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• In noncoherent frequency hopped spread spectrum communication systems, M-ary fre- 
• 
• quency shift keying (FSK) is the usual form of modulation. In this paper, coded systems are 

• studied which consist of convolutional codes with the codewords mapped onto multiple tone 
• 
• signal sets. The signals employ the same set of orthogonal tones as M-ary FSK, but several tones 
• 
• may be transmitted simultaneously. This allows an increase in the number of signals, to 

• accommodate the redundant information introduced by the coding, without any bandwidth 
• 
• expansion. Some of Ungerboeck's rules for assigning signals to the trellis branches are em- 
O  
• ployed. 
• 

The results were obtained for transmission over an additive white Gaussian noise channel • 
• with both coherent and noncoherent detection. Viterbi decoding was used, with both hard and 
O  
• soft decoding metrics. Simulation results and error bounds are presented. Seven different 

coded modulations which encompass information rates of 1, 2, and 3 bits per signalling interval, • 
• and employ sets of 2, 3, 4, or 8 orthogonal tones, are considered. Of the codes provided, the 

• minimum performance improvement is 2 dB compared to the reference M-ary FSK. The 

gle 
maximum improvement achieved was 4.6 dB for the case of two tones. As would be expected, 

• the best performance is obtained with soft decision decoding. 
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• • 
• 
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• 

•
• 	 CHAPTER ONE 

• 
• 
• 

INTRODUCTION • 
• 
• 
• 1.1 Background 

• 
• 
• The purpose of this study is to investigate methods of improving the performance 

• 
• of a communications system by the use of coding. A block diagram of the coded system 

under consideration appears in Figure 1.1. The actual system is intended for digital • 
• satellite communications, and may be incorporated into a frequency hopped spread 

• 
• spectrum anti-jam application. The type of modulation considered is frequency shift 

• 
•

keying (FSK) in which one of several different tones is sent in each signalling interval. 

, • 
Details of the modulation scheme and the receivers employed are given in Chapter two. 

• 
• 
• 

The basic principle of coding is that redundant information is added to the • 
• information bit stream so that transmission errors may be detected and/or 'corrected. 

• 
• Because of this redundant information, more signals must be sent over the channel to 

• 
•

maintain the same information transfer rate as in the uncoded case. This can be 

• accomplished by using the same set of signals at a faster signalling rate, or by increasing 
• 
• the number of signals used (signal set expansion). Both of these methods usually require 

• 
• a larger bandwidth than the original uncoded scheme for noncoherent FSK signalling. 

• 
Alternatively, the information rate may be lowered to maintain the same bandwidth • 

• occupancy. 

• 
• The goal of this study is to find a method of improving the system performance 
• 
• without sacrificing the data rate or increasing the bandwidth required. In frequency 

• 

• 
• 
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- 3 - 

hopped systems, the processing gain is the ratio of the overall system bandwidth to the 

bandwidth occupied during each hop, and it indicates the ability of the system to reject 

jamming noise. Increasing the modulation bandwidth decreases the processing gain of 

the system, which is undesirable. The technique proposed in this study is to use 

convolutional codes with Viterbi decoding to improve error performance. The signal set . 

is expanded by the use of multiple tone signals to accommodate the redundant bits, 

instead of the single tones which are used in conventional M-ary FSK. This does not 

increase the modulation bandwidth and thereby affect the processing gain. This study 

considers the performance of the encoder/decoder and modulator/receiver over an 

additive white Gaussian noise (AWGN) channel. 

1.2 Literature Review 

There have been several studies of the application of conventional coding to 

noncoherent anti-jam communication systems [1,2,3,4]. These papers explore the use 

of various codes to reduce the effect of a partial band jamming signal. Block codes, 

convolutional codes, and repetition codes (diversity) have all been investigated, as well 

as different combinations of concatenated codes. Reed-Solomon codes and 

convolutional codes both have good performance, especially when combined with 

diversity. Conventional M-ary FSK modulation was employed in all cases, and usually 

bandwidth expansion was allowed to accommodate the coding. Both hard and soft 

decision demodulation have been considered. Hard decision receivers select which 

signal is closest to the transmitted signal and relay that decision to the decoder. A 

metric, which is proportional to the logarithm of the probability that each signal was 

received, is computed by a soft decision receiver and used by the decoder. In a jamming 

environment, soft decision decoding is not desirable unless there is side information 
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about the presence of the jammer, because jammed signals seriously degrade the 

operation of the decoder. If side information is available, soft decision demodulation 

gives the best performance; otherwise hard decisions are superior [1]. This report does 

not consider the effects of jamming or frequency hopping on the communication system, 

but considers the performance in white noise. It is noteworthy that convolutional codes 

showed good performance under jamming conditions [3,4]. The Viterbi decoder is also 

readily adaptable to accept hard or soft demodulator decision variables. 

There are two papers which consider the application of coding to noncoherent FSK 

signalling [5,6]. They both employ conventional M-ary modulation schemes and require 

bandwidth expansion or reduced data rate to accommodate the coding. The first study 

[5] considers continuous phase FSK, which has phase continuity between tones in 

subsequent signalling intervals, and also uses non-orthogonal tone spacings. The 

demodulation technique, although noncoherent, makes use of the phase continuity and 

employs an unconventional receiver structure. Practical frequency hopped systems, 

where the hopping occurs over large bandwidths, cannot maintain phase continuity 

between hops, and so these modulations are inappropriate. Keightley [6] studied the use 

of convolutional codes with binary and 4-ary FSK. Noncoherent demodulation with hard 

decisions was used for application to a frequency hopped spread spectrum system. The 

coding gain observed at a bit error rate (BER) of 10-5  was approximately 2 dB in the 

binary case, and negligible in the 4-ary case. The codes employed had rates of 1/2 and 

1/3 with constraint lengths of 7 and 8 respectively. Thus the system transmission rates 

were reduced to 1/2 and 1/3. 

Much work has been done recently on trellis coding [7,8,9,10] and a functioning 

system has been implemented in a modem. This technique provides large coding gains 
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without bandwidth expansion or reduction of data rate. All of the documented studies 

have been confined to coherent communication systems ,  in which the carrier may be 

both amplitude and/or phase modulated. The uncoded signal set is expanded by adding 

different levels of phase and amplitude modulation without requiring additional 

bandwidth. The resulting expanded signal constellation contains a symmetrical array 

of signal points. This signal set is partitioned or subdivided into subsets which have 

increasing distances between signal points in the subsets. The signal points are then 

assigned to the codewords of a convolutional code, according to a set of rules designed 

to provide maximum coding gain. This study employs some of the concepts of trellis 

coding applied to FSK signal sets. The signal constellations are expanded by using 

multiple tone signals so that additional bandwidth is not required. Signal set partitioning 

is also carried out, but not in the same manner as in coherent systems. The multiple tone 

signal constellations cannot -2r.i1- ;iined into subsets with increasing spacing between 

signal points. However, some of the rules from trellis coding are employed when 

mapping codewords onto signals. It is anticipated that the application of the principles, 

of trellis coding will provide significant coding gains because of the success realized in 

coherent systems. 

1.3 Report Summary 

This report is divided into four chapters. An indication of the problem under 

consideration and the extent of research in this area has been given in the introductory 

chapter. Chapter two contains a detailed theoretical explanation of the various 

components in the system. First the modulation scheme and the structure of the different 

receivers is explained, followed by a description of the error correcting codes and the 

operation of the decoder. The second chapter concludes with an explanation of how the 
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coding and modulation schemes are combined in the overall system and presents some 

bounds on error performance. There are seven different cases which were investigated, 

and their characteristics are detailed in this chapter. 

In general, the problem of theoretically evaluating the error performance of the 

noncoherent coded system does not appear tractable, and so computer simulations were 

carried out. Chapter three is a presentation of the results of the simulation programs. 

A brief description of the program structure is given first, followed by error performance 

curves for each of the seven cases considered. The results for all the cases are 

summarized in a table and then the performance of each case is discussed in detail. 

Chapter four contains the general conclusions which may be derived from the 

simulation results. Suggestions for further research on this problem are given also. 
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CHAPTER TWO • • • 
• 
• THEORY 

• 
• • 
• 2.1 Modulation 

• • • 
• 
• 2.1.1 Modulation Scheme 

• 
• 
• The reference modulation for this study is M-ary FSK. This scheme is commonly 

• used in frequency hopped spread spectrum satellite systems for digital communication 

• [1,6 ] . One of a set of M tones is sent in each signalling interval (T seconds). The number 

• of tones (M) may be 2, 4, 8, or 16 corresponding to 1, 2, 3, or 4 bits of information per • 
• signal. The tones are orthogonally spaced in the frequency domain, which entails a 

• 
• minimum frequency difference of 1/2T hertz between adjacent tones. 

• 
• 
• The alternative modulation schemes, which allow coding without rate reduction, 

• 
• are divided into two types. The first expanded 1-1-7 -  ulation technique employs the same •  
•

set of orthogonal tones, but more than one tone can be transmitted in each interval 

• (jT,(j+1)T). All possible combinations of the M tones are used, and the signal space is 

• 
• signal energy, but the variation in energy bween signals for this multiple tone case • 
• 
• 
• 

• 

• 
• expanded to 2m signals which transmit M bits per symbol period. This multiple tone • 
• signal constellation does not require any additional bandwidth, but there are other 

• 
• considerations. The transmitter requires increased power to send several tones 

• 
•

simultaneously, if each tone has the same energy as a single tone in the reference 

• system. The different modulation schemes will 	compared with the same average 
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8 

could require a transmitter with a larger peak power capability. This signal constellation 

also includes a zero signal (no tones sent), which could be undesirable in some systems. 

The spacing of signals in the constellation has a significant effect on the system 

performance. In the reference M-ary FSK system, the single orthogonal tones are 

equidistant in the signal space. The multiple tone signals with constant energy tones 

form the vertices of a hypercube in M dimensional space, where M is the number of 

tones. This can best be visualized in three dimensions as shown in Figure 2.1. This first 

type of modulation is used in four of the seven cases to be considered. Case lA employs 

two tones, Case 2A employs three tones, and both Cases 2B and 3A use four tone signal 

sets. 

The second type of multiple tone signal set was devised to reduce the variation in 

signal amplitude among the various possible signals. The same set of orthogonal tones 

is again employed. Instead of permitting all possible tone combinations, a more limited 

subset is allowed to comprise the signal set. For the two and four tone cases, only single 

tones and pairs of tones are used as signals. The eight tone case employs single tones 

and sets of three tones. The pairs and triples of tones have the amplitude of each tone 

reduced so that the signal energy is equal to that of a single tone signal. The zero signal 

is excluded from these signal sets and therefore the signal energy is constant for this 

scheme. This makes demodulation simpler as will be explained in the discussion of 

receiver structure. 

The constant signal energy multiple tone scheme is used in three cases which were 

simulated. Case 1B employs two tones and thus only three signals are available in each 

signal interval. These signals are si (t) = cos w i t, s2 (t) = cos w2t , and 

s3 (t) = ( cos w i t + cos w2t )/ 	. The modulation is performed over two symbol intervals 
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(2T) so that nine possible combinations, using three signals per period, are available. 

Eight of these points were chosen to represent three bits of data in each interval of 2T. 

For the case of four tones, there are four single tone signals and six different possible 

pairs of tones. Simulation Case 2C employs eight of these ten signals in the 

constellation. This allows three bits to be transmitted during each symbol interval (T 

seconds). The final case employing the second alternative modulation scheme is 

designated number 3B and uses eight orthogonal tones. There are eight signals 

containing a single tone and fifty-six possible three tone combinations. The combined 

signal constellation has sixty-four signal points which permits transmission of six binary 

digits with each signal. 

The multiple tone modulations with constant signal energy have an irregular 

spacing between points in the signal constellation. The maximum spacing between 

signals is the same as the distance between orthogonal tones, and occurs between 

signals with no tones in common. When signals possess common tones, the spacing is 

reduced. The more tones in common between two signals, the smaller the distance 

between the two. The amplitudes of the tones in common between the signals also affect 

the spacing. This irregular spacing must be considered when mapping code words onto 

the signal points, and is discussed in the third section of this chapter. 

2.1.2 Coherent Receiver 

The coherent receiver is the optimum receiver for reception in the presence of 

additive white Gaussian noise (AWGN) when the phase of the transmitted signal is 

known. Then the local oscillator is perfectly matched to the incoming tones to eliminate 

any phase offset. This receiver cannot be used in the frequency hopped spread 
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spectrum system because phase continuity between subsequent signal tones and 

between frequency hops is not provided by practical transmitters. These phase jumps, 

and the phase offsets introduced during transmission, preclude the matching of the local 

oscillator to the transmitted signal. However, the coherent receiver provides the best 

possible performance that could be achieved, and will be included for purposes of 

comparison. The structure of the coherent receiver is simpler than the noncoherent 

receiver, and this allows a simulation to be performed more quickly and easily. Also, the 

performance of the coherent receiver can be readily analyzed, and there are theoretical 

results that provide verification of the simulation program. If coherent demodulation was 

actually used, a more efficient modulation scheme than FSK would likely be employed. 

The usual optimum coherent receiver [11, p. 235; 12,  p.491  calculates the squared 

Euclidean distance between the received signal (r(t)), and each of the possible 

transmitted signals (se)). A decision is made in favour of the signal closest to the 

received signal, based on the minimum of the computed distances. The squared 

distance is given by 

d = f [r(t) — s1(01 2dt 

T 	 T , 

= f r4 (t)clt — 2f r(t)si(t)dt + f si`(t)dt 
ID 

The first term in (2.1) is constant, independent of the index i, and so may be neglected 

in the search for the nearest si(t) . The remaining two terms can be multiplied by -1/2 to 

form a decision variable which is now maximized. 

(2.1) 
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2 
Li  = f r(t)si(t)dt — —

2 
f

0 
si  (t)dt 

= q,  

The structure of this receiver is well-known [11, p. 235; 12, p. 49] and is shown for two 

cases in Figure 2.2. The receiver for conventional binary FSK is shown in part (a) of the 

diagram, where si (t) = cos w i t and s2(t) = cos o2 t. The multiple tone scheme with 

different signal energies is demodulated by the system in part (b). In this case, the 

signals are  s0(t) = 0, si (t) = cos o i  t , s2(t) = cos o2 t , and s3(t) = cos o i t + cos o2t . For 

constant energy signals, E, is constant for all i, and the decision variable becomes simply 

q. .  The decision variables for multiple tone signals are in general obtained by summing 

the variables for each tone in the signal, and scaling to account for the signal energy. 

This means that the multiple tone receiver requires only one correlator for each tone. 

The theoretical error probabilities for uncoded signalling are easily obtained for the 

baseline system of M-ary FSK with coherent reception. The probability of symbol error 

for an orthogonal signal set over an AWGN channel is given by [11,  p.257;  13, p. 120] 

cc 	 a 

Ps  1 — f pn(ce — VEs  )da[f pn(e)d3]A4-1  

where M is the number of signals (1e. tones) and 

2 
1  

P(œ) —  
 exp 

v27 

is the Gaussian probability density function. The bit error probability is obtained from 

the symbol error probability as 

(2.2) 

(2.3) 
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Figure 2.2 Coherent Receiver 
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0 
• 
0 
0 • 
• 
• 
O 

(2.4) 	0 • 
1 AA 

VI 

2  
Pp — 	Pe 1  

• 
• The integral in equation (2.3) is tabulated in Golomb [13,  P.  196] and these results were • 

used for the baseline performance curves with coherent reception. 	 • 
• 
• 

The theoretical performance may also be obtained for the case of multiple tone 	• 
• 

signalling with constant energy tones. With the ideal coherent receiver, the signal 	• 
• 

constellation may be considered as a rectangular signal set [11, p. 254] with error • 
probabilities given by 	 • 

• 
• 

Ps = 1  —(1  P)A4 	 (2.5) 	0 

lb 
d  PB  p = Q( 	 (2.6) 	• V2No 	 • 

• 
• 

where • 
• 
• M is the number of dimensions (le. the number of tones), 	 • 
• 
• 
• 
• 

t
2 

Q(x) = 	1  f x  v _277   exp — ---dt 2 	 • 
• 
• 

d = Es  • 
• 

Es  is the energy of a single tone, and 	 • 
• 
• 

No  is the spectral density of the Gaussian noise in watts/hertz. 	 • 
• 
• 
• 
• 
• 
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The multiple tone signalling schemes with constant signal energy do not form a 

rectangular signal set. Because of the irregular spacing of the signals, the probability 

of error varies with the signal that was sent, due to the different proximities of other 

signais. This does not allow for a simple expression forthe error performance as in the 

previous cases, and the results are obtained strictly by simulation. 

2.1.3 Noncoherent Receiver 

The introduction of a random phase angle (0) into the received signal, increases the 

complexity required for the optimum receiver. The 'structure of this noncoherent receiver 

is common [11, p. 519; 12, p. 104], and is shown in Figure 2.3. Two receivers appear in 

the diagram. Case (a) demodulates conventional binary FSK, 'where s i (t) = cos w 1 t and 

s2 (t) = cos w 2 t . In part (b), multiple tone signals with all possible combinations of two 

tones, and variable signal energy are demodulated. The signals for this receiver are 

s0 (t) = 0 , s i (t) = cos w i t , s2 (t) = cos w 2 t , and s3 (t) = cos w 1 t + cos w 2 t . There are two 

correlators for each signal, one in phase and one in quadrature, whose outputs are 

combined to negate the effect of the random phase. Multiple tone signals are assumed 

to have the same phase angle for all tones, and the probability distribution of the random 

phase is considered to be uniformly distributed between 0 and 27 radians. 

This receiver calculates the probability of the received signal, given that the ith 

signal was sent, for all members i of the signal set. This probability is known as the 

likelihood function, and its logarithm is used as the decision variable. The signal with 

the maximum probability is chosen as the transmitted signal. The development of the 

theory for this receiver is rather lengthy, and can be found in the references [11, p. 511; 

12, p.103], and so just the decision variable itself will be given here as 



(b) Multiple Tone FSK 

Figure 2.3 Noncoherent Receiver 
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(2.7) 

• 
• - 1 - 
• 7  
• 
• 
• 

L, = 1414-2, 2X 
• No 

• 
• 
• where 

• 
111 
• 

• • 
• is the zero order modified Bessel function of the first kind, 

• • 
•

Ei = f s?(t)dt 

• 
• is the energy of the ith signal, 

• 

• No  is the spectral density of the Gaussian noise in watts/hertz, and 

• • 
• X12 = [f r(t)s,(t)cht ±[i r(t),§,(t)dit 	 (2.8) 
• 
• 
• is the sum of the squares of the correlator outputs for the in-phase and quadrature 

eive  
components of the correlation with the ith signal. 

• 
• 
•• 	 si(t) is the in phase component of the signal since the signals are made up of 

• 
• cosine tones, and 

• 

• §;(t) is the quadrature component of the signal, which consists of sine tones at the 

• same frequencies. 

• 
• 
• 
• 
• 

10 (x) = -1- f 2  x p x cos(0 a)1:210 27r o 



(1)k+1 
	(A4 — 1) 

exp 
k + 1 	k 

Ps  

M-1 
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(2.9) 
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As was the case for the coherent receiver, the decision variables for multiple tone signals 

can be obtained from the correlator outputs for the individual tones. This means that 

only one pair of correlators is required for each tone in the system. The signal si(t) giving 

rise to the maximum Li  is chosen as the signal sent. 

For the baseline system and other constant signal energy cases, the decision 

variables can be further simplified. The exponential function in (2.7) will be a constant 

because E.;  is the same for each index i, and so it can be ignored. To maximize the 

modified Bessel function, it is only necessary to maximize its argument because the 

Bessel function is a monotone increasing function. Therefore the optimum decision will 

be made by maximizing X1  or X?. This receiver simplification results in the structure 

shown in Figure 2.3 (a), and is also known as square-law combining. The multiple tone 

modulation system with unequal signal energies cannot employ the simplified decision 

variables obtained from the correlator outputs. The modified Bessel function and the 

exponential function must be calculated in order to make a maximum likelihood decision. 

The theoretical symbol error probability for noncoherent M-ary FSK is given by [11, 

p. 577] 

where 

A!  A _

B 	B!(A — B)! 



• 
• 
• 

• 
• 
• The theoretical performance of the multiple tone noncoherent receiver is difficult to 

• obtain. The presence of the Bessel function and the exponential function in the decision 

• 
variables of the variable signal energy case makes the analysis difficult. The constant 

• signal energy multiple tone modulation has irregular signal spacings which impedes the 
• 
• evaluation of theoretical error probabilities. 

• 
• 
• 
•

2.2 Coding 

• 
•• 2.2.1 Description of Codes 
• 

• Convolutional encoding with Viterbi decoding is one of the more widely used • 
• methods of forward error correction. This is due to the ease of implementation and the 

• 
• relatively large coding gains obtainable from simple codes. As previously mentioned, this 

• 
coding technique was chosen for consideration in this report. There are several different • 

• ways to describe convolutional codes, which will be briefly summarized below. More 
• , • 

information on convolutional codes may be obtained from the references [12, p. 227; 14, 
• 
• p.227]. 
• 
• 
• The first way to visualize a convolutional encoder is as a binary shift register with 

• 
taps connected to modulo two adders. The information bit stream is shifted into the 

• register in groups of b bits, and there are n modulo two adders which produce n output 
• 

bits for each codeword. The rate of a code is given by the ratio b/n, which is the ratio 

• 
• 
• 

•

- 19- 

.   
• 
• and the bit error probability is 

• 
• 
• 1 M 

2  • PB «.= m _ PS 	 (2.10) 

• 
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of input to output bits. The number of b-tuples in the shift register is denoted by k, and 

so the encoder retains b(k - 1) bits of the previous input data which define the state of 

the encoder. The value v = b(k — 1) is defined as the constraint length of the code, and 

is the logarithm to the base two of the number of states. The length of the shift register 

(bk) is sometimes considered as the constraint length, but the previous definition (v) will 

be used here as it is more useful for comparing codes of different rates. As the b-tuples 

of input data are shifted into the register, the state of the encoder changes and the 

output data is determined by the tap connections from the register to the adders. These 

connections are usually specified by generator polynomials or a generator matrix. A 

simple code with rate 1/2 and constraint length 2 is used as an example throughout this 

section. A diagram showing the shift register tap connections and the generator matrix 

appears in Figure 2.4. 

Another way to describe a convolutional code is by means of a trellis diagram. 

The states of the code are assigned to nodes in the trellis and branches between states 

indicate a particular input and corresponding output symbol. It is obvious that a given 

input data sequence can be mapped onto a certain path through the trellis. There are 

2b branches which emerge from each node, corresponding to each of the possible 

inputs. The branches remerge at the next stage in the trellis in groups of 2b at each state. 

The trellis for the example code is shown in Figure 2.5. 

The final representation of a convolutional code is by a state diagram. The states 

of the code are again assigned to nodes in the diagram, and directed paths between 

states correspond to particular input and output symbols. The state diagram can be 

used to obtain the generating function of a code, which allows the weight profile to be 

determined. The state diagram for the model code appears in Figure 2.6. 
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Figure 2.4 Convolutional Encoder 
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Figure 2.6 State Diagram 
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The weight profile is significant because it directly affects the error performance 

of the code. All the codes under consideration are linear, and therefore the all zeroes 

path may be considered as the correct path for the purpose of analysis. The weight or 

distance profile is obtained from the set of paths which diverge from the correct path and 

then remerge, corresponding to possible error events. The distance measure, for hard 

decision decoding, is the Hamming distance between the error path and the correct path. 

This is the number of output bits in which the two paths differ. These paths may be 

observed in the trellis diagram, and the weight profile obtained by adding up the 

Hamming weight of the output symbols along ,  all paths which diverge from and then 

remerge with the all zeroes path. 

A more tractable description of the weight profile is the code generating function. 

If the state diagram is redrawn with the zero state split, all the paths originating in one 

half of the zero state, passing through the other states, and entering the other half of the 

zero state will represent error paths. The branches of the state diagram are labelled 

D a  L lb 	 (2.11) 

where 

D represents the distance or output weight, 

L represents the length of the path, 

I represents the input weight, 

a is the Hamming weight of the output symbol, and 
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b is the Hamming weight of the input symbol. 

Using signal flow graph theory, the state equations of the diagram are solved to yield the 

generating function T(D,L,I). This function has the form of an infinite sum of products 

of D, L, and I. The coefficient of each term represents the number of paths with distance 

of the exponent of D, input weight of the exponent of I, and length of the exponent of L. 

The sum may also be represented as a fraction of polynomials in D, L, and I. To obtain 

the weight profile, L and I are made equal to unity. The resulting function T(D) yields the 

number of paths at various distances from the correct path. The redrawn state diagram 

and the code generating function of the example code are shown in Figure 2.7. The free 

distance (df) is the minimum distance of any error path from the correct path, and is a 

good indicator of how well the code will perform. 

The codes used in this study were obtained from other papers which investigated 

optimal codes [15, 16, 17]. The best codes had maximum free distance (df) for given code 

rate and constraint length. Only relatively short constraint length codes were used so 

that Viterbi decoding could be utilized. The optimal rate 1/2 codes were used in Case 

1A [15]. They were also combined to form a rate 2/4 code for Case 2B and a rate 3/6 

code for Case 3B. A dual-3 rate 1/2 code was also considered in Case 3B [17]. Rate 

2/3 codes with maximum df  were employed in Cases 1B, 2A, and 2C while rate 3/4 codes 

comprised Case 3A [16]. The various code generator matrices are shown in Table 2.1 

and a complete description of each case appears in Table 3.1. 

2.2.2 Maximum Likelihood Decoding 

There has been much published work on the decoding of convolutional codes [12, 

p. 235; 18, 19, 20]. The Viterbi algorithm for maximum likelihood sequence estimation is 
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TABLE 2.1 

Convolutional Code Generator Matrices 

Rate Constraint Length 	Free Distance 	Generator Matrix 

1/2 	 2 	 5 	 [11 01 11] 

1/2 	 6 	 10 	 [11 01 11 11 00 10 11] 

2/3 	 4 	 5 	
r101 100 110] 
Loll 101 011 j 

2/3 	 6 	 7 	
r101 111 010 1011 
Loll in 101 011] 

2/4 	 6 	 6 	
[1100 1100 0100 11001 
L0011 0011 0001 0011 j 

[1001 1111 00001 
3/4 	 5 	 5 	 0101 0101 1001 

0011 0100 0011 

100100 100101 
3/6 	 3 	 6 	 • 010010 010100 

001001 001010 

[110000 010000 1100001 
3/6 	 6 	 5 	 001100 000100 001100 

000011 000001 000011 
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• 

	

the most popular decoding technique for codes of short constraint length. This 	• 
• 

	

technique was investigated as being the most likely to be employed for a digital satellite 	• 
• 

channel. A brief summary of the decoding operation follows. • 

	

The basic problem can be most easily visualized as selecting the best path through 	• 

	

the code trellis, based on information from the receiver. The maximum a posteriori 	
0 

	

probability for the path is used as the selection criterion. A decision metric for each 	• 
• 

branch is computed based on the received signal in each signalling interval. The metric 

• 
is proportional to the logarithm of the likelihood function, in keeping with the coding 

• 
literature [12, p. 238; 21, p. 188]. This metric is maximized by the decoder. The metric • 

	

may also be considered as a distance measure between code vectors, in which case the 	• 
• 

negative log likelihood would be used and the decoder would perform minimization of 

the metric. Proceeding with the convention adopted, we have 	 • 
• 

• 
P(r xk) = flp(r i  I xi/ ) 	 (2.12) 

• • 
for a memoryless channel, where • 

• 
• 

r is the vector of receiver outputs with components ri  and • 
• 

xk is the code symbol vector for the kth trellis path with components 

• 
• 

The metrics are obtained as 

• • 
Mk = In p(r xk) = EmP 	 (2.13) 

• 

• 
• 
• 
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• 

• where 
• 
• 
• m ik 

= In p(rilX) 	 (2.14) 
• 

• 

• Mk is the metric for the kth path, and 

• fn,k is the metric for the ith code symbol on the kth path. 

To accumulate a metric for every possible path through the trellis would be 
• 
• prohibitive, as the number of paths grows exponentially at each stage. The Viterbi 
• 
•

algorithm makes use of the fact that paths remerge into each node in groups of 2b at 

• each stage in the trellis. It is necessary to keep track of only one optimum path leading 

• 
• the trel! 	 path will never be discarded by this method because 

•
• 

none of the paths originating from a given state can accumulate a better metric than the 

survivor. • 

• 
•

The decoder must select a single most likely path in order to deliver an output 

• symbol. If a sufficiently long path history is kept, the 2 ,) survivor paths (one for each 

• state) will share a common stem, and the oldest bits corresponding to all the paths will 

• 
• be the same. For the sake of reduced complexity, it is desirable to truncate the path 

• 
history at some fixed decoding depth. Several authors [12, p. 258; 14, p. 261] have • 

• shown that little degradation from optimum performance occurs when the decoding 

• 

• 
• into each state. The metric for each branch (branch metric) into a given state is added 

• 
• to the accumulated metric (state metric) for the best path into the previous state from 

• 
•

which the branch originated. These 2b metrics are compared, and the best path is 

• retained as the survivor into that state. This process is repeated at each stage through 

• 
• • 



• 
• 

Ô  
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 
le• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
a 
• 
a 

- 30 - 

depth is chosen to be from five to ten times u , depending on the code rate. The output 

bits are chosen from the path that currently has the best accumulated metric. 

The actual metric used by this decoder may come from either a hard or soft 

decision receiver. The nature of the metric employed does not affect the operation of the 

decoder, although it will influence the error performance. For a hard decision receiver, 

bit decisions are made at the demodulator output, prior to decoding. The negative 

Hamming distance between the received symbol and the output symbol of each branch 

is used as the branch metric in this case. The Hamming distance between codewords is 

generally proportional to the distance between the corresponding signals in the signal 

space. Thus minimizing the Hamming distance between code vectors, or equivalently 

maximizing the negative Hamming distance, is the usual hard decision metric. If the 

added complexity of a soft decision demodulator can be tolerated, then more information 

is available and the branch metric is proportional to the logarithm of the likelihood 

function. This results in better error performance. 

2.3 Signal Space Mapping 

The assignment of codewords to signal points has an important influence on the 

overall system performance. Previous work on the design of optimal codes has used the 

Hamming distance between codewords as the distance measure between paths [15, 16]. 

The Euclidean distance in the signal space between points in the signal constellation 

actually determines the probability of a transmission error. Ideally, the codewords would 

be assigned to signal points with Euclidean distance spacings proportional to the 

Hamming distance of the codewords, so that erroneous decoding into a near neighbour 

would result in few errors. 
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Trellis coding [7, 8] considers the actual paths through the trellis when assigning 

signals. As previously stated, the signal conf::'ation is divided, by a method termed set 

partitioning, into subsets with maximum spacing ID,1ween signal points. The signals are 

assigned to branches in the trellis according to a set of rules that attempts to maximize 

the Euclidean distance between signal error paths. These rules are as follows 

1. all signals should occur with equal frequency and with a fair amount of regularity 

and symmetry; 

2. parallel transitions between states are assigned signals from the subset with 

maximum signal spacing; 

3. transitions originating from the same state are assigned signals from a subset with 

maximum possible spacing; 

4. transitions ending in the same state are assigned signals from a subset with 

maximum possible spacing. 

The papers on trellis coding [7, 81  also recommend that the signal set be expanded to 

twice the number of points in the uncoded signal set in order to achieve the maximum 

coding gain without unnecessary complexity. 

The multiple tone signal sets which use constant energy orthogonal tones (ie. 

variable signal energy), form a rectangular constellation as described previously. If each 

bit of a codeword is mapped onto a different tone, the Euclidean distance between signal 

points is proportional to the square root of the Hamming distance between codewords. 
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This situation makes the mapping of codewords onto signal points straightforward, in 

order to obtain optimum coded performance. 

The constant signal energy constellations have an irregular signal spacing, which 

varies with the number of tones in common between signals. The Euclidean distance 

between signals cannot be easily mapped onto the Hamming distance between 

codewords, and so the rules for trellis coding were applied. Set partitioning could not 

be done in the usual way because of the irregular signal spacings. The signal sets were 

divided into groups of 2b (for a rate = b/n code) with maximum spacing between all the 

members of each subset. All of the codes used have a similar structure, so that the 

different signal sets may be subdivided the same way. None of the codes have parallel 

transitions, so that the second rule of trellis coding may be disregarded. The branches 

in the various trellises diverge and remerge in groups of 2b according to the rate of the 

code. For all the optimum codes used, the same group of codewords are associated 

with the branches that diverge from and remerge into a given state. This allows for the 

partitioning of the signal sets into groups of 2b , to produce a desirable mapping onto 

the codewords. The one exception to this situation is the dual-3 rate 1/2 code used in 

Case 3B. The same groups of codewords do not appear on the diverging and remerging 

branches, so that trellis coding rules three and four cannot be satisfied simultaneously. 

No alternate mapping could be found to improve the spacings between error paths, so 

the same mapping scheme as for the other rate 3/6 code was employed. 

The actual assignment of codewords to signals for the constant signal energy 

multiple tone constellations are shown in Table 2.2. The codewords are shown as 

decimal numbers, grouped according to the branch assignments, and the signals are 

represented by ones and zeroes. Each digit of the signal representation corresponds to 



0 	01 01 

3 	10 01 
5 	01 10 
6 	10 10 

1 	01 11 
2 	11 01 
4 	11 10 
7 	10 11 

0 	0001 

3 	0010 
5 	0100 
6 	1000 

1 	0110 
2 	0011 
4 	1001 
7 	1100 
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TABLE 2.2 

Signal Space Mappings 

Case 1B: Rate=2/3, 2 tones, Constant Energy Signals (signalling over 2 1) 

Case 2C: Rate=2/3, 4 tones, Constant Energy Signals 

Case 3C: Rate-3/6, 8 tones, Constant Energy Signals 

0 0001 0000 	1 	0010 0000 	4 	0100 0000 	5 	1000 0000 
3 1110 0000 	2 	1101 0000 	7 	1011 0000 	6 	0111 0000 
12 1000 0011 	13 	0100 0011 	8 	0010 0011 	9 	0001 0011 
15 0100 1001 	14 	1000 1001 	11 	0001 1001 	10 	0010 1001 
48 0010 0101 	49 	0001 0101 	52 	1000 0101 	53 	0100 0101 
51 1000 1100 	50 	0100 1100 	55 	0010 1100 	54 	0001 1100 
60 0100 0110 	61 	1000 0110 	56 	0001 0110 	57 	0010 0110 
63 0010 1010 	62 	0001 1010 	59 	1000 1010 	58 	0100 1010 

16 0000 0001 	17 	0000 0010 	20 	0000 0100 	21 	0000 1000 
19 0000 1110 	18 	0000 1101 	23 	0000 1011 	22 	0000 0111 
28 0011 1000 	29 	0011 0100 	24 	0011 0010 	25 	0011 0001 
31 1001 0100 	30 	1001 1000 	27 	1001 0001 	26 	1001 0010 
32 0101 0010 	33 	0101 0001 	36 	0101 1000 	37 	0101 0100 
35 1100 1000 	34 	1100 0100 	39 	1100 0010 	38 	1100 0001 
44 0110 0100 	45 	0110 1000 	40 	0110 0001 	41 	0110 0010 
47 1010 0010 	46 	1010 0001 	43 	1010 1000 	42 	1010 0100 
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a tone, and a one indicates a tone which is sent as part of the signal. The use of the 

signal space mapping described here was compared to an arbitrary mapping scheme for 

the four tone signal constellation. An improvement of approximately 1.5 dB (En/No) was 

obtained for a rate 2/3 code with constraint length of 6. 

2.4 Error Performance 

The performance of the coded system depends on the structure of the code, the 

decoding metric, and the coding channel. The coding channel is the effective channel 

as seen by the encoder and decoder. It includes the properties of the modulator and 

demodulator, as well as the actual transmission channel. Further details of the following 

development of error bounds may be found in the references [12, p. 242; 14, p. 243; 21, 

p. 192; 22]. 

The first step in obtaining the error performance of the system is to determine the 

pairwise error probability between two transmitted code vectors. This is the probability 

that the meiric for the error path is larger than the correct path metric for a given received 

signal sequence, and is expressed by 

p(x 	= p tEm(rn ,) ?_Em(rn , xn)} 	 (2.15) 

The Chernoff bound may be applied to the pairwise error probability to obtain 

p(x 	< HE{ exp(x[m(rn , în) — M(rn , Xn)11)(n} 	 (2.16) 

For most metrics of interest, the expected value in (2.16) has the form 



min 	min r  
D = 

X > 0
D(x) = 

X > 0
E exp(X[m(r, — m(r,  , x)])  I x}1 (2.19) 

X 
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D(X) = E exp(x[m(rn , ) .in) — m(rn , xn)])  I  xn } 	 (2.17) 

so that 

p(x 	< [D(X)] w 	 (2.18) 

where w(x, is the Hamming distance between x and k or the number of bits which differ 

in the two sequences. For the case of an arbitrary metric, the parameter D is given by 

When the maximum likelihood metric is used for decoding, ie. 

m(r,  , x) =  In p(r I x) 	 (2.20) 

then one may use the Bhattacharyya parameter 

Z = 	p(r I x) p(r I ;() 
xox 

(2.21) 

for the value of D. 

To obtain the probability of an error event, the union bound is used to give 

PE < Ea( I WI  (2.22) 

where 



• 
• 
• 

-36- 	 • 
• 
• 

PE is the probability of an error event 

a(j) is the number of error paths of distance j, and 	 • • • 
Di is the pairwise error probability for a path of distance j. 	 • 

• 

	

Since the convolutional codes employed are linear, the all zeroes path may be 	• 
• 

considered as the transmitted sequence, and the coefficients a(j) are obtained from the 

generating function T(D) to yield 

• 
• 

PE < T(D) 	 (2.23) 	• 

with the value of D determined by the coding channel. 

• 
The bound on the probability of bit error can be obtained in a similar fashion, and 	• 

is given by 	 • 

• 
a 
• PB < -1-E 	a (i , 1) Di 	 (2.24) 
• 

• 
where 	 • 

• 
b is the number of information bits per code symbol, 	

• 
 

• • • 

41) 
• 
• 

I  is the information weight of the path (ie. the number of bit errors), and 	 • 
• 
• 

a(i,j) is the number of paths of weight j with information weight i. 	 • 

• 
• 
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The coefficients a(i,j) are the same as in the augmented generating function T(D,I), and 

the values of i are the same as the exponent of I in each term of the function. The 

augmented generating function is obtained by equating L to unity in the function T(D,L,I), 

such as that shown in Figure 2.7. The bit error bound can be written incorporating this 

function as 

1 
PB < 	

aT(D, 

— b 	ai 

The error bounds presented in this section are used to verify the simulation results 

for the cases where the coding channel can be easily characterized. The multiple tone 

signals with variable signal energy form a rectangular signal constellation which can be 

readily analyzed for coherent reception. The probability of error between two adjacent 

signals is obtained from the error function 

d  

V21\10  / 

where d is the Euclidean distance between the two signal points. The probability of an 

error event for a rectangular signal set of n dimensions (le.  n tones) is 

E' 1 —(1  — 

For the case of hard decision decoding, we may use the Bhattacharryya parameter for 

an M-ary symmetric channel as the valw, 	D 

/  
D 	

—1) PE  2 	
, . 

— 1 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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The rectangular signal set is not strictly an M-ary symmetric channel, since all of the 

cross-over probabilities between signals are not equal. However, the error bound still 

applies in this case. 

To obtain an error bound for soft decision decoding, we note that the probability 

that one code vector is decoded as another code vector is given by 

PE(w) = Q( 
 d  ) 

2No  
(2.29) 

where d is again the Euclidean distance between code vectors. The error function may 

be upper bounded by an exponential function as follows 

d 2  Q( 

 V2N0 

 d \ < 1 exn  
/ 2 	4N0  

(2.30) 

For the rectangular signal constellation, the Euclidean distance is proportional to the 

square root of the Hamming distance, and so we may write 

d VwE s 	 (2.31) 

where 

w is the Hamming distance between the code vectors, and 

Es  is the energy of a tone. 

Thus the error bound may be rewritten as 

ES  ]14/ 

PE(w) < [ exp 
4N0  

(2.32) 
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To obtain the bound for the overall probability of an error event, we sum the individual 

components over w to yield 

PE -= EPE(W) 

Es  1,,, 
Ll- a(w)[ e P 

w 
2 	x « 	4N0  

= —
1

T(D) I 
2 	 Es 

D= exp - 
4N0 

These two values for the parameter D may also be used to find the bound on the bit error 

probability for coherent demodulation of coded rectangular signal sets. Equation (2.24) 

or (2.25) may be used, with a multiplying factor of one half in the soft decision case. The 

bit error bounds were computed for the various codes used with multiple tone signals 

with fixed signal energy per orthogonal component (ie. constant energy tones). These 

bounds are plotted with the corresponding simulation results in the appropriate 

subsections of the next chapter. The performance of coding with constant signal energy 

constellations and coherent demodulation, and the performance of all the coded systems 

employing noncoherent reception are not easily evaluated. Just as the error probability 

for uncoded transmission was difficult to obtain, the evaluation of the bound parameter 

D is not tractable for these cases. 

(2.33) 
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.  
• 

CHAPTER THREE 	 • 
• 
• 
• 

RESULTS 	 • 
• 
• 
• 3.1 Overview • 

3.1.1 Program Description 	 • 

• 
The simulation program used to model the communication system was written in 

• 
FORTRAN, and run on both VAX 11/750 and IBM 3081 computers. The program is 	• 

• 
divided into a mainline routine, which handles the initialization, input, and output tasks, • 
and several subroutines which correspond to the various components of the system. The 	• 

• 
input file for the simulation contains the parameters of the code, which are the rate, the 	• 

• 
constraint length, and the generator matrix. A look-up table of output symbols • 
corresponding to various branches in the trellis is generated by an initialization 	• 

• 
Subroutine. This table is used by the encoding and decoding subroutines. The type of 	• 

1111 
demodulation (coherent/noncoherent), and whether hard or soft decisions are to be • 
made, are also indicated in the input file. The different signal space mappings are 	• 

• 
obtained by using different versions of the channel subroutine, which will be described 	• 

• 
later. • 

• 
After the initialization procedures are complete, the main program commences by 	• 

• 
generating a random bit stream. 	This is done with a library subroutine for • 
pseudorandom number generation. The information symbols are passed to the encoder 	• 

• 
subroutine which returns the encoded data symbols. These data symbols are passed to 	• 

• 
the channel subroutine which simulates the modulator, the AWGN channel, and the • 

• 
• 
• • 
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demodulator. In each signalling interval, the subroutine calculates and returns a metric 

for each member of the signal space. These metrics are then passed to the decoding 

subroutine, which constructs the received bit stream. The main program compares the 

received data to the original information bits, and keeps track of the errors. Error events, 

symbol errors, and bit errors are all tabulated. The signal to noise ratio (SNR) starts at 

one dB and is incremented in steps of one dB. One hundred thousand data symbols are 

simulated at each level of SNR. After each set of data points is processed, the three error 

probabilities are calculated and sent to a data file along with the SNR value. The SNR 

is then incremented and the procedure repeats until the error event count is less than ten 

in one hundred thousand data points at the given SNR. The output data file is used to 

plot error performance curves which appear later in this chapter. 

The encoder subroutine preserves the previous input bits which determine the state 

of the encoder. The current information symbol then determines the transition to the next 

state and the corresponding output symbol. This is accomplished by using the present 

state and input bits as an index to the table generated during initialization. The output 

symbol is contained in the table, and is returned to the mainline by the encoder 

subroutine. 

The channel subroutine receives the data symbol and several parameters of the 

modulation scheme. The SNR level, the type of demodulation (coherent/noncoherent), 

and the type, of decoding metric (hard/soft) are all passed from the mainline. Different 

versions of the channel subroutine are used to accommodate the various signal space 

mappings in the simulations of the different cases. Given the transmitted signal and the 

SNR value, a decision variable is computed for each member of the signal space. 
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• 
• 
• 
• 
• 
• 

numbers, according to the polar formula [6]. 

V 2 In S 

and 

X2  = v2 
1, V 2 In S 

	

Samples of Gaussian noise are calculated from uniformly distributed pseudorandom 	• 
• 
• 
• 

	

(3.1) 	• 
• 
• 
• 
• 
• 

	

(3.2) 	• 
• 
• 

	

are two independent samples of a zero mean, unit variance, normally distributed random 	• 
• 

variable, where 	 • 
• 

S 	+ 	 (3.3) 	• 

and S must be less than unity. 	 • 
• 
• 

21/1  — 1 	 (3.4) 	• 
• 

and • 
• 

V2  = 2U2  —1 	 (3.5) 	• 
• 
• 

	

where U1  and U2 are samples of a random variable, uniformly distributed between zero 	• 
• 

and one. A random phase angle is added to the transmitted signal for the case of • 

	

noncoherent reception. The angle (0) is assumed to be uniformly distributed between 	 • 
• 

	

zero and two pi radians, and is obtained from a pseudorandom number generated by the 	• 
• 

library subroutine. For soft decisions, the actual decision variables are returned to the • 

	

main program as decoder metrics. The data symbol corresponding to the largest 	 le 
• 

	

decision variable is determined in order to calculate the hard decision metric. The 	• 
• 

	

negative Hamming distance between the demodulated symbol and the branch symbol is 	 • 
• 
• 
• 
• 
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returned as the branch metric in this case. Details of the demodulation and metric 

calculation are given in Chapter two. 

The decoder subroutine implements the Viterbi algorithm. A bit history and path 

metric are maintained for each state of the code. At each signal interval, the metric for 

the signal corresponding to each transition in the trellis is added to the path metric for 

the originating state of that branch. The paths entering each state are compared, and 

the one with the largest metric is retained as the survivor. This process makes use of the 

look-up table of trellis states and transitions, and the information symbols for the bit 

histories also come from the table. The output bits are taken from the bit history 

corresponding to the path with the largest metric at each step. The length of the history 

maintained by the decoder varies with the code constraint length and code rate 

according to the formula 

L = 5b1., 	 (3.6) 

where 

L is the length of the bit history, 

v is the code constraint length, and 

b is the information bit rate (code rate = b/n). 

This decoder has negligible performance degradation due to path history truncation. 

Clark and Cain [14, p. 262]  suggest that path histories for near optimal decoder 

operation should be 5v for rate 1/2 codes, 8v for rate 2/3 codes, and 10v for rate 3/4 

codes. 
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TABLE 3.1 

Case Descriptions 

CASE INFORMATION CODE CONSTRAINT NUMBER OF NUMBER OF 

RATE 	RATE LENGTHS 	TONES 	SIGNALS 

1A 	1 bit/T 	1/2 	2, 6 	2 	 4 	 2.0 

1B 	1 bit/T 	2/3 	4,6 	2 	 8 	 1.0 

2A 	2 bits/T 	2/3 	4, 6 	3 	 8 	 2.0 

2B 	2 bits/T 	2/4 	6 	 4 	 16 	 2.0 

2C 	2 bits/T 	2/3 	4,6 	4 	 8 	 1.0 

3A 	3 bits/T 	3/4 	5 	 4 	 16 	 2.0 

3B 	3 bits/T 	3/6 	3, 6 	8 	 64 	 1.0 

NUMBER OF TONES = BANDWIDTH x 2T 

Epeak/Eav 
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3.1.2 Case Summary 

There are seven different coding and modulation schemes considered in this 

report. The characteristics of each scenario, and the numbering scheme used to 

disinguish them, are shown in Table 3.1. They are divided into three groups, and the 

number of the case indicates the number of information bits transmitted per signalling 

interval. There is also a letter associated with each case to differentiate the different 

code rates and modulation schemes employed. 

Four of the cases (1A, 2A, 2B, 3A) use signals which may contain any combination 

of tones. These signals have a variable signal energy, depending on the number of tones 

in the signal. They are compared to the baseline system according to average signal 

energy. For example, let Es  be the energy of a single tone. For the four tone case, there 

are sixteen signals with average signal energy given by 

1(0) + 4(E8) + 6(2Es) + 4(3E5) + 1(4Es) 

(3.7) 
= 2Es  

Therefore, the signal energy of this system is reduced by 1/2 for comparison with the 

baseline system, which has a signal energy of Es. The other variable signal energy cases 

are also scaled appropriately. The remaining three cases (1B, 2C, 3B) have constant 

energy signals, with signal energy equal to the energy of a single tone, for direct 

comparison with the baseline system. 

Each of the seven cases has several sets of results. The various systems were all 

simulated with both coherent and noncoherent demodulation, both hard and soft 

decoding metrics, and different code constraint lengths. All of the simulation results for 

each case appear on two figures, one for coherent reception and one for noncoherent 

Ea, = 
16 
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reception, each with the corresponding baseline system performance curve. The 

measure of performance on the graphs is the bit error rate (BER) plotted against the 

energy per bit to noise spectral density ratio  (Lb/No).  As mentioned previously, the error 

events and symbol errors as well as the signal energy to noise ratio were tabulated by the 

simulation program, but the bit error performance was chosen as the most suitable 

criterion for comparison. Table 3.2 shows the required Eb/No  to give a BER of 10 -4  for 

every case simulated. These values were obtained from the figures shown later in this 

chapter, with some extrapolation required on some of the curves. For data transmission, 

system performance at a BER of 10 -5  or less is usually of most interest. However, the 

simulation run time to obtain reliable data in this region is prohibitive. Some curves 

display irregular behaviour for the last data point (ie. the lowest BER point). This occurs 

because the BER is calculated using a very small number of error events, and the random 

occurrence of a single error causes a large displacement of the point on the graph. 

Since error performance curves are known to behave smoothly at low BER values, these 

points are neglected when extrapolating the curves. All performance values quoted in 

this chapter will refer to  Lb/No  in dB at the reference BER of 10-4 . 

As a verification of the simulation program performance, several test cases were 

run and compared to theoretical results. The baseline systems (2, 4, and 8-ary FSK) were 

simulated for both coherent and noncoherent demodulation, and the results matched 

closely with the theoretical performance. The modulation scheme which uses all possible 

tone combinations to obtain a rectangular signal set of 2n4  signals from M orthogonal 

tones was also simulated for the various values of M. The performance of this system, 

with no coding and coherent demodulation, reflected the theoretical error probabilities 

for rectangular signal constellations. In both cases, the error performance curves for the 

simulation matched the theoretical results to within one-half dB over the entire curve. In 
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TABLE 3.2 

Coherent Results 

HARD DECISION 	SOFT DECISION 
PERFORMANCE 	PERFORMANCE 	 PERFORMANCE 

1A 	11.5 	 9.7 (v = 2), 8.3 (v = 6) 	8.2 (i) = 2), 6.4 (v = 6) 

1B 	11.5 	 12.6 (u = 4), 12.1 (v = 6) 	9.7 (u = 4), 9.4 (v -- 6) 

2A 	8.8 	 9.2 (v = 4), 9.3 (v = 6) 	7.5 (i. ---, 4), 7.0 (u = 6) 

2B 	8.8 	 9.9 (u = 6) 	 7.4 (u = 6) 

2C 	8.8 	 9.7 (u --- 4), 9.5 (u -=- 6) 	7.3 (u --= 4), 6.8 (u = 6) 

3A 	7.4 	 9.3 (v = 5) 	 7.2 (u = 5) 

3B 	7.4 	 11.7 (u = 3), 9.9 (u = 6) 	7.7 (u = 3), 5.0 (v = 6) 

Noncoherent Results 

HARD DECISION 	SOFT DECISION 
PERFORMANCE 	PERFORMANCE 	 PERFORMANCE 

lA 	12.3 	 10.8 (v = 2), 9.4 (u = 6) 	9.2 (v = 2), 7.7 (i. = 6) 

1B 	12.3 	 12.8.(v = 4), 12.4 (v - 6) 	10.5 (v = 4), 10.0 (u = 6) 

2A 	9.6 	 10.1 (ii = 4), 9.4 (u = 6) 	8.1 (v = 4), 7.5 (u = 6) 

2B 	9.6 	 10.1 (u = 6) 	 8.0 (u = 6) 

2C 	9.6 	 10.0 (// = 4), 9.9 (u = 6) 	7.6 (y = 4), 6.9 (v = 6) 

3A 	8.2 	 9.6 (v = 5) 	 7.7 (y = 5) 

3B 	8.2 	 12.0 (u = 3), 10.0 (v = 6) 	7.8 (y = 3), 5.8 (u -=- 6) 

CASE BASELINE 

CASE BASELINE 
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coded systems which employ the rectangular signal constellations, error bounds were 

calculated as described in section 2.4. The coherent simulation results with their 

respective error bounds are shown in the appropriate subsections of this chapter. 

3.2 Simulation Results 

3.2.1 Case 1A: Rate = 1/2, 2 tones, Variable Signal Energy 

This case has the best results of those investigated. All of the coded systems 

outperform the baseline by between 1.5 and 5.1 dB at the reference BER of 10 -4 . The 

number of points in the signal space is doubled by the use of multiple tone signals so 

that optimal rate 1/2 codes can be employed. This provides a redundant coded bit for 

each bit of information transmitted, and thus good error correction ability. The two 

codes used in the simulation have constraint lengths of 2 and 6 with free distances of 5 

and 10 respectively. The longer code is quite common, and has been used in other 

satellite applications [19]. 

The results for coherent reception are shown in Figure 3.1. The improvement over 

the baseline system ranges from 1.8 dB for the short code with hard decisions, to 5.1 dB 

for the long code with soft decisions. The use of soft decisions provides a gain of 1.5 

dB over hard decisions for the short code, yielding a margin of 3.3 dB over the baseline. 

A 1.9 dB improvement, from 3.2 dB better than the reference with hard decisions to a 5.1 

dB advantage with soft decisions, is obtained for the longer code. For hard decisions, 

the effect of increasing the constraint length from 2 to 6 yields 1.4 dB improvement, and 

1.8 dB is gained in the soft decision case. 
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The performance of the noncoherent receiver appears in Figure 3.2. The results 

are very similar to the coherent case, with 1.5 to 4.6 dB of improvement over the baseline 

system. The short constraint length code provides a 1.5 dB advantage with hard 

decisions, and an additional 1.6 dB gain for soft decisions. Increasing the code 

constraint length enhances performance by 1.4 dB for a 2.9 dB improvement on the 

baseline with hard decisions, and by 1.5 dB in the soft decision case. 

The theoretical error bounds for the two codes are also shown. Figure 3.3 shows 

the bound for the shorter code, and the longer code appears in Figure 3.4. 

3.2.2 Case 1B: Rate = 2/3, 2 tones, Constant Signal Energy (signalling over 2T) 

Case 1B uses a rate 2/3 optimal code with the three bit codewords sent over two 

signalling intervals. There is less redundant information in the data stream, and so the 

performance is understandably worse than Case 1A. The advantage to this scenario is 

that the signals have constant energy. In this case, the computation of the decision 

variables is simplified. However, the Euclidean distance between the signals is smaller 

in this case than in the previous modulation scheme, which is detrimental to error 

performance. Codes with constraint lengths of 4 and 6 and corresponding free distances 

of 5 and 7 were simulated. 

For the coherent receiver, the worst case coded system is 1.1 dB worse than the 

baseline performance, as shown in Figure 3.5. This is the short constraint length code 

with hard decisions. Increasing the constraint length yields only 0.5 dB improvement but 

soft decisions provide larger gains. The short constraint length code with soft decisions 

gives 1.8 dB improvement over the baseline system, which is 2.9 dB better than the hard 
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decision case. The longer constraint length again provides a very modest additional gain 

of 0.3 dB. 

The noncoherent system has performance curves very similar to the coherent case, 

and they are shown in Figure 3.6. The hard decision simulations are worse than the 

baseline by 0.5 and 0.1 dB for the short and long constraint length codes respectively. 

Using soft decisions yields 2.3 to 2.4 dB of improvement over hard decisions. This results 

in 1.8 dB improvement over the baseline for the shorter code, and 2.3 dB gain for the 

longer code. 

In all situations, the coded system performance curves are steeper than that of the 

baseline. This implies that the hard decision performance will approach or even surpass 

the baseline system at higher SNR levels. As well, the soft decision improvement will 

increase as the curves diverge. This additional improvement will not be very large, 

probably less than one dB. The difference in slope of the curves also means that the 

baseline system surpasses the performance of the soft decision coded system at low SNR 

values. This happens below the point where the curves intersect, known as the 

cross-over point. The cross-over point occurs at Eb/No  of 7.8 dB for coherent reception 

and 8.5 dB in the noncoherent case. 

3.2.3 Case 2A: Rate = 2/3, 3 tones, Variable Signal Energy 

This is the first case which has an information rate of two bits per signalling 

interval, corresponding to a baseline system of 4-ary FSK. A rate 2/3 code is used, which 

requires an eight point signal space. Three tones are employed, with all combinations 

of tones allowed, to provide eight variable energy signals. The two codes used in the 



• 
• - 55 - 

• 
•

Iii —  Lmtun  
am. Im. n•• 

• .. 
•

... "T... a u ....4; ...r, ......_ + 

 1 .4\ 
• ''' 

• '•"1 	 NI\ 
• 1 0 1".1%n,_ 	I\ 	\\C----__.__________ 

v = 6, hard decisions 
or 	 ; • • • L 

O
-i 

• L -a 
• C- 1 0 --1 	 % 	ii = 4, hard decisions 

• W - 
• 43 	.. 

-
Binary FS 

• or4
K 	 V _ 

• m 
• 4- 	...9 	 .. 

• 

•
• 43  

•--1 
-pi 

>4% 	
. 

_ 

0 	 •re 	

v - 4, soft decisions 

 
• o 10  .1 

\ 	\\ 
• J:I 
• D-4 	 1 	+ 

• ..o 10 — O v = 6, soft decisions 	  \ • L 
• CL 
• 
• 
• _ _r5 

• ze • 10 	1111111111-1111  
• 
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
• Eb/No (dB) • 
• 
• 
• Figure 3.5 Case 1B Simulation Results, Coherent Reception 

•
• 	

Rate = 2/3, 2 tones, Constant Signal Energy (signalling over 21) 
• 
• 
• 

• 1 VIII 

• 
• • • 



= 4. hard decisions • • • • • • 
• 
• 
• 
• 
• 
• 
• 
• 
• • • • • • • • • • • • 

• -56- 

.  
• . 	.-.....ei.t  ....4%.  .... 	 • 

, 	• 
• 

........,.. 	N ill 	 • 
\ 	4.‘ 	 e . = 6, hard decisions • 

• 

• 

. 	\ • • 

Moo 1 

1 0 nW 

L .. 
0 
L -2 

LI]  - - - 

144)  
<4- 
O 10  

4.)  
Mel 

rn04 

ire 

o -4 
11 10 
0 
L 

nennei 
ban 	411. 

= 4, soft decisions 

= 6, soft decisions 

Binary FSK 

11  \ 

-0 
1 0 

1 
gi 	 s • • 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 fb 

Eb/No (dB) 	 • 
• • • • • 

Rate = 2/3, 2 tones, Constant Signal Energy (signalling over 2T) • 
• 

Figure 3.6 Case 1B Simulation Results, Noncoherent Reception 



••
••

••
••

•
••

••
••

••
••

•
••

•
••

••
••

••
••

••
••

••
••

••
••

••
00

9
••

•
0•

 
- 57 - 

simulation are the same as those in the previous case, with constraint lengths of 4 and 

6. 

The results for coherent reception are shown in Figure 3.7. The performance of 

both codes is virtually identical with hard decision decoding, and is about 0.5 dB worse 

than the baseline system. Soft decision decoding yields 1.3 dB improvement over the 

reference system for the short constraint length code, and an additional 0.5 dB for the 

longer code. The cross-over points for the soft decision curves are between 5.5 and 6.0 

dB (Eh/N0). 

Figure 3.8 displays the performance curves for noncoherent reception of Case 2A. 

The short constraint length code with hard decisions is 0.5 dB worse than the baseline, 

while the longer code is 0.2 dB better than the reference system. The use of soft 

decisions yields about 2 dB of improvement over the hard decision case. The 

performance gain over the baseline with the soft decision decoder is 1.5 dB for the 

shorter code, and 2.1 dB for the longer constraint length code. Both soft decision curves 

intersect the baseline curve at 6.3 dB on the horizontal axis. 

This case achieves performance improvements with a reduction in required 

bandwidth. The spacing between orthogonal tones is the same for the three tone coded 

system and the four tone baseline system. The coded signals therefore require only 3/4 

of the bandwidth, although a higher peak power transmitter is neccessary for the multiple 

tone signals. It is also significant to note the free distances of the optimal rate 2/3 codes. 

The shorter code (v 4) has a free distance of 5, while the longer code 6) has a free 

distance of 7. These parameters will be used for comparison between the different cases 

at this information rate. 



1 1 

Figure 3.7 Case 2A SimUlation Results, Coherent Reception 

Rate = 2/3, 3 tones, Variable Signal Energy 

0 
10 

.11 

0 
L -2 

di 10 "?..' 

CO 

4- 
o 1 0 

- 
•ri 

Jn 
• -4 

al 10 
O - 
L 

anl 

••1 

-5 
3 1 

10 
1 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

- 6, hard decisions 	• 
• 
• 
• 
• 
• \ 	• 	v=  4, hard decisions 	• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

	

gill', 	- I 	III 	 t 	• 
23  4 5 6 7 8 9 1011 12131415 : 

	

al/No (dB) 	• • • • 
e 
• 
• 
• 
• 

- 58 - 

= 6, soft decisions 

= 4, soft decisions 

4-ary FSK 



0 
-2 
0 

L.L1 • 

• 1.4 

C4- 

o 1 ir'Z' 

O -4 
0 - - 

L 
CL. 

-5 
10 

\kNé 

110 «0  

-6 
1 0 

v = 4, hard decisions 

\;\ 
1\4-- 

\*Ç\  

6, hard decisions 

I 

- 59 - 

1ø 1  

1 , - 4, soft decisions 

= 6, soft decisions 

4-ary FSK 

1 2 3 4 5 6 7 El 9 10 11 12 13 14 15 
Eb/No (dB) 

Figure 3.8 Case 2A Simulation Results, Noncoherent Reception 

Rate = 2/3, 3 tones, Variable Signal Energy 



1 0-  
i 

n••1 

- 1 
1 0 

C. 
0 
L -2 
L 0 

43 

4— _a  
O 10  

o••1 

• 84 

o -4 
-0 1 0 
0 

û- 

-5  
1 0 gIMMI 

-e 
10 

1 

soft decision simulation 

Figure 3.9 Case 2A Code Error Bounds (u = 4), Coherent Reception 

Rate =  2/3,.3  tones, Variable Signal Energy 

- 6 0 - 	 • • 
• 
• 
• 
• 
• 
• 
• 
• 

• 

• 
• 
• 
• 
• 

hard decision simulation * 

	

\ 1 	 • 

• 
• 

• 

\ 

	hard decision error bourik 

• 
• 

1 	 • 
1 

1 	 11. 

	

+ 	 • 

1 

	

1 	 • 

	

1 	 • 

soft decision error bound 	  
• 
• 

1 	1 • 
• 

2 3 4 5 6 7 Et 9 10 11 12 13 14 15 • • 

	

Lb/No (dB) 	 • 
• 
• 
• 
• 
• 

• 

• 

• • • • 



1 

- 61 - 

••n 

e1.1 

1 
1 

IBM 

0 
L -2 

UJ 

*pi 

02 

(4- 	..3  

° 1 0 

'ri  

rnI • 

4 
1 0 

-5 ' 11  

-e 
1 0 

\+ .\ 
\, 

\ 

till 	 it 	t 	I 	t 	t 
2 3 4 5 6 7 	9 10 11 12 13 14 15 

Eb/No (dB) 

soft decision error bound 

soft decision simulation 

hard decision simulation 

hard decision error bound 

Figure 3.10 Case 2A Code Error Bounds (v = 6), Coherent Reception 

Rate = 2/3, 3 tones, Variable Signal Energy 



- 62 - 

There are two figures which display the theoretical error bounds for coded 

performance with rectangular signal constellations, as described in Chapter two. Figure 

3.9 shows the bound for the shorter code and Figure 3.10 contains the results for the 

longer constraint length code. 

3.2.4 Case 28: Rate  = 2/4, 4 tones, Variable Signal Energy 

This case employs all four tones in the coded system that are used in the baseline 

FSK modulation. All tone combinations are used to provide sixteen signals with signal 

energies that depend on the number of constituent tones. The code for this case has rate 

2/4 to provide a four bit codeword for two bits of information in each signalling interval. 

An optimum distance profile code of this rate could not be found in the literature, and 

so two identical rate 1/2 encoders in parallel were used. Only one code was simulated, 

with a constraint length of 6, composed of two rate 1/2 codes of constraint length 3. 

The performance of the coherent reception system is shown in Figure 3.11. With 

hard decisions, the coded simulation is 1.1 dB worse than the baseline. Soft decisions 

yield a 2.5 dB gain to provide 1.4 dB improvement over the reference system. Figure 3.12 

displays the performance curves for the noncoherent receiver. The soft decision decoder 

is superior to the baseline system by 1.6 dB while the hard decision curve is 0.5 dB worse 

than 4-ary FSK. 

The performance of the coded system in this case is virtually the same as the 

previous case in spite of the lower rate code and increased signal bandwidth. The 

reason for this is that the code structure employed does not take full advantage of the 

signal space. The code formed by two cascaded rate 1/2 encoders has double the 

constraint length of a single component code yet only achieves the same free distance. 
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The code used in this simulation case has a free distance of 6 which is approximately the 

same as the rate 2/3 codes in Case 2A. Therefore there is no appreciable performance 

gain for this system. The theoretical error bound for this code is shown in Figure 3.13. 

3.2.5 Case 2C: Rate = 2/3, 4 tones, Constant Signal Energy 

This simulation employs the same rate 2/3 convolutional codes as Case 2A. In this 

case, the eight signals required are constructed from four orthogonal tones. Single and 

double tone signals with constant signal energy are used. The codewords are mapped 

onto the signals to optimize the error performance as described in Chapter two. 

The simulation results for coherent detection are plotted in Figure 3.14. The hard 

decision decoder performs worse than the baseline by 0.7 dB and 0.9 dB for the short 

and long constraint length codes respectively. Soft decisions give improved performance 

with a margin of 1.5 dB for the short constraint length code over the baseline. The longer 

code provides an additional gain of 0.5 dB for a 2.0 dB improvement on the reference 

system. 

The noncoherent performance curves appear in Figure 3.15. The baseline system 

is again superior to hard decision decoding for both codes. The short constraint length 

code has a 0.4 dB disadvantage while the longer code has 0.3 dB worse performance. 

With soft decision decoding, the short constraint length coded system improves by 2.0 

dB. The longer code shows 3.0 dB gain over the hard decision case for a 2.7 dB 

improvement over the reference system. 
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This case has the best performance of the three simulations at this information 

rate. The additional advantage of constant energy signals imposes less stringent 

requirements on the actual transmitter and receiver. 

3.2.6 Case 3A: Rate 3/4, 4 tones, Variable Signal Energy 

The final two cases have an information rate of three bits per signalling interval, 

which corresponds to a baseline system of 8-ary FSK. Case 3A employs a rate 3/4 code 

and a signal space of sixteen points. The signals are comprised of all possible 

combinations of four orthogonal tones, which require only one half the bandwidth of the 

baseline system. The simulation was run with one code which has a constraint length 

of 5 and a free distance of 5. 

Figure 3.16 shows the results of the simulation for coherent reception. With hard 

decisions, the coded system is 1.9 dB worse than the baseline. Soft decisions yield a 

2.1 dB improvement, resulting in a 0.2 dB advantage over FSK signalling. The 

performance of the noncoherent receiver appears in Figure 3.17. The hard decoder 

exceeds the reference system performance by 1.4 dB while soft decisions provide a 1.9 

dB gain. This results in a modest 0.5 dB improvement over the baseline for the coded 

system with soft decision decoding. 

This case does not provide significant performance gain over 8-ary FSK. The 

relatively high rate code provides a free distance of 5 and the signalling bandwidth is 

reduced by one half from the reference system. Figure 3.18 shows the error performance 

bounds for this code with a rectangular signal constellation. The signals also have 

variable energy, requiring increased receiver complexity. 
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3.2.7 Case 3B: Rate = 3/6, 8 tones, Constant Signal Energy 

The codes for this case have a rate of 3/6 and constraint lengths of 3 and 6. The 

short code is a dual-3 rate 1/2 convolutional code, and the longer code is comprised of 

three identical cascaded rate 1/2 encoders, each with  u = 2. The sixty-four signals 

required are composed of single tones and triples of tones selected from a set of eight 

orthogonal tones. The signals have constant energy and are assigned to the codewords 

as previously described. 

The performance curves for coherent reception are shown in Figure 3.19. The 

coded simulations with hard decision decoding are significantly worse than the baseline 

system. The margins are 4.3 dB for the short code and 2.5 dB for the longer code. The 

performance gains for soft decision decoding are also quite large so that the short 

constraint length code is 0.3 dB worse than the baseline with soft decison decoding. A 

gain of 2.4 dB over the reference system is achieved by the long code when soft decoder 

metrics are employed. 

The results for noncoherent reception are quite similar to the coherent case as 

shown in Figure 3.20. The short code with hard decisions is 3.8 dB worse than the 

baseline, while the long code has a 1.8 dB disadvantage. The use of soft decision 

decoding provides the short code with a 0.4 dB improvement on the baseline 

performance. The long code outperforms the baseline by 2.4 dB with soft decisions. 

The long constraint length code with soft decision decoding gives good 

performance in this case. The relatively poor results of the other simulations are due 

mainly to two factors. The structure of the shorter code is such that the codewords 

cannot be mapped onto the signal set to provide maximum distance between error paths. 
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This accounts for the large disparity between the different constraint length codes. The 

codes used do not have large free distances, and the signal space mapping does not 

provide proportionality between Hamming distance and Euclidean distance. Therefore 

the hard decision decoding metric has a large disadvantage compared to the soft 

decision case. 
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• 
• 
• CHAPTER FOUR 
• 
• 
• 
• 

CONCLUSIONS • 
• 
• 
• 4.1 Findings of the Study 

• 
• 
• The major result of this study is quite obvious from the performance curves in the 

• 
•

previous chapter. The use of convolutional coding with multiple tone signal sets gives 

significant improvement over FSK when soft decision decoding is employed. This • 
• performance gain is on the order of 2.0 dB (Eb/No) at a BER of 10 -4  for at least one case 

• 
• at each information rate. There are numerous parameters of both the coding and 

• 
•

modulation schemes which influence the results of the simulations. 

• 
•

The most readily apparent effect is caused by the type of decoding metric 

• employed. The simulations with soft decision metrics indicate performance superior to 

•
• 

those with hard decisions by a margin of from 1.5 to 4.9 dB. This situation would be 

• 
• expected because some information about the received signal is lost when a hard 

• 
decision is made in the receiver. The difference is greater for schemes which have less • 

• correspondence between the Hamming distance of the codewords and the Euclidean 
• 
• distance between the signals, namely the constant signal energy constellations. 

• 
• 
• The performance of the coherent and noncoherent systems is very similar. In 

•
• 

absolute terms, the coherent receiver gives superior performance due to the exact 

• 
knowledge of the phase of the transmitted signal. However, the relative improvements 

• for the coded systems and the gains for soft decision decoding are virtually identical for 

• 
• both types of receivers. Although noncoherent FSK is usually used in actual systems, 

• 
• 
• 
• • 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 

• 
• 
• 

• 
• 
• 
• 

- 78 - 

coherent results were presented for completeness. Also, theoretical error performance 

bounds can be calculated for coherent reception, and they provide verification of the 

simulation results. 

The difference between the constant signal energy constellations and those with 

variable energy signals is difficult to accurately derive from the cases under 

consideration. The variable energy case proves superior for the transmission of a single 

bit per signalling interval. Case 1A shows the largest gains of all simulations, with gains 

of up to 5.1 dB. However, the use of constant energy signals with two tones involves a 

rather drastic reduction in signal spacing. The number of signals is also reduced 

significantly, and requires that a higher rate code be employed. These factors combine 

to cause the relatively poorer performance of Case 1B. The transmission of two bits per 

period provides the best opportunity for comparison of the constellations. The codes 

and the size of the signal sets are fairly similar in Cases 2A, 2B, and 2C. Under these 

conditions, neither of the two types of constellations appears significantly superior. The 

performance results for each simulation are within one dB for all three cases. When three 

bits are transmitted per signalling interval, the constant signal energy situation provides 

the best performance. However, Case 3A has a higher rate code and uses only one half 

the number of tones as in Case 3B. In spite of this, it actually has better performance for 

hard decision decoding, due to the signal space mapping. 

There is another difference between constant and variable energy signal 

constellations that has more significance when considering actual implementation of the 

system. With variable energy signals, the transmitter output power varies according to 

the number of tones to be sent. A high peak to average power requirement might prove 

to be a disadvantage since the transmitter will be operating at less than its full peak 



0
  
0
  
0
 
0
  
0
 
0
  
0
 
0
  5
•
  0

  
6
  
6
  
0
  
0
  
0
 
6
•
0
 
6
 II

  
0
 
0
  0

1  
6
  
6
  
6
 
0
  
0
  
0
  0
 0
 
0
 0
 0
 
0
 
0
 
0
 0
 
0
•

II
  
0
•
0
  
0
 
0
  
0
  

- 79 - 

power capability for a large percentage of the time. The zero energy signal might also 

prove undesirable to implement if channel fading or drop-outs were possible. The 

receiver for unequal energy signals has increased complexity because of the necessity 

to compute an exponential function and a modified Bessel function in order to calculate 

each decision variable. However, the mapping of codewords onto the signal set is 

straightforward for this situation. In the constant signal energy case, the signal 

generator in the transmitter must adjust the amplitude of the signal tones to ensure the 

signal energy remains constant. The computation of decision variables in the receiver 

is simplified, but the mapping of codewords onto the signal space must be incorporated 

in both the transmitter and receiver. 

4.2 Suggestions for Further Work 

The results of this study raise some questions that may provoke further research. 

Although significant performance improvements have been discovered, further 

improvements may be obtained from different codes and signal constellations. One 

example of this might be codes with better distance profiles than the cascaded rate 1/2 

•  codes used in this study, to improve hard decision performance. The use of larger signal 

spaces with lower rate codes is possible for eight tone and even sixteen tone signalling. 

Only 64 of 256 possible tone combinations were used in the signal set of Case 3B, and 

16 tones provide 65,536 possible signals from which to construct a constellation. It is 

noteworthy that trellis coding in coherent communications systems obtains larger coding 

gains with larger signal sets [8]. Excessive computing time requirements for the 

simulation program used in this study precluded further exploration of larger signal sets. 



- 80 - 

Another subject for further investigation is the performance of these schemes in 

an anti-jamming system in the presence of jammer interference. Other studies [3, 4] have 

shown good results for convolutional coding with conventional FSK signalling, and so 

this is a promising area. The implementation of soft decision decoding becomes more 

complex in a jamming environment. Side information regarding the presence of a 

jamming signal is required by the decoder or else soft decision decoding seriously 

degrades in performance. 

4.3 Summary 

The use of convolutional codes with multiple tone signals has been shown to 

provide performance improvements over M-ary FSK signalling. The coded system does 

not require additional bandwidth to maintain the same information rate. Indeed in some 

cases a smaller modulation bandwidth and hence higher processing gain appears 

possible. The coding is suitable for implementation in a frequency hopped spead 

spectrum anti-jam system with a usual spectrum analyzing receiver followed by a Viterbi 

decoder. Increased  performance gains through different codes and signal sets, as well 

as performance in a jamming environment are topics of further interest. 
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