to 

render a fading channel seemingly stationary. An adaptive quantization approach, 

which is less complex and can potentially compensate for signal fading, is proposed 

for the reception of MDPSK signals over a fading channel. The effectiveness of 

adaptive quantization as a means of coping with rain attenuation has been studied 

in [28]. Extensive computer simulation study for the present situation will be 

necessary to ascertain the effectiveness of adaptive quantization for MDPSK signal-

ling over a fading channel with jamming. 

Except for the change in the bit error probability performance, the code per-

formance studied in [9] for FH/MFSK signalling is also applicable to the 

FH/MDPSK system examined in this section. 
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5. Conclusions 

In this report we have examined adaptive proces,sing techniques for communication 

over a jammed fading channel. Section 2 introduces an adaptive rate control 

method for FH/MESK signalling over a jammed fading channel. An adaptive rate 

control algorithm that tracks the variations in the received signal by dynamically 

changing the transmitted code symbol rate is described and discussed in section 3. 

The algorithm also generates side information for decoding by using a linear thres-

holding technique. The adaptive rate control algorithm offers a significant improve-

ment, in the range of 2 to 4 dB, over a nonadaptive system. Of particular impor-

tance is that the adaptive rate control algorithm renders the faded coding channel 

seemingly stationary. In this way, the code ensemble performance for a stationary 

coding channel discussed in a previous report [9] is also valid for an adaptive rate 

contolled communications system in a jammed fading environment. 

In certain applications, such as the Mlsatcom program, slow frequency hop-

ping with MDPSK signalling is preferred over MFSK transmission. The bit error 

probability performance is studied in section 4. An adaptive quantizing approach 

that can potentially compensate for signal fading is also discussed in section 4. 
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