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PREFACE

The work reported in this interim progress report is divided into
four parts. The first two parts report the completion of work started
under the previous contract. Part I presents the results of a study of
the application of trellis codes to noncoherent frequency hoppéd spread
spectrum systems. The second is the final results on the error
performance of a high data rate, hopped spread spectrum transmission
system that employs band efficient modulations that are coherent during
each hop. Earlier reports provided results on the signalling spectrum,
optimum receivers and system complexity.

In Part 111, the first considerations Qf uplink synchronization of
hopped spread spectrum systems are presented. A possible downlink
synchronization procedure is described as well, Various aspects of
synchronization are outlined, and options and strategies for systenm
implementation are presented.

Part.IV describes the research begun on the detection performance
of intercept receivers for frequency-hopped, spread spectrum systems.
The received signél is modelled as having an unknown but discréte
frequency. Performance is determined for a coherent receiver, which
represents an upper limit to attainable performance. Theory has been
developed recently for the case of noncoherent interception. These

results will be available for the final report.
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ABSTRACT

In noncoherent frequency hopped spread spectrum Communicatién systems,
M-ary frequency shift keying (FSK) is the usual form of modulation. In this report, coded
systems are studied which consist of convolutional codes with the codewords mapped
onto muitiple tone signal sets. The signals employ the same set of orthogonal tones as
M-ary FSK, but several tones may be transmitted simultaneously. This allows an increase
in the number of signals, to accommodate the redundant information introduced by the
coding, without any bandwidth expansion. Some of Ungerboeck’s rules for assigning

signals to the trellis branches are employed.

The results of this study were obtained from simulation of transmission over an
additive white Gaussian noise channel. Viterbi decoding was used, with both hard and
soft decoding metrics. Performance was measured as the energy per bit to noise spectral
density ratio (E,/Ng ) at a bit error rate (BER) of 10-4". There are seven differént coded
systems which encompass information rates of 1, 2, and 3 bits per signaliling interval,
and employ sets of 2, 3, 4, or 8 orthogonal tones. There exists at least one coded system
at each information rate which gives a performance improvement of 2 dB compared to
the reference system of M-ary FSK. The maximum improvement achieved was 4.6 dB for
the case of two tones. The best performance is obtained with soft decision decoding
metrics. In some cases theoretical error bounds can be calculated, and they support the

simulation results.
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CHAPTER ONE

INTRODUCTION

1.1 Background

The purpose of this study is to investigate methods of improving the performance
of a communications system by the use of coding. A block diagram of the coded system
under consideration appears in Figure 1.1. The actual system is intended for digital
satellite communications, and may be incorporated into a frequency hopped spread
spectrum anti-jam applfcation. The type of modulation considered iis frequency shift
keying (FSK) in which one of several different tones is sent in each signalling interval.

Details of the modulation scheme and the receivers employed are given in Chapter two.

The basic principle of coding is that redundant information is added to the
information bit stream so that transmission errors may be detected and/or corrected.
Because of this redundant information, more signals must be sent over the channel to
maintain the same information transfer rate as in the uncoded case.. This can be
accomplished by using the same set of signals at a faster signalling rate, or by increasing
the number of signals used (signal set expansion). Both of the.se methods usually require
a larger bandwidth than the original uncoded scheme for noncoherent FSK signalling.
Alternatively, the information rate may be lowered to maintain the same bandwidth

occupancy.

The goal of this study is to find a method of improving the system performance

without sacrificing the data rate or increasing the bandwidth required. In frequency
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hopped systems, the processing gain is the ratio of the overall system bandwidth to the
bandwidth occupied during each hop, and it indicates the ability of the system to reject
jamming noise. Increasing the modulation bandwidth decreases the processing gain of
the system, which is undesirable. The technique proposed in .fhis study is to use
convolutional codes with Viterbi decoding to improve error performance. The signal set
is expanded by the use of multiple tone signals to accommodate the redundant bits,
instead of the single tones which are used in conventional M-ary FSK. This does not
increase the modulation bandwidth and thereby affect the processing gain. This study
considers the performance of the encoder/decoder and modulator/receiver over an

additive white Gaussian noise (AWGN) channel.

1.2 Literature Review

There have been several studies of the application of conventional coding to
noncoherent anti-jam communication systems [1,2,3,4]. These papers explore the use
of various codes to reduce the effect of a partial band jamming signal. Block codes,
convolutional codes, and repetition codes (diversity) have all been investigated, as well
as different combinations of concatenated codes. Reed-Solomon codes and
convolutional codes both have good performance, especially when .combined with
diversity. Conventional M-ary FSK modulation was employed in all cases, and usually
bandwidth expansidn was allowed to accommodate the coding. Both hard and soft
decision demodulation have been considered. Hard decision receivers select which
signal is closest to the transmitted signal and relay »that decision to the decoder. A
metric, which is proportional to the logarithm of the probability that each signal was
received, is computed by a soft decision receiver and used by the decoder. In a jamming

environment, soft decision decoding is not desirable unless there is side information




about the presence of the jammer, because jammed signals seriously degrade the
operation of the decoder. -If side information is available, soft decision demodulétion
gives the best performance; otherwise hard decisions are su.perior [1]. This report does
not consider thg effects of jamming or frequency hopping on the communication system,
but considers the performance in white noise. It is noteworthy that convolutional codes
showed good performance under jamming conditions [3,4]. The Viterbi decoder is also

readily adaptable to accept hard or soft demodulator decision variables.

There are two papers which consider the application of coding to noncoherent FSK
signalling [5,6]. They both employ conventional M-ary modulation schemes and require
bandwidth expansion or reduced data rate to accommodate the coding. The first study
[5] considers continuous phase FSK, which has phase continuity between tones in
subsequent signalling intervals, and also uses non-orthogonal tone spacings. The
deﬁodulation technique, although noncoherent, makes use of the phase continuity and
erﬁploys an unconventional receiver structure. Pracfical ’frequency h.opped systems,
where the hopping occurs over large bandwidths, cannot maintain phase continﬁity
between hops, and so these modulations are inappropriate. Keightley [6] studied the use
of convolutional codes with binary and 4-ary FSK. Noncoherent demodulation with hard
decisions was used for application to a frequency hopped spread spectrum system. The
coding gain obsérved at a bit error rate (BER) of 10~5 was approximately 2 dB in the
binary case, and negligible ih the 4-ary case. The codes employed had rates df 1/2 and
1/3 with constraint lengths of 7 and 8 respectively. Thus the system transmission rates

were reduced to 1/2 and 1/3.

Much work has been done recently on trellis coding [7,8,9,10] and a functioning

system has been implemented in a modem. This technique provides large coding gains




without bandwidth expansion or reduction of data rate. All of the documented studies
have been confined to coherent communication systems. in which the carrier may be
both amplitude and/or phase modulated. The uncoded signal set is expanded by adding -
different levels of phase and amplitude modulation without requiring additional
bandwidth. The resulting expanded signal constellation contains'a symmetrical array
of signal points. This signal set is partitioned or subdivided into subsets which have
increasing distances between signal points in the subsets. The signal points are then
assigned to the codewords of a convolutional code, according to a set of rules designed
to provide maximum coding gain. This study employs some of the concepts of trellis
coding applied to FSK signal sets. The signal constellations are expanded by using
multipie tone signals so that additional bandwidth is not required. Signal set partitioning
is also carried out, but not in the same manner as in coherent systems. The muitiple tone
signal constellations cannot be partitioned into subsets with increasing spacing between
signal points. However, some of the rules from trellis coding are employed when
mapping codewords onto signals. [t is anticipated that the application of the principles
of trellis coding will provide significant coding gains because of the success realized in

coherent systems,

1.3 Report Summary

This report is divided into four‘chapters. An indication of the problem under
consideration and the extent of research in this area has been given in the introductory
chapter. Chapter two contains a detailed theoretical explanation of the various
components in the system. First the modulation scheme and the structure of the different
receivers is explained, followed by a description of the error correcting codes and the

operation of the decoder. The second chapter concludes with an explanation of how the



coding and modulation schemes are combined in the overall system and presents some
bounds on error performance. There are seven different cases which were investigated,

and their characteristics are detailed in this chapter.

In general, the problem of theorvetically evaluating the error performance of the
noncoherent coded system does not appear tractable, and so computer simulations were
carried out. Chapter three is a presentation of the resuits of the simulation programs.
A brief description of the program structure is given first, followed by error performance
curves for each of thé seven cases considered. The results for all the cases are

summarized in a table and then the performance of each case is discussed in detail.

Chapter four contains the general conclusions which may be derived from the

sirhulation' results: Suggestions for. further research on this problem are given also.




CHAPTER TWO

THEORY

2.1 Modulatioh

2.1.1 Modulation Scheme

The reference modulation for this study is M-ary FSK. This scheme is commonly
used in frequency hopped spread spectrum satellite systems for digital communication
[1.6]. One of a set of M tones is sent in each signalling interval (T seconds). The number
of tones (M) may be 2, 4, 8, or 16 corresponding to 1, 2, 3, or 4 bits of information per
signal. The tones are orthogonally épaced in the frequency domain, which entails a

minimum frequency difference of 1/2T hertz between adjacent tones.

The alternative modulation schemes, which allow coding without rate reduction,
are divided into two types. The first expanded modulation technique employs the same
set of orthogonal tones, but more than one tone can be transmitted in each interval
(T.(G+1)T). All possible combinations of the M tones are used, and the signal space is
expanded to 2M signals which transmit M bits per symbol périod. This multiple tone
signal constellation does not require any additional bandwidth, but there are other
considerations. The transmitter requires increased power to send several tones
simultaneously, if each tone has the same energy as a single tone in the reference
system. The different modulation schemes will be compared with the same average

signal energy, but the variation in energy between signals for this multiple tone case



could require a transmitter with a larger peak power capability. This signa'l constellation

also includes a zero sighal (no tones sent), which could be undesirable in some systems.

The spacing of signals in the constellation has a significant effect on the system
performance. In the reference M-ary FSK system, fhe single orthogonal tones are
equidietant in the signal space. The multiple tone signals with constant energy tones
form the vertices of a hypercube in M dimensional space, where M is the number of
tones. This can best be visualized in three dimensions as shown in Figure 2.1. This first
type of modulation is used in four of the seven cases to be considered. Case 1A employs
two tones, Case 2A employs three tones, and both Cases 2B and 3A use four tone signal

sets.

The second type of muitiple tone signal set was devised to reduce‘the variation in
signal amplitude among the various possible signals. The same set of orthogonal tones
is again employed. Instead of permitting all possibie tone combinations, a more limited
subset is allowed to comprise the signal set. For the two and four tone cases, only single
tones and pairs of tones are used as signals. The eight tone case employs single tones
and sets of three tones. The pairs and triples of tones have the. amplitude of each tone
reduced so that the signal energy is equal to that of a single tone signal. The zero signal
is excluded from these signal sets and therefore the signal energy is constant for this
scheme. This makes demodulation simpler as will be explained in the discussion of

receiver structure.

The constant signal energy multiple tone scheme is used in three cases which were
simulated. Case 1B employs two tones and thus only three signals are available in each
signal interval. These signals are sy(f) =coswyt, Sy(f)=coswyt , and

S5(t) = ( cOs wyt + COS wat )/ \/2— The modulation is performed over two symbol intervals
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(2T) 'so that nine possible combinations, using three signals per period, are available.
Eight of these points were chosen to represent three bits of data in each interval of 2T.
For the case of four tones, there are four single tone signals and six different possible
bairs of tones. Simulation Case 2C employs eight of these ten signals in the
constellation. This allows three bits to be transmitted during each symbol interval (T
seconds)Q The final case employing the second alternative modulation scherhe is
designated number 3B and uses eight orthogonal tones. There are eight signals
containing a single tone and fifty-six possible three tone combinations. The combined
signal constellation has sixty-four signal points which permits transmission of six binary

digits with each signal.

The multiple tone modulations with constant signal energy have an irregular
spacing between points in the sig’nal constellation. The maximum spacing between
signals is the same as the distance between orthogonal tones, and occurs between
signals with no tones in cofnmon; When signais possess common tones, the spacing is
reduced. The more tones in common between two signals, the smaller the distance
between the two. Thevamplitudes of the tones in common between the signals also affect
the spacing. This irregular spacing must be considered when mapping code words onto

the signal points, and is discussed in the third section of this chapter.

2.1.2 Coherent Receiver

The coherent receiver is the optimum receiver for reception in the presence of
additive white Gaussian noise (AWGN) when the phase of the transmitted signal is
known. Then the local oscillator is perfectly matched to the incoming tones to eliminate

any phase offset. This receiver cannot be used in the frequency hopped spread
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spectrum system because phase continuity between subsequent signal tones and
between frequency hops is not provided by practical transmitters. These phase jumps,
and the phasé offsets introduced during transmission, preclude the matching of the local
oscillator to the transmitted signal. However, the coherent receiver provides the best
possible 'performance that could be achieved, and will be included for purposes of
comparison. The structure of the coherent receiver is simpler than the noncoherent
receiver, and this allows a simulation to be performed more quickly and easily. Also, the
performance of the coherent receiver can be readily analyzed, and there are theoretical
results that provide verification of the simulation program. If coherent demodulation was

actually used, a more efficient modulation scheme than FSK would likely be employed.

The usual optimum coherent receiver [11, p. 235; ‘12, p. 49] calculates the squared
Euclidean distance between the received signal (r(t)), and each of the possible
transmitted signals (si(f)). A decision is made in favour of the signal closest to the
received signal, based on the minimum of the computed distances. The squared

distance is given by

-

d? = [ [t - st 1%t

° (2.1)

T T T ’

= [ rAwat -2 [ rosdt + [ sPat
0 0 0

The first term in (2.1) is constant, independent of the index i, and so may be neglected
in the search for the nearest s(t) . The remaining two terms can be muitiplied by -1/2 to

form a decision variable which is now maximized.
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T T ,
L= [ rosdt - 5[ sfwat

1 , iy (2.2)
=Qq;— ?EI : ) ‘

The structure of this receiver is well-known [11, p. 235; 12, p. 49] and is shown for two

cases in Figure 2.2. The receiver for conventional binary FSK is shown in part (a) of the
diagram, where s¢(t) = cos wyt and sy(f) = cos wpot. The muiltiple tone scheme with
different signal energies is demodulated by the system ‘in part (b). In this case, the

signals are sp(t) = 0, $4(f) = COs wyt, So(t) = COS wot , aNd S4(f) = COs wyt + COS wyt . For
constant energy signals, £; is constant for all i, and the decision variable becomes simply
g; .- The decision variables for multiple ton'e signals are in general obtained by summing

the variables for each tone in the signal, and scal'ing to faccount for the signal énérgy.

This means that the multiple tone receiver requires only one correlator for each tone.

The theoretical error probabilities for uncoded signalling are easily'obtained for the
baseline system .of M-ary FSK with coherent reception. The probability of symbol error

for an orthogonal signal set over an AWGN channel is given by [11, p. 257; 13, p. 120]

Ps=1-[ pale~"\VEs )du[ /. pn(.ﬂ)dﬁ}M"1 (2.3)

where M is the number of signals (ie. tones) and

Is the Gaussian probébility density function. The bit error probability is obtained from

the symbol error probability as |
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Pg = —=——Pg (2.4)

The integral in equation (2.3) is tabulated in Golomb [13, p. 196] and these resuits were

used for the baseline performance curves with coherent reception.

The theoretical performance may also be obtained for the case of multiple tone
signalling with constant energy tones. With the ideal coherent receiver, the sighal
constellation may be considered as a rectangular signal set [11, p. 254] with error

probabilities given by

Pg=1-(1-p

Pp=p= Q(_%AT_) . | (2.6)
0

where

M is the number of dimensions (ie. the number of tones),

Eg is the energy of a single tone, and

Ng is the spectral density of the Gaussian noise in watts/hertz.




-15 -

The multiple tone signalliné schemes with constant signal energy do not form a
rectangular signal set. Because of the irregular spacing of the signals, the probability
of error varies with the signal that was sent, due to the different proximities of other
signals. This does not allow for a simple expression for the error performance as in the

previous cases, and the results are obtained strictly by simulation.

2.1.3 Noncoherent Receiver

The introduction of a random phase angle (6) into the received signal, increases the
complexity required for the optimum receiver. The structure of this noncoherent receiver
is common [11, p. 519; 12, p. 104], and is shown in Figure 2.3. Two receivers appear in
the diagram. Case (a) demodulates conventional binary FSK, where s4(f) = cos w4t and
So(t) = cos wot . In part (b), multiple tone signals with all possible combinations of two
tones, and variable signal energy are demodulated. The signals for this receiver are
So(t) =0, s¢(t) = CcOs wyt , Sp(t) = COS wyt , and Sa(f) = cos wyt + cos wyt . There are two
cqrrelators for each signal, one in phase and one in quadrature, whose outputs are
combined to negate the effect of the random phase. Multiple tone signals are assumed
to have the same phase angle for all tones, and the probability distribution of the.random

phase is considered to be uniformiy distributed between 0 and 2= radians.

This receiver calculates the probability of the received signal, given that the ith
signal was sent, for all members i of the signal set. This probability is known as the
likelihood function, and its logarithm is used as the decision variable. The signal with
the maximum probability is chosen as the transmitted signal. The development of the
theory for this receiver is rather lengthy, and can be found in the references 11, p. 511;

12, p.103], and so just the decision variable itself will be given here as
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where

1

2z
—_— )+ 0
o fo explx cos(? + «)]d

lox) =

is the zero order modified Bessel function of the first kind,

is the energy of the ith signal,

Ny is the spectral density of the Gaussian nolse in watts/hertz, and

is the sum of the squares of the correlator outputs for the in-phase and quadrature

components of the correlation with the ith signal.

si(t) is the in phase component of the signal since the signals are made up of -

cosine tones, and

$/(t) is the quadrature component of the signal, which consists of sine tones at the

same frequencies.
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As was the case for the coherent receiver, the decision variables for muitiple tone signals
can be obtained from the correlator outputs for the individual tones. This means that
only one pair of correlators is required for each tone in the system. The signal s(t) giving

rise to the maximum L; is chosen as the signal sent.

For the baseline system and other constant signal energy cases, the decision
variables can be further simplified. The exponential function in (2.7) will be a constant
because E; is the same for each index i, and so it can be ignored. To maximize the
modified Bessel function, it is only necessary to maximizg its argument because the
Bessel function is a monotone increasing function. Therefore the'optimum decision will
be made by maximizing X; or X,Q. This receiver simplification results in the structure
shown in Figure 2.3 (a), and is also known as square-law combining. The multiple tone
modulation system with unequal signal energies cannot employ the simplified decision
variables obtained from the correlator outpufs. The modified Bessel function and the

exponential function must be calculated in order to make a maximum likelihood decision.

The theoretical symbol error probability for noncoherent M-ary FSK is given by [11,

p. 577]

M—1 T
_ (=1t (M—1) ( K Es) ‘
PS‘E K+ 1 k )P\ TR (2.9)
k=1

- where

(3) = 537
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and the bit error probability is
-15-/\//
Pg = P 2.
B=1_1'$ (2.10)

The theoretical performance of the multiple tone noncoherent receiver is difficult to
obtain. The presence of the Bessel function and the exponential function in the decision
variables of the variable signal energy case makes th_e analysis difficult. The constant
signal energy multiple tone modulation has irregular signal spacings which impedes the

evaluation of theoretical error probabilities.
2.2 Coding

2.2.1 Description of Codes

Convolutional encoding with Viterbi decoding is one of the mére widely used
methods of forward error correction. This is due to the ease of implementation and the
relatively large coding gains obtainable from simple codes. As previously mentioned, this
coding technique was chosen for consideration in this report. There are several different
ways to describe convolutional codes, which will be briefly summarized below. More
information on convolutional codes may be obtained from the references [12, p. 227; 14,

p.227].

The first way to visualize a convolutional encoder is as a binary shift register with
taps connected to modulo two adders. The information bit stream is shifted into the
register in groups of b bits, and there are n modulo two adders which produce n output

bits for each codeword. The rate of a code is given by the ratio b/n, which is the ratio
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of input to output bits. The number of b-tuples in the shift register is‘denoted by k, and
so the encoder retains b(k - 1) bits of the previous input data Which défine the state of
the encoder. The value v = b(k — 1) is defined as the constraint length of the code, and
is the logarithm to the base two of the number of states. The length of the shift register
(bk) is sometimes considered as the constraint‘length, but the previous definition () will
be used here as it is more useful for comparing codes of different rates. As the b-tuples
of input data are shifted into the register, the state of the encoder changes and the
output data is determined by the tap connections from the reéister to the adders. These
connections are usually specified by generator polynomialsA or a generator matrix. A
simple code with fate 1/2 and constraint length 2 is used asl.‘én'.e‘*xample throughout this
section. A diagram showing the*shift registér tab connections and the generator matrix

appears in Figure 2.4.

Another way to describe a convolutional code is by means of a trellis diagram.

The states of the code are assigned to nodes in the trellis and‘’branches between states

indicate a particular input and corresponding output symbot’ff It is obvious that a given '

input data sequence can be mapped onto a certain path through the trellis. There are
2b branches which emerge from each node, corresponding to each of the possible
inputs. The branches remerge at the next stage in the trellis in groups of 2b at each state.

The trellis for the example code is shown in Figure 2.5.

The final representation of a convolutibnal code is by aistate diagram. The states
of the code are again assigned to nodes in the diagram,yand directed paths between
states correspond to particular input and output symbols. ;fhe state diagram can be
used to obtain the generating function of a:code, which aIIO}Ns the weight pr'ofile to be

determined. The state diagram for the model code appears in-Figure 2.6.
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STATE
00
01
10
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0 INPUT BIT

————— 1 INPUT BIT

Figure 2.5 Trellis Diagram
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Figure 2.6 State Diagram
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The weight profile is significant becau;ae it directly affects the error performance
of the code. All the codes under consideration are linear, and therefore the all zeroes
path may be considered as the correct path for the'purpose of analysis. The weight or
distance profile is obtained from the set of paths which diverge from the correct path and
then remerge, corresponding to possible error events. The distance measure, for hard
decision decoding, is the Hamming distance between the error path and the correct path.
This is the ,number of output bits in which the two paths differ. These paths may be
observed in the trellis diagram, and the weight profile obtained by adding up the
Hamming weighf of the output symbols along all paths which diverge from and then

remerge with the all zeroes path.

A more tractable description of the weight profile is the code generating function.
If the state diagram is redrawn with the zero state split, all the paths originating in one
half of the zero state, passing through the other states, and entering the other half of the

zero state will represent error paths. The branches of the state diagram are labelled
DAL , (2.11)

where
D represenfs the distance or output weight,
L represents the length of the path,
i repfesents the iqput weight,

a is the Hamming weight of the output symbol, and

-
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b is the Hamming weight of the input symbol.

Using signal flow graph theory, the state equations of the diagram are solved to yield the
generéting function T(D,L,l). This function has the form of an infinite sum of products
of D, L, and |. The coefficient-of each term represents the number of paths with distance
of the exponent of D, input weight of the exponent of I, and length of the exponent of L.
The sum may also be represented as a fraction of polynomials in D, L, and . To obtain
the weight profile, L and | are made equal to unity. The resulting function T(D) yields the
number of paths at various distances from the correct path. The redrawn state diagram
and the code generating function of the example code are shown in Figure 2.7. The free
distance (dp) Ais the minimum distance of any error path from the correct path, and is a

good indicator of how well the code will perform.

The codes used in this study were obtained from other papers which investigated
optimal codes [15, 16, 17]. The best codés had maximum free distance (dy) for given code
rate and constraint length. Only relatively short constraint length codes were used so
that Viterbi decoding could be utilized. The optimal rate 1/2 codes were used in Case
1A [15]. They were also combined to form a rate 2/4 code for Case 2B and a rate 3/6
code for Case 3B. A dual-3 rate 1/2 code was also considered in Case 3B [17]. Rate
2/3 codes with maximum d; were employed in Cases 1B, 2A, and 2C while rate 3/4 codes
comprised Case 3A [16]. The various code generator -matrices are shown in Table 2.1

and a complete description of each case appears in Table 3.1.

2.2.2 Maximum Likelihood Decoding

There has been much published work on the decoding of convolutional codes [12,

p. 235; 18, 19, 20]. The Viterbi algorithm for maximum likelihood sequence estimation is
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TABLE 2.1

Convolutional Code Generator Matrices

Rate Constraint Length Free Distance Generator Matrix

1/2 2 5 [1101 117

1/2 6 10 [11 0111110010 117
101 100 110

2/3 4 5 011 101 011]
101 111 010 101

273 6 7 (011 111 101 o~11]
1100 1100 0100 1100

2/4 6 6 0011 0011 0001 oo11]
71001 1111 0000

3/4 5 5 0101 0101 1001
| 0011 0100 0011
7100100 100101

3/6 3 6 010010 010100
001001 001010
110000 010000 110000

3/6 6 5 001100 000100 001100
| 000011 000001 000011
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the most popular decoding technique for codes of short constraint length. This
technique was investigated as being the most likely to be employed for a digital satellite

channel. A brief summary of the decoding operation follows.

The basic problem can be most easily visualizeq as selecting the best path through
the code trellis, based on information from the receiver. The maximum a posteriori
probability for the path is used as the selection criterion. A decision metric for each
branch is computed based on the received signal in each signalling interval. The metric
is proportional to the logarithm of the likelihood function, in keeping with the coding
literature [12, p. 238; 21, p. 188]. This metric is maximized by the decoder. The metric
may also be considered as a distance measure between code vectors, in which case the
negative log likelihood would be used and the decoder would perform minimization of

the metric. Proéeeding with the convention adopted, we have

p(r 1x5) = TTptri 1 xf9 ' (2.12)
i
for a memoryless channel, where
r is the vector of receiver outputs with components r; and

xk is the code symbol vector for the kth trellis path with components xf-‘.

The metrics are obtained as

My = In p(e| x5y = > mf (2.13)
1 ,
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where

m¥ = In p(r; | X (2.14)

M, is the metric for the kth path, and
mk is the metric for the ith code symbol on the kth path.

To accumulate a metric for every possible path through the trellis would be
prohibitive, as the number of paths grows exponentially at each stage. The Viterbi
algorithm makes use of the fact that paths remerge into each node in groups of 20 at
each stage in the trellis. It is necessary to keep track of only one optimum path leading
into each state. The metric for each branch (branch metric) into a given state is added
to the accumulated metric (state metric) for the best path into the previous state from
which the branch originated. These 20 metrics are compared, and the best path is
retained as the survivor into that state. This process is repeated at each stage through
the trellis. The maximum likelihood path will never be discarded by this method because
none of the paths originating from a given state can accumulate a better metric than the

survivor.

The decoder must select a single most likely path in order to deliver an output
symbol. 'If a sufficiently long path history is kept, the 2¥ survivor paths (one for each
state) will share a common stem, and the oldest bits corresponding to all the paths will
be the same. For the sake of reduced complexity, it is desirable to truncate the path
history at some fixed decoding depth. Several authors [12, p. 258; 14, p. 261] have

shown that little degradation from optimum performance occurs when the decoding
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.depth is chosen to be from five to ten times v, depending on the code rate. The output

bits are chosen from the path that currently has the best accumulated metric.

The actual metric used by this decoder may come from either a hard or soft
decision receiver. The nature of the metric employed does not affect the operation of the
decoder, although it will influence the error performance. For a hard decision receiver,

bit decisions are made at the demodulator output, prior to decoding. The negative

Hamming distance between the received symbol and the output symbol of eaéh branch

is used as the branch metric in this case. The Hamming distance between codewords is
generally proportional to the dis;ance between the corresponding signals in the signal
space. Thus minimizing the Hamming distance between code vectors, or equi?alently
maximizing the negative Hamming distance, is the usual hard decision metric. If the

.added complexity of a soft decision demodulator can be tolerated, then more information

is available and the branch metric is proportional to the logarithm of the likelihood

function. This results in better error performance.

2.3 Signal Space Mapping

The assignment of codewords to signal points has an important influence on the
overall system performance. Previous work on the design of optimal codes has Qsed the
Hamming distance between codewords as the distance measure between baths [15, 16].
The Euclidean distance in the signal space between points in the signal constellation
actually determines the probability of a transmission error. Ideally, the codewords would
be assig'ned to signal points with Euclidean distance spacings proportional to the
Hamming .distanée of the codewords, so that erroneous decoding into a near neighbour

would result in few errors.
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Trellis coding [7, 8] considers the actual paths through the trellis when assigning
signals. As previously stated, the signal constellation is divided, by a method termed set
partitioning, into subsets with maximum spacing between signal points. The signals are
assigned to branches in the trellis according to a set of rules that attempts to maximize

the Euclidean distance between signal error paths. These rules are as follows

1. all signals should occur with equal frequency and with a fair amount of regularity

and symmetry;

2. parallel transitions between states are assigned signals from the subset with

maximum signal spacing;

3. transitions originating from the same state are assigned signals from a subset with

maximum possible spacing;

4. transitions ending in the same state are assigned signals from a subset with

maximum possible spacing.

The papers on trellis coding [7, 8] also recommend that the signal set be expanded to
twice the number of points in the uncoded signal set in order to achieve the maximum

coding gain without unnecessary complexity.

The multiple tone signal sets which use constant energy orthogonal tones (ie.
variable signal energy), form a rectangular constellation as described previously. If‘each
bit of a codeword is mapped onto a different tone, the Euclidean distance between signal

points is proportional to the square root of the Hamming distance between codewords.
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This situation makes the mapping of codewords onto signal points straightforward, in

order to obtain optimum coded performance.

The constant signal energy constellations have an irregular signal spacing, which
varies with the number of tones in common between signals. The Euclidean distance
between signals cannot’ bé easily mapped onto the Hamming distance between
codewords, an_d so the rules for trellis coding were applied. Set partitioning.could not
be done in the usual way because of the irregular signal spacings. The signal sets were
divided into groups of 2? (for a rate = b/n code) with maximum spacing between all. the
members of each subset. All of the codes used have a similar structure, so that fhe
different signal sets may be éubdivided the same way. None of the codes have parallel
transitions, so that the second rule of trellis coding may be disregarded. The branches
in the various trellises diverge and remerge in groups of 29 according to the rate of the
code. For all the optimum codes used, the same group of codewords are associated
with thé branches that diverge from and remerge into a given state. This allows for the
partitioning of the signal sets into groups of 2 | to produce a desirable mapping onto
the codewords. The one exception to this situation is the dual-3 rate 1/2 code used in
Case 3B. The same groups of codewords do not appear on the diverging and remerging
branches, so that trellis coding rules three and four cannot be satisfied simultaneously.
No alternate mapping could be found to improve the spacings between error paths, so

the same mapping scheme as for the other rate 3/6 code was emplvoyed.

The actual assignment of codewords to signals for the constant signal energy
multiple tone constellations are shown in Table 2.2. The codewords are shown as
decimal numbers,'grouped according to the branch assignments, and the signals are

represented by ones and zeroes. Each digit of the signal representation corresponds to




12
15
48
51
60
63

16
19
28
31
32
35
44
47

Case 1B: Rate=2/3, 2 tones, Constant Energy Signals (signalling over 2T)

OO WwOo

01 01
10 01
0110
10 10

TABLE 2.2

Signal Space Mappings

N AN

Case 2C: Rate=2/3, 4 tones, Constant Energy Signals

oOOwWwo

0001
0010
0100
1000

N BN

Case 3C: Rate=3/6, 8 tones, Constant Energy Signals

0001 0000
1110 0000
1000 0011
0100 1001
0010 0101
1000 1100
0100 0110
0010 1010

0000 0001
0000 1110
0011 1000
1001 0100
0101 0010
1100 1000
0110 0100
1010 0010

1
2
13
14
49
50
61
62

17
18
29
30
33
34
45
46

0010 0000
1101 0000
0100 0011
1000 1001
0001 0101
0100 1100
1000 0110
0001 1010

0000 0010
0000 1101
0011 0100
1001 1000
0101 0001
1100 0100
0110 1000
1010 0001

4
7
8
i
52
55
56
59

20
23
24
27
36
39
40
43

0100 0000
1011 0000
0010 0011
0001 1001
1000 0101
0010 1100
0001 0110
1000 1010

0000 0100
0000 1011
0011 0010
1001 0001
0101 1000
1100 0010
0110 0001
1010 1000

01 11
11 01
1110
10 11

0110
0011
1001
1100

10
53
54
57
58

21
22
25
26
37
38
41
42

1000 0000
0111 0000
0001 0011
0010 1001
0100 0101
0001 1100
0010 0110
0100 1010

0000 1000
0000 0111
0011 0001 -
1001 0010

0101 0100
1100 0001
0110 0010
1010 0100
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a tone, and a one indicates a tone which is sent as part of the signal. The use of the
signal space mapping described here was combared to an arbitrary mapping scheme for
the four tone signal constellation. An improvement of approximately 1.5 dB (Ep/Ng) was

obtained for a rate 2/3 code with constraint length of 6.

2.4 Error Performance

The performance of the coded system depends on the structure of the code, the
decoding metric, and the coding channel. The coding channel is the' effective channel
as seen by _the encoder and decodér. It includes the properties of the modulator and
demodulator, as well as the actual transmission channel. Further details of the following
development of error bounds may be found in the references [12, p. 242; 14, p. 243; 21,

p. 192; 22].

The first step in obtaining the error performance of the system Is to determine the
pairwise error probability between two transmitted code vectors. This is the probability
that the metric for the error path is larger than the correct path metric for a given received

signal sequence, and is expressed by

PX — X) =p {Zm(r,,, £y > > mir, x,,)} ' (2.15)
n n

The Chernoff bound may be applied to the pairwise error probability to obtain

px -0 < TTE{ expO\Lmiry, %) = M x)D 1%,y (2.16)
n

For most metrics of interest, the expected value in (2.16) has the form




2
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DN = E{ exp(A\[m(ry, %) — M, %) D 1%, } (2.17)
so that

px — %) < [D(N ]V \ (2.18)

where w(X, X) is the Hamming distance between x and x or the number of bits which differ

in the two sequences. For the case of an arbitrary metric, the parameter D is given by

min min

szzoD(’\)z,\zo

E{ exp[m(r, &) = mir, 0D Ix}| (2.19)

When the maximum likelihood metric is used for decoding, ie.
m(r, x) = In p(r{x (2.20)

then one may use the Bhattacharyya parameter

z=),Votlxprls | | (2.21)

’ X5 X

fdr the value of D.

To obtain the probability of an error event, the union bound is used to give

Pe < Da(j)0! | (2.22)
j

where
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Pg is the probability of an error event

a(j)is the number of error paths of distance |, and

D/' is the pairyvise érror probability for a path of distance j.

Since the convolutional codes employed are linear, the all zeroes path may be
considered as the transmitted sequence, and the coefficients a(j) are obtained from the

generating function T(D) to yield
P < T(D) A . (2.23)

with the value of D determined by the coding channel.

The bound on the probability of bit error can be Aobtained in a similar fashion, and

is given by

Ps < 4> Sliali.) 0 | (2.24)
i o : :

 where

b is the number of information bits per code symbol, -

k i is the information weight of the path (ie. the number of bit errors), and

a(i,}) is the number of paths of weight j with information weight i.




i
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The coefficients a(i,j) are the same as in the augmented generating function T(D,!), and
the values of i are the same as the exponent of | in each term of the function. The
augmented generating function is obtained by equating L to unity in the function T(D,L,)),
such as that shown in Figure 2.7. The bit error bound can be written incorporating this
function as

aT(D, 1)

’
Pe < b ol =1

(2.25)

The error bounds presented in this section are used to verify the simulation results
for the cases where the coding channel can be easily characterized. The multiple tone
signals with variable signal energy form a rectangular signal constellation which can be
readily analyzed for coherent reception. The probability of error between two adjacent

signals is obtained from the error function

p= Q(—-d—) | (2.26)

\/ 2N,

where d is the Euclidean distance between the two signal points. The probability of an

error event for a rectangular signal sgt of n dimensions (ie. n tones) is
Pe=1-(1 —o) _ (2.27)

For the case of hard decision decoding, we may use the Bhattacharryya parameter for

an M-ary symmetric channel as the value for D

(M=2 Pe(1 - Pg)
D—(M—1)PE+2 M1 (2.28)
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The rectangular signal set is not strictly an M-ary symmetric channel, since all of the
cross-over probabilities between signals are not equal. However, the error bound still

applies in this cése. i

To obtain an error bound for soft decision decoding, we note that the probability

that one code vector is decoded as another code vector is given by

Pew) =Q (2.29)

=)
2Ng
where d is again the Euclidean distance between code vectors. The error function may

be upper bounded by an exponential function as foliows

Q(———-—d————) < —%— exp — _a- ' : (2.30)

For the rectangular signal constellation, the Euclidean distance is proportional to the

square root of the Hamming distance, and so we may write
d= wEg ' _ ‘ (2.31)

where
wis thg Hamming distance between the code vectors, and
Eg is the energy of a tone. i

Thus the error bound may be. rewritten as

) 1 , ES w ' :
Pe(w) < 5 [ exp -~ 4/\/&} - . (2.32)

H
i
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To obtain the bound for the overall probability of an error event, we sum the individual

components over w to vyield

Pe= D Pe(w)
w
1 ES w
S 207 a(W)[ A 4N0} (2.33)
w
1
7
L) &
D= exp _W

These two values for the parameter D may also be used to find the bound on the bit error
probability for coherent demodulation of coded rectangular signal sets. Equation (2.24)
or (2.25) may be used, with a multiplying factor of one half in the soft decision case. The
bit error bounds were computed for the various codes used with multiple tone signals
with fixed signal energy per orthogonal component (ie. constant energy tones). These
bounds are plotted with the corresponding simulation results in the approbriate
subsections of the next chapter. The performance of coding with constant signal energy
constellations and coherent demodulation, and the performance of all the coded systems
employing noncoherent reception are not easily evaluated. Just as the error probability
for uncoded transmission was difficult to obtain, the evaluation of the boLmd parameter

D is not tractable for these cases.
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CHAPTER THREE

f

RESULTS

3.1 Overview

3.1.1 Program Description

The simulation program used to model the communication systém Was written in
FORTRAN, and run on both VAX 11/750 and [BM 3081 computers. The program is
divided into a mainline routine, which handles the initialization, input, and output tasks,
and several subroutines which cdrrespond to the various components of the system.' The
input file for the simulation contains the parameters of the code, which are the rate, the
constraint length, and the generator matrix. A look-up table of output symbols
corresponding to various branches in the. trellis is generatéd by an initialization
subroutine. This table is used by the encoding and decoding subroutines. The type of
demodulation (coherent/noncoherent), and whether hard or soft decisions are to be
made, are also indicated in the input file. The different signal space mappings are
obtained by using different versions of the channel subroutine, which will be described

later.

After the initialization procedures are complete, the main program commences by
generating a random bit stream. This' is done with a library subroutine for

pseudorandom number generation. The information symbols are passed to the encoder

subroutine which returns the encoded ‘data symbols. These data symbols are passed to '

the channel subroutine which simulates the modulator, the AWGN channel, and the

R W .
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demodulator. In each signalling interval, the subroutine caiculates and returns a metric
for each member of the signal space. These metrics are then passed to the decoding
subroutine, which constructs the received bit stream. The main program compares the
received d'ata to the original information bits, and keeps track of the errors. Error events,
symbol errors, and bit errors are all tabulated. The signal to noise ratio (SNR) starts at
one dB and is incremented in steps of one dB. One hundred thousand data symbols are-
simulated at each level of SNR. After each set of data points is processed, the three error
probabilities are calculated and sent to a data file along with the SNR value. The SNR
is then incremented and the procedure repeats untfl the error event count is less than ten
in one hundred thousand data points at the given SNR. The output data file is used to

plot error performance curves which appear later in this chapter.

The encoder subroutine preserves the previous ir_\put bits which determine the state
of the encoder. The current information symbol then determines the transition to the next
state and the corresponding output symbol. This is accomplished by using the present
state and input bits as an index to the table generated during initialization. The output
symbol is contained in the table, and is returned to the .mainline by the encoder

subroutine.

The channel subroutine receives the ciata symbol and several parameters of the
modulation scheme. The SNR level, the type of demodulation (coherent/noncoherent),
and the type of decoding metric (hard/soft) are all passed from the mainline. Different
versions of the channel subroutine are used to accommodate the various signal space
mappings in the simulations of the different cases. Given the transmitted signal and the

SNR value, a decision variable is computed for each member of .the signal space.
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Samples of Gaussian noise are calculated from uniformly distributed pseudorandom

numbers, according to the polar formula [6].

Xy =V, —QQS ' (3.1)
and
Xy =V, __zgs (3.2)

are two independent samples of aizero mean, unit variance, normally distributed random

variable, where

s=vEiv2 o (3.3)
and S must be less than uﬁity.

Vy =20y —1 , SR ' (3.4)
and

Ve=2Up -1 - o ., . (35)

where Uy and U, are samples of a random variable, uniformly dilstributed between zero
and one. A random phase angle is added to the transmiited signal for the case of
noncoherent reception. ‘The angle (0) is assumed to be uniformly distﬁbuted between
zero and two pi radians, and is obtained from a pseudorandom number generated by the
library subroutine. For soft decisions, the actual decision variables are returned to the
main program as decodér metrics. The: data Symbol corresponding to the Iargeét

decision variable is determined in order to calculate the hard decision metric. The

negative Hamming distance between the demodulated symbol and the branch symboil is




(-

. .

5

—

I I B BN an T IE B BN ‘el ..

<
b3

- 43 -

returned as the branch metric in this case. Details of the demodulation and metric

calculation are given in Chapter two.

The decoder subroutine implements the Viterbi algorithh. A bit history and path
metric are maintained for each state of the code. At each signal interval, the metric for
the signal corresponding to each transition in the trellis is added to the path metric for
the originating state’ of that branch. The paths entering each state are compared, and
the one with the largest metric is retained as the survivor. This process makes use of the
look-up table of trellis states and transitions, and the information symbols for the bit
histories also come from the table. The output bits are taken from the bit history
corresponding to the path with the largest metric at each step. The length of the history
maintained by the decoder varies with the code constraint length and code rate

according to the formula
L =5bwv (3.6)

where ,
L is the length of the bit history,
v is the code constraint length, and
b is the information bit rate (code rate = b/n).

This decoder has negligible performance degradation due to path history truncation.
Clark and Cain [14, p. 262} suggest that path histories for near optimal decoder
operation should be 5v for rate 1/2 codes, 8v for rate 2/3 codes, and 10v for rate 3/4

codes.
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TABLE 3.1

Case Descriptions

CASE INFORMATION COPE CONSTRAINT NUMBER OF

RATE RATE LENGTHS  TONES
1A 1bit/T 1/2 2,6 2
1B 1bit/T 2/3 4,6 2
2A 2 bits/T 2/3 4,6 3
2B 2 bits/T 2/4 6 4
2C 2 bits/T 2/3 4,6 4
3A  3bits/T 3/4’ 5 4
3B 3bits/T 3/6 3,6 8

NUMBER OF TONES = BANDWIDTH x 2T

'NUMBER OF
SIGNALS

16

16

64

Epeak/Eav

2.0

1.0

2.0
2.0

1.0

2.0

1.0
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3.1.2 Case Summary

There are seven different coding and modulafion schemes considered in this
report. The characteristics of each scenario, and the numbering scheme used to
disinguish them, are shown in Table 3.1. They are divided into three groups, and the
number of the case indicates the number of information bits transmitted per signalling
interval. There is also a letter associated with each case to differentiate the different

code rates and modulation schemes employed.

Four of the cases (1A, 2A, 2B, 3A) use signals which may contaih any combination
of tones. These signals have a variable signal energy, depending on the number of tones
in the signal. They are compared to the baseline system according to average signal
energy. For example, let Eg be the energy of a single tone. For the four tone case, there

are sixteen signals with average signal energy given by

1(0) + 4(Eg) + 6(2Eg) + 4(3Eg) + 1(4Eg)
Fav = 16
= 2E4

(3.7)

Therefore, the signal energy of this system is reduced by 1/2 for comparison with the
baseline system, which has a signal energy of £g. The other variable signal energy cases
are also scaled appropriately. The remaining three cases (1B, 2C, 3B) have constant
energy signals, with signal energy equal to the energy of a single tone, for direct

comparison with the baseline system.

Each of the seven cases has several sets of results. The various systems were all
simulated with both coherent and noncoherent demodulation, both hard and soft
decoding metrics, and different code constraint lengths. All of the simulation results for

each case appear on two figures, one for coherent reception and one for noncoherent
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reception, each with the corresponding baseline system performance curve. | The
measure of performance on the graphs is the bit error rate (BER) plotted against the
energy per bit to noise spectral density ratio (£,/Np). As mentioned previously, the error
events and symbol errors as well as the signal energy to noise ratio were tabulated by the
simulation program, but the bit error performance was chosen as the most suitable
criterion for comparison. Table 3.2 shows the required E,/N, to give a BER of 10—‘4 for
every case simulated. These values' were obtained froﬁ the figures shown later vin this
chapter, with some extrapolation required on some of the curves. For data transmission,
system performance at a BER of 10~5 or less is usually of most interest. Héwever, the
simulation run time to obtain reliable datavin this region is prohibitive. Some curves
display irregular behaviour f_or the last data point (ie. the lowest BER point). This occurs
because the BER is calculated using a very small number of error events, and the random
~occurrence of a single error causes a large displacement of the point on the graph.
Since error performance curves are known to behave smoothly at low BER values, these
points are neglected when extrapolating the curves. All performance values quoted in

this chapter will refer to £, /Ny in dB at the reference BER of 104,

As a verification of the simulation program performance, several test cases were
run and compared to theoretical results. The baseline systems (2, 4, and 8-ary FSK) were
simulated for both coherent and noncoherent demodulation, and the results matched
closely with the theoretical performance. The modulation scheme which uses all possible
tone combinations to obtain a rectangular signal set of 2™ signals from M orthogonal
tones was also simulated for the various values of M. The performance of this system,
| with no éoding and coherent demodulation, reflected the theoretilcal error prob'abilities
for rectangular signal constellations. In both cases, the error performance curves for the

simulation matched the theoretical results to within one-half dB over the entire curve. In




CASE BASELINE

1A

1B

2A

2B

2C

3A

3B

PERFORMANCE
11.5
11.5
8.8
8.8
8.8
7.4

7.4

CASE BASELINE

1A

1B

2A

2B

2C

3A

- 3B

PERFORMANCE
12.3
123
9.6
9.6
9.6
8.2

8.2
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TABLE 3.2

Coherent Results

HARD DECISION
PERFORMANCE

9.7 (v=2), 83(=6)

12,6 (v = 4), 12.1 (v = 6)

9.2 (v=4), 9.3 (v=26)
9.9 (»=16)
9.7 (v=4), 9.5 (r=16)
9.3 (v =15)

1.7 (v =3), 9.9 (v =06)

SOFT DECISION
PERFORMANCE

8.2 (v=2), 6.4 (v=06)
9.7 (v =4), 9.4 (v =6)
75 Ww=4), 7.0 (v=6)
7.4 (v = 6)

7.3 =4), 6.8 (v=26)

7.7 (i»=3), 5.0 (v =0)

Noncoherent Results

HARD DECISION
PERFORMANCE

10.8 (v=2), 9.4 (v=06)
12.8 (v =4), 12.4 (¥ =6)
10.1 (v = 4), 9.4 (v =16)
10.1 (v = 6)

10.0 (v =4), 9.9 (»=16)

12.0 (v =3), 10.0 (v = 6)

SOFT DECISION
PERFORMANCE .

9.2 (w=2), 7.7 (vr=26)
10.5 (v =4),10.0 (v =6)

8.1(v=4), 7.5 (v=20)

7.6 (v=4), 6.9 (v=86)
7.7 (1 =15)

7.8 (¥=3), 6.8 (v=06)
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coded systems which employ the rectangular signal constellations, error.bounds were
calculated as described in section 2.4. The coherent simulation results with their

respective error bounds are shown in the appropriate subsections of this chapter.
3.2 Simulation Results

'3.2.1 Case 1A: Rate = 1/2, 2 tones, Variable Signal Energy

This case has the best results of those investigated. All of the coded systems
outperform the baseline by between 1.5 and 5.1 dB at'the reference BER of 10-4. The
number of points:in the signal space is doubled t;y the use ofvmultiple tone signals so
that optimal rate 1/2 codeé can be employed. This provides a redundant coded bit for
each bit of information transmitted, and thus good error correctioﬁ ability. The two

codes used in the simulation have constraint lengths of 2 and 6 with free distances of 5

and 1'0 respectively. The longer code is quite common, and has been used in other

satellite applications [19].

The results for coherent reception are shown in Figure 3.1. The improvement over
the baseline system ranges from 1.8 dB for the short code with hard decisions, to 5.1 dB
for the long code with soft decisions. The use of soft decisions provides a gain of 1.5
dB over hard decisions for the short code, yielding a margin of 3.3 dB over the baseline.
A1.9dB improvemént, from 3.2 dB better than the reference with Hard decisions to a 5.1
dB advantage with soft deéisioﬁs, is obtainéd for the longer code. For hard 'decisio‘ns,
the effect of increasing the constraint length from 2 to 6 yields 1.4 dB imbrovement, and

1.8 dB is gained in the soft decision case.
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The performance of the noncoherent receiver appears in Figure 3.2. The results
are very similar to the coherent case, with 1.5 to 4.6 dB of improvement over the baseline
system. The short constraint length code provides'a 1.5 dB advantage with hard
decisions, and an additional 1.6 dB gain for soft decisions. Increasing the code
constraint length enhances performance by 1.4 dB for a 2.9 dB improvement on the

baseline with hard decisions, and by 1.5 dB in the soft decision case.

The theoretical error bounds for the two codes are also shown. Figure 3.3 shows

the bound for the shorter code, and the longer code appears in Figure 3.4.

3.2.2 Case 1B: Rate = 2/3, 2 tones, Constant Signal Energy (signalling over 2T)

Case 1B uses a rate 2/3 optimal code with the three bit codewords sent over two
signalling intervals. There is less redundant information in the data stream, and so the
performance is understandably worse than Case 1A. The advantage to this scénario is
that the signals have constant energy. In this case, the computation of the decision
variables is simplified. However, the Euclidean distance between the signals is smaller
in this case than in the previous modulation scheme, which is detrimental to error
performance. Codes with constraint lengths of 4 and 6 and corresponding free distances

of 5 and 7 were simulated.

N

For the coherent receiver, the worst case coded system is 1.1 dB worse than the
baseline performance, as shown in Figure 3.5. This is the short constraint length code
with hard decisions. Increasing the constraint length yields only 0.5 dB improvement but
soft decisions provide larger gains. The short constraint length code with soft decisions

gives 1.8 dB improvement over the baseline system, which is 2.9 dB better than the hard
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decision case. The longer constraint length again provides a very modest additional gain

of 0.3 dB.

T'he noncoherent system has performance curves very similar to the coherent case,
and they are shown in Figure 3.6. The hard decision simulations are worse than the
baseline by 0.5 and 0.1 dB for the short and long constraint length codes respectively.
Using soft decisions yields 2.3 to 2.4 dB of improvement over-hard decisions. This results
in 1.8 dB improvement over tﬁe baseline for the shorter code, and 2.3 dB gain for the

longer code.

In all situations, the coded system performance curves are steeper than t’hat of the
baseline. This implies that the hard decision performance will approach or even surpass
the baseline system at higher SNR levels. As well, the soft decision improvement will
increase as the curves diverge. This additional improvement will not be very large,
probably less than one dB. The difference in slope of the curves also fnéans that t.he
baseline system surpasses the performance of the soft decision coded system at low SNR
values. This 'happens below the point where the curves intersect, known as the
cross-over point. The cross-over point occurs at £,/Ng of 7.8 dB for coherent reception

and 8.5 dB in the noncoherent case.

3.2.3 Case 2A: Rate = 2/3, 3 tones, Variable Signal Energy

This is the first case which has an information rate of two bits per signalling
interval, corresponding to a baseline system of 4-ary FSK. A rate 2/3 code is used, which
requires an eight point signal space. Three tones are employed, with all combinations

of tones allowed, to provide eight variable energy signals. The two codes used in the
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simulation are the same as those in the previous case, with constraint lengths of 4 and

6.

The results for coherent reception are shown in Figure 3.7. The performance of
both codes is virtually identical with hard decision decoding, and is about 0.5 dB worse
than the baseline system. Soft decision decoding yields 1.3 dB improvement over the
reference system for the short constraint length code, and an additional 0.5 dB’ for the
longer code. The cross-over points for the soft decision curves are between 5.5 and 6.0

dB (E,/No).

Figure 3.8 displays the performance curves for noncoherent reception of Case 2A.
The short constraint length code with hard decisions is 0.5 dB worse than the baseline,
while the longer code is 0.2 dB better than the reference system. The use of soft
decisions vyields about 2 dB of improvement over the hard decision case. The
performance gain over the baseline with the soft decision decoder is 1.5 dB for the
shorter code, and 2.1 dB for the longer constraint length code. Both soft decision curves

intersect the baseline curve at 6.3 dB on the horizontal axis.

This case achieves performance improvements with a reduction in required
bandwidth. The spacing between orthogonal tones is the same for the three tone coded
system and the four tone baseline system. The coded signals therefore require only 3/4
of the bandwidth, although a higher peak power transmitter is neccessary for the multiple
to.ne signals. ltis also significant to note the free distances of the optimal rate 2/3 codes.
The shorter code (v = 4) has a free distance of 5, while the longer code (v = 6) has a free
distance of 7. These parameters will be used for comparison between the different cases

at this information rate.
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There are two figures' which display the theoretical error bounds for coded
performance with rectangular signal constellations, as described in Chapter twb. Figure
3.9 shows the bound for the shorter code and Figure 3.10 contains the results for the

longer constraint length code.

3.2.4 Case 2B: Rate = 2/4, 4 tones, Variable Signal Energy

This case employs all four tones in the céded system that are used in the baseline
FSK modulation. All tone combinations are used to provide sixteen signals with signal
energies that depend on the.number of constituent tones. The code for this case has. rate
©2/4 to proyide a four bit codeword for two bits of information in eéch signalling interval.
-An optimum distance profile code of this rate could not be found in the literature, and
so two identical rate 1/2 encoders in parallel were used. Only one code was si'mulatéd,

with a constraint length of 6, composed of two rate 1/2 codes of constraint length 3.

The performance of the coherent reception system is shown in Figure 3.11. With
hard decisions, the coded simulation is 1.1 dB worse than the baseline. Soft decisions

yield a 2.5 dB gain to provide 1.4 dB improvement over the reference system. Figure 3.12

displays the performance curves for the noncoherent receiver. The soft decision decoder”

is superior to the baseline system by 1.6 dB while the hard decision curve is 0.5 dB worse

than 4-ary FSK.

The performance of the coded system in this case is virtually the same as the
previous case in spite of the. lower rate code and increased signal bandwidth. ~.Fhe
reas‘on for this is that the code structure employed does not take full advantage of the
signal space. The code formed by two cascaded rate 1/2 encoders has double the

constraint length of a single component code yet only achieves the same free distance.
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The code used in this simulation case has a free distance of 6 which is approximately the
same as the rate 2/3 codes'in Case 2A. Therefore there is no appreciable performance

gain for this system. The theoretical error bound for this code is shown in Figure 3.13.

3.2.56 Case 2C: Rate = 2/3, 4 tones, Constant Signal Energy

This simulation empioys the same rate 2/3 convolutional codes as Case 2A. In this
case, the eight signals required are constructed from four orthogonal tones. Single and
double tone signals with constant signal energy are used. The codeWords are mapped

onto the signals to optimize the error performance as described in Chapter two.

The simulation results for coherent detection are plotted in Figure 3.14. The hard
decision decoder performs worse than the baseline by 0.7 dB and 0.9 dB for the short
and long constraint length codes respecti\}ely. Soft decisions give improved performance
with a margin of 1.5 dB for the short constraint length code over the baseline. The longer
code provideé an additional gain of 0.5 dB for a 2.0 dB improvement on the reference

system.

The noncoherent performance curves appear in Figure 3.15. The baseline system
is again superior to hard decision decoding for both codes. The short constrain"t length
code has a 0.4 dB disadvantage while the longer code has 0.3 dB worse performance.
With soft decision deching, the short constraint length coded system improves by 2.0
dB. The longer code shows 3.0 dB gain over the hard ‘decision casé for a 2.7 dB

improvement over the reference system.
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This case has the best performance of the three simulations at this information
rate. The additional advantage of constant energy signals imposes less stringent

requirements on the actual transmitter and receiver.

3.2.6 Case 3A: Rate = 3/4, 4 tones, Variable Signal Energy

The final two cases have an inforr;qation rate of three bits per signalling interval,
which corresponds to a baseline system of 8-ary FSK. Case 3A employs a rate 3/4 code
and a signal space of sixteen points. The signals are comprised of all possible
combinations of four orthogonal tones, which require only one half the bandwidth of the
baseline system. The simulation was run with one code which has a constraint length

of 5 and a free distance of 5.

Figure 3.16 shows the results of the simulation for coherent reception. With hard
decisions, the coded system is 1.9 dB worse than the baseline. Soft decisions yield a
2.1 dB improvement, resulting in a 0.2 dB advantage over FSK signalling. The
performance of the nonéoherent receiver appears in Figure 3.17. The hard decoder
exceeds the reference system performance by 1.4 dB while soft decisions provide a 1.9
dB gain. This results in a modest 0.5 dB improvement over the baseline for the coded

system with soft decision decoding.

This case does not provide significant performance gain over 8-ary FSK. The
relatively high rate code provides a free distance of 5 and the signalling bandwidth is
reduced by one half from the reference system. Figure 3.18 shows the error performance
bounds for-this code with a rectangular signal constellation. The signals also have

variable energy, requiring increased receiver complexity.
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3.2.7 Case 3B: Rate = 3/6, 8 tones, Constant Signal Energy

The codes for this case have a rate of 3/6 and constraint lengths of 3 and 6. The
short code is a dual-3 rate 1/2 convolutional code, and the longer code is comprised of
three identical cascaded rate 1/2 encoders, each with »=2. The sixty-four signals
required are composed of single tones and triples of tones selected from a set of eight
orthogonal tones. The signals have constant energy and are assigned to the codewords

as previously described.

The performance curves for coherent reception are shown in Figure 3.19. The
coded simulations with hard decision decoding are significantly worse than the baseline
system. The margins are 4.3 dB for the short code and 2.5 dB for the longer code. The
performance gains for soft decision decoding are also quite large so that the short
constraint length code is 0.3 dB worse than the baseline with soft decison decoding. A
gain of 2.4 dB over the reference system is achieved by the long code when soft decoder

metrics are employed.

The results for noncoherent reception are quite similar to the coherent case as
shown in Figure 3.20. The short code with hard decisions is 3.8 dB worse than the
baseline, while the long code has a 1.8 dB disadvantage. The use of soft decision
decoding provides the short code with a 0.4 dB improvement on the baseline

performance. The long code outperforms the baseline by 2.4 dB with soft decisions.

The long constraint length code with soft decision decoding gives good
performance in this case. The relatively poor results of the other simulations are due
mainly to two factors. The structure of the shorter code is such that the codewords

cannot be mapped onto the signal set to provide maximum distance between error paths.
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This accounts for the large disparity between the different constraiﬁt len:g.th codes. The
codes used do not have large free distances, and the signal space mapping does not
provide proportionality between Hamming distance and Euclidean distance. Therefore
the hard deciéion decoding metéic has a large disadvantage.compared to the séft

decision case.
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Figure 3.19 Case 3B Simulation Results, Coherent Reception
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CHAPTER FOUR

CONCLUSIONS

4.1 Findings of the Study

The major result of this study is quite obvious from the performance curves in the
previous chapter. The use of convolutional coding with multiple tone signal sets gives
significant improvement over FSK when soft decision decoding isA employed. This
performance gain is on the order of 2.0 dB (E,/N,) at a BER of 10~ for at least one case
at each information rate. There aré numerous parameters of both the coding and

modulation schemes which influence the results of the simulations.

The most readily apparent effect is caused by the type of decoding metric
employed. The simulations with soft decision metrics indicate performance superior to
those with hard decisions by a margin of from 1.5 to 4.9 dB. This situation would be

expected because some information about the received signal is lost when a hard

decision is made in the receiver. The difference is greater for schemes which have less’

correspondence between the Hamming distance of the codewords and the Euclidean

distance between the signals, namely the constant signal energy constellations.

The performance of the coherent and noncoherent systems is very similar. In
absolute terms, the coherent receiver gives superior performance due to the exact
knowledge of the phase of the transmitted signal. However, the relative improvements
for the coded systems and the gains for soft decision decoding are virtually identical for

both types of receivers. Although noncoherent FSK is usually used in actual systems,
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coherent results were presented for completeness. Also, theoretical error performance
bounds can be calculated for coherent reception, and they provide verification of the

simulation results.

The difference between the constant signal energy constellations and those with
variable energy signals is difficult to accurately derive from the cases under
consideration. The variable energy case proves superior for the transmission of a single
bit per signalling interval. Case 1A shows the largest gains of all sirﬁulations, with gains
of up to 5.1 dB. However, the Qse of constant energy signals with two tones involves a
rather drastic reduction in signal spacing. The number of signals is‘ also reduced
significantly, and requires tvhat a highér rate code be employed. These factors combine
to cause the relatively poorer performance of Case 1B. The transmission of two bits per
period provides the best opportunity for comparison of the constellations. The codes
and the size of the signal sets are fairly similar in Cases 2A, 2B, and 2C. Under these
conditions, neither of the two types of constellations appears significantly superior. The
performance results for éach simulation are within one dB for all three cases. When three
bits are transmitted per signalling interval, the constant signal energy situation provides
the best performance. However, Case 3A has a higher rate ‘code and useé only one half
the number of tones as in Case 3B. In spite of this, it actually has better performance for

hard decision decoding, due to the signal space mapping.

There is anothér difference between constant and variable energy signal
constellations that has more significance when considering actual implementation of the
system. With variable energy signals, the transmitter output power varies according to
the number of tones to be sent. A high peak to average power requirement might.prove

to be a disadvantage since the transmitter will be operating at less than its full peak
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power capability for a large percentage of the time. The zero energy signal might also
prove undesirable to implement if channel fading or drop-outs were possible. The
receiver for unequal energy signals has increased complexity because of the necessity
to compute an exponential function and a modified Bessel function in order to calculate
each decision variable. However, the mapping of codewords onto the signal set is
straightforward for this situation. In the constant signal energy case, the signal
generator in the transmitter must adjust the amplitude of the signal tones to ensure the
signal energy remains constant. The computation of decision variablgs'in the receiver
is simplified, but the mapping of codewords onto the signal space must be incorporated

in both the transmitter and receiver.

4.2 Suggestions for Further Work

The results of this study raise some questions that may provoke further research.
Although significant performance improvements have been discovered, further
improvements may be obtained from different codes and signal constellations. One
example of this might be codes with better distance profiles than the casc'aded rate 1/2
codes used in this study, to improve hard decision performance. The use of larger signal
spaces with lower rate codes is possible for eight tone and even sixteen tone signaliling.
Only 64 of 256 possible tone combinations were used in the signal set of Case 3B, and
16 tones provide 65,536 possible signals from which.to construct a constellation. It is
noteworthy that trellis coding in coherent communications systems obtains !afger codiné
gains with larger signal sets [8]. Excessive computing time requirements for the

simulation program used in this study precluded further exploration of larger signal sets.
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Another subject for further investigation is the performance of tﬁese schemes in
an anti-jamming system in the presence of jammer interference. Other studies [3, 4] have
shown good results for convolutional coding with conventional FSK signalling, and so
this is a promising area. The implementation of soft decision decoding becomes more
complex in a jamming environment. Side information regarding the presence of a
jamming signal is required by the decoder or else soft decision decoding seridusly

degrades in performance.

4.3 Summary

The use of convolutional codes with multiple tone signals has been shown to

provide performance improvements over M-ary FSK signalling. The coded system does’

not require additional bandwidth to maintain the same information rate. Indeed in some
cases a smaller modulation bandwidth and hence higher processing gain appears

possible. The coding is suitable for implementation in a frequency hopped spead

~spectrum anti-jam system with a usual spectrum analyzing receiver followed by a Viterbi

_ decoder. Increased performance gains through different codes and signal sets, as well

as performance in a jamming environment are topics of further interest.
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ABSTRACT

In this report final results on the error performénce of a high data rate,
hopped spread spectrum transmission system that employs band efficient
modulations that are coherent during each hop, are presented. Earlier reports
provided results on the signalling spectrum, optimum receivers and system
complexity. In thié réport period, upper bounds on the average bit error
probability éf the hop~by-hop sequence estimation noncohereﬁt receiver for MSK,
DMSK and TFM with h=0.5 and with both rectangular and raised cosine pulse
shapings have been evaluated. To indicate the tightness of the bounds, a
computer simulation study has been carried out for the hop~by—hop receiver with

MSK modulation, for different leﬁgths of hop interval.

1. INTRODUCTION

A slow frequency-hopped, high data rate spread spectrum system [1], with a
bandwidth efficient modulation in each hop interval, namely continuous phase
modulation (CPM) [2], was proposed in [3,4]. Power density spectra of the
frequency-hopped signals with various correlative.encodiné schemes [5,6] and
baseband pulse shapings were calculated for various hop lengths in [4]. 1In
general, as the length of the hop interval increases the power density sbectﬁum
of the frequency-hopped CPM becomes more compact with lower sidelbpeé and
apbroaches that of the CPM signal without hopping.' The use of higher order
correlative encoding schemes aﬁd baseband pulse shaping is found to be effective
in bandwidth and sidelobe reduction only for long hop intervals. For short hop
lengths, the usual techniques for reducing bandwidth by using suitable higher
ordervcorrelative encoding schemes and pulse shaping do not yield muéh in
bandwidth reduction. Hence, for systems with short frequeﬁcy hopping intervals
it would be more adyéntageous to use simple CFM schemes such és m;nimum shift

keying (MSK) [7,8] allowing a simpler receiver implementation.
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Three algorithm—based,Asequence estimating noncoherent receivers were
proposed for decoding the frequency-hopped correlative encoded CPM signals in
[(4]. Except for the first receiver, which decodes the transmitted sequence on a
hop—by-hop basis; the other two receivers both require the signal to noise ratio
(SNR) to be known by the receivers in order to calculate the metric across the
hops. In this report, we shall concentrate on the performahce of the hop-by-hop
sequence estimation receiver which appears the most promising design among the
three receivers proposed.

Upper bounds on the bit error probability of the hop-by-hop sequence
estimation receiver will be presented. The upper bound calculgtion is based on
the union bound approach with some approximation necessary when hop intervals are
long. The bit error probability bound will be presented for varibus correlative
encoding schemes with rectangular and raised cosine pulse shapings.

A computer simulation study of the receiver is also carried out to obtain a
more precise error performance evaluation and to indicate the accuracy of the
bounds. The simulation also allows the effects on the receiver performance of
modification of the decoding algorithm, to be easily observed. It is found that
if the decoder keeps more than one survivor - for each state of the modulation
trellis, an improvement in the performance of the sequence estimation receiver is

obtained.

2. APPROXIMATE UPPER BOUND ON BIT ERROR PROBABILITY
The optimum maximum likelihood noncoherent hop-by-hop detection receiver is

derived in [3,4]. Given that g = { Qs Qys eees aN_1} is the transmitted

sequence, the receiver decides on the sequence o' = { aé, a{,

. 1 i
ooy aN_1} which
gives the maximum equivalent likelihood [4] given by

2
c

8 (g, a') =& “(a, a') + Qsz

(a, a") (2.1)
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Wwhere 20 (a, a') and 28 (a, o) are the inphase and quadrature correlations [4]

which are given by

% (a,a') = N r(t) cos o £t s p(t, ') ldt ., (2.2a)
] : 0 . c ) i e )
zs(g, a') = ng r(t) sin [ 2w fct + ¢ (t, a") ]Ath_t (2.2b)

where r(t) is the received signal and ¥ (t, o') is the  information carrying phase

function as defined in the previous report [4].
Errors occur whenever the detected sequence a' differs from g in one or more
places. The probability of detecting an incorrect sequence o' = o is simply the

Gl

probability that &' (g, g') is greater than &' (g;fg), which is just the

probability of one Rician variable exceeding another:for'which the expression is
known [4,10,12,13].. Since the probability of error depends on only the

difference between g' and g rather than on the individual g and a' [4,10], we let

Y=o -a | N ' (2.3)

The union bound on the average bit error probabiliity is simply given by
averaging the bit error probability over all the possible transmitted sequences
as

| e(Y)
N

HEY) PCY) S (2.4)

@
1
=i

z
Y
#

=0

Wwhere p = 2N is the total number_of possible transmitted: sequences over the hop
interval of length NT. e(Y) is the number of nonzero..sequence elements of Y,
which corresponds to the number of bit errors when o fs:detectéd given that o is

transmitted. W(Y) is the total number of ipairs of g"and,g corresponding to the




H
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difference sequence Y. Since a difference sequence Y having e(Y) nonzero

elements would result from 2N~e(1) different pairs of g' and g, W(Y) is given as

SN=e(Y)

W(Y) = (2.5)

P(Y) is the probability of an error by detecting a' rather than o as the

transmitted sequence and is given by
PN =501 -0 (B /&) +Q V& /B ] (2.6)

where Q ( , ) i1s the Marcum Q-function [12,13]. Techniques for recursive

evaluation of Q are given in [14,15]. The parameters a and b are given by

b - 2 1/2
(pl=smlrst1-Jem | 171 (2.7)

where p(Y) 1s the complex correlation and |b(Y)|2 is given by

o0 | =T M eos v (6,1 at T+ = AT sinp 6, oat I (2.8)

1
NT
For binary transmission Yn can take on 3 possible values namely 0, + 2 and -

2. Hence there can be 3N =1 different difference sequences Y, for a hop length
of NT in Eq. (2.4). For any Y there 1s always another sequence with opposite

signs in all the sequence elements. The number of terms in Eq. (2.4) can be

reduced by a factor of 2 since P(-Y) = P(Y) as can be easily seen from Eqs. (2.6)
to (2.8). The number of difference sequences to be considered in Eq. (2.4) is
then 3 (3-1).

If we represent 2, 0 and -2 as 0, 1 and 2 respectively, then each

difference sequence element Yn can be represented as a base-3 digit, and the

difference sequence can then be represented by N base-3 digits. Each Y to be

\
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considered in the error-rate célculatioﬁ Eq. (2.4), can be represented by a base-

3 number of value from O to % (3N—1) -1. Numbers from 0 to % (3N~1)—1 are

decoded sequentially as base—3’digits, which are then converted to 0, +2 or -2 as
the difference sequence elements, to be used in evaluating the union bound as

given by Eq. (2.4).
. | ‘ /
| p(¥) | required to calculate P(Y) in Eq. (2.4), can be rewritten .as

1

2 N- : - 2
| (V) | = { £= [ cos ¢, C(q,) - sin g, S(q )1}

0
N-1 e
+{z L cos ., S(dk) * sin Ty C(qk) 13 | (2.9)
k=0 )
where C(dk) = fg cos 271 h dk?q (t) dt c (2.10a)
S(d) =/ sin2mhd q(t)d . (2.10b)
K 0 K g _
k-1 ,
Le=mh I d S . (2.11)
n=o

dk is the correlated difference sequence given by

m .
Tk, Y (2.12)
5 , :

where C is the normalizing constant and k,'s are the coefficients .of the

2
correlative encoding polynomial as defined in [4]..
To speed up the calculation of | p(})[ , all possible integrals of the

cosine and sine of the possible phase over a symbol interval, C(dk) and S(dk) are

initially calculated and stored in an :array. This avoids repeated numerical

|
integration to obtain C(dk) and S(dk) when the baseband pulse is not rectangular.
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When N is large, evaluation of the union bound as given by Eq. (2.4) becomes

computationally infeasible, since the number of difference sequences to be
. .1 N . . . . .
considered is 5 (37-1), which grows exponentially with N. Approximation of the

union bound is then necessary for large N. At high SNR, the probabilities of
those error paths, which have large differences [4,9,10,11], are small compared
with those having small differences. The paths having large differences can then
be neglected. The upper found on the bit error probability is approximated as

e(Y)
L o W PN (2.13)
YeS » '

Y#0

o
!
=1

where S denotes the set of'difference sequences where the difference is not
large.

To determine S the set of Y's, we notice that there will be complete error

events during the hop and also incomplete error events starting near the end of a

hop. For the hop-by-hop detection receiver, the difference sequences Y

k.,

corresponding to an error event eil of length Qi starting at time k, T, will have

1

Yi=0 for i<k, and i>k1+21. The complex correlation as given in Eq. (2.8) becomes

(k, + 2.)T

2 1 1 ’ 2
| o)) | =055 [k T+ fk1 T cos p (t, Y) dt + (N-k -2 T]}
. (k)T ,
+ {—NT fk1T sin - (t, ¥) dt }
1 (k, + )T )
= {4 [ (=T + fk1T cos ¥ (t,Y) dt 1}
. (kg + )T .
+ [_ET fk T sin Y (t,Y) dt } (2.1h)

1
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where k, + 4. 5 N
1 i

Hence for error events having a particular phase difference path segment

as long as

. A
from k., T to (k, + &,)T, | p(¥Y)|[ will be the same, independent of K,

o<k1<N—li, and hence the P [ei] will be the same. It is then sufficient to

determine only the segment of Y from O to Zi =1 corresponding to an error event'

starting at time 0. There will be two Y's corresponding to the error event e
starting from t = 0 to (N—zi)T and having the same error probability.

For a correlative encoded CPM with frequency pulse of length LT, the minimum

length of a complete error event is (L+1)T. Difference sequences of various
lengths li 2 L+1 are generated to find the complete error event paths starting at
time 0., Once a complete error event path, which has Yo = 0 and cz =0 (i.e. the

difference phase path deviates from zero at time O and merges back to zero at

time ziT) is determined, the correlation is calculated by Eq. (2.14). Since it

is computationally infeasible to include all complete error events for large N
and also since long error events have large differences, hence only difference

sequence segments of length L+1 < zi < Zmax are included.

If an error event starts at some time (N~-L)T or later, before the end of a
hop, then an incomplete error event will occur. These incomplete error events

starting near the end of a hop have the estimated phase path differing from the

true path in only a few places and thus are likely to occur. The % (3L~1)
Possible difference sequences corresponding to the incomplete error events at the

end of a hop are generated and their probabilities evaluated.
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To summarize, the bit error probability upper bound is approximated by

e, e.
P S Ly o(N-2.+1) 2Y8 L p a1+ 3 N-ey* T 1 prg g3 (2.15)
e u i N i N J

e.e S e.c S

i e J I

where SC is the set of complete error events having small equivalent distances

and SI is the set of incomplete error events occurring near the end of a hop.

The upper bound on the error performance of the hop~by-hop noncoherent

receiver has been evaluated for a variety of correlative encoding and baseband
pulse shaping schemes when the frequency hopping interval is 4, 16 and 64 symbol
intervals. For the hop length of 4 intervals, union bounds are evaluated while
for the longer hop intervals 16 and 64, approximated upper bounds are evaluated.

Minimum shift keying (MSK), duobinary MSK (DMSK), and tamed FM (TFM)

encoding schemes with h=0.5 and rectangular pulse shaping are compared as shown

in Figs. 1 to 3 for N=4, 16 and 64 respectively. It can be seen that MSK

performs much better than the other two schemes for the various hop lengths.'

When raised cosine pulse shaping is used, the bit error probability bounds for
the three encoding schemes are as shown in Figs. 4 to 6 for N=4, 16 and 64
respectively. Again, the higher order correlative encoding schemes have higher
probability of error.

Next, the effect of the length of a hop on the error performance of the
receiver is illustrated in Figs. 7 to 12 for each modulation. As expected, the
performance of the recéiver improves as the hop interval lengthens. However, for
the same degree of increase in hop length, the improvement in error performance
is less for MSK and is more pronounced for the higher order correlative encoding

schemes such as TFM.
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rectangular pulse shaping.
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Figure 2: ©N=16, approximated upper bounds on Pe for MSK, DMSK and
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3. RECEIVER SIMULATION

A computer simulation study has been carried ouﬁ for the hop~by—-hop sequence
estimating noncoherent receiver with MSK modulation. Stahdard Monte Carlo
techniques are employed.

Recall that the maximum likelihood hop~by-hop noncoherent receiver decides

on the sequence o', which maximizes the equivalent likelihood as given by

Eq.(2.1). The inphase and quadrature likelihoods as given by Eq.(2.2) can be

rewritten as

N-1
1 = '
2, (@, a") =12 6 e,k (g, a") . (3.1a)
k=0
, N=1 .
1y = ‘ 1 ,
iy (g ") =2 6 s,k (o, a') . (3.1b)
k=0
where § (o, ') and § 5K (a, a') denote the partial inphase and quadrature
? >
correlations over the kth symbol interval and are given by
(k+1) T
§ (ay ') =S = r(t) cos [2r £ t + ¢ (t,a')]dt : (3.2a)
c,k '~ <~ C ~
kT .
(k+1)T :
$ (a; a') = f ©or(t) sin [2n £ £t + ¢ (t, o')]dt (3.2b)
S,k s KT . . c =

Both partial likelihoods can be further decomposed by expanding the cosine and
sine terms in Egs. (3.2a) and (3.2b) as in [4]. Without loss of infbrmation, we

shall use Eq. (3.2) to find S (o, ') and & (¢ '), which are needed for
‘ _ , { :

s,k
the simulation.

th

During the k symbol interval in the ith

hop, the dehopped received signal
is given by

2E;1/?
}

r(t) = { = cos [27 £,6 + w(t,a) + 8 1 + n(t) | (3.3)

iNt S g S (i) NT




~ 104~

where all the symbols used are the same as in [4]. n(t) is the additive white
Gaussian bandpass noise with zero mean and one-sided power spectral density No
W/Hz which can be represented by [16]

n(t) = v 2 n, (t) cos 21 fot = V2 ng (t) sin 271 fot (3.4)
The baseband processes no(t) and ns(t) are statistically independent, white and

Gaussian with zero mean and one-~sided power spectral density No W/Hz.

Substituting Egs. (3.3) and (3.4) into Egs. (3.2a) and assuming that 2t fC t

>>1, we obtain

1 (K+1)T
8o,k (o, 0") = 3 fkT © cos [W(t,a") - w(t,e) - 0,]dt
1T (k+1)T
+vy 2 f n (t) cos ¢ (t,a') dt
c
kT
1 (k+1)T
+vy 2 f n_ (t) sin ¢ (t,a") dt (3.5)
s
KT
Let
(k+1)T 1 (k+1)T
.no’k(a') =34 no(t) cos Y(t,a")dt + = J ns(t) sin y(t,a")dt  (3.6)
kKT kT
EqQ. (3.5) can be rewritten as
1 2E 1/2 (k+1)T T
do,k(g’ a') = 5 {_T} S cos[y(t,a") - ¥(t,q) r—ei]dt Mlivar no’k(g') (3.7)

kT
Similarly, the quadrature correlation is obtained by substituting Egs. (3.3) and

(3.4) into (3.2b) and we obtain

1 geEr/z (KT L
=5 5 £ sin Dueewe,gme, Tt + Seag (@) (3.8)
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(k+1)T
S n (t) sin P(t,a’)dt -
KT ¢ :

(k+1)T
J " n_(t)cos y(t,a')dt (3.9)
KT s .

—_

n (a') =

S,k = T

-3

n, k(g') and n_ ((a') as given by Egs. (3.7) and (3.9) are both Gaussian with
’ ’ .

Zero mean since nc(t) and ns(t) are zero mean and white Gaussian processes.

Their variances can be shown to be

VAR [ ng (aD] = 5%
(3.10)
VAR [ ng |, (a")] = L i |
Alsd, it can be shown that
Eln, , (e)n_, (a0} =0 o Gan

Hence, noise components of the inphase and quadrature partial likelihoods
resulting fﬁpm matched filtering of the received signal, matched to the

particular signal corresponding to o', are uncorrelated.

However, 1t can be shown that

No 1 1  (K*DT

E {nc,k(g') nc,k(g)}= = T 7 fkT © cosly (t,a") - ¢ (t,a)]dt (3f12)
o No 11 (KTDIT

E {_nc’k(g') ns’k(g)}= "5 T fkT sinly (t,a') - v (t,q)]dt (3.13)

Hence, the noise component of the output of the filter matched to the inphase

signal component for o' may be correlated with that from the inphase matched
filter for a according to Eq: (3.12). The noise comﬁonent of the output of the
filter matched to the inphase componént for o' may also correlated with the noise
component of the output of the quadrature matched filter for g as indicated by

Eq. (3.13).
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The noise components of the'outputs of the inphase and quadrature matched
filters for different signals over a symbol interval as given by Egs. (3.6) and
(3.9) cannot be generated simply as independent Gaussian random variables. In
order to generate in the simulation the filtered noise components at the

inphase and quadrature matched filter outputs for different a', the set of

cosines and sines of the possible signal phases over an interval is first
expanded using the Gram - Schmidt orthogonalization procedure [16,17]. The noise
component from aAfilter matched to a particular inphase.or quadrature signal
component is then obtained by summihg independent Gaussian random variates, which
are weighed by their cbrresponding orthonormal coefficients.

Transmitted sequence o is generated randomly one symbol at a time. The

partial inphase and quadrature likelihoods for different possible transmitted
symbols are computed according to Egs. (3.7) and (3.8) with the noise components
generated as outlined previously. The receiver then forms the equivalent
likelihoods and estimates the corresponding maximum likelihood transmitted

sequence g' according to the decoding algorithm detailed in section 3.3 of
previous report [4]. The random initial phase 6, is also generated every hop as

a random value uniformiy distributed between 0 and 2w.

Although the decoding algorithm as describéd in [4] retains only one
survivor for each state, simulation has shown that the performance of the
receiver improves if the decoder keeps more than one survivor for each state
during the decoding process. Only the MSK hop-by-hop noncoherent receiver has
been simulated. Figs. 13 - 15 show how the error performance improves as.the
number of survivors kept for each state is varied from 1 to 4 for hop lengths U4,
16 and 64. It can be seen that keeping two survivors for each state would be
sufficient. Keeping more than two survivors improves the error performance

insignificantly. The simulation results for the hop-by~hop sequence estimation
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‘Figure 13: N=4, MSK simulation results.




PROBABILITY OF BIT ERROR

-108-
g
10 —
-3
16—
3 X
. &
- X
7] G
-2
18 —
= b 4
i )

&
*

16

i1 IIIMI

.

1 lllllll

4

11 llll!‘

-8

x 1
+ 2
@ 3
* 4

28

survivor/state
survivors/state
survivors/state

survivors/state

1@ 1%

SNR ¢ Eb/No ) in dB

Figure 14: N=i6, MSK simulation results.

6 1 2 3 4 5 6 7 B 8 1B 11 12

13 14 15




PROBABILITY OF BIT ERROR

1

-109-

]
10—
b
: X survivor/state
] + survivors/state
ié?-: ® survivors/state
" é * survivors/state
= X
-2 e
1@-;
= ]
-
10 —
=
i X
.
) &
16
* X.
.
—5
10 =
-8
7} — t

SNR ¢ Eb/No 7 in dB

s t
Figure 15: N=64 MSK simulation results.

1 2 8 4 5 6 7.8 8 18 11 12 13 14 15
e




~110-

receiver, which keeps two survivors for each state, is as shown in Fig. 16 for
various hop interval lengths. The coherent MSK Viterbi Algorithm receiver
performance is also shown. It can be seen that the error decreases with the
increase in hop length but the error probability is always higher than the
coherent MSK Viterbi receiver, as expected.

In Fig. 17, upper bounds evaluated for MSK with rectangular pulse shaping
for N =1, 4, 16 and 64, are plotted together with the simulation results in
order to indicate the tightness of the upper bounds evaluated in the previous
section. The curve for N=1 is actually the average probability of bit error
rather than an error bound. It can be seen that the simulated error probability
coincides with the theoretical result. At moderate to high SNR, the upper bound
for N=4 is also tight, while for longer hop lengths as 16 and 64, the bounds are
not as accurate. |
4, CONCLUSIONS

In this report, upper bounds on the bit error probability have been
evaluated for a variety of frequency-hopped correlative encoding schemes with
rectangular and raised cosine baseband pulse shapings. 1t has been shown that
the error performance of the hop-by-hop sequence estimation noncoherent receiver
improves as the hop length increases. The simple MSK scheme has better
performance than higher order correlative encoding schemes such as DMSK and TFM,
Higher order correlative encoding schemes shows more pronounced error performance
improvement for the same degree of increase in hop interval. A computer
simulation study of the hop-by-hop sequence estimation noncoherent receiver has
been carried out. It has been found that by keeping two survivors for each
state, the error performance of the receiver achieves close to optimality using
the same decoding algorithm described in the previous report. The simulation
results indicate that the error bounds evaluated for short hop intervals are

tight.
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PART 3 ~ SYNCHRONIZATION ASPECTS

This part of the report deals primarily with the acquisition (and tracking)

of parameters required to allow reliable data detection at the satellite, that is,

‘uplink synchronization. Since this synchronization process will require feedback

to the user, the issues of downlink format and synchronization need to be ad-
dressed, but to a lesser extent. High-level data formats and associated protocols
are not considered.

We first define the system under consideration along with the assumptions
that are employed. A possible downlink synchronization procedure is described.
Various aspects of uplink synchronization are then outlined, and options for
system implementations and strategies are presented. The "simplest possible™

system (having lowest synchronization complexity) is then described.

1. SYSTEM UNDER CONSIDERATION

1.1 General

This is prinecipally a point-to-point communications system that is based on
circuit switching. Call setup is performed over control channels imbedded in the
uplink/downlink data streams [1] that enjoy full antijam protection..

Channel assignments may be fixed or reconfigurable by a central controller
overseeing demand assignment. To keep things simple, we assume a fixed assignment
scheme with dedicated uplink/downlink slots for each user. More flexible systems
simply imply longer waits for access to satellite resources for synchronization
purposes. We assume that when user A is not engaged in a call, thevsatellite
places the data detections from user A's uplink slot into user A's downlink slét.

This provides the feedback which is crucial te initial synchronization.
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1.2 The uplink

Uplink users are arranged in an FDMA format, with each user employing a non-
coherent M-ary modulation. Users hop their transmit frequencies (as a group) over

k

a very wide band. The frequency synthesizer is controlled by k-bit blocks (for 2

different frequencies) produced by a pseudo-random sequence generator with a
period which can be in excess of several days. The hopping rate provides several
hops per bit for ldw rate users and creates many bits per hop for medium data rate
users.

Uplink beam sharing is a possibility [2], but is not considered here as it

poses no additional fundamental problems.

1.3  The downlink

The downlink follows a TDMA format and the composite signal may or may not be
frequency spread. If spectrum spreading is employed here, the first step at the
receiver is to synchronize to this spreading sequenoe'and despread. This is a

conventional synchronization problem and so is not considered further here. In

any event, downlink spreading may not be a requirement if data is protected by
encryption.

The downlink TDMA format is assumed as in Figure 1. One frame is composed of
the interVals during which the downlink antenna beam hops to each of the coverage
zones. While dwelling on a zone, a conventional sync pattern is followed by data
slots for the users as well as a common information slot in which the satellite
may transmit control messages or data which facilitates initial synchronization.

Users look for the sync pattern, then "read" data from their assigned time slots.

2. DOWNLINK SYNCHRONIZATION
We assume again that the downlink TDMA signal is not spread. Each user

receives signal energy only during the time that the downlink beam is dwelling on
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the user's zone. For example, with 20 fully active zones, users see signal energy
for about 5% of the time.
To perform initial acquisition, the following procedure may be employed.

Users energy-~detect over a sliding window of length TZ where TZ is the dwell time

on the zone. Once received energy exceeds a threshold, the window is frozen and
the windowed signal is passed to phase and bit-timing recovery circuits. Once

these parameters are acquired, the window is expanded to 2TZ with the same centre

position; and a search for the sync burst is begun using a sliding binary cor-
relator [3]. When the sync burst is acquired, the user can identify his time slot
and pick out the data destined for him. In addition, any common data supplied by
the satellite can be recovered.

Note that unlike a conventional TDMA system having TDMA both on the uplink

and on the downlink, we do not need bit-timing symbols dedicated to each user.

All user data bursts are exactly aligned to common timing marks since these burst

are formed by the satellite with a single timing reference. This also means that

the signals from subsequent beam hops are easily combined in the carrier and bit-
timing recovery loops. All that is needed is a simple gating waveform as in

Figure 2.

3. UPLINK SYNCHRONIZATION: ACQUISITION
The following are identified as the parameters to be acquired (and tracked):
(a) Hopping sequence phase, i.e., the prober point in the long pseudo-random
hopping pattern. (coarse syne)
(b) Hopping clock phase, i.e., the alignment of hop transitions of the uplink

signal with those on board the satellite. (fine sync)

HS TR W "R =
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(e¢) Carrier frequency. There may be significant errors due to Doppler shifts
with non-geosynchronous satellites, initial errors in the frequency syn-

thesizers, and drift. (ccarse and fine sync)

3.1 Hopping sequence phase/ccarse carrier frequency

The acquisitions of these two parameters are tightly bound together. In
effect, they create a two-dimensional search space over the regioné of
uncertainty. System implementation choices will determine the size of the uncer-
tainty regicns and ultimately the time for acquisition.

There appear to be two options with regard to initial uncertainty in hop
sequence phase. We assume that the pseudo-random sequence ié produced by a
finite state machine realized as a clocked digital circuit. In the first option,
this sequencer box is initially synchronized by physical connéction to a master
unit. Small errors in the clock frequency will cause phase error to accumulate
from that point on (until the next synchronization with the satellite is
achieved). There is, however, another attractive alternative. Since the state of
the sequencer at any one time is implicit in the value of the internal storage
elements (latches or flip-flops), it is possible to transmit this state
to users on the downlink. By setting the latches or flip-flops to the same values
in a replica sequencer circuit, a user acquires synchronization. Of course, the
user must adjust for the delay in downlink transmission and for the uplink delay
required for his signal to reach the satellite. If these delays are known within

an uncertainty of Tp, then this determines the maximum initial error in the hop-

ping sequence phase (error < Tp/Th hops where hopping rate R, = 1/Th). This

h
uncertainty can be kept small by transmitting satellite ephemeris data in the

"common" slot of the downlink frames to facilitate range calculations.
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Such side information must be protected of course.- This is ensured if the
downlink is encrypted or if the sequencer 6irouit utilizes a secret key (bit-
string) in the formation df the hopping pattern (for example a cipher-block
chained encryption device [4]).

As far as carrier frequency uncertainty is conoerned;fthis can be reduced by
'predictions of Doppler shift from satellite orbital@ca}culations (for non-
geosynchronous satellites). Accurate oscillator referénoéffrequencies along with

good stability willAcleariy also help.

Eo

3.1.1 Search Strategies : , SR

There are many search strategies which are possible-[5, 6]. The two dimen-

sional search space is divided into N cells separated in frequency by Afc and
separated by one full hop time Th'

A fast initial linear sweep over all cells with:small dwell (observation)
time at each can be performed, with possible acquisition detections being explored
for longer times. If the initial sweep fails, it is repeated withlthe dwell time
increased. As a variation, more time can be spent on those_cells closest to the
expected value of the sequence phase, and Af = 0, since the likelihood Qf larger
drifts and errors is correspondingly smaller. Alternatively, a more formal se-
quential probability‘ratio test (SPRT) can be employed.-- In:the SPRT, we compute
PK = pS(EK)/pn(EK) where pS and pn are, reSpectlvely;;%he distributions of
‘received sequence ry (of length K samples) given signal present, and noise-only
present. This likelihood ration FK is compared to upper and lower thresholds
selected to produce desired values of probability of faiéélalérm Pea and of detec-
tion pd. If the ratio falls between the thresholds, the test is repeated with the
(K+1) 'th sample PK+1 added. The choice of isearch strategy depends on the size of

the initial uncertéinty regions. If these are small, a single serial search with
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detection threshold set for the desired p and would be used. For very large
fa pd

uncertainty regions, the SPRT would be desirable. For moderate uncertainty
regions, a modified variable-dwell time search procedure would be sufficient.
A method for scanning through a range of hop sequence phases is now

described. The arrangement is shown in Figure 3. The pseudo-random sequence

generator (PNG) can be clocked by ¢, the nominal clock, or by ¢++, a high speed
clock. In addition, the clock input can be disabled so that the outputs of the PN

generator do not change. A block of Kk bits is clocked separately into a buffer

A k .
register that feeds the frequency synthesizer to select one of 2 _frequen01es.

The procedure to be followed is now outlined. Assuming an initial uncer-

++
tainty of +H hops in hop sequence phase, we initially switch to ¢ to run the
sequencer "ahead" by H hops. Since the nominal clock rate of the sequencer will

be relatively low (at most th) for the hop rates (Rh ~ 20 kHz) and number of

frequencies (k < 32) of interest, a ¢++ clock at ten times the frequency of ¢
should be well within the capabilities of modern digital circuits., While this
run—-up is being performed, the input register at the synthesizer is still being

reloaded at the nominal hop rate R so that the carrier frequency is still

n’
hopping. After the PNG has advanced H hops ahead of nominal, its clock input is
returned to ¢. Now we can drop back by one hop (relative to the satellite) by
disabling the clock input for one hop, and then returning it to ¢ for an interval
of I hops duration, the observation time at the current hop sequence phase.
During this time, we observe the downlink return (which we have assumed is
directed to us in a loopback mode) and either declare acquisition or continue ihe

procedure to examine the next hop phase. The maximum observation interval to

cover all 2H possible hop sequence phases is then 2H-I-Th seconds. Of course, a
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choice of I is determined by the search strategy adopted. These I hops are as-
sumed to span a search over several (or many) trial values for carrier centre

frequency (separated by Afc).

3.1.2 Detection of Acquisition

At each trial value of hopping sequence phase and carrier éentre frequency,
we must decide if acquisition has been achieved. We concentrate on detection of
hop sequence phase assuming initially that carrier centre frequency is accurate.
Figure 4 depicts the alignment of the carrier hops with the satellite dehopping
carrier, when the phases are within one hop. Notice that a serial search of
possible hop sequence phases must produce an alignment at some trial phase that
causes at least 1/2 of the signal energy to be properly dehopped by the satellite
and pass through the satellite IF filters. In the worst case then, there.will be
a 3 dB loss of signal energy at proper alignment for this coarse acquisition
phase.

Notice also that the transmitted user tone is "gated" before IF which will
produce spectral spreading and scme additional loss gfter filtering. Also, car-
rier centre frequency misalignment will reduce (or possibly eliminate) the signal

component. We assume Afc is chosen to produce a 3 dB loss with worst case fre-

quency alignment.

One option for the downlink return is to have the satellite transmit a hard
decision (1 or 0) on the presence or absence of the agreed upon synchronizing tone
(one of M tones). The decision threshold may be set to give some desired tone
detection probability in the presence of maximum uplink fading and full band
jamming. The ground Qser can then use these tone-detection decisions in a SPRT
test, or, in a simpler search strategy, these decisions may simply be counted over

an observation of I hops, and the count compared to a threshold.
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As an example, the design threshold for this latter search might yield prob-
abilities of tone detection, given tone present (with 3 + 3 = 6 dB loss due to
hopping phase and carrier frequency misalignment) and tone absent, of p(td|1) = ,8

and p(td]O) = .1, respectively. If we look for 5 or more detections in 10 hops,

this will yield a false dlarm probability of Pfa ~ 10~3 and a probability of

~

detection of acquisition of P .966 (from standard binomial distribution

d
calculations). Of course the detailed calculations of p(td|0) and p(td|1) in the
presence of jamming will Be complicated. With Gaussian noise only, these prob-
abilities form a set of well known curves. The presence of partial-band jamming

and frequency misalignment errors introduce further complications.

3.2 Hop clock phase fine carrier frequency

~The procedures described above will yield a coarse synchronization to within

one half of a hop and within Afc/2 carrier frequency error.

Achieving a finer alignment is complicated if the satellite sends only hard
decisions about tone detections on the downlink. We wish to adjust the hop clock
phase, and frequency synthesizer centre frequency, in small increments of At and
Af, and receive downlinkAdata about the euality of the alignment. One possibility
is to have the satellite send more than one bit per hop on the downlink where this
data is a quality measure, for example, the output of an energy detector quantized
to one of several levels. This may represent an expansion of the data rate nor-
mallyyassigned to a user's downlink data slot, but may be feasible since it is
only needed for the brief and infrequent'synchronization attempts.

Another possibility is to estimate the proper‘fine alignment from only hard-

decision tone detection data as assumed above. In this cese, the hop clock phase

or carrier frequency may be stepped by A sequentially until a target rate of
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missed detections (e.g., 8 of 10) is exceeded. The clock phase or carrier fre-
quency may then be stepped in the opposite direction until missed detections again
ceeur in excéss of this target rate. Proper alignment may then be estimated to
lie exactly hélf way between these two extfemes. Of course, this proéedure will
take longer than an alternative employing multiple-bit alignment quality data
transmitted by the satellite. The procedure is aided, however, by the fact that
there should be a reasonably sharp threshold effect at which the rate of missed

detections rises quickly with increased misalignment.

4. UPLINK SYNCHRONIZATION: TRACKING

Once acquired, parameters will drift toward loss of synchronization during
normal data transmission. This may be avoided byitracking, that is, monitoring
and adjusting the fine alignment. In data transmission mode, we can expect only
hard decisions on the M tones to be available on the downlink, making tracking
difficult. This contrasts sharply with the tracking problem in a conventional
spread spectrum system in which we have full-acceés to the signal emerging from
the dehopper. In this conventional system, a tracking loop is employed [5].

It is, however, possible to imagine a tracking loop in ﬁhe satellite system
undér consideration. To do this, low rate supplementary channels coﬁld be paired
with each user's data slot in the downlink frames. In these channels, the satel-
lite would prdvide alignment-quality data (e.g., energy detector output quantized

to b bits) averaged over many hops. The ground terminal would use this data in a

tau-dither scheme to make adjustments to hopping clock phase and carrier centre
frequency. The time constant of the loop would include twice the propagation
delay to the satellite. Because the loop time constant can be large compared to

the hop duration Th (assuming only slow drifts), the data rate of these supplemen-

tary channels need only be a fraction of the user data rate, and represent a small




~-126-

overhead. This scheme does, however, require more complex electronics in the
satellite.

One final alternative is to imbed parity check bits‘in{the user data streams.
If user A is talking to user B, andi drifts @oward loss”bfnéynchronization, this
will show up as errors in the dapa. User B can then request that user A aqjust
his parameters to try for bettef alﬁgnment. This is aléo”érfeedback loop, but it
has a much slower reéponse'time’than the previous schémef‘ It also requires an

exXtra level of synchronization in the data streams to ideﬁtif& which bits are data

and which are check bits. A R

5. SIMPLEST SYSTEM o
Given the previous discussion, it is now possible to ‘identify a system tha@

is in some sense ideal, and which has the_"simplest" synchronization scheme in

that searching is not necessary (at least_for low rate ﬁsérs). This system has
the following attributes:

(a) All users know the round-trip délay/to'the satelliﬁéytbiﬁithin'a sﬁall fraé~
tion of a hop. At a hopping rate of 20 KHz, thisiimbires range accuracy on
the order of 1 km. Range determination is aided by?satellite-ephemeris data
provided in the "common data" downlink slots. )

(b) The internal state of the pseudo-random sequencer iﬁfthe satellite is peri-
odically transmitted on the downlink. This may 5éﬁdéhe~with one bit per

"frame. Users can restart their replica sequencers andfadjusﬁ for round-trip
delay.

(e) Thé sétellite hopping clock phase is aligned withhthe boundaries of the

AR
frames of the TDMA downlink. Note that. this can only be exploited given (a).

(d) Satellite current centre frequency value is digitized and also sent in the

common downlink slot (again 1 bit per frame may be sufficient). Users com-

pare this to their own reference and. adjust accordingly..
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Satellite motion is known accurately so that Doppler shifts can be calculated
and compensation applied.

As an alternative to (d) and (e), the satellite can provide continuous data
on alignment quality of the carrier frequencies over low rate supplementary
downlink slots for each user. This may be used both for acquisition and
tracking.

This system is not intended as a propesal, it simply illustrates a baseline

system from which strategic retreats can be made.

1]

[21]

3]

L4l

[51]
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PART IV IDEAL PERFORMANCE OF INTERCEPTION RECEIVERS FOR FREQUENCY HOPPED SPREAD

SPECTRUM SIGNALS

1. INTRODUCTION

Spread spectrum communications had been discussed with inéreasing frequency
in the open literature in the last few years [1,2,3,4]. One of the attractive
features of spread spectrum communications, from a user's point of view, 1s the
difficulty of interception.

This report examines this feature from the viewpoint of an unfriendly
interceptor. Given that an unknown spread spectrum signal is being transmitted,
can it be intercepped by a receiver which has no knowledge of the sequence code?
More précisely, what is the probability, given that a signal is being
trahsmitted, that the receiver will be able to detect it? Furthermore, if the
receiver has intercepted a spread spectrum signal, is it possible to determine if
the source is moving? In other words, can a doppler shift be determined?

To answer the questions, it is necessary to determine the performance limits
and optimum tradeoffs of such a receiver under ideal conditions. This appears to_

be a good starting point given that the interception problem is new to the

present contract.

This report begins with a derivation of two‘interoeption receivers, assuming
ideal conditions. It then establishes the performance limits of these receivers,
first for only one or two transmission frequencies and then extends the results
to a large number of transmission frequencies. Another version of the optimum
receiver is developed and analyzed when a priori knowledge is available. The
effects of frequency offéet on the performance of the optimum receiver, which
later will lead to a study of Doppler shift estimation, is also discuésed. The

report concludes with a discussion of future work.
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2. DERIVATION OF INTERCEPTION RECEIVERS:.
2.1 Assumptions

In this section, two receivers will be discussed.‘ For both, the following
assumptions were initially made.:

First, the bandwidth and duration of the transmitted sighals are knan
exactly. Second, the receiiver knqws which frequeﬁcies are used by the
transmitter and there is neither: phase nor frequency distortion or offsets. That
is, the receiver is pérfectly coherent. The frequencies have a discrete

distribution, are spaced an equal distance apart (the inverse of twice the signal

duration) and arrive with equal probability. Resources are such that the

receiver can contain a bank of filters, each one fixed éo:be centered at one of
the transmission frequencies and matched to the signal bandwidth.‘ To understand
why the latter assumption is unrealistic, note that the transmission spectrum is
typically 1 GHz wide and each signal has a bandwidth bf 20 kHz, If there are 100
users, this implies that 500 filters will be required_under”conditions of group

frequency hopping. Understandably, most interceptors will prefer to use far fewer

filters. We note that a large number of filters can be' represented using SAW

Fourier processors. However, with these assumptions; best performance is
obtained and represents the absolute limit .of performanéee

The only distortion to the signal is Qausedfby“additive white Gaussian
noise.

- Therefore the signal received is

Hyir(t) = A cos w ;t *+ n (t) | 0<t T,
if a signal is sent and , ' (1)
H :r(t) = n(t) 0t ST

otherwise, where n(t) has zero mean and spectral height equal to No/2 W/Hz.




- N BN NN BN NN NN Gy NS NS N NS WS A W A S A S

-130~

2.2 Maximum Likelihood Receiver

A maximum likelihood recéiver, or a simple_pulse detection system as
discussed by Dillard [2], consists of a bank of filters, each followed by a
decision making device. Each filter - decision pair can be viewed és a single
detector (see Figure 1). Each detector makes a decision, declaring a signal in
its band if the filter output is greater than a given threshold level, and none
present otherwise. If any one of the detectors declares a signal present, the
receiver decides that a signal has been received.

The analysis of its performance is quite simple. For the single frequency

case, the probability of detection is:

- olfnn , d '
o o[t + 4] (2)
and the probability of false alarm is:
- oltnn _ d]
QF = Q[» 3 %] (3)
1
ZES 5
where n is the decision threshold, d = N ’ Es is the energy of the received
0
signal and
© — 2
1 t
Q (x) = I T=TRTYYE eXp |- ==-z(dt
x (2m0 ) 2¢

When there is more than one transmission frequency, the case of interest, an

analytical approach [4] gives

PD = Probability of detection of the receiver
P _ N-1 ’
=1 - 0mq) (- o) (4)
and
PF = Probability of false alarm of the receiver

1= (1 - " (5)

]

where N is the number of detectors in the receiver.
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Figure‘ 1: The maximum likelihood energy detector fbr.:one of N
sinusoids in noise.
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2.3 Optimum Detector

The optimum or average — likelihood receiver is based on a derivation of the
generalized likelihood ratio test [8].

To determine the optimum detection test, two probability density functions
must be found. The first is that of the received signal when no signal has been

sent, which will be referred to as hypothesis O (HO). The second is that of the

received signal when a signal has been transmitted and will be referred to as

hypothesis 1 (H,).

The probability density function of the received signal under HO is

T 2
1 J'r (t) dt
SO S - < 4 6)
T 1/2 exp N (
(m NO) 0

P.(R[H)) =

The received signal, under H,, has the probability density function

“nax P (w)

1
P (R|H,) =j ~——173 exp [& -
d (m N ) / N

STy at - 28 5T (t)coswdt
o o : ]dw (7)

min

M=

where P (w) = 1
]

5 § (w - wi) is the probability density function of the

i 1
transmission frequency under the assumptions made earlier. Thatﬂis, the unknown
signal frequency is taken to be discretely distributed over the hopped band.
Taking the ratio of the two probability density functions gives the
likelihood ratio test
P (R[H,) T

I{r) = -—-—T——— n (8)
PP(R Ho) §o
Performing the necessary manipulations, this becomes

T 2
o of r(t) COSwitdt §1 AT

exp M : =8 noexp |55 (9)
1 (o} 0 0

)

1

L(r) = N

™M=

i
the optimum receiver, therefore, takes the exponent of the filter outputs, sums

them and compares the sum to the appropriate threshold as shown in Figure 2.
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Individual decisions are not made at each frequency as is the case in Figure 1.
The objective of the average likelihood receiver is just to detect energy

relative to the assumed frequency grid, {mz}. Note that in both receivers

coherent detection is assumed. This is an idealization in a frequency hopped
system.

For the single frequency case, the probabilities of false alarm and
detection are identical to those given in equations (2) and (3) for the maximum
likelihood receiver, as would be expected. However, the analysis for N greater

than one is far from simple and a closed form expression is not available. Note

that
a; = %5 OfTr‘(t) cosw;tdt is a normal random variable with probability density
0
‘function
2
1 ¢4
POL(OLiIHI) = 21—7:.,_'6){]3 e (10)
(2md") 2d :
and
2 2
1 (al ~d) .
Pa(ailHl) IRV exp |[= =g (11)
(2ma”) 2d ~

where, as before, d2= 2ES/N0.

Therefore, the problem becomes an attempt to find the distribution function

of a sum of N lognormal variables.

2.4 Analysis of the ALT Receiver for 2 Transmission Frequencies

To begin the analysis of the optimum receiver (ALT), we start small and

assume that there are only two transmission frequencies. Under this
2 2

circumstances we want to evaluate the probability that L = “%“ exp {; géal r e%i
B

is greater than some threshold n under each hypothesis. Equivalently, we wish to

find the probability that
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. 2
e®1 + g% 2 2n exp [}g~'] =b

There are two exact approaches to:.this problem. The first finds the

az 2 b]'az], then averages over o, to find

conditional probability, Pr [e%! + e
the desired probabilities. Under Ho’ both ai's have. zero mean. Thus, the

probability of false alarm is

1 ap2enb
Pr [e%1 + %2 2b] oz, H 1 =40 [an_(p-e®2 i o (12)
22 Y, z_ -———TT————{] a,<nb.

and since Pp= L: Pr [e%t + ¢ %2 2 b|la,] Pr [a,] day, after some work, the

following eXpression can be found.

2 - B » )
2n b (o 2} O

reea 22 | [ e e |- 5 | @ 205 (13
o (27d ) 2d .

The probability of detection can be found in a:similar manner. However,

since one detector, say #1, will have r(t) = ACOSwit + n(t) and the other will

have r(t) = h(t) only the probability density function of a, will be unchanged. -

Since only the noise is a random variable,

2 2
1 (ay=d )
Py (@) = ====g=375 exp |- =g ‘ (14)
1 (2wd ) 2d ’ )
Therefore,
o N : 1 o, 20nb
Pr [e™! + e "2 = b| a,, H] = a (15)
' Q|&n(bze2) _
19 3 d a2<2nb
and so,
b | . P
' &n Oy 0y ,
PD= Q [ﬁ-&rdl—sﬂt-)’] + I “H“J';—TTE exp - Q-&Qw-(.p-awgw-) - d daz (16a)
-0 (27d ) 2d

or, if we average over a, instead an alternate form is found:
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2y2

)
&n b (a,~ d a
4n b 1 2 = Qin(b-e?
PD= Q[ q - ] + j -—-_.___2_._1.../...5 exp - > - 3 .,) dOLl
-» (2rd ) 2d

(16b)

The second approach attempts to find the distribution function of L under

each hypothesis. Denote Ri= e%i. Under HO

2
1 - (&n li)
PI(QI\HO) = = 3TT73 eXp ——— (17)
li (2wd ) 2d "

and PI(QIHO) = PI(RIIHO) f PI(QZIHO) where & denotes convolution. Finally,

PF=nf P (2]H ) at (18a)

Py : /P (2|H,) de (18b)

Performing the necessary calculations, equations (13) and (16) were again
obtained. Therefore, these expressions for the probabilities of detection and
false alarm have been confirmed by alternate methods.

To evaluate this integral, Gauss Quadrature numerical integration was used.
A plot of the probability of detection versus the SNR for different false alarm
probabilities for a single transmission frequency and two transmission

frequencies is given in Figure 3.

2.5 Comparison of Results to Maximum Likelihood Receiver:

The receiver operating characteristic for the maximum likelihood test was
found to be very close to that for the ALT, showing a slightly suboptimum

performance for low SNR and high PF but matching the performance of the average
likelihood test receiver for higher SNR and lower PF‘ An example is given in

Table 1 for SNR = 3 dB. The'results for one frequency are also included.
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Table 1 Probability of detection for SNR = 3 dB

PF 1 freq. 2 freq.
MLT ALT

-l
10 ' ‘ .552 L4u3 L uu8
) -2
10 .180 127 .128
L, X . ,
10 L0467 . 0307 .0308
. N ' ' -2 -2
10 .0105 6.66x10 6.66x10
) -5 -3 -3 . -3
10 - 2.17x10 1.33x10 1.33x10
A ~6 Mk 4 4
10 5,96x10 2.52x10 2.52x10

For the case of two frequencies, under ideal conditions, the two receivers
appear to be roughly equivalent. From Figure 3, it can be seen that under ideal

conditions, for low SNR, the probability of detection is quite low, particularly

-3
for PF= 10 , the range of interest. It is necessary to have a SNR of 11 dB

before the probability of detection exceeds 0.5. Under the assumed conditions, it
would be possible to detect a transmitted signal only a small fraction of the

time since, typically, we are concerned with low SNR values.

3.  FREQUENCY UNCERTAINTY
It is of interest, since we wish to determine the effects of Doppler shift

on the detector output, to consider the case of frequency offset. In the

previous section, we assumed that the frequency separatiocon is %ﬁ, and the

received signal equals one of the filter center frequencies, w, T W Suppose

s

2nk .+ §
1

. . - S_ -
instead that the received frequency, w,= w + 5T = 5T

. where 6 << k,.
i i

The probability of false alarm will be unchanged since it is independent of

the transmission frequencies. Therefore, we need only examine the probability of
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. . 2 '
detection. Previously, under H,, o, had a mean equal to the SNR, d , a, had a

mean equal to zero and both had a variance equal to the SNR. Now, however,

i

T .
Q= Ngé I r(t) cosw,t dt
0 o
T . = k,mt"
- ~2A _Tt PO
= 5 I Acos T (ki+ 28) + n (t) cos = dat
o o’ | -
g, AT T :
2A 1 . .
= — H el 1
& 5 + [ nlt) coswit dt Lo (19)
o 0
2(k,+ &) . ‘ . . .
where B, = .2k r; s;gwﬁ . However, as stated previously, k,>> § so B,= §ﬁ§£§
. 1 i R

2 -
sineé.-

= sines. Therefore, o, now is normal with-a mean of d

. . 2‘ V. .
Similarly, a, is found to be normal with a mean of,d4331nc(6-1). In Figure

3

Ik, for false alarm probability of 10" » the probabilityﬁofgqetection is plotted

against the frequency deviation §. When § = 0.0 then.w, = w, and when § = 1.0,

W, = Wz As expected, the probability of detection is a maximum at these points.
When the received signal is outside the receiver bandwidth, the detection

probabiiity falls to that of false alarm.

R. A PRIORI KNOWLEDGE:

We assumed previously that each signgl frequency is received with equal
probability and the detection threshold was calculatgd agcordingly. That is, the
assumed discrete frequency grid for the average likelihood?ratio test was taken
to be uniformly distributed. Suppose, instead, that we ﬁave some knowledge of
what frequency is sent and claim that one of the.frequencies will be received

»

with some probability, Pi' The likelihood ratio test must ‘then be altered since

N 'l P B
L(r) = exp |- '3~ |.I Pie¥1 : C(20)
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Therefore, for two transmission frequencies under these conditions:

2 Hl
L(r) = exp |- %~ (P,e% + P,e%2) gn (21)
t o

Performing the analysis of the performance probabilities in the same manner as

earlier, assuming once again that there is no frequency offset, a more general

2

form of P, is found. Defining &n b = &n (A + 4o
F _ P, 2
o] g
p =@ Pa | (22)
F d
-
- - 2 ™ . i 2
+ An b 1 0, Q zn[?~P2exp tazfg :[*JZ.nPl
: =17 eXp | T TFT ‘ 2 * 5(des.
(2md ) | 2d d

Since o, and o, are identically distributed, an alternate form of PF can be found
by switching P, and P,.

Now, siﬁoe the probability of arrival is now assumed higher for some
frequencies than for others, the likelihood ratio test will be biased in their
favor. This means the probability of detection is no longer the same at each
detector. It is also possible that the interceptor is wrong and the actual

arrival probabilities of the frequencies are different. Instead, assume

~

frequency Wy arrives with probability Pi’ and PDi is the probability of detecting

the signal at that frequency. Therefore,

1]
g~]
+
a~]
—
g~]
lw)
i
o
~

. ,’ @

since P1= 1 =~ P2.

Evaluation of PD and PD is similar to that of PD done previously. So
1 2 .

the following expressions for the detection probabilities are found
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[ ] dz |

Zn n--— - a—
P =Q Pl 2 (2)43)
D, i,

n b _ .. _ 2
+ [ do, . (ay=~d ) Q Q,nEq-Plexp [c-xl - %J]—lan . d
fe T AT OXP | T T 3 2
(2wd ) 2d E

PD is of similar form with P, substituted for P; and vice versa. Alternatively,
2

o | F |+ %5
P = ) (24p)
Dl

d A

dn - |

. b Oy 2n n—Pzexpng— 9~J] -nP;, _ d
+ 1 Q 2 5 (da,

2 12 €xXp |- 2 d 2

~o  (27d ) | 2d

Again, PD2 can be found by reversing the roles of P, and P,. Table 2 gives

3

values for PD when P, = 0.9 for PF= 10 .

Table 2: A priori knowledge effects on performance of the

3

optimum receiver PF= 10

Probability of Detection

P, = 0.90 ‘P, = 0.50

1 1
SNR\P " 0.5 .75 0.9 1.0 0.5

! 3.0 .02419 . 03542 04212 ' .04664 . 0308

§ 5.0 .0505 .07242 . 08561 .09438 .0658

i 7.0 147 . 1551 792 .1954 147

| 9.0 .2529 .3261 .3625 .3870 .319
1.0 5457 .6059 L6419 . 6661 .602
13.0 .8530 .8812 . 8975 . 9085 . 880

The benefits of a priori knowledge are most significant at low SNR values,

with 25% -improvement in detection performance for SNR=3.0dB. It should be noted,

however, that while the probability of detecting frequency has significantly
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improved, there is much higher probability'that the other frequency will be

missed. Should the a priori information be wrong, the performance of the:

receiver will be degraded severely. Therefore, it is recommended, unless there

is a great certainty about the a priori knowledge, that it not be used.

5. EXTENDING RESULTS TO MORE THAN TWO FREQUENCIES:

| In trying to extend the resulté to more than two transmission frequencies it
was necessary to find some ﬁethod to approximate the probability distribution
function of a sum of lognormal variables.

In a paper by Meyers [5], he sﬁggests that the Gaussian Quadrature Method is
applicable to this problem. However, while attempts to generate his curve for a
single lognormal O dB (unit variance), zero-mean random variable were successful,
there was found to be an extremely_pOOP_match for SNR values greater than this.
Closer examination of this approach led to the conélusion'that this method cannot
follow the lognormal density function.with any accuracy due to the exponential

growth of its moments. It was, therefore, abandoned.

Two other approaches were found which give goqd approximations to the two

frequency case, as indicated in Figure 5. They are discussed in a paper by
Schwartz and Yeh [7]. The first, known as Wilkinson's approach, aSstes that the

sum of lognormal random variables is also lognormal. That is,
N _
L=e" =35 e i (25)

Now if the variance and mean of z are known then the probability distribution

function can be found since

Z _ n_x_
Pr [e®> x] = Q [;;~—, + mé] _ (26)

Z
The variance and the mean can be found from the moments of L, which are

calculated recursively [6]. Let ﬁk(n—1) be the kth moment of a sum of n-1

.

lognormal random variables. Since the zi‘s are independent,

. ‘
M R EaE

il . .
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random variable.
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- . .
u (n) =1 [i] u (1) L (n=1) (27)
i=0 , .
- Now
o » 7
uk(j) = exp [?m + qzk J (28)
so,
-
wy(n) =exp {m + % (29)
7z ot
2
and
2
u,(n) = exp 2mz * 20,
Solying the two equations gives
m, =2 n (p;(n)) - 0.5 an (uz(n)) ' (30)
o, =&n (u(n)) = 2 2n (u,(n)) : (31)

and so the distribution function of the sum can be found. The approximation to

-2
the actual curves, particularly for false alarm probabilities less than 10 , is

" extremely close, as can be seen in Figure 5.

The second approach, attributed to Farley, says that if the zi's‘are
identically distributed and independent, as oy—> @,

Pr[L <exp (Yo, +m)] =01 ~qm]" (32)

Where N is the number of lognormél variables in the random'variablé. This

approach gives a better approximation than Wilkinson's, particularly for PF

' -2
greater than 10 .
An interesting observation about this approach is it implies, for large SAR,

that the performance of both receivers presented in this report is the same. To

see this, recall that for a single transmission frequency, QF = Ql&g—é], and for

N N NN aE =N

N el .
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the maximum likelihood receiver, PF =1 - (1~QF)N. In this case, Uy = d2 and

m =0. Lettin = exp (Yo. + m ), we get
y O gn p y y) g

Pr [L > nl = PF(ALT) =1 - (1-QF)N = Py (MLT)

The problem with Farley's approach as opposed to Wilkinson's is that it is
not immediately obvious how to extend these results to evaluate the probability
of detection. This is currently being considered and it is suspected that the
detection performance of the optimum receiver will be closely related to the

performance of the maximum likelihood receiver.

6. FUTURE WORK

To date, results have been established for the most basic case of two'
different receivers. Three key areas are still under development.

The first is to find the probability of false alarm for large values of N.

Results for Y4 frequencies, along with the results of a Monte Carlo Simulation,

are shown in Figure 6. The work in this area, as can be seen from the results
presented, is nearly completed. The approximations used, i.e. Wilkinson or
Farley, are not limited to N = 4,

The second is to extend the results to the probability of detection,
particularly determining if the two receivers are indeed nearly equivalent in
detection performance.t

The third area, and in some ways, the most important,. is to analyze the
effects of a Doppler shift on the receiver output and determine the feasibility
of recognizing that the signal source is moving.

Finally, the effect of using a non—coherent receiver structure‘will be
studied. The interception receiver structures have already been developed.

Since no computational results are available, the theory was not included in this

report.

* Note‘added in proof. The probability of detection study is now complete. The
theme of the results are similar to that for the probability of false alarm.
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7. CONCLUSION

Two coherent receivers for interception spread spectrum signals were
presented and it was shown that they have near equivalent performance. A
performance analysis of a receiver with only one or two frequencies was done.
The results show a drop'in performance as the number of frequencies increase and

as the signal to noise ratio of the transmitted frequency decreases. A

-noticeable drop in performance was seen if the received signal was offset from

the filter center frequencies. Approximation techniques for a large number of

frequencles are available from the 1i terature.
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