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0 
• PART III - Synchronization of a Frequency Hopped, Spread Spectrum, 
0 
• Space Communications System 

0 
• 
• INTRODUCTION 
• 
• This part of the report deals with uplink synchronization in a frequency-

de 	hopped multiple-access satellite system. Uplink synchronization encompasses 

the acquisition (and tracking) of parameters required to allow the detectiôn of 0 
• frequency-hopped user transmissions at a satellite that performs frequency- 
• 
• dehopping and detection processing. Since this synchronization process will 

require feedback to the user, the issues of downlink format and synchronization • 
• need to be addressed, but to a lesser extent. High-level data formats and 
• 
• associated protocols (e.g. for network management) are not considered. 

I 
• synchronization procedure is described. Various aspects of uplink synchroniza- 

• tion are then outlined, and options for system implementations and strategies 

de 
are presented. As a baseline, an ideal "simplest possible" system (having 

• lowest synchronization complexity) is then described. Finally, we look at the 

• synchronization implications of the schemes suggested by Kolba [1,2] for 
• 
• demand-assignment of satellite resources in a system with a large number of 

0 
•

users. 

• 
• 1. SYSTEM UNDER CONSIDERATION 

41 
41 	1.1 General  

• It is assumed that this is principally a point-to-point communications 

• system based on circuit switching. Users communicate through a processing 

• satellite that dehops user uplink transmissions, and creates suitably formatted 

TDM frames for transmission on the downlink. Call setup is assumed to be • 
110 	handled through some central controller. This controller may be a ground 
• 
• station, or may in fact be on board the satellite itself. Users send call 

• — 1 — • 

• 
• We first define the system under consideration along with the assumptions 

that are employed. A downlink format is defined, and an associated downlink 



requests to the controller using the same uplink channels that they use for, the 

subsequent call; these requests therefore enjoy the same antijam protection as 

normal user transmissions. Channel assignments for the users may be fixed or 

reconfigurable by a central controller overseeing demand assignment. To keep 

things simple, we initially assume a fixed assignment scheme with dedicated 

uplink/downlink slots for each user. The implications of demand-assigned 

systems are dealt with in section 6. 

We assume that when user A is not engaged.in  a call or a call request, the 

satellite places the data detections from user A's uplink slot into user A's 

downlink slot. This "loopback" mode is assumed to be the default; it provides 

the feedback which is crucial to initial synchronization. The type of feedback 

information'provided for this synchronization, and the format with which it is 

delivered, are considered later. 

On -ce synchronization is achieved, the user can send the appropriate con-

trol codes to command the satellite to reconfigure to route subsequent 

transmissions to the central controller (who will in turn command subsequent 

reconfigurations needed for the call). Once the call is complete, hangup codes 

from the initiating party can be relayed by the satellite to the central con-

trouer, and the call connection terminated. This implies that the 

reconfiguration control on the satellite must be capable of accepting commands 

directly from each user, as well as from the central controller. This method 

also implies that the satellite must be continUally decoding signals from each 

user's slot, looking for control codes. It will therefore be necessary to 

avoid hangup codes in normal transmissions. In addition, we must make negli-

gible the probability that the satellite randomly detects the code for exiting 

loopback mode when a user is not yet synchronized (or is not even 

transmitting). This can be assured by making these codes long. 

Alternatives do exist, such as dedicating a (possibly time-shared) channel 

for each user to send requests to the (ground-based) central controller. That 



11 
1M 
0 
• 

is, we might specify that for some small percentage of the time during loopback • 
• or regular calls, the satellite will instead route the user transmissions to 

• the central controller. Such time- division multiplexing embeds a control 

• channel in the normal user transmissions. By shifting the responsibility of 

• looking for control codes to a ground-based controller, the processing burden 

• on the satellite could be reduced. The method outlined in the previous 
11 
• paragraph has only been adopted so that the discussion is simpler and more 

r• 
concrete; all of the important principles and problems are still revealed. • 

lb 
• 
• 1.2 The uplink  

•
• 

Uplink users are arranged in an FDMA format, with each user employing a 

non-coherent M-ary modulation (FSK is assumed). Users hop their carrier fre- 
q. 

11 	quencies as a group (as shown in Fig. 1) over a very wide band (approximately 1 
10 
• GHz). The carrier phase is not preserved across hops. The hopping pattern 

11 
11 	which the users' frequency synthesizers follow is produced by a pseudo-random 

sequence generator with a period which can be in excess of several days. The 
11 
• hopping rate employed (e.g. 20 kHz) is sufficient to thwart frequency-follower 
11 
• jammers. 

0 	Users can be separated into two groups. Low-rate users (e.g. 2400 bps) 
0 

are distinguished by several (or many) hops occurring during one symbol dura- 
1, 
• tion. Conversely, high-rate users (e.g. 1.5 Mbps) transmit many symbols per 

hop. We assume for the lower rate users that there are an integer number of Q 
11 
40 	hops per symbol, and that the symbol boundaries are aligned with hop transi- 
t, 

1M 	tions. For the higher rate users, we also assume alignment of hopping 

40 
• transitions and symbol boundaries, this time with an integer number of symbols 

per hop. If this is not the case, the first and last symbols of a hop cannot 
11 

• be used (which is a possible option). For the lower rate users, the hopping 
O  
• rate determines the effective bandwidth of the signal, and puts a lower limit 

01 
11 	on the frequency spacing of their FSK tones. For example, a hopping rate of 20 

1, 
11 	 -3- 



/
 
f
 

B
=
4
N
f
s 

IM
II

II
In

11
11

11
M

 

CD
 

PA
 

o.
  

D
 

f
.
  

m
i
n
 

f
m

a
x
 

o o o  

   
1
-3

  
   

11—
 4

 

   
 

Ij
- 

2T
 	

3
T
 	

4
T
 	

5T
 	

6T
 

T
I
M
E
 

F
i
g
.
 
1.

 
F
r
e
q
u
e
n
c
y
-
h
o
p
p
i
n
g
 
o
f
 
g
r
o
u
p
 
o
f
 
N
 
u
s
e
r
s
 
u
s
i
n
g
 
4
-
a
r
y
 
F
S
K
,
 

te 
lb
 l
b 
6 
lb
 0
 l
b 
0 
0 
lb

 6
 l
b 

lb
 0

 4
1 

lb
 l
b 

lb
 

lb
 l

b 
0 
lb

 6
 6

 l
b 

6 
lb
 4

1 
11

 
te

 l
b 
0 
0 
lb
 t

e 
lb

 0
 l
b 
6 

lb
 I

I 
lb

 l
b 

te
 l
e 

te
 f
b 
0 
6 
lb
 0
 l
b 



• 

• kHz means that the FSK tones of each user must be spaced at 30 kHz to 40 kHz to 
11 

be accurately discriminated at the satellite. • 
• Uplink beam sharing is a possibility [2]. One or several agile high-gain 

• uplink antennae can provide coverage to a large number of spot zones on a time-

41 	multiplexed basis. This scheme allows user ground terminals to operate at 

• lower EIRP's, so that small& transmitting antennae can be used (and/or lower 
11 
1, 	power transmitter amplifiers). Users must know when the satellite antenna is 
• 

pointed to receive signals from their zone (accounting for earth-to-satellite 

11 
propagation delay), or at least, they must be able to discover this window by 

• trial-and-error search. Such a trial-and-error procedure could be accommodated 
• 
11, 	by simply adding one more parameter to the uplink synchronization search dis- 
e 
• cussed later. This beam-sharing option poses no additional fundamental 

problems, and simply implies longer waits for access to satellite resources. 
40 
• It is therefore not considered further. 
C  

10 
41 	1.3 The downlink  

The downlink follows a TDM format and the composite signal may or may not 

• be protected by spectrum spreading. If spectrum spreading is employed here, 

11 
• the first step at the receiver is to synchronize to this spreading sequence and 

11 
despread.  This is a conventional synchronization problem and so is only 11 

• briefly considered here. Downlink spreading may be a requirement to protect 
111 
1111 	against jamming. Jamming the weak satellite signals may not be overly dif- 

11 	ficult when users employ low-gain antennae with correspondingly poor direction 

0 	discrimination. 
dO 
• The downlink is served by a single high-gain agile antenna that provides a 
41 
• narrow spot beam that hops from zone to zone. This arrangement again allows 

41 
users to employ smaller (lower-gain) receive antennae, but its primary purpose 

• -5 - 
• 

41 
• is to reduce the required satellite transmitter power. The downlink TDM format 
01 
• is assumed to be as in Figure 2. One frame is composed of the intervals during 
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10 

• 0 

•
which the downlink antenna beam hops to each of the coverage zones. While 

dwelling on a zone, a conventional sync pattern is transmitted, followed by 

411 	data slotà for the users, as well as a common information slot in which the 

• satellite may transmit control messages or data which facilitate initial 

synchronization and tracking. Users look for the sync pattern, then "read" de 
data from their assigned time slots. As in a normal TDMA satellite system, the 

0 
• sync pattern creates the time reference for the user time slots that follow. 

10 

lb 	2. DOWNLINK SYNCHRONIZATION 

• We assume initially that the downlink TDM signal is not spread. Each user 
0 
• receives signal energy only during the time that the downlink beam is dwelling 

0 
on the user's zone. For example, with 20 fully active zones, users see signal te 
energy for about 5% of the time; some small percentage is needed to allow beam 

• repositioning. 

40 
To perform initial acquisition for an unspread signal, the following 

410 	procedure may be employed. Users energy-detect over a sliding window of length 

•
4, 

T z (or smaller), where T z is the dwell time on the zone. Once received energy 

• exceeds a threshold, the window is frozen. Now the received energy may be 

• monitored as the windoW position is varied, with step sizes reduced at each 

• iteration, until the best alignment with the satellite dwell time is found. 

10 	The final window position should then be advanced slightly to ensure that the 

• sync burst at the start of the frame does not fall outside the window. The 
10 
• windowed signal is then passed to phase and bit-timing recovery circuits. Once 

these parameters are acquired, the data is decoded, and a search for a unique 0 
0 	sync word in the sync burst is begun using a sliding binary correlator [3]. 

•
0 

This will reliably detect the sync word even in the presence of isolated bit 

•
errors. When the sync word is acquired, the user can identify his time slot 

40 	and pick out the data destined for him. In addition, any common data supplied 

•

0 

-7- 
0 
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by the satellite can be recovered. Note that the initial steps of this proce-

dure may require averaging over several frames. The windowing is used to avoid 

presenting just noise (and possibly jamming signals) to the sync circuits when 

the satellite beam is pointed elsewhere. 

Note that unlike a conventional TDMA system having TDM both on the uplink 

and on the downlink, we do not need bit-timing symbols dedicated to each user. 

All data bursts for the ground users are exactly aligned to common timing marks 

since these bursts are contained in slots formed by the satellite  from its 

internal clock; there is only this single timing reference. This also means 

that the signals from subsequent beam hops are easily combined in the carrier 

and bit-timing recovery loops. All that is needed is a simple gating waveform 
• 

as in Figure 3. 

If the downlink signal is spread, synchronization is more complicated. 

When spectral spreading is used, the (average) signal level may be well below 

the noise level at the output of the front-end filters. In this case, straight 

energy detection over a sliding window may be of no use. Instead, a sequential 

search for the spreading code sequence (and correct carrier frequency) would be 

performed, with steps on the order of half of a chip for trial code phases 

(with DS spreading), or half of a hop (with FH spreading). The fact that there 

may be no signal for a large percentage of the time (while the downlink beam is 

elsewhere) will affect the search strategy. 

In a typical sequential search, an attempt is made to despread the 

received signal using a locally generated reference with trial values for code 

phase and carrier frequency. The envelope of the despread waveform is detected 

at some intermediate frequency after filtering to the bandwidth of the data 

modulation. This energy is then integrated over an observation interval of Tr  

If the result exceeds a predetermined threshold, a possible detection of 

aquisition is declared, otherwise the trial values of code phase and carrier 

frequency are stepped, and the process repeated. With such a method applied 

-8- 
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with downlink beam-hopping, care must be taken to avoid basing decisions on the 

integration output when the signal was either'completely absent or only present 

for a fraction of T I
° Simply making T I 

larger than T F 
is not acceptable; in 

that case we are guaranteed to see signal energy, but only for T z , a small 

fraction of the total integration time. Detection thresholds would have to be 

low, and this implies a high probability of false alarm. A better approach is 

to still window the received signal with a window of duration T z  before 

despreading and integrating. The window position becomes one more search 

parameter. If (T
F
/T

z
) trial values for window position are searched while 

holding the other parameters fixed, we are sure to have at least half the 

signal energy (i.e. over at least time T z/2) pass through the window at one of. 

these (T
F
/T

z
) trial positions. The integration time T I 

may still span several 

frames (if necessary to develop adequate SNR) at a single trial value for the 

window position. 

There are of course a number of different alternatives to fixed-

integration- time detection [5,6] (e.g. continuous sweep, multiple dwell times, 

sequential detection), but all should incorporate windowing to increase the 

SNR. One final alternative that can be mentioned is matched-filter detection. 

A bandpass filter is matched to the transmitted signal over (a portion of) the 

code sequence. In this scheme, two detection circuits are used, one with the 

wrong code to act as a reference, and the other to search for the correct code. 

When the output of the searching circuit exceeds the output of the reference, a 

possible detection is declared. The use of a reference avoids reliance on a 

threshold that depends on a-priori unknown signal to noise (or jamming) ratios. 

The use of the,matched filter means that a sliding-window effect is Created, 

where the window is the length of the matched-filter response. If the signal 

energy from a single dwell time T
z 

is sufficient for detection, then there is 
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• 	no need to combine across multiple frames. If this is not the case, however, 

this approach could not be used. 
lb 
• Once synchronization to the spreading code is achieved, a tracking loop is 0 
• switched in, and the transmitted data can be recovered. Here again, it will be 

0 
• necessary to arrange for a tracking implementation that can ignore inputs 

4. 	except during the time that the downlink beam dwells on the user zone. The 
lb 
• position of this dwell window actually becomes one of the parameters to be 

• tracked. 

te 
It should be mentioned that the expected length of the search time for all 

•
4, 

of the above methods depends on the initial uncertainty in the parameters to be 
de 
• acquired, the most important of which is spreading-code phase. Even if there 

0 
• is zero a-priori knowledge of this parameter, exhaustive search is still  pos- 

sible as long as the period of the spreading code sequence is not excessive. 10 
• Unlike the uplink situation where an extremely long period is needed to prevent 

• jammers from predicting the next hop, a more modest sequence period can be used 

41 
for DS spreading on the downlink, allowing aquisition from zero a-priori lb 

4W knowledge of code sequence phase. 

• 3. UPLINK SYNCHRONIZATION: ACQUISITION 

• The following are identified as the parameters to be acquired (and 
41 
• tracked) to allow the satellite processor to successfully demodulate user 
• 
• transmissions from the ground: 

(a) Hopping sequence  phase, i.e., the proper point in the long pseudo-random 

0 	hopping pattern. (coarse sync) 

• (h) Hopping clock  phase, i.e., the alignment of hop transitions of the uplink 

• signal arriving at the satellite with those created by the dehopper on 

board the satellite. (fine sync) 0 
0 
• -Il-
e 

• • • 

• 



(c) Carrier frequency. There may be significant errors due to Doppler shifts, 

initial errors in the frequency synthesizers, and drift. (coarse and fine 

sync) 

There is one other parameter that  cari  be mentioned. For low-rate users, 

each transmitted symbol spans several hops. The satellite may provide process-

ing that combines received energy over these several hops. In that case, the 

ground user will have to establish the correct hop at which a new symbol should 

be started. If there are Q hops per symbol, each of Q possibilities needs to 

be tried. We will not mention this again in what follows; it should be clear 

that these Q trials would just represent one additional step in the searching 

procedure. 

3.1 Hopping sequence phase/coarse carrier frequency 

The acquisitions of these two parameters are tightly bound together. In 

effect, they create a two-dimensional search space over the regions of uncer -

tainty. System implementation choices will determine the size of the 

uncertainty regions and ultimately the time for acquisition. 

The initial uncertainty in the hop sequence phase has two components. The 

first is due to the user's uncertainty about the sequence phase inside the 

satellite at some absolute time t . The second is due to the uncertainty in 

the propagation delay from the user terminal to the satellite. This second 

component is directly proportional to the uncertainty in the range to the 

satellite, which depends on how accurately the user knows both his own position 

and that of the satellite. If the propagation delay is known to an uncertainty 

of T this translates into an error in hopping sequence phase of 
T 

, 	
p/T

h 
hops, 

P 

where the hopping rate R
h 

= 1/T
h. 

With an assumed hopping rate of Rh = 20 kHz, 
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0 
0 

41 
01 
•

every 50.microseconds of timing uncertainty translates into an uncertainty of 

• one hop in hopping sequence phase. 
11 
0 	We deal first with the former uncertainty component, and assume, quite 
0 
• generally, that the pseudo-random sequence is produced, both in the satellite 

IF and in the ground stations, by a finite state machine (the "sequencer") real- 

• ized as a clocked digital circuit. There appear to be two distinct system 
lb 
• implementation options that determine the initial uncertainty in the current • 
•

sequence phase of the satellite sequencer. In the first option, the user's 

• (slave) sequencer box is initially synchronized by physical connection to a 
41 
• master unit. Depending on the method used, it may be necessary to wait until 
0 
• the master sequence is ready to repeat (i.e. up to several days) to give a 

0 
start signal to the replica sequencer box. Small errors in the clock frequency 

•
I> 

will cause phase error to accumulate from that point on (until the next 
41 
• synchronization with the satellite is achieved). This master unit must be in 

0 	close synchronization with the sequencer in the satellite to avoid passing on 
lb 	errors to the slave sequencers. The only way that this appears possible is if 
0 
• both the master and satellite contain highly stable clocks, and the master unit 
• 
• frequently resynchronizes to tha satellite after its launch to prevent large 

, 
clock-drift errors from accumulating. For example, assuming R h  = 20 kHz, and 11 

• 
• clock stabilities on the order of one part in 10 6 , after 50 seconds the se- 
0 
11 	quencers may be out of step by one hop. With one part in 10

9
, an additional 

ge 
• two hops of error can accumulate every day. 

0 There is, however, an alternative that does not rely on physical connec-

tion to a master unit (our second option). Since the "state" of the 

• satellite's finite-state-machine sequencer at any one time is implicit in the 
0 
• value of the internal storage elements (latches or flip-flops), it is possible 

0 
to keep users' sequencers updated by transmitting this state information to the 

• ground users on the satellite downlink. 'By setting the latches or flip-flops 
11 
• -13- 
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to the same values in his replica sequencer circuit, a user acquires 

synchronization. Such side information must, of course, be protected. This is 

ensured if the downlink is encrypted or if the sequencer circuit utilizes a 

secret key  (bit-string) in the formation of the hopping pattern (for example a 

cipher-block chained encryption device [4]). Only with the right key is the 

state information of any use. Such encryption devices are capable of gener-

ating extremely long pseudo-random sequences, and are well-suited to this 

application. 

All bits necessary to describe the state can be sent in one frame, and a 

new state sent with each frame (in the "common" slot of Fig. 2). 

Alternatively, the bits could be spread out over several frames so that fewer 

bits are needed in each frame (to lower the overhead of the "common" slot). 

Users can load this state into their replica sequencers, adjust for the delay 

in sending all bits of the state from the time the state was sampled, and 

adjust for round-trip delay. If these delays are known to within a few hops, 

then the maximum initial error in the hopping sequence phase may be only a few 

hops. 

As mentioned earlier, the uncertainty in propagation delay is directly 

proportional to the uncertainty  of the range to the satellite. For example, to 

create a phase uncertainty of one hop with Rh  = 20 kHz, the range uncertainty 

must be (50 psec)(3 X 10
8
métres/sec) = 15 kilometres. With a geostationary 

satellite, the satellite is typically within a sphere of 100 km of its nominal 

position, representing a phase uncertainty of about 6 hops maximum in this 

example. This range uncertainty can be made even smaller by continually updat-

ing the users' knowledge of the position of the satellite. Knowing their own 

position, a simple calculation then gives the users the corresponding propaga-

tion delays. Satellite positional data can be given to the users in the 

common" slot of the downlink frames. The satellite positional data can be 

transmitted to the satellite by a master station; presumably one will be in 

-14- 



• charge of station- keeping commands to the satellite. The problem here is for 

• 
the master station to accurately determine the satellite position. Typical • 

• methods employ triangulation calculations based on ranging performed by 
40 
111 	cooperating earth stations. Such methods are vulnerable to jamming. In any 

•
0 

event, the satellite can continue to broadcast its last known position, which 

should not change significantly until the next update becomes possible. 

•
11 

The second parameter which must be acquired to achieve coarse synchroniza- 

11 	tion is carrier frequency. The ability to perform rapid frequency hopping 

•
lb 

appears to create a frequency accuracy problem for the user's frequency syn- 

• thesizers. For example, low-data-rate users would transmit one of M tones 

• separated in frequency by about 40 kHz when a hopping rate of Rh  = 20 kHz is 
• 
• . 	used. These tones will be transmitted by a carrier frequency of nominally 40 
00 
• GHz (EHF), but selectable over a 1 GHz hopping band. To achieve placement of 

such signals to an accuracy on the order of 1/10'th the tone separation (4 kHz) 

0 
• implies frequency synthesizer accuracy on the order of 1 part in 10 7 over a 1 
40 

GHz range, with a new frequency selected every 50 microseconds. 

•
00 

It is difficult to say what is a reasonable initial frequency uncertainty 
411 
• for . these frequency synthesizers. If users maintain adjacent positions within 

11 
00 	the hopping group (Fig. 1) across hops, this will constrain the maximum allow- 
. 	able initial frequency uncertainty. In this case, a frequency error on the 

• order of user spacing in the group can cause the synchronization attempts by 
40 
• one user to interfere excessively with his immediate neighbours (assuming they 

g0 	are already synchronized, and are using the satellite). To allow higher 00 
• initial frequency errors, a different assignment of users to positions in the 
40 
• group would be needed. If we permute the relative positions of the users from 

gi 	hop to hop (there is really no reason why we can't), then even in the face of 

large frequency errors by a user first attempting to synchronize, another  user  
11 
411 	will only be "hit" during a fraction of the hops. Since combining across hops 
01 

is used by the satellite processor to deal with jamming anyway, these random 
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"hits" may be completely tolerable. In effect, with this permutation strategy, 

users attempting synchronization with large initial carrier frequency errors 

will simply appear as another source of jamming. 

Of course, carrier frequency accuracy and misalignment is much less 

serious for the higher-rate users whose frequency separations are higher by at 

least two orders of magnitude. It may be safe to assume then that initial 

frequency errors are insignificant for all but the low-rate users, since fre-

quency synthesizers for the higher rate users will almost certainly be of 

better quality, and therefore have initial frequency uncertainties that are no 

higher. 

We may also use the "common data" downlink slot to help users adjust their 

frequencies before attempting synchronization. Satellite current centre fre-

quency value may be digitized and also sent in the common downlink slot (1 bit 

per frame may be sufficient). Users compare this to their own reference and 

adjust accordingly. This will keep initial frequency synthesizer error to a 

minimum. To be able to use this data, the ground users must accurately know 

the frequency of the satellite onboard clocks that produce the reference for 

the dehopping carrier frequency, and that were used to make this onboard 

measurement. They can get this information indirectly if the downlink TDM 

frame duration is some exact multiple of the satellite clock. Users can 

measure the duration of the frame to a high accuracy, and therefore calibrate 

the satellite data. One problem here is that both the user and the satellite 

will not be able to directly measure the frequencies produced by their syn-

thesizers. It is only possible to measure the frequencies of clocks that are 

used in some frequency-multiplication scheme to derive the final carrier. It 

could be that such "open-loop" measurements are very inaccurate, so that they 

may be of no use at all. In that case, there would be no choice but to resort 

to closed-loop measurements requiring feedback from the satellite that gives an 

indication of the quality of alignment of the carriers. 
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41 

• In addition to frequency drift between the satellite and ground frequency 

0 
• references, carrier frequency error can be caused by Doppler shift with mobile 

0 	user terminals. At a nominal frequency of 40 GHz, a user terminal speed of 100 
lb 
• km/hr translates into a Doppler frequency shift of about 4 kHz. Compared to 

•
le 

other sources of frequency error, this component seems relatively unimportant, 

0 
even for the low-data-rate users. This component could, however, become impor- te 

0 	tant if user terminals are located on aircraft., where the frequency error can 
IM 
• be an order of magnitude larger. In that case, it may become necessary to 

0 
•

predict the Doppler effect knowing the relative motion of the satellite and 

user antennae, and to compensate accordingly. 

•
le 

3.1.1 Search Strategies  

OP 
There are many possible search strategies for acquiring initial coarse 

•
0 

synchronization [5, 6]. The two dimensional search space is divided into N 
11, 
• cells, with the trial carrier frequencies in adjacent cells separated by Afe , 
0 
• and the trial hopping sequence phases in adjacent cells separated by a fraction 
• 
• of a hop (or possibly a full hop). 

tel 
In all strategies, we set the hopping sequence phase, and carrier fre- 

t> 

lb 	quency, to the trial values for a given cell, and observe the effect of these 

• choices. We leave the form of the "observation" unspecified for the moment. 

ge 
• Depending on the result of the observation, we either declare a possible 

41 	
aquisition and observe for a longer time, or change to a new cell and repeat 

• the observation. This declaration typically is made by comparing the observa - 
0 
0 	tion to a predetermined threshold. If a possible detection turns out to be 

• 
incorrect, we say that the initial detection was a false alarm. If we fail to 0 

• declare a possible detection in the correct cell, we say that a missed detec- 

•  -17 — 

0 
• tion has occurred. If, after the increased observation time following a 

• possible detection, we are satisfied that we are in the correct cell with a 



high probability, aquisition is declared, and we switch over to a fine-

acquisition mode. This mode allows fine adjustments to be made to the carrier 

frequency and hopping clock phase in order to achieve better. alignment. 

Finally, a tracking mode may be entered which adjusts for relative drifts in 

these parameters between the satellite processor and the user equipment (fine-

acquisition and tracking are usually indistinguishable in conventional spread-

spectrum systems). 

The simplest strategy involves looking at all cells in sequence, and 

observing for the same amount of time at each cell. If acquisition is missed 

after visiting all cells, we simply start over. This is a fixed-observation-

time serial search. As an alternative, a variable-observation - time approach 

may be adopted. A fast initial sweep over all cells with small dwell 

(observation) time at each can be performed, with possible acquisition detec-

tions being explored for longer times, in a hierarchical fashion. If the 

initial sweep fails, it is repeated with the dwell time increased. As a varia-

tion, more time can be spent on those cells closest to the expected value of 

the sequence phase, and Af = 0, since the likelihood of larger drifts and 

errors is correspondingly smaller. Alternatively, a more formal sequential 

probability ratio test (SPRT) can be employed. In the SPRT, we compute r K  

where p
s 

and p
n 

are, respectively, the probability distributions 

of received observation sequence r K  (of length K samples) given signal present, 

and given noise-only present. This likelihood ration rK  is compared to upper 

and lower thresholds selected to produce desired values of probabilities of 

false alarm p fa , and of detection p d . If the ratio falls between the 

thresholds, the test is repeated with the (K+1) 1 th sample r K1.1  added. 

The choice of search strategy depends on the size of the initial uncer- 

tainty regions. The more complicated strategies generally yield shorter 

average acquisition times, but those that use a-priori information (e.g. SNR's, 
-18- 



O 

O  
• or probability distributions for carrier frequency or code phase error) can be 
• 
• sensitive to errors in this a-priori information. If the initial uncertainties 

are small, a single serial search with detection threshold set for the desired 

pfa and p d might be used. For very large uncertainty regions, the SPRT may be • 
desirable. For moderate uncertainty regions, a variable-dwell-time search 

• procedure may be sufficient. 

• A method for scanning through a range of hop sequence phases is now 

described. The arrangement is shown in Figure 4, and allows selection of a 

•
oe 

trial phase to within one full hop. As before, we assume that the hopping 
O  
• sequence is produced by a clocked digital ciràuit. The pseudo-random sequence 
0 
• generator (PNG) can be clocked by cp, the nominal clock, or by 4), a high speed 

0 
to select one of 2 1<  frequencies. A block of k=32 bits is sufficient to specify 

•  
•

one of 2 32_ 10 6 
different frequencies. This is sufficient to span a hop band 

• of 1 GHz with placement of the carrier to 1 kHz. To produce a hopping rate of 

•
lb 

Rh' the nominal clock rate of the PNG is then kRh° 

• The procedure to be followed is now outlined. Assuming an initial uncer- 
• 

• ++ tainty of ±H hops in hop sequence phase, we initially switch to (I) 	to run the 

•
0 

sequencer "ahead" by H hops. Since the nominal clock rate of the sequencer • 
• will be relatively low for the hop rates (R h - 20 kHz) and number of fre-
e 
41, 	quencies (k < 32) of interest, a (I)

++ 
clock at ten times the frequency of (1) 

• (about 6.5 MHz for the example) is well within the capabilities of modern 
Ob 
• digital circuits. While this run-up is being performed, the input register at 

Ob 	the synthesizer is still being reloaded at the nominal hop rate Rh' so that the 

0 
carrier frequency is still hopping, albeit to "random" frequencies. After the 

• clock. In addition, the clock input can be disabled so that the outputs of the 

•
410 PN generator do not change. A block of k bits from the output of this PNG is 

• clocked separately into a buffer register that feeds the frequency synthesizer 
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• • 

11 
11 
11 
11 
11 
• PNG has advanced H hops ahead of nominal, its clock input is then returned to 
11 
• qb. Now we can drop back by one hop (relative to the satellite) by disabling • 
• the clock input for one hop, and then returning it to (I) for an interval of I 

hops duration, the observation time at the current hop sequence phase. 11 
• During this time, we observe the downlink return (which we have previously 
to 
• assumed is directed to us in a loopback mode) and either declare acquisition or 

0 
• continue the procedure to examine the next hop phase. The maximum observation 

11 
11 	time to cover the initial uncertainty band of 2H possible hop sequence phases 

• is then 2H•I•Th seconds. Of course, the choice of observation interval I is 

determined by the search strategy adopted. This procedure may be repeated for 
11 
• each of the trial Values of carrier frequency (separated by Af0 ) in the band of 

111 	initial uncertainty. Alternatively, the search may be done in the opposite 
1, 
• order, with the different trial values of carrier frequency being tested while 

holding at one trial value of hopping sequence phase. The order is unimpor - 
gb 
11 	tant. 

• To search over different frequencies, we must be able to offset the fre-

t, 
• quency produced by the synthesizer in steps of Afc - This control is produced 

• by specifying a q-bit block to select a multiple of the offset Afc . This is 

• 
• also shown in Fig. 4. Finally, it should be mentioned here that there is, in 

0 
• principle, no reason why the k bits shown in Fig. 4 cannot be put through a 

0 	permutation mapping that is unique to each user so that their position in the 
11 
• hoppinà group can be permuted from hop to hop. This was mentioned earlier as a 
11 
• possible technique which would tolerate greater initial frequency error for 

lb 	
users first attempting to synchronize. One practical disadvantage of this 

ge 	method is that it may be harder to keep the users frequency-aligned in the 

group if this extra permutation is attempted. That is, with non-ideal (but 

411 
• identical) frequency synthesizers, less stringent requirements may be placed on 

o 
I 	
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the synthesizers if the relative frequency change in the carrier from hop to 

hop is identical for all  users. 

3.1.2 Detection of Acquisition 

At each trial value of hopping sequence phase and carrier pentre fre-

quency, we must decide if acquisition has been achieved. Figure 5 depicts the 

alignment of the carrier hops with the satellite dehopping carrier, when the 

hopping phases are within one hop. Note that a serial search of possible hop•

sequence phases must produce an alignment at some trial phase that causes at 

least 1/2 of the signal energy to be properly dehopped by the satellite and 

pass through the satellite IF filters. In the worst case then, there will be a 

3 dB loss of signal energy (at IF) at proper alignment for this coarse acquisi-

tion phase. Notice also that the transmitted user tone is "gated" before IF 

filtering which will produce spectral spreading and some additional loss after 

filtering to the data bandwidth. This spreading and additional loss will only 

be appreciable for the lower-data-rate users whose transmitted tone separation 

is comparable to the hopping rate, and therefore of the same order as the 

spreading effect. 

The effect of this coarse alignment is very different for the low rate and 

high rate users. For the low-rate users; the data symbol transmitted is con-

stant over several hops. A 3 dB loss in signal energy at IF translates 

directly into a 3 dB loss after filtering to the tone (data) bandwidth. For 

the high rate users, however, there are many symbols per hop; we assume that a 

block of S symbols is transmitted by tones using M-ary FSK during each hop. 

The gating effect due to hopping clock misalignment will cause a fraction of 

these S tones to completely disappear after IF filtering. At some trial hop 

sequence phase, however, at least half of the data tones will pass through the 

"gate", and appear at the demodulator. Outside of the gate interval, only 

noise will appear at the demodulator input. 

-22- 



FEI 
T h
 

f
1 
+
 
f
IF

 	
f
2 
+
 
f
If
 	

f
3 
+
 
f
If
 	

f
4 
+
 
f
IF
 

4
.)

 

s
a
t
e
l
l
i
t
e
 

d
e
h
o
p
p
e
r
 

lb
 l
b 
lb
 I
I 
lb

 I
I 

lb
 1

0 	
lb
 l
b 
lb
 l
b 
lb
 O

b 
11

 l
b 
lb
 l
b 
lb
 l
b 

41
 l

b 
II
 l
b 

te
 l

b 
lb
 l
b 
lb
 	

lb
 l
b 
lb
 l
b 

te
 l

e 
II
 l

b 	
lb
 l
b 
lb
 I
I 
lb
 l
b 	

II
 l
b 
lb
 I
I 	

IP
 l

b 
lb
 

r
e
c
e
i
v
e
d
 

a
t
 
s
a
t
e
l
l
i
t
e
 

f
1  
+
 
A
f
 	

f
2 
+
 
A
f
 	

f
3 
+
 
A
f
 	

f
4 
+
 
A
f
 

i
n
-
b
a
n
d
 
s
i
g
n
a
l
 

(
g
a
t
e
d
)
 

f
IF

 
- 
Af

 

F
i
g
.
 
5.

 
E
f
f
e
c
t
 
of

 
m
i
s
a
l
i
g
n
e
d
 
h
o
p
p
i
n
g
 
c
l
o
c
k
 
p
h
a
s
e
.
 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 

• 

• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
0 
0 
• 
• 
• 
• 
• 
0 
0 
• 

• 

• 
• 

• 

• 
• 

Carrier centre frequency misalignment will reduce (or possibly eliminate) 

the signal component that appears after filtering to the data bandwidth. As 

mentioned earlier, this frequency error has a much greater effect on the lower-

data-rate users. For example, with FSK tone spacing of 40 kHz, a 40 kHz 

frequency error will cause the satellite to interpret the received signal as 

the tone adjacent to the one actually transmitted. A smaller frequency error 

will cause both loss of energy at the desired tone frequency after processing, 

and spillover of energy into adjacent frequency slots. For a medium-data-rate 

user (e.g. 1.5 MHz), the much larger FSK tone spacing makes a 40 kHz error 

insignificant. We assume that Afc  is chosen to produce a maximum 3 dB loss at 

the desired tone frequency when the best frequency cell is found. This implies 

very different choices for àfc  for low rate and high rate users. 

There are several options for the downlink return information during this 

initial coarse acquisition phase. The type of information needed depends on 

whether the users are low rate (several hops per symbol) or high rate (many 

symbols per hop). 

For the high-rate users, the choice seems most clear; we can simply have 

the satellite return the same information as it sends to the intended user when 

forwarding a normal point-to- point call. Let us assume initially that there is 

no degradation due to carrier frequency error. The only loss then is due to 

hopping clock misalignment when the hopping sequence phase is correct. As 

mentioned above, this causes the complete loss of some of the symbols in the 

block of S symbols for each hop. This can be exploited by the high-rate users 

to detect coarse aquisition. If they transmit a block of S symbols, and look 

for the satellite return on the downlink (loop-back mode), they will know that 

coarse aquisition has been achieved when runs of 3/2 (or longer) consecutive  

correct symbols are seen on the downlink. Of course, because of the non-zero 

error rate even when the user signals are reaching the satellite demodulator, 

we would have to allow some errors in these runs. For example, we might 
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• declare a run when 95% of the symbols in a sliding window of S/2 symbols are 

lb 	correct. 
lb 
• In the event of degradation due to filtering in the presence of sig- 
e 
• nificant frequency error in the correct cell, the error rate may be 

lb 
•

significantly higher, and the threshold for declaring coarse acquisition must 

• be lower. For example, if the àfc  carrier error causes the error rate in Ob 
lb 	decoding by the satellite processor to increase to one symbol in four (for Ob 
• example), we may set the threshold to declare coarse acquisition as long as 

• runs are seen in which 70% of the symbols are correct. For high reliability, 

10 
we May then require that such runs must be seen in the same positions over many 10 

• consecutive hops. oe 
• For the low-rate users, the best choice for downlink information to be 

•
10 

returned in loopback mode is less clear. One option is to have the satellite 

lb 	transmit a hard decision (1 or 0) on the presence or absence of the tone which 10 
• is being transmitted by the user (one of M tones). This tone can be the same • 
• one throughout the synchronization procedure, and can be established beforehand 

• 
•

so that the satellite knows which tone to look for. The decision threshold may — 
• be set to give some desired tone detection probability in the presence of . 
10 
• maximum uplink fading and full band jamming. The ground user can then use 

• these tone-detection decisions in a SPRT test, or, in a simpler strategy, these 

decisions may simply be counted over an observation of I hops, and the count go 
• compared to a threshold. 
01 
• As an example, the design threshold for this latter search might yield 

• 
•

probabilities of tone detection, given tone present (with 3 + 3 = 6 dB loss due 

to hopping phase and carrier frequency misalignment) and tone absent, of 

• p(tdI1) = .8 and p(td10) = .1, respectively. If we look for  5 or more detec-
t', 

• tiens in 10 hops, this will yield a false alarm probability of Pfa ~ 10
-3 and a 

10 
• probability of detection of acquisition of P d  - .966 (from standard binomial 
lb 
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distribution calculations). Of course the detailed calculations of p(tell0) and 

p(tdI1) in the presence of jamming will be complicated. With Gaussian noise 

only, these probabilities form a set of well known curves. The presence of 

partial-band jamming and frequency misalignment errors introduce further com-

plications. 

Note that the previous strategy requires 1 bit per hop or Q bits per 

symbol transmitted, where Q is the number of hops spanned by one symbol from a 

low-rate user. If we plan to use all of this data, this will require a expan-

sion of the normal data rate assigned to a user slot on the downlink compared 

to the normal downlink return of log2
M bits per symbol transmitted. This may 

be acceptable if the satellite knows when the user is trying to synchronize; 

the extra data would only be needed for brief and infrequent synchronization 

attempts. The very nature of the system, however, implies that the satellite 

cannot have this knowledge, so this data-rate expansion is unacceptable. For 

this reason, it would be necessary to gather this data for only a fraction of 

the hops (say every second or third hop) to keep the rate on the downlink the 

same. 

Other options include having the satellite perform combining across 

several hops (as it normally does) before declaring the presence or absence of 

the tone (maintaining log
2
M bits per symbol), or having the satellite make soft 

decisions so that more bits of information can be returned (again we would have 

to gather this for only a fraction of the hops). 

Finally, it should be mentioned that the round-trip delay to the satellite 

may greatly contribute to the length of the synchronization time. This will be 

the case if we waft the full round-trip delay for the downlink observation 

before stepping the hopping sequence phase (or carrier frequency) to a new 

cell. To avoid this delay, we can perform a group of adjustments in rapid 

succession, and then wait for the round-trip delay for the corresponding group 

of observations. If there are K adjustments in each group, this can cut the 
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11 
01 
11 
11 
• overall synaronization time by almost a factor of K. This strategy applies 

•
11 

equally to the fine-synchronization adjustments discussed in the next section. 

• 
te 
gle 	3.2 Hop clock phase / fine carrier frequency  
10 
• The procedures described above will yield a coarse synchronization to 

11 
within one half of a hop and within Afc /2 carrier frequency error. We then 

11 
• wish to adjust the hop clock phase, and frequency synthesizer centre frequency, 

11 	in small increments of At and Af, and receive downlink data about the quality 11 
• of the alignment. Again, the strategy for fine alignment will be quite dif- 
10 
10 	ferent for the high-rate and low-rate users. 

01 
We will start again with the high-rate users. It seems best to achieve 

• carrier frequency alignment first.' As we step the frequency closer to proper 
111 
• alignment, this will be reflected by a decreased error rate in the downlink 

10 
• return symbols. It is a simple matter to locate the best carrier frequency 

11 	alignment, as this yields the lowest error rate. As mentioned before, this may 11 
• be a non-issue if we assume that the initial frequency errors will be suffi- • 
• ciently small to cause negligible degradation for high-rate users. Now the 

10 
10 	

hopping clock phase can be fine-adjusted. As we step closer to proper align- 

10 	ment, more of the S symbols for a hop will make it through the "gate", and the 
10 
• successful detection of these symbols is easily monitored on the looped - back 

10 
• downlink return. It seems unreasonable to expect alignment to a fraction of a 

11 	bit to allow the first and last bits of a hop to be recovered. A simpler 11 
• strategy is to just discard the first and last 6 (dummy) bits, and seek align- 
10 
110 	ment to just 6 bits of accuracy. This loss of bits will represent only a small 

loss in effective transmission rate if there are many bits per hop. Note that 11 
• the satellite demodulator circuits can still extract symbol-timing to a frac- 
11 
• tion of a symbol as required to demodulate the user signal. 
I  
• For the low-rate users, achieving fine alignment is complicated if the 

• satellite sends only hard decisions about tone detections on the downlink. One • 
1 	 -27- 
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possibility is to have the satellite send soft decisions on the synchronizing 

tone where this data is a quality measure, for example, the output of an energy 

detector . quantized to one of several levels. Now the user can see the effect 

on detected energy as the .carrier frequency is fine-adjusted. Again, it will 

be necessary to use only a fraction of this data to prevent bandwidth expansion 

on the downlink. 

Another possibility is to estimate the proper fine alignment from only 

hard-decision tone detection data as assumed above. In this case, the hop 

clock phase or carrier frequency may be stepped by A sequentially until a 

target rate of missed detections (e.g., 4 missed out of 10) is exceeded. The 

clock phase or carrier frequency may then be stepped in the opposite direction 

until missed detections again occur in excess of this target rate. Proper 

àlignment may then be estimated to lie exactly half way between these two 

extremes. Of course, this procedure will take longer than an alternative 

employing multiple-bit alignment-quality data transmitted by the satellite. 

The procedure is aided, however, by the fact that there should be a reasonably 

sharp threshold effect at which the rate of missed detections rises quickly 

with increased frequency misalignment. 

4. UPLINK SYNCHRONIZATION: TRACKING 

Once acquired, parameters will drift toward loss of synchronization during 

normal data transmission. This may be avoided by tracking,  that is, by 

monitoring and adjusting the fine alignment. 

In the system as described so far, the default is for the satellite to 

always direct the detections from a user's uplink slot back into that same 

user's downlink slot when the user is not engaged in a call ("loopback mode"). 

This situation will therefore be present during coarse and fine synchronization 

to give the necessary feedback for the user attempting to synchronize. Once 
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I  

• synchronized, the user will transmit the necessary codes to request a recon- 

•
figuration of the satellite to "normal mode" for that user, and the satellite 

• will then route the transmissions from that user to the network controller 
0 
• which can perform a call setup. From this point on, the user no longer has any 

0 
• feedback on his alignment, making tracking a difficult proposition. This 

lb 
contrasts sharply with the tracking problem in a conventional spread spectrum 

• system in which we have full access to the signal emerging from the dehopper. 
0 
• In this conventional system, a tracking loop is employed [5]. 

Ile 	If we assume that drifts over the duration of a typical call are 

• tolerable, then when the call finishes, the satellite can revert to the loop-
• 
• back mode, and fine adjustments can again be carried out by the user. If the • 
• drift is not tolerable, then adjustments must be made in the middle of a call. 

0 This may be made possible by reserving some small percent of the transmission 
11 
• time for loopback mode. For example 10 out of every 1000 hops might be'in 

• loopback mode, ten for each user involved in the call. This does complicate • 
0 	the control on board the satellite to some degree, and involves one more level 

of synchronization (at the data-format level) so that the satellite and sending 

• user know which hops are for loopback, and so that the receiving user knows 
111 
• which bits in the downlink should be discarded. 

0 
We can use a different approach to give feedback to the user. Low rate  

• supplementary channels could be paired with each user's data slot in the 

• downlink frames. This channel can be supported by only a small increase in the 

• 
duration of a user's assigned slot. In these channels, the satellite would 

provide low-rate users alignment-quality data (e.g., energy detector output 

• quantized to b bits) averaged over many hops.  For the high-rate users, the 

•
0 

data on these low-rate supplementary channels might be the first (3, and last  5 , 

symbols from every k'th hop. The user can compare these to the data symbols 

• actually transmitted to see if errors are starting to occur, implying loss of • 
• fine adjustment (in either hopping clock  phase or carrier frequency). 

0 
-29- 0 
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In either case, the ground terminal could use this data in a tau-dither 

[5,6] type of scheme to make adjustments to hopping clock phase and carrier 

centre frequency. This can be envisaged as a tracking loop that accounts for 

the long round-trip return delay. Because the loop time constant will be large 

compared to the hop duration T
h' 

the data rate of these supplementary channels 

need only be a fraction of the user data rate, and can represent a small over-

head. 

One final alternative provides the feedback indirectly, but more 

transparently. Parity check bits may be embedded in the user data streams. If 

user A is talking to user B, and drifts toward loss of synchronization, this 

will show up as errors in the data. User B can then request that user A adjust 

his parameters to try for better alignment. This is also a feedback loop, but 

it has a much slower response time than the previous scheme. It also requires 

an extra level of synchronization in the data streams to identify which bits 

are data and which are check bits (although it is likely that such error-

detection or correction capability will already be present in the system). 

5 0  SIMPLEST SYSTEM 

Given the previous discussion, it is now possible to identify a system 

which makes acquiring uplink synchronization as simple (and as fast) as pos-

sible for the ground user. Again, it will be necessary to consider the low-

rate and higher-rate users separately. 

For both the low-rate and higher-rate users, this system shares the fol-

lowing attributes: 

(a) All users know the round-trip delay to the satellite to within a small 

fraction of a hop. At a hopping rate of 20 kHz, this implies range ac-

curacy on the order of 1 km. Range determination is aided by satellite 

positional data provided in the "common data" downlink slots. 
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• (h) The internal state of the pseudo-random sequencer in the satellite is 

• periodically transmitted on the downlink in the "common data" slot of the 

• frames. Users load this state into their replica sequencers, and coarse 

adjust for delays by running their sequencers ahead by the appropriate 

• number of clocks. 

• (c) The satellite hopping clock phase is aligned with the boundaries of the 

0 
frames of the TDM downlink. Given (a), this allows the users to fine- 

d/ 

0 	adjust the clock phase of their hoppers to within a fraction of a hop. 
1 0 
• (d) Satellite current centre frequency is digitized and also sent in the 

0 
• common downlink slot. Users compare this to their own reference and 

0 	adjust accordingly. This will keep initial frequency synthesizer error to 

• (e) Relative motion is known accurately so that Doppler shifts can be calcu- 
10 lated, and the transmitted carrier frequency adjusted accordingly. 10 
• (f) As an alternative to (d) and (e), the satellite can provide continuous 
0 
• data on alignment quality of the carrier frequencies over low rate sup- 

•  
• plementary downlink slots for each user. This may be used both for 

0 	acquisition and tracking. 

0 

• For low-rate users, if the initial frequency uncertainty provided by (d) 

0 
is sufficiently small, then no further synchronization procedures are needed. 0 

• This is a very ideal situation, and is unlikely to be achieved in practice. 

• The major question is whether it is possible to adjust the frequency syn- 
• 
• thesizers accurately in the "open-loop" method of (d). It seems much more 

0 likely that (f) above will be needed. 0 
• For high- rate users, frequency errors are much less critical, and initial 

• errors will either have negligible effect, or will be rapidly corrected using 

01 (f) above. It is errors in hopping clock phase that may become more critical 0 
• for the higher rates (lower symbol durations). If there are many symbols per • 
• -31- 
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hop, a simple strategy (mentioned earlier) is to treat the first and last (3 

symbols in each hop as expendable "dummy" positions, so that (a) above is 

sufficient. 

6. DEMAND-ASSIGNMENT-NETWORK CONSIDERATIONS 

So far, it has been assumed that there is a fixed assignment of satellite 

resources to each user, that is, each user can count on a dedicated uplink 

frequency slot and a dedicated downlink time slot. This means that these 

resources are "always there" for a user who wishes to attempt synchronization. 

We further assumed that when the user was not engaged in a call, the satellite 

redirected all deteOtions from the user's uplink slot back into the user's 

downlink slot (the default "loopback mode") to create the feedback necessary 

for achieving synchronization. In this section, we briefly consider the effect 

of non-fixed or demand-assigned uplink (and downlink) slots. 

In [1] and [2], Kolba describes a scheme for embedding control channels in 

the uplink and downlink slots that allow both demand-assignment and network 

control. The arrangement is shown in Fig. 6. On the uplink, control channels 

0 1 
and 

 02 
are created by time sharing the uplink FDM frequency slot with the 

normal data traffic. Channel c
1 

is intended for transparent network communica-

tions, and is not considered here. Channels c 2  are for access control. On the 

downlink, channels c
3 

are created as extra time slots in the downlink frame. 

These  0
3 

channels carry the responses from the access controller (which may be 

located either in the satellite or on the ground) to the requests for access 

made in the uplink  02  channels. In the demand-assigned network, there are many 

more users than uplink and downlink slots so that these slots must be time-

shared between the users on a demand-assignment basis. The advantage here is 

that many more users can be supported by the same satellite resources if these 

users each require access for only a small percentage of the time. Users make 
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.from access 
controller 

UPLINK RESOURCES IN ONE FRAME 

DATA 	 Cl 	
C
2  

DATA 	 Cl 
	

C
2 

0 	 0 	0 
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2 

to access 
controller 

DATA 	DATA 	 DATA 	. 
+ 	+ 	 + 

000  	
C3 	0 0 0 	C3  

C lCl  	 Cl 
 

DOWNLINK RESOURCES IN ONE FRAME 

Fig , 6. Kolba's scheme for demand-assigned access control [1], [2]. 
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requests for access ovqe the e2  control channels, and look for acknowledgements 

over the return  0
3 

channels. For example, 10 users may be assigned to share 

uplink frequency slot #1. These 10 users will then all use the same 02  slot at 

this uplink frequency, and all look for acknowledgements in the corresponding 

downlink  0
3 
slot. Some method of sharing this 

 02 
slot must be used. 

Kolba suggests two methods for using these access-request channels. The 

first method is to perform a straight time-division multiplex. In the example 

above, each of the 10 users would only have access to every 10'th  02  slot. To 

achieve lower average waiting times for access to this control channel, Kolba 

also suggests a random- access protocol; whenever a user wishes to make an 

access request, he immediately transmits the request over the e 2  channel to 

which he is assigned. In the event that two users attempt simultaneous access 

to c
2 

their transmissions collide at the satellite, the access controller will 

fail to see either request, and the users see no request acknowledgement over 

the return 0
3 

slot. 

The method used has implications for the ability of users to first 

synchronize to the satellite. It should be emphasized that open-loop 

synchronization, as hinted at by the rsimplest" systems of the last section, is 

probably not possible. To perform closed-loop synchronization, feedback from 

the satellite is essential. Since the satellite does not know when users will 

attempt to synchronize, some satellite resources that will allow feedback for 

synchronization must  be dedicated to each user. In this demand-assigned en-

vironment, these dedicated resources must be the time-shared 
 02 

and 0
3 

channels. If the round-robin time-multiplex of these channels is adopted, each 

user can count on access to c
2 

and 0
3 
at well defined instants of time. We now 

specify the default to be that the satellite redirect the uplink detections for 
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• 
• • 
• a user's 0 2  slots into the corresponding  e 3 

 slots for that user. Users 
• 
• synchronize by transmitting into 

 02 
and receiving feedback over c3. 

This poses one complication that is not present for the fixed-assignment 

• system assumed earlier in the report. In the fixed- assignment scheme, each 

user has his own dedicated uplink frequency, and can begin transmitting on that 

• 
• frequency at any time without concern for what other users are doing. With 

0 	demand-assignment, however, many users share the same uplink frequency and 0 2  
r11 

assignments. While one user is assigned the data portion of the uplink frame, 

•
11 

the others can access the control portion 02  only. To avoid interfering with 

0 	the active user, other users must accurately know the time instant at which 0 2  
0 
OM 

starts. By specifying the uplink frame duration to be some multiple of the 0 

• downlink frame, and specifying that the boundaries of these uplink and downlink 1, 
• frames be aligned (at the satellite), users can infer the starting position of 
0 
0 	the uplink frame, and therefore the position of c 2' from their accurate 

41 
• knowledge of the downlink frame boundaries. This does, however, require ac- 

curate knowledge of the propagation delay to the satellite. A user who is not 

• synchronized may not know this delay accurately. It may therefore be necessary 

• 
• discovered by the synchronization search procedure. The size of these guard 

11 
• to allow some guard time around the 0 2  slot, and let the users consider the 
• 
• accurate timing of their  02  transmissions to be just one more parameter to be 

•  
• bands depends on the maximum user uncertainty in the round- trip propagation 

11 
• delay. The extra overhead introduced by these guard bands can be kept small by 

0 	increasing the specified duration of the uplink frame (which impacts on the 
0 
• average time a user has to wait for his turn at the c2  slots). 
11 

• When the user achieves synchronization, the appropriate codes can be sent 
• 
• to the satellite to reconfigure the 

02 
and 0

3 
usage for that user back to 

11 
11 -35- 0 
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normal mode, i.e. to route 0
2 

data to the access controller, and return its 

responses over  e3  to the user. This again implies user access to the satellite 

reconfiguration controls as for the fixed-assignment system assumed earlier. 

It can now be seen that a random-access strategy is not possible for these 

control channels. The only way to provide the dedicated resources that each 

user needs for initial synchronization is to share these control channels on a 

round-robin basis. Of course it is possible to come up with a modification of 

Kolba's system to allow random-access for users who are already synchronized, 

and provide dedicated round-robin access to all users on different control 

channels for synchronization purposes. This would only be useful, however, if 

we assume that users will not drift out of synchronization over the peridds 

when there are not using the network, and are therefore not receiving any 

feedback about the quality of their alignment. 

This discussion shows that synchronization can still be accommodated in a 

demand-assigned environment. Because low-bandwidth control channels are shared 

on a round-robin basis*for this purpose, synchronization in this system can be 

expected to take substantially longer than in a fixed-channel-assignment sys-

tem. 
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ABSTRACT 

This report examines the detection of simusoidal signals of which 

only the signal frequency is unknown. Particularly, it is assumed that 

the signal will be transmitted at one of N discrete, orthogonal 

frequencies and it is further assumed that the detector knows the 

frequency distribution exactly. A goal of the report is to establish 

the groundwork necessary to find the detection performance limits for 

the interception of slow frequency hopped signals. 

Optimum and near-optimum receivers, both coherent and noncoherent, 

are developed for the signal structure noted above, assuming ideal 

conditions and an additive white Gaussian noise environment. It is 

found that the maximum likelihood receiver gives a near equivalent 

performance to the optimum, or average likelihood, receiver. Also, 

noncoherent detection gives an additional loss of 1 to 2 dB over 

coherent detection methods. The effects of frequency offset and a 

priori knowledge are also examined. The former results in a performance 

degradation while the latter gives a performance improvement. 

Most of the report considers a modest number of discrete 

frequencies, N, in the frequency distribution. The final chapter 

considers the case when N is large: the case that occurs in most 

frequency hopping systems. The properties given above are shown to hold 

for large N. It is also shown how to determine N such that the 

interceptor's detection probability corresponds to his false alarm rate, 

thus rendering the detector scheme impractical. This represents a 

• fundamental performance limit for interception receivers for frequency-

hopped, spread-spectrum modulation. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

In the last fifteen years, spread spectrum communications has been 

receiving increased interest in the open literature. Aside from 

military applications, more and more civilian uses are being developed. 

Examples can be found in [1-5]. 

Spread spectrum signals have several forms: frequency hopping (FH), 

pseudonoise or direct sequence (PN), and time hopping. Time hopping is 

generally used with either  PH or PN signalling but will not be discussed 

in this thesis. The first two forms are the most commonly used and are 

similar in that the frequency of the transmitted signal is altered by a 

pseudo-random sequence. For FH signals, this sequence.selects the 

carrier frequency while for PN signals, the sequence generates a phase 

that is used to modulate the message. Excellent tutorials on spread 

spectrum communications can be found in [1] and [2]. 

Among the many attractive properties of spread spectrum signals, 

from a user's point of view, is its low probability of interception [5]. 

Since the signal power for the PN signals is spread across the 

transmission bandwidth to resemble noise (hence the name), and FH 

signals have their power transmitted in a narrow bandwidth, PN signals 

have a lower probability of interception. However,  PH  signals have a 

much wider transmission bandwidth and superior antijamming properties. 

Therefore, some systems will choose FH signalling over PN. 

With spread spectrum communications coming into greater use, it is 
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only natural that the question of interception by an unfriendly receiver 

hàs arisen. This is not only of interest to the military. Spread 

spectrum signal interception is becoming a greater concern to 

communications regulatory boards, such as the CRTC in Canada, and the 

FCC in the United States. 

The interception problem is difficult since the transmission 

spectrum is typically 20 GHz wide, with each user having a bandwidth of 

20 kHz. If a discrete frequency distribution is assumed, and the 

receiver uses a filter matched to each frequency, ten thousand filters 

would be Pequired to detect the user spectrum while covering the entire 

spread spectrum. This indicates a great deal of complexity at the 

receiver. However, approximately 50 SAW Fourier transform devices could 

accomplish this task. 

To solve the problem, it becomes necessary to answer the following 

question. Given that a sinusoid of one of N possible frequencies has 

been sent, and that the receiver has knowledge of all the signal 

parameters, except the signal frequency and time of transmission, can it 

be detected? Typically, the answer will be no some of the time. 

Therefore, it is more appropriate to ask: if, when no signal has been 

sent, the receiver is known to generate false alarms with a certain 

fixed probability, what is the probability that, when a signal is sent, 

it will be detected? Since, as the detection probability increases, so 

does the false alarm probability, thorough performance analysis of any 

prospective interception receivers must evaluate one as a function of 

the other. 

In this report, the groundwork is laid out for finding the 



le 
te 

41 
O 

performance bounds of a spread spectrum interception receiver. This is 

• done by examining the problem of detecting a sinusoid with a disdrete 
lb 
• frequency distribution. The optimum coherent and noncoherent receivers 
40 
4, 	for such a signal are found, and thus performance limits are established 

• for this problem. It is also shown that another well-known receiver 

approximates the performance of the optimum receiver extremely well. 
lb 
• In addition, the usefulness of a priori knowledge, and the effects 

on receiver performance if the received signal is not at one of the 41 
• predicted frequencies, are considered against the performance bounds 
O  
• established in the report. As well, the limiting detection performance 

•

4W 
as the number of frequencies becomes infinite is derived. 

te 
te 	1.2 LITERATURE REVIEW 

• In order to establish the significance of the work done in this 

0 
report, a review of articles in the open literature that have examined 

• the interception of spread spectrum signals, will be conducted. 
• 
• Glenn [5] examined the interception problem from a miritary 

0 	viewpoint, where one end of the communications link is either an 

41 	airborne command post or a satellite communications system, in both 

• jamming and nonjamming environments. He studies, as a solution, a chip 
0 
• radiometer (energy discriminator) that covers only a portion of the • 

entire transmission spectrum. Particularly, he examines the dependency 

• of the interception range on the radiometer bandwidth when the 

• probabilities of detection (PD ) and false alarm (PF ) are both fixed. It 

should be noted that to obtain the values of P F and P D he uses, high 
O  
• signal-to-noise (SNR) are required. The SNR values that are quoted in 
4,  
• his article are measured at the input to the receiver. 

4, 
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over the radiometer 

Typically, the post-detection SNR at the radiometer, used in this 

report, will be larger than the input SNR. 

Krasner [6] discusses optimal receivers for a general class of 

digital communications signals, including spread spectrum. He develops 

likelihood ratio tests for signals of which frequency, phase and symbol 

sequence is unknown, for both coherent and noncoherent detection. 

Several approximations for the low SNR case are made. Detectors are 

compared on the basis of output SNR for a fixed input SNR. While the 

probability of detection for a fixed PF  is discussed, it is not 

evaluated. 

By far the largest body of work produced on the subject has been by 

Polydoros, along with several coauthors [7-11]. Most of his work 

examines the use of autoregressive techniques in noncoherent 

interception receivers versus the traditional detection theory approach. 

While the autocorrelation algorithm is admittedly inferior to the 

optimal receiver, the complexity is much reduced. In addition, there is 

a significant improvement over the radiometer. Surprisingly, his 

results indicate that the autoregressive method works better when random 

tone interference occurs than when there is none. His work also shows 

that the performance gain of the correlator 

increases with the SNR. 

Most notable is [10] in which he and Weber discuss detector 

structures for PN and FH signals, considering coherent, noncoherent, 

synchronous and asynchronous forms. While the block diagram of two of 

the receivers is given, along with a derivation of the likelihood ratio 

test for the optimum receivers, no attempt is made to analyze their 

performances. In another paper [7], wideband detectors for time hopping 



and PN signals are considered in more detail while the same is done for 

FH signals in [8]. As expected, the more filters used to cover the 

band, the better the performance. 

In [12], Chandler and Cooper discuss a PN interception receiver. 

It uses a single detector that covers only part of the entire spread 

spectrum. Chandler and Cooper show that the optimum bandwidth is a very 

weak function of the false alarm probability. 

A paper by Dillard [13] discusses an assortment of detection system 

models: radiometer, an integrate and dump energy detector, and four 

pulse detection systems. Plots of PD  and SNR versus the time bandwidth 

product are developed for both coherent and noncoherent detectors in FH, 

PN and hybrid (FH/PN) environments. It should be toted that all these 

receivers are suboptimum. 

Cooper extends Dillard's work in [14] for noncoherent detection of 

FH signals in the presence of narrowband interfering signals. He 

considers the advantages of using multiple observations and an adaptive 

threshold. The probability of detection is evaluated as a function of 

the signal power and the number of interfering tones. Degradation in 

performance from asynchronous detection is also calculated. He 

concludes by examining the effects of time misalignment and unknown hop 

rate on the detector performance. He finds that the lack of this 

information can be counteracted by adaptive thresholding. 

Ziemer and Liebetreau [15] study double threshold radiometers and 

channelized receivers for PN/FH signals from the viewpoint of a 

transmitter. 
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1.3 SYSTEM MODEL 

As was seen in the previous section, several receivers have been 

developed for the purpose of intercepting spread spectrum signals. 

Generally, these can be classified as radiometers, channelized 

receivers, or autoregressive algorithms for both coherent and 

noncoherent reception. Although it is acknowledged in the literature 

that these receivers are not optimum, no performance curves for the 

optimum receiver have been used for comparison. It would appear, 

therefore, that no one has developed upper bounds for the interception 

receiver performance. 

To develop the groundwork for these bounds, it is necessary to 

consider the interception of a sinusoidal signal with a discrete 

frequency distribution. The optimum receivers for FH or PN signals, 

which are not discussed in this thesis, will be extensions of the 

receivers developed for this problem. 

In the derivation and analysis of these receivers, the following 

assumptions are made. Some are idealized but they enable the 

development of a performance upper bound. 

(i) The signal bandwidth and duration is known exactly. 

(ii) The frequency distribution is known. It is discrete with 

1 
frequencies spaced 1  Hz or — Hz apart for noncoherent or 

2T 

coherent systems respectively, where T is the signal 

duration. 

(iii) Each frequency has an equal probability of arrival and only one 

is active in the detection period. 

-6- 



H:  r(t) — A cos wt n(t) 

Ho : r(t) = n(t) 

0 t T 

0 t T 

(iv) The receiver can monitor the entire transmission 

bandwidth. 

The signal is distorted by additive white Gaussian noise 
N

o (AWGN) of two-sided spectral density, r  W/Hz. 

(vi) 	The unknown factor is the gigriai frequency. 

The problem is to determine if a signal has been sent, and no 

attempt will be made to estimate the frequency. Therefore, the receiver 

must be able to differentiate between signal present and no signal 

present situations only. Or, stated in other words, a receiver must 

choose between one of two hypotheses which are: 

(v)  

and n(t) is AWGN with zero mean, as mentioned in (v) above. The angular 

frequency, w, is unknown but is assumed to have a known discrete 

distribution as described in (ii). 

1.4 PRESENTATION OUTLINE 

In Chapter 2, two coherent receivers will be examined. The first 

is the simple pulse detection system, or maximum likelihood receiver, 

discussed by Dillard [13]. The optimum, or average likelihood, receiver 

-7- 



0 
01 

is then derived by finding the generalized likelihood test for the 	11 
0 

system model discussed in the previous section. The performance of each 

receiver is developed and compared. 	In addition, this chapter 	0 
11 

establishes the approach used to design the receivers throughout the 	11 
11 

report. It should be noted that while evaluating the performance of the 
411 

optimum receiver, an approximation to the distribution function of a sum 

of lognormal random variables was found. 

The noncoherent versions of the above receivers are derived and te 
0 analyzed in Chapter 3. For the optimum receiver, the solution of its 
1110 

performance is intractable, so simulations are used to compare its 	41 
411 

performance to that of the maximum likelihood receiver. In addition, a 

low SeR receiver is. derived, and its degradation relative to the other 

noncoherent receivers is calculated. 	The chapter concludes with a 	IC 
11 

comparison of nocoherent and coherent detection methods. 	 0 
11 

The system model assumes equal probability of arrival and exact 
le 

knowledge of the hopping frequencies. Chapter 4 investigates receiver 
I! 

performance when these assumptions are no longer valid. 	The first 	11 

section examines the change in performance if the detector has a priori 0 
lk knowledge of the signal transmission frequency, and it is used to design 

a new optimum receiver. The second section of Chapter 4 takes the 	te 

maximum likelihood receivers and the optimum coherent receiver, and 	11 

evaluates their performances when the actual transmission frequency does 
11 

not match the assumed frequency distribution. 	 0 
11 

	

The final chapter examines the case when the number of frequencies 	41 
41 

is large: the case for frequency hopped, spread spectrum. The hopping 

is assumed to be slow and does not change over the detectinn period 	11. 
11 
11 
te 
0 
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1, 

• Appendix A gives a detailed derivation of the optimum coherent 
11 
• receiver performance. Some  details of the Gaussian Quadrature Rule are 

lb 
lb 

given in Appendix B while Appendix C describes the simulation of the 

• optimum noncoherent receiver. 
te 
•  
• 
01 

• 

11 
11 
• 
le 
111 

lb 
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11 

lb 
• 
lb 
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CHAPTER 2 
COHERENT DETECTION 

2.1 INTRODUCTION 

This chapter develops two coherent receivers for detecting a 

sinusoid of unknown frequency, under the assumptions stated in Chapter 

1. 

The first receiver discussed is not an optimum receiver but is of 

interest. 	In [16], Brennan, Reed and Sollfrey develop an average 

likelihood receiver and a maximum likelihood receiver for radar targets 

of unknown frequency. They found that the difference between the 

performance of the two receivers is slight. Therefore, in the next 

section, the maximum likelihood receiver will be derived to see if that 

conclusion can also be drawn for this problem. 

Section 2.3 carries out a detailed derivation of the generalized 

likelihood ratio test for this problem, which will give the form of the 

optimum receiver. The performance analysis of— this receiver proves 

difficult for a large number of frequencies. Thus, the analysis is 

first carried out for only two frequencies. Several techniques are then 

tried in order to extend the results to any number of frequencies, using 

the result for two as a guideline. 

Several conclusions are presented at the end of this chapter. 

-10- 



2.2 MAXIMUM LIKELIHOOD RECEIVER 

2.2.1 Receiver Description 

The maximum likelihood receiver is similar to Dillard's simple 

pulse detection system [13] when the bandwidth products at both the 

transmitter and receiver are identical, and energy integration is only 

over one pulse. The receiver uses a bank of N detectors, which includes 

an optimum detector for each one of the N possible signals. If any one 

of these detectors declares a signal present, the receiver will decide a 

' signal has been sent. Otherwise, if none of the detectors declare a 

signal present, the receiver will conclude that none has been received. 

There may be some confusion at this point about the use of the name 

"maximum likelihood" since it would appear to imply that this receiver 

is optimum. In [16], this name is given to a receiver that takes the 

maximum of N outputs and compares this value to a threshold. Only if 

the threshold is exceeded, will a signal be declared. Consider again 

the receiver described in the previous paragraph. The decision of that 

receiver is controlled by the maximum output of the N detectors. 

Therefore, there will be no difference in performance between the 

receivers described in this paragraph and the previous one. Since each 

of the N detectors will be designed by using the average likelihood 

test, and the receiver's decision is controlled by the maximum output of 

the N detectors, it will be referred to as the maximum likelihood 

receiver. If the problem was to estimate the frequency, w, then this 

receiver would only need some minor modifications to be optimum. 

However, it is not optimum for the simple case of detection, as will be 

-11- 



• 
• • 
• 

shown in section 2.3. 	 lb 
O  

Before the performance of this receiver can be analyzed, it is ie 
necessary to design the optimum detector for a known sinusoid, and find 	11 

11 
its receiver operating characteristic (ROC). The ROC is simply a plot 	11 

11 
of the probability of detection versus the probability of false alarm 

01 

with the SNR as a parameter. It can also be a plot of the probability 	Ob 
lb 

of detection versus the SNR with probability of false alarm as a 	lb 
O  

parameter. 41 
111 
10 

2.2.2 Detector for a Sinusoid of Known Frequency 	 lb 
lb 

The detector must differentiate between noise plus signal and pure 

noise situations. 	Therefore, it must decide which of the following 	lb 
lb 

hypotheses is true: 	 lb 
lb 
lb 

H : r(t) — A cos wt + n(t) 	0 < t < T 	lb 
1 

(2.1) 	lb 
H

o
: r(t) 	n(t) 	 0 < t < T 	11 

• • 
11 where n(t) is AWGN with zero mean and spectral height equal to 

N
o W/Hz. 

2 	11 
11 

r(t) is the received signal and the energy of the transmitted signal, 
11 

A
2
T 11 s(t) — A cos wt, is equal to E —

7
—. 

0 
To derive the optimum detector, the detection problem is converted 	lb 

lb 
to a vector problem, as in [27], so that it becomes a choice between lb 

lb H : R=S+N and H: R= N, where R= (r ,r ) and r i— 1,2 are the 1 	• 	
. 	_ 

1 2 	i ' 	
110 

1/2 

T 
[ 	

lb 
coordinates of  •r(t) relative to the orthonormal functions, -?.- cos wt 	11 

lb 
II 
te 
le 
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and 
 M

1/2 

sin wt. 

vector is 

1 

 o 

	 exp [ 
0 . — 	dt 

irN 	
N

o 

r 	sTn2
(t) 

(2.2) 

Pr e%) = Pn cE S) 

1 

	

05
T
(r(t)-s(t))

2 
dt 

= eN
o 	

- 
exo (2.3) 

• 
• 
• 
• 

o
T
r
2
(t) dt - 2

o
fT

r(t) s(t) dt + E 
;al= exp 

o (- No ) 

1 

(2.4) 

Obviously, the probability density function of the received signal, 

Then the probability density function of the noise 

Pn ;FT exP 
1 

0 	

+ n2 ) ] 

- N
o 

2 
2  

Under H 	n(t) = r(t)-s(t). 	Since s(t) is deterministic, the 

received signal is a linear transformation of the noise. Therefore, the 

probability density function of the received signal, under H can be 

obtained from (2.2). Thus, 

0 

• • • which, after multiplying out the expression, becomes 

• 
• 
• 
• pr (11 1111) 

• 
• 
11, 	since E

o
frs 2 (t) dt. 

• 
0 
• under H

o
, is 

• 

• 
• 
• 
• 

-13- 



• 
• 

• 

—7r171— exp I 

J .  

(2.5) 	lb 
o 	 No 	 0 

0 

The likelihood ratio test [17] gives the optimum receiver structure 
lb 

and is 	 0 

• 
0 

p (111H ) H i 
r 	1  > 

L(r) 	n 	
(2.6) 	111 

P(EIH )
<  

r 	H 	
0 

lb 
lb 
Clo 

where n  is the decision threshold. If the ratio exceeds the threshold, 

lb 
the receiver is to decide that H is true. Otherwise, H

o 
must be true. 

110 

For this detector, 
0 

0 

IrN- 

1 j 
exp. 

[ r•T 2 

o 
 r (t) dt - 2j

T
o 

r(t) s(t) dt 	E 

(- N
o
) 

r 	 lb 

lb 
lb 

L(r) 

PrŒl Ho )  = Pn (Be )  
• 

1 	
ofT

r
2
(t) dt1 	 • 

• (2.7) 

irN
o 	

exp 
0 

[ 	 I 	No 	
. 

1 	
orr2 (t) dt 

111 
0 

0 
This simplifies to lb 

lb 
II li 

[ 	

,.1. 

H
o 	

(2.8) 	
0 

0 

0 

L(r) — exp 
2
— rr(t) s(t) dt - ---- ' n . N
o 

o 	N
o 

< 

0 

0 

	

To find the form of the receiver, it is necessary to find the 	0 

1111 
sufficient statistic, L. 	After some manipulation of the likelihood 	0 

0 , 
0 

• , 
-14- 	 • lb 

• 
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• • • 
• ratio test, it is found that 

lb 
lb 
• H 

>
1 N

o 
• ofqr(t) s(t) dt 	-- ln n + E 	(2.9) 2 lb 	 2 

H o lb • 
OP 
• Therefore, the optimum detector can be either a correlator or a 

lb 
matched filter, the output of which is compared to a decision threshold. 

I 

 
• The latter is normally fixed to give a specific probability of false 

• alarm. This detector is used in the maximum likelihood receiver as 

01 
lb 	shown in Figures 2.1 and 2.2. 

•  
lb 

2.2.3 Performance Analysis of the Detector 

le 

le 	To analyze the detector, it is necessary to determine the 
lb 
• probability that t exceeds the threshold under each hypothesis. Note 

lb 
• that to avoid confusion with the probability of detection and 

01 	probability of false alarm for the receiver, Qu  and QF  will be used to 
le 

• denote those of the detector. Now, under Hi , r(t) — A cos wt + n(t). •  
• This implies that 

lb 
lb 
S = r  
lb 	 tfT 

o A
2 

cos
2 	

j
T wt dt + A 

o 
n(t) cos wt dt 

lb 
• =  E + A 

o
f
T
n(t) cos wt dt. 	(2.10) 

• Therefore, ,G is a Gaussian random variable with a mean of E and a 

• A
2
T

EN 

• o 
variance of 	x — 

2 	2 — 2 • 	
This implies that the probability of 

11! •  •  
-15- lb 
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detection for this detector is 

function defined as 

to that under H . 1 
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(2.11) 	• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

	

(2.12) 	• 
• 
• 
• 
• 
• 
• 

where Q(x) is the well documented cumulative normal distribution 

Define d — (2E/N0 ) 112 . Then QD can be shown to equal, using (2.9) to 

replace y, 

Under Ho , will have zero mean and its variance will be identical 

So, by a similar method to that used to find QD , the 

probability of false alarm can be shown to equal 

[ln n 	dl 
QF' = 	d ' 7 • 

(2701/2 	

2 
1  

e
-y  

(270 1/2  

QD Q  
ln n  d 
d 	2 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

QD— Pr [-G > y] 

CO 

(ffEN 0 ): 
7 

-y - E  

[EN] 
1/2 

D   

(7rE 
1 

Q 

- E) 2  
EN

o 
exp 1/2 

Q()- 

• 



I> 

OI 
• Another derivation can be found in [17]. 

d> 2.2.4 Performance of the Maximum Likelihood Receiver 

• For the maximum likelihood receiver, as discussed in [13], a false 

alarm will not occur if none of the detectors generate a false alarm. 

•
le 

Therefore, the probability a false alarm will occur is 

I> 
O 

 •PF  = 1 - (1 - QF ) N 	 (2.13) 

• If a signal is sent, the receiver will not declare a signal present 
O  
• if the detector centered at that frequency misses the signal, and if 

te 	none of the other detectors generate a false alarm. 	That is, the 

• probability of a miss is 
O 
d> 

4> P — (1 - QD)(1 	Q7) 1.1-1 	(2.14) 
O 

• So the probability of detection is 

1, 
111 

P 	1 - P 
•

D 

•
N-1 

= 1 - (1 - %)(1 - Q F ). 	(2.15) 
01 

Some typical values for P versus P, for SNR = 3 dB, are given in 

•

D 

Table 2.1 at the end of the next section. 
• 
• 
• 
• 
• 
• 
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2.3 OPTIMUM RECEIVER 	 lb 

or 
lb 

2.3.1 Likelihood Ratio Test Ob 
lb 
lb 

	

To find the optimum receiver, it is necessary to first find the 	Ole 
le 

likelihood ratio test [17]. 	As before, this is the ratio of the 	11 

received signal probability density function under each hypothesis, 
lb 

except now the density functions are averaged over any unwanted 	10 
db 

parameters, such as the frequency. 	 10 
lb 

(2.5). Now, however, the received signal under H is a function of an 	lb 
1 lb 

unknown variable, the frequency. To prevent the likelihood ratio from 	lb 
gue 

also becoming a function of the frequency, the conditional probability 
01 

density function must be averaged over the frequency. That is, 	11 
lb 
db 
lb 

_max 

Pr (B1111 ) 	p(w) Pr (iq 111 ,w) dw. 	(2.16) 

w 	 lb 
min 

1› 

gi 

From the assumptions made earlier, it is known that the probability 10 
1 	 lb density function of the signal frequency is  p(w) = — 	6(w - w) where 

111 N 
lb S(x) is the Dirac delta function. The conditional probability density 
11 

function, pr (RIHi ,w), is equivalent to pr (RIHI ) from the previous 
11 
lb 
S  

	

1 	
exP ° 	  N 	

sTr2 (t) dt - 2A ofT r(t) cos wi t dt + E 

o 

— r 	
. (2.17) 	40 P

1 	Nff  
(- N o ) 	 1111 

11› 
-20- 	 4> • 

• 
• 

pr (RIH
o
) is unchanged from the previous section and is given by 

section, as given in (2.3). Therefore, 



likelihood ratio test then becomes, by taking the ratio of the two 

probability density functions, 

• • 
111 	Note that in this case, it is assumed that w T 	1 so that the signal • 
• energy can safely be considered as independent of the frequency. The 

11 

•  
11 

11 	 >1 	
2 

0 	L(r) 37 ex- 
' N

A 
of 

Tr(t) cos w t dt nNe.d/2 	(2.18) 
0 

• H 
 

10 

• Once again, the sufficient statistic will give the receiver. 
11 
11 2A rT 	 a 

Denote a
i

- 
o
j r(t) cos wt dt and 	= e Then the sufficient 

• 
11 	statistic can be written as 

11 

11 
• E (2.19) 

gle  

11 • 
0 	The optimum receiver, then, shown in Figure 2.3, consists of a bank 

• of N matched filters, each centered at one of the N possible 

0 frequencies. The output of each is multiplied by 
lA , to give a . Next, 

•
Mo 

• e
a
i is calculated to give î , and the t's are summed. The sum is then 

• compared to the decision threshold. 

0 
An interesting observation is that the sufficient statistic is a 

• sum of lognormal random variables. While there have been attempts in 
01 
11 	the literature [18-19] to find its distribution function, no exact 

4, 
11, 	solution has been found. In order to be able to determine the accuracy 

41 	of any approximate solutions, it was decided to carry out the 
11 
• performance analysis for the simple case of two signal frequencies. 

11 
11 
11 
• -21- 
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0 
Q  
lb 
0 
0 	2.3.2 P for Two Frequencies 
41 • 
0 
• The false alarm probability can be found in two ways. The first is 

to find the distribution function of the sufficient statistic, and then 
11 
• integrate this over the region in which t is greater than the decision 
11 
• threshold. 	The second approach finds the conditional probability, 

lb Pr[ea1 ea
2 k bla 2  ] which is then averaged over a

2 
 to find  P.  

I ,„ 
For the first approach, the probability density functions of a and 

lb 
• must be found. Since the former is a linear transformation of a 

110 
Gaussian random variable, it is also Gaussian. Under Ho' r(t) has a 

• mean of zero. Therefore, a will also have a mean of zero and its 
Ob 
• variance can be shown to equal 

0 

•  
11 

2 

N o T  pAl 	A2 T 	2E 	„1 2 • Var (ai ) - 
•

-71-- N
o 	

N - N o 	o 

• 
11 	This implies that 

• a2 

• 1  • p  a (ailHo) 	exp 	-1-1. 	(2.20) 
(2ed2

)
1/2 

2d2  
lb 

O  
0 

Now, a  =  ln t . From the theory for the transformation of random • 
• variables [20], • 
• pt(ti lH0 ) 	p (t IH ) da i 
• a i 	dt 

41 	 (ln t i ) 21 

0   exp 	(2.21) 
t (2ffd 2 ) 1/2 	2d2 

•  
• 
• 
• -23- 
• 

• 



da . 
2 (2.24) 

and  p(1H0) 	pt(ti lHo) 0 pt(t2 lH ) where 0 denotes convolution. Thus, 
1 	2 	° 

Pî(lHo ) = 
u(t-u)2ed2 exp 
	

2d
2 

[(ln u) 2  + (ln (t-u)) 2 1 
 du. 

1  
(2.22) 

The probability of false alarm is the probability that t will 

exceed the decision threshold when noise alone is  présent.  That is 

PF b/oe  Pt ( ' Ho )  a  

2 
where b 2ned /2 . This is solved in Appendix A to give 

ln b 
a
2 

[bib] 	I 	1 	2 	0  ln (b-ea2)  P 	Q 	exp 
2d21 d 	(2d) 112 d 

-œ 

(2.23) 

This expression can be evaluated by standard numerical integration 

techniques. 

To crosscheck this result, the second approach, mentioned at the 

beginning of this section, is used. The probability of false alarm can 

also be expressed as 

P 	Pr[e + e
a
2 b] 

- Joe  Pr[e > b - e
a
2Ia ,H ] p (a IH) da 
20 	a 20 	2 2 

(2.25) 

The conditional probability is simply 

-24- 



The analysis for the probability of detection is similar to that 

carried out for the probability of false alarm. Two methods, described 

at the beginning.of section 2.3.2, will be used to find PD  in order to 

confirm the result. 

As before, the probability density function of t.  is a convolution 

of those corresponding to Li  and £2 . Now, however, a signal has been 

received which is assumed to have a frequency equal to wi . This implies 

that a now has a mean equal to d2 , which can be proved in an identical 

t (2rd2 ) 1 12  

1  
exp 	

(ln L i - d2 ) 2] 

2d2 	 
1 

(2.28) 
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• 
• 

• 
• 
• 

1 	a k ln b 
2 

Pr[eal + ea2 bla ,H ] = ln (b-ea2)] a < ln b 2 0 
2 

d 

Therefore, substitution of (2.20) and (2.26) into (2.25) will give, once 

again, 

ln b 	- 2 

p  = Q [ln .1_ I 	1  
exp 	a2 1 	[ln (b-e a2)1 

da 
2 

d 	(2 ed2 )" 2 	2d2 
d 

-co 

0 
0 
10 
• 2.3.3 P for Two Frequencies 

D 

0 
0 
0 
11 
0 
11 
0 

• 

0 
• 
0 
0 
0 
0 manner to that used to find the mean for t, under H in section 2.2.3. 

Therefore, 

0 
0 
0 
0 
10 
0 
0 

0 
0 
0 , 

(2.26) 

(2.27) 

which is identical to (2.24). Thus, the expression for P is verified. 



To obtain the probability of detection, it is once again necessary 

to find the probability that î will exceed the threshold. That is 

0 
0 
0 
de 
0 
0 

.and 2'  given in (2.28) and (2.21) respectively, results in 0 
0 

pï(-£11-11) — I 

	

u( -u)2rd2 exp 	
[(ln u - d2 ) 2+ (ln (t-u)) 2 1 

2d2 	du. 	(2 	11) .29) 1  

1.11,  
le 
0 
41 

10 
40 
0 

co 	 0 

	

PD 	bf 13Î(t l il
1
)  a 	

(2.30) 

0 
Ô  

2 	 0 
where b 	2ried/2 , as defined earlier. Solving this, as in Appendix A, 	10 

So, taking the convolution of the 'probability density functions of Li  

• 
• 
• 
• 

gives 

ln b 	2 a 0 
P 	[ln 	4.  I 	exp 1  

D (2rd2 )
1/2 

-2d2] 
2 	ln (b-ea2)  

d 	
d] da . 	(2.31) 

2 

-œ 

41 
11 

	

It should be noted that an alternate form of P is found if the 	I› 
D 0 

dummy variable in the integral of (2.29) is allowed to equal ti  instead. 	40 

Then P can be expressed as 
D 	 0 

0 
ln b 	 0 

r 	ln b d] 	1  
D d 

-œ 
(27rd

2
)
1/2 	2d2 

 exp (a l - d2)2  n  ln  

d 	
da . 1 

le 
lb 
• 

(2.32) • 
• 
• 
• 
• 
• 
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Again, to check the expression, the problem is solved by a second 

method which begins by recognizing that 

P
D 

Pr[e
a + e

a
2 b] 

Pr[e
a
2 > b - e

a
ila H ] p  (a i  ) da . 

1. 1 . 1 	a 	1 
1 

This conditional probability is easily solved to give 

1 	a k ln b 
1 

Pr [eal + ea2 	bla ,H ] 	ln (b-eal)  
a < ln b 
1 

d 

(2.33) 

(2.34) 

The probability density function of a
1 
 can be obtained from (2.28), in 

the same manner (2.21) was derived, and is 

(ai-d2 ) 2]  
1  

Pa(a1) 
	ex p 
(2ffd

2
)
1/2

•  
2d

2 
(2.35) 

Substituting (2.34) and (2.35) into (2.33) gives 

ln b 

= 1 	exicl 
 (a1 - d2 ) 2

] 

D 	

[ln (b-eal)]  da 	n  [In b 	d] .  
P 

(2e d2 ) 1/2 	2d 	d 	
1 	"4  

d 
-œ 

(2.36) 

If, instead, integration is carried out over al  first, then 



ln (b -ea 2)  

d 

a k ln b 
2 

a
2 
< ln b 

Pr[e
a
l + e

a
2 	bla

2
,H

1
] (2.37) 

. (2.38) 
2 

TABLE 2.1: Probability of detection for SNR = 3 dB 

P
F 	

1 freq. 	2 freq 

MLT 	ALT 

10 -1 
.552 	.443 	.448 

10
-2 

.180 	.127 	.128 

i0 	.0307 	.0308 

10
-4 

.0105 	6.66x10
-2 

6.66x10
-2 

10  1.33x10-3  1.33x10
-3 

10
-6 

5.96x10
-4 

2.52x10
-4 

2.52x10 -4  

so that P takes a slightly different form 
D 

	

- 	ln b 
a
2 

	

p Q [ln b 	I 	1 	2 	[ln (b-ea2)  
D 

(271-
à2

)
1/2 ex4 

2d2 d 	 d 	
d] 

-œ 

The expressions in (2.36) and (2.38) are identical to those given in 

(2.31) and (2.32), respectively. 	Therefore, these expressions for P 
D 

are correct. 

2.3.4 Discussion of Results for Two Signal Frequencies 

The expressions of the previous two sections were evaluated using a 

Gauss Quadrature numerical integration routine. A plot of PD  versus SNR 

-28- 



is given in Figure 2.4 for fixed PF'  along with the results for the 

single frequency case. As can be seen from the plot, for PD  to exceed 

0.5, PF must be greater than 0.1 for values of SNR around 3 dB. For 

• • 
• 
• • 
• • • • • • • 
a • • 
• 

• • • • • 
• 
• 

TABLE 2.2: Probability of detection for SNR = 13 dB 

	

P 	1 freq. 	2 freq 
F  

	

MLT 	ALT 

10
-1  

	

.999 	.998 	.999 

10
-2 

	

.984 	..971 	.972 

	

10 -3 	.916 	.880 	.880 

10 -4 

	

.773 	.718 	.718 

10 -6 

	

.580 	.520 	.522 

10 -6 

	

.387 	.336 	.356 

• higher SNR, 13 dB for example, P can be as low as 10-4 
when P — 0.5. 

•
D 

111› 	In section 2.1, it was explained that resUlts in [16] showed, for 

1111 
41 	the particular example examined in that paper, that the maximum 

likelihood and average likelihood receivers are close in performance. 

• Table 2.1 and Table 2.2 give some typical values for both receivers 

• developed in this chapter, for one and two frequencies when the SNR = 3 

111 dB and 13 dB, respectively. From Table 2.1, it is obvious that in this 

•
• 

case as well, the two receivers have nearly identical performance, the 

• discrepancy being on the order of 1% for PD  greater than 0.5, and 

decreasing for smaller values of P0 .  However, for SNR — 13 dB, the loss 
41,  

411, 	increases to 6% for very small P around 10 -6 . 
• 
• Will this hold for a large number of frequencies or is there a 

01 . 	better approximation to the performance of the optimum receiver? The 

10 
•  

-29- 
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0 
Ob 

0 
0 

next few sections address this question. 111 
lb 

• 2.3.5 Gaussian Quadrature Rule 
0 
0 
0 	 j d e An approach used to evaluate' 	f(x)w(x) dx, the Gaussian 
lb 	 c 
• Quadrature Rule (GQR) has met with success in solving many problems. 

• As explained in [18], the GQR uses the fact that w(x) can be 

41 approximated by its moments since 
• 
lb 
OP 

M  • fd  xiw(x) dx — E A.(t ) i  P — 	 i — 0,1,..,2M. 	(2.39) 
• i 	0 	J-1 J J 	 . 

I, 

le 

• Assuming • 
oe 

w(x) 	E Ai6(x - ti ) 	(2.40) 
• j1

• 
• then 

if f(x) has continuous derivatives up to order 2M, where 2M is the 11 
• number of moments used by the algorithm. 

•
lb 

Details on the algorithm used to zet the weights,  A, and the 

•
nodes, t from the moments of w(x) are given in Appendix B. 

0 Naturally, the question of what are the moments of a sum of 

•
40 

lognormals must be answered. Fortunately, that is not difficult to do. 
0 
• As established in Prabhu [21], the moments of a sum of N 

4, 
11 
• -31- 

11 

1111 
110 	 m 
• rif(x)w(x) dx — E A f(t ) 	c < t < d 	(2.41) 
•  . 	i=1 i 	i 	 i 
0 
. e 

• 



For a lognormal random variable, 

ex4
km + 47 :21 

2 

kth moment of a sum of n independent random variables. 

independent random variables can be found recursively. 

Iik(n) 	[ II 1 
i-o 

p j (1) pk-i (n-1). 

	

Let pk (n) be the 	41 
lb 

Then 	01 
lb 
0 
1M 

(2.42) 	11 

0 
lb 
41 

0 
0 

(2.43) 
41 
41 

	

can 	11 
11 
le 

as an 

0 
That is, if w(x) is the 

01 

	

of zero mean lognormals of 	41 
11 

11 
41 

	

(2.44) 	0 
11 
41 

11 
41 
lb 
11 
lb 

(2.45) 11 
11 

41 
or 
te 
lb 

where ï = ez  and z is normal with mean,  m, and variance, u2 . 

With the moments now established, the algorithm of Appendix B 

be carried out to obtain the weights, and nodes, for the GQR of (2.41). 

Meyers [18] examines the sum of N lognormal random variables 

example for the GQR. He suggests, in his paper, that to avoid roundoff 

errors, the moments should be symmetrized. 

probability density function of the sum 

variance d2
, then let 

w (y) 	[w(y) + w( - Y)]. 

The moments of the even function will then be 

	

* 	1 

	

Pk 	7» [Pk  4-  ( -1 )
k
Pk 

22  

= 	
d k /2 

e 
 

0 	

k even 

k odd 

-32- 
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or 
11 
11 
41 
11 To transform back, 
111 

CI 
• Pr[y > 7] — 2 7foe  w (x) dx. 

0 
11 
• These moments will be referred to as the symmetrical moments. 
• 
• The GQR was tried with three different sets of moments: central 

11 
moments, symmetrical moments, and the unmodified or asymmetrical 

0 moments. In addition, two different assignments of w(x) and f(x) were 
11 
• used. 

11 In the first case, w(x) = w[ i1ei and f(x) 	1. 	Following a - 
40 
•

suggestion in [18], the value of the integral of (2.41) at each node 

op point was evaluated as 
0 
0 

• A 
• I(t) 	7- II 

41 
Q

. 	where 

I(t ) = E A. u(t -t). 
10 	 j=1  j 	j  i 

11 
11 
•

Interpolation is then used between the node points to find Pr [y > 7]. 

• N-1 

111 	In the second case w(x) =w Eei and f(x) 	w(ezm). 	That is, 

• moments for the sum of N-1 lognormal random variables are used and the 
0 
•

GQR is averaged over the Nth variable to give, for example, 

I 
0

F 	

N-1 N-1 	N-1 	N-1 

• P = 	Pr[ t > ?Me
d%2

- E.£1Et] Pr[E] E ] d( E ) 

	

0 	 1=1 i 1=1 i 	1=1 i 	1=1 i 

11› 
2 

10 E A Pr[t > nNed/2
- t It ] 	 (2.46) 

• i=1 
10 
• -33- 

11 
11 



2 

Pr[tii  > qlnTed /2 - ti  I "Li ] 

where 

2 

t > nNed/2 
2 

[in 	(nNed/2 - ti )1 	2 

t 	ri Ne
d/2 

d 

(2.47) 

ei, and 2M moments are used. 

It was hoped that at least one, if not all, of these approaches 

would give a good approximation. The GQR was executed with 60 moments 

under each of the alternatives. The results for a single lognormal, and 

the sum of two lognormals, were compared to the previously established 

values, as shown in Figures 2.5 - 2.8. Note that the plots for central 

moments are not included since the results are identical to those for 

asymmetrical moments. 

The approximation to the distribution function of one lognormal 

variable is poor, five times too large for Pr(X > x) — 0.1 and variance 

of 5 dB when symmetrical moments are used, for example. This 

discrepancy becomes worse as the variance increases. Unmodified moments 

give a much better match which, instead, seems to improve as the 

variance increases. However, symmetrical moments give a fair 

approximation when the variance is equal to 0.0 dB. 

Of greater interest, however, is the sum of two lognormal random 

variables. In this case, averaging over one variable gives a better 

result, which, when combined with unmodified moments, gives the best 

approximation overall. Looking at a variance of 3 dB and Pr(X > x) 

10 -3 , when unmodified moments are used and no averaging is performed, 

the result is three and a half times too large. 	Yet, when the 
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te 
41 
db 
10 
db 
01 	distribution function is calculated by averaging over one variable , it 

11 
•

gives a result that is too small by a factor of 1.6. In comparison, the 

0 	values found by using symmetrical moments, under similar conditions, are 
OP 
• too small by a factor of 2.5 and 1.6 when no averaging and averaging is 

•
10 

performed, respectively. As the variance increases, only by averaging 

over one variable and using the unmodified moments can an approximate 

• solution be obtained, though this approximation can be too large or too 

0 
small by as much as a factor of two. Using more than sixty moments made 

•
Ob 

no significant change in the results. 

111 	The results are surprisingly poor. Why the GQR fails to give a 
0 
• better approximation in this case is unknown. However, the answer may 

1P 
be suggested when the weights at the corresponding nodes are plotted 

•
I> 

against the lognormal density function. As can be seen from Figure 2.9, 
10 
• the nodes must be concentrated in the tail of the function since at the 

1111 
de 	most one node for each approach appears near the origin, where the 

10 	function changes the most rapidly. In addition, this node moves further 
lb 
• away along the horizontal axis as the variance increases. 	Using 

0 
unmodified moments, when the variance is 3 dB, the first node occurs 

after the probability density function has fallen to 30% of its peak 

• value, well past the range of interest. In contrast, the nodes were 

• evenly distributed across the entire density function when the GQR was 
41 

run for a Gaussian random variable. It could be that the exponential te 
• growth of the moments for a lognormal random variable makes the 
11 
• approximation given in (2.40) very poor. 
10 

This approach was abandoned in the hopes of finding a better lb 
approximation. 

le 
Ob 

1b 
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a — .1 u ln 10. 
Y 

(2.48) 

e 	E ei.  (2.49) 

2.3.6 Wilkinson's Approach 

In [19], Schwartz and Yeh examined the problem of finding the 

distribution  function of a sum of lognormal variables. They were 

interested in much smaller variances than those of interest to this 

report4 

2 
u . Then 

Denote the variance used in [19]  as 72, 
 and those used here as 

For small varainces, the approach the authors recommend is 

attributed to Wilkinson. He suggested that the sum of lognormals is also 

lognormal. That is, 

The proof relies on the central limit theorem, as explained in [22]. 

Let 
m1, 

u
2 
be the mean and variance of e

z
i, respectively. Then by the 

central limit theorem, 

L - Nm 
1  

u N
1/2 

1 

is asymptotically normal with a mean of zero and a variance equal to 

one. From the law of large numbers, it can be seen that T7. - 1. Since 
'Ant. 

when x = 1, ln x can be approximated by x-1, then, for large N, 

-41- 



(2.51) 

(2.52) 

• 
• 

O 
0 

• 
• 
• 

• 
• 
• 
o 

• 
• 

O. 

• 
• 
• 
• 

• 
• 

• 
• 
• 
0 
• 

• 
• 

• 
• 

O 

0 
• 

O 
• 
• 

• 
• 
• 

	

L 	L 

	

[Nm 	Nm 
1 	1- 

mN
112

ln 
L 	L - Nm 

Nm 
1 	N

1/2 
1 	1 

So, ln L is normal, which implies that L is lognormal. 

If L can indeed be approximated by a lognormal random variable, 

then the solution is given by 

[ln rj- m zl 

z 	j 

The mean and variance can be found from the moments of L. Denoting the 

mean of L as p 
1 
 (N) and the variance as p 

2
(N), from (2.43) it is known 

that 

2 
g (N) 	exp Liu

z 	
ez], 
 - 

J42 (N) 	exp [2 m 	2 U2  .  zl 

Solving (2.51) and (2.52) gives 

= 2 ln pi (N) - 0.5 ln p2 (N), 	(2.53) 

2 
Uz 	ln p2(N) - 2 ln p i (N). 	(2.54) 

Therefore, the mean and variance of z can be found since p 
1
(N) and p (N) 
 2 

-42- 

ln 1 

Pr[L > n] 	Q (2.50) 
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can be determined by applying (2.42) to (2.49). 

According to [19], this approach is good only for variances of -4.5 

dB or less. However, since the implementation was not difficult, it was 

decided to try the algorithm for 2 variables. The results, plotted 

against the known results in Figures 2.10 and 2.11, are excellent, 

particularly for probabilities greater than 10-3 , for which the 

approximation is very good. Strangely, the results show that the 

approximation is better for larger variances, contrary to that indicated 

by [19]. Two explanations exist. First, Schwartz and Yeh were 

measuring the degree of accuracy in finding the actual mean and variance 

of z as opposed to the accuracy in approximating the distribution 

function of L. Larger probabilities will be less sensitive to any error 

and so, inaccuracy in the mean and variance may not be significant for 

probabilities larger than a certain value, such as 10-3 . Second, 

computing facilities have improved in the six or seven years since [19] 

was written, making roundoff errors less severe. This last point 

manifested itself during the GQR tests. The roundoff errors, which [18] 

indicated would result in a very small positive number becoming 

negative, did not happen. 

To see if the results held for a larger number of frequencies, 

Wilkinson's approach was tested for four variables. A simulation, the 

approach to which is discussed in Appendix C, was used to find the 

actual distribution function of the sum. As can be seen from Figures 

2.12 and 2.13, the match is still very good for probabilities greater 

than 10-2  but is not as good as found for 2 random variables. At some 

points, the values are off by as much as much as a factor of 1.4. This 

is still an improvement over the results obtained with the GQR, however. 
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• Pr[-- (P -  m)  < al — [(1)(a)]
N 

N 	x 

1 
(2.55) 

Pr 

It is suggested [19] that to improve the approximation for lower 

probabilities, higher moments can be used, say the third and fourth 

moments. This was not attempted because of the results presented in the 

next section. 

2.3.7 Farley's Approximation 

The second approach mentioned in [19] and attributed to Farley, 

says that if the x 's are independent, identically distributed random 

variables, then as 04  oe, 

where P — 10 log L , L 	10
x 

 i
/10 	

« and 	x) 	1-Q(x). According to 
lo 	,= 1 

Schwartz and Yeh, this approach is valid for variances greater than  4 .5 

dB. 

At a glance, this appears very similar to the expression found for 

the P
F 
of the maximum likelihood receiver given in (2.13). Noting that 

a =0 10 	and 	m  =m  10 

ln 10 	ln 10 

the approximation can also be written as 

m 10 	cr 10 
10  log 

10
L z 	 < 	z 	a — WaM N  

ln 10 ln 10 
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which simplifies to 

Pr L < 10[ 	
(au + m ) nn 10 
 z 	z = [ 1-Q(a)] N . 

Bute  
x 
- 10

xnm 10 
. 	SO 

Pr[L < exp(au..+ m.)] = [1-Q(a)] N . 	(2.57) 

Finally, 

Pr[L > exp(ao...+ m.)] = 1 - [1-Q(a)] N . 	(2.58) 

2 	 [ln n - mz] 
Letting n e

d/2 
= exp(au ni),  Q(a) 	Q 	 . But this is Q for z 	z 

the maximum likelihood receiver when a= d and m
z 

0. Therefore, 

2 
Pr [L > ned12 ] = PF (ALT) 	1-(1-Q) 	PF(MLT). 

In other words, Farley's approximation is identical to P for the 

maximum likelihood receiver. 

From the data in the tables and Farley's approximation, it would 

appear the performance of the maximum likelihood receiver is a good 

approximation of the optimum receiver. The x's in Figures 2.10 - 2.13 

indicate points using Farley's approximation. Even when the variables 

are not identically distributed, the maximum likelihood performance 

curve closely matches the distribution function of L, particularly in 

tThe threshold in 2.18 should have nN replaced by n, the threshold for 
the ML case. 
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regions where Wilkinson's approach is weak. 

2.3.8 Performance of the Optimum Receiver for Large N 

The last three subsections each covered a different method of 

approximating the distribution function of a sum of lognormal random 

variables. While Wilkinson's approach gives the best approach when 

Pr[L > '7] is greater than 10-2 , the performance of the optimum receiver 

and the maximum likelihood receiver is very close when the probability 

of false alarm is less than 10-3 . It is interesting to note that where 

Farley's approximation is weak, which is for small variance and large 

probabilities, Wilkinson's approach gives a good approximation. And, 

when the approximation given by Wilkinson's approach is poor, which is 

for high SNR values and small probabilities, Farley's approximation is 

excellent. Simulation results of the optimum receiver for ten 

frequencies are compared to the exact results for the maximum likelihood, 

receiver in Figure 2.14. These indicate that Farley's approximation 

improves as the number of frequencies increases. Therefore, it would 

appear that the performance of the maximum likelihood receiver 

approximates the optimum receiver performance very closely, at least in 

the range of SNR values considered here. 

While it is surprising to find that the performance of the two 

receivers is almost identical, it was known that the maximum likelihood 

receiver is an approximate form of the optimum receiver. As explained 

in section 2.2, [16] also found the performance of the corresponding two 

receivers for coherent search radar to be similar. Not only does the 

performance of the maximum likelihood receiver give a good approximation 
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of that of the optimum coherent receiver, but (2.13) and (2.15) are easy 

to evaluate for any number of frequencies. Performance curves for four 

frequencies are given in Figure 2.15. As can be seen from a comparison 

between Figures 2.4 and 2.15, the drop in performance between two and 

four frequencies is less than that between one and two frequencies, 

though it is nearly equivalent. In Chapter 3, more results for a large 

number of frequencies are presented when the performance of coherent 

receivers is compared to that of noncoherent receivers. 

2.4 DISCUSSION OF RESULTS 

In this chapter, a detailed performance analysis was conducted for 

the optimum coherent interception receiver. In addition, a second 

receiver, the maximum likelihood receiver, was analyzed for any number 

. of frequencies. 

Attempts to evaluate the performance of the optimum receiver for an 

arbitrary number of frequencies were discussed. It was shown that the 

sufficient statistic for the optimum receiver is a sum of lognormal 

variables and that its distribution function could not be accurately 

approximated by the Gauss Quadrature Rule. ' However, for probabilities 

greater than 10 -2 , the sufficient statistic can be approximated by a 

lognormal variable, leading to a trivial solution for the performance. 

For smaller probabilities, the performance of the maximum likelihood 

receiver gave an excellent approximation of that for the optimum 

receiver. 

Performance plots for one, two and four frequencies were included, 

along with a discussion of how to obtain plots for a larger number of 
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frequencies. While a loss in performance is noted as the number of 

frequencies increases, the drop is less between two and four frequencies 

than between one and two frequencies. If this trend continues, some ' 

interesting conclusions can be drawn about the benefits of using 

additional frequencies, from the transmitter's viewpoint. This point is 

considered in the next chapter. 

Results indicate that to have a better than 50% chance of detecting 

a sinusoid that can take on one of two frequencies when P is fixed at 

10-3 , the SNR must be greater than 10.3 dB. It increases to 10.8 dB for 

four frequencies. Therefore, for SNR less than 10 dB, the probability 

of detecting the random frequency sinusoid is less than 0.5, and is less 

than 0.1 for SNR — 3 dB. 
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CHAPTER 3 

NONCOHERENT DETECTION 

3.1 INTRODUCTION 

In the last chapter, coherent receivers for signals with a discrete 

frequency distribution were discussed. However, unless the signal is 

Changing frequency very slowly, it is unrealistic to expect coherent 

detection to be feasible. The results presented in the last chapter, 

therefore, are absolute upper bounds to performance. 

This chapter examines noncoherent detection methods for these 

signals, under the assumptions discussed in Chapter 1. Paralleling 

Chapter 2, the noncoherent version of the maximum likelihood receiver 

will be developed in the next section, and in section 3.3, the optimum 

receiver will be derived from the likelihood ratio test. Performance 

analysis for the latter is very difficult, however. Therefore, 

conclusions drawn in the last chapter will be used to find a good 

approximation of the optimum performance. 

A third receiver, found by approximating the sufficient statistic 

of the optimum receiver, gives good performance at low SNR, and is 

discussed in section 3.4. The chapter concludes with a discussion of 

the results presented in this chapter, and a comparison of coherent and 

noncoherent detection methods. 
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3.2 MAXIMUM LIKELIHOOD RECEIVER 

3.2.1 Receiver Description 

The noncoherent maximum likelihood receiver, like the coherent 

version discussed in section 2.2, uses a bank of N detectors. Each 

detector is matched to the bandwidth and duration of the transmitted 

signal and there is an optimum detector for each one of the possible 

signals. Depending on the exact form of the receiver, the maximum 

output of the N detectors may be used to make the decision, or each of 

the N outputs will be fed into a separate decision device. In the 

latter case, if any one of the decision devices declares a signal 

present, the receiver will conclude the same. 

The performance of this receiver is still given by (2.13) and 

(2.15) except that Q0  and QF  are no longer given by (2.11) and (2.12). 

The latter is obvious since the optimum noncoherent detector and the 

optimum coherent detector are not the same. . 

3.2.2 Optimum Noncoherent Detector of a Sinusoidal Signal 

The noncoherent detector of a sinusoid is well known and is 

discussed, for example, in [17] and [23]. The derivation of this 

detector will be presented here for the sake of convenience and in order 

to present it in a style consistent with that used in the rest of this 

report. 

This detector must decide between one of the following two 

hypotheses: 
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0 
• H : r(t) — A cos (wt + 0) + n(t) 	0 t T 1 
• (3.1) 

• Ho : r(t) 	n(t) 	 0 < t < . T 

• 
0 
• where n(t) is AWGN with zero mean and spectral height equal to No W/Hz, 
• 2 
• r(t) is the received signal, and 0 is.ilniform over [0,2ff]. 
0 
• Following the procedure laid out in Chapter 2, the sufficient 

statistic for this detector will be derived from the likelihood ratio 

1111 	given by (2.5). It is repeated here for convenience. 

• 
• 
• pr (IIIH0 ) 	exp 	

o t 	J .  
(3.2) 

1 	fTr2 () dt 

• 0 0 
• 
• 
• As in (2.3), 
0 
gle 
• 

Pr  ( 12.-.1 1-11 , 0 ) = Pn (g_ - _q) • 

• 
O 	 For this case, s(t) 	A cos (wt+0) and so, when the expression is 

simplified, 

• 
0 
• 1 	ofTr2 (t) dt - 2A ofT r(t) cos (wt+0) dt + E 
• Pr Œ11-11 ,0)   exp 	  

eN 	(- No ) • 0 
• 

• (3.3) 

•  
where E oIT S

2
(t) dt is the signal energy. 	Finally, averaging 0 

• 
• 
•

-57- 

• 
• test. In this case, the unwanted parameter is the phase. 

• Since Ho  is the same in both (2.1) and (3.1), pr (RIH0 ) is still • 

• 
, 
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o  
o 

H1 	2 
> 	d/2 

L(r) 	I0 (q) < ne (3.7) 

o 

pr (1111 ,0) over 0 gives 

Pr Œl ly 

2ff 	rTr2,.. 

oj 	
(t) dt - 2A 

o
ST r(t) cos  (t+0) dt + E 

1 	1 
2ff exP 

oJ  o 	
(- N

o
) 

dB. 

(3.4) 

The likelihood ratio test, found by taking the ratio of the 

received signal probability density functions conditioned on each 

hypothesis, as in (2.6), gives 

2W 	 H 
2 

-d/2 	211.  1 121A sT. 
L(r) 	

e 	exp 	

° 
r (t) cos (t+0) dt d0 r n 

0  
(3.5) 

where d — (2E/N
o
) 112  and n is the decision threshold. The sufficient 

statistic, L, is obtained by first defining 

L 	
IA 

jsr(t) 
o No  

2A  
L 	f

T
r(t) 

• m o  o  

cos wt dt q cos 0, 

sin wt dt = q sin 0. 

(3.6) 

Thus, (3.5) can be alternatively written as, after some manipulation of 

trignometric identities, 
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Figure 3.1: Noncoherent maximum likelihood receiver 



comparator 
> b 	"1" 

b = "0" 

H 
0 
0 

A 
X 

0 

matched 
filter 

w l  

envelope 
detector 

matched 
filter 

W
2 

envelope 
detector 

matched 
filter 

wN 

envelope 
detector 

t.s t  

:t =T 

Figure 3.2: Alternate form of the noncoherent maximum 
likelihood receiver 



S 
 0 

• where I
o
(x) is the zero-order modified Bessel function of the first 

0 	kind, and is defined as 

0 
2e 0 	 1 	cos 0 

0 o
(x) = 	e

x 
2717 	

dO. 	(3.8) 

• 0 
0 
0 
111 	From (3.7), the sufficient statistic is found to be 

11, 
I> 

2 

q 
>1

-y 	I
1
(ne

d/Z
). (3.9) 

• a o 

• A detailed discussion of how the detector used in the maximum 
0 
• likelihood receiver, shown in Figure 3.1 and an alternate form in Figure 

3.2, calculates the sufficient statistic is given in [17]. Note that in 
• 2 
• -1 	d/ 2 

these figures, b 	
0 
 0 

(ne ). If instead the sufficient statistic 
• 

• had been defined as the square of q, then the detector would be the well 

11, 
• , known quadrature receiver [23], which, therefore, is an equivalent form 

0 
of the optimum detector. 

0 
• 3.2.3 Detector Performance 

0 
• There are several methods of evaluation for this detector, two of 

• which are discussed in [17] and [23]. The derivation used here will 

0 	differ from those in [17,23] by taking advantage of known relationships 

between random variables. 
0 
• To derive the performance of the detector, the probability density 

• 
0 

• -61- 
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(3.11) 

(3.12) 

• 
• 
• 
• 

• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
0 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
0 

• 
• 

• 
• 

• 
• 
• 

• 
• 

• 

• 
• 

• 
• 
• 
• 

function of q must first be found. Note that  L 	L are independent, 

normal random variables and, under Ho' 
they both have a mean of zero and 

variance equal to d2 . Now, from (3.6), it is obvious that 

q = (L2 	L2) 1! 2  
s 

This relationship is known to produce a Rayleigh random variable. 

Therefore, the probability of false alarm for this detector is 

QF  =1,
5
œpq(q) dq 

— 

— 1 q - 

d
2 
exp [ 

2 
q. d 

2d
2 

Finally, solving (3.11) gives 

2 
QF  exp[ 

2d 

This can be rewritten to define the new threshold, /, in terms of Q.  

That is, 

/
2 	

- 2d
2 
ln Qp . 

Therefore, it should also be possible to define the probability of 

detection as a function of Q.  

To find Qu , it is necessary to realize that, while L and L are 

still normal random variables with a variance of d2 , they no longer have 
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(3.10) 

'Y 

(3.13) 



0 

• 
• • 
• • 
0 
0 
0 
• E(L 1H) = E 	[ STA cos (wt+0) cos wt dt + STA n(t) cos wt dt] 1 	N

o 
o • 

• 2A2  
= 	of

T
(
COS

2 
Wt cos 0 - sin wt cos wt sin 0) dt • o  0 

• = --- cos 0 d
2
COS 0 

A
2T (3.14) 

•
No 

0 
0 2 	2E 	A2T 
• since d — 	= 	Similarly, the mean of L can be shown to equal 

•
N

o 	
N

o 

• d sin  O.  

• 
• The relationship between q, L and L [3.10] is the same no matter 0 
410 	which hypothesis is true. However, since L and L no longer have means 
11 	 0 

0 	equal to zero, q is now Ricean. Therefore, 

• 
• [ 2 d4 

• p (a) = 	exp 	
(1 

 
2d

2 	] Io(q) 	(3.15) 
d
2 

• • 
• and finally, 

• 
• QD  —7rpq(q) dq • 

q exp  [ (1 2 4_ el 

d
2 

	

2d2 	 Io (q) dq 	(3.16) 
• 
• 
• = Q(d,ï) 0 
• Q(d,(-2 ln Qr ) 1/2 ) 	 (3.17) 

• 
• where Q(a,b) is the Marcum Q-function which is defined as 

• 
• 
• 
• 
• -63- 
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means equal to zero. The mean of Lo , under Hi , is 
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2

] 

 

2 
X.  + a 

2  
o (ax) dx Q(a,b) 

co 

x exp (3.17a) 

which is well documented in [24]. 

3.2.4 Maximum Likelihood Receiver Performance 

The expressions for QD  and Qr , (3.17) and (3.12), respectively, are 

used in (2.13) and (2.15) to find the performance of the maximum 

likelihood receiver, which is shown in Figures 3.3 and 3.4 for one, two 

and four frequencies. Figures 3.10 and 3.11, at the end of this 

chapter, also plot P 
D 
 for P 10-2  and P 10-4 , when theftransmitter 

is known to use ten or twenty frequencies. The results for ten and 

twenty frequencies will be discussed in the chapter conclusion. 

Looking at Figures 3.3 and 3.4, the loss between one and two 

frequencies ranges from 1.5 dB down to .5 dB as the SNR varies from 3 dB 

to 11 dB, when P — 0.1. The loss is smaller for smaller values of P . 

The loss between two and four frequencies is marginally less than that 

between one and two frequencies. To give some typical values of P 
D

, for 

two frequencies and PF  = 10 -3 , when the SNR is 3 dB, PD  = 1.2 X 10-2 , 

and when the SNR is 13 dB, PD  = 0.75. There is, obviously, a large loss 

in performance, on the order of 98%, when the SNR decreases from 13 dB 

to 3 dB. 

If the signal is being intercepted, and the transmitter is aware of 

this, the SNR will normally be quite low, on the order of 3 dB or less. 

Therefore, P 
D  will normally be low, greater than P

F by approximately a 

factor of ten only'. • 
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0 

41 
0 
11 

3.3 OPTIMUM RECEIVER 41 

11› 
• 3.3.1 Likelihood Ratio Test 

le 
11 
0 	Whalen [23] discusses the optimum noncoherent receiver for a 

• sinusoid that has a discrete frequency distribution, the case under 
11 
• study in this thesis. It should be noted that he only examined the 

0 noncoherent version. 	His result is rederived here, following the 41 
• approach used in Chapter 2. As before, the likelihood ratio must be 

•
0 

determined to find the sufficient statistic, and p (RIH ) is unchanged 
r 	0 

411> 
from the previous section. or 

40 	p (Rill), however, is now dependent on two unwanted parameters, 
•

r 	1 

• phase and frequency. Since the two parameters are independent, and the 

•
phase is uniform between 0 and 2z, 

41 
• 21F1 	w.n. j  r • Pr  ŒIH ) 7,7 wf 

	

o  p(w) p (EIH ,w,0) dO &,.
r 	1 	

(3.18) 
• min 

40 • 
• From the assumptions given in Chapter 1, it is known that 

0 
0 

p (w) = 1  E 6(w - w) (3.19) 
qui 	 N i=1 

11 
0 

where 6(x) is the Dirac delta function and the w's are spaced 1  Hz 110 

11 	
apart, T being the signal duration. 	Substituting (3.19) into (3.18) 

• gives 

41 
41 
• N 	27r 

1 	1 
• P 	H ) 	îî.. of Pr Œ(wi  r 	1 	 ) I 0)dO. 

0 
00 
• -67 - 
• 
• 
11 



2Nir
2
N 

pr (111111 ) — 	1  (3.20) 

L(r) 

2 
e
-d/2 

>
1 

10 (q) 
 < 

n (3.23) 

o 

But  pŒ(w)1H10)  is pr a..1111 ,0), given in (3.4), with w replaced by wi . 

This implies that 

N 	2W 

 X 	exp 	
( sT r2... t) dt - 2A 0ST r(t) cos (w t+19) dt 	E 

(- N
o
) 

] dB. 

i=.1 0 

Again, the likelihood ratio is found by taking the ratio of the 

received signal probability density functions under each hypothesis. In 

this case, after some simplification, the likelihood ratio becomes 

d2 	

2ff 

2A rT 
L(r) 	e  

FT 	 7. exP 1,7 oj r(t) cos (w 	dt 
I 

 

0 
i-10  

de. 	(3.21) 

Following an identical approach to that used in section 3.2, define 

2A  
Lci— IT- of

T 
 r(t) cos w t dt q cos 0, 

0 

2A T 
L — -- 
si N of r(t) 

sin w t dt — q sin 0. i 	i o 

(3.22) 

Therefore, the likelihood ratio test simplifies to 
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Modifying the test slightly gives the sufficient statistic, 

H 
N 	1 	2 

> 

	

t — E 1 (q ) 	_ nNe
cil 2

. 

	

i=1 0 i 	s 

O 

(3.24) 

The noncoherent receiver uses a bank of N detectors, shown in 

Figure 3.5, identical to those derived for the maximum likelihood 

receiver. Now, however, each sampler is followed by a multipler, which 

2A 
multiplies the sampler output by 	to give  q.  The zero-order modified 

Bessel function of the first kind is then calculated for each output, 

and the results are summed. 	Finally, the sum is compared to the 

threshold, b 	riNed/2 , and the receiver decides that a signal has been 

received only if this sum is larger than the threshold. 

3.3.2 Performance Analysis 

To find the exact performance of this receiver is difficult since 

the sufficient statistic is the sum of modified zero-order Bessel 

functions with Rayleigh or Ricean arguments, and an exact solution could 

not be found in the same manner as the cCherent version. Therefore, a 

good approximation of the performance was deemed necessary. In Chapter 

2, it was shown that the optimum coherent receiver was close in 

performance to the maximum likelihood receiver. Therefore, if the same 

conclusion could also be drawn for noncoherent receivers, the 

performance of the optimum receiver would be adequately approximated. 

It should be noted that [23] describes the maximum likelihood receiver 
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as an approximate form of the optimum receiver,  for this case. 	The 

author argues that as the threshold increases, the decision region of 

the optimum receiver for two frequencies is nearly square and that this 

result can be extended to N frequencies. Thus, the receiver can be 

approximated by the maximum likelihood receiver. 

Without a method to find the exact performance of the optimum 

receiver it was necessary to simulate the receiver's performance to 

determine the effectiveness of the approximation. 	Details on the 

simulation are given in Appendix C. 	Simulations for only two 

frequencies, plotted in Figure 3.6, show that the performance of the two 

receivers is very close, at least for probabilities of false alarm 

greater than 10-3 . However, of far more interest is the performance of 

the receivers for a larger number of frequencies. Therefore, 

simulations were also run for ten frequencies, and the results are 

plotted in Figure 3.7. Once again, the simulation results match the 

maximum likelihood receiver performance. Therefore, the maximum 

likelihood receiver'performance offers an excellent approximation of the 

performance bounds for noncoherent detection methods as well. 

3.4 LOW SNR RECEIVER 

3.4.1 Derivation of the Receiver 

In the last section, only the maximum likelihood receiver was 

considered as an approximation of the optimum receiver. However, there 

are two well known approximations to the modified Bessel function that 

may give two other receivers that are near optimum in performance. 
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If the SNR is large, q will also be large. 	Now, a known 

approximation for yx), when x is large, is 

ex  

(x) 
o 
	= 

1/2 
(27Œ) 

There are two reasons that the corresponding receiver will not be 

examined in this thesis. First, the goal of this thesis is to develop 

results that are to be extended to the problem of intercepting spread 

spectrum signals. Therefore, the SNR will usually not be large enough 

for this large SNR receiver to give near optimum performance. Second, 

the analysis of this receiver is extremely difficult and would require 

further approximations or simulations. Since the focus of this thesis 

is to develop optimum performance bounds, it is felt that further study 

of this receiver would not aid this goal. 

Looking at a second approximation to the modified Bessel function, 

when the SNR is small, q will also be small. Since for small x, 

I
o
(x) = 1 + (x2/4), the sufficient statistic for the optimum receiver 

can be rewritten as 

[1 
q 

 4- <  ,Ne 

H
1  

i > 	
2 

o 

(3.25) 

•as discussed'in [23]. Therefore, the new sufficient statistic for a 

receiver that should give the best approximation of optimum performance 

at low SNR, is 
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r(t) 

L -> 



11 
OP 
lb 
I> 
11 

	

1 	2 	 • 
q

2 > 
4nNe

d/2
- 4N 	(3.26) 	00 ±=1 	< 

	

a
o 	

11 
or 
11 

This low SNR receiver is a bank of N noncoherent detectors, as described 	01 

in section 3.2.2, followed by a square  law device. 	Note that the 	to 
oe 

detectors and the square law device could be replaced by the equivalent 	01 
Ob 

quadrature receiver: The outputs of the square law devices are summed, 
2 

N
o

2 	 41› 
as shown in Figure 3.8, and compared to a threshold, b = — (t7Ne

d/2
- N). 01 

Az  
te 

If larger, the receiver will conclude that a signal has been received. 	or 
lb 

Otherwise, the conclusion is that there is only noise present. 
11 
11 
11 

3.4.2 Performance Analysis 11 
11 
11 
11 The derivation of the performance of the low SNR receiver, given in 
te 

this section, follows an approach outlined in problem 4.5.12 of 	11 
te 

[17,13.412]. An alternate solution is given in [23]. 11 
1, Under H

o' 
as shown in section 3.2, q is a Rayleigh random 

11 
variable, the square of which is an exponential random variable. 	11 

11 
Therefore, the probability density function of the sufficient statistic 	11 

le is the convolution of N exponential probability density functions. 
11 

Denote 2i 	q:.  Now, the easiest method of finding pE (21110)  is to 	11, 

first find its characteristic function. The characteristic function of 

011 an exponential random variable is 
11 
11 
1111 

T
2

(v) 	(1-jv2d
2

)
-1

. 	 (3.27) 	11 
lb 
te 
11 
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• • 

• 
a 

• 
a 
• Since the characteristic function of a random variable is the Fourier 

transform of its probability density function, and convolution in one 

•
0 

domain is multiplication in the other, the characteristic function of 

• is the product of the characteristic functions of the r 's. 	More 

0 
simply, 

ge 
0 	 . 	IF

z
(v) i=1 2 

i 

0 
— (1-jy2d2 ) -11 . 	(3.28) 

0 
0 
• Taking the inverse transform gives [25] 

11 	 £
N-1 e -d../2d 

10 	
pr (rIHo ) — (2d2

)
N
(N-1) 

e N-1
e
-4./2d 

10 	
p(rIHo ) 	 0 	(3.29) 

which is a central chi-square distribution with 2N degrees of freedom. 

•
• 

The probability of false alarm is still the probability that the 

• sufficient statistic exceeds the threshold when noise only is present. 

That is, 

a 	 co 

0 • 
0 
0 
0 

exp [ 11, 
lb 	

. 
— 11  

2d2 L' k! 2d2  

N-1 	[ 	jk 	. 

(3.30) 

0 	. 	 k=0 

0 	. 
• 2 
• where b — 4N(qec1/2 - 1). 
0 • 

10 2 

P — f 
 b 
p„,d». (r1H 0 ) dr F  

£ 11-1 e  -4-d2d 

J (2d2)11(N-1)! 
dr 
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Next, P 
D 
 is derived. Under H

, 
N-1 of the q 's are Rayleigh random 

1 

variables. However, for one value of i, the corresponding L and L 
ci 	si 

have means of d2cos 0 and d2sin 0, respectively, as in section 3.2. 

Thus, this qi  has a Ricean distribution. Defining this variable as ql , 

it can be shown, by application of transformation theory, that 2 has a 

non-central chi-square distribution of degree 2 with noncentrality 

parameter, d4 . This implies that 

1 
p( 1I 111)exP 1 	2d 

2 1  + d 4 1 

2d2  
I o gn k 0. 	 (3.31) 

The easiest approach to finding p.„(21H) is, again, by finding the 

characteristic function of 2 and taking the inverse Fourier transform. 

The characteristic function of E the Fourier transform of (3.31), is 

2d2 ) -1  (v) 	(1-jv 	exp 	
ive4 

1 	1-jv2d
2 

(3.32) 

The characteristic functions of the other variables are still given by 

(3.27). Therefore, the characteristic function of 2 is 

W(v) 	H T (v) 
i-1 

[ jvd 4  

l-P2d2] • 

(1-jv2d2) -N  exp (3.33) 

Finally, taking the inverse transform [25] gives 



N - 1)/2 

1 [t 
exp [ 

2 + d
4- 

1  
= 

d
2 

d
4 

2d
2 

d
4 

2d
2 

2 d2  
••• 

I 	(21/2 )  

N-1 
(3.34) 

2(n-1)  
I(x)=I (x) 	I (x). 

n-2 	X 	n-1 
(3.35) 

(N - 1)/2 - 

2d
2 [

d
4] 

2d
2 	

4

] 

œ 
Z -I- d 

exp 	
1 

, 	- 

I 	(2 1/2) dz.  
N-1 

(3.36) 

m-1 

Q(a,b) + e
2 2 

(a +13  "2 	

1 k 

	

I 

] 	

(ab) 1 

	

au. 	k 
u-n k=0 

(3.38) 

where  1 1 (x)  is the (N-1)th order modified Bessel function of the first 
N- 

kind, and can be found from lower order modified Bessel functions by the 

relationship 

The probability of detection, as always, is the probability that 

the sufficient statistic will exceed the threshold when a signal has 

been received. So 

co 
P 	f -1)(EIH) dE 

b 	1 

However, the generalized Q function [25] is - defined as 

m-1 

Qm (a,b) 	x[ 	e
- (a +x )/2 	

(ax) dx 

La 	
m-1 

2 2 
(3.37) 

2 
whei.e m is an integer. Letting x

2 
 --, (3.36) can then be rewritten as 

d2 
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N-1 

2 2 p 	I x 	e-(x +d  "2 	(xd) dx 
D 

d b/d 
(d, u). (3.39) 

In Figures 3.3 and 3.4, the performance curves for the low SNR 

receiver are plotted on the same axes as the performance curves for the 

maximum likelihood receiver. To obtain these curves, the approximation 

given in (3.38) was used to find PD  and thus numerical integration was 

avoided. Note that for one frequency, the performance is naturally 

identical for both receivers, since the sufficient statistic of the two 

receivers is also identical. 

For two frequencies, as can be seen from Figure 3.3, when the SNR 

is 3 dB, the two receivers are roughly equivalent in performance. 

However, for PF  less than 10-3 , a small difference in performance 

appears, with the maximum likelihood receiver consistently giving better 

results. However, even for SNR as low as 5 dB, a difference in the 

performance curves can be noticed, with the maximum likelihood receiver 
• 

having P
D 	

6.3 X 10-3  while that for the low SNR receiver is 5 X 10 -3 , 

when P 	10-4 . When the SNR is as large as 13 dB, the performance of 

the two receivers is still close but the maximum likelihood receiver 

gives noticeably superior performance. When P 	10-3 , for example, P 
D 

for the maximum likelihood receiver is 0.75 while that for the low SNR 

receiver is 0.7. 

Extending the results to four frequencies, as in Figure 3.4, it can 

be seen that the difference in performance between the two receivers is 

larger than for two frequencies. While the two receivers perform 
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approximately the same for SNR — 3 dB, this cannot be claimed for SNR 

13 dB. 	Looking at PF  = l0 	PD  for the maximum likelihood 

receiver and the low SNR reciever is 7.773 X  l0 6.293 X 10-3  

respectively for SNR = 3 dB. When SNR is 7 dB, these correspondingly 

become .Q48 and .031 and increase to .696 and .537 when the SNR is 13 

dB. This implies that for a SNR of 3 dB, the low SNR performance gives 

a 19% degradation in performance, relative to the maximum likelihood 

receiver, which increases to 23% for SNR = 13 dB, when PF  = 10-3 . 

Therefore, since the low SNR receiver never performs better than the 

maximum likelihood receiver, it is suboptimum for all values of SNR 

considered. 

3.5 DISCUSSION OF RESULTS 

3.5.1 Summary of Results for Noncoherent Receivers 

This section will not only summarize the results found in this 

chapter but will also draw comparisons between noncoherent and coherent 

detection methods, discussing any interesting trends or differences. 

In this chapter, three noncoherent receivers were discussed. The 

optimum receiver was shown to have a sufficient statistic equal to a sum 

of modified Bessel functions, the arguments of which are either Rayleigh 

or Ricean random variables. The solution of the performance proved to 

be even more difficult than for the optimum coherent receiver, and no 

exact solution was found. However, results from Chapter 2 indicated 

that for coherent receivers, the performance of the optimum receiver is 

well approximated by the maximum likelihood receiver. Therefore, the 
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Figure 3.10 Performance plots of noncoherent and coherent receivers for 
four frequencies 
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noncoherent maximum likelihood receiver was found and its performance 

derived. Simulations of the optimum receiver performance were compared 

to that of the maximum likelihood receiver. It was found that for 

noncoherent receivers as • well, the maximum likelihood receiver 

perfomance is an excellent approximation of the optimum performance. 

A third receiver was considered which is derived by an 

approximation of the sufficient statistic, assuming that the SNR is 

small. The performance of this receiver was found to either be the same 

or worse than that of the maximum likelihood receiver. It was found 

that for a small number of frequencies, around two, this receiver will 

have an optimum performance for SNR on the order of 5 dB or less. 

Figures 3.9-3.11 show the loss in performance between the low SNR 

receiver and the noncoherent maximum likelihood receiver for P = 10
-2 

The most interesting, as far as studying the low SNR 

receiver is concerned, is Figure 3.11 which gives performance curves for 

twenty frequencies. At 3 dB, when P = 10-4 , P 
D 
 is 63% less for the low 

SNR receiver than for the noncoherent maximum likelihood receiver. At 

13 dB, this difference increases to 88%. 

It is not surprising that the performance of the low SNR receiver 

deviates . more from that of the maximum likelihood receiver as the number 

of frequencies increases. Recall that this receiver was found by 

approximating I0 (x) by 1+(x2/4). The sufficient statistic is a sum of N 

such terms. Therefore, if the difference between I
o
(x) and 1+(x2/4) is 

e, the sufficient statistics of the two receivers will differ by Ne. 

Thus, the approximation is worse for large N. 

and P 	10 -14  



1- (1-PF)"11  (3.40) 

3.5.2 Performance Trends 

Figures 3.9-3.11 plot the performance of the low SNR receiver and 

both maximum likelihood receivers for two, four and twenty frequencies, 

respectively. From these plots, it can be seen that there is a 1 dB 

loss between coherent and noncoherent receivers when the SNR is in the 

13 dB range, and that this increases to 2 dB for SNR values around 3 dB. 

Before continuing the analysis of the performance of the receivers, 

a brief discussion of how the thresholds were set will be undertaken. 

Simply, all thresholds were set by using the Neyman-Pearson criterion. 

This criterion finds the threshold for a given PF . For both maximum 

likelihood receivers, P
D 

could be expressed directly in ternis of P 
F' 

which simplifies the matter great13;. To find the threshold, note that 

where QF  is the false alarm probability for a single frequency receiver. 

This can be solved for the threshold and the threshold then used in the 

probability of detection expressions. For the noncoherent receiver, 

	

' Qv 	Q(d, (-2 ln 01,7) 1n5 	(3.41) 

and for the coherent receiver, 

	

QD 	Q (Q-1 (QF) - d) 	(3.42) 

where Q-1 (x) is the inverse of the error function. Then 
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N-1 

PD 1  - (1-%)(1-% 
(3.43) 

from Chapter 2. 

For all the other receivers, P and P are both calculated across a 
D 

range of threshold settings in order to find P for the desired  P. An 
D 

interesting observation can be made about PD  as a function of the number 

of frequencies, as plotted in Figure 3.12. As would be expected, PD  

decreases as the number of frequencies increases. However, the loss in 

performance as the number of frequencies increases from ten to twenty 

is less than the loss in performance between two and four frequencies. 

It will be shown later in Chapter 5 that from (3.40)-(343), that as the 

number of frequencies grow large, PD  has an asymptotic value equal to  PE,. 

To give some numbers, for noncoherent receivers, P drops by 29.5% 
D 

as the number of frequencies increases from two to four and by 27.7% 

between ten and twenty frequencies, when PF  = 10-3  and SNR - 7 dB. 

Under similar conditions, the coherent receiver experiences decreases of 

26.6% and 28.5% for the increase from two to four and ten to twenty 

frequencies respectively. Therefore, the performance of the coherent 

receiver degrades faster than that of the noncoherent receiver except 

when the number of frequencies is very small, on the order of ten or 

less. Again, this is not surprising. As stated earlier, PF  behaves as 

an asymptote for PD . Since the coherent receiver has a better PD  than 

the noncoherent receiver, it also has a large potential for performance 

loss. This would seem to imply, that for a very large number of 

frequencies, the performance of coherent and noncoherent receivers will 

be very close. 

As well, this shows that, for the transmitter, the addition of 

-88- 



transmission frequencies exemplifies the law of diminishing returns. 

While each additional frequency does reduce the probability of 

interception, the amount of the reduction is less for each one. 

Therefore, it requires more and more frequencies to obtain a significant 

decrease in the probability of interception. 

To conclude, for two frequencies, noncoherent detection methods 

perform an average of 1.5 dB worse than coherent detection methods. 

This loss decreases as the number of frequencies increases. It was also 

found that the low SNR receiver, developed in this chapter, performs 

well at low SNR values with a small number of frequencies. However, its 

performance degrades, relative to the optimum, for any given SNR level 

as the number of frequencies increase. In addition, for the 

transmitter, each additional frequency will reduce the probability of 

interception less than the previous one. For the receiver, this means 

that the loss in P is less for each additional frequency. 
D 
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CHAPTER 4 

FREQUENCY OFFSET AND A PRIORI KNOWLEDGE 

4.1 INTRODUCTION 

Chapters 2 and 3 discussed coherent and noncoherent detection 

methods developed under the assumptio'ns outlined in Chapter 1. In the 

current chapter, two deviations and their effect on receiver 

performance, are considered separately. 

In the first case, consider that a priori knowledge of the 

transmitted signal is available, and it has been used to design a new 

optimum receiver. Is there a performance improvement over the receiver 

discussed in Chapter 2? Also, if the a priori knowledge is wrong, is 

there a loss in performance and if so, what is it? 

For the second case, this report examines the performance 

degradation when a central assumption, used to derive the receivers 

discussed so far, is invalid. Suppose the actual frequency distribution 

is not the discrete distribution given in (3.19). If the signal is not 

at one of the frequencies the receiver was optimized for, what is its 

probability of detection? This question is answered for the two 

coherent receivers, and the noncoherent maximum likelihood receiver. 
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4.2 A PRIORI KNOWLEDGE 

4.2.1 The A Priori Receiver 

Under the assumption of coherent detection, if a priori knowledge 

is available, the receiver of section 2.3 is no longer optimum. 

Therefore, to examine the effects of a priori knowledge on the receiver 

performance bounds, a new optimum receiver must be developed. 

The derivation of this receiver will parallel the derivation done 

in section 2.3. Therefore, to avoid being repetitious, the derivation 

presented here will be less detailed. It is recommended that the reader 

be familiar with section 2.3.1 before continuing. 

The receiver must decide between two hypotheses, 

H:  r(t) — A cos w
I
t n(t) 

H
o 	

r(t) 	n(t) 

N
o where n(t) is AWGN with spectral density 7- W/Hzand A is the signal 

amplitude. It will be assumed that w still has a discrete distribution. 

Now, however, the w 's no longer have an equal probability of arrival. 

That is, 

N • 

p
w
(w) 	E P 6(w w) 

i-1 i 

1 
where E P =landP 

i 	1 	D.,  
To find the form Of the optimum receiver, once again the 
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Figure 4.1: Optimum Coherent Receiver Using A Priori Knowledge 



p (RI M - 

-- 
H 

eXp 	oj 
2A rT

r(t) 	>
1 

cos w t dt 

i-1 H
o 

(4.4) 

generalized likelihood ratio testiwill be derived. So, following the 

procedure outlined in Chapter 2, the conditional probability density 

function of the received signal, under both hypotheses, must be found. 

p (RIH ) is found to be unchanged, s.ince H
o 

is the sanie as before, and 
r 	0 

is given by (2.5). p ÇRIH
1
) is once again found by averaging p (RIH1 ,w) 

r  

over w, as in (2.16) where pr (R1111 ,w) is also unchanged from previously. 

Therefore, 

nN 

j 
[0  eT 2 

r (t) dt - 2A j
T 	

w 
o 

r(t) cos 	t dt + E 
exp 

e 

1 	0 	
- N

o 

. (4.3) 

Taking the ratio -of pr (RIH1 ) to pr (11,1H0 ) and simplifying, the 

likelihood ratio test is found to be 

which can be rewritten as 

H 
1 	2 

> d/ 2 t- E Pt ne 
i-1  ii <  

H
o 

(4.5) 

2A 
 where a 	j 
rT 

r(t) cos w t dt, 	e
a
i and t.  is the sufficient N

o 
o 

statistic for this receiver. 	Note that t is exactly the same as 

defined in section 2.3.1, and if t, in that section, had been defined as 
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1 
— Et instead, it would be identical to the sufficient statistic for 
N  ii j  

this receiver. Therefore, the optimum coherent receiver using a priori 

knowledge, as shown in Figure 4.1, is only slightly different from the 

one discussed previously in Chapter 2. 

4.2.2 Performance Analysis 

This receiver has yet another feature in common with the optimum 

receiver of Chapter 2. The analysis for an arbitrary number of 

frequencies is unwieldy. Therefore, once again, an exact performance 

analysis is carried out for qnly two frequencies. An approximation to a 

larger number of frequencies is not immediately obvious since no work 

has been carried out that proves that either Farley's approximation or 

Wilkinson's approach will hold for a weighted sum of lognormal 

variables. It is hoped that an analysis of the two frequency case will 

give a good indication of the effects of a priori knowledge on 

performance bounds, under more general conditions. 

Following the simpler of the two procedures outlined in Chapter 2, 

the likelihood ratio test for two frequencies is 

1 	2 

P e
a
1 + 	

a > d/2 

1 	
P e 2 	ne . 

2 

H
o 

(4.6) 

Now, P is the probability that t exceeds the threshold when noise 

only is present. That is, 
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a ,H 
2 0 

p (a 1H ) da . 
a 2 0 	2 

2 

(4.7) 

(4.9) 

(4.10) 

a >  fi 
2 

(4.8) 
a < fi  

2 

• 
• 
0 
• 

• 

• 
• 
• 
• 

• 
• 

• 
• 
• 
• 
6 
• 
• 
• 

• 

0 
• 
• 

• 

• 
• 

• 

le 
1, 
0 
O 
11 
11 
11 
11 
11 
dO 
11 
O 

41 
11 

2 
d/2 

P – Pr [P 
1
e
a
l + P e

a
2 > ne I H

o  2 

[ 	

2 . P 
2 a a  

– Pr e 1 > – e - — 
 

e 2 
P P 
1 

Therefore, 

CO 

2 P 

	

77 d/2 	2 
P = Pr[ 	

1
e
a
l 

F 	
> – e - 	e

a 
 2 

P
i  -œ  

Since a and a are both zero mean normal random variables with a 
1 	2 

variance of d
2

, the conditional probability can easily be found to equal 

1 

H. 

f(a) 

2 

2 	P 
d / 2 	2 Ce - 

Pr e
a > e — e 

1 	1  
a ,H] 	1  

2  
2 0 

f(a) 

where 

d
2 

p 	+ in 
2 

and 

[In (q-P eaz -d/2 ) - ln P 	
d 2 

d 

P can now be found by substituting (4.8) and (2.20) into (4.7) to 
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(2ed 	

a
4 

2d
2 	2 	. 

exp [ 	
2 

f(a ) da 

F a2 

	

P 	Q 	+ 	1  

	

F 	d 
(2ed 

	

F 	[g] +I 1 2 ) 1/2 
- CO 

N 

P =E PP 
D 	i=1 i DL  

(4.12) 

obtain 

(4.11) 

Since a and a
2 

are identically distributed, an alternate form of P can 
1 

be found by switching P 1  and P2  in the above expression. 

Next, PD  must be found. Since the probability of arrival is now 

assumed higher for some frequencies than for others, the 'likelihood 

ratio test will be biased in their favor. This means that P is no 
D 

longer the same for each detector. Those frequencies that are given the 

lowest probability of arrival will also have the lowest probability of 

detection. Should the a priori knowledge be incorrect, PD  may actually 

be less than obtained for the optimum receiver of Chapter 2. Assume 

that the sinusoid of frequency w arrives with probability  P, and PDi 

is the probability of detection for that signal. 	Then P
D 

for the 

receiver, assuming an arbitrary number of frequencies, N, is 

A 	A 

In this case, 
PD = 2 1 PD1 	2 + PPD2 -  

To obtain the individual detection probabilites, P , let w be the 
Di 	1 

frequency of the received signal. Then al  will be normal with both mean 

and variance equal to d2 . a2  will also be normal with a variance of d2 

 but with a mean of zero, as derived previously. Proceeding as in 

Chapter 2, 
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a,  
1 pa (a11  1 1 1 )  dal° 

1 
(4.13) 

2 
[ln (11-P ea l -d/2 ) - ln P 

2 	d 

• 

g(al ) 	Q 
d 

(4.16) 

P 	[4] I 	

exp 
1  

• D1 	a 	.... 
(27m1.2 ) 112.  

(a i -d2 ) 2] 
	 g(a )  da. 
2d2  

eo 

(4.17) 

2 
P — Pr[P e

a
l + P e

% 
 > e 

d/2 
 ] 

D1 	1 	2 	1 
co 

1 

2 	P 
... 
	

Pr 
 [eŒ2 > 1-1  ea/2  - ea„ 

P 
2 	2 2 	2 

CO 

It can easily be shown that 

2 	P 
pr ea2  > 1 ed/2 _ u  

[ 
P 
2 	

1 a 

2 
e 1 

fl 

lg(al )  

a > p 
1 

a < p 

a H — 
1' 1 

(4.14) 

where 

= 
d
2 
+ ln 1  P  7 

1 

and 

(4.15) 

Finally, to find P 
D1
, (4.14) and (2.34), where the latter is the 

probability density function of a 1 , are used in (4.13) to give 

The derivation of P , when carried out in the same fashion as above, D2 

gives an expression almost identical to that of (4.17). In this case, 

the roles of P and P are reversed. 
1 	2 
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Pr el > [ 	
2 	P 

a  1 ed/2 _2ea2  
P 
1 	

P 
1 

a ,Hl  = 
2 1 

{h (a) 

a
2 
>  fi  

a <fi  
2 

1 

(4.18) 

If, instead, integration is carried out first over a l , then a 

slightly different expression for P01  is obtained. Rederiving gives, 

where  fi  is given by (4.9) and 

2 

ln (n-P ea2 -d/2 ) - ln P
1 	d1 2  

d 	 2 
(4.19) h(a2 ) 	Q 

Averaging over a2 , the probability density function of which is found in 

(2.20), gives 

A a
2 

	

P 	[e] 

	

D 	
1 	2 

a 	I 
( 	

21/2 
21rd

) 

 

ex 
 [ 

2d
2] g(a2 1 	 ) 

da 
 

(4.20) 

with P
02 again being obtained by switching P1 

 and P
2

. 

From (4.12), along with the expressions just derived for  P01  and 

P , P for the a priori receiver can be calculated. In Table 4.1, D2 	D 

values of P
D

, when P
F 	

10 	P = 0.9, are given for different 1 

values of P. 	The case of P — 0.5 , which is the equiprobable 

conditian covered in Chapter 2, is also included for comparison 

purposes. 

The improvement in performance is as high as 50%, when SNR — 3 dB, 

slips to 22% at 7 dB, and drops to 3% for 13 dB. 	Therefore, the a 
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TABLE 4.1: Effects of A Priori Knowledge on PD  for PF  

	

P 	—0.9 	P 	—0.5  

	

1 	1 

\ A  
SNel 	

0.5 	0.75 	0.9 	1.0 

3 	.0241 	.0354 	.0421 	.0466 	.0308 

5 	.0505 	.0724 	.0856 	.0944 	.0658 

7 	.116 	.155 	.179 	.195 	.147 

9 	.253 	.326 	.363 	.387 	.319 

11 	.546 	.606 	.642 	.666 	.602 

13 	.854 	.881 	.898 	.909 	.880 

priori knowledge seems to be most beneficial at low SNR. However, if 

the a priori knowlege is wrong, the loss can be as severe as 22%, when 

the signals are actually equally probable, or even as large as 95%, if 

the frequency that was assigned the lowest probability of arrival, 

arrives all the time. However, an improvement can still be found by 

using the a priori knowledge if it is not too different from the actual 
A 

arrival probabilities. For example, examining the data for P1  — 0.75, 

there is a small improvement performance of 15%, when the SNR is 3 dB 

but this decreases to 0.1% for 13 dB. 

It would appear, then, that a priori knowledge improves the 

performance significantly for SNR values less than 7 dB. Should this 

knowledge be wrong by a significant margin (in this case if P
1 
 is less 

than 0.75), however, the resulting performance loss could be costly. It 

is recommended, from the results for two frequencies, if a priori 

knowledge is available, that it only be used if there is a great deal of 
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• • 

• 
Q  
Q  
• certainty about it. However, further research is necessary in order to 

Ob 
determine if these conclusions will extend to more than two frequencies. 

Q  •  
lb 	4.3.1 System Model 

•
In the previous chapters, it was assumed that the frequency 

0 distribution was 

• 
N  1 

Pw (te) i=iN 6.(w 	tei )  • 
11, 
le 
lb 	where the frequency separation is the minimum needed for orthogonality. 

• The performance analysis further assumed that the received signal was at 
0 
• a frequency equal to one of the wi 's. 	This section examines the •  
• degradation in performance when the latter assumption is not true. More 

41 	precisely, the frequency of the received signal is wi-Fw0,  where w is 11 	 . 
• some frequency offset. 	Let w be expressed as a fraction of the 0 0 
• frequency separation, 6, where the filter frequencies,  w, are some 

0 
, 	i 

1 integer multiple, k, of this separation, and k › — 
. 	

Thus, for 0 	 i 	 i 	T 

• coherent detection, w — ES ' and for noncoherent detection, w  
0 	T 	 0 	T • 

11 
0 

4.3.2 Optimum Coherent Receiver 

• 
01 
• Due to the difficulty of analysis for a large number of 

0 
•

frequencies, it is once again assumed that the receiver is designed for 

• 
• -100- 

• 
• „. 

•  
Q  
11 
111 4.3 FREQUENCY OFFSET 

• 
• 
• 



et 
r(t) – A cos (k + 6)—

T 
+ n(t) (4.20) 

e6t] 
dt 

(4.22) 

only two transmission frequencies. Now, however, the received signal 

frequency is neither. 

In order to evaluate the performance of the receiver under these 

conditions, it is necessary to first find  •the probability density 

-2A rT 
functions of a and a where a 

1 	2 oJ 
r x r(t) cos w t dt. 

conditions outlined at the beginning of this section, 

No 	
Under the 

where, since k › 1
' 
 k will also be much larger than 8. This implies 

T 

that 

2A rT 
a – 	j r(t) cos wt dt 
1 	No o 	1 

T 	 T 

	

2A 2A 	et 

	

– -ir 	A cos (k i+ 6) .q cos kA- dt + F. 	n(t) cos k i–T  dt, 

	

o 	 o 
o- 	 o 

(4.21) 

The first term is deterministic and so the second term indicates that a 
1 

has a normal distribution with a variance of d2 , as before. Since the 

mean of this term has been established as zero, the first term gives the 

mean of a which is 1 , 

E(a
1
)

A2 
I cos  (2k1 

 + 
	cos 

° o 

2(k + 8) 
sin 71-6  d

2 	1  
2k  + 6 	e6 ° 

1 
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• 
a k ln b 11, 	 1 	 a k ln b 

Q 
d 	

d sine  (6-1) 	a < ln b 

0 
0 	 (4.26) 
O  
411 
O  -102- 

•
• 	

Pr [eal. + eaz bla H] 	[ln (b-ece i) 0 

0 
0 
0 
0 
•

Since k 	6, this reduces to 

0 
• E(a ) = d

2 
 sine  6 	 (4.23) 

0 • 
• sin ex 

where sinc x 
ex • 

• a can also be shown to be normal with a variance of d
2

. To find 
2 

1 
• its mean, it is important to note that w is offset from w

1 
by 

2î
. In 

2 • 
other words, k 	k 

1
+1. Since the received signal is unchanged, 

2  

•  
02(k + 6) 

d
2 	1  sin e(6-1) 

(4.24) • 2k +6+1 	w(6-1) ° 
1 0 • 

0 	Again, since k 	6, (4.24) becomes 
• 1 

•  
• E(a ) 	d

2 
sine  (6-1). 

	

2 	 (4.25) 

• 
• To find P 

D
, the simpler of the two procedures presented in Chapter • 

• 2 is again used. First, the conditional probability is found to be 

O  

0 • 
T • 

• Eice  \ _ 2A 
` 2 / 	N

o 	
A cos (k +6) .71  cos (k +1)1E5. dt 

110 	 o • T • 
•

_ 2A2 I [
cos 	(2k +6+1)--yet  + cos (8-1) 74 dt N

o 	
1 

n 

• 
• 
• 
• 



(4.27) 
(a»  l- d  exp 2  

•2 

2 
i sine 6)1 

2d2 	• 
1  

1)a (a ) 
j. 	(2ed2

)
1/2 

The probability density function of al , from the previous  discussion,  is 

. known to be 

Substituting (4.26) and (4.27) into (2.33) gives 

ln b [ (al- d
2 
 sine 6)1 [ln b 	1  P— Q ---- d sine 8 + 	

ex
p 	 

.D 
d 	I (2ed2

)
1/2 2d2 

-co 

X Q [ln (b-ea l)  
d sine (6-1) da . 

j. 
d 

(4.28) 

If the integration had been carried out with respect to al  first, then 

sine 6 and sine (6-1) would be interchanged in the above equation. 

Note that no mention has been made, up to this point, of P . That 

is because it has not changed from section 2.3, and is still given by 

(2.27). Since PF is dependent on the sufficient statistic, under Ho' 

and the noise itself alone, neither which have changed from that 

section, it, too, is unchanged. 

Figure 4.2 plots P versus 8 for 2 frequencies, when P = 10-3 . As 
D 

expected, P D  is the highest when 6 is equal to zero or one, 

corresponding to the frequencies the receiver was optimized for. 

Outside the receiver bandwidth, P will equal P . Inside the receiVer 
D 

bandwidth, the lowest values of P occur when 6 — 0.5, which is exactly 
D 
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• • • • • • • 
• • 

midway between the center frequencies of the detectors.  P,  at these 

points, is less than half the peak value at the optimum frequency 	lb 
lb 

points. Of more interest, however, is the loss in detection probability 

when 6 is small. When 6 is only 0.1, the loss is approximately 5 to 6%. 	g> 
lb 

It would appear, then, that the receiver can tolerate small frequency 	g> 
op 

errors. 	This will be discussed in mcire detail at the end of this 

section. 

4.3.3 Coherent Maximum Likelihood Receiver 

For the coherent maximum likelihood receiver described in section 

2.2, P is unchanged and is given by (2.12) and (2.13). Therefore, it is 

only necessary to find PD . 

P can be defined as the probability that at least one of the 

individual detectors claims that a signal is present. Letting ai  be as 

defined previously, P can be expressed as 

(4.29) 

From the previous section, it is known that a l  and a2  are both 

a mean of d2  sinc (6-1). 

To find the probability density function of any arbitrary 

 observe that the center frequency of the ith detector can be written as 

(4.30) 
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g> 
11 
g> 
I> 

normal with variance of d
2

, where a has a mean of d
2 

sine 8, and a has 
1 	 2 	• oe 

di 

	

1 - II 	- Pr[a >  in  
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11 
10 
II 
11 
I, 	where it is assumed that w is the smallest frequency in the receiver 

1 

• band. As found for a and a , a is a normal random variable of 
•

1 	2 	i 

• • variance d2 and mean 

11 
• T 
le 	 _ 
11 	

Eta i. = 2A 
A cos (k+ .15. )! cos (k +i-1) 1›r  dt . 	No 	1 	T 	1 	T 

le 	 o 
gle 

	

— d2 sinc ( 8+1-i). 	 (4.31) 
I • 
11 
10 
• Therefore, 

II 2 
• 2 

ln ne d/ 2  - d 

d  2 

 sine  (8+1-i)  
Pr[a > ln tie

d/2 	Q 	 (4,32) • 

10 
IP 	This, used in (4.29), will give the probability that a received signal 
IO 
• ffS 

of frequency, w 	w + --, will be detected. 
i 	T 11 

• Results for two frequencies matched those plotted in Figure 4.2 for 

11 	the optimum receiver. Figure 4.3 shows the performance of the maximum 

• likelihood receiver for four frequencies and Table 4.2 gives some 

I  
• typical values for twenty frequencies. Naturally, the receiver performs 

best when the regeived signal frequency matches one of the filter center 11 
• frequencies. From the figures and the table, it can be seen that when 
11 
• the received frequency falls midway between any two of these 

11 
frequencies, the degradation in performance is typically greater than 11 

• 50% which increases as the number of frequencies does. For  & — 0.1, the 

• loss in detection capability is between 5 to 7%, for any number of 

11 
•

frequencies. Before discussing the rest of the results presented in 

these figures and the table, the performance of the noncoherent receiver 
lb 
• 
11 
• -106- 
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Figure 4.3 Probability of detection as a function of the frequency 

offset for four frequencies when PF  =. 10 -3  
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P 	1 - II (1 - Pr[q > 7]) 

	

D 	i1  (4.33) 

TABLE 4.2 P 
D 
 for Frequency Offset when P = 10-3 , N = 20 

Note: C - coherent NC - noncoherent 

All probability values should be multiplied by 10-3  

	

SNR 	3 	7 	_ 	11 
(dB) 

6 	C 	NC 	C 	NC 	C 	NC 

	

-.9 	1.0 	1.0 	1.1 	1.0 	1.2 	1.1 

	

-.7 	1.3 	1.1 	2.1 	1.4 	6.0 	2.7 

	

-.5 	2.4 	1.5 	7.9 	3.4 	53. 	22. 

	

-.3 	4.7 	2.2 	25. 	10. 	200 	100 

	

-.1 	7.1 	2.9 	47. 	19. 	350 	210 

0 	7.6 	3.2 	50. 	21. 	370 	220 

	

.1 	7.2 	3.0 	46. 	19. 	350 	200 

	

.3 	5.0 	2.3 	26. 	11. 	200 	110 

	

.5 	3.7 	1.8 	15. 	5.7 	100 	43. 

will be derived. 

4.3.4 Noncoherent Maximum Likelihood Receiver 

For the noncoherent maximum likelihood receiver discussed in 

section 3.2, P is still given by (2.13) and (3.12). Due to the 

similarities between the two maximum likelihood receivers, PD  can be 

expressed in a similar form to (4.29). In this case, 
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• 
• 
• 

• 
0 

where 7 is the decision threshold, and qi  is defined in Chapter 3 as 

q
2 	

L
2 
 +L2 . 	 (4.34) si 	si or 

• or 
or 

L aM L are defined in Chapter 3, which is repeated here for si 	si 	 or 
convenience: 

• 
lb 

2A r 
Lci— 	o j

T 
 r(t) cos w t dt 	q cos 0, 

(4.35) 
2A 

Lj r(t) sin w t dt q
i 
sin 0. 	 0 

si 	o 
0 

11 

lb 
The probability that qi  exceeds the threshold will be derived in 	lb 

lb 
or 
0 section, for the signals to be orthogonal, the w 's must be separated by 
• 

1  Hz. Therefore, the received signal can be expressed as 	 lb 

lb 
2ffs 	 lb r(t) — A cos  (w 1t + 	+ 0) + n(t) T 

• 
0 

where n(t) is unchanged from earlier. w is still an integer multiple 	10 

10 

0 

lb 
1 

where still k 	 0 
717 ° 

lb 
, 

lb 
and L , is needed. In Chapter 3, it was established that L and L 

si 	 ci 	si 	• • 
0 

-109.- 

0  • 
• 
• 

the same manner as P was in Chapter 3. However, unlike the previous 
D 

(4.36) 

of the frequency separation and thus, (4.36) can be rewritten as 

le 
or 

r(t) — A cos .?-11 (k: +6) + 01 + n(t) T' 

Next, the probability density function of qi , and thus that of Lci  



te 
te 
lb 
lb 

are normal with a variance of d2 . It is now only necessary to find 

• their means. First, 
lb 
lb 
lb 
01 	 2A I 

E[L 1H ] 	A cos (k 	+ 0 cos (k 	dt 
• ci 1 	No 	1 	T _ 

lb 
lb 

• which is solved easily to give 

I . 

• E[Lci 1H1 ] — d2 
 sin 2r(6-i+1) - sin 0  (4.38) 2r(6-i+1) 

lb 
lb 
•  
• The mean for L can similarly be found to equal si 
lb 

I • 
• E[Lsi1H1] 	d

2 
cos 2ff(6-1.4.1)  -  cos 0  

• 2e 	 (4.39)(6-i+1) 	•  

• 
• Finally, it is possible to find the distribution of q•  Equation 

(4.34), which defines q 	describes a Ricean random variable with 
lb 
111 	noncentrality parameter, 

gue 
to 	

S
2 
= (E[L 1H ]) 2 + (E[L 111 ]) 2 

Ob 	ci 
lb 	 d4  

(271.)
2
(6_1.41)

2 
(2 - 2 cos 2e(6-i+1)) 

lb 
• 
• which simplifies to 
te 
to 
lb 
•

S
2 = d4 

sine  2(6-1+1). 	 (4.40) 

lb 
411 
lb 
lb 

• -110- 

11 
lb 
1, 
e,  



q i p (q.  )
• q i 	

d
2 

exp 

This implies that 

q: + d 4 sinc 2 (8-14-1) 

[ 

	 1 (q sinc (6- 1+1)). 
o 	J. 

2d
2 

2d2  

(4.41) 

Things are now set to find PD . From (3.16), it is obvious that 

Pr[qi  > y -yS pqj) dqi 

Q(d sine (6.-ii-1),: ) 	(4.42) 

where Q(a,b) is the Marcum Q-function [24] defined in Chapter 3. 

Finally, then, using (4.42) in (4.33) gives 

P — 1 - H (1 	Q(d sine  (6i±1),)).  
D 	i1 d 

(4.43) 

for the noncoherent maximum likelihood receiver. 

Figures 4.2 and 4.3 plot the performance of this receiver, when P
F 

10
-3

, for two and four.random variables, respectively, on the same 

axes as the performance curves for the coherent receiver. Table 4.2 

gives P
D 
when P — 10-3  and there are twenty frequencies being used by 

the transmitter. From the figures and the table, it can be seen that 

the difference in performance between the two receivers will remain 

constant as long as col  < cer  < cell  and the SNR is constant. As found in 

Chapter 3, this difference is in the range of 2 dB when the SNR is low, 

decreasing to 1 dB for SNR values in the range of 11 dB when there are 
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0 
0 
10 
• two transmission frequencies. This difference decreases as the number 

• of frequencies increases. Should the frequency of the received signal 

fall outside of this range, the performance of the both receivers will 

• decrease until P 	P the coherent receiver performance degrading 
D 	F' 

• faster than the noncoherent receiver. From the data, it can be seen 

• that small deviations from the transmission frequencies assumed by the 
41 

receiver, on the order of 6 — 0.1, result in a less than 10% decrease in 

• detection capability from optimum levels: Similarly, if the received 

0 
•

frequency is between two center frequencies and is not at the edge of 

ge 	the receiver band, large deviations, on the order of 6 	0.9, will 

• result in a less than 10% degradation due to the symmetry exhibited in 

• the probrem. However, midrange deviations, around 8 — 0.5, result in a 

110 
greater than 50% decrease in PD . 

• "However, if the frequency of the received signal does not satisfy 

• 
• w < w < w then, for a small number of frequencies, it is found that 

0 	the coherent receiver is less sensitive to small frequency offsets than 

01 	the noncoherent receiver, as found for four frequencies when the offset 
0 
• was less than 0.25. 	For larger deviations, the coherent receiver 

experiences a greater loss in perfomrnace than the noncoherent receiver. 

• Similarly, as the number of frequencies increases, the sensitivity of 

• the coherent receiver to small deviations also increases. Therefore, 

0 	for a large number of frequencies it  is  found that the coherent 

receivers are more sensitive than the noncoherent receivers, even for 

• deviations less than 0.1, as found from the data for twenty frequencies 

• 
• in Table 4.2. 

0 
0 
11 • 
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4.4 SUMMARY OF RESULTS 

In this chapter, two deviations from the assumptions outlined in 

Chapter I were discussed. The first found that, if a priori knowledge 

was available and was used, significant performance improvement could be 

obtained only for SNR less than 7 dB. It was also found that the 

optimum receiver could tolerate some error in the a priori knowledge. 

An example used showed that if a frequency was guessed to be used 90% of 

the time and was actually used 75% of the time, P was still larger than 
D 

if the a priori knowledge had not been used to design the receiver. 

However, any difference larger than this, and better performance would 

have been obtained if the a priori knowledge had not been used to design 

the receiver. It is recommended, on the basis of results obtained for 

two frequencies and the coherent optimum receiver, that a priori 

knowledge be used to design a receiver only if the SNR is expected to be 

less than 7 dB and if there is enough certainty about the a priori 

knowledge to guarantee that the a receiver using it will not be 

suboptimum to one not using it. 

This chapter also examined the loss in performance if a key 

assumption, used to derive the receivers of Chapters 2 and 3, was 

invalid. If the frequency took on values other than those assumed by 

the detector, then a loss in detection capabilities would occur. 

Naturally: the largest loss occurs if the transmitted signal falls 

outside of the receiver bandwidth where it was found that the 

sensitivity of the coherent receiver to frequency deviations increases 

at a faster rate than that of the noncoherent receiver as the number of 
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• 

• 
• 
• frequencies increases. 	If the signal does fall inside the receiver 

11 
6 	bandwith, the most severe losses occur when 6' 	k+0.5, where k is an 

integer. This loss is greater than 50% and increases as either the 

• number of frequencies or the SNR does. 	However, the receiver can 

• 
• tolerate small frequency errors. For example, a deviaton of 10% of the 

frequency separation results in a degradation around 10% for noncoherent 

•
11 

receivers and 6 to 7% for the coherent receivers. 	Therefore, the 

0 
• maximum likelihood receivers, and the optimum receivers they 

approximate, become more sensitive to deviations around 0.5 as the 
41 
• number of frequencies used by the transmitter increases. 
11 
• To summarize, a priori knowledge, when used to design a receiver, 

will give superior performance to a receiver that was designed without 

• • 	it. This improvement increases as the SNR decreases. 	Should it be 

• wrong by a large margin, a loss may result instead. The optimum and 

11 
maximum  •likelihood receivers of Chapters 2 and 3 can tolerate small 

•
11 

frequency deviations of 0.1, losing less than 10% of their detection 

•
41 • capability. 

11 
01 
• 
• 
11 
• 

11 

• 
• 
• 
• 
• 
• 
• 
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• 
• 
• 
• 
• 
• CHAPTER 5 
• 
• Frequency-Hopped Spread Spectrum Considerations 

• 
• 
• 5.1 INTRODUCTION 

• 
• Prior to this chapter a modest number of frequencies, N, in the 

• 
discrete frequency distribution of the signal have been considered. In 

O  • 
• 

most frequency-hopped, spread spectrum systems N would be at least 10 3 
• 

6 
• and more like 10. Actually N represents the processing gain of the 

• 
frequency-hopped, spread spectrum system. In this chapter we consider • 

• large N for both the maximum likelihood and the optimum receiver. We • 
• show that for a constant false alarm rate, the detection probability of 

• 
•

both receivers goes to P F  as N 	For the maximum likelihood receiver 

• 
• we establish N for a given SNR such that P D 	P • such a processing F •  • 
• gain would render the interception receiver performance as useless since 

• 
• detections cannot be distinguished ,from false alarms. Hence, signal 

• interception is impossible and a fundamental performance limit  ha  s been • 
• reached. We establish this performance limit for both the coherent and 
• 
• non- coherent cases. Some approximate results are also given for the 

• optimum receiver. In all cases, slow frequency hopping is assumed as • 
• the modulation is not allowed to hop in the detection time period for • 
• signal interception. 

• 
• 
• 5.2 PD as  N co: Coherent Maximum Likelihood Receiver • • 

We first establish that P D 	P F' it's lower bound, as N  8 W e Thus, • 
• 
•

letting N 	oc., effectively randomizes the signal, A cos cot, when to has 

• the discrete probability density function: • • 
• -115- 
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and 

P
F = 1 - (1 -QF )

N 
(5.2) 

1 - 
P
D = 1 - (1 -QD )(1 -P F ) (5.6) 

1 	- 
p(w)  N 	i 

1=1 	• 

From equations (2.15) and (2.13) it follows that, 

P
D 

= 1 - (1-Q
D
)(1-QF )

N-1 
(5.1) 

Recall that Q
D 

and Q
F 

are the detection probability and false alarm 

probability, respectively, for each receiver in the parallel bank of 

receivers in Fig. 2.1. From (2.11), for the additive, white Gaussian 

noise model, 

d Q( d 

and from (2.12) 

9.11 n 	d 
QF = QE d 

(5.3) 

(5. 14) 

where d = 

In our problem it is assumed that a constant false alarm detection 

probability, P F , is specified. Thus from (5.2) 

(1-Q
F

)
N 

= 1 	P
F 

and thus in (5.1) 

(5.5) 

For modest N, (1-P
F

)
1-1/N 

= 1 	P 	and 

P
D = 1  

If Q
D 	

0 as N 	00, it follows that P
D 	

P
F
. From (5.4) 

(5.7) 



0 
0 

11 
• and by use of (5.5) 
0 

Q = 1 - (1-P )
1/N

. 

• 
Hence, 

11 

• 1 
0 	 -1 QD = Q(Q [1-(1-PF ) 	]-d} 	(5.8) 

• -1 
and as N + oo, QD + 0 as 1-(1-PF ) 1/N + 0, Q (°) = co and Q(œ)  = O. 	From 

• 

• (5.7) PD + P F as N + 
œ since QD + 0 as N + 

œ,  

• 5.3 PD for Large N: Coherent Maximum Likelihood Receiver 
al 
• 
0 	In Figs. 5.1 and 5.2 we'plot P D vs 2E/N 0 = d

2 
in dB with PF and N 

11 
• as parameters. The computations are based on equations (5.1) through 

11 
• (5.4). From Fig. 5.1, when N = 10 6 

(A - log10 N = 6) we see that P D = 

11 
11 P F when P F = 10

-3 for all SNR's less than 6 dB. Thus below this 0 

0 
= .1, from Fig. 5.1 the limiting SNR is 8 dB. Thus the SNR below which 

le 
• interception is impractical increases with the false alarm rate. 
11 
• We now establish the convergence rate of PD to PF as N gets iarge. 

te 
• From equation (5.7), 
11 

PD = PF + QD (1 -P F ) 	(5.9) 11 
0 
• x2.n(1-P F ) 

For large N, the Taylor series for e 	, yields 

- 
• Q = 1 - (1-P ) 1/N  - 

9,n(1-PF ) 
	(5.10) 

0 
11 	and as •  
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• limiting SNR, interception is impossible. For PF = 10
-4 , in Fig. 5.2, 

• the limiting SNR is 5 dB. For a higher false alarm probability, say P F  
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. 	(5.12) 

(5. 1 3) 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 

• 
• 
• 
• 
9 
• 

• 

• 

Q
-1 

[ -tn(1 -P
F
)/N] » d 

it follows from (5.8) that 

Q
D 

= 

Thus, combination of equations (5.9) and (5.11) yields the result 

P
D 

= P
F 	

(1-P
F
)9n(1-P

F
)/N 

Thus P
D 	

P
F 
as 1/N as N gets large. This is the situation for the 

coherent interception receiver. 

5.4 P
D as N oo: Non-Coherent Maximum Likelihood Receiver 

As in the coherent case P
D 

and P
F 

are given by (5.1) and (5.2) 

respectively. Now, however, Q
D 

and . Q
F 

are the detection and false alarm 

probability, respectively, for each individual non-coherent receiver in 

the parallel bank of receivers in Fig. 3.1. From eqUation (3.12) 

.y2 
Q
F 

= exp{ - ---} 
2d

2 

and from (3.17) 

Q
D 	Q(d, Y/d) 

where Q(a,b) is Marcum's Q-function as defined in (3.17a). 

Equation (5.7) is still valid for the present consideration. Thus 

P
D 	

P
F 

if Q
D 4 0 as N 4 co. From (5.12), 

Y 
d 

= (-2 £n Q
F

)
1/2 

We will show that Y/d 4 as N co and thus  

From (5.5) 

QF = 1 -
1/N 
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and as N 4 	Q.  4 0 and Y/d 4  00 in (5.14). Thus, QD  in (5.13) goes to 

zero and P
D 	

P
F 

as N 	00, i.e., the lower limit in P
D

. 

5.5 P
D 

for Large N: Non-Coherent Maximum Likelihood Receiver 

In Figs. 5.3 and 5.4 we plot P D  versus 2E/N
o 

= d
2 
in dB. The 

computations are based on equations (5.1), (5.2), (5.12) and (5.13). 

•  The algorithm in reference [ 28] was used to compute Marcum's Q-function. 

The results are similar to that presented earlier in Figs. 5.1 and 5.2 

for the coherent case. However, the non-coherent receiver does not 

perform as well as the coherent case. The performance is compared in 

Fig. 5.5 for various N and PF = 10
-4

. The SNR degradation of the non- 

coherent case, relative to the coherent case, decreases with N. For N = 

100 and P
D 

= 10
-3 , it is approximately 2 dB, and for N = 10 6 , and P D = 

10-3 , it is 1 dB. 

We also note that the SNR where P
D 

4 P
F' rendering interception 

impractical for SNR's smaller than this value, is larger in the non- 

coherent case. This result is as expected as the non-coherent receiver 

is inferior in performance to the coherent receiver. For instance, in 

Fig. 5.3 for PF = 10
-3 and N = 10 6

, this SNR for the non-coherent case 

is 8 dB. In the coherent case, in Fig. 5.1, for the same parameters 

this SNR is 6 dB. As expected, interception will fail at a larger SNR 

for the non-coherent case. 

We will now establish the rate of convergence of PD  to PF  as N gets 

large. Once again, some of our results for the coherent case carry 

over. For instance, (5.9) and (5.10) remains valid. From (5.13) and 

(5.14) there follows: 
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0 • 
41 
11 
11  
• QD 	Q(d, ( -2£n QF ) 	) 

1b 	and from (5.10),. 
• 

1/2 0 
Q
D 
= Q(d, an[ 	]2 } 	) 	(5.15) • 

lk 
• We consider the case of large SNR or large d. For (3 >> a, [29, 

• p.451] states that for 

0 
•

1 	exp(-R 2/2) 
111 	 A-77.73. 
lb 	In (5.15) we have a = d and 
Ô 

• -N  
4W 	(3 2 = 29,n[ .Zn(1-P F ) ]  
• 
• Hence, 

• -In(1-P F ) 

' e 	 Qn 
/7i N{29,n( N 	\11/4 

Ô 	 9,n(1-P F)" 

• Now from (5.9), 

111 
2.n( 1-PF ) -1 • P = P + 	 (5.16) 

and N{29,n( 	-N 	)11/4 D 	F 
9,n(1-P F)" a 40 

41 
• Thus for the non-coherent case the convergence rate is as 1/(N{ZnN} 1/4 ). 

•
0 

For practical N, this rate is essentially as 1/N. 
11 
lb 

• 5.6 P
D 

as N co: Central Limit Theorem Analysis 

• Our treatment of PD as N gets large for the average likelihood, or 
0 
41› optimum, receiver will be based a the Central Limit Theorem (CLT), see 41 
• reference [30, p. 58]. As a prelude to this analysis we reconsider PD  
41 
• for the maximum likelihood receiver from the point of view of the CLT. 
411 
• The maximum likelihood receiver computes the decision statistic 

• 
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9,
HO 

- NQ
F 

liNQF (1 - Q F ) 

(0, 1) 	N+°'  

L= E L.;  
1 	1 

1=1 

For the noise only hypothesis, H
o' 

t =
HO

, 

1 w.p. QF  
= 	{ 

1 	10 
0 w.p. 1-QF  

where w.p. means "with probability" and QF  is given in (5.4). For the 

signal present hypothesis, H
1' 	

=
H1' 

and 

QD N-1 , 
wd"  N 	N = P  

1 

I.  =L. =
{ 1, 	11 
0 w.p. 	1-p 

The mean and variances below follow from simple derivations, 

Q
F 10 =  

2 
a 	= Q

F
(1-Q

F
) 

i0 

HO 
= N Q

F 

2 
= N st 	QF (1-QF ) 

HO 

= p 

2 
a 	= p(1-p) 

il 

H1 = Np 

and 

a
t
2 

= Np(1-p) 
H1 

Also, 

. 	( 5.18) 



, 1) 	N - œ  

n NQ
F  

P F = Q(  	 (5.19) 
if  NQF (1 -Q F ) 

PD = Q( 

 

where 

Q
D 	Q

D 2 	N-1 X = (--- F  Q 	--)(1 	
N-1 

Q 

	

N 	N 	N 	F 	N 

We established earlier that QD 	0 as N 	co. Hence for very small QD' 

QF  
nfn-l (P )1 PD = 	

IQE,(1-QF) 

and for large enough N, PD  4 PF . 

(5.21) 

5.7 PD' N co: Optimum Coherent Receiver 

We now consider the detection random variable in (2.18), namely 

and 

Thus, for large N, 

and 

t.
H1 

- Np 

1174777:77 

a - Np  
- 	 )° 

ifNp(1 - p) 

Now from (5.18), Np = (N- 1)QF  + QD  and thus 

•
•
•
•
•

•
0

0
0
•
•
•
•
•
•
•
•

•
•
•
•

•
•

•
,4

4
1

•
•
•

•
•
•

0
•

4,
4

0
•9

1
1

11
•
•
•
•

0
4
,
0
•
.
•
•
•
•
 

n 	(N- 1)
FD). 

P
D = QC 

1U177177 

A little manipulation of equations (5.19) and (5.20) gives 

Q
-1 
 (PF ) 	QF 	QD 

D 	F 	F 
X AT 

= E t. 
1 

i=1 

(5.20) 



a. 
1 

wheret.=ewith a
i 1 

0, 
d2

), d
2 

= 2E/N
o 

We assume that N is large 

enough so that t 	a
t
2
), as a consequence of the Central Limit 

Theorem. We wish to determine 

P
F 

= P(2. > n) 

given that H
0 , 

the noise only hypothesis is active. 

a. 
 d 2
/2 	

2 From(2.20) -i.=E(e 1 ) is given by e, where d = 2E/N
o

. 
1 

Furthermore, from (2.20), 

2 	d
2 

d
2 

a 	= e (e -1). 

Thus 

d2/2 
 = N e 

and 

2 
d2 d2 

a
t 	

= N e(e-1). 
HO 

Now P
F 

= 	>nIH
0 
 ) and thus for N large 

P
F

e"- Q•[ 
-N e

d-/ 
e
-d

2
/2 

) 	•  
(5.22) 

N(e -1) 

Before we consider the signal present, H
1' 

hypothesis, it should be 

2 
noted that only one of the Ms in the sum for t can have a mean  e

3 /2 

This is because of the slow hopping assumption, where it follows that 

the modulation does not frequency hop during the detection period. 

HerICED N-71 of the Z. are independent and identically distributed. The 
1 

sum of these N-1 variables satisfies the CLT and its distribution is 

asymptotically Gaussian. Hence, one may write 
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• • • 
a. 

= 1 
(5.23) 

N 	a. 

	

1 	ak  
t =Ee-Fee 

• 
• Thus, 

•

, 

2 	2 	2 
at

2 
= e

d 
[(N-1) 	e

2d 
] Ee

d 
-1 

H1 

d
2 

P
D 

Q {fl  - 
(N-1) e2 	e3d

2/2 - 

}. 
at  H1 

• 
• 
• 

i 
11 	 k 

• a. 
• 1 	 - where the e 	are as in the PF analysis and so is  Œk  - a k

.• they are all 

11 
41 	7U0, d

2
) and also, ak = d

2
. Hence 

lb 

• iH1 = (N-1 )ed
2
/2+ ed

2 
ed

2
/2 11 

lb 
• and 

0 

( 5. 2 )4 ) 

(5.25) 

Combination of equations (5.24) and (5.25) with (5.22) yields 

I\M-----2d
2 

N 	e 	1 

• / 	e-  -2 / 	1. 	(5.26) 
40 
11 

to 
0 	For large N, P 	PF° We also note that equation (5.26) can be used as 

•
an approximation to PD for large N. We call this the CLT approximation. 

10 
• A better approximation can be obtained by using the Gaussian 

41 	distribution for ak in (5.23) and the limit distribution, also Gaussian, 41 
10 
11 	N 	a. 

1 
for E e 	in (5.23). We call this the CLT 	1 approximation. Data 10 	i=1 

111 	i#k 
41 
• from these approximations are given in Table 5.1. One notes that for 
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• 

• 
• 

p = c){Q•1 



10000 SNR = 	3.000000000000000 	DB 
PDCLT1-1 	PDCLT 	MAXLIKELIHOOD 

0.1049900 	0:1050987 	041020163 

1+0946072E-02 1.0864927E-02 140414147E-02. 

1+1774122E-03 141181121E-03 1.0762307E-03 

144664898E-04 1+1478132E-04 141338558E-04 

2+9973244E-05 1.1764009E-05 1.2270002E-05 

14.2954009E-05 1.2052842E-.06 1.3740269E-06 

100000 SNP = 	34000000000000000. 	DB 
PDCLT+1 	PDCLT 	MAXLIKELIHOOD 

0.1014645 	0.1014660 	0;1003896 

140235984E-.02, 1.0231144E-02 140075799E-02 

3.000000000000000 	DB. 
PDCLT 

0.1000443 . 

1.0006737E-02 

1.0008520E-03 

140010023E-04 

1.0011335E-05 

140020775E-06 

MAXLIKELIHOOD 
0+1000021 

140000371E-.02 

1.0000601E-03 

140000946E-04 

140001462E-05 

140002221E-06 

140133781E-03 

140226988E-04 

140374024E-05 

140601326E-06 

00000000 	DB 
MAXLIKELIHOOD- 
041000714 

140013304E-02 
140022686E-03 

140037400E-04 

1.0060132E-00 

140094639E-06 

Table 5.1a 

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
6 
• 

• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 

6 
• 
• 

• 

• 
dlo 
• 
• 
• 

n 	 ,m 

PF 

2.1000000 
Q 0000099E-03 

1«0000000E-03 

949999997E-05 

949999997E-06 
• 1.0000000E-06 

N = 
PF 

0.1000000 

949999990E-03 

1«0000000E-03 

949999997E-05 

9+9999997E-06 
1.0000000E-06 

N = 

PF 

0.1000000 
9=9999999E-03 

1;0'000000E-03 

9=9999997E-05 

9:9999997E-06 

1=0000000E-06 

= • 

PF 

0.1000000 

949999998E-03 

1.0000000E-03 
9+9999997E-05 

949999997E-06 

1=0000000E-06 

N 

0:1,000000 

9 ,9999998E-03 

1,0000000E-03 
9+9799997E-05 

9:9999997E-06 
1;0000000E-06 

N = 
PF 

041000000 
949999998E-03 

140000000E-03 

9«9999997E-05 

949999997E-06 

1«0000000E-06 

1.0323786E-03 

1:0457628E-04 

140065957E-05 

142977636E-06 

1000000 SNR 

PDCLT+1 

041004491 
140069225E.-02 

1. .00.88673E-03 

140106216E-04 

1.0125486E-05 

1.0170654E-06 

10000000 SNR 

PDCLT+1 

0+1001406 

1.0021436E-02 

1+0027168E-03 
140032033E-04 

1.0036344E-05 

140048647E-06 

100000000 SNR 

PDCLT+1 

0+1000443 " 

140006737E-02 

140008520E-03 

140010025E-04 

140011336E-05 

1+0020777E-06 

1000000000 SNR 
PDCLT+1 

0.1000140 
. 1 «0002127E-02 
1 0002689E-03 

140003161E-04 

140003564E-05 

140012176E-06 

140299988E-03 

140360483E-04 

1.0415591E-05 

140475495E-06 

340000000 

PDCLT 

0.1004491 

140069034E-02 

1.0087990E703 

140104196É-7-04 

1+0118617E-05 

1.0140127E-06 

3.0000000 

PDCLT' 

0:1001406 

140021430E-02 

1+0027151E-03 

140031994E-04 

140636259E-05 

140048399E-06 

3,0000000 

PDCLT, 

0:1000140 

1+0002127E-02 
1+0002689E-03 

140003161E-04 

140003564E-05 

140012176E-b6 

00000000 	DB 
MAXLIKELIHOOD 

041000125 

140002256E-02 

1+0003739E-03 

1.0006013E-04 

140009464E05 

1.0014619E-06 

00000000 	DB 
MAXLIKELIHOOD 

0+1000004 

140000059E-02 
1.0000095E-03 

1.0000146E-04 

1+0000223E-05 

140000332E-06 

CLT and CLT+1 

approximations to Pt)  

for Coherent Optimum 

Receiver: SNR = 3 dB. 
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0.5000193 

0.5000182 

0.5000192 

0.5000181 

0.2326055 

0.1262261.. 
6.2943377E-02 

2.9106634E-02 

Table 5.1b 

CLT and CLT+1 
approximations to PD  

for Coherent Optimum 
Receiver: SNR 13 dB 

N = 
F/ 

0.1000000 
9,9999998E-03 

1.0000000E-03 
9.9999997E-03 

9.9999997E-06 
1.0000000E-06 

10000 SNR = 	13 400000000000000 	DB 
PDCLT-1 	PDCLT 	MAXLIKELIHOOD 

0+2334174 	0.5000194 	0.6261156 1  

0.1265264 	0+5000184 	0.3937805 

0.1039359 
9.4743431E-02 

8+9055523E-02 
8.4900595E-02 

N = 
PF 

0.1000000 

9. 9999998E-03 

:1. . 0000000E - 03 

9  4 9999997E-05 

9.9999997E-06 

1 • 0000000E-06 

N 
PF 

0.1000000 
9+9999998E-03 

° 1+00.00000E-03 

9.9999997E-05 

9.9999997E-06 

1.0000000E-06 

100000 SNR = 	13.00000000000000 	DB 
PDCLTI-1 	PDCLT 	MAXLIKELIHOOD 

0.5000182 	0+4521938 

0.5000179 	0. 2399709 

0.5000177 	0.1270297 

0+5000175 	6+3028656E-02 

0+5000174 	2.9115403F-02 

0+5000172 	1.2.586645E- 02 

1000000 SNR = 	13.00000000000000 	DB 

PDCLTI-1 	PDCLT 	MAXLIKELIHOOD 

0+5000175 	0.3114952 

0.5000166 	0+1350539 
0.5000159 	6.3880965E-02 

0+5000153 	2.9203290E-02 

0.5000148 	1.2595547E-02 

0.5000144 	° 5.1270095E-03 

0.1677839 

8.3951496E-02 

6.5067030E-02 
5.8334459E-02 

5.4372542E"02 .  

5.1525157E-02 

0.1548418 

0.4436170E-02 

3+8704507E-02 

3.3962362E-02 

3.1365171E-02 

2.9537339E-02 

N 

PF 

0+1000000 

9.9999998E-03 

1.0000000E-03 
9+9999997E-05 

9.9999997E-06 

1.0000000E-06  

10000000 SNR 

PDCLTIL1 

0.1325023 

3.3252903E-02 

2.1956306E-02 

1.8685332E-02 

1.7073362E-02 

1.5975432E-02 

13.000000 

PDCLT 

0.5000151 

0.5000122 
0+5000101 

0+5000084 

0.5000069 

0.5000056  

00000000 	DB 
MAXLIKELIHOOD 

0.2152173 

7.2404491E-02 
3+0091670E-02 

1.2684632E-02 

5.1359632E-03 

1+9799514E-03 

N = 	100000000 SNR = 	13,00000000000000 	DB 

PF 

0.1000000 

9,9999999E-03 

1,0000000E-03 

9.9999997E-05 

9.9999997F-06 
1.0000000E-06 

N = 
PF 

0 . 1 000000 

9.9999998E-03 

0000000E-03 

9 9999997E-05 
9.9999997E-06 

1 0000000E-06 

PDCLT-1-1 

0.1182626 

2..3561163E-02 

1.1909110E-02 

9.7181918E-03 

9.7654199E-03 
8.1439465E-03 

1000000000 SNR 
PDCLT+1 

0.1097260 

1.6877392E-02 

6.4322571E-03 

1+7893496E-03 
4+2407899E-03 
3.9099250E-03  

	

PDCLT 	MAXLIKELIHOOD 

	

0.5000075 	0.1573911 

	

0.4999985 	3.8965324E-02 

	

0.4999919 	1.3375445E-02 

	

.0+4999865 	5:2255932E-03 

	

0.4999818 	1.9889338E-03 

	

0+4999776 	7.2910078E-04 

13.00000000000000 	DB 

	

PDCLT 	MAXLIKELIHOOD 

	

0+4999836 	0+1266779 

	

0+4999551 	2.2483438E-02 

	

0+4999343 	6,1219237E-03 

	

0.4999171 	n 0786536E-03 

	

0.499902S 	7:3009421E-04 

	

0.4999890 	2.5721998E-04 
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• 
0 

practical P F 's down to 10 -3 the approximate P D via the CLT + 1 41 
• 

approximation is very close to P o  for the maximum likelihood receiver. 

• 

	

Thus it appears that, for large N, the average likelihood or optimum 	11 
11 receiver performs the same as the maximum likelihood receiver. Our 
11 

approximate analysis is better at low SNR than large SNR. Also, the CLT 
1M 

	

approximation at SNR = 13 dB was very poor and is not tabulated. This 	• ' 
11 

follows, as [26, p. 194] points out, since a large SNR makes one term in 
41 

(5.23) dominant, a situation that is poor for CLT approximations. 	11 
OP 

5.8 PD as N 00; Optimum Receiver: Non-Coherent Case 	 11 
lb 

	

The decision statistic for the non-coherent, optimum receiver is 	11 
11 

given by (3.24) as 
0 

= E I (q.) 	(5.27) 	• 
i=1 o 	 • 

te 
1 

where qi  are defined in (3.22). When r(t) = n(t) in (3.22), i.e., the 

11 

	

H o hypothesis, q i is Rayleigh distributed. When the signal present 	11 
• 

hypothesis is active, N 	1, qi 's are Rayleigh distributed and one has a 	11 
11 

Rician distribution. 	 11 
11 

	

The mean and variance of 9,, in (5.27) under hypotheses Ho  and H1 	41 
• 

	

cannot all be expressed in terms of known functions as was the situation 	11 

	

in the coherent case. However, it is shown herein that if the mean and 	0 

variance of 9, i = I
0 
 (q.) under H

0 
 and H 1 are finite, then the argument of 1  

41 
the previous section can be carried through in general. 

lb 
0 To set the stage for this general analysis let 9, 	= I0(q 0 ) where i0 	 11 

q 10 is the value of q. under H 0° 	 • 
• 	similarly, 9, i1 = I

0
(q

11
) for 	41 

1  

• 
hypothesis H 1° Then for large N and the CLT referred to earlier 

41 
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• PF = Q( 	 
111 	

at
HO  

• where 

40 

= E 
 HO 	

11 	
10 = E I 0 (q 10  ) 	(5.28) 11 	 = 	1=1 

• Thus 

11 
11 -1  = c 9 Q (PF ) 	iHO 	(5.29) 
• HO 

11 
• Now the probability of detection for large N is given by 

11 
410 H1, 
• PD = Q( 

•
at

H1 

•
or by (5.29) 

11 
• p 	, s

at

HO Q-1,, , 	iHO - H1 } 
 (5.30) 

te 
D 	"(.09,

111 	
at

H1 

•
IF 

Note that if a 	4. a
z 	

as N 	m and if 
9.
HO

•  
H1 

11 

10 • 
11 
01 

one has PD 	PF as N 	m. 
10 
41 
1, 	We note that equation (5.30) agrees with equation (5.26) for the 

40 
 11 	
coherent case. This follows as in that case 

11 
11 
• 1=1 

40 
• 

= N ed-/2 , 
• HO 

= (N-1) ed2/2 	
e3d2/2 
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lim iHO - H1  
+0  N 	m9,H1 

N 	Œ. 
2. 	= E e 1  

• 
• • 
• 



and 

2 	2 	2 
a

H1 

= (N-1) a
t 
10 
 + a

t
R 

(5.34) 

2 	2 
a
t
2 	

N(e
d 

-1) e
d ' 

HO 

and 

2 ' d 	d
2 

a
Z 	

e Ce -1][(N-1)+e
2d2 

 
] 

H1 
 

where d
2 

= 2E/N
o

. 

To proceed with the general analysis, it follows from (5.28) that 

E(Z) 	= N i 	where -9, 	= E{I (q. 
HO 	HO 10 	10 	o 1  

)j: where q
10 

 ' is Rayleigh 

distributed. 

Under hypothesis H 1 , 

H1 
E Z

11  = 
	E 	(q.11 ) o  

1=1 	1=1 

where N 	1  q11  's are Rayleigh and one is Rician. Thus 

H1 
= (N-1) 

,Î1.0 
+ Î

R 

(5.31) 

(5.32) 

with Î
R 

=  E{10 
 

)} with qR  a Rician random variable. Sibilarly, 

2 	2 
 az

HO 
= N a 	= N{I

2
(q. ) - 	1 0 10 	i0 

10 
(5.33) 

and a
t
2 

is the variance of the single Rician term in (5.31); namely 

-2 
a
t
2 

= E{I
2
(q )} 	Z

R 0 R 

It follows from (5.33) and (5.34) that a o 	o  2  /a 2  4 1 as N 4 00 when 
""1-11 

all other terms in these equations can be defined by a convergent 



• • • • • 
41 	infinite series. It is shown later that this is true for any finite 

SNR. Also from (5.32) and the definition of 9, H0  in (5.28), 

•

lb 

	

HO 	- H1 	E{I01 (q. 0  )} - E{I 0 (q R )} 
Ô 	 a„ 

that 

• 

, 

• satisfied and PD PF as N 	for the optimum, non- coherent receiver. 4> 

•
40 

There only remains to show that 
E{I0i0 

 (q )1, E{I0 2 (qi0  )}, E{I 0 (qR )} 

10 
40; and E{I 0

2 (q 	i0 

	

R
)1 are finite when q 	is Rayleigh and qR is Rician. 41  

We first consider E{I01  (q. 0  )1 where qi0 is Rayleigh. That is the 

•

40  
40 

pdf for q10 is 

•
lb 

f 	(x) 
• q10 
lb 
• where a

2 = d2 = 2E/N o . Thus 
le 

40 

• E{I (q. )} = f I (x) f 	(x)dx 
• 0 10 	o  

lb 
411W 

=e 
a
2 /2 	E/No = e 

41 	which follows from [31]. Furthermore, and also from [31], 
40 
40  = e2E/N o 	2E 40 	E{I 2 (q )1  0 	i0 

	I0  c)  No •  
-135- 

IF 

(5.35) 
ie 	 'Hl 	Hi 

• where  q.  is Rayleigh and qR is Rician. From (5.34), a
t 	

grows as iN-1 
lb H1 

• whereas the numerator in (5.35) is finite for finite SNR. It follows 

10 	ÎHO - H1  0 	as 	N 4 cc. • a 2, H • 1  
40 

Thus both . of the conditions following equation (5.30) have been 

CO 



= E 	E 
m=0 k=0 (m!)

2
(k!)

2
(m- k)! 

(2m)!(d
2
/2)

k+m 00 	m  

• • • • • • • • 
• • 

• • 
• 

6 
• 

• 

• 

• • 

• • • 
• 
• 

• 

• 

• 

Thus the variance of 
I0 

(q.10  ) is 

2E/N 	
2E 

E{(I (q.
10 ) 
	I 	))

2
1 =e  0 	0 1.0 	

o 
0 N

o  

We now consider E{I0
(q

R
)} where q

R 
is Rician [26, p. 139] 

x
2 

x 	xb 	-b
2
/2a

2 	
2a

2 
f(x) = -- I (--) e 

a2 0 
a
2 

where b = a
2 

= d
2 

= 2E/N
o
. Then 

03 

E{I0 (qR )} = f I 0 (x) f cI(x)  dx 
R 

E/N
o 	2E 

= e  
0 N

o 

again by use of [31]. 

When q 10  is Rayleigh, it has been shown that the mean and variance 

of I
01. 

 (q.
0 
 ) can be given in terms of known functions. A similar result 

holds for the mean of I
0
(q

R
), when q

R 
is Rician. For the second moment 

of I 0 (q) we can show that, 

• 
E{I

0
2
(q

R
)} = f  102 (x) f(x) dx 

Also, by a comparison test, it can be shown that this doubly infinite 

series converges for finite d. 
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0
(q). However, the result is true for any 
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CHAPTER 6 

CONCLUSION 

6.1 SUMMARY 

Chapter 1 introduced the problem of detecting a sinusoid with a 

discrete frequency distribution by discussing relevant literature, and 

drawing parallels between that problem and the one of spread spectrum 

signal interception. It also defined the system model used in the rest 

of the report. 

In Chapter 2, two coherent eceivers were derived and their 

performance analyzed. These were the optimum receiver and the maximum 

likelihood receiver. In that chapter the theory needed to derive the 

receivers, which was also used in later chapters, was established. In 

addition, an approximation of the probability density function of the 

sum of N lognormal random variables was discussed. 

Three noncoherent receivers were examined in Chapter 3. 	In 

addition to the noncoherent versions of the optimum receiver and the 

maximum likelihood receiver, a low SNR receiver was discussed. This 

chapter also included a comparison of the noncoherent and coherent 

receivers, and especially noted characteristics exhibited by all the 

receivers. 

Chapter 4 looked at two deviations from the assumptions made in 

Chapter 1. It first considered the advantages of using a priori 

knowledge, if it exists. Second, it found the probability of detection 

for any frequency, regardless of whether the receiver was optimized for 

it or not. This led to a study of the effects of frequency offset on the 
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receiver performance. This last was done for both maximum likelihood 

receivers, and the optimum coherent receiver, though the latter was only 

studied under the assumption of two transmission frequencies. 

6.2 CONCLUSIONS 

For a sinusoid with a discrete frequency distribution, it has been 

shown that any optimum receiver includes a bank of N filters, each one 

of which is matched to one of the N possible transmission frequencies. 

The optimum coherent receiver has a sufficient statistic equal to N 

lognormal randOm variables, the solution of which is too unwieldy for 

any number of frequencies greater than two. However, the optimum 

receiver and the . coherent maximum likelihood receiver were shown to have 

nearly identical receiver operating characteristics (ROC), this being 

confirmed by simulations of 'the optimum receiver performance. 

Therefore, the ROC of the maximum likelihood receiver can be used to 

give a close approximation of the performance limits for the coherent 

detection of a random frequency signal. For large SNR values, on the 

order of 13 dB or larger, P 
D 
 is greater than 0.9. However, for SNR less 

than 10 dB, the signal will be detected less than half the time. This 

reduces to less than one time in ten when the SNR is less than 3 dB. 

Three noncoherent detection methods were considered for this 

signal. Since the sufficient statistic for the optimum receiver is a 

sum of modified Bessel functions with Rayleigh or Ricean arguments, an 

exact performance analysis of the receiver is not straightforward, and 

one was not found. However, simulations showed that the performance of 

the noncoherent maximum likelihood receiver gives an excellent 
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approximation of that of the optimum receiver for the SNR values 

considered. Using the maximum likelihood receiver performance, a 

comparison of noncoherent and coherent detection shows that the 

performance loss between the two methods decreases as the SNR increases. 

Some typical values are a 1 dB loss when SNR is around 13 dB and a 2 dB 

loss when the SNR is in the vicinity of 3 dB. Note that this loss 

decreases as the number of frequencies increases. 

The third noncoherent receiver, designed by approximating the 

sufficient statistic of the optimum receiver by E (11-(q2/4)), gives a 

performance equal or inferior to that of the maximum likelihood 

receiver. The performance of the low SNR receiver is closest to optimum 

at SNR levels 3 dB or.less. However, the approximation becomes poorer, 

for any SNR, as the number of frequencies increases. Therefore, this 

receiver gives near optimum performance only when there is a small 

number of frequencies and the SNR is low. 

The law of diminishing returns is exemplified by P
D 
as a function 

of the number of transmission frequencies. As the number of frequencies 

used by the transmitter increases, P 
D 
 decreases. However, the loss is 

less for each additional frequency. From the transmitter's point of 

view, it will take more and more frequencies to gain the  same reduction 

in the probability of interception. It should also be noted that the 

performance of the coherent receiver degrades faster than that of the 

noncoherent receiver. The drop appears to be between 25% and 30% each 

time the number of frequencies is doubled. 

If a priori knowledge is available, and if it is used to design a 

new optimum receiver, significant improvement is obtained only for SNR 

less than 7 dB. This receiver can tolerate some error in the a priori 

-140- 



knowledge. In the example used in this report, when two transmission 

frequencies were used, if the assumed probability of arrival for one 

signal was 0.9, and the actual probability was 0.75, the a priori 

receiver would still give a superior performance than if it had been 

designed without the a priori knowledge. If the difference between the 

assumed and actual probability was larger than this, a loss relative to 

the performance of the other receiver was noted. This was as large as 

90% or greater if the arrival probability of the signal assigned the 

larger probability, was actually zero. It is recommended that a priori 

knowledge not be used unless there is a great deal of certainty about 

it, since the penalty of using incorrect information to design a 

receiver could be a loss in performance greater than 90%. 

If the received signal frequency is not equal to one of the 

detector center frequencies, it is less likely to be detected than if it 

is. However, the receiver can tolerate small frequency offsets, on the 

order of 10% of the frequency separation, with less than a 10% loss in 

detection capability for a fixed false alarm probability. Should the 

received frequency be offset by half of the frequency separation, the 

loss is greater than 50%, which increases as the number of frequencies 

does. 

When, N, the number of frequencies is large, PD  tends to PF  with 

- 1 the convergence rate of N 	In a series of curves the SNR below which 

signal interception is impossible has been established. Below this SNR, 

P
D 

= P
F and the interceptor cannot distinguish detections from false 

alarms. This SNR grows with N but decreases with PF . 
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APPENDIX A 

PERFORMANCE ANALYSIS OF THE OPTIMUM  COHERENT RECOVER 

The probability density function of the sufficient statistic, t, 

for the optimum coherent interception receiver, when noise only is 

present, is 
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Finally, let a — ln u. This gives 
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For the probability of detection, the probability density function of 

the sufficient statistic is 
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APPENDIX B 

GAUSSIAN QUADRATURE RULE 

The moments of a function, w(x), as discussed in [18], are 

The weights, A's, and nodes, t 's, can be used to solve 
j 	J 

M 
a  rb 
j f(x)w(x) dx = E A f(t ) 	a < t < b 

j-1 j 	j 	j 

In order to obtain the weights and nodes from the moments, a moment 

matrix, M, is created such that 
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Next the triadiagonal matrix, J. , is formed 

a 	/3 	. . . 	0 
• 

el a 2 e2 

J= 	. 	p 
2 

a 
m-I em-1 

13M-1 N 

where 

a
j 
 = 

r 
3,3 	j - 1,j - 1 

and 

r
3+1,3+1  

P 
J,J 

where j = 1,2,. .,M. 

By finding the eigenvalues and eigenvectors of the matrix J such 

that 

3 , 3 +1  - 	j - 1,3  

0 . . 

Jqi 



• 
• • 
• 
• 
• 
• 
• 
• • • 
• I 
• • • • 

• • • 
• • 
• • • • • 
• • • • • 
• • • • • • • • • • 
• • , • ' • • • • 

the nodes and weights needed by the Gaussian Quadrature Rule can be 

obtained since 
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• where qu  is the first component of the ith eigenvector. 

Therefore, the Gaussian Quadrature Rule can be rewritten as 
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APPENDIX C 

• SIMULATION OF THE PERFORMANCE OF THE OPTIMUM NONCOHERENT RECEIVER • 
• 
or 
te 	C.1 PROBLEM DESCRIPTION 

11 
11 
• While this appendix will concentrate on the simulation for the 

41 

• performance of the optimum noncoherent receiver, it should be noted that 

the simulation of that for the coherent optimum receiver was conducted 
11 

• in a similar manner. 
01 
• In Chapter 3, the sufficient statistic of the optimum noncoherent 

00 
receiver was found to be to 

• 
 to • 11 1 	2 > 	d/2 

•
ï = m I 

o 
 (q ) < Ne  

• H
o 

41 

• 
where 

11 

11 

11 

11 q2 ... L 2 4. L 
2 

ci 	si 

• 
• 
• and 
• 
• 
• tT• 
• L 

	

	j r(t) cos w t dt, si o 
11 
• L 	STr(t) sin w t dt. si 	o 
• 
10 

• I
o
(x) is the zero-order modified Bessel function of the first kind, n  is 

1111 

• the decision threshold, N is the number of frequencies being used by the 
11 

11 
11 	
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• • • 
transmitter, and d2 

is the SNR, and r(t) is the received signal. 	•  • 

	

The receiver makes its decision by calculating the sufficient 	• 
• 

statistic, L, and comparing it to the threshold. 	Therefore, the • 
probability of false alarm,  P1 ,  can be found by assuming that no signal 	• 

• 
has been sent and counting the number of times that ,f exceeds the 	• 

• 
threshold. P can then be obtained by dividing through by the number of • 

• samples taken. In the same manner, the probability of detection, P , • D  
can be found, where instead it is assumed that a signal has been 	• 
received. 	 • 

• 
• 

C.2 ALGORITHM • • 
As indicated above, the algorithm to calculate P is nearly • 

identical to that used to calculate P . Therefore, the algorithms for 	• 
D • 

both will be described simultaneously, with any differences being noted. 	• 
• L and L are both normal random variables of variance d2 . For 

si ci 	 • 
ge PD 	si ' one of the L 's has a mean of d2

cos 0 while the corresponding Lsi 
has a mean of d

2 
sin O.  For the other N-1 q 's, L and L will have 

ci 	si 

zero means. For P , all the random variables have nonzero means. • 
• Looking again at P D '  for the variables with the nonzero means, • 

since 0 is a uniform random variable between [0,2w], a random number 	• 
• 

generator is used to choose a value of O.  The means of L and L are 	• si 	si 
then calculated and the Gaussian random number generator is called 

• 
• 

twice, each time with the appropriate mean value. 	 • 
• 

To generate L 	and Lsi corresponding to the other q 's, the 	• si 
• 

Gaussian random number generator is again called twice but now each time • 
with a zero mean. To find  q,  Lsi and L are squared separately and 	• si • 

é 
• 
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the squares added together. qi  is then obtained by taking the square 

root of the sum. Finally, the modified zero-order Bessel function of 

the first kind is taken of qi , to give Li . This is repeated N times and 

the N 's are summed together to give the sufficient statistic. 

Next, since there is no easy method of determining the threshold 

that will give the desired Pp , a set of one hundred threshold are stored 

in an array, and another array of length one hundred is used to count 

the number of times each 'threshold is exceeded by the sufficient 

statistic under each hypothesis. Note that the simulations for each 

hypothesis were run separately. 

The goal was to obtain a good estimate of the receiver performance 

when P = 10-3 . Therefore, this would require at least one hundred 

thousand samples in order to count ten false alarms in the relative 

frequency estimate of P 	However, to obtain P accurate to two 
D 

significant figures for values as small as 10-3 , it was necessary to 

take one million samples. 
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