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Abstract 

The performance of various types of error correcting codes is examined under both 

partial band noise jamming and multitone jann-ning using fast frequency hopping, noncoher-
ent M-ary frequency-shift-keying (NCMFSK). A comprehensive study including convolu-
tional codes, binary and nonbinary block codes and concatenated codes has been conducted. 
The bit error rate (BER) performance of many error correcting codes is presented. These 
results augment those previously published on the subject. 

A fixed data rate is assumed in Chapter 2. However, a practical frequency hopping 
spread spectrum (SS/FH) system may be limited to a fixed hop rate. This constraint has 
been given little consideration in previous work on coding for SS/FH systems. In Chapter 
3, the performance of error correcting codes is examined under partial band noise jamming 
and multitone jamming using the same system as in Chapter. 2, but with fixed hop rates. 
These results are compared to those with a fixed data rate. The analysis method used is 
the well known Chernoff union bound. 

The performance of a recently proposed efficient anti-jam .  communication system 
is examined in Chapter 4. The system employs frequency hopping, MFSK modulation, 
diversity, Reed-Solomon (RS) coding, and parallel error-erasure correction decoding. It 
bas  previously been shown to be effective in partial band noise jamming. In this report, 

we evaluate the performance of this system in multitone jamming. An exact method is 
used rather than a bounding technique. It is shown that in worst case jamming, when the 

redundancy is not large, multitone jamming tends to be more effective than partial band 
noise jamming from the jammer's point of view, for nonbinary FSK. The optimum design 

of the system under worst case jamming is presented in terms of the combination of MFSK, 

diversity and RS coding, and it is shown that a proper combination with large redundancy 

can completely nullify worst case multitone jamming. 

Chapter 5 describes the design of a CODEC based on the (127,99) four error cor-

recting BCH code. This code was chosen as a compromise between overall performance, as 

given in Chapter 2, and implementation complexity. The CODEC is designed completely 

in hardware for implementation with application specific integrated circuits. This approach 

has a short implementation cycle, requires a very small number of integrated circuit chips, 

and yields a CODEC that can operate up to about 5Mbits/sec. 
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Chapter 1 

Introduction 

In defence communication systems, spread-spectrum techniques such as frequency- 

,. hopping (FH) have been utilized to provide some protection against jamming. However, an 

intelligent jammer can drastically reduce the effectiveness of such a system. This effective- 

, ness can be regained through the use of error correcting codes. In this report we present 

the results of a comprehensive study of the performance of various error correcting codes 

when used in a frequency-hopping system. 

1.1 .  System Model 

The systern we consider employs the fast frequency-hopping (FFH) noncoherent M- . 
ary frequency-shift-keying (NOFSK) technique. By fast we mean one or more hops per 

• transmitted symbol. Our objective is to investigate the performance of various known error 

correcting codes in such a system under different kinds of jamming. The system model is 

shown in Fig. 1.1. System assumptions are as follows. 

Transmitted signals are MFSK orthogonal signals which hop over a total spread 

spectrum bandwith W„. The channel over W„ is assumed to be uniform. Noncoherent 

soft energy detection (square-law reception) of each hop is assumed. In practice this can 
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be approximated with finite level quantization. Note that this soft decision is used only in 

energy detection. While the soft energy decision may be passed to a soft decision decoder 

such as that for a convolutional code, the decision made after diversity combination can be 

a hard decision. 

One coded M-ary symbol is transmitted in L hops using time diversity. For a given 

M and error correcting (EC) code, when the energy per symbol E, is fixed, the energy per 

bit Eb is fixed. In this case, there is usually an optimum L, denoted as Let, at which the 

final bit error rate (BER) can be minimized for a given signal to noise ratio. This is not 

true when the hop rate Rh is fixed and the information bit rate Rb is variable. In Chapter 

2 we evaluate the effectiveness of various EC codes with Eb assumed to be fixed. The case 

when Rh is fixed is treated in Chapter 3. For convenience, the term bit error rate (BER) 

is used to denote the probability of bit error. In the analysis of a system with a fixed data 

rate, Let provides an indication of how efficient a specific code is. A smaller Let implies 

that the code is more efficient against jamming in the sense that less added redundancy is 

required. 

In a jamming environment, the channel is nonstationary, and side information is 

valuable for efficient data reception. However, a system heavily dependent on side infor-

mation may not be robust, because the information may not always be obtainable or its 

quality may vary greatly. One method used in practice to derive the side information is to 

implement automatic gain control (AGC) in the receiver[1]. Based on this implementation, 

we may assume, as a good approximation, that the receiver knows with certainty whether 

each hop of an M-ary symbol is jamrned or not. If any of the L hops is not janamed, an 

error free M-ary decision can be made based solely on that hop (thermal noise is neglected, 

this will be discussed shortly). Otherwise, the largest of the linear combinations (direct 

sums) of the energy of L hops is selected, as shown by the decision device inputs from 

the summation boxes in Fig. 1.1. For the error-erasure correction decoding considered in 

Chapter 4, we attach an erasure flag to this symbol. 
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Under strong jamming, the receiver thermal or non-hostile background noise is usu-

ally small compared to the jamming, so receiver noise is neglected here. Assume the total 

jamming power J (referenced to the receiver input) is fixed. Then the effective jamming 

power spectral density is given by 

= /W88 . 

We consider two types of worst case (WC) intelligent but non-repeat-back jam-

ming, namely partial band noise and multitone interference. For partial band noise (PBN) 

jamming, J is restricted to a fraction p (0 < p <1) of the full spread spectrum bandwidth, 

but in this band the power spectral density is increased to Job). Multitone jamming (MT) 

includes band multitone jamming and independent multitone jamming. It has been shown 

that worst case multitone jarnming tends to have a single jamming tone per jammed band[2], 

using equal power tones. We consider only this type of worst case multitone jamming. In 

this case the jammer ha,s one parameter to optimize, namely the ratio of signal power of 

one hop to the power of the jamming tone, denoted as a. 

In this report, we do not consider fading of the signal due to propagation, but in 

worst case jamming the signal already suffers from a kind of fading in terms of the signal to 

noise ratio. Thus, results without considering propagation fading may be indicative of the 

case with propagation fading. This point has been verified in previous work. For instance, 

a broadband jammer is the worst case noise jammer in a Rayleigh fading channel[3]. 

In anti-jam communications, a good code should perform well regardless of the type 

of jarnming. Thus in this report we consider good codes to be those with the best perfor-

mance for the most effective type of jamming, WC MT jamming or WC PBN jamming, at 

a given low BER, typically Pb = 10-5 . 

For such systems, we can consider three methods to evaluate the BER performance 

of a code. Monte Carlo simulation is the most universal but most time consuming method. 

This brute force method is therefore not suitable for a comprehensive preliminary investi- 
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gation of codes. It may be considered to evaluate the BER performance when a code has 

been adopted. Note that this method has the highest credibility. 

The second method is the exact numerical computation of system performance. 

While it is not impossible, it is generally difficult and cumbersome to compute the exact 

performance of systems like the one considered here. Since these results are usually very 

complex, in most cases they do not yield insights readily. 

The third method is the Chernoff union bound method which gives an upper bound 

for the BER. The computations involved in this method are usually much simpler than the 

other two methods. Though the general credibility of this method remains controversial, it 

has been shown to provide useful and reliable information[3] for the systems considered in 

Chapters 2 and 3. Due to its relative simplicity it is especially suitable for a comprehensive 

study of various codes, and thus has been chosen as the evaluation method. It provides a 

unified approach to evaluating performance and provides a clear relationship between the 

system parameters and BER. This method can be used to select good codes which can then 

be analysed more accurately using other techniques. 

Chapter 5 presents the design of a CODEC based on the (127,99) BCH code. The 

design is done completely in hardware using application specific integrated circuits. 

Chapter 6 provides some directions for future work, primarily in the area of slow 

frequency hopping systems. 
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Chapter 2 

Performance of Error Correcting Codes 

for Fast Frequency Hopped Noncoherent 

MFSK Spread Spectrum Communications 

with a Fixed Data Rate 

In this chapter we evaluate the performance of various EC codes assuming a fixed 

data rate. Although the performance of error correcting codes in FH systems has been 

widely studied, there is no single reference in the literature providing complete information 

on the BER performance (rather than other criteria, such as the cutoff rate) of various 

codes for both PBN and MT jamming. Ma and Poole[4] and Simon et al.[3] are perhaps 

the most con-iprehensive. Only partial band noise jamming was considered in [4] and only 

Reed-Solomon codes and several convolutional and concatenated codes were considered in 

[3]. These previous results are augmented through this work. 
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2.1 Formulas for Performance Evaluation. 

In this section the formulas used to evaluaté the BER for block and convolutional 

codes are presented. They are based on the work reported in [3]. Optimum diversity is 

assumed in all cases. BER is given vs Eb/Jo, where Eb is the energy per information bit. 

The signal to noise power ratio is related to Eb/J0 by 

(81J)dB = (EbbrO)dB - PG 

where PG = 10 logio (W„Mb) is the processing gain. For example, if W„ = 100 .1V1112.  and 

Rb = 2.4 kbls, PG = 46.2 dB. Note that the term processing gain has been given several 

conflicting definitions in the literature[3]. The definition we use is meaningful for all spread 

spectrum systems. We consider M-ary signalling, where M = 2K, for K up to 5. 

The probability of bit error, Pb, for convolutional codes is upperbounded by the 

Chernoff union bound[3] as 

< 1G(DL) PBN jamming; 2 
G(D 1') MT jamming 

where 

(2.1) 

Let > 1, PBN; 
Let =1, PBN, 

Let = 1, PBN, 

Let =1, MT, K = 1, 

Let = 1, MT, K = 1, 

Let = 1, MT, K > 2, 

Let = 1, MT, K > 2, 
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Eb/Jo .7/R t ; -1 0 

1 	Eb /Jo < 1/R'; 
(2.6) Let = 

(2 . 7) 
{ 4 	worst case PBN jamming; 

13Ke worst case MT jamming. = 13Ke worst case MT jamming. 

with  A  equal to 

\ 	i Eb 1 ( t Eb) 2  1 Eb 
+ 3R + R 	— 	— 1 . 

= rK where r is the code rate. 16 is given in Table 2.1. The function G(DL) in (2.1) 

varies for different codes and will be given in the following sections. awc  is the worst case 

a in MT jamming given by 

{ ao E bl JO > (Lopta0M) M r  ; 
atuc = R t Ebbro  Eb I Jo < (Lopta0M) I R I  ; ItiL opt 

with ao  given in Table 2.1, where "1_" means a value less than but infinitely close to 1. 

- The worst case p in PBN januning, denoted as pwc , is given by 

Rsi 	EL  67:To  Eb1.10 k3L optle; 
Pwc= 	 (2.5) 

1 	Eb/Jo < 3LoptIR'; 

and Let  by 

(2.3)  

(2.4) 

with y defined as 

13 is given in Table 2.1. Let  in (2.6) can be a noninteger which is not realizable, (and it 

cannot be less than 1). For the purpose of analysis, however, Let  is informative in this 

finer form, and so is used for performance evaluation of all EC codes where applicable. 

Unless otherwise specified, the following formulas define the probability of bit error, 
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(2.11) 
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1 

1 
Table 2.1: Values of aa and p. 

K 	cto 	13  
1 	1_ 	1 
2 	0.683 	0.7945 
3 	0.527 	0.8188 
4 	0.427 	0.9583 
5 	0.356 	1.2204 

Pb, for block codes. The probability of bit error is given by 

Pb =
2(Q 1) P  
	 8 	 (2.8) 

-  

where P, is the Q-ary output symbol error rate of an (n, k) Q-ary block code (with log 2  Q 

= q bits per Q-ary symbol), as shown in Fig. 2.1. For binary block codes, we have Q 2, 

q = 1 and Pb = Pa . If the minimum distance is d, the number of correctable errors is given 

by 

t=  1. (d - 1)12 j 

where [xj denotes the integer part of x. With hard decision decoding, P, is related to the 

Q-ary symbol error rate before decoding, PQ, by the well known formula (e.g. see [4]) 

-
n 

E i 	Ps  (1 - PQr i  
1 n 	n 

Q 

For M-ary signalling, let PK be the K-bit transmission symbol error rate (referenced 

to the point after diversity combination). PK is given by 

(114;v7 1) G(DL) PBN jamming; 

with 

. G(DL) =  ?DL  
2 

9 

(2.9) 

{ 
PK 	2(m-1)G(DL)  MT  jamming 

1 



Q-ary 
Symbols 
to Bits 

kq bits 
k Q-ary 	 n Q-ary 	 nC M-ary 

Symbols 	 Symbols 	 Symbols 
Channel I 

Bits to 
Q-ary 

Symbols 

Block 

Code 
Encoder 

Q-ary to 
M-ary 

Symbols 

Block 	 M-ary to 
Code 	1 	 0-ary -4--- 

Decoder 	 Symbols 
Ps 	

P0 	 P 
K 

Final 
Bit Error 

Rate 

Q-ary 	 Q-ary 	 M-ary 

Symbol Error 	 Symbol Error 	Channel Symbol 

Rate After 	 Rate Before 	 Error Rate 

Decoding 	 Decoding 

Figure 2.1: Block diagram of a system employing a block coding scheme, showing the 
symbols used and the alphabet conversions. 

and DL as defined in (2.2). The Q-ary symbol error rate PQ  is 

PQ = 1— (1— PK) c 	 (2.12) 

where 

C = log2  Q K 	 (2.13) 

when q>  K.  Fig. 2.1 illustrates the relationships given in (2.8) to (2.13) for a block coding 

system. 

In the following sections we will use these formulas for three kinds of codes: block 

codes, convolutional codes and concatenated codes. Only selected results are presented. 

2.2 Performance of Convolutional Codes 

In this section the performance of various convolutional codes is presented. G(D) is 

determined by the code used. Soft decision Viterbi decoding is assumed for all convolutional 
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codes. 

2.2.1 Trump's Codes 

In [5] Trumpis presents two optimum (over orthogonal channels) constraint length 

7 convolutional codes. Actually these codes are (K,1,7) binary convolutional codes, but K 

bits at the output of the encoder, corresponding to 1 bit at the input, are considered to be 

one M-ary symbol. The best of these codes is the 4-ary, rate r = 1/2 code for which K = 2 

and 

G(D) =  7D7  + 39D8  104D9+ 352D10  1187D" -I- • • • . 

The other is the 8-ary, rate r = 1/3 code. In this case we have K = 3 and 

G(D) = D7  + 4D8  8D9  49D19  92D11  + • • • . 

(2.14) 

(2.15) 

Fig. 2.2 gives the performance of these codes in WC PBN and WC MT jamming. Our 

results for these codes are the same as those in [3]. 

2.2.2 Dual-K Convolutional Codes 

For all values of K,  we have the class of dual-K M-ary convolutional codes with 

code rate r = 1/v over GF(2K)[1,3]. For every M-ary (K-bit) input word, v M-ary code 

symbols are generated, where v is an integer greater than 1. The constraint length is 2K 

which accounts for two binary shift registers in the encoder. Now R' = K I v and 

Al-D2p 
G(D)  	 (2.16) 

2[1 — vD 11-1  — (M.  — 	1)D1 2  

As pointed out in [3], at a low BER, the performance of these codes does not depend on v, 

which is verified by our results. However, with binary FSK under WC MT jamming, at a 

low signal to noise ratio, a low rate code is much more powerful than a high rate code[6]. 

At a low BER, the best code is that for K 2, which is the same as that shown in [3]. The 

performance of the Dual-K codes with v = 2 is given in Figs. 2.3 and 2.4. 

nsx 
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Figure 2.2: BER performance of the rate 1/2 and 1/3 Trumpis convolutional codes for K 
= 2, 3 respectively. The best code is that for K = 2. 
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Figure 2.3: BER performance of the dual-K rate 1/2 convolutional codes for K equal to 1 
through 5, under WC PBN jamming. The best code is that for K = 2, for which  PVJC-=  0.75 
at a BER of 10-5. 
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Figure 2.4: BER performance of the dual-K rate 1/2 convolutional codes for K equal to 1 

through 5, under WC MT jamming. The best code is that for K = 2, for which awc  = 0.683 

at a BER of 10-5 . 
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2.2.3 Odenwalder Binary Codes 

Two commonly used binary convolutional codes are the constraint length 7, rate 

1/2 and 1/3 codes discovered by Odenwalder[7]. For r = 1/2, 

G(D) = 36D1°  + 211D12  + 1404D14  + 11, 633D16  

+77, 433D 18  + 502, 690D 2°  +  3,322, 763D22  

+21,292, 910D24  + 134, 365, 911D26 + • • • ; 	 (2.17) 

and for r = 1/3, 

G(D) = D 1-4  + 20D 16  53D18  + 184D2°  + • • • . 	 (2.18) 

Rate 1/4 and 1/8 codes having the same constraint length, 7, can be derived from the above 

rate 1/2 code[4]. For r = 1/4, 

G(D) = 36D20  + 211D24 + 1404D28 + 11,633D32  

+77, 433D36  + 502, 690D4°  +  3,322, 763D44  

+21,292, 910D48  + 134, 365, 911D52  + • ••; 	 (2.19) 

and for r = 1/8, 

G(D) = 36D4°  + 211D48  + 1404D 56  + 11, 633D64 

+77, 433D 72  + 502, 690D8°  + 3, 322, 763D 88  

+21,292, 910D96 + 134, 365, 911D1.°4  + • • • . (2.20) 

The BER performance of the rate 1/3 code under PBN and MT jamming is shown 

in Fig. 2.5, and of the rate 1/2, 1/4 and 1/8 codes under PBN jamming in Fig. 2.6. In [4], 

the three curves in Fig. 2.6 are the same as that for the rate 1/2 code. This is incorrect, 

since in that case, for the rate 1/4 and 1/8 codes, L opt would be smaller than 1 for a BER 

larger than 10' 6 , which is not realizable. The BER performance of the rate 1/2 and 1/4 

codes under MT jamming is shown in Fig. 2.7. From Figs. 2.5 to 2.7 it can be seen that 

the r = 1/3 code performs best. 
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Figure 2.5: BER performance of the constraint length 7 binary Odenwalder convolutional 

rate 1/3 code, with FH/BFSK. At Pb = 10-5 , pwc  = 0.815 for WC PBN jamming, and 
ct.c  = L. for WC MT jamming. 
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Figure 2.6: BER performance of the:constraint length 7 binary Odenwalder convelutional 
rate 1/2 , 1/4 and 1/8 codes with FH/BFSK, under WC PBN jamming. At Pb = 10 -5  

p,,,c = 0.75 for the rate 1/2 code, pw, = 0.975 for the rate 1/4 code and p c = 1 for the rate 
1/8 code. 
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Figure 2.7: BER performance of the constraint length 7 binary Odenwalder convolutional 

rate 1/2 and 1/4 codes with FH/BFSK, under WC MT jamming. At Pi, = 10-5 , ce„,c  = 1_ 
for both the rate 1/2 and rate 1/4 codes. 
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G(D)  c D2K+1 . (2.22) 

2.2.4 M-ary Orthogonal Convolutional Codes 

M-ary orthogonal convolutional codes are a class of codes with constraint length 

K[1,8], hence K > 2. They are (M,1, K) binary convolutional codes where each M-bit 

at the output of the encoder, corresponding to 1 bit at the input, is one of M orthogonal 

binary sequences of dimension M. Thus one such M-bit corresponds to one M-ary symbol. 

In this case, R' is always equal to 1 and we have 

DK(1 D) 2  
G(D) = 

(1 — 2D + DK) 2.  

The best code in this class is that for K = 2 with BER performance shown in Fig. 

2.8. Due to its short constraint length, the performance of this code is relatively poor. 

2.2.5 Semi-  Orthogonal  Convolutional Codes 

For K > 3, we have the class of semi-orthogonal M-ary convolutional codes with 

constraint length 2K +1[1,41. As for the orthogonal convolutional codes, R' is always equal 

to 1 for the semi-orthogonal convolutional codes. G(D) is given by 

(2.21) 

The BER performance of these codes is shown in Fig. 2.9 for K equal to 3, 4 and 

5. The code corresponding to K = 3 is the best in this cla,ss. 

2.3 Performance of Block Codes 

2.3.1 Binary Codes 

Although binary codes can be used directly with BFSK (K --= 1, as in [4]), they 

can be used with any M-ary signalling through interleaving. In this regard, hard decision 

decoded block codes are easier to deal with than soft decision decoded convolutional codes. 

Interleaving of binary block codes is used to ensure that the K bits in one M-ary channel 
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Figure 2.8: BER performance of the 4-ary orthogonal convolutional code with FH/4FSK. 
At Pb = 10-5 , p i,,,= 0.75 for WC PBN jamming and atuc  = 0.683 for WC MT jamming. 
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Figure 2.9: BER performance of the semi-orthogonal M-ary convolutional codes for K equal 
to  3, 4  and 5. The constraint length is 2K + 1. The best code in this class is that for K = 3. 
For this code, at a BER of 10 -5 , p„, =  0.75 for WC PBN jamming, and atuc  = 0.527 for 
WC MT jamming. 
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r, 

PQ -«= 	 -  
(2.23) 

symbol belong to K code words, so that in each code word the errors will not occur  in 

bursts. In this case, (2.8) to (2.11) still apply, but now K > q so that 

with Q = 2 and q = 1. 

There are two parameters which can be varied in order to minimize P6, K and the 

EC code to be used, i.e., n and k. For any fixed code of rate r, from (2.1) to (2.7) and (2.11), 

it can be seen that we have in fact an uncoded channel with equivalent channel bit energy 

rEb. For this channel, it has been shown that under worst case jamming and with optimum 

diversity, K = 2 is optimum [3]. Thus we can say that for a fixed code with optimum 

diversity, K = 2 is the optimum signalling and in this case WC multitone jamming is worse 

than WC partial band noise jamming. For a fixed K, if there is an optimum code (among 

a class of codes), then as argued above the same code will perform best when K = 2. Thus 

all we need to do is to find the optimum code used with 4-ary FSK. 

Hamming Codes 

We examined the (7,4) and (31,26) Hamming codes which are single error correcting 

with minimum distance d = 3. 

Golay Code 

We examined the perfect (23,12) Golay code which is triple error correcting with 

minimum distance d = 7. 

BCH Codes 

We examined the multi-error correcting BCH codes of length n = 15, 31, 63, 127 

and 255. 
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Figure 2.10: BER performance of the (7,4) and (31,26) Hamming codes and the (23,12) 
Golay code with FH/4FSK under worst case jamming. 
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Table 2.2: Eb/.70 required for Pb = 10-5  with Binary Block Codes under Worst Case 
Jamming,  K=  2. 

block 	Eb/J0 for 	 Eb/Jo for 
code 	WC PBN jamming for WC MT jamming  
(7,4) 	13.67 	 14.43 

(23,12) 	12.54 	 13.47 
(31,26) 	12.50 	 13.22 

(15,11) 	12.85 	 13.60 
(31,21) 	12.37 	 13.19 
(63,51) 	11.94 	 12.73 

	

(127,99) 	11.45 	 12.30 

	

(255,187) 	11.01 	 11.95 

Summary of Results 

The BER performance of the Hamming codes and the Golay code is shown in Fig. 

2.10 and the Eb/J0 required for P6=  10-5  under WC jamming is given in Table 2.2. It 

is evident that the (31,26) Harruning code is the best of these short block length codes, at 

Pb = 10-5 , followed by the (23,12) Golay code (for K = 1, the Golay code is better). 

In Fig. 2.11 the Eb/Jo required for Pb = 10 -5  is given for the BCH codes, vs code 

rate, under WC MT jamming. It is noted that for code lengths larger than 15, there .  are 

several codes of a similar rate which give near optimum BER performance. The optimum 

BCH codes (in the sense that they require the smallest Eb/Jo for Pb = 10 -5  while having 

the largest code rate r), are the (15,11), (31,21), (63,51), (127,99) and (255,187) codes for 

lengths 15, 31, 63, 127 and 255, respectively. The BER performance of these optimum codes 

is shown in Figs. 2.12 and 2.13 and given in Table 2.2 for Pb = 10 -5  . It can be seen that 

0.41 to 0.45 dB can be gained at Pb = 10-5  by doubling the length of a BCH code, but at 

the expense of increased codec complexity. However, the choice of a code must also take 

intosaccount the specific application and implementation required. 
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2.3.2 Reed-Solomon Codes 

Length n = Q - 1,Q = 2q, Reed-Solomon (RS) codes are Q-ary codes over GF(Q). 

For (n, k) RS,codes, d =  n  - k 1. These codes can be used directly with M-ary signalling, 

in which case Q = M, or with alphabet conversion so that Q > M. 

Direct Use 

By direct use we mean transmit the symbols of (n, k) RS codes directly over an 

M-ary channel, K > 2. In this case P9 = Pic,  where PK is given in (2.10), since C in (2.13) 

is 1. 

Alphabet Conversion 

To get a larger minimum distance for RS codes with a fixed code rate, the code 

length must be increased. This in turn increases the size of the alphabet over which an RS 

code is defined. Alphabet conversion matches the channel signalling with the RS symbols. 

A Q-ary symbol is now composed of C M-ary symbols, as defined in (2.12) and (2.13). 

Note that for small PK , Pq C PK . This means that there is a multiplication in the error 

probability by a factor C due to the conversion. 

Summary of Results 

The best RS codes were found in the following way. For a given code length we 

have a given Q,  bu 'i several choices for K. For each possible Q,K combination, the code 

rate was optimized for the given code length to give the lowest Eb/Jo at Pb = 10-5  under 

the worst of WC PBN or WC MT jamming. The results of this optimization are given in 

Table 2.3. For length 7 RS codes, the (7,5) code in direct use with K = 3 is the best choice. 

For code lengths 15, 31, 63, 127, 255, 511 and 1023, the optimum combinations are, (15,11) 

1 
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Figure 2.11: E6/J0 required for Pb = 10-5  with BCH codes, under WC MT jamming, vs 

code rate r = 	K = 2. 
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Figure 2.12: BER performance of the (15,11), (31,21) and (63,51) BCH codes with 
FHRFSK for WC PBN and WC MT jamming. 
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Figure 2.13: BER performance of the (127,99) and (255,187) BCH codes with FH/4FSK 

for WC PBN and WC MT jamming. 
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Table 2.3: Eb/J0 (dB) required for Pb = 10-5  with Reed-Solomon Codes under Worst Case 
Jamming. 

RS 	q 	K 	Eb/Jo for 	Eb/J0 for 
code 	 WC PBN jamming WC MT jamming  
(7,5) 	3 	3 	11.53 	 14.13 
(7,5) 	3 	1 	15.80 	 14.50 

(15,11) 	4 	4 	9.89 	 14.45 
(15,11) 	4 	2 	12.30 	 13.09 
(15,11) 	4 	1 	15.02 	 13.83 
(31,25) 	5 	5 	8.71 	 15.28 
(31,23) 	5 	1 	14.36 	 13.24 
(63,53) 	6 	6 	7.89 	 14.37 
(63,51) 	6 	3 	9.90 	 12.60 
(63,51) 	6 	2 	11.32 	 12.17 
(63,49) 	6 	1 	13.93 	 12.83 
(127,99) 	7 	1 	13.60 	 12.55 

(255,221) 	8 	4 	8.62 	 13.23 
(255,213) 	8 	2 	10.85 	 11.74 
(255,203) 	8 	1 	13.42 	 12.38 
(511,439) 	9 	3 	9.38 	 12.11 
(511,407) 	9 	1 	13.30 	 12.28 
(1023,899) 	10 	5 	7.83 	 14.44 
(1023,861) 	10 	2 	10.68 	 11.58 
(1023,817) 	10 	1. 	13.25 	 12.23 

1 



with K = 2, (31,23) with K = 1, (63,51) with K = 2, (127,99) with K = 1, (255,213) 

with K = 2, (511,439) with K = 3, and (1023,861) with K = 2, respectively. It is clear 

that codes with K = 2, which is the optimum signalling for uncoded systems, are the best. 

K  =  3 is the second best choice. Q should be chosen so that these K's can be used. The 

BER performance of the (15,11), (63,51), (255,213) and (1023,861) RS codes with K = 2 

is given in Fig. 2.14. The BER performance of the (7,5), (63,51) and (511,439) RS codes 

with K = 3 is given in Fig. 2.15. The Eb/Jo for P6 = 10-5  is plotted in Fig. 2.16 for all 

RS codes with K = 2 and K = 3, vs code rate, under WC MT jamming. This shows that 

increasing the code length must be done so as to allow a good signalling scheme to be used, 

otherwise performance may actually decrease. From  Table 2.3, it is seen that doubling the 

code length will not improve the performance for code length increases from 15 to 31, 63 to 

127 and 255 to 511. It is obvious that alphabet conversion is essential to the optimal use of 

RS codes, since except for the length 7 code all other optimum cbmbinations are through 

alphabet conversion. 

2.4 Performance of Concatenated Codes 

It is well known that concatenation of an RS outer code with an inner code can form 

a very powerful error correcting code[11]. An (n,k) Q-ary RS code is used as the outer code 

and a convolutional code or a block code is used as the inner code. Whenever necessary, 

interleaving is assumed between the inner code and the outer code so that the input to the 

outer RS decoder appears to have memoryless Q-ary symbol errors. Now R' =tiriK, where 

ri  is the code rate of the inner code. We observe that there is a threshold effect in the BER 

performance of all concatenated codes. When Eb/Jo approaches the threshold from above, 

the BER increases rapidly, and when Eb/Jo approaches the threshold from below, the BER 

decreases rapidly. This sensitivity should be taken into account in the design of a system. 

A fast drop in BER as E6/J0 increases is desireable when an extremely low BER must be 
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Figure 2.14: BER performance of the (15,11), (63,51), (255,213) and (1023,861) RS codes 
with K = 2 for WC PBN and WC MT jamming. 



Bit Error Rate 

\ 

	

(7 5) PBN jamming --> 	 MT jamming 

4-  (63, 51) 

MT jamming 

	

(63,51) PBN jamming —+ 	 I 	\ 
1-- (511, 439 
MT Jamming 

(511, 439) 
PBN jamming --> 

5 6 7 8 9 10 11 12 13 14 15 

10-0  

10-2 

10-4 

10-6  

32 

Eb1J0 (dB) 

Figure 2.15: BER performance of the (7,5), (63,51) and (511,439) RS codes with K = 3 for 
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0.80 1.00 

Eb I Jo (dB) 

15 

14 

13 

12 

11 

	 I 

1 \\  
n=511  K= 3 -+ 

'‘. 
n =63  K--z-- 2 —n 

n= 255,K=-- 2 —I,  

n= 1023,K = 2 

0.00 	0.20 	0.40 	0.60 

code rate r kln 

Figure 2.16: Et/J0 (dB) required for Pt 10-5  with RS coding and K = 2 and 3, under 

WC MT jamming, vs code rate r = kin. 

33 



achieved. 

2.4.1 Convolutional Inner Codes 

We can evaluate the BER performance a an RS code concatenated with a con-

volutional inner code by evaluating the BER performance of the outer RS code using the 

formulas developed for block codes, with the exception that G (DL) in (2.10) is replaced 

by  G(DL)  of the inner convolutional code given previously. Due to the assumption of soft 

decision decoding of convolutional codes, we only consider convolutional codes in direct use 

with M-ary signalling, thus there is no alphabet conversion between them. There may be 

an alphabet conversion between the outer and inner codes, in which case C symbols at the 

inner decoder output form an outer code symbol. 

In [3], dual-K codes, Odenwalder binary codes and Trumpis codes were considered 

as inner codes. Here we consider M-ary orthogonal convolutional codes and semi-orthogonal 

convolutional codes as inner codes. In both encoders, one information bit at the input gen-

erates one M-ary symbol, Thus the output of the inner decoder is binary, so C = q in 

(2.13) and PK is replaced by (2.1), the BER at the output of the inner decoder. This is 

illustrated in Fig. 2.17. It is ea,sy to see that the optimum K should be the one which is 

optimum for the convolutional code alone under  WC MT jamming. That is, K = 2 for 

M-ary orthogonal and K = 3 for semi-orthogonal codes. If we optimize the code rate for 

each outer code length, we find longer codes always give better performance. This means 

that the larger error multiplication due to alphabet conversion is always offset by the larger 

minimum distance due to the code length increase. 

M-ary Orthogonal Convolutional Inner Codes 

In Table 2.4 we list the optimum RS outer codes for lengths 15, 31, 63, 127 and 

255 together with the required Eb/Jo for Pi, = 10'5 , and the improvement over using the 

convolutional code alone under WC MT jamming. Note that for K = 2, the M-ary or- 
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Figure 2.17: Block diagram of a system employing a concatenated coding scheme with a 
Reed-Solomon outer code and a convolutional inner code. 

Table 2.4: Eb/Jo (dB) required for Pb = 10-5  with a Reed-Solomon Outer Code and an 
M-ary Orthogonal Convolutional Inner Code under Worst Case Jamming, K = 2. 

RS 	q 	Eb1J0 for 	Eb/J0 for 	improvement over 
code 	WC PBN jamming 	WC MT jamming 	inner code used alone 

	

(15,11) 	4 	12.09 	 12.88 	 1.07 

	

(31,23) 	5 	11.48 	 12.33 	 1.62 

	

(63,49) 	6 	11.07 	 11.93 	 2.02 

	

(127,103) 	7 	10.81 	 11.68 	 2.27 

	

(255,211) 	8 	10.64 	 11.52 	 2.53 



I. 
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Table 2.5: EL./Jo (dB) required for ,P6 = 10-5  with a Reed-Solomon Outer Code and a 

Semi-Orthogonal Convolutional Inner Code under Worst Case Jamming, K = 3. 

RS 	q 	E61.10 for 	Eb/J0 for 	improvement over 
code 	WC PBN jamming 	WC MT jamming 	inner code used alone  

	

(15,11) 	4 	6.63 	 9.29 	 1.12 

	

(31,25) 	5 	6.12 	 8.78 	 1.63 

	

(63,51) 	6 	5.75 	 8.40 	 2.01 

	

(127,105) 	7 	5.51 	 8.17 	 2.24 

	

(255,217) 	8 	5.36 	 8.02 	 2.39 

thogonal code has a very short constraint length. Hence when the code is used alone, the 

performance is relatively poor, (as seen previously). By concatenation with an RS outer 

code we can improve the performance by about 1 to 2.5 dB as seen in Table 2.4. 

Semi-Orthogonal Convolutional Inner Codes 

In Table 2.5 we list the optimum RS outer codes for lengths 15, 31, 63, 127 and 

255 together with the required Eb/Jo for P6 = 10-6  and K = 3, and the improvement over 

using the convolutional code alone under WC MT jamming. The gain in performance is 

about 1 to 2.4 dB, making these codes an excellent choice. For example, a (255,217) .  RS 

outer code concatenated with the semi-orthogonal code of constraint length 7 (for K = 3) 

over 8-ary FSK performs 0.5 dB better than the Trumpis code with 4-ary FSK concatenated 

with a RS code of the same length presented in 13]. In fact, it performs better than the 

Trumpis code, with a RS code of length 1023 which is the best code given in [3]• 

2.4.2 Block Inner Codes 

With hard decision decoding, alphabet conversion can be used between the inner 

block code and the M-ary signalling through interleaving. Only binary block inner codes 

are considered. In this case, as discussed previously, the 4-ary channel (K = 2), is optimum. 
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Let the inner block code be an (ni, ki) block code with minimum distance di, and 

ti = [(di — 1)/2j. 

Assume hard decision decoding is used for the inner block code. We can then evaluate the 

final BER performance of the concatenated RS outer code and (ni, ki) block inner code 

by evaluating the BER performance of the outer RS code using (2.8) and (2.9) with PQ  

given as follows. A symbol error occurs at the input to the RS decoder only when the inner 

decoder fails to decode an inner code word correctly. Thus if the inner decoder input BER 

is small, we may assume (as an approximation so that the weight distribution of the inner 

code is not required in the calculation) that, conditioned on the decoding failure, the inner 

code decoder output has bit error rate di/ni. That is, 

i 
PQ  (1 —  (1 di I ni)) 	

n E 	P10.- 	 (2.24) 

with PK defined by 
{ 1G(DL) PBN jamming; 

Pic < 2  G(DL) MT jamming, 
(2.25) 

and G(DL) as in (2.11). It is noted that the above result would be the same if derived from 

• the more rigorously proved result in [101 when di/ni and PK are small. 

In Table 2.6 we list the optimum RS outer codes and BCH inner codes for a given 

code length together with the required Eb/J0 for Pb = 10-5  and the improvement over 

BCH codes used alone under WC MT jamming. We also examined codes with the (23,12) 

Golay and (7,4) Hamming codes as the inner codes, and'these results are given in Table 

1.6 as well. The performance of the best code in this class, the (255,241) RS outer code 

with the (255,207) BCH inner code, is shown in Fig. 2.18. It is clear that if the inner block 

code has a large minimum distance, so that the BER drops sharply as Eb/Jo increases, 

then concatenation with an RS code will not give much gain in Eb/J0 for a given Pb. 

This type of behavior is exhibited in Fig. 2.18. (Imagine moving a nearly vertical line 
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Table 2.6: Eb/J0 (dB) required for P6  = 10-5  with a Reed-Solomon Outer Code and a 
Binary Block Inner Code under Worst Case Jarnming, K = 2. 

	

RS outer 	inner 	EbPo for 	Eb/J0 for 	improvement over 
code 	block code 	WC PBN jamming 	WC MT jamming 	inner code used alone  

	

(15,13) 	(15,11) 	12.32 	 13.19 	 0.41 

	

(31,25) 	(15,11) 	11.78 	 12.74 	 0.86 

	

(63,53) 	(15,11) 	11.41 	 12.40 	 1.20 

	

(15,13) 	(31,26) 	12.09 	 12.91 	 0.31 

	

(31,27) 	(31,26) 	11.68 	 12.54 	 0.88 

	

(63,53) 	(31,26) 	11.30 	 12.22 	 1.00 

	

(127,111) 	(31,26) 	11.08 	 12.01 	 1.21 

	

(31,27) 	(63,51) 	11.47 	 12.37 	 0.36 

	

(63,57) 	(63,51) 	11.23 	 12.14 	 0.59 

	

(127,115) 	(63,51) 	11.02 	 11.96 	 0.77 

	

(255,235) 	(63,51) 	10.91 	 11.85 	 0.88 

	

(63,57) 	(127,106) 	11.09 	 12.01 	 0.37 

	

(127,117) 	(127,106) 	10.94 	 11.87 	 0.51 

	

(255,239) 	(127,106) 	10.85 	 11.77 	 0.61 

	

(63,59) 	(255,207) 	10.94 	 11.87 	 0.15 

	

(127,119) 	(255,207) 	10.81 	 11.76 	 0.26 

	

(255,241) 	(255,207) 	10.73 	 11.68 	 0.34 

(7,5) 	(7,4) 	 13.52 	 14.47 	 -0.03 

	

(15,13) 	(7,4) 	 12.90 	 13.82 	 0.61 

	

(31,25) 	(7,4) 	 12.20 	 13.26 	 1.17 

	

(63,51) 	(7,4) 	 11.72 	 12.86 	 1.57 

	

(127,107) 	(7,4) 	 11.40 	 12.56 	 1.87 

	

(255,217) 	(7,4) 	 11.15 	 12.34 	 2.09 

	

(15,13) 	(23,12) 	12.27 	 13.33 	 0.14 

	

(31,27) 	(23,12) 	11.91 	 13.02 	 0.45 

	

(63,55) 	(23,12) 	11.58 	 12.75 	 0.72 

	

(127,115) 	(23,12) 	11.38 	 12.56 	 0.91 

	

(255,227) 	(23,12) 	11.21 	 12.41 	 1.06 



downward, the sharper the slope, the less horizontal movement there will be.) This implies 

a complimentary nature between convolutional codes and RS block codes when they are 

concatenated, because the BER for a convolutional code usually' drops slowly as Eb/Jo 

increases. 

2.5 Concluding Remarks 

The best codes considered in this Chapter, and some from [3] are compiled in Table 

2.7. Overall, if code complexity is ignored, the concatenated (255,241) RS outer code with 

the semi-orthogonal convolutional inner code with 8-ary FSK has the best performance. 

If only non-concatenated codes are considered, the rate 1/2 Trumpis Code, followed by 

the rate 1/3 Odenwalder and K = 3 semi-orthogonal codes, are the best. This Trumpis 

code is 1.41 dB worse than the best concatenated code. Optimum diversity is a.9sumed in 

all cases, and side information is used to eliminate jammed hops in diversity combination 

unless all L,,p t hops of an M-ary symbol are jammed, in which case a linear combination 

is assumed. Although the optimization of the code design for a specific application must 

take into account other constraints such as the complexity restriction, the results given here 

serve as a guide to the performance of EC codes in a FFH/MFSK system. Other codes 

may be examined using the same basic principles given here. 
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Figure 2.18: BER performance of the concatenated code with a (255,241) RS outer code 
and a (255,207) BCH inner code with F11/4FSK under worst case jamming. 
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Table 2.7: E6/J0 (dB) required for Ft 10-5  with the Best Codes in each Class under 
Worst Case Jamming. 

error correcting 	K 	Ebl Jo for 	Eb/J0 for 
codes 	 WC PBN jamming 	WC MT jamming 

rate 1/2 liumpis 	2 	8.91 	 9.43 
Dual-K M-ary 	2 	10.70 	 11.27 

rate 1/3 Odenwalder 	1 	10.38 	 8.89 
M-ary Orthogonal 	2 	13.35 	 13.95 
Semi-Orthogonal 	3 	7.91 	 10.41 
(255,187) BCH 	2 	11.01 	 11.95 

	

(255,213) RS 	2 	10.85 	 11.74 

	

(511,439) RS 	3 	9.38 	 12.11 
(1023,861) RS 	2 	10.68 	 11.58 

Outer (255,211) RS 
Inner M-ary Orthogonal 	2 	10.64 	 11.52 

Outer (255,217) RS 
Inner Semi-Orthogonal 	3 	5.36 	 8.02 

Outer (255,241) RS 
Inner (255,207) BCH 	2 	10.73 	 11.68 



Chapter 3 

Performance of Error Correcting Codes 

for Fast Frequency .  Hopped Noncoherent 

MF SK Spread Spectrum Communications 
with a Fixed Hop Rate 

3.1 Introduction 

In Chapter 2, we evaluated the performance of various error correcting (EC) codes 

in a FFH/MFSK system with a fixed data rate. In this case, optimum diversity is assumed 

and E6/J0 is the basis for EC code comparison, where Eb is the energy per information 

bit and Jo is the jamming spectral density. This implies a fixed data rate Rb (the average 

signal power S is considered to be fixed in all cases), and a variable hop rate Rh. For 

reasons discussed in [2], we now consider coding performance under the condition that the 

hop rate Rh is fixed and the data rate 14 is variable. This constraint has been given little 

consideration in previous work. A fixed hop rate is a practical requirement for satellite 

communications when multiple users access the same onboard dehopper. This constant•

hop rate is determined by many factors, such as the response time of a potential repeat- 
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back jammer and the synchronisation capability of communication receivers. Thus in this 

Chapter we consider the hop rate fixed. As in Chapter 2, the Chernoff union bound method 

is used for the performance evaluation. 

As mentioned above, the average signal power S is fixed. Since the hop rate Rh 

is fixed, so is the energy per hop Eh = S I Rh. In this case the term optimum diversity is 

meaningless, because the diversity factor, L (the number of hops per M-ary symbol), is no 

longer an independent parameter. Specifically, L is given by 

L 	 
rK 	• .re 

3 
Rb/Rh = Rb/Rh (.1) 

where r is the EC code rate and M = 2K . R' is the code rate in data bits per M-ary symbol 

before diversity. Note that (3.1) must satisfy the restriction L > 1. This means that Rb/Rh 

cannot exceed the upper limit R'. From (3.1) it is clear that L varies continuously as Rb/Rh 

is varied. Although this implies a value of L which may not be an integer, it is useful and 

convenient to have the results in this finer form. For a given BER, the information bit rate 

Rb reflects the throughput of the system. A larger Rb means a larger throughput. 

Eb/Jo is determined by 

E 	
S/Rh 	Eh/JO 	 2 3 b/Jo 	 

	

14J014J0(Rbl Rh)Jo Rb/Rh 	
( . ) 

We can see that for a fixed hop rate, &Mc) depends on Rb/Rh and  Eh/JO  (which is fixed 

as mentioned above). Thus we will use Eh/J0 as a basic parameter to evaluate the system 

performance rather than Eb/Jo. This results in two system performance criteria. One 

is Rb/Rh, reflecting the system throughput, and the other is the more traditional BER, 

Pb. It is noted that to determine Rb/Rh for a fixed  Eh/ JO, Pb must be fixed. In fact, as 

mentioned above, only for a given Pb can Rb/Rh reflect the throughput in a meaningful 

way. On the other hand, to determine Pb,  Rb/Rh  and therefore L must be given. This 

method of evaluating the system performance is equivalent to the Pb versus Eb/Jo format, 

for a given Rb/Rh as given in (3.2). Another useful format is Pb versus Rb/Rh for a given 
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but now 

Eh/J0,  which shows explicitly the tradeoff between them. It is not difficult to see that these 

formats present the same results in different ways. In this report, we focus on the Rb/Rh 

versus Eh/ Jo format, for a given Pb, chosen to be 10-5 . Without further specification, 

performance will be evaluated by this criteria. 

System assumptions are the same as in Chapters 1 and 2, with the critical exception 

that there is no optimum diversity. In the next section, we present the basic formulas for 

performance evaluation and the results for uncoded systems. In the following sections 

we evaluate the performance of various convolutional codes and block codes. The results 

obtained with a fixed hop rate are compared with those for a fixed data rate, given in 

Chapter 2. 

3.2 Basic Formulas and the Results for Uncoded Systems 

As given previously, the probability of bit error, Pb, for convolutional codes is 

upperbounded by the Chernoff union bound[3] as 

1G (DL) PBN jamming; 
Pb < 	2 	 (3.3) 

G (DI') MT jamming, 

4e-1  

Edo  

1  

flIC  
EhlJo 

1 ra.c(M-2)1 1—awc  

EI-71717:, j i—a.. 

PBN 	 > 3 . 
— 

PBN 	Ett < 3. 

MT, K 1 , 	> 2; 

MT, K = 1, eit c 2 

MT, K > 2, fic,„ > aoM; 

MT, K > 2, et- < aoM 

(3.4) 

with  A  equal to 

f Eh \ 2  1 Eh 

î 1+37; -'71W 
(3.5) 
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Note that D should be raised to the power L to get  DL.  8  is given in Table 2.1. The worst 

case a, awc , is now 

Enbio k add; 
Eh/Jo < ckoM. 

with ao  given in Table 2.1. The function G(DL) in (3.3) varies for different codes, as defined 

in Chapter 2. The worst case p, denoted as p wc , is given by 

3 

c' = Ei7Tro Eh/JO > 3; 
Pw  

1 	Eb/J0 < 3. 

The formulas given in Chapter 1 and 2 for computing the probability of bit error 

for block codes are still valid with a fixed hop rate, but in all cases (3.4) to (3.7) must now 

be used. 

Before evaluating the performance of a fixed hop rate system with convolutional and 

block codes, we first evaluate uncoded systems, i.e., those without EC codes. The reason 

for this is twofold, first these uncoded results provide an insight into the performance of 

many coded systems, second the evaluation of some coded systems can be easily related to 

the evaluation of an uncoded system (as will be shown later). 

For uncoded systems over M-ary FSK, we have R' = K, and 

M 
 G(D)=—D
L 	

(3.8) 
2 

From (3.1), (3.3), (3.4) and (3.8), for  Eh/JO  3, we can express Rb/Rh for PBN jamming 

as  

Rb
= 	

1 

	

ln 
Eh/ JO 	

(39 — 

Rh ln 2+ (1n(1/Pb) — ln 4)/K 	4e-1 	
. ) 

 

This means that under PBN jamming, an increase in K(or M) improves the performance, 

or throughput, (recall that we are concerned with Rb/Rh versus Eh/J0 for a given BER, 

{ 
ao 

awc = Eh /.10  
AI 

(3.6) 

(3 .7) 
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Figure 3.1: Throughput performance of uncoded MFSK with fixed hop rates under WC 

PBN jamming, for Pb = 10 -5  . M = 2K  K =1 to 5. 
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Pb). Also, Rb/Rh has a logarithmic dependence on  Eh/JO.  The uncoded performance for 

different K at Pb = 10-5 , under PBN jamming is shown in Fig. 3.1. To interpret the 

performance from the figures under any jamming, a larger Rb/Rh for a given  Eh/JO  means 

a larger throughput, which results in better performance. Figs. 3.2 to 3.6 compare the 

uncoded performance under WC PBN and WC MT jamming for K = 1 to 5. From these 

figures we see that for K = 1, regardless of Eh/Jo, PBN jamming is more effective against 

communications than MT jamming, and the opposite is true for any other  K.  Thus, for 

K = 1 PBN jamming is the worst case jammer, but for K = 2 to 5, MT jamming is the 

worst. Results similar to these were observed in Chapter 2 for systems with fixed data 

rates. Fig. 3.7 combines the worst case jamming for each  K,  i.e., PBN jamming for K = 1 

and MT jamming for K = 2 to 5. From this we can determine the best K for a particular 

Eh/Jo. Note that K = 1 never gives the best Rb/Rh. 

In the case of WC MT jamming, the relation between Rb/Rh and  Eh/JO  for 

different K is not as explicit as for PBN jamming. From Figs. 3.2 to 3.7, we see that 

under WC MT jamming there is an optimum K which is a function of  Eh/JO. For 4.8 dB 

< Eh/Jo  <8.4 dB, K = 2 is optimum, for 8.4 dB < Eh/JO  <13.1 dB, K = 3 is optimum, 

for 13.1 dB < Eh/J0 < 18.0 dB, K = 4 is optimum, and for Eh/J0 > 18.0 dB, K = 5 is 

optimum. The optimum K increases as Eh/J0 increases. This result differs from that for 

systems with a fixed data rate, for which an increase in K above 2 always gives a poorer 

performance under MT jamming. 

3.3 Performance of Convolutional Codes 

As stated previously, the expressions for G (D) for various codes are the same as for 

a fixed data rate, as given in Chapter 2. 
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Figure 3.2: Throughput performance of uncoded BFSK with fixed hop rates under WC MT 
and WC PBN jamming, for P6 = 10-5  K =1. 
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Figure 3.4: Throughput performance of uncoded 8FSK with fixed hop rates under WC MT 
and WC PBN jamming, for Pb =  1O ,  = 3. 

50 



0 

—4 

—6 

—8 

—10 

—12 

—14 

—16 
36  9 12 15 18 21 24 27 30 

4- MT  jain  ming 

R b /Rh  (dB) 

4 

Ehl ..Ï0  (dB) 

Figure 3.5: Throughput performance of uncoded 16FSK with fixed hop rates under WC 
MT and WC PBN jamming, for P6 = 10-5  , K = 4. 
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Figure 3.7: Throughput performance of uncoded MFSK with fixed hop rates under the 
worst jamming, WC MT jamming for K=  2 to 5, and WC PBN jamming for K = 1, for 
Pb = 10 -5  

53 



54 

I. 
1 

1 

3.3.1 Odenwalder Binary Codes 

If D in (2.17) is replaced with D 2  and D4 , we get (2.19) and (2.20), respectively. 

Thus from (3.1) it is evident that the rate 1/2, 1/4 and 1/8 codes have the same performance, 

except that the region of valid Rb/Rh is different, due to different upper lirnits on Rb/Rh 

set by  R'.  Since R' is smaller for lower rate codes, the rate 1/2 code provides the largest 

upper limit for Rb/Rh. Thus we only consider the rate 1/2 and 1/3 codes. 

Figs. 3.8 and 3.9 give the performance under PBN and MT jamming for these 

codes, respectively. It is evident from these figures that for K = 1, PBN jamming is 

more effective against communications than MT jamming. Thus we need only consider the 

results under PBN jamming to determine the best code. This result is the same as for fixed 

data rates. We note that for the rate 1/3 code, the number of terms in (2.18) is insufficient 

for numerical accuracy in Fig. 3.9. To compare the rate 1/2 and 1/3 codes with numerical 

accuracy, the throughput performance for Pb = 10-8  and 10-12  was calculated. This wa.s 

done because the nurnber of terrns in (2.18) is small, thus D has to be small in order to 

assure accuracy, which implies Pb must be very low. These results confirm that the rate•

1/3 code performs slightly better than the rate 1/2 code over the region of valid Rb/Rh. 

However, this region is 1.76 dB smaller than that for the rate 1/2 code. The rate 1/3 code 

also has the best performance with a fixed data rate. It is interesting to note that although 

the redundancy allowed for fixed hop rates is different from that for fixed data rates, the 

coding scheme best utilizing the redundancy is the same. 

3.3.2 Trumpis Codes 

Figs. 3.10 and 3.11 give the performance under PBN jamming and MT jamming 

for these codes over 4FSK and 8FSK, respectively. They show that MT jamming is more 

effective than PBN jamming for these codes, as was observed for uncoded systems. Also, 

the rate 1/2 code over 4FSK performs better, which is the same as for systems with a fixed 
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Figure 3.8: .  Throughput performance of the binary rate 1/2 Odenwalder code with BFSK, 
(K = 1), and fixed hop rates under WC PBN and WC MT jamming, for Pb = 10 -5  . 
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Figure 3.9: Throughput performance of the binary rate 1/3 Odenwalder code with BFSK, 

(K = 1), and fixed hop rates under WC PBN and WC MT jamming, for P6 = 10-5  . 
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Figure 3.10: Throughput performance of the rate 1/2 Trumpis 4-ary convolutional code 
with 4FSK and fixed hop rates under WC PBN and WC MT jamming, for Pb = 10 -5  . 
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Figure 3.11: Throughput performance of the rate 1/3 Trumpis 8-ary convolutional code 
with 8FSK and fixed hop rates under WC PBN and WC MT jamming, for Pb = 10-5 . 
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data rate and Trumpis coding. 

3.3.3 M-ary Orthogonal Convolutional Codes 

Figs. 3.12 to 3.15 give the performance under WC PBN jamming and WC MT 

jamming for K = 2 to 5, respectively. From these we observe that MT jamming is more 

effective than PBN jamming. Thus we need only consider performance under MT 

jamming. The combined performance curves under MT jamming for K = 2 to 5 are given 

in Fig. 3.16. This figure is similar to that observed for uncoded systems, where there is an 

optimum K (and thus an optimum code), which is dependant on  Eh/JO. Over the range 

of  Eh/JO  the optimum code varies. This result is different from that for systems with a 

fixed hop rate and M-ary orthogonal convolutional coding, in which K = 2 is always the 

best signalling. 

3.3.4 Dual-K Convolutional Codes 

G(D) for these codes is given by (2.16). For small D, we have the approximation 

mD2Lv mD 2LKIR'  
G(DI") 	2 	= 	2 	• • 

Noting (3.1), we have 
2K 

MD  %/Rh 
G(DL ) 

2 

(3.10) 

(3.11) 

This means that the performance of the system is independent of y (the code rate) asymp-

totically as Eh/J0 increases. In fact, this approximation is valid for most Eh/J0  of interest. 

However, a smaller z/ will give a larger Fe, thus the range of possible Rb/Rh is larger. Also, 

comparing (3.11) with (3.8), we find a dual-K coded system has exactly 3 dB gain in 

throughput, Rb/Rh, over an uncoded system (but with inherent diversity), for the same K 

and  Eh/JO.  Thus all results and discussions presented earlier for uncoded systems apply 

to dual-K coded systems, except for the 3 dB difference in Rb/Rh and the valid range of 

Rb/Rh. This is verified by Fig. 3.17, which gives the performance under MT jamming for 
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Figure 3.12: Throughput performance of the 4-ary Orthogonal Convolutional code with 
4FSK and fixed hop rates under WC PBN and WC MT jamming, for P6 = 10-5  . 
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Figure 3.13: Throughput performance of the 8-ary Orthogonal Convolutional code with 
8FSK and fixed hop rates under WC PBN and WC MT jamming, for Pb = 10 -5  . 
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Figure 3.14: Throughput performance of the 16-ary Orthogonal Convolutional code with 

16FSK and fixed hop rates under WC PBN and WC MT jamming, for P6 = 
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Figure 3.15: Throughput performance of the 32-ary Orthogonal Convolutional code with 
32FSK and fixed hop rates under WC PBN and WC MT jamming, for Pb = 10 -5  . 
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MFSK and fixed hop rates under WC MT jamming, K = 2 to 5, for Pb = 
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the rate 1/2 dual-K codes, with K = 2 to 5. 

It should be noted that this asymptotic independence is also true for systems with 

fixed data rates and optimum diversity, but the proof is more involved. For dual-K coded 

systems with fixed data rates, K = 2 is always the best signalling, but with a fixed hop 

rate, the optimum K depends on  Eh/JO  (this K increases with increasing Eh/J0)• 

3.3.5 Semi-Orthogonal Convolutional Codes 

Figs. 3.18 to 3.20 give the performance under WC PBN and WC MT jamming for 

K = 3 to 5, respectively. From these figures we see that MT jamming is more effective than 

PBN jamming for this class of codes. This is the same as observed for uncoded systems, thus 

we need only consider performance under MT jamming. Fig. 3.21 gives the performance 

under MT jamming for K = 3 to 5, which shows that K = 3 produces the best result. This 

is also the optimum K for systems with a fixed data rate and semi-orthogonal convolutional 

coding. 

3.4 Performance of Block Codes 

The analysis for block codes is similar to that for a fixed data rate, except for the 

changes noted previously. 

3.4.1 Binary Codes 

As discussed in Chapter 2, (n, k) binary block codes can be used with depth K 

interleaving, so that an M-ary channel can be employed. Thus there are two parameters 

which can be varied in order to minimize Pb, K and the EC code to be used, i.e., n and 

k. Comparing the coded channel we have now with the uncoded systems considered in 

Section 2, we find two properties of uncoded systems still apply. Regardless of  Eh/JO,  for 

K =1, PBN jamming is more effective against communications than MT jamming, and 

the opposite is true for any other K. Second, under the worst possible jamming, there is an 
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Figure 3.17: Throughput performance of the rate 1/2 Dual-K Orthogonal Convolutional 
codes with MFSK and fixed hop rates under WC MT jamming, K = 2 to 5, for Pe, = 10-5  . 
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Figure 3.18: Throughput performance of the Semi-Orthogonal Convolutional code under 
WC PBN and WC MT jamming, K  = 3, for Pb = 10-5  . 

67 



Rb /Rh  (dB) 

o 

PBNjamming 

À 
V ItiTjamming .--t 

—6 

—8 

—10 

—12 

—2 

3 	4 	5 	6 	7 	8 

Ehl Jo (dB) 

10 11 

Figure 3.19: Throughput performance of the Semi-Orthogonal Convolutional code under 
WC PBN and WC MT jamming, K = 4, for Pb = 10-5  . 
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Figure 3.20: Throughput ,performance of the Semi-Orthogonal Convolutional code under 
WC PBN and WC MT jamming, K  = 5, for Pb = 10-6 . 
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Figure 3.21: Throughput performance of the Semi-Orthogonal Convolutional codes with 

IfFSK and fixed hop rates under WC MT jamming, K = 3 to 5, for Pb = 10 -6  . 
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optimum K which is no less than 2 and is a function of Eh/Jo. This optimum K increases 

as Eh/J0 increa.ses. Thus all we need do is evaluate codes for K > 2 under MT jamming. 

This will give an optimum K which also varies according to the particular code used, and 

may be different from that for uncoded systems. Thus the results for binary block codes 

with a fixed hop rate are different from those for systems with a fixed data rate, in which 

K = 2 is always the best signalling. 

We examined the (7,4) and (31,26) Hamming codes, the (23,12) Golay code, and 

the BCH codes of length n = 

Surn.m.ary of Results 

In order to simplify the presentation of the results and allow for easy comparison, 

only the envelope which gives the best Rb/Rh for a given  Eh/JO  is shown. Thus the curves 

representing each code start with K = 2 for low Eh/Jo and end with K = 5 for high 

Eh/Jo . The performance of the Hamming codes and the Golay code is shown in Fig. 3.22. 

It is seen that the (31,26) Hamming code is the best of these short block length codes, as 

was the case with a fixed data rate. The results for the block length 15 and 31 BCH codes 

are given in Figs. 3.23 and 3.24, respectively. From these it is obvious that the (15,11) and 

(31,21) codes are the best of these BCH codes. However, a comparison with Fig. 3.22 shows 

that the (31,26) code is slightly better than the (31,21) code (0.18 dB in Rb/Rh at  Eh/JO  

= 30dB). The performance of these two codes is repeated in Fig. 3.25. This result differs 

from that with a fixed data rate, where the (31,21) code is slightly better than the (31,26). 

The results for the block length 63, 127 and 255 BCH codes are given in Figs. 3.26, 3.27 

and 3.28, resPectively. The optimum BCH codes for each block length (in the sense that 

they provide the largest throughput, Rb/Rh, for a given Eh/J0 at Pb = 10-5  and ignoring 

small crossings in the performance curves), are the (63,51), (127,106) and (255,207) codes. 

The performance of the 5 best codes (for each block length 15 to 255) are shown in Fig. 

3.29. From this figure it is clear that 0.3 dB to 0.6 dB in throughput can be gained at 

15, 31, 63, 127, and 255, as in Chapter 2. 
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Figure 3.22: Throughput performance of the (23,12) Golay code and (7,4) and (31,26) 

Hamming codes with MFSK and fixed hop rates under WC MT jamming, K = 2 to 5 and 

Pb = 10-5 . Optimum K is assumed for a given Eh/Jo . 
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Figure 3.23: Throughput performance of the block length 15 BCH codes with MFSK and 
fixed hop rates under WC MT jamming, K = 2 to 5 and Pb = 10-5 . Optimum K is assumed 
for a given Eh/Jo • 
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Figure 3.24: Throughput performance of the block length 31 BCH codes with MFSK and 

fixed hop rates under WC MT jamming, K = 2 to 5 and Pb = 10-5 . Optimum K is assumed 
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74 



R b /R h  (dB) 

5 

—3 

—7 

—9 

—11 

—13 
12 15 18 21 24 27 30 

Eh/J0  (dB) 

Figure 3.25: Throughput performance of the (31,21) and (31,26) BCH codes with MFSK 
and fixed hop rates under WC MT jamming, K = 2 to 5 and Pb = 10-6 . Optimum K is 
assumed for a given  Eh/JO. 
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Figure 3.26: 'Throughput performance of the block length 63 BCH codes with MFSK and 
fixed hop rates under WC MT jamming, K = 2 to 5 and Pt, = 10-5 . Optimum K is assumed 
for a given  Eh/JO. 
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Figure 3.27: Throughput performance of the block length 127 BCH codes with MFSK and 
fixed hop rates under WC MT jamming, K = 2 to 5 and Pb = 10-5 . Optimum K is assumed 
for a given  Eh/JO. 
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Figure 3.28: Throughput performance of the block length 255 BCH codes with MFSK and 
fixed hop rates under WC MT jamming, K = 2 to 5 and Pb = 10-5 . Optimum K is assumed 
for a given Eh/Jo. 
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Figure 3.29: Throughput performance of the best block length 15, 31, 63, 127 and 255 BCH 
codes with MFSK and fixed hop rates under WC MT jamming, M = 2K and K = 2 to 5 
and Pb = 10-5 . Optimum K is assumed for a given Ehbro• 
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Pb = 10 -5  by doubling the length of the BCH code used. Of course this means an increase 

in codec complexity. As for fixed data rates, for block lengths larger than 15, there are a 

number of codes with near optimum performance. This provides a greater choice of codes 

to implement, which is important when cost and other factors are taken into account. 

3.4.2 Reed-Solomon Codes 

The Reed-Solomon codes examined in Chapter 2 are re-evaluated with a fixed hop 

rate. For a given code, we have a given Q, but several choices for K due to alphabet 

conversion, as discussed in Chapter 2. Thus we have a set of Rb/Rh vs. Eh/Jo curves for 

each Q with all valid K. The envelope corresponding to this set of curves was computed for 

each code, as was done for the BCH codes. The code which produced the best throughput 

for all  Eh/JO,  ignoring minor crossings, was chosen as the optimum code for that length. 

The results are given in Figs. 3.30 to 3.34 for block lengths 15, 31, 63, 127 and 255, 

respectively. (For K =1 WC PBN jamming is worst, while for K >1 WC MT jamming is 

the worst.) 

The best length 7 RS code is the (7,5) code. For code lengths 15, 31, 63, 127 and 

255, we have optimum codes (15,11), (31,25), (63,53), (127,103), (255,221), respectively. 

These 5 best codes are shown in Fig. 3.35. It is obvious that codes which allow K = 2 to 

5 produce the best results. Because 7 has no factors, the best block length 127 code has a 

very poor performance. Although the (255,221) code has the best overall performance, its 

curve meets that for the (63,53) code at  Eh/JO  = 11 dB. This is due to the different possible 

K values and different transition points of these values for the codes. Thus, choosing a Q 

which allows a K that lies in the optimum region for uncoded systems, for the given  Eh/JO, 

tends to produce the best coding scheme for RS codes. Otherwise, doubling the code length 

will not improve the performance (see Fig. 3.35 for code length increases from 15 to 31, 63 

to 127, etc.). As for fixed data rate systems, alphabet conversion is essential for optimizing 
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Figure 3.30: Throughput performance of the block length 15 RS codes with MFSK and 
fixed hop rates under WC MT jamming, K = 2,4 and Pb = 10-5 . Optimum K is assumed 
for a given EhPo • 
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Figure 3.31: Throughput performance of the block length 31 RS codes with MFSK and 
fixed hop rates, under WC PBN jarnming for K =1 and WC MT jamming for K = 5, and 

Pb = 10-5 . Optimum K is assumed for a given  Eh/JO. 
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Figure 3.33: Throughput performance of the block length 127 RS codes with MFSK and 
fixed hop rates under WC PB1V jamming, K =  1 and Pb = 10 -5  . 



4 

2 

-1 0 

-12 

85 

Rb/Rh  (dB) 

6 

left to right 
111111111/--% 

(255, 215) 

	

(255, 227) 	....es. ....i.M1-  

	

(255, 203) .1 	.„.--F4.--- (255, 131) 

."— (255, 239) 

%/ri- re
255 , ll 155) 

, It
/
111 

r71- 1 (255 , 251 ) Ir/r  

9 12 15 18 21 24 27 30 

Eh/J0 (dB) 
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the use of RS codes, as the best coding schemes use this conversion. The best fixed data 

rate codes are the (15,11), (31,23), (127,99) and (255,203) codes, thus the best fixed hop 

rate codes have a higher rate than the best fixed data rate codes. 

3.5 Concluding Remarks 

With a fixed hop rate, the best convolutional codes are the rate 1/2 Trumpis code, 

the semi-orthogonal code for K =  3 and the Dual-K codes. Three best codes are given 

because although the Trumpis code is the best overall, the valid range of Rb/Rh varies 

between codes. The best block codes are the (255,221) RS code, the (255,207) BCH code, 

and the (63,53) RS code, in that order. As with a fixed data rate, the best convolutional 

codes perform better than the best block codes. The best block codes with a fixed data 

rate have a code rate which is higher than with a fixed data rate, but the differences are 

slight, and often negligible. 

Other codes may be examined using the same basic principles presented here. Al-

though we have stated that certain EC codes are the best, optimization of the code design 

should take into account other constraints such as the system complexity. Our results should 

serve as a guide to error correcting code selection for a particular application. 

87 



Chapter 4 

Performance of Error-Erasure Correction 

Decoding of Reed-Solomon Codes for 

Frequency Hop Communications in 

Multitone  Interférence  

4.1 Introduction 

In this Chapter, we examine a recently proposed combination of spread-spectrum 

modulation, EC coding, diversity and error-erasure correction decoding to combat partial 

band noise jamming[13] which is very promising. The system employs non-coherent MFSK, 

Reed-Solomon (RS) coding and parallel error-erasure correction decoding. It has been 

shown to be very effective against PBN jamming. However, it is well known that partial 

band noise jamming is not the only effective type of jamming. In fact, multitone jamming 

can be more effective against FH/MFSK signals than partial band noise[2,31. The reason 

being that continous wave tones are the most efficient way for a jammer to inject energy into 
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1 

the non-coherent detectors. In the following sections we evaluate the performance of the 

system with parallel error-erasure correction decoding of RS codes in multitone jamming. 

As in the previous Chapters, the only multitone jamming considered is one jamrning tone 

per jammed M-ary band, with 0  <a < 1. We show that when the redundancy is not large, 

multitone jamming, from the jammer's point of view, tends to be more effective against the 

system than partial band noise jamming, as M increases. Note that in partial band noise 

jamming, increasing M improves performance from the cormnunicator's point of view[13}. 

This implies that for a robust communication system, the multitone jamming threat must 

be considered. Optimization of the design in worst case multitone jamming is studied in 

terms of the modulation, code rate and diversity factor. 

Performance evaluation in this Chapter was done using an exact method rather 

than the prevailing bounding methods. The accuracy in results gained by using the exact 

method reveals details particular to multitone jamming which would not have been evident 

if a bounding technique were used. 

The system we consider is the saine as in the previous Chapters except for the 

generation of erased symbols and the use of parallel error-erasure correction decoding instead 

of error correction only. Basic assumptions are repeated as follows. 

• Non-coherent M-ary FSK is used to transmit M-ary symbols. Orthogonal frequency. 

 spacing is assumed. 

• Fast frequency-hopping is used so that one M-ary symbol is transmitted over L in-

dependent hops, where L is greater than or equal to 1. Perfect side information is 

assumed available to detect if a hop is jammed. This is a practical assumption in the 

case of multitone jamming, because a hop is jammed if and only if there are two or 

more tones observed over the transmitted M-ary band. If at least one of the L hops 

of an M-ary symbol is not jammed, the M-ary symbol is assumed to be received cor-

rectly. Otherwise, a hard decision on which M-ary symbol was transmitted is made 
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based on the linear combination (direct sum) of the received energy over L hops, and 

an erasure flag is attached to the M-ary symbol. 

• (n, k) Q-ary RS codes are considered, where Q > M. One Q-ary symbol consists 

of C M-ary symbols, where C is an integer greater than or equal to 1. Thus C = 

log2  Q! log2  M. If any of the C M-ary symbols of a Q-ary symbol has an erasure 

flag attached, the Q-ary symbol will also have an erasure flag attached. Otherwise, 

the Q-ary symbol is assumed to be correct. Suppose d is the minimum distance of 

the RS code used. If the number of Q-ary symbols with erasure flags attached in a 

RS codeword is smaller than d, these symbols are erased and erasure correction is 

performed. Otherwise error correction is performed. 

In the next section, formulas for evaluation of the bit error rate (BER) performance 

of the system in multitone jamming are given, followed by the determination of the worst 

case jamming parameter. In Section 3.3, a comparison is made between the performance of•

the system in worst case partial band noise jamming and in worst case multitone jamming. 

Optimization of the design is presented in Section 3.4 in terms of the modulation, coding 

rate and diversity factor. 

4.2 Performance Evaluation in Multitone Jamming 

Worst case multitone and partial band jamming were described in Chapter 1. Let et 

be the probability that an M-ary band contains at least one jamming tone, where M =2K . 

It can easily be shown that[3] 

tC7t Eh/JO > aM; = 	 (4.1) 
1 	otherwise, (Eh/JO = aM) 

where Eh is the energy per hop. Note that when 12 = 1, i.e., one jamming tone in every 

M-ary band, it can be shown that we must have Eh/J0 = aM. Suppose an (n, k) Q-ary 
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AI —1 
(4.2) 

RS code, MFSK and diversity L are used, then 

Kkln  
Eh= - —ebx 

A hop is attached an erasure flag with the probability 

An M-ary symbol is then attached an erasure flag with the probability 61% A Q-ary symbol 

of an RS codeword, which consists of C M-ary symbols, is attached an erasure flag with 

the probability 

(4.3) 

Since the RS decoder performs error correction decoding only when there are d or more 

Q-ary symbols in a codeword with erasure flags attached, the probability that the decoder 

performs error correction is given by 

Perror—c E n  
	

i (1 — 
•   

Under the assumption of perfect side information and no background noise, when the de-

coder perforzns erasure correction all errors can be cleared by the decoder. That is, there 

can be no bit errors at the decoder output in this case. Thus the BER at the output of the 

parallel error-erasure correction RS decoder is 

Pb = P‘Perror—c 

where pi  is the BER at the decoder output when error correction is performed. A reasonable 

assumption is that at the RS decoder output, an erroneous Q-ary symbol is equally likely 

to be any of the Q —1 possible incorrect Q-ary symbols. Then we have [9] 

- 	 8 2(Q — 1) 

(4.4) 

(4.5) 

(4.6) 
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PC  (4.8) 

pe  = 5L = (we 
For M  > 2,  

81, sm- 1,L (c)  
—•  (Ad> — 1)" 

f (M — 1 )L 

SM—i.,L(c) = (M — i)L 	(m-1)!  
(M-1-1 ) 1 

c = 1; 
c = 2 L<M - 1; 

c=2 L>M-1 — 1) 1' 
(4.11 ) 

M — L-2i (4.12) 

L — i - ) (m- _ 3)L—i—i 

where Pal is the Q-ary symbol error probability at the decoder output when error correction 

is performed. t = — 1)12.1 is the number of errors that are guaranteed correctable by the 

decoder when error correction is performed, where [xi is the integer part of x. Then with 

hard decision error correction decoding, P" is related to the Q-ary error probability at the 

decoder input, Pi, by (see e.g. [4]) 

P? 	E 3 • 
( n  ) 5  

n j=t+1 

Since a Q-ary symbol consists of C M-ary symbols, Pi is related to the M-ary symbol error 

probability at the decoder input Pe  by 

(4.7) 

Pi =1— ( 

For M  = 2,  

(4.9) 

(4.10) 

where c  [La]  (f.] is the smallest integer greater than or equal to x) and S.A,f_ i ,L(c) is a 

monotonically decreasing function of c given as follows[3]. For. c =1 or 2, 

Otherwise if L/3 < c < L, 

Szte-1,1,(c) == (M-- 1) 	 (11-- 2)L74  
i=c 

m 	) EL/2] L  

2 
i=c 

IL/21 

— (M — 1)(M — 2) E ( Li) E 
i=. 
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1._ 

cleuic = Ehlio  
Eh/Jo > M; 
Eh/JO  < M  1 (4.13) 
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Table 4.1: Possible Practical Combinations of MFSK 	= 2K) Signalling and Q-ary 

(Q =2g) RS coding 

1 	3 	4 	5 	6 	7 	8. 
2 	46 	8 

3 , 3 	6 
4 	 8 
5 

6 	 6 

where the convention is adopted that EL. = 0 if a > b. Using (4.11) and (4.12) we can 

compute any Sm_i,L(c) for L < 8 over the entire range of 1 < c < L. 

Due to their practicality, certain combinations of MFSK modulation and Q-ary RS 

coding (with length Q or Q —1) are considered in this Chapter, as shown in Table 4.1. 

Now we determine the worst case a, from the communicator's point of view, that 

maximizes the final BER 1%. For a given communication system, i.e., a fixed L, M, RS 

code and signal to noise ratio (Eb/.70), from (4.2) to (4.4), it can be observed that P error—c 

increases as p increases. From (4.5), it is clear that if n  increases as p increases, maximizing 

P6  is equivalent to maximizing p. This condition in turn means, from (4.6) to (4.8), that P, 

increases if et increases. For M = 2, from (4.9), this condition is obviously true. For L= 1, 

Sit,1-1,1(c) in (4.10) is a constant, thus this condition is also true. Therefore, in these cases, 

the worst case a is given by 

where x_ means a value less than but infinitely close to z. Note that since p < 1, a is 

always constrained by 

E /Jo  
a < ab = nun {  (4.14) 



For other M and L,  however, Pe  is not, in general, a monotonic function of a. To illustrate 

this, we plot 13(a) = aL SM-1,L(C)I(M 1)L vs. a for M = 16 and L = 2,4,6 and 8 in 

Fig. 4.1. Within the region  of  a specified by (4.14), Pe  is proportional to  13(a), (13(a) is 

an intermediate variable created solely to illustrate the relationship clearly). It can be seen 

that f/(a) is discontinous and has L - 1 peaks at a = ai = (1/L)_ for I = 1, • • • , L - 1. By 

use of the Chernoff union bound, it can be shown that the highest peak is approximately 

ao, as given in Table 2.1 [3]. 

It should be emphasized that for parallel error-erasure correction decoding, the 

term Perror _c  plays an important role. Since it is less than 1, Pb is less than .n . Also, it 

increases as a increases, forcing the worst case a away from (larger than) the optimum value 

(from the jammer's point of view) that would exist if only error correction decoding were 

used. Therefore, the overall performance of the parallel error-erasure correction decoding 

is better than that with error correction decoding alone. 

For parallel error-erasure correction decoding, and M>  2 and L > 1,  a6  should 

be chosen from al inside the region specified by (4.14) and ab that maximizes Pb. This is 

computionally simple, since L is not large. It has been observed that either ab  or the closest 

denoted as a,, tends to be ay, a, is given by 

a, = (EablVL)_ 	 (4.15) 

4.3 Comparison Between Worst Case Partial Band Noise 

Jamming and Multitone Jamming 

In this section, we compare the BER performance of the system in worst case 

multitone jarruning with that in worst case partial band noise jamming. For a fixed RS 

code, L and M, we compare the Eb/J0 required for Pb =10 -4  in the two types of jamming. 

Selected results are shown in Table 4.2. The results for partial band noise jamrning are from 

[13]. For binary FSK, (4.1) to (4.3), (4.9), etc., show that as long as  Eh/JO  < 2 (so that 
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Figure 4.1: /3 vs. a for M =  16 and L = 2,4,6 and 8. 
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Table 4.2: Selected results of the comparison between Eb/J0 (dB) required for Pb = 10-4  
under worst case partial band noise (PBN) jamming and multitone (MT) jamming. * 
indicates that Pb is always below 10-4 . 

K 	Ebl Jo(PBN) 	Ebl Jo (MT)  
5 	2 	32 	1 	15.98 	15.13 
10 	4 	32 	1 	14.31 	* 

15 	6 	32 	1 	13.77 	* 

20 	8 	32 	1 	13.42 	* 

10 	2 	64 	1 	15.69 	15.02 
20 	4 	64 	1 	14.12 	* 

30 	6 	64 	1 	13.46 	* 

35 	7 	64 	1 	13.35 	* 

40 	8 	64 	1 	13.20 
30 	3 	128 	1 	14.64 	* 
40 	4 	128 	1 	14.04 	* 

80 	4 	256 	1 	14.03 	* 

5 	2 	16 	4 	9.15 	13.05 
40 	1 	256 	4 	9.90 	16.75 
80 	2 	256 	4 	7.97 	12.94 
120 	3 	256 	4 	7.16 	12.96 
160 	4 	256 	4 	6.82 	12.50 
200 	5 	256 	4 	6.81 	11.83 

8 	1 	32 	5 	8.45 	17.15 
16 	2 	32 	5 	6.76 	13.75 
24 	3 	32 	5 	6.63 	13.90 
27 	1 	64 	6 	6.88 	18.13 
53 	2 	64 	6 	7.11 	16.45 



under worst case multitone jamming 12 = 1), Pb is independent of Eb/Jo. Thus increasing 

L and/or the number of parity check symbols in the RS code, (n - k), will reduce Pb to as 

small a value as required over all Eb/Jo, because Pb is a monotonically decreasing function 

of Eb/Jo. This is reflected in Table 4.2, where * indicates that Pb is always smaller than 

10-4  for the specific combination of RS coding and diversity L. This is true for M > 2 

also, but a larger redundancy is required. Thus it is not reflected in Table 4.2. From this 

table it is clear that, from the jammer's point of view, for M = 2, partial band jamming is 

more effective. As M increases, the effectiveness of multitone jamming increases, while that 

of partial band jamming decrea.ses. Thus for nonbinary FSK, and a redundancy which is 

not large (as explained in the next section), multitone jamming tends to be more effective 

than partial band noise jamming. If the communication systern is expected to perform well 

in both partial band and multitone jamming, the system design must consider multitone 

jamming. In the next section, we optimize the design of the system in multitone jarruning 

in terms of the modulation, diversity and RS coding. 

4.4 Optimization of the System Design 

In the design of the communication system, there are three parameters to be deter-

mined: the M-ary FSK modulation, i.e., M, the diversity factor L, and the RS code size, 

i.e., n and k. Since the choice of one parameter is related to that of another, they must all 

be considered during optimization. For each combination the worst case jamming is found 

using the method described in Section 4.2. Then the BER performance of the different com-

binations of system parameters is compared and the best one found. One constraint is the 

RS code length n. Since the minimum distance d of an RS code .is proportional to the code 

length, and the complexity of the codec (linearly or approximately linearly) increases with 

n [14], it makes sense to make comparisons between codes of fixed length. 1 < k  <n  - 1 

are considered such that n - k 1 = d = 2t + 1. 
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As discussed in the last section, as long as there is enough redundancy, i.e., a large 

diversity factor L and/or number of parity check symbols in the RS code, (n - k), the BER 

can be made arbitrarily small for any Eb/Jo. Suppose we require Pb < 10-5 . The redun-

dancy required can be expressed, for a fixed n and L, in terms of k*,  the largest k such that 

the (n, k) RS code with diversity L can provide Pb < 10-5  for any Eb/Jo. Obviously, an 

increase in L and/or a decrease in k will also result in Pb < 10-5  for all Eb/.1.0. From these 

results we can conclude that the worst type of multitone jamming, one jamming tone per 

M-ary band, is completely nullified by a system with large redundancy. Thus the jammer 

is forced to consider the use of multiple jamming tones per M-ary band, which is worth 

further study but is not considered here. 

For a low redundancy (small L and/or number of parity check symbols), there 

may not exist a k*. In this case, for a fixed n, M and L, there is an optimum k, denoted 

as k',  that gives the smallest E6/J required for a given Pb due to the trade-off between 

Eh and d. Obviously for some L and n there exists both a k* and a k'. .  In this case, k' 

can be interpreted as the local minimum point. As an example, Fig. 4.2 shows the BER 

performance of the (31, k) RS codes for k equal to 5, 7, 11, 15, 19, 21, 23 and 27, and L = 3 

and M = 2, where le = 21 and k* = 5. Clearly for large L there may not exist a k'. In 

Tables 4.3 through 4.8 we list k' together with the corresponding ce, Eb/Jh required for 

Pb < 10-5 , and k* for different M, n and L. 
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Bit Error Rate 

E6 /J  (dB) 

Figure 4.2: BER performance of the (31,k) RS codes, k = 5,7,11,15,19,21,23 and 27, 
with diversity factor L = 3 and Fli/BFSK in worst case multitone jarhming. = 21 and 
Ic* = 5. 

99 



.100 

Table 4.3: Optimum (7, k t ) RS codes for different M-ary FSK and diversity factor L, and 
Eb/J1)  required for Pb = 10-5 . 

	

L 	1 	2 	3 	4 	5 	6 	7 	8  

	

k' 	3 	3 	 5 	 - 
M = 2 	Eb/Jh 	16.98 	13.35 	12.46 	12.15 	12.19 	12.36 	- 	- 

	

a„, 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	- 	- 

	

k* 	- 	 - 	
- 	

- 	 3 	3 	5 	5  

	

le 	3 	5 	5 	5 	5 	5 	5  
M = 8 	Eb/Jh 	16.09 	13.15 	12.22 	12.20 	12.28 	12.43 	12.74 	12.89 

	

aw, 	1.0 	1.0 	.66 	.74 	.79 	.66 	.71 	.62 

	

k * 	- 	- 	- 	- 	- 	- 	- 

Table 4.4: Optimum (15, Id) RS codes for different M-ary 'FSK and diversity factor L, and 
Eb/4 required for Pb = 10 -5  . 

	

1. 2 	3 	 5 	6 	7 	8  
5 	9 	9 	11 	11 	13 	13 	- 

M = 2 	Eb1.11), 	16.03 	12.82 	12.05 	11.88 	11.96 	12.19 	12.32 	- 
1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	- 
- 	- 	- 	5 	9 	11 	11 	13  

le 	5 	9 	11 	11 	11 	11 	11 	7  
M = 4 	Eb/Jà 	14.94 	12.25 	11.63 	11.37 	11.41 	11.71 	11.74 	11.05 

at„, 	1.0 	1.0 	1.0 	1.0 	.79 	.83 	.71 	.37 
k* 	 - 	 - 	 - 	 3 	5 	5  
id 	5 	9 	11 	11 	11 	11 	11 	13  

M=  16 	Eb/Jh 	16.25 	13.30 	13.18 	12.82 	13.04 	13.04 	13.00 	13.41 
awc 	1.0 	1.0 	.66 	.74 	.59 	.49 	.42 	.49 
k* 	- 	 - 	 - 	 - 	 - 	 - 	 - 
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Table 4.5: Optimum (31, k') RS codes for different M-ary FSK and diversity factor L, and 
Eb/Jh required for Pb = 10 -6  . 

	

L 	1 	2 	3 	4 	5 	6 	7  

	

k' 	11 	19 	21 	23 	25 	25 	27 	29  
M = 2 	E6/Jà 	15.56 	12.53 	11.81 	11.70 	11.80 	11.95 	12.19 	12.61 

	

awe 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 

	

k* 	- 	 5 	13 	19 	23 	25 	27  
13 	19 	11 	23 	25 	21 	19 	17  

M = 32 	Eb/Jà 	17.16 	14.01 	13.96 	14.11 	13.85 	13.77 	14.11 	14.18  

	

atuc 	1.0 	.49 	.32 	.49 	.39 	.32 	.28 	.24 
_ 	_ 	 _ 	_ 	_ 	- 	_ 

Table 4.6: Optimum (63,k') RS codes for different M-ary FSK and diversity factor L,  and 
Eb/./1)  required for Pb = 

	

L 	1 	2 	3 	4 	5 	6 	7 	8  

	

k' 	25 	39 	45 	49 	51 	51 	55 	61  
M = 2 	E6/./h 	15.28 	12.33 	11.68 	11.58 	11.67 	11.84 	12.08 	12.50 

	

awe 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 

	

k* 	- 	 13 	29 	41 	49 	53 	57  

	

le 	25 	39 	43 	49 	53 	47 	41 	39  
M = 4 	Eb/Jh 	14.20 	11.90 	11.02 	10.89 	11.17 	11.06 	11.26 	11.18 

1.0 	1.0 	1.0 	.74 	.79 	.66 	.57 	.49 

	

le 	- 	 - 	 - 	 7 	13 	19 	25 	33  

	

k' 	27 	39 	45 	47 	49 	47 	39 	53  
M=  8 	E6/./à 	14.57 	11.97 	11.56 	11.34 	11.49 	11.39 	11.71 	11.80 

	

a„,, 	1.0 	1.0 	.66 	.74 	.59 	.49 	.42 	.49 

	

le 	 5 	9 	11  

	

k' 	27 	39 	41 	33 	23 	55 	53 	53  
M = 64 	Eb/Jà, 	18.53 	15.76 	14.44 	14.28 	15.16 	15.48 	15.36 	15.14  

	

awe 	1.0 	.49 	.32 	.24 	.19 	.32 	.28 	.24 

	

k * 	- 	 - 	 - 	 - 	 - 	 - 	 - 	 - 

1 
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Table 4.7: Optimum (127, k') RS codes for different M-ary FSK and diversity factor L, and 
Eb/Jb required for Pb = 10 -5  . 

L 	1 	2 	3 	4 	5 	6 	7 	8  
k' 	51 	79 	95 	99 	103 	107 	113 	119  

M = 2 	Eb/Jà 	15.10 	12.21 	11.62 	11.49 	11.59 	11.78 	12.05 	12.42 
aw, 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 
k* 	- 	3 	29 	59 	83 	101 	111 	117 

These tables provide information for optimum system design under two different 

conditions: high overall code rate, rail (nL), and low overall code rate. Constraints 

on rail may arise from a fixed hop rate Rh requirement [2], because 

rail = —1;:h 

where Rb is the information bit rate. Hence for a fixed hop rate Rh, a larger r results 

in a higher throughput. For high r, designs based on the local minimum point k' can 

be considered. The optimum combinations of M'FSK modulation, (n, Id) RS codes and 

diversity L' are listed in Table 4.9 together with the corresponding Eb/Jh required for 

Pb < 10-5 , and awc . These combinations give the smallest Eb/Jh for a given code length 

n. The BER performance of these optimum combinations in worst case multitone ja,mming 

are shown in Figs. 4.3 and 4.4. From Table 4.9 it is observed that 4-ary FSK provides 

the best performance, (recall that in partial band noise jamming, a large M is preferred). 

The corresponding ran values range from 0.37 to 0.46. The (63,49) code with L = 4 is 

particularly attractive due to its large r = 0.39, short code length n = 63 and small Eb/Jo. 

If M  = 4  does not provide satisfactory BER performance in partial band noise jamming, M 

can be increased. Tables 4.3 through 4.8 provide the needed information for comparison. 

If a low overall code rate rail is tolerable, we can use k* in the system design. For 
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Table 4.8: Optimum (255, Id) RS codes for different M-ary FSK and diversity factor L, and 
Eb/Jb required for Pb = 10 -5  . 

• 	L 	1 	2 	3 . 4 	5 	6 	7 	8  

	

k' 	107 	153 	187 	199 	211 	215 	227 	239  
M = 2 	Eb/Jb 	15.08 	12.11 	11.52 	11.43 	11.56 	11.73 	11.99 	12.35  

	

cetb , 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 	1.0 

	

k* 	- 	 7 	57 	121 	171 	205 	225 	237  

	

k' 	107 	167 	179 	205 	205 	211 	187 	167  
M = 4 	Eb/Jb 	14.00 	11.90 	10.47 	10.83 	10.79 	10.91 	10.94 	10.99 

	

ce,„ 	1.0 	1.0 	1.0 	.74 	.79 	.66 	.57 	.49 

	

k* 	 9 	31 	57 	85 	113 	137  

	

le 	109 	161 	181 	209 	215 	165 	215 	221  
M = 16 	Eb/Jb 	15.29 	11.90 	12.44 	12.33 	11.91 	11.90 	11.39 	12.48 

	

ce,„, 	1.0 	.49 	.66 	.49 	.59 	.32 	.42 	.37 

	

k* 	- 	
- 	

- 	 - 	 5 	9 	13 	19 

Table 4.9: Optimum combinations of ItifiFSK modulation, (n, k') RS codes and diversity 
EbPà, and au,, are for Pb = 10 -5  . 

M' 	L' 	k' 	Ebl J(11) 	awc  

	

7 	2 	4 	5 	12.15 	1.0 

	

15 	4 	4 	11 	11.37 	1.0 

	

31 	2 	4 	23 	11.70 	1.0 

	

63 	4 	4 	49 	10.89 	.74 
127 	2 	4 	99 	11.49 	1.0 

	

255 	4 	3 	179 	10.47 	1.0 
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Figure 4.3: The BER performance of the optimum combinations of MFSK, diversity L and 
(n, k) RS codes for n equal to 7, 15 and 31, in worst case multitone jamming. 
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Figure 4.4: The BER performance of the optimum combinations of MFSK, diversity L and 
(n, k) RS codes for n equal to 63 and 255, in worst case multitone jamming. 
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Table 4.10: Combinations of MFSK modulation, (n, k) RS codes and diversity L for 
Pb < 10-5  and overall code rate greater than 0.12. 

n, M 	L 	5 	6 	7 	8  
15(M=2) 	k 	9 	11 	- 	- 
31 (M=2) 	k 	19 	23 	- 	- 
63 (M=2) 	k 	39,41 	47,49 	- 	- 
63 (M=4) 	k 	- 	- 	- 	31,33 
127 (M=2) 	k 	77-83 	93-101 	107-111 	- 
255 (M=2) 	k 	153-171 	185-205 	215-225 	- 
255 (M=4) 	k 	 - 	 109-113 	123-137 

instance, suppose Rh = 20 khop I s and Rb = 2.4 kbit/s, then 

Rb 
= — = 

Rh 

We must find all possible combinations for which a k* exists that will provide an overall 

code rate greater than or equal to 0.12. From Tables 4.3 through 4.8, we find that there are 

no such combinations for n = 7 and M = 8, 16 and 32. The only combinations are listed 

in Table 4.10. For the same reason as in the high raii case, M = 4 is preferred, but now a 

large diversity factor with low rate RS codes are used. 

4.5 Concluding Remarks 

We have given a method for evaluating the performance of parallel error-erasure-

decoding of RS codes in multitone jamming, using an exact method rather than a bounding 

technique. The worst case jamming parameter has been determined. We have shown that 

in worst case jamming, from the jammer's point of view, multitone jamming tends to be 

more effective than partial band noise jamming for nonbinary FSK. The optimum design 

of the system in worst case jamming was presented in terms of the combination of MFSK, 

diversity and RS coding for both high and low redundancy systems. However, these results 
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are informative rather than deterministic, since in the design of an actual system many 

other factors must be considered. 
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I 	Chapter 5 

Codec Implementation 

1 	5.1 Introduction 

During the tenure of this contract, implementation work was done on the (24,12) G o-

lay co51e (in quasi-cyclic form) and the (127 )99) BCH Code. The . Golay code wa,s discussed 

in a previous report [ 151 . The (127,99 ) code design and implementation work is described 

in this report. 

The (127,99) four error correcting BCH code was chosen as a a compromise between 

overall performance, given in Chapter 1, and implementation complexity. 

5.2 The (127,99) BCH Code 

An excellent description of BCH codes is given in [16]. This section gives the equa-

tions and steps that are relevant to the hardware implementation of the (127,99) BCH code. 

The following parameters apply: 
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information polynomial: 
parity polynomial: 
code polynomial: 
received polynomial: 

number of bits/block: 
number of information bits/block: 
number of parity bits: 
number of correctable errors: 
minimum distance: 

n= Tn— 1=127, m=7 
k = 99 
n — k < mt = 28 
t = 4 
dmin < 2t 1 = 9 

The following polynomials over G.F(2) are used to define the code: 

=(x) = =0 + =ix + . • 

P(X) = PO + PIZ + • 
C(X) = Co + CiX . 

r(x) = ro r ix . 
The code under consideration is generated with the generator polynomial 

g (x) = 1 ± x3 + x4 + x5 + x7 + x9 + xl 0 1_ x l 3 + xl 8 + x19 + x20 + x23 + x26 + x27 + x28 

This polynomial has roots a, a2 , ...as where a is the primitive element of GF(27) generated 

by the primitive polynomial m(x) = 1 + Z3  + X7 . 

5.2.1 Encoder Algorithm 

The parity check polynomial is given by 

p(x) = i(x)x 28  (mod g (x)) 

The codeword polynomial, in systematic form, is given by 

c(x) --= i(x)x 28  p(x) 

5.2.2 Decoder Algorithm 

Decoding is carried out in three steps: 

1. Calculate syndromes SI, S3, S5, S7 using 

Si  = r(ai) 
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2. Use syndromes from (1) to calculate the coefficients a- 1 , u2, as, er4  of the error-locator 

polynomial 

g(x ) --=  1+  Cf1x (72x 2  (73x3  CT4X
4 

3. Search for roots of  or(x) to locate and correct errors in the received polynomial r(x). 

The decoder algorithm in more detailed pseudocode form is given in Fig. 5.1. 

5.2.3 Hardware Overview •  

Many hardware configurations are possible depending upon the interface, cost, 

speed and power requirements. In this report we describe a low-cost implementation, with 

simple interfaces, based upon the use of 100 cell logic cell array ASICs from XILINX Inc.[17]. 

The design gives some consideration to speed, but is more concerned with a clean and simple 

implementation that uses a minimum number of chips, than with maximizing speed. Some 

pipelining and multiple buses are used to increase speed, but memory based lookup tables 

to perform multiplication and division are used to reduce complexity. 

5.2.4 Encoder Implementation 

The encoder, its interface signals, and relevant timing diagrams are shown in Fig. 

5.2. All signals are synchronized with a common clock signal and all transitions occur on 

the + edge of the clock. The ready-in signal is asserted while the 99 serial input bits are 

applied. Ready - out is asserted by the encoder while the 127 code bits are available. At least 

one clock period must elapse between the output for one block and the input for the next 

sequential block. A schematic diagram for the encoder is given in Fig. 5.3. While ready- in 

is asserted, data- in is multiplexed to the output and sent to the feedback shift register which 

generates the parity bits. The 28 parity bits are multiplexed to the output following the 99 

data bits. The 5-bit counter is used to count the the 28 parity bits. 
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1. Calculate syndromes Si, S3, S5 

For i in 1,3,5,7 loop 

endloop; 

2. Calculate (71 , 02,  03  04 

1f S  = 0 then 

oi  = 	cr2 = Sils3; 03  = .93; 0.4  

elseif S3 (5 + S3) + S1(.51 .1-496)  =.O  then a  

= ; 2 = Svs—Lir 	= 0;  04 = 0; 

else 

si (s7 +.57 )-Es,(Se +36)  

01 	Si; 02 = S3(q Sa)-1-S L(S1+.96) 1  
(S&-1-51S3)+(511-Set2  

03  S  + S3 + 5102;  04  — S 

endif; 

3. Correct errors 

For i in 126..0 loop 

if 1 + cri (a') + a2(a)2  + crs(ai )3  + o4 (a1) 4  = 0, then 

endif; 
endloop 

Figure 5.1: Decoder Mgorithm 
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5.2.5 Decoder Implementation 

The decoder terminal characteristics and timing are shown in Fig. 5.4. Data-in 

arrives in 127 bit blocks. A delay of 28 clock periods exists between the last bit of an input 

block and the first bit of the decoded output block. A new input block can be initiated one 

• clock period after the last bit of the previous input block. 

The decoder is partitioned into 3 stages plus a buffer as shown in Fig. 5.5. Syndrome 

components S1, S2 = S1 2 , S3, S5 and S7 are calculated in stage 1 and passed to stage 2 

under the control of several control signals. Stage 2 calculates the error locator polynomial 

coefficients u1,o-2, cra and 0 4  and sends them sequentially to stage 3 via the 7 signal lines, 

eigmai, and the four, loadsi, control signals. Stage 3 sequentially determines the roots of the 

error locator polynomial to correct data from the buffer as it is shifted to the serial data-

out line. Fig. 5.6 is a functional partition and data flow diagram for stage 1. Schematic 

diagrams for each block are given in Figs. 5.7 to 5.10. Syndromes Si, S3, S5 and S7 are 
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calculated in parallel by feedback shift registers CS1, CS3, CS5 and 0S7 and then stored in 

four 7 bit holding registers. CS2 forms 52 = Si?. Output of Si, S2, S3, S5 and 57 to stage 

2 is under control of the control signals from stage 2. 

A detailed flow diagram for generating the required control signals for stage 1 is 

given in Fig. 5.11. One flip-flop is required for the two states indicated in the diagram. 

Since asynchronous loading and resetting of the data flow registers is used, care is taken in 

the flow diagram to eliminate timing problems. Actual schematic diagrams for the control 

hardware are not included in this report. 

A functional partition and data flow diagram for stage 2 is given in Fig. 5.12. All 

buses are 7 bits wide. Multiplication and division in G F (2 7) is simply bit-wise exclusive OR.  

Registers R1, R2, R3 and R4 are temporary holding registers that were found necessary to 

carry out the stage 2 calculations. 

A detailed flow diagram for stage 2 is given in Fig. 5.13. For clarity, the register 

transfer operations rather than the required control signals are shown in the data flow 

diagram. The diagram has 30 states and the longest path through the diagram is 24 clock 

periods. Thirty states can be realized with a 5-bit state machine and 24 clock periods 

is sufficiently fast that only one level of buffering is required for the calculations. The 

multiple data paths shown in the data flow diagram are used so that multiple operations 

can be performed concurrently to achieve the 24 clock period execution time for stage 2. 

The stage 3 functional partition and data flow diagram is given in Fig. 5.14. Each feedback 

shift register operates concurrently to evaluate a term of the error-correcting polynomial. 

The error-correcting polynomial is evaluated 99 times to correct the 99 information bits. 

The flow diagram that specifies the controller for stage 3 is given in Fig. 5.15. 
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5.3 ASIC Implementation 

The encoder and decoder described above were designed to be implemented with 

XC2018 logic cell array (LCA) ASIC chips from XILINX, Inc.117}. These chips have 74 

user programmable I/O blocks and 100 configurable logic blocks. The interconnections 

within and between the blocks are stored in on-chip RAM. The chips are low-power CMOS 

technology that can be clocked up to about 40 MHz. 

LCA programming is carried out on a personal computer using the XACT computer-

aided design software package. The software package includes a design editor, P-Silos 

Simulator and an in-circuit emulator. An LCA I/O block and a configurable logic block 

are shown in Fig. 5.16. The I/O pins can be programmed as input, output or tri-state 

pins. Each I/O  block also contains a D fiip-flop that can be used to latch inputs or for 

general-purpose storage. The configurable logic blocks can be programmed to implement 

any function of 4 input variables or any 2 functions of 3 input variables. The multiplexors 

within a configurable logic block can be programmed to route signals within the block. The 

LCA also contains many programmable switches and interconnection buses to interconnect 

I/O  blocks and configurable logic blocks. 

The programming of a configurable logic block using XACT is illustrated by the 

screen image shown in Fig. 5.17. As shown the logic functions of the block can be specified 

algebraically or via a Karnaugh Map. User names can be specified for all the signals of a 

block. 

The following LCA resources are estimated for the encoder and the 3 stages of the 

decoder. The resource estimates are well within the 74 I/O blocks and 100 configurable 

logic blocks of the XILINX XC2018. 
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# of 	 # of 

I/O  Blocks 	configurable logic blocks  

encoder 	5 	 37 
stage 1 	30 	 76 
stage 2 	61 	 61 

stage 3 	16 	 69 

5.4 Concluding Remarks 

The design of a (127,99) BCH codec suitable for ASIC implementation has been 

presented. The encoder can be realized with a single XC2018 ASIC whereas the decoder 

uses 5 chips; 3 XC2018 ASICs, 1 155 bit shift register possibly realized with another XC2018 

and a 32K x 8 EPROM. Although actual implementation and testing is not complete, it is 

believed that a bit rate exceeding 5 Mbits/sec will be easy to achieve. 

Implementation has been done using the XC2064 logic cell array system from XIL-

INX. This application specific integrated circuit (A.SIC) has 64 cells, uses low power CMOS 



1 

technology, and can be clocked up to 40 MHz/sec. For the codes considered, a single 

X02064 chip was sufficient for the encoder. The Golay decoder used one XC2064 chip for 

processing and an EPROM for correction look-up. The (127,99) BCH  décoder  requires three 

X02064 chips for processing and an EPROM for GF (2 7) multiplication by table look-up. 

The encoders that we have implemented can encode data at rates up to 40 Mbits/sec but 

the decoders are limited to 2 to 5 Mbits/sec because of the use of relatively slow EPROM 

memories. 

New XILINX products and the use of normal basis representation for Galois Fields 

open some exciting possibilities for codec implementation. The new XILINX XC3090 has 5 

times the number of cells as the X02064 and about 10 times the nurnber of useable storage 

elements. Using this new product with an on-board normal basis multiplier should enable 

the implementation of a single chip (127,99) BCH codec with a processing rate approaching 

70 Mbits/sec. A similar performance should also be possible with a Reed-Solomon codecs. 

We conclude from our work that XILINX logic cell arrays are very effective for codec 

implementation. They offer rapid prototyping, high performance, and reasonable cost for 

low to medium volume applications. 
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I 	Chapter 6 

Suggestions for Future Work 

111 	6.1 Coding for Slow Frequency Hopping Systems 

The study of slow frequency hopping systems has been given little attention in past 

research, and we feel that this is the next logical phase of the investigation into coding for 

FH systems. In slow frequency hopping (SFH) a large number of bits of information are 

transmitted per hop. For example, with a 20 kbit/sec hop rate and a 1.5 Mbit/sec data 

I .  rate, there are 75 bits/hop. There is no inherent diversity available as with fast frequency 

hopping (FFH). SFH signalling is vulnerable to jamming which can cause both long and 

short bursts of errors. The following sections present three methods of employing error 

correcting codes in a SFH system. 

This proposed work presents a substantial amount of effort in analysis and - would 

probably employ Monte-Carlo simulation. 

6.1.1 Error Correcting Codes with Deep Interleaving 

In order to use random error correcting codes directly, deep interleaving must be 

1 used. For example, using a BCH code with DPSK and C coded bits/hop, interleaving would 

have to be done to a depth greater than C to guarantee the independence of each bit in a 

codeword from the others, hence the randomness of errors in a codeword. Thus the cost 
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of interleaving and the decoding delay are serious concerns. Although this type of coded 

system may be costly in terrns of interleaving cost and delay, it may perform well and is 

robust as far as the jamming pulse is concerned. Thus it may be used as a benchmark to 

compare with other coded systems and so is worth further study. 

6.1.2 Long Error Correcting Codes to Correct Both Burst and Random 
Errors 

In this technique, a long codeword is continuously transmitted over several indepen-

dant hops without interleaving. If the jammed bits occur in bursts, (not longer than C), 

the code should be designed to correct them. However, if the error bursts are short and 

frequent, (restricted by the "coherent gain", a recently discovered phenomena associated 

with DPSK systems under jamming which is currently under investigation by us), then the 

burst error correcting code performance is degraded. Thus the task here is to design a 

combined code, (e.g., concatenated, parallel, etc.), so that both burst and random errors 

can be corrected efficiently. This type of coding is even more attractive if the jamming 

signal level is close to the level of system thermal noise, which causes random errors. 

6.1.3 Diversity and Coding 

In this method the same coded sequence is transmitted L times over L independant 

hops. At the receiver, diversity combination is first done using some voting algorithm, 

followed by the decoding. The basic drawback in this method is the large redundancy 

introduced by the artificial diversity and coding. This redundancy may be more effectively 

used if MDPSK were used with a large M. This is based on the fact that under severe 

jamming, a symbol would be correctly received if it is not jarnmed, even for large M, and 

incorrectly received if it is jammed, even for small M. Note that in AWGN, the performance 

degrades when M increases for MDPSK. 
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6.1.4 Key Techniques to be Considered 

Burst Forecasting 

This is described in [18] in conjunction with helical interleaving. This idea can be 

applied to the techniques described in 6.1.1 and 6.1.3 above. For the technique in 6.1.3, the 

voting results, (current and perhaps previous), in the diversity combination can be used to 

forecast burst errors. 

Using Detected Differential Phase to Reduce the Effects of Errors 

For the techniques in 6.1.1 and 6.1.2, this represents a means of generating erasures 

without external side information. However, the generation erasures in an optimum way 

may depend on the type of jamming and the signal to jammer power ratio. This may be 

more robust if a similar idea is used in conjunction with the technique in 6.1.3. 

6.2 Normalized Envelope Detection 

To reduce the effects of jamming in FFH/MFSK systems, the real envelope detector 

can be normalized by the sum of M envelope detector outputs over the M-ary band(M 

• energy bands). Now the normalized output of a jammed hop tends to be smaller than that 

over a hop which is not jammed. The important feature of this technique is that it does 

not require external side information and seems to be robust against jamming. 

The analysis of this scheme for M>  2 may be complex and will become even more 

so when used in conjunction with error control coding. Different types of codes such as 

hard decision block and convolutional codes, and soft decision convolutional codes will be 

analysed in conjunction with this scheme. 
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6.3 Implementation Aspects of Error Correcting Codes 

Completion of the (127,99) BCH code Xilinx CODEC implementation will be fol-

lowed by the evaluation of a commercial Reed-Solomon chip and a comparison with our 

Reed-Solomon CODEC design and implementation. A Galois Field Arithmetic processor 

will be designed if CODEC speed needs to be improved. 

6.4 Other Directions 

From the results of this report it is evident that the use of M-ary codes is important 

for FFH/MFSK systems. However, there are few results available for non-binary codes as 

compared to binary. Thus we propose a search for good M-ary convolutional codes (1‘,/ > 8), 

and M-ary block codes (M > 2). In the case of block codes, the use of M-ary codes will 

reduce the error multiplication associated with alphabet conversion, as seen previously in 

the report. 

For DPSK under jamming, as nonorthogonal signalling, dedicated codes are very 

scarce. Trellis codes are dedicated for a class of signals including DPSK in AWGN. However, 

the performance of the "set partition" principle may be poor under jamming. It may be 

possible to trade the bandwidth efficiency gained with these codes for power efficiency. This 

is important since bandwidth efficiency is secondary for SS systems. 
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