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ABSTRACT

In noncoherent frequency hopped spread spectrum communication systems, M-ary fre-
quency shift keying (FSK) is the usual form of modulation. In this paper, coded systems are
studied which consist of convolutional codes with the codewords mapped onto multiple tone
signal sets. The signals employ the same set of orthogonal tones as M-ary FSK, but several tones
may be transmitted simultaneously. This allows an increase in the number of signals, to
accommodate the redundant information introduced by the coding, without any bandwidth
expansion. Some of Ungerboeck’s rules for assigning signals to the trellis branches are em-
ployed.

The results were obtained for transmission over an additive white Gaussian noise channel
with both coherent and noncoherent detection. Viterbi decoding was used, with both hard and
soft decoding metrics. Simulation results and error bounds are presented. Seven different
coded modulations which encompass information rates of 1, 2, and 3 bits per signalling interval,
and employ sets of 2, 3, 4, or 8 orthogonal tones, are considered. Of the codes provided, the
minimum performance improvement is 2 dB compared to the reference M-ary FSK. The
maximum improvement achieved was 4.6 dB for the case of two tones. As would be expected,

the best performance is obtained with soft decision decoding.
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CHAPTER ONE

INTRODUCTION

1.1 Background

The purpose of this study is to investigate methods of improving the performance
of a communications system by the use of coding. A block diagram of the coded system
under consideration appears in Figure 1.1. The actual system is intended for digital
satellite communications, and may be incorporated into a frequency hopped spread
spectrum anti-jam application. The type of modulation considered is frequency shift
keying (FSK) in which one of several different tones is sent in each signalling interval.

Details of the modulation scheme'and the receivers employed are given in Chapter two.

The basic principle of coding is that redundant information is added to the -

information bit stream so that transmission errors may be detected and/or corrected.
Because of this redundant information, more signals must be sent over the channel to
maintain the same information transfer rate as in the uncoded case. This can be
accomplished by using the same set of signals at a faster signalling rate, or by increasing
the number of signals used (signal set expansion), Both of these methods usually require
a larger bandwidth than the original uncoded scheme for noncoherent FSK signalling.
Alternatively, the information rate may be lowered to maintain the same bandwidth

occupancy.

The goal of this study is to find a method of improving the system performance

without sacrificing the data rate or increasing the bandwidth required. In frequency
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hopped systems, the processing gain is the ratio of the overall system bandwidth to the
bandwidth occupied during each hop, and it indicates the ability of the system to reject
jamming noise. Increasing the modulation bandwidth decreases the processing gain of
the system, which is undesirable. The technique proposed In this study is to use
convolutional codes with Viterbi decoding to improve error performance. The signal set .
is expanded by the use of multiple tone signals to accommodate the redundant bits,”
instead of the single tones which are used in conventiona;l M-ary FSK. This does not
increase the modulation bandwidth and thereby affect the processing gain. This study
considers the performance of the encoder/decoder and modulator/receiver over an

additive white Gaussian noise (AWGN) channel.

1.2 Literature Review

There have been several studies of the application of conventional coding to
noncoherent anti-jam communication systems [1,2,3,4]. These papers explore the use
of various codes to reduce the effect of a partial band jamming signal. Block codes,
convolutional codes, and repetition codes (diversity) have all been investigated, as well
as different combinations of concatenated codes. Reed-Solomon codes and
convolutional codes both have good performance, especially when combined with
divefsity. Conventional M-ary FSK modulation was employed in all cases, and usually
bandwidth expansion was allowed to accommodate the coding. Both hard and soft
decision demodulation have been considered. Hard decision receivers select which
signal is closest to the transmitted signal and relay that decision to the decoder. A
metric, which is proportional to the logarithm of the probability that each signal was
received, is computed by a soft decision receiver and used by the decoder. In a jamming

environment, soft decision decoding is not desirable uniess there is side information



about the presence of the jammer, because jammed signals seriously degrade the
operation of the decoder. If side information is availa\ble, soft decision demodulation
gives the best performance; otherwise hard decisions are superior [1]. This report does
not consider the effects of jamming or frequency hopping on the communication system,
but considers the performance in white noise. It is noteworthy that convoiutional codes
showed good performance under jamming conditions [3,4]. The Viterbi decoder is also

readily adaptable to accept hard or soft demodulator decision variables.

The_re are two papers which consider the application of coding to noncoherent FSK
signalling [5,6]. They both employ conventional M-ary modulation schemes and require
bandwidth expansion or reduced data rate to accommodate the coding. The firs‘t study
[5] considers continuous phase FSK, which has phase continuity between tones in
subsequent signalling intervals, and also. uses non-orthogonal tone spacings. The
demddulation technique, although noncoherent, makes use of the phase continuity and
employs an unconventional réceiver structure. Practical frequency hopped systems,
where the hopping occurs over largé bandwidths, cannot maintain phase continuity
between hops, and so these modulations are inappropriate. Keightley [6] studied the use
of convolutional codes with binary and 4-ary FSK. Noncoherent demodulation with hard
decisions was used for application to a frequency hbpped spread spectrurq system. The
coding gain observed at a bit error rate (BER)‘of 16—5 was approximately 2 dB in the
binary case, and negligible in the 4-ary case. The codes employed had rates of 1/2 and
1/3 with constraint lengths of 7 and 8 respectively. Thus the system transmission rates

were reduced to 1/2 and 1/3.

Much work has been done recently on trellis coding [7,8,9,10] and a'functioning

system has been implemented in a modem. This technique provides large coding gains

i




without bandwidth expansion or reduction of data rate. All of the documented studies
have been confined to coherent communication systems, in which the carrier may be
both amplitude and/or phase modulated. The uncoded signal set is expanded by adding
different levels of phase and amplitude modulation without requiring additional
bandwidth. The resulting expanded signal constellation contains a symmetrical array
of signal points. This. signal set is partitioned or subdivided into subsets which have
increasing distances between signal points in the subsets. The signal points are then
assigned to the codewords of a convolutional code, according to a set of rules designed
to provide maximum coding gain. This study employs some of the concepts of trellis
coding applied to FSK signal sets. The signal constellations are expanded by using
multiple tone signals so that additional bandwidth is not required. Signél set partitioning
is also carried out, but not in the same manner as in coherent systems. The multiple tone
signal constellations cannat ze nariitinned into subsets with increasing spacing between
signal points. However, some of the rules from trellis coding are employed when
mapping codewords onto signals. It is anticipated that the application of the principles

of trellis coding will provide significant coding gains because of the success realized in

- coherent systems.

1.3 Report Summary

This report is divided into four chapters. An indication of the problem under
consideration and the extent of research in this area has been given in the introductory
chapter. Chapter two contains a detailed theoretical explanation of the various
components in the system. First the modulation scheme and the structure of the different
receivers is explained, followed by a description of the error correcting codes and the

operation of the decoder. The second chapter concludes with an explanation of how the




coding and modulation schemes are combined in the overall s'ystem and presents some
bounds on error performance. There are seven different cases which were investigated,

and their characteristics are detailed in this chapter.

- / .
In general, the problem of theoretically evaluating the error performance of the

noncoherent coded system does not appear tractable, and so computer simulations were
carried out. Chapter three is a presentation of the results of the simulation programs.
A brief description of the program structure is given first, followed by error performance
curves for each of the seven cases considered. The results for all the cases are

summarized in a table and then the performance of each case is discussed in detail.

Chapter four contains the general conclusions which may be derived from the

simulation resulfs. Suggestions for further research on this problem are given also.




CHAPTER TWO

THEORY

2.1 Modulation

2.1.1 Modulation Scheme

The reference modulation for this study is M-ary FSK. This scheme is commonly
used in frequency hopped spread spectrum satellite systems for digital communication
{1,6]. One of a set of M tones is sent in each signalling interval (T seconds). The number
of tones (M) may be 2, 4, 8, or 16 corresponding to 1, 2, 3, or 4 bits of information per
signal. The tones are orthogonally spaced in the frequency domain, which entails a

minimum frequency difference of 1/2T hertz between adjacent tones.

The alternative moduiation schemes, which allow coding without rate reduction,
are divided into two types. The first expanded m::iuiztion technique employs the same
set of orthogonal tones, but more than one tone can be transmitted in each interval
(T.(G+1)T). All possible combinations of the M tones are used, and the signal space is
expanded to 2M signals which transmit M bits per symbol period. This multiple tone
signal consteliation does not require any additional bandwidth, but there are other
considerations. The transmitter requires increased power to send several tones
simultaneously, if each tone has the same energy as a single tone in the reference
system. The different modulation schemes wil! ix2 compared with the same average

signal energy, but the variation in energy beiween signals for this multiple tone case




could require a transmitter with a larger peak power capability. This signal constellation

also includes a zero signal (no tones sent), which could be undesirable in some systems.

The spacing of signals in the constellativon has a significant effect on the system
performance. In the reference M-ary FSK system, the single orthogonal tones are
equidistant in the signal space. The multiple tone signals with constant energy tones
form the vertices of a hypercube in M dimensional space, where M is the number of
tones. This can best be visualized 'in three dimensions as shown in Figure 2.1. This first

type of modulation is used in four of the seven cases to be considered. Case 1A employs

two tones, Case 2A employs three tones, and both Cases 2B and 3A use four tone signal '

sets.

The second type of multiple tone signal set was devised to reduce the variétion in
signal amplitude among the various possible signals; The same set olf orthogonal tones
" is again em'ployed'. Instead of permitting all possible tone combinations, a more limited
subset is allowed to comprise the signal set. For the two and four tone cases, only single
tones and pairs of tones are used as signals. The eight tone case employs‘ single tones
and sets of three tones. The pairs and triples of tones ha?e the amplitude of each tone
reduced so that the signal energy is equal to that of a single tone signal. The zero signal
is excluded from these signal sets and therefore the signal energy is constant for this
scheme. This makes demodulation simpler as will be explained in the discussion of

receiver structure.

The constant signal energy mulitiple tone scheme is used in three cases which were
simulated. Case 1B employs two tones and thus only three signals are available in each
signal interval. These signals are 34(f) =cos wyt, Sy(f)=coswyt , and

S5(t) = ( cOs wqt + €os wot )/ \/é— . The modulation is performed over two symbol intervals
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(2T) so that nine possible combinations, using three signals per period,-are available.

Eight of these points were chosen to represent three bits of data in each interval of 2T.

For the case of four tones,. there are four single tone signals and six different possible

pairs of tones. Simulation Case 2C employs eight of these ten signals ir_\ the

constellation. This allows three bits to be transmitted during each symbol interval (T

seconds). The final case employing the second alternative modulation scheme is
designated number 3B and uses eight orthogonal tones. There are eight signals
containing a single tone and fifty-six possible three tone combinations.  The combined
signal constellation has si'xty-four signal points which permits transmission of six binary

digits with each signal.

The multiple tone modulafions with coﬁstant signal energy have an irregular
spacing between points in the signal'cons,tellation. The maximum spgcing between
signals is the same as the distance between orthogonal tones, and occurs bet‘ween
signals with no tones in common. When signals possess common tones, the spacing is
reduced. The more tones in common between two signals, the smaller the distance
between the two. The amplitudes of the tones in common between the signals also affect
the spacing. This irregular spécing must be considered when mapping code words onto

the signal points, and is discussed in the third section of this chapter.

2.1.2 Coherent Receiver

The coherent receiver is the optimum receiver for reception in the presence of
additive white Gaussian noise (AWGN) when the phase of the transmitted signal is
known. Then thé'local oscillator is perfectly matched to the incoming tones to eliminate

any phase offset. This receiver cannot be used in. the frequehcy hopped spread
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spectrum system because phase continuity between subsequent signal tones and
between frequency hops is not provided by practical transmitters. These phase jumps,
and.the phase offsets introduced during transmission, preclude the matching of the local
oscillator to the transmitted signal. However, the coherent receiver provides the best
possible performance that could be achieved, and will be included for purposes of
comparison. The structure of the coherent receiver is simpler than the noncoherent
receiver, and this allows a simulation to be performed more quickly and easily. Also, the
performance of the coherent receiver can be readily analyzed, and there are theoretical
resuits that provide verification of the simulation program. If coherent demodulation was

actually used, a more efficient modulation scheme than FSK would likely be employed.

The usual optimum coherent receiver [11, p. 235; 12, p. 49] calculates the squared
Euclidean distance between the received signal (r(t)), and each of the possible
transmitted signals (s(t)). A decision is made in favour of the signal closest to the
received signal, based on the minimum of the compufed distances. The squared

distance is given by

.
d? = fo Cr(t) — st 10t

T 2 T T 2
= - ; At
for (t)dit — 2 fo r(t)s(t)dt + fo s2(tyat

The first term in (2.1) is constant, independent of the index i, and so may be neglected
in the search for the nearest si(f) . The remaining two terms can be multiplied by -1/2 to

form a decision variable which is now maximized.
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L= OTr(t)s,(t)dt - 1? | OTs,?(r)dt
=q;— %E/

The structure of this feceiver is well-known [11, p. 235; 12, p. 49] and is shoWn for two

cases in Figure 2.2. The receiver for conventional binary FSK is shown in part (a) of the

diagram, where s(f) = cos wyt and $y(f) = coswyt. The multi'ple tone scheme with

different signal energies is demodulated by the system in part (b). In this case, the

signals are sy(f) = 0, $4(f) = COS wyt , Sy(t) = COs wyt , and $5(f) = Cos wyt + COS wyt . For

constant energy signals, E; is constant for all i, and the decision variable becomes simply

g; . The decision variables for multiple tone signals are in general obtained by summing

the variables for each tone in the signal, and scaling to account for the signal energy.

This means that the multiple tone receiver requires only one correlator for each tone.

The theoretical error probabilities for uncoded signalling are easily obtained for the
baseline system of M-ary FSK with coherent reception. The probability of symbol error

for an orthogonal signal set over an AWGN channel is given by [11, p. 257; 13, p. 120]

Pg=1-— focpn(a—'\/ES )c/a[f

~—00

i pnw)c/,e]M‘1 | (2.3)

where M is the number of signals (ie. tones) and

Prle) =

is the Gaussian probability density function. The bit error probability is obtained from

the symbol error probability as’
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Pg = ——Fs , (2.4)

The integral in equation (2.3) is tabulated in Golomb [13, p. 196] and these results were

used for the baseline performance curves with coherent reception.

The theoretical performance may also be obtained for the case of multiple tone
signalling with constant energy tones. With the ideal coherent receiver, the signal
constellation may be considered as a rectangular signal set [11, p. 254] with error

probabilities given by

Pg=1-(1-p" (2.5)
PB=p=Q( d ) (2.6)
2N,
where

M is the number of dimensions (ie. the number of tones),

d="\Es

Eg is the energy of a single tone, and

Ny is the spectral density of the Gaussian noise in watts/hertz.
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The multiple tone signalling schemes with constant signal energy do not form a
rectangular signal set. Because of the irregular spacing of the signals, the probability
of error varies with the signal that wés sent, due to the different proximities of other
signals. This does not allow for a simple expression for.the error performance as in the

previous cases, and the results are obtained strictly by simulation.

2.1.3 Noncoherent Receiver

The introduction of a random phase angle (4) into the received signal, increases the
complexity required for the optimum receiver. The structure of this noncoherent receiver
is common [11, p. 519; 12, p. 104}, and is shown in Figure 2.3. Two receivers appear iﬁ
the diagram. Case (a) demodulates conventional binary FSK, where $4(f) = cos wyt and
So(f) = cos wot . In part (b), multiple tone signals with all possible combinations of two .
tones, and variable signal energy are demodulated. The signals for this receiver are
So(f) =0, $4(t) = cos wqt , Syp(t) = COS wyt , and Sa(t) = coS wyt + cOS wyt . There are two
correlators for each signal, one in phase and one in quadrature, whose outputs are
combined to negate the effect of the random phase. Multiple tone signals are assumed
to have the same phase angle for all tones, and the probability distribution of the random

phase is considered to be uniformly distributed between 0 and 2 radians.

Thfs receiver calculates the probability of the received signal, given that the ith
signal was sent, for all members i of the signal set, This probability is known as the
likelihood function, and its logarithm is used as the decision variable. The signal with
the maximum probability is chosen as the transmitted signal. The development of the
theory for this receiver is rather lengthy, and can be found in the references [11, p. 511;

12, p.103], and so0 just the decision variable itself will be given here as
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l_,-. = m[lo(lz\!—)c?) exp( - —I%)} (2.7)

where

/ ().() = Lf‘?ﬁexp[x cos(f + a)]do
0 27 Jo

is the zero order modified Bessel function of the first kind,

is the energy of the ith signal,

Ny is the spectral density of the Gaussian noise in watts/hertz, and

2 |7 2 T a2
X _[ fo r(t)s,-(t)dt] +[ fo r(t)s,(t)dt] (2.8)

is the sum of the squares of the correlator outputs for the in-phase and quadrature

components of the correlation with the ith signal.

s{t) is the in phase component of the signal since the signals are made up of

cosine tones, and

Si(t) is the quadrature component of the signal, which consists of sine tones at the

same frequencies.
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As was the case for the coherent receiver, the decision variables for multiple tone signals
‘ can be obtained from the correlator outputs for the individual tones. This means that
only one pair of correlators is required for each tone in the system. The signal s(t) giving

rise to the maximum L; is chosen as the signal sent.

For the baseline system and other ‘constant signal energy cases, the decision
variables can be further simplified. The exponential function in (2.7) will be a constant
because E, is the same for each index i, and so it can be ignored. To maximize the
modified Bessel function, it is only necessary to maximize its argument because the
Bessel function is a rﬁonotone increasing funétion. Therefore the optimum decision will
be made by maximizing X; or X2. This receiver simplification results in the structure
shown in Figure 2.3 (a), and is also known as square-law combining. The multiple tone
modulation system with unequal signal energies cannot employ the simplified decision
;/ariabies obtained from the correlator outputs. The modified Bessel function and the

exponential function must be calculated in order to make a maximum likelihood decision.

The theoretical symbol error probability for noncoherent M-ary FSK is given by [11,

p. 577

§ )(—n"“ 1) | ( k Es) | |
Pg = P expl — PR YA | (2.9)
where

(g) - B!(AAi B)]

0000000000000 00000 0000000000800 00000000000000000600FCGIIGCNTS
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and the bit error probability is

_ 2
Pg = ——Ps (2.10)

The theoretical performance of the multiple tone noncoherent receiver is difficult to
obtain. The presence of the Bessel function and the exponential function in the decision
variables of the variable signal energy case makes the analysis difficult. The constant
signal energy multiple toﬁe modulation has irregular signal spacings which impedes the

evaluation of theoretical error probabilities.
2.2 Coding

2.2.1 Description of Codes

Convolutional encoding with Viterbi decoding is one of the more widely used
methods of forward error correction. This is due to the ease of implementation and the
relatively large coding gains obtainabie from simple codes. As previously mentioned, this
coding technique was chosen for consideration in this report. There are several different
ways to describe convolutional codes, Which will be briefly summarized below. More

information on convolutional codes may be obtained from the references [12, p. 227; 14,

p.227].

The first way to visualize a convolutional encoder is as a binary shift register with
taps connected to modulo two adders. The information bit stream is shifted into the
register in groups of b bits, and there are n modulo two adders which produce n output

bits for each codeword. The rate of a code is given by the ratio b/n, which is the ratio
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of input to output bits. The number of b-tuples in the shift register is denoted by k, and
so the encoder retains b(k - 1) bits of the previous input data which define the state of
the encoder. The value v =b(k — 1) is deﬂned as the constraint length of the code, and
is the logarithm to the base two of the number of states. The length .of the shift register
(bk) is sometimes considered as the constraint length, but the previous definition (v) will
be used here as it is more useful for comparing codes of different rates. As the b-tuples
of input data are shifted into the register, the state of the encoder changes and the

output data is determined by the tap connections from the register to the adders. These

connections are usually specified by generator polynomials or a generator matrix. A

simple code with rate 1/2 and constraint length 2 is used as an example throughout this
section. A diagram showing the shift register tap connections and the generator matrix

appears in Figure 2.4. .

Another way to describe a convolutional code is by means of a trellis diagram.
The states of the code are assigned to nodes in the trellis and branches between states
indicate a particular input and corresponding output symbol. [t is obvious that a given
input data sequence can be mapped onto a certain path through the trellis. There are
2b pranches which emerge from each node, corresponding to each of the possible
inputs. The branches remerge at the next stage in the trellis in groups of 2 at each state.

The trellis for the example code is shown in Figure 2.5.

The final re'presentation of a convolutional code is by a state diagram. The states
of the code are again assigned to nodes in the diagram, and directed paths betweén
states correspond to pgrticUIar input and output symbols. The state diagram can be
used to obtain the genérating function of a code, which allows the weight profile to be

determined. The state diagram for the model code appears in Figure 2.6.
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The weight profile is éignificant because it directly affects the error performance
of the code. All the codes under consideration are linear, and therefore the all zeroes
path may be considered as the correct path for the purpose of analysis. The weight or
distance profile is obtained from the set of paths which diverge from the correct path and
then remergé, corresponding to possible error events. The distance measure, for hard
decision decoding, is the Hamming distance between the error path and the correct path.
This is the number of output bits in‘which the two paths differ. These paths may be
observed in the trellis diagram, and the weight profile obtained by adding up the
Hamming weight of the output symbols along. all paths which diverge from and thén

remerge with the all zeroes path.

A more tractableAdescription of the weight profile is the code generating function.
If the state diagram is redrawn with the zero state split,' all the paths originating in one
half of the zero state, passing through the other states, and entering the other half of the

zero state will represent error paths. The branches of the state diagram are labelled
DAL P (2.11)

where
D represents the distance or output weight,
L represents the length of the path,
[ represents the input weight,

a is the Hamming weight of the output symbol, and
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b is the Hamming weight of the input symbol.

Using signal flow graph theory, the state equations of the diagram are solved to yield the
generating function T(D,L,l). This function has the form of an infinite sum of products
of D, L, and I. The coefficient of each term represents the number of paths with distance
of the exponent of D, input weight of the exponent of [, and length of the exponent of L.
The sum may also be represented as a fraétion of polynomials in D, L,\ and |. To obtain
the weight profile, L and | are made equal to unity. The resulting function T(D) yields the
number of paths at various distances from the correct path. The redrawn state diagram
and the code generating function of the example code are shown in Figure 2.7. The free
distance (dy) is the minimum distance of any error path from the correct path, and is a

good indicator of how well the code will perform.

The codes used in this study were obtained from other papers which investigated
optimal codes [15, 16, 17]. The best codes had maximum free distance (d) for given code
rate and constraint length. Only relatively short constraint length codes were used so
that Viterbi decoding could be utilizéd. The optimal rate 1/2 codes were used in Case
1A [15]. They were also combined to form a rate 2/4 code for Case 2B and a rate 3/6
code for Case 3B. A dual-3 rate 1/2 code was also considered in Case‘ 3B [17]. Rate
2/3 codes with maximum d; were employed in Cases 1B, 2A, and 2C while rate 3/4 codes
comprised Case 3A [16]. The various code generator -matrices are shown in Table 2.1

and a complete description of each case appears in Table 3.1.

2.2.2 Maximum Likelihood Decoding

There has been much published work on the decoding of convolutional codes [12,

p. 285; 18, 19, 20]. The Viterbi algorithm for maximum likelihood sequence estimation is
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TABLE 2.1

Convolutional Code Generator Matrices

Rate Constraint Length Free Distance Generator Matrix

1/2 2 5 [11 01 11]

1/2 6 10 [1101 11 11 0010 117
101 100 110

2/3 4 5 011 101 011]
101 111 010 101

2/3 6 7 011 111 101 011]
1100 1100 0100 1100

2/4 6 6 | 0011 0011 0001 0011]

3/4 5 5 0101 0101 1001

(1001 1111 0000
| 0011 0100 0011

3/6 3 6 * 010010 010100

100100 100101
| 001001 001010

3/6 6 : 5 001100 000100 001100
| 000011 000001 000011

110000 010000 110000]
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the most popular decoding technique for codes of short constraint length. This

technique was investigated as being the most likely to be employed for a digital satellite

channel. A brief summary of the decoding operation follows.

Thé basic problem can be most easily visualized as selecting the best path through
the code trellis, based on information from the receiver. The maximum a posteriori
probability for the path is used as the selection criterion. A decision metric for each
branch is computed based Qﬁ the received signal in each signalling interval. The metric
is proportional to the logarithm of the likelihood function, in keeping with the coding
literature {12, p. 238; 21, p. 188]. This metric is maximized by the decoder. The metric
may also be considered as a distance measure between code vectors, in which case the
negative log likelihood would be used and the decoder would perform minimization of

the metric. Proceeding with the convention adopted, we have

p(r 1% = T Tpr 1% , (2.12)
; ‘ .
for a memoryless channel, where
r is the vector of receiver outputs with components r; and

xk is the code symbol vector for the kth trellis path with components xX.

The metrics are obtained as

M, = In p(r| xy = S mk | | (2.13)

i
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where

m¥ = In p(r; | x) (2.14)

M, is the metric for the kth path, and
mk is the metric for the ith code symbol on the kth path.

To accumulate a metric for every possible path through the trellis would be
prohibitive, as the number of paths grows exponentially at each stage. The Viterbi
algorithm makes use of the fact that paths remerge into each node in groups of 20 at
each stage in the trellis. It is necessary to keep track of only one optimum path leading
into each state. The metric for each branch (branch metric) into a given state is added
to the accumulated metric (state metric) for the best path into the previous state from
which the branch originated. These 20 metrics are compared, and the best path is
retained as the survivor into that state. This process is repeated at each stage through
the treliiz. ~ " chn o Brglifiood path will never be discarded by this method because
none of the paths originating from a given state can accumulate a better metric than the

survivor.

The decoder must select a single most likely path in order to deliver an output
symbol. If a sufficiently long path history is kept, the 2¥ survivor paths (one for each
state) will share a common stem, and the oldest bits corresponding to all the paths will
be the same. For the sake of reduced complexity, it is desirable to truncate the path
history at some fixed decoding depth. Several authors [12, p. 258; 14, p. 261] have

shown that little degradation from optimum performance occurs when the decoding
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depth is chosen to be from five to ten times v, depending on the code rate. The output

bits are chosen from the path that currently has the best accumulated metric.

The actual metric used by this decoder may come from eithef a harc_i or soft
decisio_h receiver. The nature of the metric employed does not affect the operation of the
decoder, although it will influence the error performance. For a hard decision receiver,
bit decisions are made at the demodulator output, prior to decoding. The negative
Hamming distance between the received symbol and the output symbol of each branch
is used as the branch metric in this case. The Hamming distance between codewords is
generally proportional to the distance between the corresponding signals in the signal
space. Thus minimizing the Hamming distance between code vectors, or equivalently
maximizing the negative Hamming distance, is the usual hard decision metric. If the
added complexity of a soft decision demodulator can be tolerated, then more information
is availéble and the. branch rhetric is proportional to the logarithm of the likelihood

function. This resuits in better error performance.

2.3 Signal Space Mapping

The assignment of codewords to signal points has an important influence on the
overall system performance. Previous work on the design of optimal codes has used the
Hamming distance between codewords as the distance measure between paths [15, 16].
The Euclidean distance in the signal space between points in the signal constellation
actually determines the probability of a transmission error. Ideé!ly, the codewords would
be assigned to signal pdints with Euclidean‘ distance spacings proportional to the
Hamming distance of the code_words, so that erroneous decoding into a near neighbour

would result in few errors.

0000000000000 000000000000000000000000000000Ca0000COISYTOODS
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Trellis coding [7, 8] considers the actual paths through the trellis when assigning
signals. As previously stated, the signal const:iation is divided, by a method termed set
partitioning, into subsets with maximum spacing li¢iween signal points. The signals are
assigned to branches in the trellis according to a set of rules that attempts to maximize

the Euclidean distance between signal error paths. These rules are as follows

1. all signals should occur with equal frequency and with a fair amount of regularity

and symmetry;

2. parallel transitions between states are assigned signals from the subset with

maximum signal spacing;

3. transitions originating from the same state are assigned signals from a subset with

maximum possible spacing;

4. transitions ending in the same state are assigned signals from a subset with

maximum possible spacing.

The papers on trellis coding [7, 8] also recommend that the signal set be expanded to
twice the number of points in the uncoded signal set in order to achieve the maximum

coding gain without unnecessary complexity.

The muitiple tone signal sets which use censtant energy orthogonal tones (ie.
variable signal energy), form a rectangular constellation as described previously. If each
bit of a codeword is mapped onto a different tone, the Euclidean distance between signal

points is proportional to the square root of the Hamming distance between codewords.
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This situation makes the mapping of codewords onto signal points straightforward, in

order to obtain optimum ‘coded performance.

The constant signal energy constellations have an irregular signa_l spacing, which
varies with the number of tones in common between signals. The Euclidean distance
between signals_ cannot be easily mapped onto the Hamming distance between
codewords, and so the rules for trellis coding were applied. Set partitioning could not
be done in the usual way because of the irregular signal spacihgs. The signél sets were
divided into groups of 22 (for a rate = b/n code) with maximum spacing between all the
members of ea‘ch subset. All of the codes used have a similar structure, so that the
different signal sets may be subdivided the same way. None of the codes have parallel
transitions, so that the second rule of trellis coding may be disregarded. The branches
in the various trellises diverge and remerge in groups-of 22 according to the rate of the
code. For all the optimum /codes used, the same group of codewords are associated
with the branches that diverge from and remerge into a given state. This allows for the
partitioning of the sighal sets into groups of 22 , to produce a desirable mapping onto
the codewords. The one exception to this situation is the dual-3 rate 1/2 code used in
Case 3B. The same groups of codewords do not appear on the diverging and remerging
branches, so that trellis coding rules three and four cannot be satisfied simultaneously.
No alternate mapping could be found to improve the spacings between error paths, so

the same mapping scheme as for the other rate 3/6 code was employed.

. The actual assignment of codewords to signals for the constant signal energy
multiple tone constellations are shown in Table 2.2. The codewords are shown as
decimal numbers, grouped according to the branch assignments, and the signals are

represented by ones and zeroes. Each digit of the signal representation corresponds to
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12
15
48
51
60

16
19
28
31
32
35
44
47

Case 1B: Rate=2/3, 2 tones, Constant Energy Signals (signalling over 2T)

0
3
5
6

01 o1
10 01
0110
1010
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TABLE 2.2

Signal Space Mappings

~N BN -

Case 2C: Rate=2/3, 4 tones, Constant Energy Signals

WO

0001
0010
0100
1000

N BN

Case 3C: Rate=3/6, 8 tones, Constant Energy Signals

0001 0000

1110 0000
1000 0011
0100 1001
0010 0101
1000 1100
0100 0110
0010 1010

0000 0001
0000 1110
0011 1000
1001 0100
0101 0010
1100 1000
0110 0100
1010 0010

1
2
13
14
49
50
61
62

17
18
29
30
33
34
45
46

0010 0000
1101 6000
0100 0011
1000 1001
0001 0101
0100 1100
1000 0110
0001 1010

0000 0010
0000 1101
0011 0100
1001 1000
0101 0001
1100 0100
0110 1000
1010 0001

4
7
8

11

52

55

56

59

20
23
24
27
36
39
40
43

0100 00CO
1011 0000
0010 0011
0001 1001
1000 0101
0010 1100
0001 0110
1000 1010

0000 0100
0000 1011
0011 0010
1001 0001
0101 1000
1100 0010
0110 0001
1010 1000

01 11
1101
1110
10 11

0110
0011
1001
1100

10
53
54
57
58

21
22
25
26
37
38
41
42

1000 0000
6111 00C0
0001 0011
0010 1001
0100 0101
0001 1100
06010 0110
0100 1010

0000 1000
0000 0111
0011 G001
1001 0010
0101 0100
1100 0001
0110 0010
1010 0100
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a tone, and a one indicates a tone which is sent as part of the signal.' The use of the
signal space mapping described here was compared to an arbitrary mapping scheme for
the four tone signal constellation. An improvement of approximately 1.5 dB (E,/Ng) was

obtained for a rate 2/3 code with constraint length of 6.

2.4 Error Performance

The performance of the coded system depehds on the strugture of the code, the
decoding metric, and the coding channel. The coding channel is the effective channel
as seen by the encoder and decoder. It includes the properties of the rhodulator and
demodulator, as well as the alctual transmission channel. Further details of the following
development of error bounds may be found in the references {12, p. 242; 14, p. 243; 21,

p. 192; 22].

The first step in obtaining the error performance of the system is to determine the
pairwise error probability between two transmitted code vectors. This is the probability
that the metric for the error path is larger than the correct path metric for a given received

signal sequence, and is expressed by

[

p(X — X) = p{zm(r,,, X)) > Zm(r,,', x,,)} ‘ - (2.15)
' n n .

The Chernoff bound may be applied to the pairwise error .probability to obtain

pix — %) < TTE{ exp(Lmir,, %) — m(ry, x)]) 1%, } (2.16)

For most metrics of interest, the expected value in (2.16) has the form
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DO = E{ expOLm(ry, %) — M %)) 1%, } (2.17)
so that

pix — %) < [D)]V® X (2.18)

where w(x, x) is the Hamming distance between x and x or the number of bits which differ

in the two sequences. For the case of an arbitrary metric, the parameter D is given by

- sz'”oom - sz'”oE{ exp(\Imir, 1) — m(r, 0] [x}| » (2.19)

When the maximum likelihood metric is used for decoding, ie.
m(r, x) = In p(r{x) (2.20)

then one may use the Bhattacharyya parameter

z=3Voelapels | @21

r X# X

for the value of D.

To obtain the probability of an error event, the union bound is used to give

Pe < D a(j)D | (2.22)
j

where
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Pg is the probability of an error event

a(j) is the number of error paths of distance j, and

DI _is the pairwise error probability for a path of distance j.

Since the convolutional codes employed are linear, the all zeroes path may be
considered as the transmitted sequence, and the coefficients a(j) are obtained from the

generating function T(D) to yield
Pz < T(D) . ' (2.23)

with the value of D determined by the coding channel.
The bound on the probability of bit error can be obtained in a similar fashion, and

is given by

Pg < %Z diial.pD | O (224)
i / !

where
b is the number of information bits per code symbol,
i is the information weight of the path (ie. the number of bit errors), and

a(i,j) is the number of paths of weight | with information weight i.
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The coefficients a(i,j) are the same as in the augmented generating function T(D,l), and
the values of i are the same as the exponent of | in each term of the function. The
augmented generating function is obtained by equating L to unity in the function T(D,L,1),
such as that shown in Figure 2.7. The bit error bound can be written incorporating this
function as

oT(D, 1)

1
Pr < 2=
BS b ol =1

(2.25)

The error bounds presented in this section are used to verify the simulation results
for the cases where the coding channel can be easily characterized. The multiple tone
signals with variable signal energy form a rectanguiar signal constellation which can be
readily analyzed for coherent reception. The probability of error between two adjacent

signals is obtained from the error function
0= Q(L) (2.26)

where d is the Euclidean distance between the two signal points. The probability of an

error event for a rectangular signal set of n dimensions (ie. n tones) is

Pe=1-(1-p) (2.27)

For the case of hard decision decoding, we may use the Bhattacharryya parameter for

an M-ary symmetric channel as the valus 5 {3

(2.28)
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The rectangular signal set is not strictly an M-ary symmetric channel, since all Qf the

cross-over probabilities between signals are not equal. However, the error bound still

-applies in this case.

To obtain an error bound for soft decision decoding, we note that the probability

that one code vector is decoded as another code vector is given by

pE<w>=o(—————‘;’N ) | -  (e29)
0

where d is again the Euclidean distance between code vectors. The error function may

be upper bounded by an exponential function as foliows

d2

Q( < )S%e’(p_a,/\/
/2N, 0

(2.30)

For the rectangular signal constellation, the Euclidean distance is proportional to the

square root of the Hamming distance, and so we may write
d= wEg _ (2.31)

where
w is the Hamming distance between the code vectors, and
Eg is the energy of a tone.

Thus the error bound may be rewritten as

Pew) < J—[ exp — —3— ]W | ‘ (2.32)

0000000000000 000000000000009008000000000002000000000000°
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To obtain the bound for the overall probability of an error event, we sum the individual

components over w to yield

Pe = D Pew)
w
1 Es |w
SEF a(W)[ P = INg } (2.33)
-1
D= exp ——‘Wo—

These two values for the parameter D may also be used to find the bound on the bit error
probability for coherent demodulation of coded rectangular signal sets. Equation (2.24)
or (2.25) may be used, with a multiplying factor of one half in the soft decision case. The
bit error bounds were computed for the various codes used with multiple tone signals
with fixed signal energy per orthogonal component (ie. constant ehergy tones). These
bounds are plotted with the corresponding simulation results in the appropriate
subsections of the next chapter. The performance of coding with constant signal energy
constellations and coherent demodulation, and the performance of all the coded systems
employing noncoherent reception are not easily evaluatéd. Just as the error probability
for uncoded transmission was difficult to obtain, the evaluation of the bound parameter

D is not tractable for these cases.
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CHAPTER THREE

RESULTS
3.1 Overview

3.1.1 Program Description

The simulation program used to model the communication system was written in

FORTRAN, and run on both VAX 11/750 and IBM 3081 computers. The program is

divided into a mainline routine, which handles the initialization, input, and output tasks,
and several subroutines which correspond to the various éomponents of the system. The
input file for the simulation contains the parameters of the code, which are the rate, the
constraint length, and the generator matrix. A look-up table of output symbols
corresponding to various branches in the trellis is generated by an initialization
subroutine. This table is used by the encoding and decoding subroutines. The type of
demodulation (coherent/noncoherent), and whefher hard or soft decisions are.to be
made, are also indicated in the input file. The different signal space mappings are
obtained by using different versiohs of the channel subroutine, which will be described

later.

After the initialization procedures are complete, the main program commences by.
generating a random bit stream. This is done with a library subroutine for
pseudérandom number generation. The information symbols are passed to the encoder
subroutine which returns the encoded data symbols. These data symbols are bassed to

the channel subroutine which simulates the modulator, the AWGN channel, and the
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demodulator. In each signalling interval, the subroutine calculates and returns a metric
for each member of the signal space. These metrics are then passed to the decoding
subroutine, which constructs the received bit stream. The main program compares the
received data to the original information bits, and keeps track of the errors. Error events,
symbol errors, and bit errors are all tabulated. The signal to noise ratio (SNR) starts at
one dB and is incremented in steps of one dB. One hundred thousand data symbols are
simulated at each level of SNR. After each set of data points is processed, the three error
probabilities are calculated and sent to a data file along with the SNR value. The SNR
is then incremented and the procedure repeats until the error event count is less than ten
in one hundred thousand data points at the given SNR. The output data file is used to

plot error performance curves which appear later in this chapter.

The encoder subroutine preserves the previous input bits which determine the state
of the encoder. The current information symbol then determines the transition to the next
state and the corresponding output symbol. This is accomplished by using the present
state and input bits as an inde;< to the table generated during initialization. The output
symbol is contained in the table, and Is returned to the mainline by the encoder

subroutine.

The channel subroutine receives the data symbol and several parameters of the
modulation scheme. The SNR level, the type of demodulation (coherent/noncoherent),
and the type of decoding metric (hard/soft) are all passed from the mainline. Different
versions of the channel subroutine are used to accommodate the various signal space
mappings in the simulations of the different cases. Given the transmitted signal and the

SNR value, a decision variable is computed for each member of the signal space.
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Samples of Gaussian noise are calculated from uniformly distributed pseudorandom

numbers, according to the polar formuia [6].

xi=v"\/f - 258 | | (3.1)
and
Xo =V -2 Ig S : (3.2)

are two independent samples of a zero mean, unit variance, normally distributed random

variable, where

S=VZ2i V3 - B3
and S must be less than unity.

Vi=2U; -1 , (3.4)
and

Vy = 2U, 1 (3.5)

where U, and U, are samples of a random variable, uniformly distributed between zero
and one. A random phasé angle is added to the transmitted signal for the case of
noncdherent reception. The angle () is assumed to be uniformly distributed between
zero and two pi radians, and is obtained from a pseudorandom number generated by the
library subroutine. For soft decisions, the actual decision variables are returned to the
main 'program és decoder metrics. The data symbol co"rresponding to the largest
decision variable fs determined in order to calculate the hard decision metric. The

negative Hamming distance between the demodulated symboi and the branch symbol is
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returned as the branch metric in this case. Details of the demodulation 'énd metric

calculation are given in Chapter two.

The decoder subroutine implements the Viterbi algorithm. A bit history and path
metric are maintained for each state of the code. At each signal interval, the metric for
the signal corresponding to each transition in the trellis is added to the path metric for
the originating state of that branch. The paths entering each state are compared, and
the one with the largest metric is retained as the survivor. This process makes use of the
look-up table of trellis states and transitions, and the information symbols for the bit
histories also come from the table. The output bits are taken from the bit history
corresponding to the path with the largest metric at each step. The length of the history
maintained by the decoder varies with the code constraint length and code rate

according to the formula
L =5bv : (3.6)

where
L is the length of the bit history,
v is the code constraint length, and
b is the information bit rate (code rate = b/n).

This decoder has negligible performance degradation due to path history truncation.
Clark and Cain [14, p. 262] suggest that path histories for near optimal decoder
operation should be 5v for rate 1/2 codes, 8v for rate 2/3 codes, and 10v for rate 3/4

codes.
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TABLE 3.1

Case Descriptions

CASE INFORMATION CODE CONSTRAINT NUMBER OF NUMBER OF Epeak/Eay

RATE RATE LENGTHS  TONES SIGNALS

1A 1 bit/T 1/2 2,6 2 , 4 2.0
1B 1oit/T 2/3 4,6 2 8 1.0
2A 2 bits/T 2/3 4,6 3 8 2.0
2B 2 bits/T 2/4 6 4 16 2.0
2C 2 bits/T 2/3 4,6 4 8 1.0
3A 3 bits/T 3/4 5 4 16 2.0
3B 3 bits/T 3/6 3,6 8 64 1.0

NUMBER OF TONES = BANDWIDTH x 2T
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3.1.2 Case Summary

There are seven different coding and modulation schemes considered in this
report. The characteristics of each scenario, and the numbering scheme used to
disinguish them, are shown in Table 3.1. They are divided into three groups, and the
number of the case indicates the number of information bits transmitted per signalling
interval. There is also a letter associated with each case to differentiate the different

code rates and modulation schemes employed.

Four of the cases (1A, 2A, 2B, 8A) use signals which ‘may contain any combination
of tones. These signals have a variable signal energy, depending on the number of tones
in the signal. They are compared to the baseline system according to average signal
energy. For example, let Eg be the energy of a single tone. For the four tone case, there

are sixteen signals with average signal energy given by

1(0) + 4(Eg) + 6(2Eg) + 4(38Eg) + 1(4Ey)

Eav = 16

(3.7)

=2Eg
Therefore, the signal energy of this system is reduced by 1/2 for comparison with the
baseline system, which has a signal energy of Eg. The other variable signal energy cases
are also scaled appropriately. The remaining three cases (1B, 2C, 3B) have constant

energy signals, with signal energy equal to the energy of a single tone, for direct

comparison with the baseline system.

Each of the seven cases has several sets of results. The various systems were all
simulated with both coherent and noncoherent demodulation, both hard and soft
decoding metrics, and different code constraint lengths. All of the simulation results for

each case appear on two figures, one for coherent reception and one for noncoherent
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reception, each with the corresbonding baseline system performance curve. The
measure of performance on the graphs is the bit error rate (BER) plotted against the
energy per 'bit to noise sbectral density ratio (E,/Np). As mentioned previously, the error
events and symbol errors as well as the signal energy to noise ratio were tabulated by the

simulation program, but the bit error performance was chosen as the most suitable
criterion for comparison. Table 3.2 shows the required £,/N, to give a BER of 10~4 for
eveN case simulated. These values were obtained from the figures shown later in this
chapter, with some extrapolation required on some of the curves. For data transmission,
system performance at a BER of 10~5 or less is usually of most interest. However, the
simulation run time to obtain reliable data in this region is prohibitive. Some curves

display irregular behaviour for the last data point (ie. the lowest BER point). This occurs

because the BER is calculated using a very small number of error events, and the random

occurrence of a single error causes a large displacement of the point on the graph.
Since error performance curves are known to behave smoothly at low BER values, these
points are neglected when extrapolating the curves. All performance values quoted in

this chapter will refer to £, /N, in dB at the reference BER of 104,

'As a verification of the simulatioﬁ program performance, several test cases were
_run and compared to theoretical results. The baseline systems (2, 4, and 8-ary FSK) were
~simulated for both coherent and noncoherent demodulation,'and the results matched
closely with the theoretical performance. The modulation scheme which uses all possible
tone combinations to obtain a rectangular signal set of 2M signals from M orthogonal
tones was also simulated for the various values of M. The performance of this system;
with no coding and coherent démodUlation, reflected the theoretical error probabilities
for rectangular signal constellations. In both cases, the error performance curves for the

simulation rﬁatched the theoretical results to within one-half dB over the entire curve. In




CASE BASELINE

PERFORMANCE
1A 11.5
1B 11.5
2A 8.8
2B 8.8
2C 8.8
3A 7.4
3B 7.4

CASE BASELINE

PERFORMANCE
1A 12.3
1B 12.3
2A 9.6
2B 9.6
2C 9.6
3A 8.2
3B 8.2
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TABLE 3.2

Coherent Results

HARD DECISION
PERFORMANCE

SOFT DECISION
PERFORMANCE

8.2 (U = 2), 6,4 (Ll - )
9.7 (v =4), 9.4 (v = 6)

7.5w=4), 7.0 (v=6)
7.3 (v=4), 6.8 (v=206)

7.7 v=23), 5.0 (v =196)

Noncoherent Results

HARD DECISION
PERFORMANCE

10.8 (v=2), 9.4 (v=6)
12.8.(v = 4), 12.4 (v = 6)
10.1 (v=4), 9.4 (v =6)
10.1 (v = 6)
10.0 (v = 4), 9.9 (v = 6)
9.6 (v=5)

12.0 (v =3), 10.0 (v =6)

SOFT DECISION
PERFORMANCE

92(v=2), 7.7 (v=6)
10.5 (v =4), 10.0 (v = 6)
81(w=4), 75 (v=106)
8.0 (v=106)

76 (v=4), 6.9 (v=06)
7.7 (v=05)

7.8 (v =38), 58 (v=26)
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coded systems ‘which employ the rectangular signal constellations, error bounds were
calculated as described in section 2.4. The coherent simulation results with their

respective error bounds are shown in the appropriate subsections of this chapter.
3.2 Simulation Results

3.2.1 Case 1A: Rate = 1/2, 2 tones, Variable Signal Energy

This case ha,s the best results of. those investigated. All .of the 'coded systems
outperform the baseline by between 1.5 and 5.1 dB at the reference BER of 10-4. The
number of points in the signal space is doubled by the use of multiple tone signals so
that optimal rate 1/2 codes can be employed. This provides a redundant coded bit for
each bit of information transmitted, an‘d thus good error correction abivlity. The two

"codes used in the simulafion havve constraint lengths of 2 and 6 with free distances of 5
and 10 respectively. The longer code is quite common, and has been used in other

satellite applications {19].

The results for coherent reception are shown in Figure 3.1. The improvement over
the baseline system ranges from 1.8 dB for the short code with hard decisions, to 5.1 'dB
for the long code with soft decisions. The use of soft decisions prolvides a gain of 1.5
dB over hard decisions for the short code, yielding a margin of 3.3 dB over the baseline.
A 1.9 dB improvement, from 3.2 dB better than the reference with hard decisions toa 5.1
dB advantage with soft decisions, ié obtained for the longer code. For hard decisions,
the effect of increasing the constraint length from 2 to 6 yfelds 1.4 dB improvement, and

1.8 dB is gained in the soft decision case.
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The performance of the noncoherent receiver appears in Figure 3.2. The results
are very similar to the coherent case, with 1.5 to 4.6 dB of improvement over the baseline .
system. The short constraint length code provides a 1.5 dB advantage with hard
decisions, and an additional 1.6 dB gain for soft decisions. increasing the code

constraint length enhances performance by 1.4 dB for a 2.9 dB improvement on the

‘paseline with hard decisions, and by 1.5 dB in the soft decision case.

The theoretical error bounds for the two codes are also shown. Figure 3.3 shows

the bound for the shorter code, and the longer code appears in Figure 3.4.

3.2.2 Case 1B: Rate = 2/3, 2 tones, Constant Signal Energy (signalling over 2T)

Case 1B uses a rate 2/3 optimal code with the three bit codewords sent over two
signalling intervals. There is less redundant information in the data stream, and so the
performance is understandably worse than Case 1A. The advantage to this scenario is
that the signals have constant energy. In this case, the computation of the decision
variables is simplified. However, the Euclidean distance between the signals is smaller
in this case than in the previous modulation scheme, which is detrimental to error
performance. Codes with constraint lengths of 4 and 6 and corresponding free distances

of 5 and 7 were simulated.

For the coherent receiver, the worst case coded system is 1.1 dB worse than the
baseline performance, as shown in Figure 3.5. This is the short constraint length code
with hard decisions. Increasing the constraint length yields only 0.5 dB improvement but
soft decisions provide larger gains. The short constraint length code with soft decisions

gives 1.8 dB improvement over the baseline system, which is 2.9 dB better than the hard
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decision case. The longer constraint length again provides a very modest additional gain

of 0.3 dB.

The noncoherent systém has performance curves very similar to the coyherent case,
and they are shown in Figure 3.6. The hard decision simulations are worse than the
baseline by 0.5 and 0.1 dB for the short and long constraint length codes respectively.
Using soft decisions yields 2.3 to 2.4 dB of improvement over hard decisions. This results
in 1.8 dB improvement over the baseline for the shorter code, and 2.3 dB gain for the

longer code.

In all situations, the coded system performance curves are steeper than that of the
baseline. This implies that the hard decision performance will approach or even surpass
the baseline system at higher SNR levels. As well, the soft decision improvement will
increase as the curves diverge. This additional improvement will not be very large,
probably less than dn,e dB. The difference in slope of the curves also means that the
baseline system surpasses the performance of the soft decision coded system at low SNR
values. This happens below the point where the curves intersect, known as the
cross-over point. The cross-over point occurs at £,/Ng of 7.8 dB for coherent reception

and 8.5 dB in the noncoherent case.

3.2.3 Case 2A: Rate = 2/3, 3 tones, Variable Signal Energy

This is the first case which has an information rate of two bits per signalling
interval, corresponding to a baseline system of 4-ary FSK. A rate 2/3 code is used, which
requires an eight point signal space. Three tones are employed, with all combinations

of tones allowed, to provide eight variable energy signals. The two codes used in the
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simulation are the same as those in the previous case, with constraint lengths of 4 and

6.

The results for coherent reception are shown in Figure 3.7. The performance of
both codes is virtually identical with hard decision decoding, and is about 0.5 dB worse
than the baseline system. Soft decision decoding yields 1.3 dB improvement over the
reference system for the short constraint length code, and an additional 0.5 dB for the
longer code. The cross-over points for the soft decision curves are between 5.5 and 6.0

dB (Ep/No).

Figure 3.8 displays the performance curves for noncoherent reception of Case 2A.
The short constraint length code with hard decisions is 0.5 dB worse than the baseline,
while the longer code is 0.2 dB better than the reference system. The use of soft
decisions vyields about 2 dB of improvement over the hard decision case. The
performance gain over the baseline with the soft decision decoder is 1.5 dB for the
shorter code, and 2.1 dB for the longer constraint length code. Both soft decision curves

intersect the baseline curve at 6.3 dB on the horizontal axis.

This case achieves performance improvements with a reduction in required
bandwidth. The spacing between orthogonal tones is the same for the three tone coded
system and the four tone baseline system. The coded signals therefore require only 3/4
of the bandwidth, although a higher peak power transmitter is neccessary for the multiple
tone signals. Itis also significant to note the free distances of the optimal rate 2/3 codes.
The shorter code (v = 4) has a free distance of 5, while the longer code (v = 6) has a free
distance of 7. These parameters will be used for comparison between the different cases

at this information rate.
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There are two figures which display the theoretical error bounds for coded
performance with rectangular signal constellations, as described in Chapter two. Figure
3.9 shows the bound for the shorter code and Figure 3.10 contains the results for the

longer constraint length code.

3.2.4 Case 2B: Rate = 2/4, 4 tones, Variable Signal Energy

This case employs ail four tones in the coded system that are used in the baseline
FSK modulation. All tone combinations are used to provide sixteen signals with signal
energies that depend on the number of constituent’tones. The code for this case has rate
2/4 to provide a four bit codeword for two bits of information in eéch signalling interval.
An optimum distance profile code of this rate could not be found in the literature, and
so two identical rate 1/2 encoders in parallel were used. Only one code was simljlated,

with a constraint length of 6, composed of two rate 1/2 codes of constraint length 3.

The performance of the coherent reception system is shown in Figure 3.11. With
hard decisions, the coded simulation is 1.1 dB worse than the baseline.’ Soft decisions
yield a 2.5 dB gain to provide 1.4 dB improvement over the reference syétém. Figure 3.12
displays the performance curves for the noncoherent receiver. The soft decision decoder
is superior to the baseline system by 1.6 dB while the hard decision curve is 0.5 dB worse

“than 4-ary FSK.

The performance of the coded system in this case is virtually the same as the
previous case.in spite of the lower rate code and increased signal bandwidth. The
reason for this is that the code structure employed does not take full advantage of the
signal space. The code formed by two cascaded rate 1/2 encoders has double the

constraint length of a single component code yet only achieves the same free distance.
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The code used in this simulation case has a free distance of 6 which is approximately the
same as the rate 2/3 codes in Case 2A. Therefore there is no appreciable performance

gain for this system. The theoretical error bound for this code is shown in Figure 3.13.

3.2.5 Case 2C: Rate = 2/3, 4 tones, Constant Signal Energy

This simulation employs the same rate 2/3 convolutional codes as Case 2A. In this
case, the eight signals required are constructed from four orthogonal tones. Single and
double tone signals with constant signal energy are used. The codewords are mapped

onto the signals to optimize the error performance as described in Chapter two.

The simulation results for ceherent detection are plotted in Figure 3.14. The hard
decision decoder performs worse than the baseline by 0.7 dB and 0.9 dB for the short
and long constraint length codes respectively. Soft decisions give improved performance
with a.margin of 1.5 dB for the short constraint length code over the baseline. The longer

code provides an additional gain of 0.5 dB for a 2.0 dB improvement on the reference

system.

The noncoherent performance curves appear in Figure 3.15. The' ba‘seline system
is again superior to hard decision decoding for both codes. The short constraint length
code has a 0.‘4 dB disadvantage while the longer code has 0.3 dB worse performance.
With soft decision decoding, the short constraint length coded system improves by 2.0
dB. The longer code shows 3.0 dB gain over the hard decision case for a 2.7 dB

improvement over the reference system.
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This case has the best performance of the three simulations at this information
rate. The additional advantage of constant energy signals imposes less stringent

requirements on the actual transmitter and receiver.

3.2.6 Case 3A: Rate = 3/4, 4 tones, Variable Signal Energy

The final two cases have an information rate of three bits per signalling interval,
which corresponds to a baseline system of 8-ary FSK. Case 3A employs a rate 3/4 code
and a signal space of sixteen points. The signals are comprised of all possible
combinations of four orthogonal tones, which require only one half the bandwidth of the
baseline system. The simulation was run with one code which has a constraint length

of 5 and a free distance of 5.

Figure 3.16 shows the results of the simulation for coherent reception. With hard
decisions, the coded system is 1.9 dB worse than the baseline. Soft decisions yield a
2.1 dB improvement, resulting in a 0.2 dB advantage over FSK signalling. The
performance of the noncoherent receiver appears in Figure 3.17. The hard decoder
exceeds the reference system performance by 1.4 dB while soft decisions provide a 1.9
dB gain. This resuits in a modest 0.5 dB improvement over the baselfne for the coded

system with soft decision decoding.

This case does not provide significant performance gain over 8-ary FSK. The
relatively high rate code provides a free distance of 5 and the signalling bandwidth is
reduced by one half from the reference system. Figure 3.18 shows the error performance
bounds for this code with a rectangular signal constellation. The signals also have

variable energy, requiring increased receiver complexity.
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3.2.7 Case 3B: Rate = 3/6, 8 tones, Constant Signal Energy

The codes for this case have a rate of 3/6 and constraint lengths of 3 and 6. The
short code is a dual-3 rate 1/2 convolutional code, and the longer code is comprised of
three identical cascaded rate 1/2 encoders, eac‘:h with v =2, The sixty-four signals
required are composed of single tones and triples of tones selected from a set of eight

orthogonal tones. The signals have constant energy and are assigned to the codewords

" as previously described.

The performance curves for coherent reception are shown in Figure 3.19. The
coded simulations with hard decision decoding are significantly worse than the baseline
system. The margins are 4.3 dB for the short code and 2.5 dB for the longer code. The
performance gains for soft decision decoding are also quite large so that the short
constraint length code is 0.3 dB worse than the baseline with soft decison decoding. A
gain of 2.4 dB over the reference system is achieved by the long code when soft decoder

metrics are employed.

The results for noncoherent reception are quite similar to the coherent ‘case as
shown in Figure 3.20. The short code with hard decisions is 3.8 dB worse than the
baseline, while the long code has a 1.8 dB disadvantage. The use of soft decision
decoding provides the short code with a 0.4 dB improvement on the baseline

performance. The long code outperforms the baseline by 2.4 dB with soft decisions.

The long constraint length code with soft decision decoding gives good
performance in this case. The relatively poor results of the other simulations are due
mainly to two factors. The structure of the shorter code is such that the codewords

cannot be mapped onto the signal set to provide maximum distance between error paths.
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This accounts for the large disparity between the different constraint length codes. The
codes used do not have large free distances, and the signal space m’apping’ doés not
provide proportionality between Hamming distance and Euclidean distance. Therefore
the hard decision decoding metric has a large disadvantage compared to the soft

decision case.
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CHAPTER FOUR

CONCLUSIONS

4.1 Findings of the Study

The major result of this study is quite obvious from the performance curves in the
previous chapter. The use of convolutional coding with multiple tone signal sets gives
significant improvement over FSK when soft decision decoding is employed. This
performance gain is on the order of 2.0 dB (E,/N,) at a BER of 10— for at least one case
at each information rate. There are numerous parameters of both the coding and

modulation schemes which influence the results of the simulations.

The most readily apparent effect is caused by the type of decoding metric
employed. The simulations with soft decision metrics indicate performance superior to
those with hard decisions by a margin of from 1.5 to 4.9 dB. This situation would be
expected because some information about the received signal is lost when a hard
decision is made in the receiver. The difference is greater for schemes which have less
correspondence between the Hamming distance of the codewords and the Euclidean

distance between the signals, namely the constant signal energy constellations.

The performance of the coherent and noncoherent systems is very similar. In
absolute terms, the coherent receiver gives superior performance due to the exact
knowledge of the phase of the transmitted signal. However, the relative improvements
for the coded systems and the gains for soft decision decoding are virtually identical for

both types of receivers. Although noncoherent FSK is usually used in actual systems,
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coherent results were presented for compieteness. Also, theoretical error performance
bounds can be calculated for coherent reception, and they provide verification of the

simulation results,

The difference between the constant signal energy constellations and those with
variable en'ergy signals is difficult to accurately derive from the cases under
consideration. The variable energy case proves superior for the transmission of a single
bit per signalling interval. Case 1A shows the largest gains of all simulations, with gains
of up to 5.1 dB. However, the use of constant energy signals with two tones involves a

_rather drastic reduction in signal spacing. The number of signals is_also reduced
significantly, and require;e, that a higher rate code be employed. These factors combine
to cause the relatively poorer performance of Case 1B. The transmission of two bits per
period provides the best opportunity for comparison of the bonstellations. The codes
and the size of the signal sets are fairly similar in Cases 2A, 2B, and 2C. Under these
conditions, neither of the two types of constellations appears significantly superior. The
performance results for each simulation are within one dB for all three cases. When three
bits are transmitted pér signalling interval, the constant signal energy situation provides
the best performance. However, Case 3A has a higher rate code and uses only one half
the number of tones as in Case 3B. In spite of this, it actually has better performahce for

hard decision decoding, due to the signal space mapping.

There is another differe'nce between constant and variable energy signal
constellations that has more significance when considering actual implementation of the
system. With variable energy signals, the transmitter output power varies according to
the number of tones to be sent. A high peak to average power requirement might prove

to be a disadvantage since the transmitter will be operating at less than its full peak
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power capability for a large percentage of the time. The zero energy signal might also -
prove undesirable to implement if channel fading or drop-outs were possible. The
receiver for unequal energy signals has increased complexity because of the necessity
to compute an exponential function and a modified Bessel function in order to calculate
each decision variable. However, the mapping of codewords onto the signal set is
straightforward for this situation. In the constant signal energy case, the signal
generator in the transmitter must adjust the amplitude of the signal tones to ensure the
signal energy remains constant. The computation of decision variables in the receiver
is simplified, but the mapping of codewords onto the signal space must be incorporated

in both the transmitter and receiver.

4.2 Suggestions for Further Work

The results of this study raise some questions that may provoke further research.
Although significant performance improvements have been discovered, further
improvements may be obtained from different codes and signal constellations. One

example of this might be codes with better distance profiles than the cascaded rate 1/2

-codes used in this study, to improve hard decision performance. The use of larger signal

spaces with lower rate codes is possible for eight tone and even sixteen tone signalling.
Only 64 of 256 possible tone combinations were used in the signal set of Case 3B, and
16 tones provide 65,536 possible signals from which to construct a constellation. It is
noteworthy that trellis coding in cpherent communications systems obtains‘larger coding
gains with larger signal sets [8]. Excessive computing time requirements for the

simulation program used in this study precluded further exploration of larger signal sets.
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Another subject for further investigation is the performance of these schemes in
an anti-jamming system in the presence of jammer interference. Other studies [3, 4] have
shown good results for convolutional coding with conventional FSK signalling, and so
this is a promising area. The implementation of soft decision decoding becomes more
complex in a jamming environm’ent. Side information regarding the presence of a
jamming signal is required by thé decoder or else soft decision decoaing seriously

degrades in performance.’

4.3 Summary

The use of convolutional codes with multiple tone signals has been shown to
provide performance improvements over M-ary FSK signalling. The coded system does
not reduire additional bandwidth to maintain the same information rate. Indeed in some
cases a smaller modulation bandwidth and hence higher processing gai'n appears
possible. The coding is suitable for implementation i.n a frequency hopped spead
spectrum anti-jam system with a usual spectrum analyzing receiver followed by a Viterbi
decoder. Increased performanée gains through different codes and signal sets, as well

as performance in a jamming environment are topics of further interest.
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