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. Abstract

The performance of various types of error correcting codes is examined under both

partial band noise jamming and multitone jamming using fast frequency hopping, noncoher-.
ent M-ary frequency-shift-keying (NCMFSK). A comprehensive study including convolu- -

tional codes, binary and nonbinary block codes and concatenated codes has been conducted.
The bit error rate (BER) performance of many error correcting codes is presented. These
results augment those previously published on the subject. '

A fixed data rate is assumed in Chapter 2. However, a practxcal frequency hopping
spread spectrum (SS/FH) system may be limited to a ﬁxed hop rate. This constraint has

been given little consideration in previous work on coding for SS/FH systems. In Chapter °
'3, the performance of error correcting codes is examined under partial band noise jamming

and multitone jamming using the same system as in Chapter 2, but with fixed hop rates.
These results are compared to those with a fixed data rate. The analysis method used i is
the well known Chernoff union bound.

The performa.nce of a recently proposed efficient anti-jam communication system
is examined in Chapter 4. The system employs frequency hopping, MFSK modulation,
diversity, Reed-Solomon (RS) coding, and parallel error-erasure correction decoding. It
has previously been shown to be effective in partial band noise jamming. In this report,

we evaluate the performance of this system in multitone jamming. An exact method is

used rather than a bounding technique. It is shown that in worst case jamming, when the
redundancy is not large, multitone jamming tends to be more effective than partial band
noise jamming from the jammer’s point of view, for nonbinary FSK. The optimum design
of the system under worst case jamming is presented in terms of the combination of MFSK,
diversity and RS coding, and it is shown that a proper ‘combination with large redundancy
can completely nullify worst case multitone jamming.

Chapter 5 describes the design of a CODEC based on the (127,99) four error cor-

recting BCH code. This code was chosen as a compromise between overall performance, as
given in Chapter 2, and implementation complexity. The CODEC is designed completely
in hardware for implementation with application specific integrated circuits. This approach
has a short implementation cycle, requires a very small number of integrated circuit chips,
and yields a CODEC that can operate up to about 5Mbits/sec.
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Chapter 1

Introduction

In defence communication systems, spread—speétrum techniques such as frequency-

.. hopping (FH) have been utilized to provide some protection against jamming. However, an
: mtelhgent jammer can drastxcally reduce the effectweness of such a system This effective-
. ness can be regamed through the use of error correctmg codes. In this report we present

. the results of a comprehensive study of the performance of various error correcting codes

when used in a frequency-hopping system.

1.1_: System Model

The system we consider employs the fast frequeney-hopping (FFH) noncoherent M-

- ary frequency-shift-keying (NCFSK) technique. By fast we mean one or ‘more hops per

. transmitted symbol. Our objective is to investigate the-performance of various known error

- correcting codee in such a system under different kinds of jémming. “The system model is

_ shown in Fig. 1.1. System assumptions are as follows.

Transmitted signals are MFSK orthogonal signals which hop over a total spread

spectrum bandwith W,,. The channel over W,, is assumed to be uqurm. Noncoherent

soft energy detection (square-law reception) of each hop is assumed. In practice th_is can
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Figure 1.1: Block diagram of a FH/MFSK system in a jamming environment. One of
M = 2X tones is transmitted. The carrier is hopped accordir’ito the pattern determined by .
the PN code. Dehopping requires the derived PN reference (PN). Detection is non-coherent.

~ Side information is assumed to be perfect so that the receiver knows with certainty whether
each hop of an M-ary symbol is jammed or not. If any of the L hops is not jammed, an
error free M-ary decision can be made based solely on that hop. Otherwise, the largest of
the linear combinations of the energy of L hops is selected. A

e - . . . = =




be approximated with finite level quantization. Note that this soft decision is used only in
energy detection. While the soft energy decision may be passed to a soft decision decoder

such as that for a co;ivolutiona.l code, the decision made after diversity combination can be

_ a hard decision.

One coded M-ary symbol is transmitted in L hops using time diversity.. For a given
M and error cbrrectin_g (EC) 'code, when the energy per symbol E; is fixed, the énergy per
bit E} is fixed. In this case, there is usually an optimum L,'denotéd as Lopt, at which the

_ final bit error rate (BER) can be minimized for a given signal to noise ratio. This is not

true when the hop rate R}, is fixed and the information bit rate R; is variable. In Chapter
2 we evaluate the effectiveness of various EC codes with E) assumed to be fixed. The case

when R, is fixed is treated in Chapter 3. For convenience, the term bit error. rate (BER)

is used to denote the probability of bit error. In the é.n‘a.lyéxis of a system with 'a‘ﬁxed data

* ' rate, Lop; provides an indication of h_ow efficient a specific code is. A smaller L.,,,; implies

that the code is more efficient agaihst jamming in the sense that less added redundancy is

required.

In a jamming environment, the channel is nonstationary, and side information is

valuable for efficient data reception. However, a system heavily dependent on side infor- -

mation may not be robust, because the information ina.y not always be obtainable or its

" quality may vary greatly. One method used in practice to derive the side information is to

implement automatic gain control (AGC) in the receiver[1]. Based on this implementation,
we may assume, as a good approximation, that the receiver’k_nows with certainty whether
e;ach hop of an M-ary symbol is jammed or not. If any of the L hops is not jammed, an

error free M-ary decision can be. made based solely on that hbp (f.hermal noise is neglécted,

this will be discussed shortiy). ‘Otherwise, the largest of the linear cpmbinétions (direct -

sums) of the energy of L hops is selected, as shown by the decision device inputs from -

the summation boxes in Fig. 1.1. For the error-erasure correction decoding considered in

Chapter 4, we attach an erasure flag to this symbol.

3
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Under strong jamrming, the receiver thermal or non-hostile background ‘nc‘)ise is usu-

ally small compared to the jamming, so receiver noise is neglected heré. Assume the total

jamming power J (referenced to the receiver input) is fixed. Then the effective jémming.
power spectral dénsity is given by

Jo = J/W,,.

We consider two types of worst case (WC) intelligent but noh-repeat—back jam-
ming, nainely partial band noise and multitone interference. For partial band noise (PBN)

jamming, J is restricted to a fraction p (0 < p < 1) of the full spread spectrum bandwidth,

but in this band the power spectral density is increased to Jo/p. Multitone jamming (MT)

includes band multitone jamming and independent multitone jamming. It has been shown

that worst case multitone jamming tends to have a single jamming tone per jammed band|[2],

using equal power tones. We consider only this type of worst case multitone jamming. In

this case the jammer has one pararrieter to optimize, ’namely.the ratio of signal power of

one hop to the power of the jamrﬁing tone, denoted as a.
In this report, we do not consider fading of the signal due to propagation, but in
worst case jamming the signal already suffers from a kind of fading in terms of the signal to

noise ratio. Thus, results without conéidering propagation fading may be indicative of the

case with propagatioh fading. This.point,-hé.s been verified in previous work. For instanvce,,

a broadband jammer is the worst case noise jammer in a Rayleigh fading channel(3].

In anti;jam communications, a good code should perform well regardless of the type
of jamming. Thus in this report we consider good codes to be those with the best perfor-
mance for the most effective type of jamming, WC MT jamming br WC PBN jamming, at
a given low BER, typit_:ally P, = 1075,

For such systems, we can consider three methods to evaluate the BER performance

of a code. Monte Carlo simulation is the most universal but most time consuming method.

This brute force method is therefore not suitable for a comprehensive preliminary investi-




gation of codes. It may be considered to evaluate the BER performance when a code has:

" been adopted. Note that this method has the highest credibility.

The second method is the exact numerical computation of system performance.

While it is not impossible, it is generally difficult and cumbersome to compute the exact

_ performance of systems like the one considered here. Since these results are usually very

complex, in most cases they do not yield insights readily.

The third method is the Chernoff union bound method which gives an upper bound

" for the BER. The computations involved in this method are usually much simpler than the

other two methods. Though the general credibility of this method remains controversial, it

has been shown to provide useful and reliable information[3] for the systems considered in

* - Chapters 2 and 3. Due to its relative simplicity it is especially suitable for a comprehensive
- gtudy of various codes, and thus has been chosen as the evaluation method. It provides a

* unified approach to evaluating performance and provides a clear relationship between the

system parameters and .BER. This method can be used to select good codes which can then

be analysed more accurately using oﬁher techniques. | |
Chapter 5 presents the design of a CODEC based on the (127,99) BCH code. The

design is done completely in hardware using application speciﬁc integrated circuits.
Chapter 6 provides some directions for future work, primarily in the area of slow

frequency hopping systems.



‘Chapter 2

Performance of Error Correcting Codes
for Fast Frequency Hopped Noncoherent

MFSK Spread Spectrum Communlcatlons |
Wlth a leed Data Rate

In this chapter we evaluate the performance of various EC codes assummg a fixed
data rate. Although the performance of error correctmg codes in FH systems has been
widely studied, there is no single reference in the literature providing complete mformatlon
on the BER performance (rather than other criteria, such as the cutoff rate) of various
codes for both PBN and MT jamming. Ma and Poole[4] and Simon et ai.[S]_are perhaps.
the most comprehensive. Only partial band noise jamming was considered in [4] and ‘only‘

Reed-Solomon codes and several convolutional and concatenated codes were considered in

" [3]. These previous results are augmented through this work.



2.1 Formulas for Performance Evaluation

- In this section the formulas used to evaluate ﬁhe BER for block and_ convoh‘x.tionalw

codes are presented. They are based on the work reported in [3]. Optiinum diw}ersity is
assumed in all cases. BER is given vs Ey/Jo, where By is the energy per information bit.

" The signal to noise power ratio is related to Fy/Jo by
(/) = (Bb/Jo)as — PG

where PG = 10log,o(W,,/Rs) is the processing gain. For example, if W,, = 100 M HZ and
Ry, = 2.4 kb/s, PG = 46.2 d B. Note that the term processing gain has been given sevéral
conflicting definitions in the literature[3]. The definition we use is meaningful for all spread
spectrum systems. We consider M;ary signalling, where M= 2K for K up to 5.

The probability of bit'error, Py, for convolutional codes is upperbounded by the

Chernoff union bound(3] as

A 's{ 1g(DY) PBN jamming;

G(DL) MT jamming S (2.1)

where
(e Lort Lopt > 1, PBN;. , ,
4 -1 - E 3 .
R, mTD TN ez
1
e“"“—:i-_)‘z—-—o Loy: =1, PBN, %é. <‘ ’I%T; |
. g g
DL _— w {ZIE(, 7"0 Lopt — 1, MT, V K = 1, %-Ob- Z }Zr’ (2.2)
ok Lo =1, MT, K =1, 55 < |
;Z%TE‘-;- o Loypt =1, MT, K 22, 73-2.9%,1‘4-;
we(M—2 1-cwe
2o 20T Le=1, MT, K22, £
\ ) ]
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“with A equal to

1 E 1 ( E'b)  Ey |
) ! = _
A= 3 [\/1+3R -E-4 RJO 2R To 1 (23)

. R' = rK where r is the code rate. 8 is given in Table 2.1. The function G(D%) in (2.1)

varies for different codes and will be given in the following sections. ay, is the worst case
a in MT jamming given by

. : Eb/JO > (LoptaoM)/R' 24
we — E;E%@ Eb/JO < (LoptaoM)/R ( ")

op

.. with op given in Table 2.1; where “1_” means a value less than but infinitely close to 1.

- The worst case p in PBN jamming,’denoted as Pue, I8 given'by

'p Tz'%ffi‘ Ey/Jo > 3L0pt/R ‘ ‘ ' (2.5)
we Eb/Jo < 3Lopt/R _ )

R > .
Lopt — ~ Tg‘ Eb/JO = 7/R': (26)
1. By / Jo <« / R,
with « defined as _ :
- _} 4 worst case PBN jamming; ' (2.7)
7= BKe worst case MT jamming. : B

B is given in Table 2.1. L,y in (2.6) can be a noninteger which is not realizable, (and it
cannot be less than 1). For the purpose of analysis, however, L,y is informative in this
finer form, and so is used for performance evaluation of all EC codes where applicable.

Unless otherwise specified, the following formulas define the probability of bit error, .




Table 2.1: Values of e and S.

K| o B
T T
2 | 0.683 | 0.7945
3 | 0.527 | 0.8188
4 | 0.427 | 0.9583
5 } 0.356 | 1.2204

P, for block codes. The probability of bit error is given by

P, = E(Q—Q:-l—)—P, ’ (2.8)
where P, is the Q-ary output symbol error rate of an (n, k) Q-ary block code (w1th long
=gq bits per Q-ary. syinbol), as shown in Fig. 2.1. For binary block codes, we have @ = 2,
g = 1 and P, = P,. If the minimum distance is d, the number of .correctable errors is given
by |

t=|(d-1)/2]
where |z]| denotes the integer part of x. With hard decision decoding, P, is related to the
@-ary symbol error rate before decoding, Py, by the well known formula (e.g. see [4])

P,Nl,zn: i( " )’P;l,(l—PQ)"“'. o (2.9)
Nimtr1 \?

For M-ary signalling, let Px be the K-bit transmission symbol error rate (referenced

to the point after diversity combination). Px is given by

- “-L(pL) PBNj ';’ .
{ - G(D) jammine (2.10)

Pg < :
2M-De(DY) MT jamming
with
G(DY) = -424—1)’4 , (2.11)
9
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kq bits Symbols _ Symbols Symbols |Channel
‘Q-ary . Block M-ary to | .
¢————] Symbols la Code < Q-ary |
to Bits Decoder - Symbols o E
R 2 L R
Final -~ Q-ary , A Q-ary ‘ M-ary
Bit Error Symbol Error . Symbol Error Channel Symbol
Rate Rate After Rate Before . Error Rate
Decoding ’ . -Decoding

. Figure 2.1: Block diagram of a system employing a block codmg scheme, showing the
" symbols used and the alphabet conversions.

and DT as defined in (2.2). The Q-ary symbol error rate Py is

PQ‘;I—(I—PK)C S . (2'12)..

where

when ¢ > > K. Fxg 2.1 xllustrates the relatxonshlps given in (2.8) to (2 13) for a block coding

system

In the following sections we will use these formulas for three kindé of codes: block

codes, convo_liltional codes and concatenated codes. Only selected results are presented.

2.2 Performance of Convolutional Codes

In this section the performance of various convolutional codes is presented. G(D) is

.determined by the code used. Soft decision Viterbi decoding is assumed for all convolutional

10

C=log,Q/K o : (2.13)




codes.

2.2.1 Trumpis Codes

In [5] Trumpis presents two optimum (over orthogonal channels) constraint length

7 convolutional codes. Actually these codes are (K,1,7) binary convolutional codes, but K
bits at the output of the encoder, corresponding to 1 bit at the input, are considered to be
one M-ary symbol. The best of these codes is the 4-ary, rate r = 1/2 code for which K = 2

i
i

and ‘ , : 4 ,
G(D) =7D" + 39D° 4 104D° + 352D'° 4 1187D™ + - - .. (2.14)

The other is the 8-ary, rate r = 1/3 code. In this case we have K = 3 and

G(D) = D"+ 4D®+8D°+ 49D+ 92D + ...,  (219)

Fig. 2.2 gives the performance of these codes iﬁ WC PBN and WG MT ja‘.mr-ning.J Our.

results for these codes are the same as those in [3]. -

2.2.2 Dual-K Convolutiona] Codes

For all values of K , we have the class of dual-K M-ary convolutional codes w'ith_

code rate r = 1/v over GF(2X)[1,3]. For every M-ary (K-bit) input word, v M-ary code
symbols are generated, where v is an integer greater than 1. The constraint length is 2K

which accounts for two binary shift registers in the encoder. Now R' = K /v and

MD™ o
[—vD— - (M-v-DDF - (219)

G’(D) =3

As pointed out in {3] ,at a low BER, the performance of these codes does not depend on v,
which is verified by our results. However, with binary FSK under WC MT jamming, at a

low signal to noise ratio, a low rate code is much more j)owerful than a high rate codel6].

At a low BER, the best code is that for K = 2, which is the same as that shown in [3]. The

performance of the Dual-K codes with v = 2 is given in Figs. 2.3 and 2.4.

11 -
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at a BER of 1075,

—
]

3

\

8 10
Ey/Jo (dB)

13

12

14

16

hat for K = 2, for which Pwe = 0.75

™~




Bit Error Rate

107°
—_ .\ \ V\ \ -
107! —EK=3
| | ~\+—K=4 N
‘ \
: K=A : \
- 1072 } -
- K

\\\ |
10;5 - . \\\ \ \

6 7 8 9 10 11 12 13 14 15 16
Eb/Jo @B)

7
-

107
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at a BER of 105, :
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2.2.3 Odenwalder Binary Cod’es

Two commohly used binary convolﬁtional codes are the constraint length 7, rate
1/2 and 1/3 codes'discovefed by Odeﬂwalder[7]. For r =1/2, ‘ ,
G(D) = 36D+ 211D' 4 1404D' 4 11,633D'
| +77,433 D + 502,690D%° + 3, 322, 763D§2
21, 292,910D%* + 134, 365,911D% + - . - (2.17)
and for r = 1/3, , | "
G(D) = D™ 4 20D 4 53D® 4 184D 4 ... (2.18)
Rate 1 /4 and 1/8 codes having the same constraint length, 7, can be derived from the above
rate 1/2 code[4]. For r = 1/4, o '
G(D) = 36D + 211D* 4 1404D?® + 11,633D%
+77,433 D% + 502,600D*° - 3,322, 763D**
- +21,292,910D% + 134,365,911 D5+ - . -; ©(2.19)
and for r = 1/8, o |

G(D) = 36D+ 211D* 4 1404D% + 11,633 D%
 +77,433D% -+ 502,690 D% -+ 3,322, 763 D%
+21,292,910D% 4 134, 365,911 D% ..., (2.20)

The BER performance of the rate 1/3 code under PBN ana MT jamming is shown
in Fig. 2.5, and of the rate'1/2, 1/4 and 1/8 codes under PBN jamming in Fig. 2.6. In [4],
the three curves in Fig. 2.6 are the same as that for the rate 1/2 code. This is incorrect,
since in that case, for the rate 1 /4 and 1/8 codes, L,p; would be smaller than 1 for a BER
 larger than 10’“6,Awhich is not realizable. The BER performance of the rate 1/2 and 1/4
ches under MT jamming is shown in Fig. 2.7. From Figs. 2;5'to 2.7 it can be seen that
the r = 1/3 code performs best. ) | .
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Figure 2.5: BER performance of the constraint length 7 binary Odenwalder convolutional
rate 1/3 code, with FH/BFSK. At P, = 1075, p,,, = 0.815 for WC PBN jamming, and
aye = 1. for WCMT Jamming. '
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Figure 2.6: BER performance of the:constraint length 7 binary Odenwalder convolutional
rate 1/2 , 1/4 and 1/8 codes with FH/BFSK, under WC PBN jamming. At P, = 107%,

pwe = 0.75 for the rate 1/2 code, pyc = 0.975 for the rate 1/4 code and py,. = 1 for the rate
1/8 code.

17




_Bit vError Rate

107°

10-!

1072

1073

rate 1/2 —

1074

108

V \\\\\ -;_ ratel/4-
\\,

10~6

°o 10 - 11

| Eb/Jo (dB)

Figure 2 .7 BER performance of the constraint length 7 binary Odenwalder convolutional
rate 1/2 and 1/4 codes with FH/BFSK, under WC MT jamming. At P, = 10‘5, Qe = 1
for both the rate 1/2 and rate 1/4 codes.
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2.2.4 V'M-a'ry' Orthogonal Convolutional Codes

M-ary orthogonal convolutional codes are a class of codes with constraint length

K|[1,8], hence K > 2. They are (M,1, K) binary convolutional codes where each M-Bit

at the output of the encoder, corresponding to 1 bit at the input, is one of M orthogonal

binary sequences of dimension M. Thus one such M-bit corresponds to one M-ary symbol.

In this case, R is always equal to 1 and we have

DX (1- D)?

G(D)=

The best code in this class is that for K - 2 wiﬁh BER performance shown in Fig.

2.8. Due to its short constraint length, the performance of this code is relatively poor.
2.2.5 Semi-Orthogonal Convolutional Codes

For K > 3, we have the class of semi-orthogonal M-ary cbnvolutional codes with

constraint length 2K + 1{1,4). As for the orthogonal convolutlonal codes, R’ is always equal _

to 1 for the serm-orthogonal convolutional codes. G(D) is given by

G(D) ~ D1, | - (2.22)

The BER performance of these codes is shown in Fig. 2.9 for K equal to 3, 4 and

5. The code corresponding to K = 3 is the best in this class.
2.3 Performance of Block Codes
2.3.1 Binary Codes

'Although binary codes can be used directly with BFSK (K =1, asin [4]), theyv

can be used with any M-ary signalling through interleaving. In this regard, hard decision

decoded block codes are easier to deal with than soft decision decoded convolutional codes.

Interleaving of binary block codes is used to ensure that the K bits in one M-ary channel

19
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Figure 2.8: BER performance of the 4-ary orthogonal convolutional code with FH/4FSK.
At Py = 1075, py. = 0.75 for WC PBN jamming and o, = 0.683 for WC MT jamming. _‘
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Figure 2.9: BER performance of the semi-orthogonal M-ary convolutional codes for K equal
-to 3,4 and 5. The constraint length is 2K 1. The best code in this class is that for K = 3,

For this code, at a BER of 1075, p,,, = 0.75 for WC PBN jamming, and a,. = 0.527 for
WC MT jamming. - ' ,
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symbol belong to K code words, so that in each code word the errors will not occur in

~ bursts. In this case, (28) to (2.11) still apply, but now K > ¢ so that

Pg= mh—l:—ﬁi’x, (229) '
withQ=2andg=1 | |

There are two parameters which can be varied in order to minimize P;, K and the
EC code to be used, i.e., n>ar_xd k. For any fixed code of rate r, from (2.1) to (2.7) and (2.11),
it can be seen that we have in fact an uncoded channel with eqﬁiiralent channel bit energy
rE,. For this channel, it has been shown that under worst case jamming a.nd with optimum
diversity, K = 2 is optimum [3]- Thus we can say that for a fixed code with optimum
diversity, K = 2 is the optimum SIgnallmg_ and in this case WC multitone jamming is worse
than WC partial band noise jamming. For a ﬁxed K, if there is an optimum code (among

a class of codes), then as argued above the same code w1ll perform best when K 2. Thus

“all we need to do is to find the optimum code used with 4-ary FSK

Hamming Codes

We examined the (7,4) and (31,26) Hamming codes which are single error correctlng

- with minimum dlstance d= 3

Golay Code
We examined the perfect (23, 12) Golay code which is triple error correctmg with

minimum distance d = 7.

BCH Codes
We examined the multi-error correcting BCH codes of length n =15, 31, 63, 127
and 255.
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Table 2.2: E;/Jo required for P, = 10~% with Binary Block Codes under Worst Case

 Jamming, K = 2.

block - EBy/Jo for . Ey/Jo for
code WC PBN jamming | for WC MT jamming

(74 T 18.67 1443
(23,12) T 12,54 ' 13.47

(31,26) 1250 13.22

(15,11) 12.85 13.60

(31,21) |- 12.37 13.19

(63,51) 11.94 12.73
(127,99) 11.45 ' 12.30
(255,187) 11.01 . 1195

Summary of Results
The BER performance of the\Hamming codes and the Golay code is shown in Fig.
2.10 and the Ey/Jo reqﬁired for'Pb’r; 10'_‘5 under WC jamming is given in Table 2.2. It
is evident that the (31,26) Hamnﬁng codé is the best.of these short block léngth codes, at
Py = 105, followed by the (23,12) Golay code (for K =1, the Golay code is better).
~ In Fig. 2.11 the Ey /Jo fequired for P, = 10~5 is given for the BCH codes, vs code
rate, under WC MT ja.rhming. It is noted that for code lengths larger than 15, there sre
several codes of a similar rate which give near optimum BER performance. The optimum
BCH codes (in the sense that they require the smallest E /Jo for Py = 10~5 while having
the largest code rate r),.are the (15,11), (31,21), (63,51), (127,99) and (255,187) codes for
lengths 15, 31, 63, 127 and 255, respectively. The BER performance of these optimum codes

. 1s shown in: Figs. 2.12 and 2.13 and given in Table 2.2 for P, = 10~5. It can be seen that

0.41 to 0.45 dB can be gained at B, = 10-8 by doﬁbling the length of a BCH code, but at

~ the expense of increased codec complexity. However, the choice of a code must also take

into'account the specific application and implementation required.

;24




2.3.2 Reed-Solomon Codes

Length' n = @ — 1, Q = 29, Reed-Solomon (RS) codes are Q-ary codes over GF(Q).
For (n, k) RS.codes, d = n— k- 1. These codes can be used directly with M-ary signalling,
in which case @ = M, or with alphabet conversion so that @ > M.

Direct Use _
By direct use we mean transmit the symbols of (n, k) RS codes directly over an
M-ary channel, K > 2. In this case Py = Pk, where Py is given in (2.10), since C in (2.13)

is 1_.

Alphabet Conversion

To get a larger minimum distance for RS codes with a fixed code rate, the code
length must be increased. This in turn increases the size of the alphabet over which an RS
code is defined. Alphabet c’o’nversion matcheé the channel signalling with the RS symbols.
A Q-ary symbol is now composed of C M-ary symbols, as defined in (2.12) and (2.13).

Note that for small Pk, Pg = CPx. This means that there is a multiplication in the error

probaBility by a factor C' due to the conversion.

Summary of Results

~_ The best RS codes were found in the following way. For a given code length we
have a given Q, buf several choices for K. For each possible Q,K combination, the code
rate was optimized for the given code length to give the lowest E; /Jo at Py = 10-5 under
the worst of WC PBN or WC MT jamming. The results of this optimization are given in
Table 2.3. For length 7 RS codes, the (7,5) code in direct use with K = 3 is the best choice.
For code lengths 15, 31, 63, 127, 255, 511 and 1023, the optimum combinations are, (15,11)
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27




Bit Error Rate

10™°

1071 \-‘t\\ \

1072 : . : | \\

1073 [— \

«— (255,187)

¢ MT jamming
- 107t z i ~
(127,99) PBN jamming —
, «— (127,99)
(255,187) PBN jamming — MTjemming
10-5 : \ :
|
1078

5 6 7 8 9 10 11 12 13 14 15

Ey/Jo (dB)

Figure 2.13: BER performance of the (127,99) and (255,187) BCH codes with FH/4FSK
for WC PBN and WC MT jamming. _ o

28




#

Table 2.3: Ey/Jo (dB) required for P, = 1078 with Reed-Solomon Codes under Worst Case

Jamming.

RS q | K Ey/Jo for By/Jo for
code WC PBN jamming | WC MT jamming
(7,5) 3 (3 11.53 ' 14.13
(7,5) 3|1 15.80 14.50
(15,11) | 4 | 4 9.89 14.45
(15,11) 4 | 2 12.30 13.09
(15,11) | 4 |1 15.02 13.83
- (81,25) | 5|5 8.71 15.28
(31,23) {5 {1 14.36 13.24
(63,53) | 6| 6 7.89 14.37
(63,51) |6 |38 9.90 12.60
(63,51) | 6 | 2 11.32 12.17
(63,49) | 6 | 1 13.93 12.83
(127,99) | 7 |1 13.60 12.55
(255,221) | 8 | 4 8.62 - 13.23
(255,213) | 8 | 2 10.85 11.74
(255,203) | 8 | 1 13.42 12.38
(511,439) | 9 | 3 9.38 12.11
(511,407) 1 9 | 1 13.30 12.28
(1023,899) | 10 | 5 7.83 14.44
(1023,861) | 10 | 2 - 10.68 11.58
(1023,817) |10 | 1 13.25 12.23
29




‘with K = 2, (31 ,23) with K = 1, (63, 51) with K = 2, (127, 99) with K = 1, (255,213)
‘with K = 2, (511 439) with K = 3, and (1023,861) with K = 2, respectlvely It is clear

that codes with K = 2, which is the optlmum signalling for uncoded systems, are the best.
K=3is the second best choice. @ should be chosen so that these K’s can be used The
BER performance of the (15,11), (63,51), (255 213) and (1023 861) RS codes with K = 2

_ is given in Fig. 2.14. The BER performance of the (7,5), (63 51) and (511,439) RS codes
~ with K = 3 is given in Fig. 2.15. The E'b/Jo for P, = 1075 is plotted in Fig. 2.16 for all

RS codes with K = 2 and K = 3, vs code rate, ‘under WC MT jamming. This shows that

: increasing the code length must be done so as to allow a good signalling scheme to be used,

otherwise performance may actually decrease. From Table 2.3, it is seen that doubling the

- code length will not improve the performance for code length increases from 15 to 31, 63 to

127 and 255 to 511. It is obvious that alphabet conversion is essential to the optimal use of
RS codes, since ékcept for the length 7 code all other optimum combinations are through

alphabet conversion.

2.4 Perfo:r'man'ce of Concatenated Codes

It is well known that concatenation of an RS outer code with an inner code can form
a very powerful error correcting code[il]. An (n,k) Q-a.fy RS code is used as the outer code
and a convolutional code or a. block code is used as the inner code. Whenever necessary,
interleaving is assumed between the inner code and the outer code 80 that the mput to the -
outer RS decoder appears to have memoryless Q-ary symbol errors. 'Now R' = -—r,K where

r; i8 the code rate of the i inner code. We observe that there is a threshold effect in the BER

* performance of all concatenated codes. When Ej /Jo approaches the threshold from above,
‘the BER increases rapidly, and when E'b/Jo approaches the threshold from below, the BER

decreases rapidly. This sensitivity should be taken into account in the design of a system.

A fast drop in BER as E;/Jo incregses is desireable when an extremely low BER xﬁust be

30



Bit Error Rate 'l

10~°
107! ’ ' \§ 3 \
Rl
-2
10 (15,11)
— MT jamming
(15,11) PBN jamming W
10~3 '
e . \ \ ~ (63, 51)'
10~ H\
, (1023, 861) MT jamming — \ 4
| I
(255 213) PBN ]ammzng -J \ \ \
-5
10 (1023, 861) PBN ]ammzng — :
(255 213)
MT jamming
1K

6 7 8 9 10 11 12 13 14 15

~ Ey/Jo (dB)

Flgure 2.14: BER performance of the (15 11), (63 51), (255, 213) and (1023,861) RS codes
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