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PREFACE  

The work reported in this interim progress report is divided into 

four parts. The first two parts report the completion of work started 

under the previous contract. Part I presents the results of a study of 

the application of trellis codes to noncoherent frequency hopped spread 

spectrum systems. The second is the final results on the error 

performance of a high data rate, hopped spread spectrum transmission 

system that employs band efficient modulations that are coherent during 

each hop. Earlier reports provided results on the signalling spectrum, 

optimum receivers and system complexity. 

In Part III, the first considerations of uplink synchronization of 

hopped spread spectrum systems are presented. A possible downlink 

synchronization procedure is described as well. Various aspects of 

synchronization are outlined, and options and strategies for system 

implementation are presented. 

Part IV describes the research begun on the detection performance 

of intercept receivers for frequency-hopped, spread spectrum systems. 

The received signal is modelled as having an unknown but discrete 

frequency. Performance is determined for a coherent receiver, which 

represents an upper limit to attainable performance. Theory has been 

developed recently for the case of noncoherent interception. These 

results will be available for the final report. 
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ABSTRACT 

In noncoherent frequency hopped spread spectrum communication systems, 

M-ary frequency shift keying (FSK) is the usual form of modulation. In this report, coded 

systems are studied which consist of convolutional codes with the codewords mapped 

onto multiple tone signal sets. The signals employ the same set of orthogonal tones as 

Mary FSK, but several tones may be transmitted simultaneously. This allows an increase 

in the number of signals, to accommodate the redundant information introduced by the 

coding, without any bandwidth expansion. Some of Ungerboeck's rules for assigning 

signals to the trellis branches are employed. 

The results of this study were obtained from simulation of transmission over an 

additive white Gaussian noise channel. Viterbi decoding was used, with both hard and 

soft decoding metrics. Performance was measured as the energy per bit to noise spectral 

density ratio (Eb/No  ) at a bit error rate (BER) of 10 -4  . There are seven different coded 

systems which encompass information rates of 1, 2, and 3 bits per signalling interval, 

and employ sets of 2, 3, 4, or 8 orthogonal tones. There exists at least one coded system 

at each information rate which gives a performance improvement of 2 dB compared to 

the reference system of M-ary FSK. The maximum improvement achieved was 4.6 dB for 

the case of two tones. The best performance is obtained with soft decision decoding 

metrics. In some cases theoretical error bounds can be calculated, and they support the 

simulation results. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The purpose of this study is to investigate methods of improving the performance 

of a communications system by the use of coding. A block diagram of the coded system 

under consideration appears in Figure 1.1. The actual system is intended for digital 

satellite communications, and may be incorporated into a frequency hopped spread 

spectrum anti-jam application. The type of modulation considered is frequency ghift 

keying (FSK) in which one of several different tones is sent in each signalling interval. 

Details of the modulation scheme and the receivers employed are given in Chapter two. 

The basic principle of coding is that redundant information is added to the 

information bit stream so that transmission errors may be detected and/or corrected. 

Because of this redundant information, more signals must be sent over the channel to 

maintain the same information transfer rate as in the uncoded case. This can be 

accomplished by using the same set of signals at a faster signalling rate, or by increasing 

the number of signals used (signal set expansion). Both of these methods usually require 

a larger bandwidth than the original uncoded scheme for noncoherent FSK signalling. 

Alternatively, the information rate may be lowered to maintain the same bandwidth 

occupancy. 

The goal of this study is to find a method of improving the system performance 

without sacrificing the data rate or increasing the bandwidth required. In frequency 
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hopped systems, the processing gain is the ratio of the overall system bandwidth to the 

bandwidth occupied during each hop, and it indicates the ability of the system to reject 

jamming noise. Increasing the modulation bandwidth decreases the processing gain of 

the system, which is undesirable. The technique proposed in this study is to use 

convolutional codes with Viterbi decoding to improve error performance. The signal set 

is expanded by the use of multiple tone signals to accommodate the redundant bits, 

instead of the single tones which are used in conventional M-ary FSK. This does not 

increase the modulation bandvvidth and thereby affect the processing gain. This study 

considers the performance of the encoder/decoder and modulator/receiver over an 

additive white Gaussian noise (AWGN) channel. 

1.2 Literature Review 

There have been several studies of the application of conventional coding to 

noncoherent anti-jam communication systems [1,2,3,4]. These papers explore the use 

of various codes to reduce the effect of a partial band jamming signal. Block codes, 

convolutional codes, and repetition codes (diversity) have all been investigated, as well 

as different combinations of concatenated codes. Reed-Solomon codes and 

convolutional codes both have good performance, especially when combined with 

diversity. Conventional M-ary FSK modulation was employed in all cases, and usually 

bandwidth expansion was allowed to accommodate the coding. Both hard and soft 

decision demodulation have been considered. Hard decision receivers select which 

signal is closest to the transmitted signal and relay that decision to the decoder. A 

metric, which is proportional to the logarithm of the probability that each signal was 

received, is computed by a soft decision receiver and used by the decoder. In a jamming 

environment, soft decision decoding is not desirable unless there is side information 
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about the presence of the jammer, because jammed signals seriously degrade the 

operation of the decoder. If side information is available, soft decision demodulation 

gives the best performance: otherwise hard decisions are superior [1]. This report does 

not consider the effects of jamming or frequency hopping on the communication system, 

but considers the performance in white noise. It is noteworthy that convolutional codes 

showed good performance under jamming conditions [3,4]. The Viterbi decoder is also 

readily adaptable to accept hard or soft demodulator decision variables. 

There are two papers which consider the application of coding to noncoherent FSK 

signalling [5,6]. They both employ conventional M-ary modulation schemes and require 

bandwidth expansion or reduced data rate to accommodate the coding. The first study 

[5] considers continuous phase FSK, which has phase continuity between tones in 

subsequent signalling intervals, and also uses non-orthogonal tone spacings. The 

demodulation technique, although noncoherent, makes use of the phase continuity and 

employs an unconventional receiver structure. Practical frequency hopped systems, 

where the hopping occurs over large bandwidths, cannot maintain phase continuity 

between hops, and so these modulations are inappropriate. Keightley [6] studied the use 

of convolutional codes with binary and 4-ary FSK. Noncoherent demodulation with hard 

decisions was used for application to a frequency hopped spread spectrum system. The 

coding gain observed at a bit error rate (BER) of 10 -5  was approximately 2 dB in the 

binary case, and negligible in the 4-ary case. The codes employed had rates of 1/2 and 

1/3 with constraint lengths of 7 and 8 respectively. Thus the system transmission rates 

were reduced to 1/2 and 1/3. 

Much work has been done recently on trellis coding [7,8,9,10] and a functioning 

system has been implemented in a modem. This technique provides large coding gains 
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without bandwidth expansion or reduction of data rate. All of the documented studies 

have been confined to coherent communication systems. in which the carrier may be 

both amplitude and/or phase modulated. The uncoded signal set is expanded by adding 

different levels of phase and amplitude modulation without requiring additional 

bandwidth. The resulting expanded signal constellation contains a symmetrical array 

of signal points. This signal set is partitioned or subdivided into subsets which have 

increasing distances between signal points in the subsets. The signal points are then 

assigned to the codewords of a convolutional code, according to a set of rules designed 

to provide maximum coding gain. This study employs some of the concepts of trellis 

coding applied to FSK signal sets. The signal constellations are expanded by using 

multiple tone signals so that additional bandwidth is not required. Signal set partitioning 

is also carried out, but not in the same manner as in coherent systems. The multiple tone 

signal constellations cannot be partitioned into subsets with increasing spacing between 

signal points. However, some of the rules from trellis coding are employed when 

mapping codewords onto signals. It is anticipated that the application of the principles 

of trellis coding will provide significant coding gains because of the success realized in 

coherent systems. 

1.3 Report Summary 

This report is divided into four chapters. An indication of the problem under 

consideration and the extent of research in this area has been given in the introductory 

chapter. Chapter two contains a detailed theoretical explanation of the various 

components in the system. First the modulation scheme and the structure of the different 

receivers is explained, followed by a description of the error correcting codes and the 

operation of the decoder. The second chapter concludes with an explanation of how the 
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coding and modulation schemes are combined in the overall system and presents some 

bounds on error performance. There are seven different cases which were investigated, 

and their characteristics are detailed in this chapter. 

In general, the problem of theoretically evaluating the error performance of the 

noncoherent coded system does not appear tractable, and so computer simulations were 

carried out. Chapter three is a presentation of the results of the simulation programs. 

A brief description of the program structure is given first, followed by error performance 

curves for each of the seven cases considered. The results for all the cases are 

summarized in a table and then the performance of each case is discussed in detail. 

Chapter four contains the general conclusions which may be derived from the 

simulation results. Suggestions for, further research on this problem are given also. 
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CHAPTER TWO 

THEORY 

2.1 Modulation 

2.1.1 Modulation Scheme 

The reference modulation for this study is M-ary FSK. This scheme is commonly 

used in frequency hopped spread spectrum satellite systems for digital communication 

[1,6j. One of a set of M tones is sent in each signalling interval (T seconds). The number 

of tones (M) may be 2, 4, 8, or 16 corresponding to 1, 2, 3, or 4 bits of information per 

signal. The tones are orthogonally spaced in the frequency domain, which entails a 

minimum frequency difference of 1/2T hertz between adjacent tones. 

The alternative modulation schemes, which allow coding without rate reduction, 

are divided into two types. The first expanded modulation technique employs the same 

set of orthogonal tones, but more than one tone can be transmitted in each interval 

(jT,(j+1)T). All possible combinations of the M tones are used, and the signal space is 

expanded to 2A4  signals which transmit M bits per symbol period. This multiple tone 

signal constellation does not require any additional bandwidth, but there are other 

considerations. The transmitter requires increased power to send several tones 

simultaneously, if .  each tone has the same energy as a single tone in the reference 

system. The different modulation schemes will be compared with the same average 

signal energy, but the variation in energy between signals for this multiple tone case 
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could require a transmitter with a larger peak power capability. This signal constellation 

also includes a zero signal (no tones sent), which could be undesirable in some systems. 

The spacing of signals in the constellation has a significant effect on the system 

performance. In the reference M-ary FSK system, the single orthogonal tones are 

equidistant in the signal space. The multiple tone signals with constant energy tones 

form the vertices of a hypercube in M dimensional space, where M is the number of 

tones. This can best be visualized in three dimensions as shown in Figure 2.1. This first 

type of modulation is used in four of the seven cases to be considered. Case 1A employs 

two tones, Case 2A employs three tones, and both Cases 2B and 3A use four tone signal 

sets. 

The second type of multiple tone signal set was devised to reduce the variation in 

signal amplitude among the various possible signals. The same set of orthogonal tones 

is again employed'. Instead of permitting all possible tone combinations, a more limited 

subset is allowed to comprise the signal set. For the two and four tone cases, only single 

tones and pairs of tones are used as signals. The eight tone case employs single tones 

and sets of three tones. The pairs and triples of tones have the amplitude of each tone 

reduced so that the signal energy is equal to that of a single tone signal. The zero signal 

is excluded from these signal sets and therefore the signal energy is constant for this 

scheme. This makes demodulation simpler as will be explained in the discussion of 

receiver structure. 

The constant signal energy multiple tone scheme is used in three cases which were 

simulated. Case 1B employs two tones and thus only three signals are available in each 

signal interval. These signals are si (t) = cos w i t, s2(t) = cos w2t , and 

s3(t) = ( cos w i t + cos w2 t )/ 	. The modulation is performed over two symbol intervals 
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(a) Single Tone (FSK) 

(b) Multiple Tone (constant energy tones) 
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(c) Multiple Tone (constant signal energy) 

Figure 2.1 Signal Constellations 
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(2T) so that nine possible combinations, using three signals per period, are available. 

Eight of these points were chosen to represent three bits of data in each interval of 2T. 

For the case of four tones, there are four single tone signals and six different possible 

pairs of tones. Simulation Case 2C employs eight of these ten signals in the 

constellation. This allows three bits to be transmitted during each symbol interval (T 

seconds). The final case employing the second alternative modulation scheme is 

designated number 3B and uses eight orthogonal tones. There are eight signals 

containing a single tone and fifty-six possible three tone combinations. The combined 

signal constellation has sixty-four signal points which permits transmission of six binary 

digits with each signal. 

The multiple tone modulations with constant signal energy have an irregular 

spacing between points in the signal constellation. The maximum spacing between 

signals is the same as the distance between orthogonal tones, and occurs between 

signals with no tones in common. When signals possess common tones, the spacing is 

reduced. The more tones in common between two signals, the smaller the distance 

between the two. The amplitudes of the tones in common between the signals also affect 

the spacing. This irregular spacing must be considered when mapping code words onto 

the signal points, and is discussed in the third section of this chapter. 

2.1.2 Coherent Receiver 

The coherent receiver is the optimum receiver for reception in the presence of 

additive white Gaussian noise (AWGN) when the phase of the transmitted signal is 

known. Then the local oscillator is perfectly matched to the incoming tones to eliminate 

any phase offset. This receiver cannot be used in the frequency hopped spread 
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spectrum system because phase continuity between subsequent signal tones and 

between frequency hops is not provided by practical transmitters. These phase jumps, 

and the phase offsets introduced during transmission, preclude the matching of the local 

oscillator to the transmitted signal. However, the coherent receiver provides the best 

possible performance that could be achieved, and will be included for purposes of 

comparison. The structure of the coherent receiver is simpler than the noncoherent 

receiver, and this allows a simulation to be performed more quickly and easily. Also, the 

performance of the coherent receiver can be readily analyzed, and there are theoretical 

results that provide verification of the simulation program. If cdherent demodulation was 

actually used, a more efficient modulation scheme than FSK would likely be employed. 

The usual optimum coherent receiver [11,  p.235;  12,  p.491  calculates the squared 

Euclidean distance between the received signal (r(t)), and each of the possible 

transmitted signals (si(t)). A decision is made in favour of the signal closest to the 

received signal, based on the minimum of the computed distances. The squared 

distance is given by 

r  T 

d i2  = j 0  [r(t) — s1(t)1 2dt 

T 	 T 	 T 
= f r

2
(t)dt — 2f r(t)si(t)dt + f si

2
(t)dt 

ID 	 0 	 () 

The first term in (2.1) is constant, independent of the index i, and so may be neglected 

in the search for the nearest se) . The remaining two terms can be multiplied by -1/2 to 

form a decision variable which is now maximized. 

(2.1) 
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T 
s 2 (t\dt. 

Li  = f r(t)si(t)dt 

= qi  – —1 Ei  
2 

The structure of this receiver is well-known [11, p. 235; 1 .2, p. 49] and is shown for two 

cases in Figure 2.2. The receiver for conventional binary FSK is shown in part (a) of the 

diagram, where s i (t) = cos w i t and s2 (t) = cos w2 t. The multiple tone scheme with 

different signal energies is demodulated by the system  in part (b). In this case, the 

signals are  s0(t) = 0, s i (t) = cos w i t , s2 (t) = cos w2 t , and s3(t) = cos w i t + cos w 2 t . For 
• 

constant energy signals, Ei  is constant for all i, and the decision variable becomes simply 

q, . The decision variables for multiple tone signals are in general obtained by summing 

the variables for each tone in the signal, and scaling to account for the signal energy. 

This means that the multiple tone receiver requires only one correlator for each tone. 

The theoretical error probabilities for uncoded signalling are easily obtained for the 

baseline system of M-ary FSK with coherent reception. The probability of symbol error 

for an orthogonal signal set over an AWGN channel is given by [11, p. 257; 13, p. 120] 

cc 
Ps ----- 1 — f pn (oe — 	Es  )daff pn (3)d 1A4  

where M is the number of signals (ie. tones) and 

1 	
_n2 

p(o) – 	 exp 
V27 

is the Gaussian probability density function. The bit error probability is obtained from 

the symbol error probability as 

(2.3) 

2 
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(a) Single Tone Binary FSK 
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(b) Multiple Tone FSK (2 tones) 

Figure 2.2 Coherent Receiver 
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The integral in equation (2.3) is tabulated in Golomb [13, p. 1961 and these results were 

used for the baseline performance curves with coherent reception. 

The theoretical performance may also be obtained for the case of multiple tone 

signalling with constant energy tones. With the ideal coherent receiver, the signal 

constellation may be considered as a rectangular signal set [11, p. 254] with error 

probabilities given by 

Ps  1 — (1 — p ) A4 	 (2.5) 

pB  p Q(  d  

V2No  

where 

M is the number of dimensions (ie. the number of tones), 

Q(x) 

fx V2z 

1  exp —
2

dt 

d  = VEs  

Es  is the energy of a single tone, and 

No  is the spectral density of the Gaussian noise in watts/hertz. 

(2.4) 

(2.6) 

Do 2 — 
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The multiple tone signalling schemes with constant signal energy do not form a 

rectangular signal set. Because of the irregular spacing of the signals, the probability 

of error varies with the signal that was sent, due to the different proximities of other 

signals. This does not allow for a simple expression for the error performance as in the 

previous cases, and the results are obtained strictly by simulation. 

2.1.3 Noncoherent Receiver 

The introduction of a random phase angle (0) into the received signal, increases the 

complexity required for the optimum receiver. The structure of this noncoherent receiver 

is common [11, p. 519; 12, p. 104], and is shown in Figure 2.3. Two receivers appear in 

the diagram. Case (a) demodulates conventional binary FSK, where si (t) = cos w i t and 

s2(t) = cos  1u 2 t . In part (b), multiple tone signals with all possible combinations of two 

tones, and variable signal energy are demodulated. The signals for this receiver are 

s0(t) = 0 , si (t) =  cos w i t , s2 (t) =  cos w 2 t , and s3(t) = cos w i t + cos w2 t . There are two 

correlators for each signal, one in phase and one in quadrature, whose outputs are 

combined to negate the effect of the random phase. Multiple tone signals are assumed 

to have the same phase angle for all tones, and the probability distribution of the random 

phase is considered to be uniformly distributed between 0 and 27 radians. 

This receiver calculates the probability of the received signal, given that the ith 

signal was sent, for all members I of the signal set. This probability is known as the 

likelihood function, and its logarithm is used as the decision variable. The signal with 

the maximum probability is chosen as the transmitted signal. The development of the 

theory for this receiver is rather lengthy, and can be found in the references [11, p. 511; 

12, p.1031, and so just the decision variable itself will be given here as 
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2X. 
= 	

N
exp( ei  

o 	No  

where 

27 

10(X)  = 	f
o 

exp[x cos(0 (1)1do 

is the zero order modified Bessel function of the first kind, 

= f e.dt 
0 

is the energy of the ith signal, 

No  is the spectral density of the Gaussian noise in watts/hertz, and 

Xi2  [ 
0 

 f r(t)Si(t)dtl 2  [
0 

 f r(t12  

is the sum of the squares of the correlator outputs for the in-phase and quadrature 

components of the correlation with the ith signal. 

si(t) is the in phase component of the signal since the signals are made up of 

cosine tones, and 

§;(t) is the quadrature component of the signal, which consists of sine tones at the 

same frequencies. 
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As was the case for the coherent receiver, the decision variables for multiple tone signals 

can be obtained from the correlator outputs for the individual tones. This means that 

only one pair of correlators is required for each tone in the system. The signal si (t) giving 

rise to the maximum Li  is chosen as the signal sent. 

For the baseline system and other constant signal energy cases, the decision 

variables can be further simplified. The exponential function in (2.7) will be a constant 

because E.;  is the same for each index i, and so it can be ignored. To maximize the 

modified Bessel function, it is only necessary to maximize its argument because the 

Bessel function is a monotone increasing function. Therefore the optimum decision will 

be made by maximizing Xi  or X,2 . This receiver simplification results in the structure 

shown in Figure 2.3 (a), and is also known as square-law combining. The multiple tone 

modulation system with unequal signal energies cannot employ the simplified decision 

variables obtained from the correlator outputs. The modified Bessel function and the 

exponential function must be calculated in order to make a maximum likelihood decision. 

The theoretical symbol error probability for noncoherent M-ary FSK is given by [11, 

p. 577] 

M-1 

( -1)k+1  	 k 	Es\ 

PS  > J k + 1 
tiW - 1 \ k 	exp 

k + 1 No  / 
k=1 

where 

(AB) 	

Al  

 BI(A — B)! 

(2.9) 
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and the bit error probability is 

1 „„ 
2 	 Pp, — 	P, — M1   

(2.10) 

The theoretical performance of the multiple tone noncoherent receiver is difficult to 

obtain. The presence of the Bessel function and the exponential function in the decision 

variables of the variable signal energy case makes the analysis difficult. The constant 

signal energy multiple tone modulation has irregular signal spacings which impedes the 

evaluation of theoretical error probabilities. 

2.2 Coding 

2.2.1 Description of Codes 

Convolutional encoding with Viterbi decoding is one of the more widely used 

methods of forward error correction. This is due to the ease of implementation and the 

relatively large coding gains obtainable from simple codes. As previously mentioned, this 

coding technique was chosen for consideration in this report. There are several different 

ways to describe convolutional codes, which will be briefly summarized below. More 

information on convolutional codes may be obtained from the references [12, p. 227; 14, 

p.227]. 

The first way to visualize a convolutional encoder is as a binary shift register with 

taps connected to modulo two adders. The information bit stream is shifted into the 

register in groups of b bits, and there are n modulo two adders which produce n output 

bits for each codeword. The rate of a code is given by the ratio b/n, which is the ratio 
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of input to output bits. The number of b-tuples in the shift register is denoted by k, and 

so the encoder retains b(k - 1) bits of the previous input data which define the state of 

the encoder. The value y = b(k —1)  is defined as the constraint length of the code, and 

is the logarithm to the base two of the number of states. The length of the shift register 

(bk) is sometimes considered as the constraint length, but the previous definition (y) will 

be used here as it is more useful for comparing codes of different rates. As the b-tuples 

of input data are shifted into the register, the state of the encoder changes and the 

output data is determined by the tap connections from the register to the adders. These 

connections are usually specified by generator polynomials or a generator matrix. A 

simple code with rate 1/2 and cdnstraint length 2 is used as an example throughout this 

section. A diagram showing the'shift register tap connections and the generator matrix 

appears in Figure 2.4. 

Another way to describe a convolutional code is by means of a trellis diagram. 

The states of the code are assigned to nodes in the trellis and' branches between states 

indicate a particular input and corresponding output symbol. It is obvious that a given 

input data sequence can be mapped onto a certain path through the trellis. There are 

2b branches which emerge from each node, corresponding to each of the possible 

inputs. The branches remerge at the next stage in the trellis in groups of 2b at each state. 

The trellis for the example code is shown in Figure 2.5. 

The final representation of a convolutional code is by  astate diagram. The states 

of the code are again assigned to nodes in the diagram, and directed paths between 

states correspond to particular input and output symbols. The state diagram can be 

used to obtain the generating function of a;code, which allows the weight profile to be 

determined. The state diagram for the model code appears in Figure 2.6. 
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Figure 2.4 Convolutional Encoder 
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Figure 2.6 State Diagram 
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The weight profile is significant because it directly affects the error performance 

of the code. All the codes under consideration are linear, and therefore the all zeroes 

path  may  be considered as the correct path for the - purpose of analysis. The weight or 

distance profile is obtained from the set of paths which diverge from the correct path and 

then remerge, corresponding to possible error events. The distance measure, for hard 

decision decoding, is the Hamming distance between the error path and the correct path. 

This is the ,number of output bits in which the two paths differ. These paths may be 

observed in the trellis diagram, and the weight profile obtained by adding up the 

Hamming weight of the output symbols along all paths which diverge from and then 

remerge with the all zeroes path. 

A more tractable description of the weight profile is the code generating function. 

If the state diagram is redrawn with the zero state split, all the paths originating in one 

half of the zero state, passing through the other states, and entering the other half of the 

zero state will represent error paths. The branches of the state diagram are labelled 

D a  L lb 	 (2.11) 

where 

D represents the distance or output weight, 

L represents the length of the path, 

I represents the input weight, 

a is the Hamming weight of the output symbol, and 
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b is the Hamming weight of the input symbol. 

Using signal flow graph theory, the state equations of the diagram are solved to yield the 

generating function T(D,L,I). This function has the form of an infinite sum of products 

of D, L, and I. The coefficient .of each term represents the number of paths with distance 

of the exponent of D, input weight of the exponent of I, .and length of the exponent of L. 

The sum may also be represented as a fraction of polynomials in D, L, and I. To obtain 

the weight profile, L and I are made equal to unity. The resulting function T(D) yields the 

number of paths at various distances from the correct path. The redrawn state diagram 

and the code generating function of the example code are shown in Figure 2.7. The free 

distance (df) is the minimum distance of any error path from the correct path, and is a 

good indicator of how well the code will perform. 

The codes used in this study were obtained from other papers which investigated 

optimal codes [15, 16, 17]. The best codes had maximum free distance (df) for given code 

rate and constraint length. Only relatively short constraint length codes were used so 

that Viterbi decoding could be utilized. The optimal rate 1/2 codes were Lised in Case 

1A [15]. They were also combined to form a rate 2/4 code for Case 2B and a rate 3/6 

code for Case 3B. A dual-3 rate 1/2 code was also considered in Case 3B [17]. Rate 

2/3 codes with maximum clf  were employed in Cases 1B, 2A, and 2C while rate 3/4 codes 

comprised Case 3A [16]. The various code generator matrices are shown in Table 2.1 

and a complete description of each case appears in Table 3.1. 

2.2.2 Maximum Likelihood Decoding 

There has been much published work on the decoding of convolutional codes [12, 

p. 235; 18, 19, 20 1 . The Viterbi algorithm for maximum likelihood sequence estimation is 
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Figure 2.7 Generating Function 
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TABLE 2.1 

Convolutional Code Generator Matrices 

Rate Constraint Length 	Free Distance 	Generator Matrix 

1/2 	 2 	 5 	 [11 01 11] 

1/2 	 6 	 10 	 [11 01 11 11 00 10 11] 

2/3 	 4 	 5 	
1-101 100 110] 

Lon 101 011] 

2/3 	 6 	 7 	
r101 111010 101] 

L0ii iii 101 011i 

, 

2/4 	 6 	 6 	
[1100 1100 0100 11001 
1_0011 0011 0001 0011 i 

[1001 1111 00001 
3/4 	 5 	 5 	 0101 0101 1001 

0011 0100 0011 

[100100 1001011 
3/6 	 3 	 6 	 010010 010100 

001001 001010 

110000 010000 110000 
3/6 	 6 	 5 	 001100 000100 001100 

000011 000001 000011 
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the most popular decoding technique for codes of short constraint length. This 

technique was investigated as being the most likely to be employed for a digital satellite 

channel. A brief summary of the decoding operation follows. 

The basic problem can be most easily visualized as selecting the best path through 

the code trellis, based on information from the receiver. The maximum a posteriori 

probability for the path is used as the selection criterion. A decision metric for each 

branch is computed based on the received signal in each signalling interval. The metric 

is proportional to the logarithm of the likelihood function, in keeping with the coding 

literature [12, p. 238; 21, p. 188 1 . This metric is maximized by the decoder. The metric 

may also be considered as a distance measure between code vectors, in which case the 

negative log likelihood would be used and the decoder would perform minimization of 

the metric. Proceeding with the convention adopted, we have 

p(r  I  xk) 	x) 	 (2.12) 

for a memoryless channel, where 

r is the vector of receiver outputs with components ri  and 

xk is the code symbol vector for the kth trellis path with components 4 

The metrics are obtained as 
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where 

rre = In p(ri  I x i ) (2.14) 

Mk is the metric for the kth path, and 

mic is the metric for the ith code symbol on the kth path. 

To accumulate a metric for every possible path through the trellis would be 

prohibitive, as the number of paths grows exponentially at each stage. The Viterbi 

algorithm makes use of the fact that paths remerge into each node in groups of 2b at 

each stage in the trellis. It is necessary to keep track of only one optimum path leading 

into each state. The metric for each branch (branch metric) into a given state is added 

to the accumulated metric (state metric) for the best path into the previous state from 

which the branch originated. These 2b metrics are compared, and the best path is 

retained as the survivor into that state. This process is repeated at each stage through 

the trellis. The maximum likelihood path will never be discarded by this method because 

none of the paths originating from a given state can accumulate a better metric than the 

survivor. 

The decoder must select a single most likely path in order to deliver an output 

symbol. If a sufficiently long path history is kept, the 2 11  survivor paths (one for each 

state) will share a common stem, and the oldest bits corresponding to all the paths will 

be the same. For the sake of reduced complexity, it is desirable to truncate the path 

history at some fixed decoding depth. Several authors [12, p. 258; 14, p. 261] have 

shown that little degradation from optimum performance occurs when the decoding 
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depth is chosen to be from five to ten times u , depending on the code rate. The output 

bits are chosen from the path that currently has the best accumulated metric. 

The actual metric used by this decoder may come from either a hard or soft 

decision receiver. The nature of the metric employed does not affect the operation of the 

decoder, although it will influence the error performance. For a hard decision receiver, 

bit decisions are made at the demodulator output, prior to decoding. The negative 

Hamming distance between the received symbol and the output symbol of each branch 

is used as the branch metric in this case. The Hamming distance between codewords is 

generally proportional to the distance between the corresponding signals in the signal 

space. Thus minimizing the Hamming distance between code vectors, or equivalently 

maximizing the negative Hamming distance, •is the usual hard decision metric. If the 

added complexity of a soft decision demodulator can be tolerated, then more information 

is available and the branch metric is proportional to the logarithm of the likelihood 

function. This results in better error performance. 

2.3 Signal Space Mapping 

The assignment of codewords to signal points has an important influence on the 

overall system performance. Previous work on the design of optimal codes has used the 

Hamming distance between codewords as the distance measure between paths [15, 16 1 . 

The Euclidean distance in the signal space between points in the signal constellation 

actually determines the probability of a transmission error. Ideally, the codewords would 

be assigned to signal points with Euclidean distance spacings proportional to the 

Hamming distance of the codewords, so that erroneous decoding into a near neighbour 

would result in few errors. 

1 
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Trellis coding [7, 8] considers the actual paths through the trellis when assigning 

signals. As previously stated, the signal constellation is divided, by a method termed set 

partitioning, into subsets with maximum spacing between signal points. The signals are 

assigned to branches in the trellis according to a set of rules that attempts to maximize 

the Euclidean distance between signal error paths. These rules are as follows 

1. all signals should occur with equal frequency and with a fair amount of regularity 

and symmetry; 

2. parallel transitions between states are assigned signals from the subset with 

maximum signal spacing; 

3. transitions originating from the same state are assigned signals from a subset with 

maximum possible spacing; 

4. transitions ending in the same state are assigned signals from a subset with 

maximum possible spacing. 

The papers on trellis coding [7, 8] also recommend that the signal set be expanded to 

twice the number of points in the uncoded signal set in order to achieve the maximum 

coding gain without unnecessary complexity. 

The multiple tone signal sets which use constant energy orthogonal tones (ie. 

variable signal energy), form a rectangular constellation as described previously. If . each 

bit of a codeword is mapped onto a different tone, the Euclidean distance between signal 

points is proportional to the square root of the Hamming distance between codewords. 
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This situation makes the mapping of codewords onto signal points straightforward, in 

order to obtain optimum coded performance. 

The constant signal energy constellations have an irregular signal spacing, which 

varies with the number of tones in common between signals. The Euclidean distance 

between signals cannot be easily mapped onto the Hamming distance between 

codewords, and so the rules for trellis coding were applied. Set partitioning could not 

be done in the usual way because of the irregular signal spacings. The signal sets were 

divided into groups of 2b (for a rate = b/n code) with maximum spacing between all the 

members of each subset. All of the codes used have a similar structure, so that the 

different signal sets may be subdivided the same way. None of the codes have parallel 

transitions, so that the second rule of trellis coding may be disregarded. The branches 

in the various trellises diverge and remerge in groups of 2b according to the rate of the 

code. For all the optimum codes used, the same group of codewords are associated 

with the branches that diverge from and remerge into a given state. This allows for the 

partitioning of the signal sets into groups of 2b , to produce a desirable mapping onto 

the codewords. The one exception to this situation is the dual-3 rate 1/2 code used in 

Case 3B. The same groups of codewords do not appear on the diverging and remerging 

branches, so that trellis coding rules three and four cannot be satisfied simultaneously. 

No alternate mapping could be found to improve the spacings between error paths, so 

the same mapping scheme as for the other rate 3/6 code was employed. 

The actual assignment of codewords to signals for the constant signal energy 

multiple tone constellations are shown in Table 2.2. The codewords are shown as 

decimal numbers, grouped according to the branch assignments, and the signals are 

represented by ones and zeroes. Each digit of the signal representation corresponds to 



0 	01 01 
3 	10 01 
5 	01 10 
6 	10 10 

1 	01 11 
2 	11 01 
4 	11 10 
7 	10 11 

0 	0001 
3 	0010 
5 	0100 
6 	1000 

1 	0110 
2 	0011 
4 	1001 
7 	1100 
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TABLE 2.2 

Signal Space Mappings 

Case 1B: Rate=2/3, 2 tones, Constant Energy Signals (signalling over 2T) 

Case 2C: Rate=2/3, 4 tones, Constant Energy Signals 

Case 3C: Rate=3/6, 8 tones, Constant Energy Signals 

0 0001 0000 	1 	0010 0000 	4 	0100 0000 	5 	1000 0000 
3 	1110 0000 	2 	1101 0000 	7 	1011 0000 	6 	0111 0000 
12 1000 0011 	13 	0100 0011 	8 	0010 0011 	9 	0001 0011 
15 0100 1001 	14 	1000 1001 	11 	0001 1001 	10 	0010 1001 
48 0010 0101 	49 	0001 0101 	52 	1000 0101 	53 	0100 0101 
51 1000 1100 	50 	0100 1100 	55 	0010 1100 	54 	0001 1100 
60 0100 0110 	61 	1000 0110 	56 	0001 0110 	57 	0010 0110 
63 0010 1010 	62 	0001 1010 	59 	1000 1010 	58 	0100 1010 

16 0000 0001 	17 	0000 0010 	20 	0000 0100 	21 	0000 1000 
19 0000 1110 	18 	0000 1101 	23 	0000 1011 	22 	0000 0111 
28 0011 1000 	29 	0011 0100 	24 	0011 0010 	25 	0011 0001 - 
31 1001 0100 	30 	1001 1000 	27 	1001 0001 	26 	1001 0010 
32 0101 0010 	33 	0101 0001 	36 	0101 1000 	37 	0101 0100 
35 1100 1000 	34 	1100 0100 	39 	1100 0010 	38 	1100 0001 
44 0110 0100 	45 	0110 1000 	40 	0110 0001 	41 	0110 0010 
47 1010 0010 	46 	1010 0001 	43 	1010 1000 	42 	1010 0100 
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a tone, and a one indicates a tone which is sent as part of the signal. The use of the 

signal space mapping described here was compared to an arbitrary mapping scheme for 

the four tone signal constellation. An improvement of approximately 1.5 dB (En/No ) was 

obtained for a rate 2/3 code with constraint length of 6. 

2.4 Error Performance 

The performance of the coded system depends on the structure of the code, the 

decoding metric, and the coding channel. The coding channel is the effective channel 

as seen by the encoder and decoder. It includes the properties of the modulator and 

demodulator, as well as the actual transmission channel. Further details of the following 

development of error bounds may be foun'd in the references [12, p. 242; 14, p. 243; 21, 

p. 192; 22]. 

The first step in obtaining the error performance of the system is to determine the 

pairwise error probability between two transmitted code vectors. This is the probability 

that the metric for the error path is larger than the correct path metric for a given received 

signal sequence, and is expressed by 

p(x —, *) — p {Em(rn , jin) > Ern(rn , xn)} 	 (2.15) 111 n 	 n 

The Chernoff bound may be applied to the pairwise error probability to obtain 
111 

I 
p(x —4- )7() < HE{ exp(X[M(rn , ) .n) — M(rn , 411 xn} 	 (2.16) 

n 

111 
For most metrics of interest, the expected value in (2.16) has the form 
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D = 	 exp(X[m(r, ic) — m(r, x)])1 x11 
> 	> 0 (2.19) 

PE < Ea( j (2.22) 
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D(x) = E{ exp(x[m(rn , 4) — m(rn ,  x)1)  x} 

so that 

p(x 	< [D(X)] w 	) 

(2.17) 

(2.18) 

where w(x, X) is the Hamming distance between x and X or the number of bits which differ 

in the two sequences. For the case of an arbitrary metric, the parameter D is given by 

When the maximum likelihood metric is used for decoding, ie. 

m(r, x) = In p(r I x) 	 (2.20) 

then one may use the Bhattacharyya parameter 

Z = 	p(r I x) p(r I 	 (2.21) 
X-, 4  X 

for the value of D. 

To obtain the probability of an error event, the union bound is used to give 

where 
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PE is the probability of an error event 

a( j) is the number of error paths of distance j, and 

Di is the pairwise error probability for a path of distance j. 

Since the convolutional codes employed are linear, the all zeroes path may be 

considered as the transmitted sequence, and the coefficients a(j) are obtained from the 

generating function T(D) to yield 

(2.23) 

with the value of D determined by the coding channel. 

The bound on the probability of bit error can be obtained in a similar fashion, and 

is given by 

PE < T(D) 

p 	1 
p 

b 
Eia(i, j) (2.24) 

where 

b is the number of information bits per code symbol, 

i is the information weight of the path (ie. the number of bit errors), and 

a(i,j) is the number of paths of weight j with information weight i. 
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The coefficients a(i,j) are the same as in the augmented generating function T(D,I), and 

the values of i are the same as the exponent of I in each term of the function. The 

augmented generating function is obtained by equating L to unity in the function T(D,L,I), 

such as that shown in Figure 2.7. The bit error bound can be written incorporating this 

function as 

1 aT(D,  

PB 	b 	Dl 	1=1 

The error bounds presented in this section are used to verify the simulation results 

for the cases where the coding channel can be easily characterized. The multiple tone 

signals with variable signal energy form a rectangular signal constellation which can be 

readily analyzed for coherent reception. The probability of error between two adjacent 

signals is obtained from the error function 

d  

V  V2A1 0  

where d is the Euclidean distance between the two signal points. The probability of an 

error event for a rectangular signal set of n dimensions (ie. n tones) is 

PE  — 1  —(1  — p)n 	 (2.27) 

For the case of hard decision decoding, we may use the Bhattacharryya parameter for 

an M-ary symmetric channel as the value for D 

(2.25) 

(2.26) 

1 (2.28) D M 2 \P  + 2.\/  PE°  -  PE)  

VM— 1/ E 	M - 1 



	) 
2N0  

(2.29) 
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The rectangular signal set is not strictly an M-ary symmetric channel, since all of the 

cross-over probabilities between signals are not equal. However, the error bound still 

applies in this case. 

To obtain an error bound for soft decision decoding, we note that the probability 

that one code vector is decoded as another code vector is given by 

where d is again the Euclidean distance between code vectors. The error function may 

be upper bounded by an exponential function as follows 

Q (  d  ) < 1 ex, 	d 2  

2 	4N0  V2No  
(2.30) 

For the rectangular signal constellation, the Euclidean distance is proportional to the 

square root of the Hamming distance, and so we may write 

d = VwEs 	 (2.31) 

where 

w is the Hamming distance between the code vectors, and 

Es  is the energy of a tone. 

Thus the error bound may be rewritten as ; 

PE(w)  
Es   lw  

exp 
4Nd 

(2.32) 



PE = EPE(w) 

Es  1 ,,v 	n 1 	(,„, n [ exp < 	
N0 

> 1-2-  a\-/ 	4 

1 
Es 

exp 	 
4N0 

(2.33) 
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To obtain the bound for the overall probability of an error event, we sum the individual 

components over w to yield 

• 

I 

1 

These two values for the parameter D may also be used to find the bound on the bit error 

probability for coherent demodulation of coded rectangular signal sets. Equation (2.24) 

or (2.25) may be used, with a multiplying factor of one half in the soft decision case. The 

bit error bounds were computed for the various codes used with multiple tone signals 

with fixed signal energy per orthogonal component (ie. constant energy tones). These 

bounds are plotted with the corresponding simulation results in the appropriate 

subsections of the next chapter. The performance of coding with constant signal energy 

constellations and coherent demodulation, and the performance of all the coded systems 

employing noncoherent reception are not easily evaluated. Just as the error probability 

for uncoded transmission was difficult to obtain, the evaluation of the bound parameter 

D is not tractable for these cases. 
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CHAPTER THREE 

RESULTS 

3.1 Overview 

3.1.1 Program Description 

The simulation program used to model the communication system was written in 

FORTRAN, and run on both VAX 11/750 and IBM 3081 computers. The program is 

divided into a mainline routine, which handles the initialization, input, and output tasks, 

and several subroutines which correspond to the various components of the system. The 

input file for the simulation contains the parameters of the code, which are the rate, the 

constraint length, and the generator matrix. A look-up table of output symbols 

corresponding to various branches in the trellis is generated by an initialization 

subroutine. This table is used by the encoding and decoding subroutines. The type of 

demodulation (coherent/noncoherent), and whether hard or soft decisions are to be 

made, are also indicated in the input file. The different signal space mappings are 

obtained by using different versions of the channel subroutine, which will be described 

later. 

After the initialization procedures are complete, the main program commences by 

generating a random bit stream. This is done with a library subroutine for 

pseudorandom number generation. The information symbols are passed to the encoder 

subroutine which returns the encoded data symbols. These data symbols are passed to 

the channel subroutine which simulates the modulator, the AWGN channel, and the 
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demodulator. In each signalling interval, the subroutine calculates and returns a metric 

for each member of the signal space. These metrics are then passed to the decoding 

subroutine, which constructs the received bit stream. The main program compares the 

received  data  to the original information bits, and keeps track of the errors. Error events, 

symbol errors, and bit errors are all tabulated. The signal to noise ratio (SNR) starts at 

one dB and is incremented in steps of one dB. One hundred thousand data symbols are 

simulated at each level of SNR. After each set of data points is processed, the three error 

probabilities are calculated and sent to a data file along with the SNR value. The SNR 

is then incremented and the procedure repeats until the error event count is less than ten 

in one hundred thousand data points at the given SNR. The output data file is used to 

plot error performance curves which appear later in this chapter. 

The encoder subroutine preserves the previous input bits which  détermine the state 

of the encoder. The current information symbol then determines the transition to the next 

state and the corresponding output symbol. This is accomplished by using the present 

state and input bits as an index to the table generated during initialization. The output 

symbol is contained in the table, and is returned to 'the mainline by the encoder 

subroutine. 

The channel subroutine receives the data symbol and several parameters of the 

modulation scheme. The SNR level, the type of demodulation (coherent/noncoherent), 

and the type of decoding metric (hard/soft) are all passed from the mainline. Different 

versions of the channel subroutine are used to accommodate the various signal space 

mappings in the simulations of the different cases. Given the transmitted signal and the 

SNR value, a decision variable is computed for each member of the signal space. 



x i = (3.1) 

X2 = (3.2) 

(3.3) 

(3.4) 

V2 - 2U2 —1 (3.5) 
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Samples of Gaussian noise are calculated from uniformly distributed pseudorandom 

numbers, according to the polar formula [6]. 

and 

are two independent samples of a zero mean, unit variance, normally distributed random 

variable, where 

= + 

and S must be less than unity. 

= 2U 1  — 1 

and 

where U i  and U2 are samples of a random variable, uniformly distributed between zero 

and one. A random phase angle is added to the transmitted signal for the case of 

noncoherent reception. The angle (0) is assumed to be uniformly distributed between 

zero and two pi radians, and is obtained from a pseudorandom number generated by the 

library subroutine. For soft decisions, the actual decision variables are returned to the 

main program as decoder metrics. The data symbol corresponding to the largest 

decision variable is determined  in order to calculate the hard decision metric. The 

negative Hamming distance between the demodulated symbol and the branch symbol is 



L = 5bu (3.6) 
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returned as the branch metric in this case. Details of the demodulation and metric 

- calculation are given in Chapter two. 

The decoder subroutine implements the Viterbi algorithm. A bit history and path 

metric are maintained for each state of the code. At each signal interval, the metric for 

the signal corresponding to each transition in the trellis is added to the path metric for 

the originating state of that branch. The paths entering each state are compared, and 

the one with the largest metric is retained as the survivor. This process makes use of the 

look-up table of trellis states and transitions, and the information symbols for the bit 

histories also come from the table. The output bits are taken from the bit history 

corresponding to the path with the largest metric at each step. The length of the history 

maintained by the decoder varies with the code constraint length and code rate 

according to the formula 

where 

L is the length of the bit history, 

u is the code constraint length, and 

b is the information bit rate (code rate = b/n). 

This decoder has negligible performance degradation due to path history truncation. 

Clark and Cain [14, p. 2621  suggest that path histories for near optimal decoder 

operation should be 5u for rate 1/2 codes, 8v for rate 2/3 codes, and 10ii for rate 3/4 

codes. 
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TABLE 3.1 

Case Descriptions 

CASE INFORMATION CODE CONSTRAINT NUMBER OF NUMBER OF 
RATE 	RATE LENGTHS 	TONES 	SIGNALS 

Epeak/Eav 

1A 	1 bit/T 	1/2 	2, 6 	2 	 4 	 2.0 

1B 	1 bit/T 	2/3 	4, 6 	2 	 8 	 1.0 

2A 	2 bits/T 	2/3 	4, 6 	3 	 8 	 2.0 

2B 	2 bits/T 	2/4 	6 	 4 	 16 	 2.0 

2C 	2 bits/T 	2/3 	4, 6 	4 	 8 	 1.0 

3A 	3 bits/T 	3/4V 	5 	 4 	 16 	 2.0 

3B 	3 bits/T 	3/6 	3,  ,6 	8 	 64 	 1.0 

NUMBER OF TONES = BANDWIDTH x 2T 



Eav  — 
16  

1 (0) + 4(Es) + 6(2E3) + 4(3E5) + 1(4E8) 

(3.7) 
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3.1.2 Case Summary 

There are seven different coding and modulation schemes considered in this 

report. The characteristics of each scenario, and the numbering scheme used to 

disinguish them, are shown in Table 3.1. They are divided into three groups, and the 

number of the case indicates the number of information bits transmitted per signalling 

interval. There is also a letter associated with each case to differentiate the different 

code rates and modulation schemes employed. 

Four of the cases (1A, 2A, 2B, 3A) use signals which may contain any combination 

of tones. These signals have a variable signal energy, depending on the number of tones 

in the signal. They are compared to the baseline system according to average signal 

energy. For example, let Es  be the energy of a single tone. For the four tone case, there 

are sixteen signals with average signal energy given by 

2Es  

Therefore, the signal energy of this system is reduced by 1/2 for comparison with the 

baseline system, which has a signal energy of Es . The other variable signal energy cases 

are also scaled appropriately. The remaining three cases (1B, 2C, 3B) have constant 

energy signals, with signal energy equal to the energy of a single tone, for direct 

comparison with the baseline system. 

Each of the seven cases has several sets of results. The various systems were all 

simulated with both coherent and noncoherent demodulation, both hard and soft 

decoding metrics, and different code constraint lengths. All of the simulation results for 

each case appear on two figures, one for coherent reception and one for noncoherent 
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reception, each with the corresponding baseline system performance curve. The 

measure of performance on the graphs is the bit error rate (BER) plotted against the 

energy per bit to noise spectral density ratio (Eb/No). As mentioned previously, the error 

events and symbol errors as well as the signal energy to noise ratio were tabulated by the 

simulation program, but the bit error performance was chosen as the most suitable 

criterion for comparison. Table 3.2 shows the required Eb/No  to give a BER of 10 -4  for 

every case simulated. These values' were obtained from the figures shown later in this 

chapter, with some extrapolation required on some of the curves. For data transmission, 

system performance at a BER of 10 -5  or less is usually of most interest. However, the 

simulation run time to obtain reliable data in this region is prohibitive. Some curves 

display irregular behaviour for the last data point (ie. the lowest BER point). This occurs 

because the BER is calculated using a very small number of error events, and the random 

occurrence of a single error causes a large displacement of the point on the graph. 

Since error performance curves are known to behave smoothly at low BER values, these 

points are neglected when extrapolating the curves. All performance values quoted in 

this chapter will refer to Eb/No  in dB at the reference BER of 10-4 . 

As a verification of the simulation program performance, several test cases were 

run and compared to theoretical results. The baseline systems (2, 4, and 8-ary FSK) were 

simulated for both coherent and noncoherent demodulation, and the results matched 

closely with the theoretical performance. The modulation scheme which uses all possible 

tone combinations to obtain a rectangular signal set of 2A4  signals from M orthogonal 

tones was also simulated for the various values of M. The performance of this system, 

with no coding and coherent demodulation, reflected the theoretical error probabilities 

for rectangular signal constellations. In both cases, the error performance curves for the 

simulation matched the theoretical results to within one-half dB over the entire curve. In 
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TABLE 3.2 

Coherent Results 

CASE BASELINE HARD DECISION 	SOFT DECISION 
PERFORMANCE 	PERFORMANCE 	 PERFORMANCE 

1A 	11.5 	 9.7 (I. = 2), 8.3 (y = 6) 	8.2 (u = 2), 6.4 (u = 6) 

1B 	11.5 	12.6 (// = 4), 12.1 (1 ,  = 6) 	9.7 (u = 4), 9.4 (// -- 6) 

2A 	8.8 	 9.2 (1. = 4), 9.3 (1/ = 6) 	7.5 (u = 4), 7.0 (v = 6) 

2B 	8.8 	 9.9 (1.= 6) 	 7.4 (// = 6) 

2C 	8.8 	 9.7 (v = 4), 9.5 (u = 6) 	7.3 (// -- 4), 6.8 (u = 6) 

3A 	7.4 	 9.3 (u = 5) 	 7.2 (u = 5) 

3B 	7.4 	 11.7 (11= 3), 9.9 (1/ = 6) 	7.7 (u = 3), 5.0 (u = 6) 

Noncoherent Results 

CASE BASELINE HARD DECISION 	SOFT DECISION 
PERFORMANCE 	PERFORMANCE 	 PERFORMANCE 

1A 	12.3 	10.8 (// = 2), 9.4 (u = 6) 	9.2 (/. --- 2), 7.7 (// -= 6) 

1B 	12.3 	12.8 (v -- 4), 12.4 (u = 6) 	10.5 (v = 4), 10.0 (1./ --- 6) 

2A 	9.6 	 10.1 (v = 4), 9.4 (v = 6) 	8.1 (u = 4), 7.5 (v = 6) 

2B 	9.6 	 10.1 (v = 6) 	 8.0 (u = 6) 

2C 	9.6 	 10.0 (v = 4), 9.9 (u = 6) 	7.6 (// = 4), 6.9 (v -- 6) 

3A 	8.2 	 9.6 (// = 5) 	 7.7 (u = 5) 

3B 	8.2 	 12.0 (// = 3), 10.0 (u -- 6) 	7.8 (v --- 3), 5.8 (u = 6) 



- 48 - 

coded systems which employ the rectangular signal constellations, error bounds were 

calculated as described in section 2.4. The coherent simulation results with their 

respective error bounds are shown in the appropriate subsections of this chapter. 

3.2 Simulation Results 

3.2.1 Case 1A: Rate = 1/2, 2 tones, Variable Signal Energy 

This case has the best results of those investigated. All of the coded systems 

outperform the baseline by between 1.5 and 5.1 dB at the reference BER of 10 -4 . The 

number of points'in the signal space is doubled by the use of multiple tone signals so 

that optimal rate 1/2 codes can be employed. This provides a redundant coded bit for 

each bit of information transmitted, and thus good error correction ability. The two 

codes used in the simulation have constraint lengths of 2 and 6 with free distances of 5 

and 10 respectively. The longer code is quite common, and has been used in other 

satellite applications [19]. 

The results for coherent reception are shown in Figure 3.1. The improvement over 

the baseline system ranges from 1.8 dB for the short code with hard decisions, to 5.1 dB 

for the long code with soft decisions. The use of soft decisions provides a gain of 1.5 

dB over hard decisions for the short code, yielding a margin of 3.3 dB over the baseline. 

A 1.9 dB improvement, from 3.2 dB better than the reference with hard decisions to a 5.1 

dB advantage with soft decisions, is obtained for the longer code. For hard decisions, 

the effect of increasing the constraint length from 2 to 6 yields 1.4 dB improvement, and 

1.8 dB is gained in the soft decision case. 
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The performance of the noncoherent receiver appears in Figure 3.2. The results 

are very similar to the coherent case, with 1.5 to 4.6 dB of improvement over the baseline 

system. The short constraint length code provides a 1.5 dB advantage with hard 

decisions, and an additional 1.6 dB gain for soft decisions. Increasing the code 

constraint length enhances performance by 1.4 dB for a 2.9 dB improvement on the 

baseline with hard decisions, and by 1.5 dB in the soft decision case. 

The theoretical error bounds for the two codes are also shown. Figure 3.3 shows 

the bound for the shorter code, and the longer code appears in Figure 3.4. 

3.2.2 Case 18: Rate = 2/3, 2 tones, Constant Signal Energy (signalling over 2T) 

Case 1B uses a rate 2/3 optimal code with the three bit codewords sent over two 

signalling intervals. There is less redundant information in the data stream, and so the 

performance is understandably worse than Case 1A. The advantage to this scenario is 

that the signals have constant energy. In this case, the computation of the decision 

variables is simplified. However, the Euclidean distance between the signals is smaller 

in this case than in the previous modulation scheme, which is detrimental to error 

performance. Codes with constraint lengths of 4 and 6 and corresponding free distances 

of 5 and 7 were simulated. 

For the coherent receiver, the worst case coded system is 1.1 dB worse than the 

baseline performance, as shown in Figure 3.5. This is the short constraint length code 

with hard decisions. Increasing the constraint length yields only 0.5 dB improvement but 

soft decisions provide larger gains. The short constraint length code with soft decisions 

gives 1.8 dB improvement over the baseline system, which is 2.9 dB better than the hard 
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decision case. The longer constraint length again provides a very modest additional gain 

of 0.3 dB. 

The noncoherent system has performance curves very similar to the coherent case, 

and they are shown in Figure 3.6. The hard decision simulations are worse than the 

baseline by 0.5 and 0.1 dB for the short and long constraint length codes respectively. 

Using soft decisions yields 2.3 to 2.4 dB of improvement over hard decisions. This results 

in 1.8 dB improvement over the baseline for the shorter code, and 2.3 dB gain for the 

longer code. 

In all situations, the coded system performance curves are steeper than that of the 

baseline. This implies that the hard decision performance will approach or even surpass 

the baseline system at higher SNR levels. As well, the soft decision improvement will 

increase as the curves diverge. This additional improvement will not be very large, 

probably less than one dB. The difference in slope of the curves also means that the 

baseline system surpasses the performance of the soft decision coded system at low SNR 

values. This happens below the point where the curves intersect, known as the 

cross-over point. The cross-over point occurs at Eb/No  of 7.8 dB for coherent reception 

and 8.5 dB in the noncoherent case. 

3.2.3 Case 2A: Rate = 2/3, 3 tones, Variable Signal Energy 

This is the first case which has an information rate of two bits per signalling 

interval, corresponding to a baseline system of 4-ary FSK. A rate 2/3 code is used, which 

requires an eight point signal space. Three tones are employed, with all combinations 

of tones allowed, to provide eight variable energy signals. The two codes used in the 
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simulation are the same as those in the previous case, with constraint lengths of 4 and 

6. 

The results for coherent reception are shown in Figure 3.7. The performance of 

both codes is virtually identical with hard decision decoding, and is about 0.5 dB worse 

than the baseline system. Soft decision decoding yields 1.3 dB improvement over the 

reference system for the short constraint length code, and an additional 0.5 dB for the 

longer code. The cross-over points for the soft decision curves are between 5.5 and 6.0 

dB (Eb/N0). 

Figure 3.8 displays the performance curves for noncoherent reception of Case 2A. 

The short constraint length code with hard decisions is 0.5 dB worse than the baseline, 

while the longer code is 0.2 dB better than the reference system. The use of soft 

decisions yields about 2 dB of improvement over the hard decision case. The 

performance gain over the baseline with the soft decision decoder is 1.5 dB for the 

shorter code, and 2.1 dB for the longer constraint length code. Both soft decision curves 

intersect the baseline curve at 6.3 dB on the horizontal axis. 

This case achieves performance improvements with a reduction in required 

bandwidth. The spacing between orthogonal tones is the same for the three tone coded 

system and the four tone baseline system. The coded signals therefore require only 3/4 

of the bandwidth, although a higher peak power transmitter is neccessary for the multiple 

tone signals. It is also significant to note the free distances of the optimal rate 2/3 codes. 

The shorter code (// = 4) has a free distance of 5, while the longer code (u = 6) has a free 

distance of 7. These parameters will be used for comparison between the different cases 

at this information rate. 
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There are two figures which display the theoretical error bounds for coded 

performance with rectangular signal constellations, as described in Chapter two. Figure 

3.9 shows the bound for the shorter code and Figure 3.10 contains the results for the 

longer constraint length code. 

3.2.4 Case 28: Rate = 2/4, 4 tones, Variable Signal Energy 

This case employs all four tones in the coded system that are used in the baseline 

FSK modulation. All tone combinations are used to provide sixteen signals with signal 

energies that depend on the number of constituent tones. The code for this case has rate 

2/4 to provide a four bit codeword for two bits of information in each signalling interval. 

An optimum distance profile code of this rate could not be found in the literature, and 

so two identical rate 1/2 encoders in parallel were used. Only one code was simulated, 

with a constraint length of 6, composed of two rate 1/2 codes of constraint length 3. 

The performance of the coherent reception system is shown in Figure 3.11. With 

hard decisions, the coded simulation is 1.1 dB worse than the baseline. Soft decisions 

yield a 2.5 dB gain to provide 1.4 dB improvement over the reference system. Figure 3.12 

displays the performance curves for the noncoherent receiver. The soft decision decoder 

is superior to the baseline system by 1.6 dB while the hard decision curve is 0.5 dB worse 

than 4-ary FSK. 

The performance of the coded system in this case is virtually the same as the 

previous case in spite of the lower rate code and increased signal bandwidth. The 

reason for this is that the code structure employed does not take full advantage of the 

signal space. The code formed by two cascaded rate 1/2 encoders has double the 

constraint length of a single component code yet only achieves the same free distance. 
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The code used in this simulation case has a free distance of 6 which is approximately the 

same as the rate 2/3 codes in Case 2A. Therefore there is no appreciable performance 

gain for this system. The theoretical error bound for this code is shown in Figure 3.13. 

3.2.5 Case 2C: Rate  = 2/3, 4 tones, Constant Signal Energy 

This simulation employs the same rate 2/3 convolutional codes as Case 2A. In this 

case, the eight signals required are constructed from four orthogonal tones. Single and 

double tone signals with constant signal energy are used. The codewords are mapped 

onto the signals to optimize the error performance as described in Chapter two. 

The simulation results for coherent detection are plotted in Figure 3.14. The hard 

decision decoder performs worse than the baseline by 0.7 dB and 0.9 dB for the short 

and long constraint length codes respectively. Soft decisions give improved performance 

with a margin of 1.5 dB for the short constraint length code over the baseline. The longer 

code provides an additional gain of 0.5 dB for a 2.0 dB improvement on the reference 

system. 

The noncoherent performance curves appear in Figure 3.15. The baseline system 

is again superior to hard decision decoding for both codes. The short constraint length 

code has a 0.4 dB disadvantage while the longer code has 0.3 dB worse performance. 

With soft decision decoding, the short constraint length coded system improves by 2.0 

dB. The longer code shows 3.0 dB gain over the hard decision case for a 2.7 dB 

improvement over the reference system. 
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This case has the best performance of the three simulations at this information 

rate. The additional advantage of constant energy signals imposes less stringent 

requirements on the actual transmitter and receiver. 

3.2.6 Case 3A: Rate  = 3/4, 4 tones, Variable Signal Energy 

The final two cases have an information rate of three bits per signalling interval, 

which corresponds to a baseline system of 8-ary FSK. Case 3A employs a rate 3/4 code 

and a signal space of sixteen points. The signals are comprised of all possible 

combinations of four orthogonal tones, which require only one half the bandwidth of the 

baseline system. The simulation was run with one code which has a constraint length 

of 5 and a free distance of 5. 

Figure 3.16 shows the results of the simulation for coherent reception. With hard 

decisions, the coded system is 1.9 dB worse than the baseline. Soft decisions yield a 

2.1 dB improvement, resulting in a 0.2 dB advantage over FSK signalling. The 

performance of the noncoherent receiver appears in Figure 3.17. The hard decoder 

exceeds the reference system performance by 1.4 dB while soft decisions provide a 1.9 

dB gain. This results in a modest 0.5 dB improvement over the baseline for the coded 

system with soft decision decoding. 

This case does not provide significant performance gain over 8-ary FSK. The 

relatively high rate code provides a free distance of 5 and the signalling bandwidth is 

reduced by one half from the reference system. Figure 3.18 shows the error performance 

bounds for this code with a rectangular signal constellation. The signals also have 

variable energy, requiring increased receiver complexity. 
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3.2.7 Case 38: Rate = 3/6, 8 tones, Constant Signal Energy 

The codes for this case have a rate of 3/6 and constraint lengths of 3 and 6. The 

short code is a dual-3 rate 1/2 convolutional code, and the longer code is comprised of 

three identical cascaded rate 1/2 encoders, each with if = 2. The sixty-four signals 

required are composed of single tones and triples of tones selected from a set of eight 

orthogonal tones. The signals have constant energy and are assigned to the codewords 

as previously described. 

The performance curves for coherent reception are shown in Figure 3.19. The 

coded simulations with hard decision decoding are significantly worse than the baseline 

system. The margins are 4.3 dB for the short code and 2.5 dB for the longer code. The 

performance gains for soft decision decoding are also quite large so that the short 

constraint length code is 0.3 dB worse than the baseline with soft decison decoding. A 

gain of 2.4 dB over the reference system is achieved by the long code when soft decoder 

metrics are employed. 

The results for noncoherent reception are quite similar to the coherent case as 

shown in Figure 3.20. The short code with hard decisions is 3.8 dB worse than the 

baseline, while the long code has a 1.8 dB disadvantage. The use of soft decision 

decoding provides the short code with a 0.4 dB improvement on the baseline 

performance. The long code outperforms the baseline by 2.4 dB with soft decisions. 

The long constraint length code with soft decision decoding gives good 

performance in this case. The relatively poor results of the other simulations are due 

mainly to two factors. The structure of the shorter code is such that the codewords 

cannot be mapped onto the signal set to provide maximum distance between error paths. 
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This accounts for the large disparity between the different constraint length codes. The 

codes used do not have large free distances, and the signal space mapping does not 

provide proportionality between Hamming distance and Euclidean distance. Therefore 

the hard decision decoding metric has a large disadvantage compared to the soft 

decision case. 
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CHAPTER FOUR 

CONCLUSIONS 

4.1 Findings of the Study 

The major result of this study is quite obvious from the performance curves in the 

previous chapter. The use of convolutional coding with multiple tone signal sets gives 

significant improvement over FSK when soft decision decoding is employed. This 

performance gain is on the order of 2.0 dB (Eb/No) at a BER of 10 -4  for at least one case 

at each information rate. There are numerous parameters of both the coding and 

modulation schemes which influence the results of the simulations. 

The most readily apparent effect is caused by the type of decoding metric 

employed. The simulations with soft decision metrics indicate performance superior to 

those with hard decisions by a margin of from 1.5 to 4.9 dB. This situation would be 

expected because some information about the received signal is lost when a hard 

decision is made in the receiver. The difference is greater for schemes which have less 

correspondence between the Hamming distance of the codewords and the Euclidean 

distance between the signals, namely the constant signal energy constellations. 

The performance of the coherent and noncoherent systems is very similar. In 

absolute terms, the coherent receiver gives superior performance due to the exact 

knowledge of the phase of the transmitted signal. However, the relative improvements 

for the coded systems and the gains for soft decision decoding are virtually identical for 

both types of receivers. Although noncoherent FSK is usually used in actual systems, 
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coherent results were presented for completeness. Also, theoretical error performance 

bounds can be calculated for coherent reception, and they provide verification of the 

simulation results. 

The difference between the constant signal energy constellations and those with 

variable energy signals is difficult to accurately derive from the cases under 

consideration. The variable energy case proves superior for the transmission of a single 

bit per signalling interval. Case 1A shows the largest gains of all simulations, vvith gains 

of up to 5.1 dB. However, the use of constant energy signals with two tones involves a 

rather drastic reduction in signal spacing. The number of signals is also reduced 

significantly, and requires that a higher rate code be employed. These factors combine 

to cause the relatively poorer performance of Case 1B. The transmission of two bits per 

period provides the best opportunity for comparison of the constellations. The codes 

and the size of the signal sets are fairly similar in Cases 2A, 2B, and 2C; Under these 

conditions, neither of the two types of constellations appears significantly superior. The 

performance results for each simulation are within one dB for all three cases. When three 

bits are transmitted per signalling interval, the constant signal energy situation provides 

the best performance. However, Case 3A has a higher rate code and uses only one half 

the number of tones as in Case 3B. In spite of this, it actually has better performance for 

hard decision decoding, due to the signal space mapping. 

There is another difference between constant and variable energy signal 

constellations that has more significance when considering actual implementation of the 

system. With variable energy signals, the transmitter output power varies according to 

the number of tones to be sent. A high peak to average power requirement might prove 

to be a disadvantage since the transmitter will be operating at less than its full peak 
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power capability for a large percentage of the time. The zero energy signal might also 

prove undesirable to implement if channel fading or drop-outs were possible. The 

receiver for unequal energy signals has increased complexity because of the necessity 

to compute an exponential function and a modified Bessel function in order to calculate 

each decision variable. However, the mapping of codewords onto the signal set is 

straightforward for this situation. In the constant signal energy case, the signal 

generator in the transmitter must adjust the amplitude of the signal tones to ensure the 

signal energy remains constant. The computation of decision variables in the receiver 

is simplified, but the mapping of codewords onto the signal space must be incorporated 

in both the transmitter and receiver. 

4.2 Suggestions for Further Work 

The results of this study raise some questions that may provoke further research. 

Although significant performance improvements have been discovered, further 

improvements may be obtained from different codes and signal constellations. One 

example of this might be codes with better distance profiles than the cascaded rate 1/2 

codes used in this study, to improve hard decision performance. The use of larger signal 

spaces with lower rate codes is possible for eight tone and even sixteen tone signalling. 

Only 64 of 256 possible tone combinations were used in the signal set of Case 3B, and 

16 tones provide 65,536 possible signals from which to construct a constellation. It is 

noteworthy that trellis coding in coherent communications systems obtains larger coding 

gains with larger signal sets [8]. Excessive computing time requirements for the 

simulation program used in this study precluded further exploration of larger signal sets. 
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Another subject for further investigation is the performance of these schemes in 

an anti-jamming system in the presence of jammer interference. Other studies [3, 4] have 

shown good results for convolutional coding with conventional FSK signalling, and so 

this is a promising area. The implementation of soft decision decoding becomes more 

complex in a jamming environment. Side information regarding the presence of a 

jamming signal is required by the decoder or else soft decision decoding seriously 

degrades in performance. 

4.3 Summary 

The use of convolutional codes with multiple tone signals has been shown to 

provide performance improvements over M-ary FSK signalling. The coded system does 

not require additional bandwidth to maintain the same information rate. Indeed in some 

cases a smaller modulation bandwidth and hence higher processing gain appears 

possible. The coding is suitable for implementation in a frequency hopped spead 

spectrum anti-jam system with a usual spectrum analyzing receiver followed by a Viterbi 

decoder. Increased performance gains through different codes and signal sets, as well 

as performance in a jamming environment are topics of further interest. 
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ABSTRACT 

In this report final results on the error performance of a high data rate, 

hopped spread spectrum transmission system that employs band efficient 

modulations that are coherent during each hop, are presented. Earlier reports 

provided results on the signalling spectrum, optimum receivers and system 

complexity. In this report period, upper bounds on the average bit error 

probability of the hop- by-hop sequence estimation noncoherent receiver for MSK, 

DMSK and TFM with h-0.5 and with both rectangular and raised cosine pulse 

shapings have been evaluated. To indicate the tightness of the bounds, a 

computer simulation study has been carried out for the hop-by-hop receiver with 

MSK modulation, for different lengths of hop interval. 

1. INTRODUCTION 

A slow frequency-hopped, high data rate spread spectrum system [1], with a 

bandwidth efficient modulation in each hop interval, namely continuous phase 

modulation (CPM) [2], was proposed in [3,4]. Power density spectra of the 

frequency-hopped signals with various correlative encoding schemes [5,6] and 

baseband pulse shapings were calculated for various hop lengths in [4]. In 

general, as the length of the hop interval increases the power density spectrum 

of the frequency-hopped CPM becomes more compact with lower sidelobes and 

approaches that of the CPM signal without hopping. The use of higher order 

correlative encoding schemes and baseband pulse shaping is found to be effective 

in bandwidth and sidelobe reduction only for long hop intervals. For short hop 

lengths, the usual techniques for reducing bandwidth by using suitable higher 

order correlative encoding schemes and pulse shaping do not yield much in 

bandwidth reduction. Hence, for systems with short frequency hopping intervals 

• it would be more advantageous to use simple CPM schemes such as minimum shift 

keying (MSK) [7,8] allowing a simpler receiver implementation. 



-84- 

Three algorithm-based, sequence estimating noncoherent receivers were 

proposed for decoding the frequency-hopped correlative encoded CPM signals in 

[4]. Except for the first receiver, which decodes the transmitted sequence on a 

hop-by-hop basis, the other two receivers both require the signal to noise ratio 

(SNR) to be known by the receivers in order to calculate the metric across the 

hops. In this report, we shall concentrate on the performance of the hop-by-hop 

sequence estimation receiver which appears the most promising design among the 

three receivers proposed. 

Upper bounds on the bit error probability of the hop- by - hop sequence 

estimation receiver will be presented. The upper bound calculation is based on 

the union bound approach with some approximation necessary when hop intervals are 

long. The bit error probability bound will be presented for various correlative 

encoding schemes with rectangular and raised cosine pulse shapings. 

A computer simulation study of the receiver is also carried out to obtain a 

more precise error performance evaluation and to indicate the accùracy of the 

bounds. The simulation also allows the effects on the receiver performance of 

modification of the decoding algorithm, to be easily observed. It is found that 

if the decoder keeps more than one survivor for each state of the modulation 

trellis, an improvement in the performance of the sequence estimation receiver is 

obtained. 

2. APPROXIMATE UPPER BOUND ON BIT ERROR PROBABILITY 

The optimum maximum likelihood noncoherent hop-by-hop detection receiver is 

derived in [3,4]. Given that a = ( a o , al, 
	ŒN_1}  is the transmitted 

sequence, the receiver decides on the sequence a'  = {  a, c, 	q_ 1 } which 

gives the maximum equivalent likelihood [4] given by 

9, 1  (a, a') = 9, c2 (a, a') A-  (2.1) 
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Y;o 

W(Y) P(1) (2. 14) 

where 9., (a, a') and 9, (a, e) are the inphase and quadrature correlations [4] 
c 	- 	s 

which are given by 

t
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NT
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(a, a') = 

NT 
 f o r(t) sin U 2u f

c
t + 	(t, a') ] dt 

(2.2a) 

(2.2h) 

where r(t) is the received signal and tp (t, a') is the information carrying phase 

function as defined in the previous report [4]. 

Errors occur whenever the detected sequence a' differs from a in one or more 

• 

places. The probability of detecting an incorrect sequence a' # a is simply the 

probability that t' (a, a') is greater than (a .,:a), which is just the 

probability of one Rician variable exceeding another for which the expression is 

known [4,10,12,13]. Since the probability of ernor depends on only the 

difference between a' and a rather than on the individual' a and a' [4,10 ],  we let 

The union bound on the average bit error probabiZity is simply given by 

averaging the bit error probability over all the possible transmitted sequences 

- as 

where p # 2 is the total number of possible transmitted sequences over the hop 

interval of length NT. e(Y) is the number of nonzero sequence elements of Y, 

which corresponds to the number of bit errors when a' is detected given that a is 

transmitted. W(Y) is the total number of ,pairs of a' and a corresponding to the 
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difference sequence Y. Since a difference sequence Y having e(Y) nonzero 

elements would result from 2
N-e() 

different pairs of a' and a W(Y) is given as 

P(Y) is the probability of an error by detecting a' rather than a as the 

transmitted sequence and is given by 

P(Y) = 	1 	Q (1/ b, V-57) + Q (V-U; V b 	) ] 2 (2.6) 

where Q ( , ) is the Marcum Q-function [12,13]. Techniques for recursive 

evaluation of Q are given in [14,15]. The parameters a and b are given by 

N E, 

( a  } 	1 	{ 1 - I p(Y) 1 2  } 1/2 ] 
b 	2 No 

where p(Y) is the complex correlation and 1p(1)1 2  is given by 

	

2 	1 	NT 	2 

	

I P(Y) I 	= 	f 	cos ip (t,Y) dt ] + 	
1 	NT 	2 

f 	sin 'I)  (t, Y) dt ] NT o 	 NT o 

(2. 7) 

(2.8) 

For binary transmission Yn  can take on 3 possible values namely 0, + 2 and - 

2. Hence there can be 3
N 

-1 different difference sequences Y, for a hop length 

of NT in Eq. (2.4). For any Y there is always another sequence with opposite 

signs in all the sequence elements. The number of terms in Eq. (2.4) can be 

reduced by a factor of 2 since  PC -y) = P(Y) as can be easily seen from Eqs. (2.6) 

to (2.8). The number of difference sequences to be considered in Eq. (2.4) is 

1 
 then - (3
N 
 -1). 

2 

If we represent 2, 0 and -2 as 0, 1 and 2 respectively, then each 

difference sequence element Y n  can be represented as a base-3 digit, and the 

difference sequence can then be represented by N base-3 digits. Each Y to be 
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is the correlated difference sequence given by 
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considered in the error-rate calculation Eq. (2.4), can be represented by a base- 

1 	 1 	N 
3 number of value from 0 to 	(3

N -
1) -1. Numbers from 0 to - (3 - 1) - 1 are 

2 

decoded sequentially as base-3' digits, which are then converted to 0, +2 or 	as 

the difference sequence elements, to be used in evaluating the union bound as 

given by Eq. (2.4). 

2 

I P(Y) I required to calculate P(Y) in Eq. (2.4), can be rewritten.as 
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(2.12) 

where C is the normalizing constant and k's are the coefficients of the 

correlative encoding polynomial as defined in [4]. 

2 

To speed up the calculation of I p(i)J, all possible integrals of the 

cosine and sine of the possible phase over a symbol interval, C(d
k
) and S(d

k
) are 

initially calculated and stored in an .array. This avoids repeated numerical 

integration to obtain C(d
k
) ând S(d

k
) 

w.11en 
 the baseband pulse is not rectangular. 
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When N is large, evaluation of the union bound as given by Eq. (2.4) becomes 

computationally infeasible, since the number of difference sequences to be 

considered is 
1 

 - 
 (3N_1), 

 which grows exponentially with N. Approximation of the 
2 

union bound is then necessary for large N. At high SNR, the probabilities of 

those error paths, which have large differences [4,9,10,11], are small compared 

with those having small differences. The paths having large differences can then 

be neglected. The upper found on the bit error probability is approximated as 

YK) 

where S denotes the set of difference sequences where the difference is not 

large. 

To determine S the set of Y's, we notice that there will be complete error 

events during the hop and also incomplete error events starting near the end of a 

hop. For the hop-by-hop detection receiver, the difference sequences Y 

ki  

correspondingtoanerrorevente.of length St.
i 
starting at time k

1
T, will have 

1 

for i<k i  and i>k 1 +9. 1 . The complex correlation as given in Eq. (2.8) becomes 
1 

(k
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 + t 

1 
.)T 	 2 2  
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where k + Z. 	N 
1 	1 

Hence for error events having a particular phase difference path segment 

2 

from k
1 
 T to (k

1 
+)T

' 
I p(Y)I will be the same, independent of k

1 
 as long as 

o<k
1
<N-£, and hence the P [e] will be the same. It is then sufficient to 

determine only the segment of Y from 0 to Z i  - 1 corresponding to an error event 

starting at time O. There will be two Y's corresponding to the error event e i 

 startingfrorl.  and having the same error probability. 

For a correlative encoded CPM with frequency pulse of length LT, the minimum 

length of a complete error event is (L+1)T. Difference sequences of various 

lengths 9— - L+1 are generated to find the complete error event paths starting at 

time O. Once a complete error event path, which has Y
o 

* 0 and 	= o (i.e. the 

difference phase path deviates from zero at time 0 and merges back to zero at 

time T) is determined, the correlation is calculated by Eq. (2.14). Since it 	

11 

is computationally infeasible to include all complete error events for large N 

and also since long error events have large differences, hence only difference 

sequencesegmentsoflenehL4
max 

are included. 

If an error event starts at some time (N-L)T or later, before the end of a 

hop, then an incomplete error event will occur. These incomplete error events 

starting near the end of a hop have the estimated phase path differing from the 

1 true path in only a few places and thus are likely to occur. The - (3
L 

2 

possible difference sequences corresponding to the incomplete error events at the 

end of a hop are generated and their probabilities evaluated. 
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To summarize, the bit error probability upper bound is approximated by 

e. 
< 1 	 N-e.+1 	

e
j P 	- { E 	2(N,-Q+1)21-7-1.12,[e.]+ E 	2 	j 	1-1.e.J1 	(2.15) e 	

N-e. 	1 	
1 	N 	j 

e.c S 	 e.c S 

	

1 	c 	 j 	I 

where S
c 

is the set of complete error events having small equivalent distances 

and S
I 

is the set of incomplete error events occurring near the end of a hop. 

The upper bound on the error performance of the hop-by-hop noncoherent 

receiver has been evaluated for a variety of correlative encoding and baseband 

pulse shaping schemes when the frequency hopping interval is 4, 16 and 64 symbol 

intervals. For the hop length of 4 intervals, union bounds are evaluated while 

for the longer hop intervals 16 and 64, approximated upper bounds are evaluated. 

Minimum shift keying (MSK), duobinary MSK (DMSK), and tamed FM (TFM) 

encoding schemes with h=0.5 and rectangular pulse shaping are compared as shown 

in Figs. 1 to 3 for N=4, 16 and 64 respectively. It can be seen that MSK 

performs much better than the other two schemes for the various hop lengths. 

When raised cosine pulse shaping is used, the bit error probability bounds for 

the three encoding schemes are as shown in Figs. 4 to 6 for N=4, 16 and 64 

respectively. Again, the higher order correlative encoding schemes have higher 

probability of error. 

Next, the effect of the length of a hop on the error performance of the 

receiver is illustrated in Figs. 7 to 12 for each modulation. As expected, the 

performance of the receiver improves as the hop interval lengthens. However, for 

the same degree of increase in hop length, the improvement in error performance 

is less for MSK and is more pronounced for the higher order correlative encoding 

schemes such as TFM. 
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3. RECEIVER SIMULATION 

A computer simulation study has been carried out for the hop-by-hop sequence 

estimating noncoherent receiver with MSK modulation. Standard Monte Carlo 

techniques are employed. 

Recall that the maximum likelihood hop- by-hop noncoherent receiver decides 

on the sequence a', which maximizes the equivalent likelihood as given by 

Eq.(2.1). The inphase and quadrature likelihoods as given by Eq.(2.2) can be 

rewritten as 

N-1 
(a, a') = E 	6  c 	- 	c,k 	- 

k=o 

(a, a') = E 	6 	(ay a') s s,k - - 
k=o 

(3.1a) 

(3.1b) 

where 6 
c,k 	s,k 

(a, a') and 6 	(a, a') denote the partial inphase and quadrature 
-  

correlations over the k
th 

symbol interval and are given by 

(k+1) T 

6c,k 
(a, a') = f 	r(t) cos [21T f

c
t + ip (t,a')]dt 

kT 

(k+1)T 

6 	(a, a') 	f 	r(t) sin [271.  f t + 	(t, a')]dt 
s,k 

kT 

(3.2a) 

(3.2h) 

Both partial likelihoods can be further decomposed by expanding the cosine and 

sine terms in Eqs. (3.2a) and (3.2h) as in [4]. Without loss of information, we 

shall use Eq. (3.2) to find 6
c,k 

 (a, al) and 6
s,k 

 (a, a'), which are needed for 
- 	- 

the simulation. 

th. 
During the k

th 
symbol interval in the i 	hop, the dehopped received signal 

is given by 

r(t) = {q1 1/2  cos [27r fct + (t,a) + 0 1.  ] 	n(t) 

< 	< 
iNT - t - ( 1+1) NT 

(3.3) 
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where all the symbols used are the same as in [4]. n(t) is the additive white 

Gaussian bandpass noise with zero mean and one-sided power spectral density No 

W/Hz which can be represented by [16] 

n(t) 	2 n
c 
(0 cos 2u f

c
t 	V-2- n (t) sin 2n f

c
t 	 (3.4) 

The baseband processes n e (t) and n 5 (t) are statistically independent, white and 

Gaussian with zero mean and one-sided power spectral density No W/Hz. 

Substituting Eqs. (3.3) and (3.4) into Eqs. (3.2a) and assuming that 2u f
c 

t 

>>1, we obtain 

(k+1)T 

k 
(a a') 	- I 	cos Wt,a') 	et,u) 	e i ] dt 

c, 	 T 
kT 

	

1 	(k+1)T 

	

+  f 	f 	ne (t) cos lp (t,a') dt 
kT 

1 	(k+1)T 
+ vZ  I 	n

s 
(0 sin lp (t,a') dt 

KT 

Let 

(3.5) 

1 
(k+1)T 	 (k+1)T 

1 
ne,k (a') = 	f 	n c (t) cos tp(t,a')dt + 71„. I 	n

s
(0 sin ip(t,a')dt 	(3.6) 

kT 	 kT 

Eq. (3.5) can be rewritten as 

1 2 	(k+1)T 
. 	/ f 

TJ 	
COSEIgt,Ce t it 	7-à-  ne,k (a') (3.7) 

Similarly, the quadrature correlation is obtained by substituting Eqs. (3.3) and 

(3.4) into (3.2h) and we obtain 

6 	( 04,c0\ 	 12E11/2 	
(k+1)T 

. 	f — 

sin [Igt,a') - (t,a) -0.] dt +nsk (a') 	(3.8) 
2 	, - 

kT 

kT 

where 



E { n (a') n 	(a') 	= 0 

	

c,k 	s,k 	- 
(3.11) 

E In 	(a') n 	(a)1= 
. c,k 	s,k 

1 1 ,
(k+1)T 

(t,a') -iJ (t,a)]dt 
;I" 	f

kT 
(3.13) 
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1 	
(k+1)T 	 (k+1)T 

1 
ns,k (a') = 	f

kT 	
n c (t) sin tp(t,a')dt - 	f 	n s (t)cos tp(t,g')dt 

kT 
( 3 . 9 ) 

n 	(a') and n 	(a') as given by Eqs. (3.7) and (3.9) are both Gaussian with 
c,k 	s,k - 

zero mean since n(t) and n(t) are zero mean and white Gaussian processes. 

Their variances can be shown to be 

No 	1 
VAR [ n 	(a')] - 

c,k 	2 	T 

(3.10) 
No 

VAR E n 	= 

Also, it can be shown that 

Hence, noise components of the inphase and quadrature partial likelihoods 

resulting from matched filtering of the received sfgnal, matched to the 

particular signal corresponding to a', are uncorrelated. 

However, it can be shown that 

No 1 	1 	
(k+1)T 

E {n
c,k

(a')  n
c,k

(
g
)].= -7 	71„. f 	cos4 (t,a') 	(t,a)]dt 

kT 
(3.12) 

Hence, the noise component of the output of the filter matched to the inphase 

signal component for a' may be correlated with that from the inphase matched 

filter for a according to Eq. (3.12). The noise component of the output of the 

filter matched to the inphase component for a' may also correlated with the noise 

component of the output of the quadrature matched filter for a as indicated by 

Eq. (3.13). 
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The noise components of the outputs of the inphase and quadrature matched 

filters for different signals over a symbol interval as given by Eqs. (3.6) and 

(3.9) cannot be generated simply as independent Gaussian random variables. In 

order to generate in the simulation the filtered noise components at the 

inphase and quadrature matched filter outputs for different a', the set of 

cosines and sines  •of the possible signal phases over an interval is first 

expanded using the Gram - Schmidt orthogonalization procedure [16,17]. The noise 

component from a filter matched to a particular inphase or quadrature signal 

component is then obtained by summing independent Gaussian random variates, which 

are weighed by their corresponding orthonormal coefficients. 

Transmitted sequence a is generated randomly one symbol at a time. The 

partial inphase and quadrature likelihoods for different possible transmitted 

symbols are computed according to Eqs. (3.7) and (3.8) with the noise components 

generated as outlined previously. The receiver then forms the equivalent 

likelihoods and estimates the corresponding maximum likelihood transmitted 

sequence a' according to the decoding algorithm detailed in section 3.3 of 

previousreport[4].Therandominitialphasee.is also generated every hop as 

a random value uniformly distributed between 0 and 27r. 

Although the decoding algorithm as described in [4] retains only one 

survivor for each state, simulation has shown that the performance of the 

receiver improves if the decoder keeps more than one survivor for each state 

during the decoding process. Only the MSK hop-by-hop noncoherent receiver has 

been simulated. Figs. 13 - 15 show how the error performance improves as the 

number of survivors kept for each state is varied from 1 to 4 for hop lengths 4, 

16 and 64. It can be seen that keeping two survivors for each state would be 

sufficient. Keeping more than two survivors improves the error performance 

insignificantly. The simulation results for the hop-by-hop sequence estimation 
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receiver, which keeps two survivors for each state, is as shown in Fig. 16 for 

various hop interval lengths. The coherent MSK Viterbi Algorithm receiver 

performance is also shown. It can be seen that the error decreases with the 

increase in hop length but the error probability is always higher than the 

coherent MSK Viterbi receiver, as expected. 

In Fig. 17, upper bounds evaluated for MSK with rectangular pulse shaping 

for N = 1, 4, 16 and 64, are plotted together with the simulation results in 

order to indicate the tightness of the upper bounds evaluated in the previous 

section. The curve for N=1 is actually the average probability of bit error 

rather than an error bound. It can be seen that the simulated error probability 

coincides with the theoretical result. At moderate to high SNR, the upper bound 

for N=4 is also tight, while for longer hop lengths as 16 and 64, the bounds are 

not as accurate. 

I.  CONCLUSIONS 

In this report, upper bounds on the bit error probability have been 

evaluated for a variety of frequency-hopped correlative encoding schemes with 

rectangular and raised cosine baseband pulse shapings. It has been shown that 

the error performance of the hop-by-hop sequence estimation noncoherent receiver 

improves as the hop length increases. The simple MSK scheme has better 

performance than higher order correlative encoding schemes such as DMSK and TFM. 

Higher order correlative encoding schemes shows more pronounced error performance 

improvement for the same degree of increase in hop interval. A computer 

simulation study of the hop-by-hop sequence estimation noncoherent receiver has 

been carried out. It has been found that by keeping two survivors for each 

state, the error performance of the receiver achieves close to optimality using 

the same decoding algorithm described in the previous report. The simulation 

results indicate that the error bounds evaluated for short hop intervals are 

tight. 
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PART 3 - SYNCHRONIZATION ASPECTS 

This part of the report deals primarily with the acquisition (and tracking) 

of parameters required to allow reliable data detection at the satellite, that is, 

uplink synchronization. Since this synchronization process will require feedback 

to the user, the issues of downlink format and synchronization need to be ad-

dressed, but to a lesser extent. High-level data formats and associated protocols 

are not considered. 

We first define the system under consideration along with the assumptions 

that are employed. A possible downlink synchronization procedure is described. 

Various aspects of uplink synchronization are then outlined, and options for 

system implementations and strategies are presented. The "simplest possible" 

system (having lowest synchronization complexity) is then described. 

1. SYSTEM UNDER CONSIDERATION 

1.1 General  

This is principally a point-to-point communications system that is based on 

circuit switching. Call setup is performed over control channels imbedded in the 

uplink/downlink data streams [1] that enjoy full antijam protection. 

Channel assignments may be fixed or reconfigurable by a central controller 

overseeing demand assignment. To keep things simple, we assume a fixed assignment 

scheme with dedicated uplink/downlink slots for each user. More flexible systems 

simply imply longer waits for access to satellite resources for synchronization 

purposes. We assume that when user A is not engaged in a call, the satellite 

places the data detections from user A's uplink slot into user A's downlink slot. 

This provides the feedback which is crucial to initial synchronization. 
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1.2 The uplink  

Uplink users are arranged in an FDMA format, with each user employing a non-

coherent  M-ary modulation. Users hop their transmit frequencies (as a group) over 

a very wide band. The frequency synthesizer is controlled by k- bit blocks (for 

different frequencies) produced by a pseudo-random sequence generator with a 

period which can be in excess of several days. The hopping rate provides several 

hops per bit for low rate users and creates many bits per hop for medium data rate 

users. 

Uplink beam sharing is a possibility [2], but is not considered here as it 

poses no additional fundamental problems. 

1.3 The downlink  

The downlink follows a TDMA format and the composite signal may or may not be 

frequency spread. If spectrum spreading is employed here, the first step at the 

receiver is to synchronize to this spreading sequence and despread. This is a 

conventional synchronization problem and so is not considered further here. In 

any event, downlink spreading may not be a requirement if data is protected by 

encryption. 

The downlink TDMA format is assumed as in Figure 1. One frame is composed of 

the intervals during which the downlink antenna beam hops to each of the coverage 

zones. While dwelling on a zone, a conventional sync pattern is followed by data 

slots for the users as well as a common information slot in which the satellite 

may transmit control messages or data which facilitates initial synchronization. 

Users look for the sync pattern, then "read" data from their assigned time slots. 

2. DOWNLINK SYNCHRONIZATION 

We assume again that the downlink TDMA signal is not spread. Each user 

receives signal energy only during the time that the downlink beam is dwelling on 



Zone 1 Zone 2 Zone 3 Zone M 

sync common. user 1 user 2 user N 

Carrier and 

bit-timing 

recovery 

frame T
F 

Figure 1. Downlink TDMA frame format. 

r(t) 

g(t) 

T
z 
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T
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Figure 2. Gating for downlink synchronization. 
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the user's zone. For example, with 20 fully active zones, users see signal energy 

for about 5% of the time. 

To perform initial acquisition, the following procedure may be employed. 

Users energy-detect over a sliding window of length Tz  where Tz  is the dwell time 

on the zone. Once received energy exceeds a threshold, the window is frozen and 

the windowed signal is passed to phase and bit-timing recovery circuits. Once 

these parameters are acquired, the window is expanded to 2T z  with the same centre 

position, and a search for the sync burst is begun using a sliding binary cor-

relator [3]. When the sync burst is acquired, the user can identify his time slot 

and pick out the data destined for him. In addition, any common data supplied by 

the satellite can be recovered. 

Note that unlike a conventional TDMA system having TDMA both on the uplink 

and on the downlink, we do not need bit-timing symbols dedicated to each user. 

All user data bursts are exactly aligned to common timing marks since these burst 

are formed by the satellite  with a single timing reference. This also means that 

the signals from subsequent beam hops are easily combined in the carrier and bit-

timing recovery loops. All that is needed is a simple gating waveform as in 

Figure 2. 

3. UPLINK SYNCHRONIZATION: ACQUISITION 

The following are identified as the parameters to be acquired (and tracked): 

(a) Hopping sequence  phase, i.e., the proper point in the long pseudo-random 

hopping pattern. (coarse sync) 

(h) Hopping clock  phase, i.e., the alignment of hop transitions of the uplink 

signal with those on board the satellite. (fine sync) 



(c) Carrier frequency. There may be significant errors due to Doppler shifts 

with non-geosynchronous satellites, initial errors in the frequency syn-

thesizers, and drift. (coarse and fine sync) 

3.1 Hopping sequence phase/coarse carrier frequency  

The acquisitions of these two parameters are tightly bound together. In 

effect, they create a two - dimensional search space over the regions of 

uncertainty. System implementation choices will determine the size of the uncer -

tainty regions and ultimately the time for acquisition. 

There appear to be two options with regard to initial uncertainty in hop 

sequence phase. We assume that the pseudo -random sequence is produced by a 

finite state machine realized as a clocked digital circuit. In the first option, 

this sequencer box is initially synchronized by physical connection to a master 

unit. Small errors in the clock frequency will cause phase error to accumulate 

from that point on (until the next synchronization with the satellite is 

achieved). There is, however, another attractive alternative. Since the state of 

the sequencer at any one time is implicit in the value of the internal storage 

elements (latches or flip-flops), it is possible to transmit this state 

to users on the downlink. By setting the latches or flip-flops to the same values 

in a replica sequencer circuit, a user acquires synchronization. Of course, the 

user must adjust for the delay in downlink transmission and for the uplink delay 

required for his signal to reach the satellite. If these delays are known within 

an uncertainty of T then this determines the maximum initial error in the hop- 

ping sequence phase (error < Tp/T
h 

hops where hopping rate Rh 
	

1/Th). This 

uncertainty can be kept small by transmitting satellite ephemeris data in the 

"common" slot of the downlink frames to facilitate range calculations. 
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Such side information must be protected of course. This is ensured if the 

downlink is encrypted or if the sequencer circuit utilizes a secret key (bit-

string) in the formation of the hopping pattern (for example a cipher-block 

chained encryption device [4]). 

As far as carrier frequency uncertainty is concerned, this can be reduced by 

predictions of Doppler shift from satellite orbital ,calculations (for non-

geosynchronous satellites). Accurate oscillator reference ,  frequencies along with 

good stability will clearly also nelp. 

3.1.1 Search Strategies  

There are many search strategies which are possible [5, 6]. The two dimen- 

sional search space is divided into N cells separated in frequency by Af
c 

and 

separated by one full hop time Th . 

A fast initial linear sweep over all cells with'small dwell (observation) 

time at each can be performed, with possible acquisition detections being explored 

for longer times. If the initial sweep fails, it is repeated with the dwell time 

increased. As a variation, more time can be spent on those cells closest to the 

expected value of the sequence phase, and Af = 0, since the likelihood of larger 

drifts and errors is correspondingly smaller. Alternatively, a more formal se-

quential probability ratio test (SPRT) can be employed. In the SPRT, we compute 

r
K 

= p
s

(
nK

)/p
n

(
nK

) where p
s 

and p
n 

are, respectively,'rthe distributions of 

received sequence 
nK 

(of length K samples) given signal present, and noise-only 

present. This likelihood ration r is compared to upper and lower thresholds 

selected to produce desired values of probability of false alarm p
fa 
 and of detec- 

tion pd . If the ratio falls between the thresholds, the test is repeated with the 

(K+1)'th sample r
K+1 

added. The choice oflsearch strategy depends on the size of 

the initial uncertainty regions. If these are small, a single serial search with 
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detection threshold set for the desired p
fa 
 and pd  would be used. For very large 

uncertainty regions, the SPRT would be desirable. For moderate uncertainty 

regions, a modified variable-dwell time search procedure would be sufficient. 

A method for scanning through a range of hop sequence phases is now 

described. The arrangement is shown in Figure 3. The pseudo-random sequence 

++ 
generator (PNG) can be clocked by 4), the nominal clock, or by 45 , a high speed 

clock. In addition, the clock input can be disabled so that the outputs of the PN 

generator do not change. A block of k bits is clocked separately into a buffer 

register that feeds the frequency synthesizer to select one of 2
k 
frequencies. 

The procedure to be followed is now outlined. Assuming an initial uncer- 

++ 
tainty of ±H hops in hop sequence phase, we initially switch to 4) 	to run the 

sequencer "ahead" by H hops. Since the nominal clock rate of the sequencer will 

be relatively low (at most kRh ) for the hop rates (Rh  - 20 kHz) and number of 

++ 
frequencies (k < 32) of interest, a (p, 	clock at ten times the frequency of 4) 

should be well within the capabilities of modern digital circuits. While this 

run-up is being performed, the input register at the synthesizer is still being 

reloaded at the nominal hop rate R
h' 

so that the carrier frequency is still 

hopping. After the PNG has advanced H hops ahead of nominal, its clock input is 

returned to 4). Now we can drop back by one hop (relative to the satellite) by 

disabling the clock input for one hop, and then returning it to 4) for an interval 

of I hops duration, the observation time at the current hop sequence phase. 

During this time, we observe the downlink return (which we have assumed is 

directed to us in a loopback mode) and either declare acquisition or continue the 

procedure to examine the next hop phase. The maximum observation interval to 

cover all 2H possible hop sequence phases is then 2H.I.Th  seconds. Of course, a 



-122- 

PN 

Generator 

il k bits 

IT] 
000  

++ 

Th 

E1  + Af 
1 	

f
2 
+ Af 	f

3 
+ àf 	f

q 
 + Af received 

at satellite 

f
1 
+ f

IF 	
f
2 
+ f

If 	
f
3 
+ f

If 
	£4  + f

IF 
satellite 

dehopper 

sampler 

buffer 

Frequency 

Synthesizer 

s ( t ) 

Figure 3. System for adjusting hopping sequence phase and clock. 

Phase 

Adjust 

S
hop

(t) 

in-band signal 

(gated) 

f
IF 

- Af 

Figure 4. Effect of mis-aligned hop sequences. 



-123- 

choice of I is determined by the search strategy adopted. These I hops are as-

sumed to span a search over several (or many) trial values for carrier centre 

frequency (separated by Afc ). 

3.1.2 Detection of Acquisition  

At each trial value of hopping sequence phase and carrier centre frequency, 

we must decide if acquisition has been achieved. We concentrate on detection of 

hop sequence phase assuming initially that carrier centre frequency is accurate. 

Figure 4 depicts the alignment of the carrier hops with the satellite dehopping 

carrier, when the phases are within one hop. Notice that a serial search of 

possible hop sequence phases must produce an alignment at some trial phase that 

causes at least 1/2 of the signal energy to be properly dehopped by the satellite 

and pass through the satellite IF filters. In the worst case then, there will be 

a 3 dB loss of signal energy at proper alignment for this coarse acquisition 

phase. 

Notice also that the transmitted user tone is "gated" before IF which will 

produce spectral spreading and some additional loss after filtering. Also, car-

rier centre frequency misalignment will reduce (or possibly eliminate) the signal 

component. We assume àfc  is chosen to produce a 3 dB loss with worst case fre- 

quency alignment. 

One option for the downlink return is to have the satellite transmit a hard 

decision (1 or 0) on the presence or absence of the agreed upon synchronizing tone 

(one of M tones). The decision threshold may be set to give some desired tone 

detection probability in the presence of maximum uplink fading and full band 

jamming. The ground user can then use these tone- detection decisions in a SPRT 

test, or, in a simpler search strategy, these decisions may simply be counted over 

an observation of I hops, and the count compared to a threshold. 
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As an example, the design threshold for this latter search might yield prob-

abilities of tone detection, given tone present (with 3 + 3 - 6 dB loss due to 

hopping phase and carrier frequency misalignment) and tone absent, of p(tdI1) - .8 

and p(td10) = .1, respectively. If we look for 5 or more detections in 10 hops, 

this will yield a false alarm probability of P
fa 

- 10
-3 and a probability of 

detection of acquisition of P d  - .966 (from standard binomial distribution 

calculations). Of course the detailed calculations of p(td10) and p(tdI1) in the 

presence of jamming will be complicated. With Gaussian noise only, these prob-

abilities form a set of well known curves. The presence of partial-band jamming 

and frequency misalignment errors introduce further complications. 

3.2 Hop clock phase fine carrier frequency  

The procedures described above will yield a coarse synchronization to within 

one half of a hop and within Afd /2 carrier frequency error. 

Achieving a finer alignment is complicated if the satellite sends only hard 

decisions about tone detections on the downlink. We wish to adjust the hop clock 

phase, and frequency synthesizer centre frequency, in small increments of At and 

Af, and receive downlink data about the quality of the alignment. One possibility 

is to have the satellite send more than one bit per hop on the downlink where this 

data is a quality measure, for example, the output of an energy detector quantized 

to one of several levels. This may represent an expansion of the data rate nor-

mally assigned to a user's downlink data slot, but may be feasible since it is 

only needed for the brief and infrequent synchronization attempts. 

Another possibility is to estimate the proper fine alignment from only hard- 

. 
decision tone detection data as assumed above. In this case, the hop clock phase 

or carrier frequency may be stepped by A sequentially until a target rate of 
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missed detections (e.g., 8 of 10) is exceeded. The clock phase or carrier fre-

quency may then be stepped in the opposite direction until missed detections again 

occur in excess of this target rate. Proper alignment may then be estimated to 

lie exactly half way between these two extremes. Of course, this procedure will 

take longer than an alternative employing multiple - bit alignment quality data 

transmitted by the satellite. The procedure is aided, however, by the fact that 

there should be a reasonably sharp threshold effect at which the rate of missed 

detections rises quickly with increased misalignment. 

4. UPLINK SYNCHRONIZATION: TRACKING 

Once acquired, parameters will drift toward loss of synchronization during 

normal data transmission. This may be avoided by tracking,  that is, monitoring 

and adjusting the fine alignment. In data transmission mode, we can expect only 

hard decisions on the M tones to be available on the downlink, making tracking 

difficult. This contrasts sharply with the tracking problem in a conventional 

spread spectrum system in which we have full access to the signal emerging from 

the dehopper. In this conventional system, a tracking loop is employed [5]. 

It is, however, possible to imagine a tracking loop in the satellite system 

under consideration. To do this, low rate  supplementary channels could be paired 

with each user's data slot in the downlink frames. In these channels, the satel-

lite would provide alignment-quality data (e.g., energy detector output quantized 

to b bits) averaged over many hops.  The ground terminal would use this data in a 

tau-dither scheme to make adjustments to hopping clock phase and carrier centre 

frequency. The time constant of the loop would include twice the propagation 

delay to the satellite. Because the loop time constant can be large compared to 

the hop duration Th  (assuming only slow drifts), the data rate of these supplemen- 

tary channels need only be a fraction of the user data rate, and represent a small 
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overhead. This scheme does, however, require more complex electronics in the 

satellite. 

One final alternative is to ieed parity check bits in the user data streams. 

If user A is talking to user B,  and r drifts toward loss of synchronization, this 

will show up as errors in the data. User B can then request that user A adjust 

his parameters to try for better alignment. This is also a feedback loop, but it 

has a much slower response time than the previous scheme. It also requires an 

extra level of synchronization in the data streams to identify which bits are data 

and which are check bits. 

5. SIMPLEST SYSTEM 

Given the previous discussion, it is now possible to identify a system that 

is in some sense ideal, and which has the "simplest" synchronization scheme in 

that searching is not necessary (at least for low rate users). This system has 

the following attributes: 

(a) All users know the round-trip delay to the satellite to within a small frac-

tion of a hop. At a hopping rate of 20 KHz, this implies range accuracy on 

the order of 1 km. Range determination is aided by'satellite ephemeris data 

- - 
provided in the "common data" downlink slots. 

(h) The internal state of the pseudo-random sequencer in_the satellite is peri-

odically transmitted on the downlink. This may be d6ne with one bit per 

'frame. Users can restart their replica sequencers and adjust for round-trip 

delay. 

(c) The satellite hopping clock phase is aligned with the boundaries of the 

frames of the TDMA downlink. Note that this can only be exploited given (a). 

(d) Satellite current centre frequency value is digitized and also sent in the 

common downlink slot (again  1:  bit per frame may be sufficient). Users com-

pare this to their own reference and adjust accordingly. 
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(e) Satellite motion is known accurately so that Doppler shifts can be calculated 

and compensation applied. 

(f) As an alternative to (d) and (e), the satellite can provide continuous data 

on alignment quality of the carrier frequencies over low rate supplementary 

downlink slots for each user. This may be used both for acquisition and 

tracking. 

This system is not intended as a proposal, it simply illustrates a baseline 

system from which strategic retreats can be made. 
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PART IV IDEAL PERFORMANCE OF INTERCEPTION RECEIVERS FOR FREQUENCY HOPPED SPREAD 

SPECTRUM SIGNALS 

1. 	INTRODUCTION 

Spread spectrum communications had been discussed with increasing frequency 

in the open literature in the last few years [1,2,3,4]. One of the attractive 

features of spread spectrum communications, from a user's point of view, is the 

difficulty of interception. 

This report examines this feature from the viewpoint of an unfriendly 

interceptor. Given that an unknown spread spectrum signal is being transmitted, 

can it be intercepted by a receiver which has no knowledge of the sequence code? 

More precisely, what is the probability, given that a signal is being 

transmitted, that the receiver will be able to detect it? Furthermore, if the 

receiver has intercepted a spread spectrum signal, is it possible to determine if 

the source is moving? In other words, can a doppler shift be determined? 

To answer the questions, it is necessary to determine the performance limits 

and optimum tradeoffs of such a receiver under ideal conditions. This appears to 

be a good starting point given that the interception problem is new to the 

present contract. 

This report begins with a derivation of two interception receivers, assuming 

ideal conditions. It then establishes the performance limits of these receivers, 

first for only one or two transmission frequencies and then extends the results 

to a large number of transmission frequencies. Another version of the optimum 

receiver is developed and analyzed when a priori knowledge is available. The 

effects of frequency offset on the performance of the optimum receiver, which 

later will lead to a study of Doppler shift estimation, is also discussed. The 

report concludes with a discussion of future work. 
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2. 	DERIVATION OF INTERCEPTION RECEIVERS' 

2.1 Assumptions  

In this section, two receivers will be discussed. For both, the following 

assumptions were initially made. 

First, the bandwidth and duration of the transmitted signals are known 

exactly. Second, the recei:ver knows which frequencies are used by the 

transmitter and there is neither'phase nor frequency distortion or offsets. That 

is, the receiver is perfectly coherent. The frequencies have a discrete 

distribution, are spaced an equal distance apart (the inverse of twice the signal 

duration) and arrive with equal probability. Resources are such that the 

receiver can contain a bank of filters, each one fixed to be centered at one of 

the transmission frequencies and matched to the signal bandwidth. To understand 

why the latter assumption is unrealistic, note that the transmission spectrum is 

typically 1 GHz wide and each signal has a bandwidth of 20 kHz. If there are 100 

users, this implies that 500 filters will be required under conditions of group 

frequency hopping. Understandably, most interceptors will prefer to use far fewer 

filters. We note that a large number of filters can be represented using SAW 

Fourier processors. However, with these assumptions, best performance is 

obtained and represents the absolute limit of performance. 

The only distortion to the signal is caused by• additive white Gaussian 

noise. 

Therefore the signal received is 

n (t) 	0 < t < T _ 

if a signal is sent and 	 (1) 

otherwise, where n(t) has zero mean and spectral height equal to N 0 /2 W/Hz. 
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2.2 Maximum Likelihood Receiver  

A maximum likelihood receiver, or a simple pulse detection system as 

discussed by Dillard [2], consists of a bank of filters, each followed by a 

decision making device. Each filter - decision pair can be viewed as a single 

detector (see Figure 1). Each detector makes a decision, declaring a signal in 

its band if the filter output is greater than a given threshold level, and none 

present otherwise. If any one of the detectors declares a signal present, thè 

receiver decides that a signal has been received. 

The analysis of its performance is quite simple. For the single frequency 

case, the probability of detection is: 

11 d 	2 

and the probability of false alarm is: 

Q F QM-crn
dl  

CNoEs .1 7  
where 11 is the decision threshold, d = 	, Es is the energy of the received 

signal and 

2 

J(x) 	j 	exp 	dt 
x 	(27ra ) 	2a 

When there is more than one transmission frequency, the case of interest, an 

analytical approach [4] gives 

PD = Probability of detection of the receiver 

= 1 - (1 - QD ) (1 - QF ) N-1  

and 

PF = Probability of false alarm of the receiver 

= 1 - ( 1 - Q
F

) N 

where N is the number of detectors in the receiver. 
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2.3 Optimum Detector  

The optimum or average - likelihood receiver is based on a derivation of the 

generalized likelihood ratio test [8]. 

To determine the optimum detection test, two probability density functions 

must be found. The first is that of the received signal when no signal has been 

sent, which will be referred to as hypothesis 0 (Ho ). The second is that of the 

received signal when a signal has been transmitted and will be referred to as 

hypothesis 1 (H 1 ). 

The probability density function of the received signal under Ho  is 

1 o
f
T 2
r (t) dt 

r
(RIH) - 	--T72 exp - 	N 	 

(n N 	o 
o

) 

The received signal, under H 1 , has the probability density function 

rwmax P (w) 
Pr ( R1 11 1 )  1 	

w  
1/2

1  
exp - --- 

N
o (u N

o
) 

w.  
min  

o
1 Tr

2
(t) dt - 2A 

o
f
T
r(t)coswdt I 

dw (7) 

1 
where  P(w) = 	E d (w  - w.) is the probability density function of the 

i = 1 

transmission frequency under the assumptions made earlier. That is, the unknown 

signal frequency is taken to be discretely distributed over the hopped band. 

Taking the ratio of the two probability density functions gives the 

likelihood ratio test 

Pr (R I H1) 1> 1  
L(r) - 	fl P (RIH ) 

r 	o 

Performing the necessary manipulations, this becomes 

L(r) 	E 	exp 
1 

r;A of Tr(t) cosw tdt 
N
o 	

fi n exp 
i 	>1 

o 	

[A T 2  
- 

N 

the optimum receiver, therefore, takes the exponent of the filter outputs, sums 

them and compares the sum to the appropriate threshold as shown in Figure 2. 
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Individual decisions are not made at each frequency as is the case in Figure 1. 

The objective of the average likelihood receiver is just to detect energy 

relative to the assumed frequency grid, {to t ). Note that in both receivers 

coherent detection is assumed. This is an idealization in a frequency hopped 

system. 

For the single frequency case, the probabilities of false alarm and 

detection are identical to those given in equations (2) and (3) for the maximum 

likelihood receiver, as would be expected. However, the analysis for N greater 

than one is far from simple and a closed form expression is not available. Note 

that 

ai 	oirr(t) cosi.d.tdt is a normal random variable with probability density 
1 

'function 

2 
a. 
1 

P 	= 	exp 
a 	1' ' 	

1 

 

	

(2nd ) 	2d 

and 

P (a IH ) - j. 	1 
(2nd ) 	2d 

2 1/2 exp 
1 	

[I (a. r-  d 2 ) 2  1 
1  

2 a   

where, as before, d
2
= 2E

s
/No. 

Therefore, the problem becomes an attempt to find the distribution function 

of a sum of N lognormal variables. 

2.4 Analysis of the ALT Receiver for 2 Transmission Frequencies  

To begin the analysis of the optimum receiver (ALT), we start small and 

assume that there are only two transmission frequencies. Under this 

1 	
2 

d 1 2 
. 

circumstances we want to evaluate the probability that L = 2 exp - 	e 
a 

 1 
2 	. 
- 1=1 

is greater than some threshold n under each hypothesis. Equivalently, we wish to 

find the probability that 



a279,nb 

a
2
.<9..nb 

( 1 5) 

-135-- 

2 
al 	a, > 	d 

e 	+ e 	2n exp 	=b 
2 

There are two  exact  approaches to this problem. The first finds the 

I conditional probability, Pr [ea1  + ea2  - > bi a 2 ], then averages over a, to find 

the desired probabilities. Under H 	both a
i
's have zero mean. Thus, the 

probability of false alarm is 

, 

Ç1 	
'
a,?9,nb 	' 

Pr [ eal _I,  eŒ2 1:)1 (12,H] iQ  he, ( b_ eà2 i 	 (12) 
a„<tnb 

d 

co 
and since P 

F= 
 f 	Pr Lea l + e a2  -?- bla 2 ] Pr [a,] da,,, after some work, the 

c,0 

following expression can be found. 

J-03 	(271-d ) 
- 7 -17 exP 

2d 	

9.,n(b-'ea21  
d_ , 	

da, p = Qf-  n 
F 	d 	

b 	1 	a2  2 

The probability of detection can be found in a similan manner. However, 

since one detector, say #1, will have r(t) = Acosm.t + n(t) and the other will 

have r(t) = n(t) only the probability density function of a, will be unchanged. 

Since only the noise is a random variable, 

22  1 
) 

1 
P (a 1 ) = 	eP 

(27rd ) 	L 	2d 

(13)  

(14)  

Therefore, 

Pr [e a l + e (12  '? bl a,, 

and so, 

] = .S.-  
12E(b- ea2 )  

d 	e],  

1 

+ 

2 p 
D = 	d 	f-oe 

e-=(•"`"""-T-11-7

27rd ) 	
exp a2  j 

2d 	
d 	

d da, (16a) 

Qn b 
1 

or, if we average over a, instead an alternate form  15  found: 



11 9, 	b 	
1 

exp 
[I (a2- 

2 
' °  (ad ) 	2d 

[9. .n b P = n ---- 
D - d 

2)2 

9,n(b-eal ) 
d
-- 	dal  ( 16b) 

2 

2d 
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The second approach attempts to find the distribution function of L under 

each hypothesis. Denote 9,= eœi. Under Ho 

1 
P (9, IH ) = 	exp 

o 	Q. (ad ) 
1 

and  P(1H) = P (9, 1 1H ) 0 P ( 2  9, IH ) where GI denotes convolution. Finally, 
0 	0 

00 

P r= f P (940 ) d9, 

co 

P
D 

= f P (9.IH 1 ) d9, 

(18a) 

( 1  8b ) 

Performing the necessary calculations, equations (13) and (16) were again 

obtained. Therefore, these expressions for the probabilities of detection and 

false alarm have been confirmed by alternate methods. 

To evaluate this integral, Gauss Quadrature numerical integration was used. 

A plot of the probability of detection versus the SNR for different false alarm 

probabilities for a single transmission frequency and two transmission 

• frequencies is given in Figure 3. 

2.5 Comparison of Results to Maximum Likelihood Receiver:  

The receiver operating characteristic for the maximum likelihood test was 

found to be very close to that for the ALT, showing a slightly suboptimum 

performance for low SNR and high PF  but matching the performance of the average 

likelihood test receiver for higher SNR and lower P
F
• An example is given in 

Table 1 for SNR = 3 dB. The results for one frequency are also included. 
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Figure 3: Probability of , detection 

vs SNR for prescribed 

false alarm probability 

for the detectors of 
Figs. 1 and 2. 
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Table 1 Probability of detection for SNR = 3 dB 

	

P
F 	

1 	freq. 	2 freq. 

MLT 	ALT 

...1 
10 	' 	.552 	.443 	.448 

_2 
10 	.180 	.127 	.128 

_3 
10 	.0467 	.0307 	.0308 

	

_4 	 _2 	_2 
10 	.0105 	6.66x10 	6.66x10 

	

_S 	_3 	_3 	_3 
10 	2.17x10 	1.33x10 	1.33x10 

	

-6 	_4 	_4 	_4 
10' 	5.96x10 	2.52x10 	2.52x10 

For the case of two frequencies, under ideal conditions, the two receivers 

appear to be roughly equivalent. From Figure 3, it can be seen that under ideal 

conditions, for low SNR, the probability of detection is quite low, particularly 

3 
for P

F
= 10 , the range of interest. It is necessary to have a SNR of 11 dB 

before the probability of detection exceeds 0.5. Under the assumed conditions, it 

would be possible to detect a transmitted signal only a small fraction of the 

time since, typically, we are concerned with low SNR values. 

3. 	FREQUENCY UNCERTAINTY 

It is of interest, since we wish to determine the effects of Doppler shift 

on the detector output, to consider the case of frequency offset. In the 

1 
' 

previous section, we assumed that the frequency separation is 
2
-- and the 
T 

received signal equals one of the filter center frequencies, w
r 

= w
i

. Suppose 

6
+ 6 

instead that the received frequency, w r = w . + 	where 6 << k
i

. 
2T 	2T 

The probability of false alarm will be unchanged since it is independent of 

the transmission frequencies. Therefore, we need only examine the probability of 



detection. Previously, under H I , 
2 

had a mean equal to the SNR, d , a, had a 

(19) 

n••nn411. 

-1397 

mean equal to zero and both had a variance equal to the SNR. Now, however, 

2A,
T  

ciC= 7- 	r(t) costo.t 
.  00 

2A f 

o o 
Acos - 2-rn (k + 26) + n (t) 

k.nt" 
1 

cos -----dt 
2A 

2A CIAT 

2 	ri(t) cosw.t dt 
N
o 

 

2(k i + 6) 
	 sinu6 	 sinu6 

where (3, - 
2k, + 	

. However, as stated previously, k l >> 6 so 
Tr6 	 uS 

2 

= sinc6. Therefore, a l  now is normal with a mean of d sinc6. 

Similarly, a, is found to be normal with a mean of:d .,sinc(671). In Figure 

_3 

4, for false alarm probability of 10 , the probability,of4etection is plotted 

against the frequency deviation 6. When 6 = 0.0 then w = w l  and when 6 = 1.0, 

w
r 

= w,. As expected, the probability of detection is a maximum at these points. 

When the received signal is outside the receiver bandwidth, the detection 

probability falls to that of false alarm. . 

I. 	A PRIORI KNOWLEDGE: 

We assumed previously that each signal frequency is received with equal 

probability and the detection threshold was calculated accordingly. That is, the 

assumed discrete frequency grid for the average likelihood ratio test was taken 

to be uniformly distributed. Suppose, instead, that we have some knowledge of 

what frequency is sent and claim that one of the.frequencies will be received 

with some probability,  P. The likelihood ratio test must then be altered since 

{: 
d
2 I N 

L(r) = exp - 7 	E F e" -à* 	., 	ie 1 
k=1 

(20) 
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Therefore, for two transmission frequencies under these conditions: 

H 1  

a 	> 

	

[ 	

4. 
1 

	

L(r) = exp - 	(P eal 	Pe 2 ) in 

o  
2  

n 

Performing the analysis of the performance probabilities in the same manner as 

earlier, assuming once again that there is no frequency offset, a more general 

2 

form of P
F 

is found. Defining £n b = £n (-n-) + 21.- 
P, 	2 

- 7-  

9.11 1.1. )-  
P 2 	2 

d 

(21) 

r-- 	 ••••2 

(22) 

lom.• 

£n b 

-00 
(2ud ) 

2 1/2 exp - 
2

Q
[ 2,  [ P 	I_ 	2  1 	«2 

2d 	

n n- ,exp (1 2 7d 

d 

lInP1 d  

..1n•• 

da, 

Since a, and a, are identically distributed, an alternate form of P
F 

can be found 

by switching P 1  and P 2 . 

Now, since the probability of arrival is now assumed higher for some 

frequencies than for others, the likelihood ratio test will be biased in their 

favor. This means the probability of detection is no longer the same at each 

detector. It is also possible that the interceptor is wrong and the actual 

arrival probabilities of the frequencies are different. Instead, assume 

frequency w i  arrives with probability P i , and Prii  is the probability of detecting 

the signal at that frequency. Therefore, 

n•n 

P
D 	

P
D, 

P
1 

+ P
D, 

P
2 

= P
D 

+ P i  (P 	- P ) 
D 	D , 	I 	2  

^ 
slnce P = 1 	P

2 

Evaluation of P
D 

and P
D, 

is similar to that of P
D 

done previously. So 
, 

 

the following expressions for the detection probabilities are found 

( 2 3) 
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P
D 1 

27 
d 	' 

(2/4a) 

d 2  

- 	 F 	211 

d 
n•••••nnn 

P
D,

=  (2 1-11D) 

j 

f Qn b 
1 	

2 

tn n-P,exp a,- 	d 

2 1/2 
(2ud ) 	2d 	

d 
exp 	

a, :IQ 	[ 2 	- 

27 

da, 

£n 

/am 

th b 

J 	dal 
r-co 	

2 1/2  exp 	2 

(ai- d ) 
2 2 

(2ud ) 	2d 

P
D, 

is of similar form with P, substituted for P 1  and vice versa. Alternatively, 

P 	2 
2 

d 

Again, P
02 

can be found by reversing the roles of P, and P,. Table 2 gives 

_3 
values for P

D 
when P 1  = 0.9 for P = 10 . 

F 

Table 2: A priori knowledge effects on performance of the 

r 3  

optimum receiver P
F
= 10 

Probability of Detection 

P 	- 0.90 	 ' 	- 0.50 
1  	 ' P1  

SNR\P 	0.5 	.75 	0.9 	1.0 	0.5 

3.0 	.02419 	.03542 	.04212 	.04664 	.0308 

5.0 	.0505 	.07242 	.08561 	.09438 	.0658 

7.0 	.1147 	.1551 	.1792 	.1.954 	.147 

9.0 	.2529 	.3261 	.3625 	.3870 	.319 

11.0 	.5457 	.6059 	.6'419 	.6661 	.602 

13.0 	.8530 	.8812 	.8975 	.9085 	.880 

The benefits of a priori knowledge are most significant at low SNR values, 

with 25% improvement in detection performance for SNR-3.0dB. It should be noted, 

however, that while the probability of detecting frequency has significantly 
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improved, there is much higher probability that the other frequency will be 

missed. Should the a priori information be wrong, the performance of the 

receiver will be degraded severely. Therefore, it is recommended, unless there 

is a great certainty about the a priori knowledge; that it not be used. 

5. 	EXTENDING RESULTS TO MORE THAN TWO FREQUENCIES: 

In trying to extend the results to more than two transmission frequencies it 

was necessary to find some method to approximate the probability distribution 

function of a sum of lognormal variables. 

In a paper by Meyers [5], he suggests that the Gaussian Quadrature Method is 

applicable to this problem. However, while attempts to generate his curve for a 

single lognormal 0 dB (unit variance), zero-mean random variable were successful, 

there was found to be an extremely poor match for SNR values greater than this. 

Closer examination of this approach led to the conclusion that this method cannot 

follow the lognormal density function with any accuracy due to the exponential 

growth of its moments. It was, therefore, abandoned. 

Two other approaches were found which give good approximations to the two 

frequency case, as indicated in Figure 5. They are discussed in a paper by 

Schwartz and Yeh [7]. The first, known as Wilkinson's approach, assumes that the 

sum of lognormal random variables is also lognormal. That is, 

z.. 
L=e=Eei 

Now if the variance and mean -of z are known then the probability distribution 

function can be found since 

L
x 

Pr [e
z
> x] = Q 	+ 

az 

The variance and the mean can be found from the moments of L, which are 

(25)  

(26)  

calculated recursively [6]. Let p (n-1) be the kth moment of a sum of n-1 

lognormalrandomvariables.Since 	
1 

the 	are independent, 
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(n) = kE (11 g.(1) 	
k-1 

.(n--1) k 	i  

_ 

Pk (1) = exp km + azk

2 
z e=.----.- 

2 1 

..- 	2 

[ 

111(n) - exp m -4- az  
z -F 

a
2  

2 

( 27) 

(28) 

and 

•-•1• 2 
p 2 (n) = exp 2m

z 
+ 20

z 

Solving the two equations gives 

m
z 

= 2 9,11 (11 1 (n)) - 0.5 9,n (11 2 (n)) 

2 
z 

= 9.11 (11 2 (n)) - 2 9,n (4 1 (n)) 

and so the distribution function of the sum can be found. The approximation to 

_2 
the actual curves, particularly for false alarm probabilities less than 10 , is 

extremely close, as can be seen in Figure 5. 

The second approach, attributed to Farley, says that if the z i 's are 

identically distributed and independent, as  
Y 

, 	i 
Pr EL < exp ( Yu 	m

Y 
 )i - [1 	Q C) .]

N  

Y  

Where N is the number of lognormal variables in the random variable. This 

approach gives a better approximation than Wilkinson's, particularly for P
F 

_2 
greater than 10 . 

An interesting observation about this approach is it implies, for large SNR, 

that the performance of both receivers presented in this report is the same. To 

- 

2.11 see this, recall that for a single transmission frequency, Q = Q _nj
' 
and for 

d  

( 32 ) 
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the maximum likelihood receiver, P
F 

= 1 - (1-Q
F

)
N

. In this case, a - d 2  and 
Y 

m =O. Letting fl = exp (Ya +  m)  we get 

Pr [L > n] = P F(ALT) = 1 - (1 - Q
F  )

M  = PF  (MLT) 

The problem with Farley's approach as opposed to Wilkinson's is that it is 

not immediately obvious how to extend these results to evaluate the probability 

of detection. This is currently being considered and it is suspected that the 

detection performance of the optimum receiver will be closely related to the 

performance of the maximum likelihood receiver. 

6. 	FUTURE WORK 

To date, results have been established for the most basic case of two' 

different receivers. Three key areas are still under development. 

The first is to find the probability of false alarm for large values of N. 

Results for 4 frequencies, along with the results of a Monte Carlo Simulation,  

are shown in Figure 6. The work in this area, as can be seen from the results 

presented, is nearly completed. The approximations used, i.e. Wilkinson or 

Farley, are not limited to N = 4. 

The second is to extend the results to the probability of detection, 

particularly determining if the two receivers are indeed nearly equivalent in 

detection  performance .t  

The third area, and in some ways, the most important, is to analyze the 

effects of a Doppler shift on the receiver output and determine the feasibility 

of recognizing that the signal source is moving. 

Finally, the effect of using a non-coherent receiver structure will be 

studied. The interception receiver structures have already been developed. 

Since no computational results are available, the theory was not included in this 

report. 

t Note added in proof. The probability of detection study is now complete. The 

theme of the results are similar to that for the probability of false alarm. 
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7. 	CONCLUSION 

Two  cohérent  receivers for interception spread spectrum signals were 

presented and it was shown that they have near equivalent performance. A 

performance analysis of a receiver with only one or two frequencies was done. 

The results show a drop in performance as the number of frequencies increase and 

as the signal to noise ratio of the transmitted frequency decreases. A 

noticeable drop in performance was seen if the received signal was offset from 

the filter center frequencies. Approximation techniques for a large number of 

frequencies are available from the li terature. 
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