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ABSTRACT 

In this final report, comprehensive results on hopped spread spectrum transmission that 

employs band-efficient modulations that are coherent during each hop, are presented. A broad 

range of system considerations are presented, including: signaling spectrum, optimum receivers, 

system complexity, and performance in the presence of noise and jamming. The particular cases 

where the hopped modulation is minimum-shift keying (MSK), duobinary minimum-shift key-

ing (DMSK), or tamed-FM (TFM) are considered in detail. As well, results are presented for 

various modulation indices, rectangular and raised-cosine pulse shapings, and a range of hop 

interval lengths. 

Various maximum likelihood receivers are presented. These receivers are complicated 

and so simplifications to achieve more practical sequence estimation algorithms are carried out. 

The algorithm which carries out a sequence estimation over each hop appears most promising. 

Its performance has been evaluated in Gaussian noise, partial band jamming and multiple-tone 

jamming, using bounds and a simulation of the system. In general, the compact nature of the 

signal spectrum prior to hopping, appears to offer dramatically improved performance in 

multiple-tone jamming. 
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Chapter One 

INTRODUCTION 

There is currently a high interest in military satellite communications (MILSATCOM) 

that is immune to electronic countermeasures. Spread spectrum communications, with its 

inherent interference rejection capability, has over the years become an increasingly popular 

military antijamming tactical communications technique. Although the current applications for 

spread spectrum are primarily for military communications, there is a growing interest in the 

use of this technique for mobile radio networks (radio telephony, packet radio and amateur 

radio). Other applications include collision avoidance, range measurement and position finding 

[1,2]. 

Spread spectrum signaling is a means of transmission in which the signal occupies a 

bandwidth in excess of the minimum necessary to send the information. The bandwidth 

spreading is accomplished by means of a code which is independent of the data. At the receiver 

the same code is used for despreading and subsequent data recovery [2]. Two commonly used 

techniques for spreading the spectrum are direct sequence modulation and frequency hopping 

[1-5]. Direct sequence modulation causes rapid phase transitions in the information carrying 

signal by modulating the signal directly with a pseudorandom code sequence whose bit rate is 

much higher than the information signal bandwidth. The spread bandwidth is directly deter-

mined by the clock rate of the pseudorandom sequence. Frequency hopping changes the 

transmitter carrier frequency periodically with a pseudorandom hopping pattern controlled by 

a pseudorandom sequence [1-5]. This spreads the spectrum sequentially rather than instan-

taneously. The bandwidth occupied by the frequency-hopped signal during a hop interval de-

pends on both the hopping rate and symbol rate. The spread spectrum system bandwidth is 



equal to the frequency excursion from the lowest available frequency-hopped band to the 

highest available frequency-hopped band. With the spectrum of the signal spread over a wide 

bandwidth, a jammer with a fixed finite power is forced to spread his resources thus making 

jamming more difficult and less effective. 

The performance improvement that is achieved through the use of spread spectrum 

signaling is defined as the processing gain of the spread spectrum system. Processing gain is 

given by the ratio of the spread spectrum system bandwidth to the information bandwidth [1-6]. 

The greater the spread bandwidth, the greater the processing gain. For a direct sequence sys-

tem, the spread bandwidth is limited to the clock rate of the pseudorandom sequence, which is 

limited by the achievable speed of the digital circuitry. It also requires phase coherence over 

the spread bandwidth. Frequency-hopped systems have no such restrictions. Large spread 

bandwidths can be more easily achieved by frequency hopping than by direct sequence modu-

lation. Thus, provided that a sufficient bandwidth can be allocated such as in the Extremely 

High Frequency (EHF) band which is defined as the frequency band from 30 GHz to 300 GHz, 

frequency hopping can achieve much higher processing gain than direct sequence modulation 

techniques. Since the spread bandwidth need not be contiguous in a frequency-hopped system, 

frequency bands which are unusually noisy, are jammed, or exhibit severe fading can be hopped 

around. Frequency hopping also has an inherently shorter acquisition time in a serial search 

acquisition system, due to the fewer code states required to be tested than in direct sequence 

modulation with the same processing gain [5]. Judging from the above mentioned advantages, 

frequency hopping is hence the preferred spread spectrum technique over direct sequence 

modulation technique when the information signal is to be spread over the wide bandwidths 

available at the EHF band in MILSATCOM. 
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1.1 Frequency-Hopped Spread Spectrum Systems 

In a frequency-hopped spread spectrum system, the transmitter carrier freqUency is 

usually chosen from a set of 2 k frequencies which are spaced approximately the width of the 

data modulation spectrum apart. The hopping pattern of the carrier frequency is commonly 

controlled by a pseudoranc-lom sequence or other encrypted sequence. In the receiver, the re-

ceived signal is down-converted (dehopped) by a frequency synthesizer controlled by the same 

pseudorandom sequence which has been synchronized with the transmitter [3]. A block diagram 

of a frequency-hopped spread spectrum system is shown in Fig. 1.1. 

The fact that frequency hopping spreads the spectrum sequentially rather than instan-

taneously leads to consideration of the rate at which the hops occur. The processing gain 

actually realized can be significantly less, depending on the jammer's ability to negate the effect 

of the frequency hopping. The faster the frequency hopping, the more the vulnerability to 

jamming by sophisticated jammers is reduced. Some sophisticated jammers, such as the 

repeat-back jammer which is also called the follower jammer, measure the operating signal fre-

quency and tune the interference to that portion of the band. The difficulty of implementing 

such a jammer increases as the hopping rate increases. To achieve a desired bit error rate, the 

minimum frequency hopping rate is determined by a number of parameters such as the infor-

mation rate, the amount of redundancy used, if any, and the distance to the nearest potential 

interferer [1 ].  Clearly, a repeat-back jammer's influence will be entirely eliminated if the carrier 

frequency hops to another new frequency before the jamming signal arrives, that is, if the 

hopping rate is the inverse of the difference in arrival time between the communication and 

jamming signals at the receiver. 

Generally, hopping the carrier frequency several times during a bit interval, so-called fast 

frequency hopping [4], is applied to defeat the sophisticated jammers like the repeat-back 
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jammer. When fast frequency hopping is useci, some frequency diversity gain is seen (the same 

data is transmitted several times using different frequencies). This is particularly beneficial in 

a partial band jamming environment [3, p.354]. However, for a given spread spectrum band-

width, the processing gain does not increase as the hopping rate increases. (How fast one hops 

between channels does not increase the number of available channels and, therefore, processing 

gain does not increase as the hopping rate increases.) The processing gain actually will decrease 

because of a reduction in the number of independent frequency-hopped bands within a given 

spread spectrum bandwidth due to the increase in the bandwidth of the frequency-hopped signal 

in any particular hop interval when faster hopping is employed. 

For less critical antijam applications, slow frequency hopping [4], in which the carrier 

frequency remains constant for a time period far in excess of the propagation time may be 

employed. This usually allows many data bits to be transmitted at each frequency and the re-

sulting transmitter and receiver equipment is simpler and less expensive than that for a faster 

frequency hopping. The point is higher data rate transmission can be achieved. Slow frequency 

hopping can also be used to interleave many frequency multiplexed channels within the same 

spread bandwidth for a multiple-user system. The multiple-access system will make it difficult 

for the jammer to identify a specific target signal [4]. 

Because of the difficulty of building truly coherent frequency synthesizers for spreading 

and despreading the desired information, that will hop quickly over a wide band, most 

frequency-hopped spread spectrum systems use noncoherent modulation schemes. Frequency-

hopped noncoherent M-ary frequency shift keying (FH/NCMFSK) is the most widely used fre-

quency hopping scheme. Its performance over channels of different characteristics and in 

various types of jamming environments has been studied extensively [1-13]. The degradation 

in the performance of FH/NCMFSK due to the effect of various imperfections in imple-

mentation such as frequency offset and phase jitter has also been studied [12,13]. The effect 
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of varying the processing gain of a FI-iiNCIvIFSK system using nonorthogonal tones under the 

constraint of fixed total spread spectrum bandwidth in the presence of partial-band noise jam-

ming and partial-band tone jamming has also been studied [6]. 

Another popular frequency-hopped spread spectrum system reported in the literature is 

frequency-hopped differential phase shift keying (FH/DPSK) [14-16]. However, very often the 

system is assumed to be coherent, such that the carrier phase remains continuous when the 

frequency is changed. At high implementation frequency such as at the EHF band, coherent 

phase between hops is difficult to achieve. In fact, Lee and Miller state that frequency-hopped 

systems employing DPSK modulation and differentially coherent detection are not commonly 

employed in practice [15]. 

Several slow frequency-hopped spread spectrum schemes, including binary phase shift 

keying (BPSK), quadrature phase shift keying (QPSK) and M-ary orthogonal signaling under 

partial-band noise jamming and partial-band tone jamming have been considered in [8] where 

a slow frequency-hopped system model is adopted with coherent dehopping and demodulation. 

Slow frequency-hopped MFSK in simultaneous partial-band and repeat-back jamming has also 

been studied in [9]. Due to the vulnerability of slow frequency hopping to a repeat-back 

jammer, other measures such as coding, diversity and interleaving for improved antijam capa-

bility have been introduced [8,9]. A multiple-access system using slow frequency-hopped FSK 

has been considered and bounds and approximations are obtained for the average error proba-

bilities over nonselective fading and wide-sense-stationary uncorrelated-scattering fading chan-

nels [11]. 

Consider a frequency-hopped spread spectrum system that is required to handle high 

speed data. Thus although on an absolute scale the frequency hopping may be fast, relative to 

the data rate we can have a slow frequency hopping situation, that is, many or at least several 
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bits of data are transmitted per chip or hop interval. Due to the wideband nature of the high 

speed data, a bandwidth efficient modulation scheme is highly desirable in order to enhance the 

electronic counter-countermeasure performance and to allow more users. When several bits aré 

to be transmitted over a hop interval, a bandwidth efficient continuous phase modulation 

scheme can be used rather than simple noncoherent M-ary FSK. Recent studies have shown 

that continuous phase modulation (CPM) [17] schemes are band-efficient and are also power 

efficient when detected coherently. Correlative encoding [18], also termed partial response 

signaling (PRS) [19], can be used for spectral shaping and to gain spectral efficiency. Further-

more, baseband pulse shaping can be used to obtain more compact spectra as well. 

The use of binary CPM schemes in a direct sequence spread spectrum system has been 

studied [20]. In this system, during a symbol interval the transmitter transmits one of the two 

different CPM waveforms generated from two different chip sequences corresponding to + 1 

and -1 depending on the transmitted data. The use of CPM in a direct sequence spread spec-

trum system is to concentrate the power in a given spread bandwidth and to control the level 

of energy contained in the spectral sidelobes. 

The reason for proposing the use of band-efficient CPM schemes for transmitting a 

number of symbols per hop in a frequency-hopped system [21-24] is to obtain a more compact 

frequency-hopped signal bandwidth such that more frequency-hopped bands are available in a 

given spread bandwidth, to increase processing gain and to allow more users in a multiple-access 

communication system. Also, it should be noted that the slow frequency hopping situation 

under consideration here may arise as a result of a high data rate rather than a particularly slow 

absolute hopping rate. The system may have a hop time shorter than the sum of the processing 

time of the jammer plus the difference in arrival time between the communication and jamming 

signals, as in a fast frequency hopping system. Hence the usual disadvantage of slow frequency 

hopping such as vulnerability to a sophisticated jammer may not apply. 
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Even if slow frequency hopping in the usual sense is considered, the system can be useful 

either against simple jammers, or in conjunction with frequency division multiplexing of many 

signals in the wide spread spectrum system bandwidth to provide multiple-access commu-

nications. In many cases, these features, along with the lower relative cost compared with fast 

frequency hopping, may make this slow frequency hopping technique attractive. 

1.2 Outline of the Report 

The bandwidth occupied by the frequency-hopped spread spectrum signal is of prime 

importance as  it  relates directly to the processing gain, hence the degree of antijam protection 

achievable, and the number of possible users. Thus the power spectral density of the 

frequency-hopped spread spectrum signal will be evaluated in Chapter Two. The baseband 

autocorrelation function of the frequency-hopped spread spectrum signal is first derived. The 

power density spectrum is then easily obtained via a Fast Fourier Transform of the 

autocorrelation function. Results are presented for rectangular as well as raised cosine pulse 

shaping for various partial response encoding polynomials and different lengths of hop interval. 

In Chapter Three, noncoherent receivers for demodulating the frequency-hopped signal 

will be presented. A hop-by-hop maximum likelihood noncoherent receiver is first derived. 

This receiver, which is optimum over each hop interval, is impractical when the hop length is 

long, that is when a large number of bits are transmitted during each hop interval. And so a 

sequential decoding algorithm aiming to achieve the performance of a maximum likelihood se-

quence estimation (MLSE) algorithni is presented together with the receiver structure. A ML 

noncoherent receiver, which detects the transmitted sequence with maximum likelihood over 

the entire transmission period spanning frequency hops, is also derived. A sequential decoding 

algorithm with metric computation spanning hops is then presented together with possible de-

coding algorithm simplification. A suboptimum simplified noncoherent receiver, which treats 
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the symbol intervals in a hop as if they were noncoherent and neglects the phase states of the 

frequency-hopped CPM signal cluring . a hop, is presented. The receiver structure and decoding 

algorithm for this simplified receiver will also be given. 

In Chapter Four, performance of the hop-by-hop sequence estimation receiver will be 

evaluated first in an additive white Gaussian noise (AWGN) environment. An upper bound on 

the bit error rate of the receiver under AWGN will be evaluated based on the union bound 

approach, with some approximations necessary for cases when the length of the hop interval is 

long. The bit error probability bounds for various correlative encoding schemes and different 

baseband pulse shaping will be presented for different lengths of hop interval. The receiver 

performance when a known symbol segment is transmitted at the beginning of each hop, for the 

purpose of synchronization and to improve the error performance, is also evaluated. Since 

ultimately the spread spectrum system is more likely to operate under intentional interference, 

the performance of the receiver in the presence of partial band noise jamming and multiple-tone 

jamming is also evaluated. 

In Chapter Five, a computer simulation stuc-ly of the hop-by-hop sequence estimation 

receiver will be presented in order to obtain a more precise error performance evaluation and 

to indicate the accuracy of the bounds evaluated in Chapter Four. Only frequency-hopped 

minimum shift keying (MSK) and differentially precoded duobinary MSK with rectangular 

pulse shaping are simulated for various hop lengths. Simulation results are compared with the 

corresponding error bounds evaluated in Chapter Four. 

Finally in Chapter Six, conclusions are drawn and a summary of the report is given. 
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Chapter Two 

SPECTRAL ANALYSIS 

The spectral density function, or power spectrum, of a digitally modulated signal is an 

important characteristic, since it defines the distribution of average signal power as a function 

of frequency. Estimates of bandwidth occupancy, interference to or from adjacent channels, 

and relative comparisons of different modulation techniques all exemplify situations where a 

knowledge of the power spectrum is imperative. By calculating the power spectrum of the sig-

nal, all relevant information concerning the bandwidth efficiency can be obtained. 

There are a large number of possible approaches for obtaining the power spectra of 

digital frequency modulated signals. In the direct approach by Anderson and Salz [25], the 

Fourier transform of the signal over the time interval from 0 to NT is first calculated. The 

power spectrum is then obtained by calculating the expected value of the square of the Fourier 

transforrn divided by the time duration NT, as N goes to infinity. Another approach is the 

Rowe-Prahbu method [26-28] which is a matrix method for which each possible modulator 

waveform is assigned to one of the dimensions of an N dimensional signal vector. The Fourier 

transform of this signal vector is then taken and multipled with other matrices and vectors to 

yield the power spectral density of the signal. An asymptotic expression for the power density 

spectrum at frequencies away from the center frequency can be obtained using the approach 

due to Baker [29]. Another approach due to Garrison [30] approximates the modulating pulses 

by a quantized staircase function and the resulting spectrum is computed. Note that while the 

power spectrum so obtained is an approximation for implementations using analog premodu-

lation filters, it will be the power spectrum  of the actual signal if the implementation uses DIA 

convertors to obtain the modulating pulses. An easy way to calculate the power spectra for 
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Ô  • 
• digital FM is the so-called autocorrelation function method [27,31,32], in which the 

• autocorrelation function of the signal is first calculated. The power spectrum is then Obtained 

• via a Fourier transform on the autocorrelation function, usually calculated numerically. Com- 
• 
• puter simulation can also be used to estimate the power spectra. 

• 

• Although the spectral properties of CPM schemes are well understood and had been • 
• calculated extensively [17,27,28,31,32], the spectral characteristics of FH/CPM have not been 

presented. In this Chapter the power spectral density of the slow frequency-hopped CPM • 
spread spectrum signal will be derived using the autocorrelation function method, which is 

• 
• conceptually simple and straightforward to carry out. The model of the spread spectrum signal • 
• will first be presented. • 
• 2.1 Signal Model • • 

	

, • 	The frequency-hopped spread spectrum signal considered in this report, is basically a 

continuous phase modulation signal but with a random phase jump every N transmitted symbols • 
• or every NT seconds. During any one hop interval, the modulation is assumed to be coherent 
• 
• frequency modulation, with correlative, or partial response encoding and shaping of the modu- 
• 
• lating pulses permissible. 	The information to be transmitted as denoted by 

• 
• a =( 	— 2 , a _ 1 , al:) , a 1 , 	) is a sequence of uncorrelated input data symbols. For 

• 
an 	M-ary 	scheme, 	each 	data 	symbol 	can 	take 	any 	of 	the 	values • 

•
ai  = ± 1, ± 3, 	, ± (M — 1) with equal probability 1/M. The frequency-hopped correlatiye 

• encoded CPM signal can be represented by 

1111 

s(t) = 2E 	E p(t — iNT) cos[2rf i  t + 0(t, (Le) + O i  ], 	 (2.1) ee 

• 
• • 
• 



(2.2) 
elsewhere, 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

et 
• 
• 
• 
• 
• 
• 
• 
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where E is the symbol energy, T is the symbol time, N is the number of symbols in a hop 

interval, p(t) is a unit amplitude rectangular pulse of length NT given by 

0 < t < NT 
p(t) = 

0 

fi  is the carrier frequency during the i th  hop, O i  is the random unknown initial phase at the 

beginning of the i th  hop, and the O i  's are assumed to be independent random variables 

uniformly distributed from 0 to 2/r. 	(t,  a) is the information carrying phase function given 

by 

CO 

1P(t, cx) = 2/rh E an  q(t - nT), 	 (2.3) 

where h is the modulation index, q(t) is the phase response given by 

q(t) = f 	g(r) dr. 
-co 

g(t) is called the frequency pulse. Normally it is a positive smooth pulse shape over a finite time 

interval 0 < t <  ET and zero elsewhere. Thus L is the length of the frequency pulse in units 

of the symbol time T. The shape of g(t) determines the smoothness of the transmitted infor-

mation carrying phase and influences the power density spectrum of the signal. In general, the 

smoother the resultant phase path of the signal for a given modulation index, the more compact 

is the spectrum. Correlative encoding or partial response signaling is one technique for gener-

ating a smoother phase path. A correlative encoder is characterized by its partial response sys-

tem (PRS) polynomial [18,19] 

(2.4) 



• -13- 

• 

1 F(D) = — ( k0  + k I D + k,D2 + 	+ km Dm  ) 	 (2.5) 

•
• 

where D is Huffman's delay operator and the kis are the coefficients of the polynomial. For 

• 
•

convenience a normalization of the polynomial has been carried out with the normalization 

• 
constant C given by 

•
• 

c=  E I kt 	 (2.6) 
•

1=0 

•  
The effect of the correlative encoding is to create a new equivalent frequency pulse g(t) given 

by 
• 
• 
• 
• 
• g(t) = —1 E lc ;  b(t — iT), (2.7) 

i=0 
• 
• 
• where b(t) is the baseband pulse with a duration of one symbol interval. For a rectangular 
le 
• baseband pulse, b(t) is given by 

• 
0 <t < T 

• b(t) = f 2T 	 (2.8) 
• 0 	 elsewhere, 

• 
• 
• Spectral shaping can be accomplished by the choice of system polynomial F(D) and by 
• 
• using various baseband pulse shapes such as the raised cosine for which b(t) is given by 

• 
• 
• 1 

I COS 	 0 < t < T 
• b(t) = f 2T 	T 	 (2.9) 
• 0 	 elsewhere. 

• 
• 
• 
• 
•  



• • • • • 
The length of the frequency pulse g(t) is then  L m  + 1 symbol intervals. For the PRS 

polynomial F(D) and the amplitude of the baseband pulse b(t) specified above, the phase re- • 
sponse q(t) is normalized such that 	 • • 

q(LT) = —1 (2.10) 
2 • • • This means that for schemes with positive frequency pulses of finite length, the maximum • 

absolute phase change over any symbol interval is (M – 1)h ir. • • 
2.2 Spectral Analysis 

• 
Among the various methods mentioned at the beginning of this Chapter, the 

O  
autocorrelation function method [27,31,32], is straightforward and easy to to use. With this 

method the autocorrelation function is first calculated and then the Fourier transform is 

numerically calculated, yielding the power spectrum. 
• 

In order to determine the power spectrum of the frequency-hopped spread spectrum 

signal, it is sufficient to consider the normalized complex lowpass equivalent signal u(t, a) as 

given by • 
• 
9 

- 

u(t, ci) = E p(t – iNT) exp [ j O i  ] exp [ j tP(t, a) ]. 	 (2.11) i=-0. 
• 

The complex lowpass autocorrelation function is then given by • 
0 Ru  (t, t + r) = < E 0  u (t,)u(t + 	.C1) 	> 	 (2.12)  te 
0 

• 
• 
• 
• 



• 
• -15- 
e 
• 
• 

where the superscript  K  denotes the complex conjugate, < . > denotes the ensemble aver- 
• 

• age with respect to the information symbols and E 0  {.) denotes the expectation with respect to • 
• the random phase. Substituting Eq.(2.11) into Eq.(2.12), we have 

• 

•
co 

• R (t, t + r) =  <13e  { E p(t - iNT) exp [  -i  O i ] exp [  - j  zP(t, a)] 

• 00 
• E p(t + r - £NT) exp [ j 8 1] exp  [j (t  + r, ] } > 

• = - co 	 (2.13) 
00 	00 • =-- < E 0  { E E exp[ j (Ot  - 0 i ) ] p(t - iNT) p(t + r - £NT) 

• i—cot=-00 
• exp[ j ( 1/)(t + r, a_) - 	) 	>. 
• 

• Since the Os are statistically independent and uniformly distributed in [0, 2/r] 

• E 0  { exp[ j (0 1  -  O)]  } = 6 i, t . 	 (2.14) 
• 

• 
Hence, 

• 

• 
• Ru  (t,t + r) = E p(t - iNT) p(t + r - iNT) Rum (t, t r) 	 (2.15) 

•
i= -00 

• 
• where Rcpm(t, 	r) is used to denote the complex baseband autocorrelation function of the 
• 
• CPM signal without any frequency hopping and is given by 

9 
• Rcpm (t, t + r) = < exp[ j 	r, 	- 7,b(t, 	) ] 

•

> 
00 

= < exp[ j 2/rh E an  [q(t + r - nT) - q(t - nT)] ] >. 
(2.16) 

• 
 

• The sum in the exponent in Eq.(2.16) can be written as a product and averaged with respect 

• to the sequence a . Assuming that the M-ary data are independent and take on the values of 

• 
± 1, ± 3, ... , ± (M - 1) with equal probability 1 1M, we have • 

• 
• 
• 



= 	p(t) p(t + r) Rum (t, t + 7) dt. 
NT - 03  

It can be easily seen that 

1  

NT 	Rum(t ,  t 7) dt 	< r < NT 

rNT 

f 
 

NT 	KCPm(t ,  t r) dt 
- r 	

- NT  < r  < 0 

o 	 H I > NT.  

Ru  (r) = (2.19) 

Since Rum (t, t + r) as given by Eq.(2.17) is real, Ru  (r ) is then also real and therefore an 

even function of r. 

• 
• 
• 
• 
• 
• 
• 
• 
• 

.0 

• 
• 
• It can be easily observed from Eq.(2.17) that Rcp m (t,t + r) is periodic in t with a period of T. 
• 

However, Ru (t,t + r) as given by Eq.(2.15) is periodic in t with a period of NT. Since in prac- 	• 
• 

tice we do not have a precise time origin, we can assume that the origin is uniformly distributed 

over . [ 0, NT ]. The average autocorrelation is then given by 	 • 
• 
• 

NT 

—NT f . lb 
• (z.j  p t - iNT) p(t + T 	iNT) Rum (t, t + 7) dt  

• 
• 

• 
• 

• 
• 

• 
• 
• 

• 
• 
• 
• 
• 
• 
• 

Ru  ( r ) = Ru  ( - r ). 	 (2.20) 	• 
• 
• 

• 
• 

Ru  (r) = 	f 

 

-16- 

M/2 
Rcpm (t, t + r) = ri{_m Li  cos 27rh(2j-1)[q(t + r - nT) - q(t - nT)}}. 

j= 1 
(2.17) 

NT 
	(t, t + r) dt 

NT 0 



• • 
• -17- • 

• Hence, we need to consider only positive r. 	Let r 	aT + r' , where 0 	T and 

• 
a = 0, 1, 2, ... , N - 1. We have • • • 

• Ru  (r) = Ru ( aT + r' ) 
• 1 r (N - a)T -r' _ 
• NT J 0 	

Rcpm(t, t + aT + r') dt 

• 
 1 	r  (N-a- 1)T 	 (N - a)T -r' _ 

• NT 1 i 0 	RCPNI (t,t + aT + r') dt + f (N  _ a  _ oT Rcpm(t,t + aT + r') &J. 

• 
N-a-2 (k + 1T 	 (N - a)T -r' 

• ' 	 _ 1 f r  )
f 	Rcpm (t,t + aT + r') cit + f 	RCPM(t,t  N - 	

+ aT + 7') dt 1 
• NT t ifZio  kT 	 ( a - 1)T  

s 
e 
• (2.21) 

le 
, al 

•
Since Rcpm (t,t + r) as given by Eq.(2.16) is periodic in t with a period of T, integrating over 

s any interval of [ kT, (k + 1)T ] with respect to t will be the same as integrating over [ 0, T ]. 
IV 
• • Hence we have 

• 
• 
• Ru  (r) = R„( aT + r' ) 

• N - a - '2 T 	 T -r' 
NT • = 	E f Rcpm(ta 	 a + aT + r') dt} 

0 	 0 k = 0 
• 

T 	
T - r' • - 	(N - a - 1) fRCPivi(t,t + aT + r') dt + f 	Rcpm (t, t + aT + r') clt 

NT 	 0 	 0 • • _ N - a - 1  fT 	 1 Rcpm (t,t + aT + r') clt + 	1.  — 1.-7' Rcp m (t, t + aT + r') dt ; 
NT 	o 	 NT O 

• 
• r = r' + aT , 

• 0 	< T , 	 (2.22) 
• 
• a = 0, 1, 2, ... , N - 1, • 
• where Rcpm (t,t + aT + r') consists of an infinite product of terms as rewritten below by 

• 
• substituting r = aT + r' into Eq.(2.17) 

• 
• 
• 



• I ' 
• • • • 
• • 
• 

co 	 • M/2 
Rcp m (t, t + aT + r') = 1-1{ 2 	cos 27rh(2j-1)[q(t + r' – (n-a)T) – q(t-nT)]). (2.23) 

M . 1= 1  

• 

	

The number of terms in the infinite product in the above equation can be reduced, since the 	 • 
• 

frequency pulse is of finite duration LT. From Eq.(2.4) it can be noted that 

41> 
q(t + 	- (n-a)T) = q(t – nT) = 0 	for t + r' – (n – a)T < 0 	 (2.24) • • 

and 	 • 
• 
• 

q(t + r' - (n-a)T) = q(t – nT) = q(LT) 	for t – nT > LT. 	 (2.25) 	• • • Hence for t + T'  (n – a)T < 0 and t – nT > LT the product terms will be equal to 
• 

	

unity and can be omitted from Eq.(2.23). Since only t e [0, T] need be considered for calcu- 	• 
• 

	

lating R u (r) as is evident from Eq.(2.22) and also from the fact that Rcp m (t,t + r) is periodic 	 • 

in t with period T, the product terms in Eq.(2.23) will be unity for n k a + 2 and n 	- L. The • 
infinite product in Eq:(2.23) then reduces to • • 

Rcp m (t, t + r) = Rum(t, t + aT + r') 	 • 
a+ I 

 M/2 =11
—L 

,-E  cos 27rh(2j-1)[q(t + r' – (n-a)T) – q(t-nT)] }. 
• 

2 	 (2.26) 
• 
• 

i = 1 
rr=1  • • 

The power spectral density of the dehopped signal is then given by 	 • 

Ss ( f)  = —E { Su ( f + fc  ) + Su ( – f – fc  ) ) 	 (2.27) 2T 

• 
where fc  is the intermediate carrier frequency and Su ( f)  is the power spectrum of the equiv- 

alent lowpass signal u(t, a) defined as 	 • • • • • 

-18- 



• 

• -19- 
• 
• 
• 

• 00 
• S(f) f ) = f 	Ru (r) 	2ef 	 (2.28) 
• -00 
• 
• 

Since Ru (r) is real and even and Ru (r) = 0 for Ir > NT , from Eqs.(2.19) and (2.20), we • 
• have 
• 
• 
• 
• S u ( f ) = 21

NT 
 Ru (r) cos 27rf r  di 	 (2.29) 

• 0 
• • where Ru (r) is given by Eq.(2.22). The dehopped signal spectrum can then be calculated by 
• 

using Eqs.(2.29),(2.22) and (2.27). Numerical integration is performed according to Eq.(2.22) 
• 
• for calculating the autocorrelation function, which is then numerically Fourier transformed to 

•
obtain the spectrum. 

• 
• 
• 2.3 Results 

• 
• The power density spectra of the dehopped signals with various partial response en- 

• codings together with different baseband pulse shapings have been calculated. The unspread 
• 
• power density spectra for frequency-hopped MSK for different lengths of hop interval are 

• shown in Fig. 2.1. As the length of the hop interval increases, the dehopped power density 
• 
• spectrum becomes more compact and approaches that of coherent MSK without frequency 
• 
• hopping. The dehopped spectrum of frequency-hopped MSK is almost identical to the spec- 

trum of coherent MSK for hop intervals of length greater than 2048 T. 

9 
• 
• With a modulation index of 0,7 and no correlative encoding, the spectrum of hopped 

• CPFSK is as shown in Fig. 2.2. If a comparison is made with the spectrum of MSK which has 
• 
• a modulation index of 0.5, we see that a change in the modulation index from 0.5 to 0.7 changes 

• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
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the shape of the spectrum quite significantly especially for short hop intervals. There are large 

side lobes when the length of the hop interval is equal to the transmitted symbol interval T. 

To see the effect of correlative encoding on the signal spectrum, the spectra for 

duobinary MSK are shown in Fig. 2.3. Again the bandwidth occupied by the frequency-hopped 

signal reduces as the length of the hop interval increases, and the spectrum approaches that of 

coherent duobinary MSK as the length of the hop interval becomes large. If the spectra  are 

 compared with MSK without correlative encoding, we notice that correlative encoding does not 

give much bandwidth reduction for short hop intervals. With long hop intervals it does. For the 

same duobinary polynomial (1 + D)/2, but a higher modulation index of 0.7, the spectra for the 

different hop lengths are as shown in Fig. 2.4. The signal bandwidth increases with an increase 

in modulation index when the length of the hop interval is large. To see if a higher order en-

coding polynomial would give a further improvement in the spectral characteristic, spectra for 

the Tamed FM (TFIvI) polynomial, which for coherent signaling is known to be an attractive 

second order PRS polynomial, were calculated as shown in Fig. 2.5. A comparison of Fig. 2.5 

and Fig. 2.1, shows that even for a higher order polynomial the reduction in bandwidth is in-

significant at short hop intervals. However, for long hop intervals the higher order PRS 

polynomial yields a spectrum of even greater compactness with very low sidelobes. 

To illustrate the effects of baseband pulse shaping on the spectra, the spectra for raised 

cosine pulse shaping with various encoding polynomials are as shown in Figs. 2.7 to 2.10. For 

lOng hop lengths the spectra of the signals with raised cosine shaping are more compact than 

their rectangularly shaped counterparts. 

A spectral occupancy comparison of the frequency-hopped signals with different modu-

lation indices, partial response ericodings, pulse shapings and lengths of hop interval is made 

by calculating the 99 percent power bandwidth of the frequency-hopped signals. The 99 percent 
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• 
• 
• 
• power bandwidths of the various frequency-hopped signals with rectangular pulse shaping and 

• raised cosine pulse shaping are tabulated in Table 1 and Table 2 respectively for different • 
• lengths of hop interval. We can see that the 99 percent power bandwidth of the FH/CP1v1 signal 
• 
• decreases with the increase in the length of hop interval. In general, with a hop length greater 

• 
than 1024 symbol intervals, the 99 percent power bandwidth of the FH/CPM signal is the same • 

• as that for the CPM signal with no frequency hopping. Comparing entries in Table 1 with those 

•
• 

in Table 2, it can be seen that the 99 percent power bandwidth of the FH/CPM signal with 

• 
•

rectangular pulse shaping is smaller than the corresponding 99 percent power bandwidth of the 

• same modulation scheme but with raised cosine pulse shaping. However, it should be noted that • 
• while the 99 percent power bandwidth is smaller for rectangular pulse shaping, the same 

• 
• modulation scheme but with raised cosine pulse shaping actually has a more compact spectral 

• mainlobe and lower sidelobes as shown previously. 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • • • • 
• 

• 
• 

• 
• • 
• 
• 
• 
• 
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99% bandwidth in 1 1T 

F(D) = 1 	 F(D) = (1 + D)/2 	F(D)= (1 + 2D + D 2 )/4 

N 	 h = 0.5 	h = 0.7 	h = 0.5 	h = 0.7 	h = 0.5 	h = 0.7 

1 	 18.844 	18.688 	18.891 	18.859 	18.891 	18.875 

9.9375 	9.9688 	9.9375 	9.9688 	9.9375 	9.9531 

4 	5.1875 	5.2656 ' 	5.0938 	5.1250 	5.0781 	5.1094 

16 	1.8906 	2.1250 	1.5938 	1.8125 	1.4688 	1.6250 

64 	1.2813 	1.8750 	0.9688 	1.3750 	0.8438 	1.0156 

256 	1.2031 	1.8125 	0.8906 	1.2969 	0.7813 	0.9844 

1024 	1.1875 	1.7969 	0.8750 	1.2813 	0.7813 	0.9688 

No Hopping 	1.1875 	1.7813 	0.8750 	1.2813 	0.7656 	0.9688 

Table 1 	99 % power bandwidth comparison between different modulation 
schemes for rectangular pulse shaping 



99% bandwidth in 11T 

F(D) = (1 + D)/2 	 F(D) = (1 + 2D + D 2 )/4 

N 	 h = 0.5 	h = 0.7 	h = 0.5 	h = 0.7 

1 	 18.875 	18.844 	18.891 	18.859 

2 	 9.9375 	9.9531 	9.9219 	9.9375 

4 	 5.0625 	5.0781 	5.0469 	5.0625 

16 	 2.2813 	2.6719 	2.1875 	2.5313 

64 	 1.7500 	2.5156 	1.6250 	2.3438 

256 	1.6250 	2.4688 	1.5156 	2.2656 

1024 	1.6094 	2.4531 	1.4844 	2.2344 

4096 	1.5938 	2.4531 	1.4844 	2.2344 

16384 	1.5938 	2.4531 	1.4844 	2.2344 

65536 	1.5938 	2.4531 	1.4844 	2.2344 

262144 	1.5938 	2.4531 	1.4844 	2.2344 

No Hopping 	1.5938 	2.4531 	1.4844 	2.2344 

Table 2 	99 % power bandwidth comparison between different modulation 

schemes for raised cosine pulse shaping 
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2.4 Summary 

In this chapter, a model of the frequency-hopped CPM signal is presented. The baseband 

autocorrelation function of the FH/CPM signal is derived for arbitraiy pulse shaping, modu-

lation index, number of levels of the data and length of hop interval. Spectra of the spread 

spectrum signals with various correlative encoding schemes and baseband pulse shapes are 

evaluated and examined for various lengths of hop interval. 

From these results we conclude that the spectrum becomes more compact as the hop 

interval lengthens and in general approaches that of the CPM signal without hopping. An in-

crease in the modulation index will increase the bandwidth occupied by the signal for long hop 

lengths. For short hop lengths the increase in bandwidth due to an increase in modulation index 

is not significant. Although it is well known that correlative encoding and raised cosine 

baseband pulse shaping reduce the signal bandwidth and sidelobe level for conventional 

continuous phase modulation, for frequency-hopped signals with short hop interval lengths 

these techniques do not yield much reduction in bandwidth. Substantial spectral improvement 

with these methods can be achieved at the longer hop intervals. 
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Chapter Three 

NONCOHERENT RECEIVER 

As shown in the previous chapter, FH/CPIvI has attractive spectral mainlobe compactness 

and low sidelobes when a number of symbols are transmitted using CPM schemes during a hop 

interval. This spectral compactness is highly desirable for providing higher processing gain for 

possible increased antijam protection. 

In this chapter, reception of the FH/CPM signal is considered. Due to the unknown 

random phase of the received carrier as the carrier hops from one frequency to another, a form 

of noncoherent demodulation has to be used. To make use of the continuous phase and the 

partial response memory of the signal, the optimum observation interval for deciding on a 

specific data symbol should be longer than one symbol interval. 

The optimum symbol-by-symbol noncoherent detector for the class of constant envelope 

modulated signals having a continuous phase, has been derived previously [33-37]. Osborne and 

Luntz [33] and also Schonhoff [34] have derived the maximum likelihood noncoherent receiver 

for CPFSK yielding symbol-by-symbol d'ecisions in the binary and general M-ary cases respec-

tively. For noncoherent detection, an odd number of symbols is observed and a decision is made 

on the middle symbol. Aulin and Sundberg [35] have generalized the detection algorithm to 

allow the detected symbol to be anywhere in an observation interval of arbitrary length rather 

than just in the middle of the observation interval and have included partially coherent de-

tection, where the unknown carrier phase is estimated by a tracking loop, which is assumed to 

have a tracking error density function. It has been shown that the optimum noncoherent 

detector should decide on the middle symbol lying in an observation interval consisting of an 
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odd number of symbols [35]. Noncoherent symbol-by-symbol detection of correlative encoded 

CPM is also reported in [36] and [37]. By using proper time delay and phase compensation 

networks, a much simpler noncoherent receiver than that in [33,34] has been devised by Pawula 

and Golden [38] for multiple symbol noncoherent demodulation of convolutionally coded 

CPFSK. The maximum likelihood demodulator is the same as that for ordinary noncoherent 

FSK but with additional circuitry following the integrators to remove the effects of the unknown 

phase of the local data tone oscillator. Additional time delay and phase weighting networks are 

required to form the maximum likelihood demodulator outputs of the noncoherent receiver 

with an observation interval of three symbols. 

Due to the noncoherent frequency hopping and dehopping processes, the dehopped sig-

nal will have signal phase discontinuities every NT seconds. Symbol-by-symbol detection of the 

middle symbol based on multiple symbol observation, mentioned above, cannot be directly ap-

plied for optimum detection of this piecewise phase continuous signal. It has been observed that 

the symbol decisions ought to be based on the entire received sequence [39]. However, the 

transmitted signal corresponding to the information sequence can be of very long duration and 

there could be very long decoding delays. Also, since the source is providing a new information 

digit every T seconds, there will be an exponential increase with time in the number of possible 

signals, making decision after complete observation formidable unless a dramatic receiver 

simplification occurs. It is clear that some sort of sequential decision process is needed. In this 

chapter, a noncoherent receiver with a sequential decoding algorithm will be derived first for 

optimum detection on a hop-by-hop basis and then for optimum decisions based on the entire 

transmission spanning hops. A simplified suboptimum sequence estimation receiver is also de-

rived by treating the signal as if every symbol interval is noncoherent, hence resulting in a 

simpler decoding algorithm and receiver structure. We shall first derive the maximum likeli-

hood noncoherent receiver, which is optimum on a hop-by-hop decision basis, with the obser-

vation interval being the hop interval. 
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3.1 Hop-By-Hop Maximum Likelihood Receiver 

We assume that the receiver mixes the received spread spectrum signal with a locally 

generated reference signal, which hops synchronously with the same pattern as that at the 

transmitter and produces a data modulated signal at some convenient intermediate carrier fre-

quency fc . The received dehopped waveform can be written as 

2E r(t) = V—
T 	

p(t - iNT) cos[27rfct + //)(t, a) + Oi] + n(t) 
i= -co 

where the symbols and notation are as defined and used pr'eviously in Chapter Two , fe  is the 

intermediate carrier frequency and n(t) is additive white Gaussian bandpass noise with zero 

mean and one-sided power spectral density of No  W/Hz which can be given by [3,36] 

n(t) = \/ 'n(t) cos 2irfet - VTns (t) sin 2irfc t. 	 (3.2) 

The baseband processes  n(t)  and  n(t)  are statistically independent, white and Gaussian with 

zero mean and one-sided power spectral density of No  W/Hz. 

During the i th hop, the received dehopped signal can be written as 

r(t) = V-2E cos[27rfc t + 	ci) + Oi] + n(t) 

for 	< t < (i + 1)NT. 

The random phase O i  is constant over the hop interval and is assumed to be uniformly distrib-

uted from 0 to 2 Ir. We shall adopt the notation developed in [33,34] for the dehopped trans-

mitted waveform in the i th  hop as s(t, a, Oi) defined below 

s(t,  a, Oi) = 2E cos[2rfc t + 0(t, a) + Oi ] 

for iNT < t < (i + 1)NT. 

(3.1) 

(3.3) 

(3.4) 



(3.6) 

(3.7a) 

(3.7b) 
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Without loss of generality, we may only consider the detection over the first hop from 

t = 0 to NT. Subsequent hops are detected in the same manner on a hop-by-hop basis. 

3.1.1 Likelihood Function 

The detector must find the sequence of data symbols a , which Maximizes the likelihood 

function [33,34,36] 

E0 xp[ 	
2E fNT 

0 	
T 	0  r(t) s(t, 	0 0)dt ] ) 

where E00 ( . ) denotes the mathematical expectation with respect to the random variable 0 0  . 

Since the random phase 61 0  is assumed to be uniformly distributed from 0 to 2 7r, the average 

over the random phase yields, as is well known [33,34,36], the zeroth-order modified Bessel 

function. The likelihood function is then given by 

2E 
t(a, 	= i„{ —L 	NA2 (01, q.1 ) 	£1W çt_'» 

N 	T 

where I0 ( . ) denotes the zeroth-order modified Bessel function, and 

t c (a_, 	= f
NT 

 r(t) cos[27rfct + 7(t,a")] dt 
0 

rNT 
ts(çe-, 	= 	r(t) sin[27rfct + /P(t, (.:11 )] dt. 

0 

For convenience, we shall refer to t c (a, a') and t s (a, ce') respectively, as the inphase and 

quadrature correlations over a hop interval. 

(3.5) 



• 
• 
• -39- • 
• 
• 
• Since the Bessel function lo { . ) is a monotone increasing function, an equivalent likeli- 
e 
•

hood function can simply be 

• 
• a, )  = 	a, ) 	42 (a,  d).  (3.8) 

• 
• 
• The maximum likelihood noncoherent receiver on a hop-by-hop decision basis would • 

correlate the received signal with the inphase and quadrature components of all possible trans- • 
• mitted waveforms in a hop interval. The equivalent likelihood is then formed as the sum of the 
• 
• squares of the inphase and quadrature correlations over the hop interval and the receiver will 

• 
• choose the sequence a' , which gives the largest equivalent likelihood. Unfortunately, the 

• 
number of possible transmitted signal waveforms for M-ary transmission in a hop interval of 

•
, • 

NT is M N, which is exponentially increasing with the length of the hop interval. This brute 

• force approach to decide on the most likely transmitted signal would be highly impractical 
• 
• considering the large number of correlators or matched filters required, particularly when the 

• 
•

length of the hop interval is long. 

• 
• 3.1.2 Sequential Decoding Algorithm 

• 
• 
• For coherent detection, the Viterbi Algorithm, which was originally proposed for de-
s  
• coding convolutional codes, has been used for estimating the maximum likelihood sequence by 

•
calculating the likelihood recursively [39-43]. Since the likelihood for hop-by-hop noncoherent 

• detection as given by Eq.(3.8) is the sum of the square of the inphase correlation and the square • 
• of the quadrature correlation, the metric calculation is not as straightforward as in the coherent • 
• case. 

• 
• 
• To derive a sequential decoding algorithm, we note that 1,(a , a') and Is (a , a') given by 

• Eq.(3.5) can be written as the sum of the partial likelihoods as 

• 

O  • 



. N— 1 

k = 0 

(3.9a) 
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N-1 

/s(g, g') = E 6s.k(cl, 
k =0 

(3.9b) 

where 6, ,k (a, a') and 6,:k (a, a') denote the partial in phase and quadrature correlations over the 

kth symbol interval as given by 

r( k+ 1)T 

8c.k(CL 	 r(t) cos[2/rfc t + 	(t,  a')] dt (3.10a) 

= 
 f

(k + 1)T 

kT 
r(t) sin[2efc t + 11(t, dt. (3.10b) 

These partial correlations can be formed by correlating the received signal with the in-

phase and quadrature components of the transmitted signal in the k th  symbol interval for an 

estimated sequence a'. 

The information carrying phase during the k t h  symbol interval can be written as 

k—L 

• 1,(t, a) = 27rh 	E an  q(t — nT) + 2/rh E anq(LT) 
n =k —L+ 1 	 n=0 

for kt < t < (k + 1)T. 

(3.11) 

The first term represents the contribution of inputs actively affecting the shape of the phase 

path during the k th  interval. The second term represents the underlying phase due to past in-

puts. 
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The output of a coi - relative  encoder can be regarded as the output of a linear finite state 

machine much as in the case of a convolutional encoder. For a given correlative encoder with 

PRS polynomial F(D) of degree m, the encoder state can be defined by the last m, or L-1 input 

digits. A correlative state vector can be defined as 

Ck 	[ ak -L+ 1 , 	-2, ak - 1 i• 

The second term in Eq.(3.11) represents the underlying phase due to past inputs, which can be 

called the phase state [41] 

k- L 
Ok = [ 2rh E anci(LT) ] mod  

n=0 
k -L 

[ 	E 	] mod 2 r• 
n =0 

For M-ary transmission, a n  can take on the values ± 1, ± 3, ... ,± (M - 1), hence the sum 

k - L 	 2r E an  can take on any integer values. For h = -_ with r and p relatively prime integers, 
n =0 

there are at most p possible distinct phase states  (O,  2rip, 4r/p, 	, 2e(p - 1)/p ). 

This does not mean that there are necessarily p phase states at any time kT. If we 

examine the difference between the phase states at alternate symbol intervals, we notice that 

k+2  -  k  = irh(ak-v)-1_ "4" cek+1 -L )• 	 (3.14) 

For M-ary transmission, ak  can take on the values { ± 1, ± 3, ... ,± (M -  1)),  hence 

(Ok +2 - Ok) e [ 0, ± 2rh, eleh, ,± 2(M - 1)eh ]. 	 (3.15) 

Hence if p is even, there will be only —
2 

phase states possible at the even symbol times and the 

other 
2 

— phase states at the odd symbol times, although there are a total of p possible phase 

(3.12) 

states. 
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à 
The combined state sk  = [Ck , (P k ] , that is, the correlative state vector and the phase 

state, together with the present input Œk  completely specify the transmitted signal waveform 

during the k th interval. For M-ary transmission there will then be M m different correlative 

states and p phase states for a total of 71 = pM m combined states at the most. The sequence 

estimation receiver must operate with as few states as possible. If p is even, then there are 

actually — Mm  states per interval in the Markov state description. And so, actually only a total 
2 

of ri = —
2 

M m states are required for the sequence estimation receiver for h = —2r with p even. 

Since the mapping of the input data sequence to the state sequence is one-to-one, estimation 

of the state sequence will give the corresponding estimated transmitted data sequence. 

A typical state trellis ( the trellis for duobinary MSK [42] ) showing the state transitions 

as a function of discrete time k is shown in Fig. 3.1. The trellis is drawn under the assumption 

that the initial state at time 0 is 1. All possible state transitions over 5 time units are shown. 

Each node corresponds to a state at a given time and the branches joining the states indicate 

state transitions to some new state at the next instant of time due to the input of an information 

bit. Dashed and solid lines correspond to state transitions for 1 and 0 input information bits, 

respectively. 

For coherent detection, the likelihood can be broken into a sum of partial log likelihoods 

(branch metrics). When a path is extended by one branch, the metric of the new path is the sum 

of the new branch metric and the old path metric. The path with the largest accumulated log 

likelihood (path metric) leading to a node will always belong to the maximum likelihood path 

through that node, hence other paths leading to that node can be discarded from further 

consideration. In the case of noncoherent detection, the equivalent likelihood as given by Eq. 

(3.8) cannot be broken up into a sum of branch metrics, hence a branch transition metric cannot 

be defined. In order to determine the the maximum likelihood sequence, the decoder has to 

calculate and accumulate the inphase and quadrature likelihoods for all possible paths through 



k = 0 	k = 1 	• k = 2 k = 3 	k = 4 k=5  

Figure 3.1 	A typical state trellis 
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the trellis in a hop interval, besicles retaining the path histories of all the possible paths. At the 

end of a hop interval, the equivalent likelihoods for each of the possible paths are formed by 

summing the squares of the inphase and quadrature likelihoods of the paths. The path history 

of the path with the maximum equivalent likelihood is then output as the maximum likelihood 

sequence over the hop interval. Only this brute force decoding approach is able to determine 

the maximum likelihood sequence. Unfortunately, the number of possible paths for an N 

symbol sequence is M N. Thus, this. brute force decoding approach quickly becomes impractical 

as N increases. However, the decoder may form thé equivalent likelihood up to kT by summing 

the squares of the inphase and quadrature likelihoods of the path accumulated up to time kT. 

The path leading to node sk  = j with the largest equivalent likelihood up to kT is the most likely 

path among the M paths leading to the node sk  = j, based on the observation interval from 0 

to kT. To reduce the memory and computations from that required for maximum likelihood 

decoding, at any time kT the decoder may maintain only one path, which has the largest 

equivalent likelihgod up to time kT, leading to each of the nodes sk  = j, j = 1, 2, ... , . Some 

performance has been sacrificed to achieve a reduction in complexity. 

The sequential decoding algorithm proceeds as follows. Starting from a known initial 

state so  = i , the decoder stores the inphase and quadrature likelihoods of the mode s 1  = j as 

IcA) = 6,(i J) 

(3.16b) 

for all the M allowable transitions from state i to state j. The path history of the path leading 

to state j is also stored. bc (i,j) and  6(i,j) are just the inphase and quadrature correlations over a 

symbol interval for the allowable transition from state i to state j corresponding to an estimated 

sequence a' as given by Eq. (3.10). They are formed from appropriate matched filter outputs 

with proper phase compensation weightings. 

(3.16a) 

8s(ij) 
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In general at time kT ( k 	2 ), the decoder computes for each node sk  = j 

j 	1, 2, ... ,77, the equivalent likelihood functions of the M different paths leading to sk  = j, i.e. 

t'k(J) = vc*. k _ i( i) 	sc om2 	v *,,k i(i) 

for all allowable state transitions i to j. The sequential decoder must eliminate some paths from 

further consideration in order to keep the computation and memory requirement feasible. At 

any time kT, the only decision parameter available to the decoder is the equivalent likelihood 

accumulated up to kT for each of the paths leading to each state in the trellis as given by Eq. 

(3.17). Without prior knowledge of which one is a portion of the maximum likelihood path 

over the hop interval, the decoder should preserve the path with the largest equivalent likeli-

hood accumulated up to kT leading to each node sk  = j, j = 1, 2, ... ,77 . Other M-1 paths 

ending at sk  = j are discarded in order to keep the decoding process feasible for long hop 

lengths. We shall call the path with the largest equivalent likelihood function terminating in the 

node sk =j the survivor of state j, since the other paths leading to state j are discarded by the 

decoder. Although the survivor at node sk  = j may not be a portion of the maximum likelihood 

path through the trellis in a hop interval, it is the most likely path leading to node sk  = j based 

on the equivalent likelihood up to time kT among the M contending paths leading to node 

Sk = j . 

Thus we define the metric of the survivor at sk  = j as 

max 

4 (J ) = 	[t_ 1 (i) 	6c(ij)12 	[2 k —1(i) 	6s0,012  

where j = 1, 2, ... ,  77  , k k 2 and V(i,j) denotes over all allowable transitions from state i to 

state j. 

(3.17) 

(3.18) 
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While 4(j) • is , defined as the metric of the node sk  = j at time k, the pair 

tc* .k (j) ,  ts*.k(i) ) are stored for node sk = j, as given by 

= ec,k —1(i) 	8c(ij) 	 (3.19a) 

ts.k 	= ts.k —1(i) 	 (3.19b) 

where i is the node index satisfying Eq.(3.18). The metric is computed sequentially from the old 

information { tà_ 1 (i), t s'ik _ 1(i) } and the partial correlations { bc(i,j), } in the k th 

interval according to Eq.(3.18). The sequential decoding algorithm now has to accumulate both 

the inphase and quadrature likelihood parameters rather than just the inphase likelihood 

parameter as in the coherent case. The path histories of the survivors terminating at each of 

the nodes sh  = j, j = 1, 2, ... ,77 are also stored. 

In principle the algorithm can make a final decision on the initial state sequence segment 

up to time (k-d)T when and only when all survivors at time kT have the same initial state se-

quence segment up to time (k-d)T. That is, all survivors branch out from a common node, say 

sk _d  = j. The initial segment of the estimated sequence is then uniquely determined independ-

ent of succeeding observation and a firm decision is available from the algorithm before the end 

of a hop. For this hop-by-hop sequence estimation algorithm, the survivor having the largest 

metric (equivalent likelihood) at time NT, that is at the end of a hop, is output as the estimated 

sequence. The decoding delay d for this hop-by-hop sequence estimation algorithm is at the 

most the length of a hop interval. 



(3.20) 

(3.21) 

(3.22) 

ki (t) = 2/rh E a, q(t — nT). 
n=k-L+1 

(3.24) 
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3.1.3 Receiver Structure 

The noncoherent receiver must be able to provide the inphase and quadrature corre-

lations of the received signal with every possible duration-T signal segment as indicated by 

Eq.(3.10). The inphase correlation over the th  tc 	symbol interval required for the possible 

transition from state i to state j during the k th  symbol interval is given by 

(k + 1)T 

8c(ii)  = ikT 	
r(t) cos[2rfc t + ,p(t, ci)]cit 

= 

fkT 

 (k + 1)T 	 (k +1)T 
r(t) cosl,b(t, a")dt — f 

kT 	
r(t) sin 0(t, a')dt 

where 

r(t) = r(t) cos 27rfc t 

r(t) = r(t) sin 2itic t 

The information carrying phase function .0(t, a) during the k t h  symbol interval as given by 

Eq.(3.11) can be written as 

"0(t, 	= aki(t) + Oki; 	 kT<t<(k+ 1)T, 	 (3.23) 

where 

f3 k i(t) is one of the M L  posible phase paths and O ki is one of the p possible phase states as given 

by Eq.(3.13). Substituting Eq.(3.23) into (3.20), we obtain 



• 
• • • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• c • 
• 

. • 
• 

• 
• 
• 
• 
• 

• 
- • 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 

• 

• 
• 
• 

-48- 

(k + 1)T 
COS Oki f 

kT 	
r(t) cos akiffldt 

(k + 1)T 
— sin Oki f 	r(t) sin aki (t)dt 

kT 
(k + 1)T 

— COS Oki f 
kT 	

r(t) sin O ki(t)dt 

(k + 1)T 
— sin Oki  f 

kT 	
r5 (t) cos aki (t)dt 

Similarly, the quadrature correlation over the k th symbol interval for the transition from state 

i to  state j is given by 

(k + 1)T 
sin O ki  

fkT 	
r(t) cos aki (t)dt 

(k+ 
+ COS Oki f 	r(t) sin fi ki (t)dt 

kT 
(k+1)T 

— sin Oki f 	r5 (t) sin O ki(t)dt 
kT 
(k + 1)T 

+ cOS Oki f 	r5 (t) cos O ki (t)dt 
kT 

where  r(t)  and  r5 (t) are given by Eqs.(3.21) and (3.22), which are obtained by multiplying the 

received signal by cos 27rfc t and sin 2/ac t to form quadrature channels. For some frequency 

dehoppers, r(t) and  r(t) may actually be available directly from the inphase and quadrature 

channel outputs of the dehopper. A baseband matched filter bank is required to provide the 

correlations with the cosine and sine of all posible phase paths ak1 (t) over each symbol interval 

to obtain the 6,(i,j) and 8,(i,j) required by the decoder. Notice that bc (i,j) and bs (i,j) given by 

Eqs.(3.25) and (3.26) can share the same matched filter bank, since the difference is only in the 

scaling multipliers, sin Oki and cos O ki  and the sign. 

The matched filter impulse response is simply 

6c(ij) 

(3.25) 

= 

(3.26) 



h1(t) = 	
cos[Oki (T — t)] 

o 
0 < t < T 
elsewhere 

o  
{ cos 2r h E a11q[(1 — £)T — t] 

1=-L+1 

0 

0 < t < T 
elsewhere 

(3.27) 

o 
{ sin 27rh E 	- t)T — t] 

t=-L+1 

o  

0 < t < T 
elsewhere. 

(3.28) 
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to provide the correlation with the cosine of the i I II  possible phase path. For the correlation 

with the sine of the i th  possible phase path, the impulse reponse of the required matched filter 

is given by 

h(t) = 	sill[eke 	t)]  
o  

0 < t < T 
elsewhere 

For a PRS polynomial with lc nonzero coefficients and M-ary data transmission the 

number of distinct symbols at the output of a correlative encoder lies in the range 

rz(M — 1) + 1 -5 X :5 , with the minimum number of distinct correlative encoded sym-

bols being obtained when the PRS coefficients are all the same [19]. The number of distinct 

correlative encoded symbols corresponds to the number of different possible transmitted phase 

trajectories during a symbol interval. The number of matched filters required for the receiver 

is 4 X. For a PRS polynomial of degree m, there will be m + 1 = L nonzero coefficients at the 

most, hence the number of matched filters required is 4M L  at most. The number of matched 

filters can be reduced by a factor of two by noting that for every digit sequence, there is another 

sequence with opposite signs. Therefore, at the most, 2M L  baseband matched filters are re- 
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quired in total. A block diagram of this sequence estimation noncoherent receiver is shown in 

Fig. 3.2. 

The matched filter outputs are sampled every T seconds followed by proper phase 

weightings to obtain the inphase and quadrature correlations 5c (i,j) and 85 (i,j) for the k th  symbol 

interval. There will be n = pM m = pM L-1  combined states per interval at most. Hence the 

decoding algorithm requires 77 buffers for storing the 7/ survivors and 277  storage locations for 

storing the inphase and quadrature likelihoods _1(i) and £";,k  _ 1 (i) , 1 5- n. At each time 

kT, the algorithm has to perform 2M17 additions to find VC.k - i(i) 	8c(ij)1 and 

[2,<J,_ 1 (i) 	6,(i,j)1 followed by 2M77 squaring operations and M77 additions to obtain the 

likelihood t(a, a') . (M-1)77 binary comparisons are then required to determine the n survivors 

Si , 1 j s ri with the largest likelihood 4(j) , 1 j . Hence, at each time kT, a total of 

Nadd = 3p1v1 I-  additions, 1\i5q  = 2pM I-  squaring operations and N„mp  = 

nary comparisons are performed by the decoder. 

The hop-by-hop sequence estimation noncoherent receivers for different modulation 

schemes are compared in terms of the number of possible phase states, the number of basebancl 

matched filters, the number of decoder states and the number of mathematical operations re-

quired per symbol interval as shown in Table 3. We can see that with a modulation index of 

0.5, the simplest receiver can be obtained with the minimum number of decoder states and 

consequently the minimum number of mathematical operations are required to be performed 

per symbol interval by the decoder. 

(
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Nadd 

Nsq  

Ncomp 
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number of possible phase states 

number of baseband matched filters 

number of decoder states 

number of additions 

number of squaring operations 

number of binary comparisons 

Modulation 	 Operations per interval 

F(D) 	 h 	P 	MF 	77 	Nadd 	Klsq 	Ncomp  

1/3 	6 	4 	6 	36 	24 	6 

1 	 1/2 	4 	4 	. 	2 	12 	8 	2 

2/3 	3 	4 	3 	18 	12 	3 

1/3 	6 	8 	12 	72 	48 	12 

(1 + D)/2 	1/2 	4 	8 	4 	24 	16 	4 
- 

2/3 	3 	8 	6 	36 	24 	6 

1/3 	6 	12 	24 	144 	96 	24 

(1 + 2D + D 2 )/4 	1/2 	4 	12 	8 	48 	32 	8 

2/3 	3 	12 	12 	72 	48 	12 

Table 3 	Complexity comparison between different modulation schemes 
for the hop-by-hop sequence estimation receiver 
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• 3.2 ML Receiver Spanning Frequency Hops • 
• 
• In Section 3.1, the sequential decoding noncoherent receiver that decodes transmitted 
• 
• sequences on a hop-by-hop basis has been presented. We now extend the detection algorithm 

• 
• so that the receiver detects a transmitted sequence of arbitary length (greater than the hop 

length), based on the maximum likelihood accumulated over the entire transmission period 

• spanning frequency hops. There will be periodic random phase jumps in the dehopped 
• 
• waveform every NT seconds. As one would expect, the receiver algorithm is more complex than 

• 
•

the previous algorithm. However, a special case of the algorithm can be combined with the 

• algorithm described in the previous section to give a simple practical algorithm for the situation 

• where the hop interval is much longer than the length of the frequency pulse g(t). 
• 
O  
• 3.2.1 Receiver Theory 
O 
• 

The received clehopped waveform is the same as that presented previously in Eq.(3.1). 
• 
• Again we shall adopt a shorthand notation developed in [33,34] for the dehopped transmitted 
• 
• waveform as s(t, a, 8) , where e = {e 0 ,e,,e2 ,... ) is a random vector, such that 

s(t, a, e) = s(t, a, 0)  , for iNT < t < (i + 1) NT and s(t, a, 0)  is defined in Eq. (3.4). • 
• • 
• For a transmitted sequence of length n symbols, with n greater than the length of the hop 

• interval N, the number of hop intervals for which the signal has a different value of random 
• 
• phase 0,  would be the nearest integer greater than n/N denoted by q. The detector must now 
0 
• find the sequence of data symbols a' , which maximizes the likelihood function 

• •  
2 V 	2E f nT  • .e(a, a_s ) = Ee { exp[ — r(t) s(t, e) dt ] } 

No 	T 0 
• (3.29) 	q s 

 { exp[ 2 	
r(i + 1)NT oy 2E r(t) s(t, d, e i ) dt }. 

• No 	T irro J iNT 

• 
• 
• 
• 



(3.32) 
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The sum in the exponent can be written as a product giving 

q-1  
r  = Eellexp
f

[  2 V 	 (i + 1)NT 2E r(t) s(t,  a, 0)  dt ). 
No 	T iNT 

1=0  

Since the random phases G i  are statistically independent, the expectation over the random phase 

can be taken as 

(3.30) 

q-1  
r (i + 1)NT 

£(a, = 11E0i ( exp[ 	2E 
T 	iNT 	

r(t) s(t, 	0)  dt ] ). 

1=0 

(3.31) 

Assuming that the random phases 0 ;  are uniformly distributed between 0 and 2 ir,  the average 

over the random phase yields as is well known, the zeroth-order modified Bessel function and 

the likelihood becomes 

q-1  

e(cl, 	= 	 2  Io { 
No  

1=0 

where 

eNT 

(i + 1)NT 
2ci(q, Pi) = 	r(t) cos[2rfc t 	'0(t, a') ] dt 

i  
(3.33a) 

and 



• 

111 

( 	 1)NT 
• ts»—, 	= 	r(t) sin[27rf c t + 	a') ] dt. 	 (3.33b) 
• iNT 

• 
• 
• Io { . ) denotes the zeroth-order modified Bessel function. Comparing the likelihood function 

• 
• in Eq.(3.32) with that for the hop-by-hop detection given in Eq.(3.8), we see that the maximum 

• likelihood calculation is now more complicated. The likelihood calculation involves multi- 

• plications, Bessel function weighting, squaring and square root operations. 

•  

• Generally in receiver implementation, addition is preferred over multiplication and the 

, • • 	log likelihood function may be used to reduce the number of multiplications by taking the 

• 
logarithm on both sides of Eq. (3.32) giving 

• 
• 
• 
• 1 • • V  2E •Vt. i(a, a , ) 	a , )  }. r(a, a') = Etn Io{ —2  N 	T 	 (3.34) 

• To find the most likely transmitted sequence, the receiver will have to compute the log 
111 
• likelihood as given by Eq. (3.34) for every possible sequence a' and choose the one which has 

• 
the largest likelihood. • 

• 

• 3.2.2 Sequential Decoding Algorithm 

O  
• The computation for the log likelihood as given by Eq.(3.34) for an estimated sequence 

a' can be carried out in a serial manner as follows. Again estimation of the state sequence will • 
• give the corresponding estimated data sequence, since the mapping from a data sequence to a 
• 
• state sequence is one to one. Initially during the first hop interval the equivalent likelihood 

• 1=0 • • 

• • 
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given by Eq.(3.8) can be used to determine the most likely transmitted sequence in the first hop. 

Hence, the decoding algorithm spanning frequency hops can proceed in the same manner as for 

the hop-by-hop sequential decoding algorithm described in Section 3.1.2. At the end of the first 

hop, the decoder retains ri survivors having the largest equivalent likelihoods ending at each of 

the nodes sN  = j, j = 1, 2, ... . The decoder now has to compute the log likelihoods of the 

survivors terminating at each of the ri nodes at time NT given by 

V 2E 	  r i a) = tn ( Io { —2 	V/C,NW2  + 4,1\02  fl 

for each of the states 1 5 j 	We shall refer to these as the partial log likelihoods accu- 

mulated over the first hop. To determine the survivors in the second hop for time kT > NT, 

the decoder must use the likelihood given by Eq.(3.34) rather than the equivalent likelihood 

e(a, cti) as given by Eq.(3.8). Hence, to determine the survivor at time (N + 1)T, the decoder 

computes the metric of the survivor at sN+ 1  = j as 

max 
V 2E w(i,i) 	6s2 0,i)) 1.2 

/n /N+1(i) 	 (Imo + In Id —2  
V(ij) 	

No 	T 

for j = 1, 2, ... , n and all allowable state transitions i to j. 8,(i,j) and 8,(i,j) are the inphase and 

quadrature correlations for the transition from state i to state j during a symbol interval. These 

are obtained in the same way as for the noncoherent receiver on a hop-by-hop détection  basis 

presented previously. 

For each of the nodes sNi. = j, 1 	j 5 ri, the registers for storing the inphase and 

quadrature correlations over the second hop , t2N+ la) and / s*,2,N+ la) are initialized as 

/c,2.N + 1ü) = 6c(ii) 	 (3.37a) 

(3.35) 

(3.36) 

/5.2,N+ la) = 5s(itl) 	 (3.37b) 
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• 
• 
• where i is the node index satisfying Eq. (3.36). Note that in the notation tc* .m,k  and ts*, m , k  , a 
• 
• second subscript m, has been introduced to indicate that the m th  hop is under consideration 

1111 and the subscript k, as before, indicates that the states at time kT are being evaluated. The 

•
• 

partial log likelihood accumulated over the first hop for the survivor at node sN +1  = j is also 
• 
• stored as 

• 
•  = r l (i) 	 (3.38) • 
• 
• where i is the survivor state at time N and it is the node index i that satisfies Eq. (3.36). ob 
• In  general, for time k laying in the m th hop other than the first hop, (m-1)N < k < • 
• mN, the metric of the node sk  = j is defined as 

max 

• £n .e k a) = 	{ r m _ 1 0) + .en — 

	

r  2 V2E [ ( tc,m,k - i(i) 	6c (i..i) ) 2  No 	T (j ‚j)  • 
• ( t s , m,k -1(i) ± 65 (i ,i) ) 2  J r2  ». 
• 

• The 	metric 	is 	computed 	sequentially 	from 	the 	old 	information 

0 
{ 	_ 1 (i ), 	_ 1(i), 	} and the new information {8,(i,j), 6,(i,j) ) recursively ac- 

e 

• cording to Eq. (3.39). r *m  _ 1 (i) is the sum of the partial log likelihoods accumulated over the 
• 
• previous (m-1) hop intervals for the survivor ending at sk  _ 1  = i • The likelihood parameters 

• 
• are updated through 

• 
• tc,m,k(i) 	- 

 1 (i) 	6c(ij) 	 (3.40a) 
• 
• 
• ts,m,k(i) =2s,m,k-1(i) 	 ' (3.40b) • • • r m  _ i (j) = r m  _ i (i) 	 (3.41) 

0 
• where i is the state index that satifiies Eq. (3.39). • 
O  
• 
• 
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At the end of each hop interval say the m th  hop, r' (j ) is updated through 

rm (j) = .2n É mN (j) 

= 	+ t 2.0vi 2E rM_ 1 (j) 	ri Io{ 	 . 
T 

[ (tc*,m,mNa»2 	ts,m,mN(1»
2-1/2 

 N o  

for j = 1, 2, ... , 77 and .en £;KriN (j) is the metric of state j as given by Eq.(3.39) when k = mN. 

The registers storing the inphase and quadrature  correlations over a hop interval £c*,m,k (j) and 

. 	 2E t s,m,k (]) are reset to zero at the end of each hop interval. Note that the values V— and 

No  are required, which was not the case in the receiver considered in Section 3.1 and the partial 

log likelihood sum r'n,_ 1 (j) has to be stored in addition to the usual inphase and quadrature 

correlations t c*.m.k (j) and t s*, m ,k (j) . Natural log and Bessel function weightings have to be per-

formed. This dictates a more complex detection algorithm than previously obtained in hop-

by-hop detection. 

The sequential decoder can output the initial segment of the estimated sequence when 

all survivors go through the same nodes up to time k-d, that is, a merge occurs at time (k-d)T • 

and all survivors branch out from the same common node sk _ d . The initial segment of the 

estimated sequence is then determined independent of succeeding observation. The decoding 

delay d is unbounded. In actual implementation, the buffers for storing the path histories of 

the survivors will be of finite length. The path histories of the survivors are then truncated to 

the length of the storage buffers. The decoder will have to come to a definite decision after 

some fixed delay, which is the length of the storage buffers. In general, if the buffer length is 

chosen large enough, there is a high probability that all survivor sequences share the same initial 

segment and the initial segment can then be output as the decoder's firm decision. In this case, 

truncation of the survivor path histories does not affect the decoder's decision. In the event 

when all survivors at time kT do not share any common initial egment, the oldest bit of the 

survivor sequence with the largest metric among the 77 survivors is output. If the buffer length 

(3.42) 
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• 
• 
• is large enough, the effect on performance is negligible. The decoding delay for finite-length- 

• buffer implementation is then at the most the length of the storage buffers. • 

• 
• 3.2.3 Decoder Simplification for L << N 

• If the length of the frequency pulse denoted by L is much less than the hop length N, 

then merges in the modulation trellis will usually occur much before the end of a hop. All the • 
• 77 different survivors at time kT, branch out from a common node, say si  , where (m-1)N < t 
6 
• < k, hence rin _ i (i) will be the same for all the contending paths leading to the node sk  = j 
• 

and can be dropped. 

• max V E • 2 	2E En E k (j) = 	{ r m  _ 1 (i) + En lo t [ — 	— ( [ 2c,m,k-i(i) 
• V(i,j) 	 No 	T 

• 

	

8s(i,i)12 
)

1/2 	
} • • 

• max 
• { En Io { [ —2 V-2E (  [t._  - 1(i) + 2 
• vo,i) 	N o 	T 	 (3.43) 
• [ 2s,m,k - i(i) 	65(i J) 12 ) 1/2 	}. 

• 
• Since the log Bessel function is a monotone increasing function, the log Bessel function 

• 
• weighting can then be omitted without affecting the decision.  Once the log Bessel function 

• weighting is dispensed with, the multiplication with a constant and taking the square root 

•
• 

operations can also be omitted, resulting in a simple likelihood parameter, which is the equiv- 
./ 

• alent likelihood used in the hop-by-hop detection receiver. Hence once a merge has occurred 

• 
within a hop the equivalent likelihood over the current hop interval can be used for determining • 

• the maximum likelihood sequence via • 
• 
• max 

• 4 (i) = 

	

	{ [ 2c,m,k -1(i) 	6c(iti)1 2 	[ 2s,m,k -1(i) + ss (012  }. 	(3.44) 
V(i,j) • • • • 

• 

• 
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The decoding algorithm can then revert to the simple one as for the first hop. Note that the 

more complicated metric calculation in Eq.(3.39) is required only for a few symbol intervals 

after a frequency hop. Once a merge has occurred the comparison can then revert to the simple 

one as in Eq.(3.44). Although the parameters r_,(j) for j = 1, 2, ... , i  can be omitted in the 

comparison in Eq. (3.44) after a merge has occurred, they are still needed to be stored and up-

dated for the n survivors terminating at each of the nodes sk  = j , j = 1, 2, ... ,n, as outlined in 

Eq.(3.41) during a hop interval. At the end of the m th hop interval, the parameters r1/4m (j) for 

all the states j = 1, 2, , n are required to be updated through Eq. (3.42). The algorithm reverts 

back to the more complicated calculation as the next hop begins. 

12.4 Receiver Structure 

The only difference between the receiver obtained in this section and the one discussed 

in the previous section is the decoding algorithm. The receiver structure for generating 6,(i,j) 

and 85 (i,j) is the same as that presented in section 3.1.3. 

3.3 Suboptimum Simplified Noncoherent Receiver 

The noncoherent receiver described previously is quite complex, especially if the metric 

calculations are to be carried on across the hop intervals. A simplified sub-optimum receiver 

structure with reduced complexity may be obtained, although error performance will be sacri-

ficed. For the correlative encoded CPM signal described, there are correlative encoder states 

as given by Eq.(3.12) and phase states as given by Eq.(3.13). If the phase states are ignored and 

only the correlative encoder states are used to estimate the transmitted sequence, we have a 

simplified sub-optimum decision algorithm, which automatically takes care of the metric calcu-

lation across a frequency hop. Symbol intervals are treated as if they are all noncoherent, the 
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• 

• continuous phase memory inherent in the signal structure is then ignored and poorer perform- 

ei 
• ance will result. 

• 
• 
• 3.3.1 Suboptimum Receiver Algorithm • • 
• The information carrying phase function1P(t) given in Eq.(3.11) can be alternatively ex- 
• 
• pressed in term of the correlated data symbols 	as 

• 00  

• 

• = 27rh 	J n  v(t – nT), 	 (3.45) 
• n=0 
• 
• 

where the Jn  are correlated data symbols given by 

•

El • • 
• 

Jn  = —1 E ki  Œ n  (3.46) 
t=0 • 

• and 

• v(t) = f 	b(r)dr, 	 (3.47) • • • 
where b(t) is the baseband pulse of length T. v(t) is normalized such that • 

• 
v(T) = —

1
. • 2 	 (3.48) 

• 
• 
• During the k th  symbol interval the information carrying phase function can be given by 

• 
• 
• k - 1 
• e(t) = 2/rhJ kv(t – kT) + rhE J n ; 	kT < t < (k + 1)T. 	 (3.49) 
• n=0 

• • 



iN < k < (i + 1)N. (3.50) 

(3.51) 

(3.52) 
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The underlying phase which stays constant during the k th  symbol interval is then 

k - 1 
e k  = irh E 	+ 

n=0 

Rather than having a random phase angle once per hop interval, we can assume for 

noncoherent bit detection that we have a noncoherent phase angle in each symbol interval. The 

suboptimum receiver must find the data sequence a' that maximizes the following likelihood 

function. 

r  2 V2E rnT ,) 	 r( t)  s(t, 	odt ) „ 	Ee { exp[ —No 	 .1 0  

1  2 V z2E = 11 io ( 
T 	k(k' 	

) 
N0k =0 

where 

1.(k +1)T 
zk (a, 	= [ 	, 	r(t) cos[27rfc t + ak (t,d)] dt 

(  f
(k + 1)T

r(t) sin[2/rfc t + O k (t, a') ] dt ) 2 
 ] 1/2 

kT 

and  k (t, a') is the shape of the phase path during the k th  symbol interval due to the k th  

correlated symbol S k  given by 

ak(t,(i) = 2rhrkv(t — kT) 	 (3.53) 

and 

r__ 	1 
Ji k 	 E ktaik-t• 

1 , 0  
(3.54) 
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For M-ary transmission and a PRS polynomial of degree m, there would be at most M m states 

rather than pM m states for the IvILSE receivers presented in Sections 3.1 and 3.2. The memory 

and computational requirement is then reduced. 

Instead of having the likelihood function as a product of Bessel function weighted Rician 

variables z k (a, a') in Eq. (3.51), the log likelihood function can be used às given by 

n - 1 
2E , 

r(ci , «) = E tn To{ —L 	T z
,

k 	I • 

— k = 0 

By treating signal symbol intervals as if they were noncoherent with random phase. a subopti-

mum log likelihood parameter, which can be broken into sum of branch metrics, has resulted. 

The path metric is now additive as in the coherent case, although the metric is suboptimum. 

A sequential decoding algorithm similar to the Viterbi algorithm can now be used for calculating 

the path metric recursively through 

	

riji) = + en IOL 	 J f• 

	

T  r 	2 	2E 	f• ;\ 1 

V(iti) 	
No 	T 

where  r_ 1 (i) is the old path metric of the survivor terminated at node Sk_i = i and 

zk (i,j) ] is the branch metric for the transition from state i to state j with 

3.3.2 Suboptimum Receiver Structure 

Since the phase path f3 k (a, a') during a symbol interval depends on the correlated symbol 

Jk  only, the number of possible distinct phase paths is the number of possible distinct correlated 

symbols. The receiver structure must be able to provide the partial log likelihood 

(3.55) 

max 
(3.56) 

2 •.\/No 	T 

zk(i,j) corresponding to that given by Eq. (3.52). 



(3.57) 

(3.58) 
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tn[ 10{ —2 V-2E z k (a, a') } ] for every possible phase path during a symbol interval. Fol-
T 

lowing the approach used in section 3.1.3, we have 

f
r(k+1 )T 

kT 
r(t) cos[2rfc t + Oki(t)] dt 

(k + 1)T 	 (k + 1)T 
r(t) cos aki(t)dt —. f 

	
r5 (t) sin Oki (t)dt 

kT 	 kT 

and 

rkT 

(k + 1

1

)T 
r(t) sin[2rf c t + aki (t)] dt 

(k + 1)T 
r(t) sin O ki (t)clt + f 

kT 
 (k 1)T  f

kT 	
r(t) cos O ki(t)dt 

where  r(t)  and  r(t)  are as given by Eqs.(3.21) and (3.22) respectively. A basebancl matched 

filter bank is then required to provide the correlations with the cosine and sine of all possible 

phase paths  8k1(t)  over each symbol interval. For the correlation with the cosine of the i t h  

possible phase path, the matched filter impulse response is given by 

=1  

h1(t) 
	f cos[f3 ki (T — t)] 

o  
0 < t < T 

elsewhere 

cos[ 27rh Ji v(T — t) ] 	0 < t < T 

0 	 elsewhere, 

and the matched filter impulse response for the correlation with the sine of the i th  possible 

phase path is given by 

h
, (t) = f sin[a ki (T — t)] 	0 < t < T 

si   
0 	 elsewhere 

sin[ 2/rh J iv(T — t) ] 	0 < t < T 

0 	 elsewhere. 

(3.59) 

(3.60) 
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Comparing Eqs.(3.57) and (3.58) with Eqs.(3.25) and (3.26), we see that this suboptimum 

receiver requires the same number of matched filters as the ML receiver. The scaling multi- 

pliers for the ML receiver are not required but squaring operations and summers are required 

2E \F-7 , as well as the weightings .En Io  { —2  / ) .} . Note that although the receiver may 
No  V T 

look as complex as the ML receiver, the function weighting is now being done in hardware 

which can be much faster. In the case where the software can hancile the required mathematical 

operations, the structure of the receiver is much simpler indeed. The receiver block diagram 

is as shown in Fig. 3.3. 
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3.4 Summary 

In this Chapter, three noncoherent receivers with sequential decoding algorithms have 

been derived. The first receiver has the simplest decoding algorithm. It is optimum over an 

observation interval of a single hop interval and the sequence estimation is carried out on a 

hop-by-hop basis. In general, a sequence estimation receiver which could decode symbols 

continuously rather than on a hop by hop basis is more desireable. Hence, a receiver algorithm 

with maximum likelihood decoding spanning hops, is derived together with the decoding algo-

rithm. However, the resulting decoding algorithm is rather complex with a subprocedure 

necessary for calculating metric across hops, although simplification may be possible when the 

length of the frequency pulse is much shorter than the hop length. Another simplified sub-

optimum receiver is also derived by treating symbols as if they were all noncoherent with ran-

dom phase, hence resulting in a much simpler decoding process. Only memory introduced by 

correlative encoding in the signal is utilized in the decoding process while the memory due to 

phase continuity of the signal is not put to use. The performance of this simplified receiver 

would be inferior to the optimum one spanning hops but the decoding algorithm is much sim-

pler with no additional subprocedure for computing the metric across hops. However, the sec-

ond and the third receivers, both of which attempt to attain a longer observation interval than 

the length of one hop by calculating metric across hops, require the signal to noise ratio to be 

known. Hence, extra circuitry for estimating the signal to noise ratio is required in order for 

the receivers to compute the metric across hops. This additional complexity and the already 

complicated decoding algorithm will drive the practical implementation to favor the noncoher-

ent receiver on a hop-by-hop decision basis. 



• 
• 
• 
• 
• 
• 

• 

• 
• 
• 
• 
• 

6 
• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 
• 

• 
• 

• 

• 

• 
6 

• 
• 
• 
• 
• 

• 
• 

-68- 

Chapter Four 

ERROR PERFORMANCE ANALYSIS 

Three algorithm-based sequence estimation receivers for decoding the dehopped CPM 

signal have been presented in Chapter Three. Except for the first receiver which decodes the 

transmitted sequence on a hop-by-hop basis,  the other two receivers require the transmitted 

signal amplitude and the noise spectral density to be known by the receiver in order to calculate 

the metric across the frequency hops. Auxiliary circuitry is then required to estimate the noise 

spectral density and signal amplitude. This extra circuitry requirement together with the addi-

tional complexity in the decoder for spanning hops would justify a retreat to the simpler hop-

by-hop sequence estimation receiver unless the difference in performance is dramatic. The 

hop-by-hop sequence estimation receiver thus appears to be the most promising design among 

the three receivers proposed in Chapter Three, for implementation. 

In this chapter, the error performance of the hop-by-hop sequence estimation receiver 

is evaluated. The primary additive disturbance on a satellite channel can usually be reasonably 

modelled by white Gaussian noise. Hence the error performance of the noncoherent receiver 

under additive white Gaussian noise will be evaluated first. An upper bound on the bit error 

rate (BER) is evaluated for various partial response polynomials and with both rectangular and 

raised cosine baseband pulse shapings. The BER upper bounds would provide a basis for 

choosing the various operating parameters of the systems, sUch as length of the hop interval, 

partial response system polynomial and type of pulse shaping to be used to achieve a desired 

system performance. The performance improvement by transmitting an initial segment of 

known symbols once the carrier hops to a new frequency, either for synchronization purpose 

or solely for improving the error performance of the receiver, is also examined. Since many 
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spread spectrum conimunications systems are designed to operate in the presence of intentional 

interference, the performance of the receiver in the presence of partial band noise jamming and 

multiple-tone jamming will also be evaluated. 

4.1 Performance In Additive White Gaussian Noise 

The error probability for noncoherent detection of binary FSK has been derived by Stein 

[44,45]. Osborne and Luntz [33] and also Schonhoff [34] have evaluated upper bounds on the 

BER for symbol-by-symbol detection of CPFSK with a multiple symbol observation interval in 

the binary case and M-ary case respectively. Svensson and Sundberg [36,37] have analysed the 

error performance of the noncoherent symbol-by-symbol decision receiver for CPM, by using 

an equivalent distance, which asymptotically at high SNR plays the same role as the Euclidean 

distance in coherent reception. For the symbol-by-symbol noncoherent detection of CPM with 

a multiple symbol observation interval, approximate upper bounds and lower bounds on the 

BER have been derived in [36,37]. 

4.1.1 Probability of An Error Event 

We shall begin our error analysis for the noncoherent hop-by-hop sequence estimation 

receiver presented in section 3.1 of the previous chapter. Without loss of generality, consider 

detection over the first hop. Let a = ap, a l , a2, aN  } denote the transmitted sequence 

in the hop interval. For hop-by-hop sequence estimation, at time kT ( k k.  2 ) the receiver 

keeps ri survivor paths leading to the n states in the trellis at time kT. The equivalent likelihoods 

for every possible path extended from the n survivors at time (k-1)T leading to each node at 

time kT in the modulation trellis, are compared. That is, the decoder has to decide on the 

maximum likelihood path leading to each state in the trellis over an observation interval of 

length kT. The decoder then keeps the path with the largest simplified decoder metric at time 
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kT as the survivor at each node. However, the path segment with the largest metric does not 

necessarily have to be an initial portion of the maximum likelihood path with the largest 

equivalent likelihood over [ 0 , NT ]. Hence unless the decoder keeps all possible paths over 

the hop interval and only decides on the maximum likelihood path at the end of a hop interval 

(which would be impractical considering the large memory and computation requirement), the 

decoder may make an erroneous decision by discarding the initial segment of the true path early 

at the start of a hop. Once any initial segment of the true path has been discarded by the de-

coder, it would never be included again. However, the remaining survivor paths may still have 

a large portion of the sequence the same as that of the true path and also may remerge with the 

true path at some later time. The final estimated path will be the one with the largest simplified 

decoder metric at time NT. The estimated sequence is not the maximum likelihood path over 

the hop interval, if any initial portion of the maximum likelihood path is prematurely discarded 

by the decoder during the decoding process. Maximum likelihood decoding performance can 

be guaranteed only if the decoder keeps all the possible paths through the trellis in a hop 

interval and decides on the maximum likelihood sequence at the end of a hop interval. 

During a hop interval the estimated path and the true path may diverge and remerge a 

number of times. Each distinct separation is called an error event [39,40]. The set of all 

possible error events starting at some time k i T is a tree-like trellis which starts at  5k1  and each 

of whose branches ends on the correct path. Unlike the case of coherent detection in which the 

error events are probabilistically independent of each other [40], an error event starting at any 

particular time actually depends on the previous history of the estimated path due the nature 

of the decision parameter (which is the equivalent likelihood and the sum of the squares of the 

inphase and quadrature likelihoods) for noncoherent detection. However, if we consider the 

probability of only one error event to occur, some insight into the error mechanism can be 

gained. 



(4.1) 

(4.2) 

(f 	r(t) cos[2/rfc t + 1/4t, ce_)] dt ) 2  
0 

k 9T 
+ (f 	r(t) sin[2irfct + 0(t, a)] dt ) 2 , 

0 

21 41:1 , 	= 
(4.3) 
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For the hop-by-hop sequence estimation receiver, the decoder compares the 77 possible 

paths leading to each node in the trellis and keeps the one which has the largest equivalent 

likelihood, for each node. An error event occurs whenever the true path is rejected by the de, 

coder at any time kT, since then the true path segment from 0 to kT will never be included in 

the final decision path. The probability of an erroneous decision is the probability of any error 

event occurring during the hop interval. For an error event E starting at time k i T and ending 

at time k 2T, the probability of E is simply the probability that given the observation over the 

interval from 0 to k,  T,  as k , , which is the estimated sequence corresponding to the error event 

e. is more likely than the transmitted sequence a k, . This error probability is given by 

Pr[ 	dk,) > 	%,) 

where 

k 

	

t(Çtk,, rik,) = (1 	r(t) cos[27rfc t + .0(t, a')] dt )2  _ 	_ 	0 
k,T 

+  (f 	sin[21rfe t + e(t, a')] dt ) 2  

and 

where .7,G(t, a) is the information carrying phase function given previously. Since the correlator 

references are the inphase and quadrature components of a constant amplitude waveform, 

t(a, a') may be regarded as the output of a complex correlator with reference "(t, a') , which is 

given by 



Pr[E ] = Pr[IZ I  I 2  I z,  1 2 
 (4.7) 

Pr[ e ]  = - Q (Nr) , \fa—) + Q(\f-a -, 'NF) ], (4.8) 
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s(t, a') = cos[27rfc  + 1P(t, a') j  + j sin[27rfc  + e(t, 	] 

= exp[ j(2/rfc t + 	d)) ]. 

The likelihood parameter £1 (a k7 , WO may be written in complex notation as 

kiT 
t'(ak2 , cy: k ,) = 	f 	r(t) exp j[27rfc t + / ( t, a')]dt 1 2  = 1 Z 1  1 2 . 

0 

Similarly, we have 

r k,T 

2 cek 	= I 	r(t) exp j[2irfc t + 1)(t,.a.)]dt 	= 	z,  12 .  
— 	0 

Thus we have 

(4.4) 

(4.5) 

(4.6) 

The probability of an error event is just the probability of one Rician variable exceeding another 

and the solution is known to be given by [36,44] 

where Q ( x, y ) is the Marcum Q function [45] defined by • 

	

2 	2 

	

Q(x,y) = rexp( — x 	u  )I0 (xu) du 
Y 	 2 

and I0 ( . ) is the zeroth-order modified Bessel function. Techniques for recursive evaluation of 

the Marcum Q function are given in [46,47]. The parameters a and b are given by 

(4.9) 



p = —17  E ( (Z, — M 2 ) * ( - M1) }, (4.14) 
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1 	
IN 4 1 1 2  4- I 	— 2Re{ 	P 	IM11 2 	IM11 2  

217 2 	 1 — p 12 	

T 	- 	 
V1 — ip 12 	

, 	(4.10) 

with 

M i  =  

= E{ Z2  }, 

o = var[ Z 1  ] = var[ Z2  = E{ (Z, — M2) (Z 1  — M 1 ) }, 

ba  

(4.11) 

(4.12) 

(4.13) 

o- 

where the expectation is taken with respect to the complex Gaussian variables and the super-

script * denotes the complex conjugate. By straightforward evaluation of Eqs.(4.11) to (4.14) 

and substituting the values of the parameters into Eq.(4.10), we have [33,34,35,44] 

a 

b 	

k2E1) 2N0  log,M [ 1  R Ji — 1p(ak2 , a_ 	 (4.15) 

where p(a k,, 	is the normalized complex crosscorrelation between the two random variables 

Z 1  and Z, and the parameter 1p(ak,,, k,) 1 2  is given by 

	

2 	1 f  k2T 

	

1 P(clk a k 1 	( 	cos[e(t, (1') —  2 — 2 	k2T 0 

( _L_  2T s  
— k 
	 a") — 	a)]dt) 2 . 

k2T 0 

Since 

(4.16) 

Ik(t, a') — .0(t, 	= 	2), 	 (4.17) 



k -,T 

	

+ f 	cosl,b(t, ^i) dt) 2  
k,T 	 k 

k 
+ [ 	f - sin 0(t, ^i) dt ] 2 . 

k2T k 

Ielk,)1 2  = 

(4.19) 

(4.20) 

large 
N0  

Eb  
(4.21) 
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where 

(4.18) 

the evaluation of a and b in Eq. (4.8) actually depends only on the difference sequence /k, 

rather than on both individual sequences, a' and a. Eq. (4.16) can be rewritten as 

(-2.1 k1) I 2 =9 (1k) I 2  
• 1 f k 2T 	 f  k2T 

= ( 	coS[e(t, 2)] Cit) 2  +  (_ L. 	sinp(t, j] dt) - . 
kiT o 	 k2T o 

For an error event starting at time k i T , (t, 	= 0 for t < k i T . Hence we have 

The probability of any particular error event starting at time k i  T and ending at k 2T , can then 

be calculated using Eqs.(4.8), (4.15) and (4.20). Error paths having the largest complex cross- 

correlations p(^/ k ,) will have the highest probability of occurrence for all values of 

Eb 
—[37,44,45]. A quantity related to the Euclidean distance in coherent detection is the equiv- 

alent Euclidean distance, introduced as an error performance measure for the noncoherent 

receiver in [36,37]. At high SNR, we have b >. 1 , a >> 1 and Vr.) 	- Va-  > 0 

Approximation of the Marcum Q function gives 

P(2) Q( \/".1; - 

where 

dk.)  
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(4.22) 

Substituting expressions for a and b into Eq.(4.21) and putting the probability expression in a 

form similar to that for coherent detection, we have 

Eb 
Pt) -= (Vde-  7-10  ); 	

Eb 
large 7,77 , 

where de2  denotes the squared equivalent distance. The equivalent distance between the two 

signals corresponding to a' and a over a time interval [ 0, k,T ] relates to the complex corre-

lation through the following expression. 

d e2  = k2  (1 — I 	) log2 (m ). 

From Eq.(4.23), it is clear that asymptotically at high SNR the equivalent Euclidean distance 

plays the same role as the Euclidean distance in the coherent case. 

A set of the error events which start at time 0 and have the smallest equivalent distances, 

is first determined. The equivalent distances of the error signal paths associated with these error 

events starting at various times k iT are then calculated. The equivalent distance results for MSK, 

DMSK and TFM with h = 0.5 and with rectangular pulse shaping are shown in Figs. 4.1 to 4.3. 

Different error events having different phase differences may have the same value of 

squared equivalent distance. Hence, each squared equivalent distance curve in Figs. 4.1 to 4.3 

may correspond to more than one error event. In general the equivalent distance of an error 

event is the lowest when the error event starts at time 0. It is because the noncoherent receiver 

(4.23) 

(4.24) 



(4.25) 

(4.26) 
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has not acquired any information about the initial phase of the signal at time 0 and the equiv-

alent distance between the error signal path and the transmitted signal is then the lowest. Once 

the noncoherent receiver has received symbols and does not make an error (the error event 

starts at some time k i T > 0 ), the noncoherent receiver then gradually acquires the phase of the 

received signal. The equivalent distance of the signal hence increases if it starts at some time 

greater than O. Also, as can be seen from these results, some error events have equivalent dis-

tances that stay constant independent of the starting time of the error event. If the error phase 

path 'zP(t, "I) has a particular shape over k I T to k,T such that 

f -  sin iP(t, 	dt = 0, 
k 

then 

n 2 
 lek )1 	= [ 1 

k,T 
k 	f 	cos /P(t, 	dt) I 2  

kiT 

and the squared equivalent distance for this particular error path over the time interval 

[0, K,T] is 

fk-2T 
d 	(k2  – k 1 ) .  – — 	cos '(t,  "") dt. 

T k iT 

For any error event which satisfies Eq.(4.25), dê will be independent of the starting time k i T 

of the error event. This explains why some of the dê are constant independent of starting time. 

The probability of each of these error events at an SNR of 10 dB is evaluated and plotted 

in Figs. 4.4 to 4.6. We can see that the probability of the error events with small equivalent 

distances is much higher than for the other error events which have larger equivalent distance, 

(4.27) 
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e
O  
O  
•

even at a moderately high SNR of 10 dB. At high SNR, we should expect the error performance 

• of this sequence estimaton receiver to be dominated by those error events which have small 

• equivalent distances. Also, error events are more likely to occur at the start of the hop interval 

O  
• than at some later time during the interval. This suggests the possibility of performance 

• 
• 

improvement by transmitting a known initial data segment as the carrier hops to a new fre-
te 	 quency. Transmitting a known initial symbol segment will be investigated in section 4.1.4. • • 
•• 	4.1.2 tipper Bound on Bit Error Probability 

• • 
So far we have examined the probability of only one error event occurring during the • 

• decoding process. A number of error events may occur in the detection of the transmitted se-
e 

• quence in a hop interval. Since the error events are not independent but depend on the previous 

• 
•

portion of the estimated path, the error performance of the hop-by-hop sequence estimation 

• • receiver cannot be based on the probability of only one error event to occur during a hop 

• interval but has to be based on the probability of erroneous decisions over the entire hop 
O  
• interval. 	At the end of a hop interval, the receiver will choose the sequence 

• = 	(II () s 	••• • ct I  • N - • which has the largest simplified decoder metric at time NT. 
• Any number of error events may have occurred during the decoding period of a hop interval. 
• 
• A sequence error occurs whenever the estimated sequence a' is different from a in one or more 

• 
• places. 

O 
• 
• Given that a is the transmitted sequence, the probability of an erroneous decision is then 

O  
•

given by 

• 
• max 
• P(Error la) = Pr[ 	.tai ) > £ 1 4, ci)  J. 	 (4.28) •  a' a 

• 
This error probability is difficult to calculate exactly but it can be upper bounded by 

O  
• 
• 



P(Error I«) 	EPr[ £'(a, a') > e(c2_, 	]. 
(4.29) 

The bit error probability is given by weighting each probability Pr[ t(a, a') > t(a, a) ] with the 

number of bit errors over the number of bits decoded as 

P(bit error la) e(1, Qe') Pr[ 1' (a.,  &) > (a_ , 	], 

(4.30) 

a' a 

-84- 

where e(a, a') is the number of bit errors for detecting a' given that a is transmitted. The 

average bit error probability is then given by averaging over all the possible transmitted se-

quences as 

e(.q, V—% 	 
Pe 	E 	PrVi CQ, 	> £'(a, g.) 

d 

a' a 

where p = 2 N  is the total number of possible transmitted sequences in a hop interval of length 

NT. Since the error probability depends on only the difference between a' and a rather than 

on the individual a and a', the upper bound on the bit error probability can be rewritten in 

terms of as 

Pe  

(4.32) 

(4.31) 

# 0 



NEb  
— — log,M [ 1 	V 1 — I19(i)1 2  ], 

21\10  
(4.35) 

-85- 

where e(1) is the number of nonzero sequence elements of /, which corresponds to the number 

of bit errors when a' is detected given that a is the transmitted sequence. w(-/) is the total 

number of pairs of a' and a corresponding to a dh. erence sequence /. Since a difference se-

quence / having e(i) nonzero elements would result from 2 N — el) different pairs of a and a', 

w(i) is then given by 

to('7) = 2 N e(-1) . 	 (4.33) 

P(/) is the probability of error by detecting a' rather than a as the transmitted sequence. Similar 

to the expression for the probability of an error event given in the previous section, this 

probability is given by 

P (2) = 	[ 1 — Q(*V7, 'VT) + Q(V7, "\A--;) 1, 	 (4.34) 

where Q( ) is the Marcum Q function. The parameters a and b are given by Eq. (4.15) with 

k, = N and rewritten in terms of / as 

with I p(2) 1 2  given by 

1 NT 	 f  NT 2 1 p(2) 	= [ 	f cos Ip(t, 	i )dt 1 2 	[ 	sin .0(t, 2)dt 1 2 . 
NT 0 	 NT 0 

(4.36) 
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4.1.3 Computation and Approximation 

In order to compute the upper bound on the bit error rate as given by Eqs. (4.32) to 

(4.36) systematically and efficiently, we notice that for binary transmission, the difference se-

quence elements i n  can take on three possible values namely 0, + 2 and - 2. Hence there can 

be 3 N  - 1 difference sequences'i, for a hop interval of length NT in Eq. (4.32). For any  i  there 

is always another sequence with oriposite signs in all the sequence elements. The number of 

terms in Eq. (4.32) can be reduced by a factor of 2, since P( – /) = P(i) as can be easily seen 

from Eqs. (4.34) to (4.36). The number of difference sequences to be considered in Eq. (4.32) 

1 	N iS then —
2 

(3 – 1). If the three possible values of each difference sequence element i n , namely 

2, 0 and - 2 are mapped as 0, 1 and 2 respectively, then each difference sequence element 

can be represented as a base-3 digit and the difference sequence can then be represented by N 

base-3 digits. Each  i  to be considered in the bit error rate calculation in Eq. (4.32) can be re- 

1 presented by a base-3 number of values from 0 to — N 

2 
(3 – 1) – 1 . Numbers from 0 to 

1 	N —
2 

(3 ' – 1) – 1 are decoded sequentially as base-3 digits, which are then converted to  O. + 2 

or - 2 as the difference sequence elements, to be used in evaluating the upper bound on the BER 

as given by Eq. (4.32). 

ptf) I 2  is required to calculate P(i) in Eq.(4.34). Eq. (4.36) can be rewritten as 

N - 1 (k + p(2) 12 = 	E  r  cos 14, dt}2  
NT k =0 ,/ kT 

N.1. 1  (k + 1)T 
+ 	 f 	sin Ip(t, 	dt}2 . 

kT NT k   

Substituting Eq. (3.49) with a' replaced by "/ in the above equation for 'lb (t, i)  in the k th  symbol 

interval, we have 

(4.37) 



(4.38) 

(4.39a) 

(4.39b) 

(4.40) 

(4.41) 
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N - 1 
I p(1) I 2 	E [ cos( kc(do - sin C k S(dk ) ] } 2  

N  k = 0 
N-1 

{ 	E [ cos( k s(do ± sin (k C(c1k ) ] ) 2 , 
k =0 

where 

f (k + 1)T 
C(dk) = _L. 	cos 2ehdk v(t) clt, 

T kT 

f(k+1)T 
S(dk) = 	 sin 27rhd k v(t) dt, 

T kT 

k - 1 
( k  = irh E 

dk  is the correlative encoded difference sequence given by 

Irn dk  = — ki  _ t , 
1=0 

where C is the normalizing constant as defined by Eq. (2.6) and the kt  are the coefficients of 

the correlative encoding polynomial. 

To speed up the calculation of. ip(i) I 2  , all possible integrals of the cosine and sine of 

the possible phase over a symbol interval, C(dk ) and S(dk ) are initially calculated and stored in 

an array. This avoids repeated numerical integration to obtain C(d k ) and S(dk ) when the 

baseband pulse is not rectangular. 
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When N is large, evaluation of the upper bound as given by Eq. (4.32) becomes compu- 

1 tationally infeasible, since the number of difference sequences to be considered is —
2 

(3' y - 1) , 

which grows exponentially with N. Approximation of the upper bound is then necessary for 

large N. At high SNR, the probabilities of those error paths which have large equivalent dis-

tances, are small compared with those having small equivalent distances. The paths having large 

equivalent distances over a hop interval can then be neglected. The upper bound on the bit error 

rate is approximated by 

1 	 e(1) 
Pe  .77

x-% 
 w -7-  PM 

'1ES 

0 

where S denotes the set of difference sequences corresponding to the set of small equivalent 

distance paths over the hop interval. 

To determine S. we notice that there will be complete error events during the hop and 

also incomplete error events starting near the end of a 'hop. For the hop-by-hop detection 

receiver, the difference sequences / corresponding to an error event e of duration  L  starting at 

time k I T, will have / n  = 0 for n < k 1  and n > k 1  + t The square of the complex correlation 

as given by Eq. (4.36) becomes 

p(k1 +/)T 
IP(1) I 2  = { —1—  [k1T + i kier 	

COS iP(t,^1)dt + (N - k 1  - t)T ] ) 2 
NT 

4. 1 	r(k i  +/)T 
sin /P(t, -_/) dt ) 2 

+ " NT J ic i er 

1 [(N - t)T + f(k1 +1)T  r  
= L 	

cos 0(t, 2) dt ] 1 - NT 	 k iT 

± r  1 r(k i  +/)T 
sin .7,G(t, i) dt )2 , 	- 

1-  NT J k I T 

where k 1  + 5. N. 

(4.42) 

(4.43) 



• 

• Hence for error events having a particular phase difference path segment from k i T to 

• (k 1  +  £)T,  p(/) 1 2  will be the same independent of k 1  as long as 0 5 k 1 	N – E, and hence • 
• the P[e] will be the same. It is then sufficient to determine only the segment of / from 0 to 

• L  — 1 corresponding to the error event e starting from t = O. For each segment of I so deter- 

s 
• mined, the number of the corresponding error events occurring at different times k iT with 

te 	 o 	k1 	–  L  during a hop interval of length NT is N –  L  + 1 . 
• 

For a correlative encoded CPM with frequency pulse of length LT, the minimum length • 
• of an error event is (L + 1)T. Difference sequences of various lengths E 	L + 1 are generated 

• to find the complete error event paths starting at time 0. Once a complete error event path, 

• 
•

which has 10  0 0 and (1  = 0 ( that is the difference phase path deviates from zero at time 0 and 

• merges back to zero at time ET ) is determined, the square of the correlation is calculated by • 
• Eq. (4.43). Since it is computationally infeasible to include all the complete error events for 

• large N and also since long error events generally have large equivalent distances, hence only 

• 
difference sequence segments of length L + 1 	E rnm  are included. For / of length 

• emax , the number of / to be included in the computation is —1 (3 I
max – 1) , which is the 

• 2 
• dimension of the arrays used for storing various parameters for each /. The maximum allowable 

• 
• array dimension of the program compiler dictates the maximum value of E max  to be 10. For 

• all the approximated upper bounds on BER computed,  Lm ax  = 8 is used for computational • 
• efficiency. 

• If an error event starts at some time (N-L)T or later, before the end of a hop, then an 
• 
• incomplete error event will occur. ( The estimated path will never merge with the true path.) 

• 
•

These incomplete error events starting near the end of a hop have the estimated phase path 

• differing from the true path in only a small portion and thus are also likely to occur. The • 
• 1  (3 L – 1) possible difference sequences corresponding to the incomplete error events at the 2 • 
• end of a hop are generated and their probabilities evaluated. 

• • 
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To summarize,  the  bit error rate upper bound is approximated by 

1 

eieEc 

E2  N—ei +I 

EjeE 1  

where E, is the set of complete error events having small equivalent distances and E 1  is the set 

of incomplete error events occurring near the end of a hop. 6; denotes the i th  error event in the 

set E, and ej  denotes the th  error event in the set El . e;  and 2 ;  are the number of bit errors and 

length of 6; respectively. 

4.1.4 Bit Error Rate Upper Bound Results 

The upper bound on the error performance of the hop-by-hop noncoherent receiver has 

been evaluated for a variety of correlative encoding and baseband pulse shaping schemes when 

the length of the frequency hopping interval is 4, 16 and 64 symbol intervals. For the hop 

length of 4 symbol intervals, the upper bound on the BER is evaluated exactly while for the 

longer hop intervals of 16 and 64, approximated upper bounds are evaluated. 

Minimum shift keying (MSK), duobinary MSK (DMSK) and tamed FM (TFM) encoding 

schemes with h = 0.5 and rectangular pulse shaping are compared as shown in Figs. 4.7 to 4.9 

for N = 4, 16 and 64 respectively. It can be seen that MSK performs much better than the other 

two schemes for the various hop lengths. When raised cosine pulse shaping is used, the bit error 

rate bounds for the three schemes are as shown in Figs. 4.10 to 4.12 for N = 4, 16 and 64 

respectively. Again, the higher order correlative encoding schemes have higher probability of 

error. 
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• 
• 
• Next, the effect of the hop length on the error performance for each modulation is 

• illustrated in Figs. 4.13 to 4.18. As expected, the performance of the receiver improves as the 

• hop interval lengthens. However, for the same degree of increase in hop length, the improve- • 
• ment in error performance is less for MSK and is more pronounced for the higher order 
• 
• correlative encoding schemes such as TFM. 
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Figure 4.7 	N=4, union bounds on Pe  for FH/MSK, FH/DMSK 
and FHTITM with rectangular pulse shaping 
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Figure 4.8 	N=16, approximated upper bounds on Pe  for FH/MSK, FH/DMSK 
and FHTFFM with rectangular pulse shaping 
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Figure 4.9 	N=64, approximated upper bounds on Pe  for FH/MSK, FH/DMSK 
and FH/TFM with rectangular pulse shaping 
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Figure 4.11 
• • • N=16, approximated upper bounds on P e  for FH/MSK, FH/DMSK 

and FH/TFM with raised cosine pulse shaping 
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Figure 4.12 	N=64, approximated upper bounds on Pe  for FHIMSK, FH/DMSK 
and FH/TFM with raised cosine pulse shaping 

-97.-  

1 0 -5 

• 
• - 	

• \ \ N  • - _ 

• -2 
• _ 	 • \ .\•,N.  

• 
• - - 

	

- 	 \ 	--.......,.., , 

	

10 -= 	
• 	."---........... 

n • 
• S 	- • - 

	

Ns. 	
"N

\ 

 FHITFM 
• 1:t 	-4 

Le 10 --.-- 	
_ 	 • 1  • • 

•
b-4 

 • - 	MI 	 • • N 
• 
•

C)  10 - 

	

	
\ 	

• 
\ >-. 

• I— 	 • 
•p 	I-7; 	 • 
• eiet 	-a 	

\ FH/DMSK 
< 10 • • 
S. 	 ‘ 

• rt 	 \ 
• a. 	

\ • 10-7 	 n • i • 
• \ 
• 10 	 FH/MSK I • 

• \• 

• 
• .- _ 

.. \ 	

\ 

\
I 

-9 10 ."-= • 
•  

 

•  10 
-la- 

• 0 1 è à À È é  7 é Ô 101'11.21.31.41-51.617 f a 1 "9 
• 
0 
• 
• 
• 
s 
• 



a 
I 0 

-98- 

<1% 

• 

—1 

—2 

en. 

••n•I 

IBM 

N = 4 

N = 16 

N = 64 

1 0 

3 
elm/ 

121 -  
•••Il 

PR
OB

AB
I
L
I
T
Y
 O
F
 B
I
T
 ER

RO
R 

10 -= 
• 

ad« 

—7 j 

—13 

—us 
1 0 

t 

\ 
0 	2 3 :4 	à 	1  ' 1011121314 ' ' 8  ' 151s 171819210 

SNR ( Eb/No ) in dB 

Figure 4.13 	Pe  bounds for FH/MSK with rectangular pulse shaping 



• 
• 
• • -99- 

n•n••1 

gm. 

maid 

\ 

\ 
\ • 

\ 
\ 1 

N = 4 

N = 16 

N =. 64 

\ 
\ 

\ \\ 

\\ 

n 

PI
 

• 121. 
• 
• 
• 12 • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 

n  10 

• 10 • 
• a 

• 
• 
• 

• 
• —7 10 • 
• 
• • -e 10 ---- • 
• • • 1 0 • • • 
• 
• 
• 

• 

• 
• 
• 

à:4 	è 	é à 1  1 1 1  10 11 12 13 14 115 1 1f3 1 17 18 19 210 
SNR < Eh/No )  in a 

Figure 4.14 	Pe  bounds for FH/DMSK with rectangular pulse shaping 



-100- 

0 1 2 3  4.5.6  7 8 9 10 11 12 13 14 15 16 17 18 19 22 

SNR Eb./No) in dS  

Figure 4.15 	Pe  bounds for FFITITM with rectangular pulse shaping 
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4.1.5 Performance Improvement By Transmitting Known Initial Symbols 

As shown in section 4.1.1, the equivalent distance of the error path corresponding to an 

error event is smallest when the error event starts at the beginning of the hop interval. The 

probability of any error event occurring is then highest at the start of a hop interval. As can 

be seen from Figs. 4.1 to 4.3, the equivalent distance of an error event increases if the same 

error event starts later. Hence, if a short segment of known symbols were transmitted at the 

start of a hop interval, then any error event would have to start after the initial known 

synchronization sequence segment. The decoder is less likely to make erroneous decisions on 

the subsequent data symbols. The error performance of the receiver would then improve. The 

obvious ciisadvantage is that a fraction of the available transmission time is used by the initial 

sequence segment, which does not carry data information. 

Let ô  be the number of known symbols to be transmitted at the beginning of each hop. 

At t = 8T, the decoder knowing the ô  transmitted symbols, will choose the correct path through 

the modulation trellis corresponding to the 6 symbols and reject the other M 5 ' — I possible 

paths. At time (6 + 1)T, this path will be extended to each of the n states in the trellis. 

Subsequent decoding proceeds as usual, that is, the decoder computes and compares the M 

possible transitions to each state in the trellis. Only the one which has the largest equivalent 

likelihood up to the current time, is retained as the survivor for each state. At the end of a hop, 

the sequence corresponding to the path with the largest equivalent likelihood is then taken as 

the estimated sequence. 

The final decided sequence ai  would have alp, a' 1 , .. 	- 1 equal td ao, al, , _ , since 

they are known to the decoder. For a hop interval of length N symbol intervals, the number 

of actual data symbols is only N — 6. Hence the number of possible transmitted sequences 

during a hop interval is 2 N -6 . Since the first 6 a'i's are correct, we have 
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•

41 
• 
• 
• = 0 	for i = 0, 1, 	, 6 - 1. 	 (4.45) 
• 
• The upper bound of the bit error probability when a known initial sequence is transmitted is 

• then given by 

• 
• 1 	1') 

Pe 5 	wi (-1 ) 
e(

P(1 ) ,  
• N - 

(4.46) • 0 
• 0 	for 	i = 0, 1, ... 8 - 1 

• 
• where 12' = 2N -6  is the number of possible transmitted sequences, w'(^1) = 2 N-5- el) is the  

• number of pairs of a' and a corresponding to the difference sequence ^I, e(^1) is the number of 
• 
• bit errors for the error path corresponding to "f. P(i) is the probability of error by detecting 

•

• 
a' rather than a and is given by Eqs. (4.34) to (4.36). 

0 
• The total number of -I's is 3" - 1  rather than 3N  - 1,  since the first 6 	are o's re- 

• 
•

• 	sulting from decoding a known sequence segment. I p(1)1 - needed for calculating P(1) becomes 

• 
• 
•

N 	 1 NT 
let) I 2  = { -1 [ST + Ç1  cos cos e(t, -1)dt )2  + { __f sin q,b(t, ^i)dt } 2 . 	(4.47) 

•

• 	 NT 	6T 	 NT ST • 
The performance improvement obtained by transmitting an initial segment of 1, 2 and 

• 
• 3 known symbols has been evaluated for MSK, DMSK and TFM with h = 0.5 and rectangular 

• pulse shaping. Figs. 4.19 and 4.20 show the results obtained for MSK when the number of data 

•
• 

bits transmitted during a hop is 4 and 8 respectively. The gain in performance in transmitting 

• 
• the first known symbol is more significant than for the subsequent 2 or 3 symbols, as can be seen 

• from these figures. For the shorter data length of 4 as shown in Fig. 4.19, the improvement is 

• also greater than for the data length of 8 as shown in Fig. 4.20. When the modulation scheme 

• is DMSK, the upper bounds on the BER for transmitting 4 and 8 data bits with different num-

b 

• 

• 
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bers of known symbols are shown in Figs. 4.21 and 4.22. We can see that large improvement 

in BER is obtained for the case when the data length is 4, by just using an initial known symbol 

segment of one symbol. However, the improvement is not so pronounced for the longer data 

length of 8 bits, as shown in Fig. 4.22. For TFM with h = 0.5 and rectangular pulse shaping, 

the results are shown in Figs. 4.23 and 4.24 for transmitting 4 and 8 bits respectively. The 

observations are siMilar to the cases of MSK and DMSK. 
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Figure 4.19 	Bound on Pe  of FH/MSK with rectangular pulse shaping, 
4 information symbols and 0 to 3 initial known symbols 
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Figure 4.20 	Bound on Pe  of FH/MSK with rectangular pulse shaping, 
8 information symbols and 0 to 3 initial known symbols 
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Figure 4.21 	Bound on Pe  of FFI/DMSK with rectangular pulse shaping, 
4 information symbols and 0 to 3 initial known symbols 
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Figure 4.22 	Bound on P e  of FH/DMSK with rectangular pulse shaping, 
8 information symbols and 0 to 3 initial known symbols 
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4 information symbols and 0 to 3 initial known symbols 
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4.2 Performance In The Presence Of Jamming 

In the previous section the error performance of the noncoherent receiver has been 

evaluated under additive white Gaussian noise. In this section, the performance of the non-

coherent slow FH/CPM spread spectrum system in the presence of intentional interference 

(jamming) will be derived. There are a large number of jamming strategies that a jammer may 

use for interfering with the spread spectrum communication. Depending on the jammer's 

available resources and sophistication, usually the familiar exponential relationship between er-

ror probability and signal to noise ratio will be degraded to an inverse linear relationship be-

tween error probability and signal to jammer power ratio [3, p.555 ][8,9]. 

There are a large number of jamming signals and jamming strategies postulated [3], such 

as barrage noise, partial band noise, single-tone, multiple-tone, pulsed noise and repeat back 

jamming. While some jamming strategies may be postulated so as to provide the worst case 

performance analysis of the system and may not be realistic in actual practice, some jamming 

strategies are practical and are real threats to the spread spectrum system. Two most effective 

jamming strategies for frequency-hopped systems are partial band noise jamming and multiple-

tone jamming. Multiple-tone jamming is the tone equivalent of partial band noise jamming and 

has been shown to be more efficient than partial band noise jamming for FH/MFSK and 

FH/DPSK [3, p.597-601]. The performance of the noncoherent slow FH/CPM system under 

partial band noise jamming will first be evaluated, followed by performance analysis under 

multiple-tone jamming. 
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4.2.1 Performance In Partial Band Noise Jamming 

Hopping the frequency over a wide bandwidth makes broadband noise jamming of the 

bandwidth difficult and much less effective. Jamming power can be more effectively used by 

transmitting all the available power in a limited bandwidth which is smaller than the spread 

spectrum system bandwidth. Because of the smaller bandwidth, the partial band jamming signal 

is easier to generate than the barrage noise jamming signal. The jamming model we consider 

is that of a partial band noise jammer [3, p.570]. In this model, the jammer uses all its power 

in only a fraction of the spread spectrum bandwidth while the remaining fraction of the system 

bandwidth has only background thermal noise present. The partial band jammer is particular 

effective against a frequency-hopped spread spectrum system because the signal will hop in and 

out of the jammed band and can be in effect useless while in the jammed band [3]. 

Following the approach used in [3, p.570], we assume that the frequency hopping pattern 

is essentially random and that the partial band noise jammer does not know or is unable to 

predict the hopping patiern. Interference from a jammer during a hop interval is assumed to 

be independent of the interference in other hop intervals. As the carrier hops to a frequency 

band which is jammed, the jamming noise signal is assumed to stay constant throughout the 

complete hop interval. The channel is then memoryless from hop to hop and thé BER can be 

calculated using quasi-static analysis. That is, the error probability is calculated separately for 

hops with thermal noise interference and hops with thermal noise plus jamming interference 

and the two results are averaged. 

Let the fraction of the spread spectrum bandwidth which is jammed be denoted by p. If 

the total jammer power is J and the spread spectrum bandwidth is W, the partial band jammer 

one-sided power spectral density is 
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Nj  — 
pW 

over a bandwidth pW. When p = 1, we have the case of full band noise jamming or barrage 

noise jamming [3]. 

Let N, be the one-sided power spectral density of the Gaussian channel thermal noise. 

Over the janimed portion of the transmission band we have both the jamming and Gaussian 

thermal noise. Assuming that the jamming noise and the Gaussian thermal noise are statistically 

independent, the jamming noise and thermal noise can be combined into a single Gaussian 

random noise process of total one-sided spectral density of N, + NJ  W/Hz. The remaining 

portion of the band will have thermal Gaussian noise of one-sided spectral density of N, W/Hz 

only. 

The average bit error probability is then given by 

Pe  = Pr[jammed] Pr[ bit error I jammed ] + Pr[not jammed] Pr[ bit error I 

p Pr[ bit error I jammed ] + (1 – p) Pr[ bit error I not jammed ] 

Eb 	 Eb 
P Pe( 	 ) 	( 1 P) P ( — N0 + NJ 	 e  No  

Eb  
where Pe( —

Nn
) denotes the bit error probability as a function of the ratio of signal bit energy 

to the appropriate noise power spectral density. 

The evaluation of the bit error probability for our slow FH/CPM system with the hop-

by-hop noncoherent receiver is difficult. Hence only an upper bound can be obtained by 

substituting the upper bound expression for the bit error rate presented in the previous chapter 

into Eq.(4.49). The BER under partial band noise jamming has an upper bound 

(4.48) 

not jammed ] 

( .4.49) 



(4.51) 

(4.52) 
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— 	1 	e(^1) 	 Eh 

	

p 	E [PP(2 , 	N  ) 

	

e 	 + j 	

Eb + (1 – p) P( — 1, 

-I 0 0 

where all notation and symbols are the same as defined previously, except that the error 

Eh  
probability P(y) is now denoted by P(^1, —

N,
) with the second argument displayed to indicate 

the dependence on the signal bit energy to noise density ratio. 

When the spread spectrum system is intended for operation in a jamming environment, 

the maximum possible transmitter power is generally used and thermal noise can be safely 

neglected. Eq. (4.50) can then be simplified to 

e(1) 	Eh  

N 
5 	I E wc,i) 	 [ p P(, j  )1. e   

The bit energy to jammer noise spectral density ratio can be expressed as 

Eh 	p w 
Nj  —P  J R 

where P is the signal power, J is the jammer power, W is the spread bandwidth and R = 1/T 

is the data rate. Substituting Eq. (4.52) into Eq. (4.51), the bit error rate upper bound is then 

expressed as a function of the parameter (P/J)(W/R) by 

P W 
[P P(IP T 	)]. P 	- N 

(4.50) 

(4.53) 



••
••

••
••

••
••

••
••

••
••

• •
••

••
• •

••
••

••
••

••
••

••
••

••
••

••
••

••
•,  

- I 1 7- 

When the system is jammed the signal power to noise density ratio is low and the usual 

high SNR approximation is not accurate. All 	(3 N  —1)  difference sequences ^i s s are then 

required for the evaluation of the upper bound on the averge bit error probability given by Eq. 

(4.53). Consequently, we are able to obtain the upper bound on the average bit error rate under 

partial band noise jamming only for systems with small hop length N. 

The performance of FH/CPM systems with MSK, DMSK and TFM modulation schemes 

with h = 0.5 and rectangular pulse shaping, have been evaluated in the presence of partial band 

noise jamming with the fraction of jammed bandwidth p being 1.0, 0.2, 0.04, 0.008. 0.0016 and 

0.00032. For a hop interval of 4 and 8 symbols, the error performance for these three modu-

lation schemes is illustrated in Figs. 4.25 to 4.30. For a given signal to jammer power ratio Pi, 

 there is always an optimum value of p, which causes the maximum degradation in BER of the 

spread spectrum system. The sophisticated partial band noise jammer will always choose the 

optimum value of p, which maximizes the BER of the system, so as to cause maximum de-

gradation to the system performance. The worst case performance of the system then becomes 

inversely proportional to the signal to jammer power ratio as evident from these figures. 

Comparing the performance of MSK, DMSK and TFM as shown in Figs. 4.25, 4.26 and 4.27 for 

N = 4 and Figs. 4.28, 4.29 and 4.30 for N = 8 respectively, we can see that while MSK performs 

much better than the other two schemes under normal additive white Gaussian noise environ-

ment or full band noise jamming, the performance of the three schemes for the same hop length 

is quite similar under worst case partial band noise jamming. It can be seen that the worst case 

performance under partial band noise jamming worsens as the hop length increases from N = 4 

to N = 8. 
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Figure 4.30 	Pe  of FH/TFM with rectangular pulse shaping and N=8 
under partial band noise jamming 
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• 
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• 

• 
• 

The jammer will choose q and the tone spacing so that the optimum degradation occurs. Let 

P = -E— be the power of the frequency-hopped CPM signal. For simplicity, suppose thai  

4.2.2 Performance Under Multiple-Tone Jamming 	 • 

• 
• 

• 

• 

• 
= ;71  • 	 (4.54) 

• 
thermal Gaussian noise is negligible. The dehopped received signal under multiple-tone jam- 

• 
• 

r(t) = s(t, O i ) + Jg (t); 	 iNT < t < (i + 1)NT, 	 (4.55) 	• 
• 

	

where s(t, a, O i ) denotes the transmitted signal in the i Ill hop interval as given by Eq.(3.4) re- 	 • 
• 
• 

s(t, a, O i) = V2-1:7  cos[ 2efet + (t, a) + O i  J; 	 iNT < t < (i + 1)NT, (4.56) 	• 
• 
• 

and J (t) denotes the continuous-wave jamming tone signal given by 

• 
• J (t) = V-27171 -  cos[ 27rfc t + 2/rfjt + (pj  ], (4.57) • 
• where J is the power of the jamming tone, fj  is the jammer tone frequency offset from the 
• 

intermediate carrier frequency fc  after being dehopped and ckj  is a random phase. Assuming that • • • • 

In some cases, a more effective jamming strategy can be achieved with, multiple-tone 

jamming [3]. The following analysis essentially follows the approach used in [3, p.597]. The 

jammer is assumed to have complete knowledge of the transmitted signal structure as well as the. 

exact received signal power. However, the jammer does not know or is unable to predict the 

frequency hopping pattern. The jammer divides his total jamming power J into q equal power 

continuous-wave jamming tones distributed over the spread spectrum system bandwidth W. 

Each continuous-wave jamming tone signal will have power equal to 

ming is given by 

written below 
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• 

• the multiple-tone jammer knows the transmitted signal structure, the jammer will always select 

• the tone frequency such that 

• 27,fit = 	–a). 	 (4.58) 
• 
1111 
• That is, the jamming tone is one of the transmitted signals. ( For example when the pulse 

• 
shaping is rectangular and the tone jammer selects fj  = —h , then the jamming tone signal • 2T 

• is the same as the signal, which would have been transmitted had the correlated symbols been 
• 
• all l's.) The hop-by-hop receiver computes the equivalent likelihood for each of the possible 

• 
•

sequences a'. When Jq  > P , the receiver will always choose a as the estimated transmitted se- 

• quence [ Appendix A J.  Hence for a given jammer power J and knowing the signal power P.  1111> 
• the jammer will choose 

= L_L (4.59) 
• 
• 
• where  Lx  .1 denotes largest integer less than x. Of course, there must be at least one jamming 
• 
• tone and the maximum number of jamming tones is limited by the total number of frequency- 

• 
•

hopped bands in the spread bandwidth. Let Wd  be the bandwidth of the dehopped signal. The 

• number of frequency-hopped bands will then be W/Wd  . Hence, 1 5 q 5- WiWd  . When 

jammed is then 

• 

• p — 	 

	

W/Wd 	 (4.60) 
• 
• 
• For a slow FH/CPM system with a hop interval length of N symbol intervals, there are 

•
• 

= 2 N  possible transmitted sequences. The presence of a jamming tone with power greater 

111 	than the signal power will force the hop-by-hop receiver to choose one particular sequence ç 

• • 
• • 

• 
• 5- 1.0, no error will be made, since there is insufficient jammer power to jam even a 

•
single frequency-hopped band. The probability of any one frequency-hopped band being 



P[ bit error I jammed] = 1 

2 N 
(4.61) 
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Assuming that all sequences are equiprobable, when a jamming tone is present in the 

frequency-hopped band the bit error probability is given by 

1 = 
2 

where ( 	— 
e 

N! 
 e ! (N-e) ! 

Since thermal Gaussian noise is assumed to be negligible, 

probability of bit error is zero when the frequency-hopped band is not jammed. The bit error 

probability is then given by 

Wd L P j 

Wd 	 1.0 5- LLJ 	\-L-v- 7,7- 	 P 	Wd - 

Lip_i  <1.0,  

(4.62) 

where the number of jamming tones is taken to be the optimum value as given by Eq.(4.59). 

The performance of the system will depend on the number of frequency-hop bands. For a given 

spread spectrum system bandwidth W, the smaller the frequency-hopped signal bandwidth Wd 

the greater number of tones required by the jammer to effectively jam communications. If we 

use the 99 percent poweer bandwidth of the frequeency-hopped signal as the bandwidth of each 

frequeenccy-hopped band, the bit error probability can be rewritten in terms of the parameter 

(P/J)(W/R) as 



0.5 

1 	 
(P/J)(W/R) 

0.0 

P W 
T < B ' 

P W B — 

	

JR 	R 
< P W 

R 	JR' 

(4.63) 

• 
• 
• 
• 
• 
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• • • • 
• • • • 
• 

• 
• 
• 
• 
• 
• 
• 

• 

• 

where B is the 99 percent bandwidth normalized to the data rate, of the frequency-hopped sig-

nal. B has been evaluated for various modulation schemes previously in Chapter Two and listed 

in Tables 1 and 2. For example, B. = 1.1875, 0.875 and 0.7656 for FH/MSK, FH/DMSK and 

FH/TFM with h = 0.5 and rectangular pulse shaping for N k 1024 symbol intervals. Comparing 

with FH/DPSK which has B = 16 [3, p.127], we see that FH/MSK, FH/DMSK and FH,TFM 

outperform FH1DPSK by 11.29 dB, 12.62 dB and 13.2 dB in the inverse linear region. The 

more compact the frequency-hopped signal bandwidth, the greater the improvement in 

performance under multiple-tone jamming. Hence using slow FH/CP1v1 improves immunity to 

multiple-tone jamming compared with conventional FH/IvIFSK or FH/DPSK. 

• 
• 
• 4.3 Summary 

•
• 

In this chapter, the performance of the hop-by-hop noncoherent receiver is evaluated 

first under additive white Gaussian noise and then in the presence of partial band noise jamming 
• 
• and multiple-tone jamming. An upper bound on the bit error probability of the receiver under 

• white Gaussian noise is derived using a union bound approach. The large number of possible 

•
• error paths makes approximation necessary when the hop length is long. The upper bound is 

• approximated by ignoring those error paths which have large equivalent distances and hence are 
• 
• less likely to occur. Results are presented for MSK, DMSK and TFM with h = 0.5 and both 

• 
• 

rectangular and raised cosine pulse shapings for three different lengths of hop interval: N = 4, 

• 16 and 64. The error performance is better when the length of the hop interval is lengthened, 
• 
• as expected. The error performance worsens as higher order correlative encoding is employed. 

• 
• • • 
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Performance improvement when a segment of known symbols are transmitted initially at the 

start of a hop interval, is also investigated. The results show that for the three schemes namely 

MSK. DMSK and TFM, all with h = 0.5 and rectangular pulse shaping, transmission of one 

known initial symbol will improve the BER significantly for short hop sequences. Transmitting 

longer known initial symbol segments gives only slight additional improvement in performance. 

Also, for long hop lengths, the improvement in BER is not so pronounced as with the short hop 

interval Cases. 

An upper bound on the bit error probability in the presence of partial band noise jam-

ming has been derived. Error results under partial band noise jamming are presented for IvISK, 

DMSK and TFM with h = 0.5 and rectangular pulse shaping for various values of the fractional 

band jammed p. It can be seen that the three schemes performs quite similarly under worst case 

partial band noise jamming. The performance of the receiver in the presence of multiple-tone 

jamming is also derived. The antijam capability to multiple-tone jamming will be enhanced by 

using bandwidth efficient slow FH/CPIvl as compared to co,nventional schemes such as M-ary 

noncoherent FSK. 
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•
Chapter Five 

•
SYSTEM SIMULATION 

0 • • 
• Theoretical upper bounds on the bit error probability of the hop-by-hop ML noncoher- • 
• ent receiver for various modulation schemes, baseband pulse shapings and hop lengths have 

been evaluated in the previous chapter under additive white Gaussian noise. The upper bounds 

• obtained can serve as an index to the relative performance of the different modulation schemes. 

• In this chapter, a computer simulation of the slow frequency-hopped spread spectrum systems 

• 
with the hop-by-hop sequence estimation will be presented. The objective of the simulation is 

• to evaluate the performance of the system under additive white Gaussian noise in order to 

• indicate the tietness of the theoretical error bounds computed previously and to obtain a more 

O  
• precise performance evaluation of the system. Also, modification of the decoding algorithm can 

• be easily incorporated in order to observe system performance improvement when more than 

• one survivor is kept for each state in the modulation trellis. ( A brute force maximum likelihood 

• 
• decoder would keep all possible paths through the trellis.) 

O 
• 
• Due to the large amount of computing time required for the simulation, only two systems 

• 
employing two different modulation schemes have been simulated. The choice of the systems • 

• to be simulated is based on the findings obtained thus far. As can be seen from Chapter Two, 
• 
• the spectrum occupied by the frequency-hopped signal is rather insensitive to the type of 

• 
correlative encoding scheme employed when the hop interval is short. Hence, for systems  de-

5 	 signed to transmit a few symbols over each frequency hop, a simple continuous phase modu- • 
• lation scheme will do well in regard to spectrum economy. For systems transmitting a large 

• 
•

number of symbols during a hop interval, it would be beneficial to employ a suitable correlative 

• encoding scheme in order to obtain a more compact spectrum for enhancing the antijam capa- • • 
• 
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bility of the system, and for allowing more users in a multiple access system. With regard to 

receiver complexity, a high order correlative encoding scheme will generally require a more 

complex receiver due to the increased number of correlated output levels. More matched fil:ters 

and more states in the decoder are usually required for correlative encoding with a higher order 

system polynomial. However for a long hop interval', the increased receiver complexity with a 

higher order correlative encoding scheme is accompanied by increased spectral efficiency. 

The two systems simulated both have the modulation index h equal to 0.5, corresponding 

to four possible phase states. Actually only two phase states are possible at odd bit times and 

the other two possible at even bit times. Hence two phase states are actually required in the 

Markov state description of the signal. This choice of modulation index results in the lowest 

number of states in the state trellis regardless of the correlative polynomial employed. The first 

modulation scheme considered is minimum shift keying (MSK) and the other is the simplest 

form of correlative encoding, namely duobinary MSK. For both schemes, the baseband pulse 

shaping is rectangular, allowing possibly easier implementation of matched filter banks than the 

raised cosine examples. For each modulation scheme, systems with three different hop lengths 

of 4, 16 and 64 symbols have been simulated. 

5.1 System Model 

The system model used in the simulation is shown in Fig. 5.1. The data source provides 

binary data { a k  ) at a rate of 1/T bits per seconds. For MSK, the binary data goes directly 

into the CPM modulator. For duobinary MSK, differential precoding [19,48], which is generally 

applied to prevent error propagation, is applied to avoid the problem of unknown initial en-

coder state, which would result in decoding ambiguity of some input sequences. Consider the 

input sequences with alternate + 1 and -1. When the input sequence is 

{ + 1, -- 1, + 1, — 1, ... } and the initial encoder state is -1, the duobinary encoded sequence 
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• 
• 

	

will be a sequence of all zeros. When the input sequence is {  -1,  + 1,  -1,  + 1, ... ) and the 	 • 
• 

initial encoder state is + 1, the same all zero duobinary sequence will result. Even if the receiver 

	

correctly estimated the transmitted correlated sequence as an all zero sequence, the decoder 	 • 

without prior knowledge of the initial encoder state cannot tell whether a 

	

{ +  1,  -  1,  +  1,  -  1,  . . . ) or a ( - 1, + 1, - 1, + 1, ... ) is the input data sequence. Worst of all, 	 • 
• 

picking the wrong sequence leads to all bits transmitted over the hop being in error. A trivial 

• 
solution to this problem is to require the initial state of the encoder at the start of every hop 

• interval to be known by the decoder. However, this would waste a fraction of the time interval 
• 

	

for transmitting the initial encoder state, since the initial encoder state at the beginning of every 	. 	• 

hop would otherwise be the last input symbol in the previous hop interval. This input sequence 

• 

	

ambiguity due to unknown initial state can be avoided by differential precoding of the input 	 • 
• sequence. The input sequence { a k  ) is transformed into another set of independent binary 
• 

random variables { b k  } , with 
• 

bk = 	bk - 1 	if ak =  +1 	 • (5.1) 
bk 	bk-1 	if ak  =  - 1 	 • • 

• 

	

This precoded symbols { bk  ) then go to a duobinary encoder yielding duobinary symbols 	 • 
• 

{ Jk ) , which are given by 

• 
, 	4_ 1, uk 	- 1 ) 	 (5.2) 	• 2 

• 

	

The differentially precoded duobinary sequence will still depend on the initial encoder state but 	 • 
• 

	

different initial encoder states will produce the same precoded duobinary sequence but with 	 • 
• opposite signs for all the duobinary sequence elements. The estimated duobinary sequence • 
• {  k  } is decoded back to the input sequence by 
• 
• 

œi k = 2  1.1'0 - 1 	 (5.3) 

C  
C 

 lb 
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• 
• 
• Hence, the maximum likelihood precoded duobinary sequence will always be decoded back to 

• 
•

the same input data sequence independent of the initial encoder state. For FH/DMSK with 

• differential precoding, the binary data first goes through a differential precoder followed by the 
• 
• duobinary encoder before going into the CPM modulator. The frequency hopper then transmits 

• the signal at a carrier frequency that hops every NT seconds. Vvre assume that the only 

• disturbance on the channnel is the additive white Gaussian noise. The hopping and dehopping 
• 
• processes are assumed to be perfectly synchronized and the dehopper output is the exact replica 
• 
• of the transmitted signal but with random initial phase occurring at the beginning of every hop 

• 
interval and the Gaussian channel noise added as given by Eq. (3.1). The dehopped received 

• signal then goes to a bank of matched filters, which correlate the dehopped signal with every 

• possible signal phase trajectories over a symbol interval. The matched filter outputs then go to 

• 
•

a phase weighting network to provide the sequential decoder with the inphase and quadrature 

partial likelihoods for every possible signal over a symbol interval. These inphase and 

• quadrature partial likelihoods for every possible signal phase then go to the sequential decoder, 

or 
• which estimates the transmitted sequence on a hop-by-hop basis, as described in section 3.1. 
• • 
• 5.2 Simulation Method 

• 
• There are basically two ways to simulate the effects of interferences in a noisy commu- 
• 
• nications system. The first is to simulate only the noise-free signal path which is deterministic, • 
•

and to utilize knowledge of the statistical properties of the noise or any other random inter- 

• ference to calculate their effects. The second approach is to use a straightforward Monte-Carlo 
• 
• simulation where all random effects are simulated as well [49]. The advantage of the first ap- 
• 
• proach is that it is computationally efficient. However, the implementation of the technique 

• 
requires extensive knowledge of the random processes. On the other hand the Monte-Carlo 

• 
• simulation approach does not usually require as much knowledge of the statistical properties 
• 
• of the random processes. The disadvantage is that it may be computationally less efficient, 

• 

• 
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especially if the events of interest occur only rarely ( for example occurrence of errors in a high 

signal to noise ratio). 

Since the sequential decoder is a nonlinear system with memory, the effect  of  preceding 

noise and signal components on the present samples are very difficult to evaluate. A Monte- 

Carlo simulation of the sequential decoder operation is then necessary. As mentioned in the 

previous section, the channel noise is modelled as additive white Gaussian noise and is assumed 

to be the only disturbance to the system. The received signal plus noise goes through a bank 

of matched filters followed by a phase weighting network to provide the decoder with the in-

phase and quadrature correlations for every possible phase path over a symbol interval. Since 

the effect of the noise can be determined up to the decoder input, a noise-free signal path up 

to the decoder input can be simulated to avoid unnecessary simulation of the matched filter 

operation. Inphase and quadrature partial likelihoods for every possible signal phase path in a 

symbol interval are calculated as if there were no noise present. The filtered noise components 

are then added to form the likelihoods going to the decoder. Simulation of the system up to 

the sequential decoder simply requires generation of the inphase and quadrature partial likeli-

hoods for a given transmitted sequence. 

5.2.1 Inphase and Quadrature Partial Likelihoods 

The inphase and quadrature partial likelihoods as given by Eqs. (3.9a) and (3.9b) are 

rewritten below. 

'

(k+  1)T 

kT 	
r(t) cos[2/rfc t + 0(t, ci)] dt 

(k + 1)T 
6s,k(c1) (i) = f

kT 	
r(t) sin[27rfc t + /b(t, a')] dt 



... • 
• 
• 
• 
• 
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o 
• 
• 
• Both partial correlations can be further decomposed by expanding the cosine and sine terms in 

• Eqs. (5.4a) and (5.4b) as done in section 3.1.3. Without loss of information, Eqs. (5.4a) and 
• 
• (5.4b) can be used to express bc,k (a, a') and (5s,k (a, a') . During the k th symbol interval in the 
• 
• i t h  hop, the dehoppecl received signal is given by 

• r(t) = 2E cos[27rfc t + 0(t, a) + O i l + n(t) (5.5) 
• for iNT < t < (i + 1)NT 
• 
• 
•

where the symbols and notation are the same as those defined and used previously. n(t) is the 

• additive Gaussian bandpass noise with zero mean and one-sided power spectral density N o  Wi'Hz 

• which can be represented by 

• 
• 
• n(t) = \,'n(t) cos 2r.fct - \/n5 (t) sin 2ec t 	 (5.6) 

The baseband processes  n(t)  and  n(t)  are statistically independent, white and Gaussian with 
• 
• zero mean and one-sided spectral density of No 	Substituting Eqs. (5.5) together with 
• 
• (5.6) into Eqs. (5.4a) and (5.4b) and assuming that 27rfc t > 1, we obtain the partial likelihoods 

• 
•

corresponding to a transmitted sequence a and an estimated sequence a over the k th  symbol 

• interval as 
• 
• 
• ' 
• 6c,k(e', a') = -1- V 2E 	r (k + 1)T 

COS[IP(t, ai ) — I,b(t, a) — Oi ] dt 
• 2 	T J kT 

• + 	1 	r(k+ 1 )Tn
c(t)  COS 1,(t, a') dt + 	

1 	r (k + 1)T 	
(5.7a) 

. 
n(t) sin lb(t, a') dt 

• V-2-  J kT 	 V-2- j kT  

• , 

• 

• and 

• 
• 
• 
• '5  s,k(q- ,  a') = —2 	T i kT 

1 V 2E 	r (k +1)Tsin  
[ 1)(t, a') - 0(t, a) - O i  ] dt 

1 	f  (k + 1)T 	 1 	f(k + 1)T
ns(t) cos .0(t, a') dt

(5.7b) • 
• + 	n(t) sin /,b(t, a' ) dt - V 

V-2- 	 F. kT 	- 	 kT 
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Let 

(k + 1)T

fkT 

 (k + 1)T 
= f 	n(t) cos .0(t, a') dt + 	n(t)  sin '(t,  a') clt 

(k + 1)T 	 (k + 1)T e

kT 	 kT 
u1(t) sin iP(t, c2) dt — f 

	
n(t)  cos p(t, a') dt 

Eqs. (5.7a) and (5.7b) can be rewritten as 

„ 
6c.k(ce,d) 	1 V2E 

2 	T 	kT 	
cos[  e(t, (i) - 0(t, 	— 0 ;  ] clt + _ 	 riC k(Cei ) 	( 5 . 9a) 

V2 

1 V2E (k+1)T  
65.k(cLe = 	

r 	sin[ 	ce') — lb(t, a) — O i  I dt + 	 n(a)
2 	T 	kT 

ri c,h(d) and ns.k (a') are both Gaussian and zero mean, since  n(t)  and  n(t)  are both zero mean 

and white Gaussian processes. Their variances can be shown to be 

var[ nc ,k(Q_e') 	= 

var[ n5,k (a') ] = 

Normalizing the Gaussian noise variables by their variances, We obtain 

VF\    f(k + 1)T 
c) — 	 {V 2E—  — 	cOSP(t,) ect, - Get xc.k(d)} (5.11a) 

2 	No  T kT 

(5.9b) 



(5.12b) xs,k() 

.1\/ 	r 	2E 	1 r(k+i)T 
Ss.k(a ,  ) 	 sinP(t, a') – 0(t, 	– Oddt + Xs.k (a')) (5.11b) 

2 	No  T J kT 

Since the constant —1 "\r"-No7F in Eqs. (5.11a) and (5.11b) is common in the comparison for all 
2 

estimated paths, hence it can be dropped, resulting in 
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6c k(g-• = ye_ 1 

rkT 

 (k-f- 1)T 

T J 
cos[ 2P(t, 	— zb(t, 	— 	cit + Xc.k (a') 	(5.12a) 

ss.k 	ce , )  _ f  (k + 
stn[ 1/)(t, c2) — e(t, 	— O dt + 

T kT 

where —
N 

is the signal to noise ratio and X, ,k (a2) and Xs  .(ck') are the filtered noise components – 
0 

of Unit variance. 

In order to generate the likelihoods efficiently, we note thati,b(t, a') – IP(t. a) = 	(t, i) 

with "i = a' – a and that the signal phase can be expressed as an active time varying phase plus 

an underlying constant phase state. Hence, the inphase and quadrature likelihoods can be ex-

pressed as 

8c,k4,(2) = 	—
E { cos(C k  – 0 i )C(dk ) – 	– 0i )S(dk) ) + X,,k (a') 	(5.13a) 

and 

6s,k(q-,q1) = #V2 —
E 

{  sin( (k  – 0 i )C(dk) + cos(( k  – 611)S(dk) ) 	Xs ,k(cY) 	(5.13b) 

where C(d k ), S(d k ), C k  and dk  are defined in Eqs. (4.36) to (4.38) rewritten below. 



I 
(k + 1)T 

S(dk) = — 	sin 27rhd kv(t) dt 
T kT 

(5.14b) 

(5.15) 

(5.16) 
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j.(k+orr 
C(cl k ) = _L 	 cos 27rhd k v(t) dt 

T kT 
(5.14a) 

k-1  
= irh E cin 

d k  is the correlative encoded difference sequence given by 

1 vlin  dk = —r_ 
1=0  

where C is the normalizing constant as defined by Eq. (2.6) and the kis are the coefficients of 

the correlative encoding polynomial. 

All possible integrals of the cosine and sine of the possible phase over a symbol interval, 

C(dk ) and S(d k) , are initially calculated and stored in an array. To get the inphase and 

quadrature correlations over the k th symbol interval for an estimated path, the correlated 

difference symbol d k  is first determined by subtracting the correlated symbol of the transmitted 

path from the correlated symbol of the estimated path. C(d k ) and S(dk ) can then be obtained 

through table lookup. The correlated difference phase state ( k  as  defined by Eq. (5.15) can be 

obtained simply as the phase state of the estimated path minus the phase state of the transmitted 

path. The likelihoods can then be easily determined according to Eq. (5.13a) and (5.13b). 
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5.2.2 Generating the Filtered Noise Components 

The filtered noise components Xc.k (a') and Xs, k (a') in Eqs. (5.13a) and (5.13b) are the 

normalized n c,k (a') and ns,k (a1 ) respectively. They are Gaussian random variables with zero 

mean and unit variance and are given by 

(k+1)T 	 (k+ 1)T 
Xc,k(d) = fkT 	X(t) cos /,b(t, 	dt + f 	X(t) sin (t, a') dt, 

kT 
(5.17a) 

(k +1)T 	 (k + 1)T 
Xs,k(q.1 ) = fkT 	X(t)  sin '(t,  a') dt – f 

kT 	
X5 (t) cos 0(1. a') dt, (5.17b) 

where  X(t)  and  X(t)  are the normalized  n(t)  and n5 (t) respectively, and hence are statistically 

independent. white Gaussian processes with zero mean and one-sided spectral density of unity. 

It can be shown that 

E{ Xc.k (d) Xs , k (d) } = 0. 	 (5.18) 

That is, noise components of the inphase and quadrature partial likelihoods resulting from 

matched filtering of the clehopped received signal matched to a particular signal corresponding 

to a' , are themselves uncorrelated. However, it can be shown that 

E{ Xc,k (c2) X, 	 1 f(k+1)T,k (a) } = — 	cos[ /(t, a.') – 1/ (t, a) dt, 
T kT 

jr0(+1yr 
E{ Xc,k(cLei ) Xs,k(q-) 	= 	 sin[ IP (t, g..1 ) 	c.1) dt. 	 (5.20) _77 

kT 

(5.19) 

Hence, the noise component of the output of the filter matched to the inphase signal component 

for a' may be correlated with that from the inphase matched filter for a according to Eq.(5.19). 
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The noise component of the output of the filter matched to the inphase component for a' may 

also be correlated with the noise component of the output of the quadrature matched filter for 

a as indicated by Eq. (5.20). 

Depending on the modulation scheme employed for transmission, the noise components 

(Xc &V), Xs,k(ai)) of the inphase and quadrature partial likelihoods of different signals over a 

symbol interval can be generated simply as independent Gaussian random variates, only if their 

correlations as given by Eqs. (5.19) and (5.20) are zero. In order to generate the filtered noise 

components having correlations given by Eqs. (5.19) and (5.20), Eq. (3.23) for the phase over 

the k th  symbol interval is substituted into Eqs. (5.17a) and (5.17b) yielding 

Xc. k(d) = cos Ok() ; c (d) — sin Ok() X(d) 

+ sin (Pk (d) Xsc( 12.1 ) + cos Ok(a 1 ) X55 (oi) 

and 

Xs.k(d) = sin (Pk (d) Xcc (g.1 ) + cos Ok(çe-') >Ccs (é2) 

. — cos Ok(d) Xsc() + sin Ok(d) X„(d), 

where 

(k +1)T 
Xcc (d) 	

f kT 	
X(t) cos ak(t, 	dt, 

(k +1)T 
Xcs(a ') = fkT 	X(t) sin )3k(t, a') dt, 

„.(k +1)T 
XscW) = 

kT 	
X(t) COS ak (t, 	dt, 
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• 
• (k+ 1)T • )(ss(d) fkT 	X.3 (t) sin (3k(t, a# ) cit. 	 (5.22d) 

• 
• To generate the filtered noise components ;,(a1) 	Xcs() 	Xsc(ce') and Xss (a') , an 

• orthonormal expansion of the signals cos ak (t, a') and sin )3 k (t, a') is determined using the 

• Gram-Schmidt orthogonalization procedure [50,51]. The random variates Xec (a') , X, s (a'), 

• Xsc (a1 ) and Xss (ag ) can be obtained by generating independent Gaussian random variates with 
• 
411 	 zero mean and unit variance and then weighting them by the corresponding orthonormal • 

coefficients in the orthonormal expansion. These random variates are then multiplied by the •• appropriate sines and cosines of the phase state of the estimated path and are summed according 

•
• 

to Eqs. (5.21a) and (5.21b) to form the filtered noise components X k (a') and Xs , k (a') . 
• 
• 
• Considering 1VISK for example, there are two possible signal phase trajectories over the 

k th  symbol interval, namely ak 	t corresponding to a k  = + 1 and -1. Using the Gram- 111 	 2T 
• Schmidt procedure, the matched filter signal references can be expanded in terms of 
• 
• orthonormal functions. The orthonormal representations for the signal references  correspond- 

(5.23) •  sin a , 
 k 	L 	al k  ( 	0 i (t) + a3  02 (t) ) 

• 2T 

111 
• for alk = + 1 and – 1. The 0i (t) are orthonormal functions and the orthonormal coefficients 
• 
• ai are given by 

• 
•

a l  = 

• 
• a, – 	r 	 , 	

(5.24) 
• 
• a3  Vir2T – 4T  

27r 2  • 
• 

• 

e  
• ing to a' k  are given by 

• 
• é cosa k 7—t – a k a i  0 1 (t), 
• 2T 

• 
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The random variates X, c (OE') , X, 5 (a1 ), Xsc (ce') and X„(ci) depend only on ci k  and are given 

by 

X„(c4) = ak  a l  x l , 

X,s (ct i k ) =  Œk  ( a2  x 1  + a3  X2 ), 

Xsc(c4) =ak  al '13 ,  

Xss(c''k) =  OE' 1( ( a-) x3 + a3 x4 ), 

where the xi  are independent zero-mean Gaussian random variates of unit variance. The in-

phase and quadrature filtered noise components for an estimated sequence can then be formed 

using Eqs. (5.21a) and (5.2 lb). 

5.2.3 Decoder Simulation 

Due to incomplete knowledge of the effect of noise on the decoder operation. a Monte-

Carlo technique is used to simulate the operation of the sequential decoder. The decoder esti-

mates the transmitted sequence by calculating the inphase and quadrature likelihoods 

recursively and chooses the one with the largest equivalent likelihood as described in section 3.1. 

For MSK, there are only four possible phase states in the state description. For DMSK, there 

are four possible phase states and two correlative encoder states corresponding to + 1 and -1 

being the previous symbol. Thus there are a total of 8 combined states. Decoders with all 

possible states at each time kT are simulated for simplicity, although the number of states can 

be reduced by a factor of two considering that only half of the states are possible at odd bit times 

and the other half at even bit times. The method used to simulate the decoder is given in the 

next section together with details of the simulation program. 

(5.25) 
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5.3 Program Description 

A brief description of the simulation program will be given in this section with emphasis 

on the methodology, rather than describing the program in detail. For simplicity only binary 

data transmission is considered. Separate programs were written to simulate the FH/MSK and 

FH/DMSK systems with the hop-by-hop sequence estimation receiver. 

There is input of parameters and initialization of various variables and tables at the start 

of the program execution as is usual in computer simulation programs. The input parameters 

are the length of the hop interval in number of symbols, length of decoder buffer for storing 

path histories of the survivors, the number of survivors to be kept for each state in the trellis, 

the maximum simulation time and maximum number of bit errors before the simulation 

terminated, the range of SNR values to be simulated and lastly, three large odd integers as seeds 

for the random number generators. Various constants, variables and tables are then initialized. 

These include the coefficients of the orthonormal vector representation of all possible inphase 

and quadrature signal components in a symbol interval, a table of the integrals of the cosine and 

sine of all possible difference signal phase trajectories in a symbol interval, the value of the 

underlying constant phase corresponding to each state and the state transition table which pro-

vides the index of the next state given the index of the present state and the present input 

symbol. The system is then simulated for the number of SNR values as specified by the input 

parameters. 

For each SNR value, the simulation runs for a specified length of time or until a given 

number of bit errors has occurred. A flowchart showing the logic flow of the program execution 

is shown in Fig. 5.2. A number of counters, flags and tables are first initialized. These include 

the counters for simulation time, the number of bits in the current hop, the number of bits 

transmitted, the number of bits decoded and the number of bit errors. The random initial phase 
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START 

Figure 5.2 	Simulation program flowchart 
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due to the hopping and dehopping processes is generated uniformly distributed from 0 to 2 7r. 

The initial state of the transmitter is initialized arbitrarily to state one in the state trellis. 

Pertinent information associated with each survivor is the state at which the survivor path 

ends, the inphase and quadrature likelihoods from which the metric for the path can be formed 

by summing the squares, and the history of the survivor path. For the MSK simulation, the 

history of the survivor is the estimated data sequence, while for DMSK with precocling, the 

correlated sequence is stored as the history of the survivors. All these parameters of the survi-

vors are stored in a number of variables and arrays which are collectively called the survivor list 

for convenience. The survivor list is initialized during the start of the simulation and every time 

a frequency hop occurs for the hop-by-hop sequence estimation receiver. In order for the de-

coder simulation program to proceed, the survivor list is initialized with a dummy survivor into 

the initial state. Since noncoherent detection is used, the initial state of the decoder can be 

arbitrarily assigned to any state for MSK modulation, which has only four phase states but no 

correlator state. For DIvISK modulation, there are three different correlated symbols, namely 

+ 1, -1 and O. The transmitted path can either increase or decrease by
2 
 radians or stay at the 

same constant phase at the ,end of the symbol interval. Since there can be only two paths di-

verging from any one state, two initial states are then required for DMSK in order that the 

estimated paths will include all three possible phase trajectories. The two initial states for the 

DMSK decoder are chosen such that they have different correlative encoder states. The number 

of dummy initial survivors is initialized to one for the FH/MSK simulation and to two for the 

FH/DMSK simulation. All the likelihood parameters and path bit histories for these initial 

survivorS are set to zero with the state at which they end assigned to the initial state or states 

accordingly. 

The simulation of the system then begins by incrementing the counters for the time and 

number of symbols in the current hop. The input data for this symbol interval is generated 
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randomly with equal probability for + 1 and -1 and recorded in an array. For the DMSK 

simulation program, differential precoding is first applied followed by duobinary encoding to 

form the transmit symbols. Four filtered noise components are needed for the MSK simulation, 

while six filtered noise components are needed for the DMSK simulation. Marsaglia's polar 

method [52 ] , which generates two independent Gaussian random variates at a time, is used to 

generate the required number of independent Gaussian random variates with zero mean and 

unit variance. These random variates are then multipled by the corresponding orthonormal 

coefficients of the orthonormal vector representation of the filter response, to form the inphase 

and quadrature filtered noise components. The required filtered noise components in the partial 

likelihoods for each state transition are formed later when required by summing the appropriate 

inphase and quadrature noise components each weighted by the cosine and sine of the phase 

state of the estimated path segment. 

The program execution then goes to subroutine EXTEND, which extends each survivor 

in the survivor list to form two contender paths. One contender path has a + 1 as the present 

symbol, while the other has a -1 as the present symbol. To obtain the likelihoods of the 

contender, the present correlated difference symbol , which is simply the present correlated 

symbol for this contender path minus the present correlated symbol of the transmitted path, is 

first calculated. The inphase and quadrature matched filter outputs are then obtained through 

table lookup. The signal component of the inphase partial likelihood is then obtained by sum-

ming the matched filter outputs weighted by the appropriate cosines or sines of the difference 

phase state. The filtered noise components from the matched filters for the present symbol of 

this contender path are obtained by table lookup. The noise component of the inphase partial 

likelihood of this contender path during the present symbol interval is then calculated by sum-

ming these noise samples weighted by the cosine and sine of the phase state of this contender 

path. The inphase likelihood of this contender is obtained by adding the signal component and 

noise component of the partial likelihood to the inphase likelihood of the survivor from which 
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this contender is formed. Similarly, the quadrature likelihood of this contender path is calcu-

lated also. The equivalent likelihood for each contender path which is the sum of the squares 

of the inphase and quadrature likelihoods are also calculated to facilitate comparisons. A flag 

associated with each contender path to indicate whether this contender has been rejected or not 

is then clear. The variables, pointers and flags for all the contenders are collectively referred 

to as the contender list. When the program execution returns to the main program from the 

subroutine EXTEND, the contender list will contain all possible contender paths, corresponding 

to all possible state transitions during a syn-ibol interval, with all pertinent information about 

each contender paths calculated. 

Subroutine REACH is then called to sort out the most likely survivor paths from the 

contender list. There are a counter and table for each state to record the number of contender 

paths with largest likelihoods and their indices in the contender list. These counters and tables 

are first initialized. Starting from the first contender in the contender list, the state which this 

contender leads into is noted. The counter for that state is first checked to see how many 

contenders have been recorded for that state. If the number of most likely contender paths to 

that state is less than the number of survivors to be kept for each state, then the index of the 

contender path currently visiting that state is entered in a table associated with that state. 

Otherwise if the number of most likely contenders is equal to the number of survivors to be 

kept for each state, then the equivalent likelihood for the present visiting contender is compared 

against the equivalent likelihoods of all those contenders recorded for that state. If the equiv-

alent likelihood of the present contender is less than all those recorded, it is rejected by setting 

the reject flag in the contender list. Otherwise it replaces the one with the smallest likelihood 

recorded for that state, and the reject flag for that less likely contender is set. After all the 

contenders in the contender list have been checked, the most likely contenders would have been 

sorted out. The new survivors are those contender paths which do not have the reject flag set. 
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The survivor list is then updated by copying the pertinent information of all those contenders, 

which have not been rejected, to the new survivor list. 

There are actually two survivor-  lists in the program for storing pertinent information on 

the survivors such as the state at which the survivor ends, the likelihood parameters of the 

survivor: namely the inphase and quadrature correlations up to the present time and also the 

path history of the survivor. A flag is used to indicate which survivor list contains the valid data. 

By using two survivor lists only pointers are required for pointing to the survivor, from which 

the contender is extended rather than copying all the information to the contender list. After 

the proper contenders which will be the survivors.  are sorted out, the pertinent data of the 

survivors are recorded to the new list by updating the old list. In this way copying long bit 

history from the survivor list to the contender list and then copying the updated information 

of those new survivors from the contender list back to the survivor list is not required. Hence 

execution time is reduced significantly especially when the hop length is long. 

Execution then returns to the main program which then checks if this is the end of a hop. 

At the end of each hop, subroutine EOH is called to simulate the procedure of the decoder. 

Equivalent likelihoods of all survivors in the survivor list are compared and the index of the 

survivor with the largest equivalent likelihood is obtained. For the MSK simulation, the bit 

history corresponding to this maximum likelihood survivor is fed out as the decoded sequence 

for this hop. For the DMSK simulation, the corresponding correlated sequence of the most 

likely survivor is decoded back to the estimated input data sequence by operating on each esti-

mated correlated symbol through Eq. (5.3). The decoded sequence is checked against the 

transmitted sequence to determined the number of bit errors. The counters for the number of 

symbols decoded and the number of bit errors are incremented accordingly. The random initial 

phase for the start of the next hop is then generated, and the new survivor list is initialized. 
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• 
• 
• Provision has been made in the program for simulating systems with long hop intervals, 

•
• 

in which case practical implementation would have the decoder buffers shorter than the hop 

• length. The buffer pointer is checked to see if the buffers are full. If the buffers are full, then • 
• subroutine OUTBIT is called to release the oldest bit of the survivor which has the largest 
0 
• equivalent likelihood, and hence is the decoded symbol. The counter for decoded bits is incre- 
. 
• mented and the bit error counter is incremented if the decoded bit is different from the corre- 
• sponding transmitted bit. To avoid shifting bit history through the buffers, all buffers are • 
• implemented as circular queues. 
• • 
• The simulation time and number of bit errors are then checked to see if the simulation 
• 
• is needed to be terminated. If not, program control loops back to simulate the next symbol 

• interval as described above. • • 
• If the simulation for this SNR is complete, the bit error probability calculated as the 

• 
•

number of bit errors divided by the total number of symbols decoded is then recorded in a data 

• file together with the value of this SNR. If this is the last SNR value to be simulated the pro-
s.  

• gram comes to an end, otherwise the simulation begins for the next SNR value. 

• 
• 

5.4 Simulation Results 

• 
• 
•

Both the FH/MSK and FH/DMSK systems have been simulated for three different hop 

interval lengths of 4, 16 and 64 symbol intervals. All simulations are run for at least 100,000 • 
symbol intervals at low signal to noise ratios and until at least 30 bit errors have occurred at high 1 

• signal to noise ratios, in order to get statistically significant simulation results. Also the buffer 

41! 
length of each decoder buffer was set to be of the same length as the hop interval, although • 
provision was made in the program for simulating systems with very long hop interval and cir- 

11 
• cular buffers of reasonable length. 

O 
O 

• 



-150- 

Performance improvement of the decoder by keeping more than one survivor for each 

state in the modulation trellis was also investigated through computer simulation. It was found 

that the error performance of the receiver improves if the decoder keeps more than one survi-

vor for each state in the modulation trellis. The FH/MSK system was simulated also for a hop 

interval of a single symbol interval, in which case the system performance should be the same 

as noncoherent FSK with h = 0.5. The simulated bit error probability for N = 1 is plotted 

together with the theoretical average bit error rate in Fig. 5.3. We can see that the simulation 

result coincides with the theoretically computed bit error rate. For the FH/MSK scheme with 

a hop interval of length N = 4, 16 and 64, the performance of the hop-by-hop sequence esti-

mation receiver as the number of survivors to be kept for each state is varied from 1 to 4, is 

shown in Figs. 5.4 to 5.6 respectively. We see that if the decoder keeps more than one survivor 

for each state in the modulation trellis, the bit error rate improves. However, keeping more 

than two survivors improves the bit error rate insignificantly. It can be seen that by increasing 

the number of survivors to two, essentially optimum error performance for hop-by-hop non-

coherent detection is obtained. The error rate improves by about 1 dB at moderate SNR for 

all hop lengths simulated. In Figs. 5.4 to 5.6, the corresponding theoretical upper bound eval-

uated for FH/MSK with rectangular pulse shaping for N = 4, 16 and 64, is plotted together with 

the simulation results in order to indicate the tightnesss of the upper bounds evaluated in•

Chapter Four. At moderate to high signal to noise ratio, the upper bound for N = 4 is tight, 

while for longer hop intervals such as 16 and 64, the bounds are not as accurate. It can be seen 

that for most of the range where simulations were carried out, the upper bounds are within 0.5 

dB of the simulation results for the decoder keeping 2 survivors per state. The simulation re-

sults for the hop-by-hop sequence estimation receiver for various lengths of hop interval are 

shown in Figs. 5.7 and 5.8 for the decoder keeping one and two survivors for each state 

respectively. The upper bound on the bit error probability of a coherent Viterbi receiver for 

MSK [42] is plotted also for comparison purposes. It can be seen that the error rate decreases 
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as the length of the hop interval increases and approaches the error performance of the opti- 

mum coherent MSK receiver. 

For DMSK with differential precoding, decoders that keep 1, 2, 4 and 8 survivors for 

each state have been simulated. The improvement in bit error rate as the survivors kept for 

each state increases from 1 for hop intervals of length 4, 16 and 64 symbol intervals together 

with the corresponding theoretical upper bounds are illustrated in Figs. 5.9 to 5.11 respectively. 

For a hop length of 4 symbol intervals, there is little performance improvement in keeping more 

than 1 survivor for each state in the modulation trellis, as can be seen from Fig. 5.9. This 

apparent small improvement is due to the equivalent baseband pulse length of DMSK being 2 

symbol intervals. Symbols transmitted at the end of a hop will have high error probability since 

only half of the symbol energy is transmitted at the end of a hop. For a hop length of 4 symbol 

intervals, which is small compared with the equivalent baseband pulse length of DMSK, the high 

error rate of the symbol at the end of a hop will dominate the error rate. Hence, keeping more 

than one survivor for each state in an attempt to avoid premature discarding of the true path 

during the decoding process has little effect on the bit error rate. For N = 4, the simulated bit 

error rate result is higher than the upper bound at moderate to high SNR, but is still close to 

the bound. For the cases where N = 16 and 64, we see that keeping 2 survivors for each state 

brings significant improvement in the bit error rate as shown in Figs. 5.10 and 5.11. Again the 

improvement in error performance levels off as the number of survivors kept at each state has 

been increased to 2. The effect of keeping more than one survivor for each state is to retain 

more paths during the decoding process. If a competing path which has a likelihood larger than 

the true path due to noise merges with the true path, the true path will be retained by the de-

coder with higher probability when the number of survivors to be kept is more than one for 

each state. Further increase in the number of survivors to be kept for each state will only retain 

More paths which may actually have less likelihood than  the true path. Hence the performance 

will increase only marginally once a certain number of survivors are kept for each state. The 
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important thing is to make sure that the true path is not being prematurely rejected during the 

decoding process unless its equivalent likelihood over the hop interval is less than that for the 

other competing paths. However, at low signal to noise ratio there is not much improvement 

in BER in keeping more than one survivor for each state. That is because at low SNR there is 

a high probability that any competing path will have larger equivalent likelihood than that of 

the true path. Even if the true path is being retained until the end of a hop interval, the 

probability that the decoder decides on an incorrect path is still high. Hence the increase in the 

number of survivor paths kept by the decoder is of little consequence. At high SNR, the true 

path will be very likely to be kept by the decoder even if only one survivor is kept for each state. 

Hence the increase in the number of survivors for each state will not help. The BER is largely 

determined by the probability that any competing path will have a high likelihood and hence 

be chosen by the decoder to be the transmitted path at the end of a hop interval rather than 

due to premature discarding of the true path. The theoretical upper bound is lower than the 

simulated bit error rate except at very low SNR range for N = 16 and 64. Generally, the upper 

bounds are within a dB of the simulated error performance for the receiver keeping two survi-

vors per state for most of the range of bit error rate of interest. 

The simulation results for FH/DMSK with precoding when 1 and 2 survivors are kept for 

each state, are plotted in Figs. 5.12 and 5.13 for various lengths of hop interval together with 

the bit error rate upper bound provided by the performance of the coherent*Viterbi receiver for 

DMSK [42]. We see that the error performance improves with the length of the hop interval 

whether 1 or 2 survivors are kept for each state during the decoding process. As the hop length 

gets longer, the error performance of the hop-by-hop sequence estimation receiver approaches 

that of the coherent DMSK Viterbi receiver. Comparing Fig. 5.11 to Fig. 5.7 for 1 survivor per 

state or Fig. 5.12 to Fig. 5.8 for 2 survivors per state, we see that the rate at which the error 

performance approaches the coherent Viterbi receiver performance as the hop length increases, 

is not as great for DMSK as it is for MSK. 
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The error performance of FH/MSK compared with FH/DMSK with precocling, for N 4, 

16 and 64, and for one and two survivors per state are shown in Figs. 5.14 and 5.15 respectively. 

We can see that for a given length of hop interval MSK has lower bit error rate than DMSK 

with precoding. 

5.5 Summary 

In this chapter, a simulation study of two frequency-hopped continuous phase modu-

lation spread spectrum systems with a hop-by-hop sequential decoding receiver have been pre-

sented. Both the MSK and the precoded DMSK modulation schemes have been simluated for 

hop lengths of 4, 16 and 64. The performance improvement to the sequential decoding algo-

rithm by keeping more than one survivor for each state in the trellis has been presented. For 

both MSK and DMSK, keeping two survivors for each state will bring the performance close to 

that of the optimum hop-by-hop ML noncoherent receiver. With the continuing decrease in 

price of memory devices, the increase in memory required to keep more than one survivor per 

state may not be of concern but the increase by more than a factor of two in computations when 

two survivors are kept for each state is not desirable for high speed operation. It is found from 

the simulation results that the maximum degradation in error performance by keeping just one 

survivor for each state in the trellis is only about 0.5 dB for MSK and about 1 dB for DMSK. 

This penalty of .5 or 1 dB in error performance degradation is small considering the number 

of computations and the memory saved. It has also been shown that the performance of the 

FH/MSK spread spectrum system with the hop-by-hop sequence estimation receiver gets very 

close to the performance of the coherent receiver with Viterbi decoding for long hop interval 

lengths such as 64 symbol intervals. 
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• 
• 
• • 
• Chapter Six 

• CONCLUSIONS 

• 
• 
• 
• A slow frequency-hopped spread spectrum communications system with continuous 

phase modulation for transmitting high speed data has been presented. The use of a bandwidth 
411 
• efficient modulation scheme, namely continuous phase modulation to transmit a number of • 
• symbols during a frequency hop interval results in a frequency-hopped spread spectrum signal, 

•
which has attractive mainlobe compactness and low sidelobes. Its compact hop bandwidth al- 

• lows higher processing gain to be realized, hence a higher degree of antijam protection. For a 
• 
• multiple user system, the compact hop bandwidth allows more users to share a given spread 

• 
• spectrum system bandwidth. 

• 
• 
• Spectral analysis of frequency-hopped continuous phase modulations has been presented. 

The autocorrelation function of the dehopped spread spectrum signal has been derived for any 
• 
• arbitrary correlative encoding, baseband pulse shaping, modulation index, number of levels and 

• length of frequency hop interval. The baseband power density spectrum of the dehopped signal 

can then be obtained via a Fourier transform of the autocorrelation function. Results on the • 
• baseband power density spectra of frequency-hopped signals with various partial response en-
d> 

• codings and pulse shapings, and different hop lengths have been presented. In general, the 

• 
•

spectrum becomes more compact with lower sidelobes and approaches that of the CPM signal 

without hopping, as the length of the hop interval increases. 
• 
• 
• It is found that the use of higher order PRS polynomials and pulse shaping, which are 
• 
• known to reduce the bandwidth significantly for usual continuous phase modulation, do not 

• 
• result in more compact spectra if the hop length is short. The use of higher order PRS 

• • • • 
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polynomials and pulse shaping is effective in bandwidth and sidelobe reduction for long hop 

intervals only. 

Due to the unknown random phase of the carrier as it hops from one frequency to an-

other, noncoherent detection has to be used. Three noncoherent receivers with sequential de-

coding have been presented. The first one is derived based on 'a hop-by-hop maximum 

likelihood decoding approach and is optimum over a hop interval. It has the simplest receiver 

structure and decoding algorithm. 

The second receiver is derived based on the maximum likelihood spanning frequency 

hops and has a more complex decoding algorithm than the first one, although it has the same 

general receiver structure. However, simplification of the decoding algorithm is possible when 

the length of the hop interval is much greater than the length of the frequency pulse. The 

receiver operates generally in the same manner as the hop-by-hop receiver, but it has a sub-

procedure for metric calculation across each frequency hop and relies on the assumption that 

a merge in the trellis will occur well before the end of a hop. 

With the aim to obtain a simpler decoding algorithm, the third receiver neglects the 

continuous phase structure of the signal within a frequency hop. Every symbol interval is 

treated as if it were noncoherent but with memory introduced by the partial response signaling. 

The performance is expected to be worst than the optimum receivers but a path transition 

metric can then be defined. Consequently, a decoding algorithm such as the Viterbi algorithm 

can easily be incorporated. However, the last two receivers both need the signal amplitude and 

the noise spectral density to be known for computing the metric. This will necessitate the use 

of some extra circuitry for estimating the signal to noise ratio before the metric computation 

can be carried out. The performance of the receiver will then depend also on the accuracy of 

the estimated signal to noise ratio. Due to this extra requirement of estimating the signal to 
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• noise ratio and the complexity involved in the decoding algorithm, the receiver spanning fre- 

t, 
• quency hops and the suboptimum receiver that neglects the signal phase structure are not sug- 
• gested approaches for demodulating the spread spectrum signal. The noncoherent receiver, • 

which estimate the transmitted sequence on a hop by hop basis, appears to be the most prom- 
• 
• ising design. 

• Error performance of the sequence estimation hop-by-hop noncoherent receiver under 
• 
• additive white Gaussian noise has been analysed. Upper bounds on the bit error probability 
111 
• have been derived and evaluated for different partial response polynomials and pulse shapings 
• 
•

using a union bound approach. As expected, the bit error rate decreases as the hop interval 

• lengthens. The performance of the system using higher order correlative encoding is generally 

• inferior to the one with no correlative encoding like, minimum shift keying because of the in- 
• 
•• creased number of output levels due to correlative encoding. The performance improvement 
• 
• by transmitting known symbols at the beginning of every hop interval is also investigated. An 

•
error bound on the bit error rate is derived also based on an union bound approach. Results for 

• MSK, DMSK and TFM all with h = 0.5 and rectangular pulse shaping are presented. It is found • 
• that the gain in performance by transmitting known initial symbols is small when the hop 
• 
• interval is long. 

• 
• 
• The performance of the hop-by-hop noncoherent receiver under the presence of inten- 
• 
• tional interference (jamming) has been evaluated in Chapter Four. The performance of the 

• receiver under partial band noise jamming is calculated based on the union bound approach. 

it has been shown that under partial band noise jamming, there is always an optimum value of 

• the fraction of jammed band to the total system bandwidth to bring maximum degradation to 

•
• 

the system. The partial band jammer can bring the usual exponential relationship between the 

• bit error rate and the signal to noise ratio to an inverse linear relationship. 

• 
9 
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In a multiple-tone jamming envirnoment, it is found that the bandwidth efficient prop-

ertY of FI-IICPM spread spectrum signal increases the system performance under multiple-tone 

jamtning due to the increased number of frequency-hopped bands possible. 

A simulation study of two systems, namely frequency-hopped MSK and frequency-

hopped differentially precoded duobinary •MSK was presented. It is found that the error 

performance of the hop-by-hop sequence estimating noncoherent receiver can be improved if 

the decoder keeps more than one survivor for each state in the trellis. Keeping two survivors 

for each state is sufficient to achieve close to the optimum error performance for both MSK and 

DMSK with differential precoding. Keeping more than two survivors for each state will im-

prove the bit error rate insignificantly. The degradation in performance if the decoder keeps 

just one survivor for each state is only about 0.5 dB for IvISK and 1 dB for DMSK, which is 

possibly small enough to justify the reduced decoder complexity and simpler decoder operation. 
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APPENDIX A 

Multiple-Tone Jammer Power 

For simplicity, suppose that thermal Gaussian noise is negligible. The dehopped received 

signal when a jamming tone is presént is given by 

iNT  <t < (i + 1)NT, 	 (Al) 

where s(t, a, ei) denotes the transmitted signal in the i th  hop interval as given by Eq.(3.4) re- 

written below 

s(t, a, O i ) = VTTP cos[ 21rfct + tb(t, a) + O i  ]; 	 iNT < t < (i + 1)NT (A.2) 

and J (t) denotes the continuous-wave jamming tone signal given by 

J (t) =V271 q  cos[ 21rfct + 27rfi t + çbj  ], 	 (A.3) 

where Jq  is the power of the jamming tone, fj  is the jammer tone frequency offset from the 

intermediate carrier frequency f c  after being dehopped and cbj  is a random phase. The hop- 

by-hop receiver computes the equivalent likelihood for each of the possible sequences a' given 

by 

NT 

I r(t) exp[ j ( 2/rf ct + 0(t, al ) ) ] dt 2 
 0 

NT 

I S(t, Oi) exp[ j ( 2rfct + 0(t, a') ) ] dt 
0 

NT + 
 f Jr,(t) exp[ j ( 2irfc t + /b(t, a') ) ] dt I 2 

 0 

r(t) = s(t, a, 	+ .1q (t); 

,c11 ) = 

(A.4) 



t(c1, -d) 

V-17- f NTexp[ - j01  I dt 
2 0 .\/ .1  ,,NT  • 

-

2 

j 0 exPH ek(t, )  - /P(t,i) 45j )1 dt = 

-177- 

Substituting Eqs.(A.2) and (A.3) into Eq. (A.4) and assuming that fc 	1, we obtain 

= 
 I \P----)4NTexP[ /b(t, 	 Oi )1 dt 2 0 

V.1,1  r  NTexp[  
27rfj t - 	)] dt 	2 . 

2 0 

Assuming that the multiple-tone jammer knows the transmitted signal structure, the jammer 

will always select the tone frequency such that 

2zfj t = 	 (A.6) 

That is, the jamming tone is one of the transmitted signals. ( For example when the pulse 

h 
shaping is rectangular and the tone jammer selects fj  =

T
, then the jamming tone signal 

2 

will be the same as the signal, which would have been transmitted had the correlated symbols 

been all 1's.) The equivalent likelihood for that particular sequence -a corresponding to the 

jamming tone is then 

VT NT 

 

(A.5) 

NT fo  exp[ j  ((t,)  - (t, a) - 0 1  )j dt + 	 exp[ - je, 	dt 
O 

,\F NT 
- -2- f exp[ jetP(t,;;) - 	- 0,)] dt + V7  (NT) exp[ - jci5j ] 

(A.7) 

The equivalent likelihood for the transmitted sequence a is given by 

VIL—(NT) exp[ - ja i ] + f TexP[  j Mt, a) - (t ,.èe) —  j  )j dt 
2 
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The hop-by-hop ML receiver will always 

' ((Y_ 	) > LI ( 	) •  

choose –a as the estimated sequence, if 

a) - t», a) .  

= 
 {V

.747)  fl\rrcos[0(t, "(X) – (t, a) – O i ]dt + V—jq  (NT) cos j  } 2  
2 0 	 2 

+ {V 12,7  iNTsinkbet, - o(t, a) – Oddt + V-41  (NT) sin cp j  ) 2  
0 	 2 

p 
(1\ 	

INT _ 	 Jg  
- { 	T) c 	

,,V 
os 8 ;  + 	 cosp(t, a) – e(t, a') – j ]dt ) 2  

2 	0 

\fq  f  NT 
- { 	IL (NT) sin O i• + 	— 	sm[e(t, Le) 	(t, 	- oj icit } 2  • 

2 	 2 	0 

Jo  
{iNTCOS[e(t,O;) — lp(t, a) – O i ] dt } 2  + 	(NT) 2  cos  j  

2 
NT 

+ \F).—"Jg  (NT) cos jf cosP(t, a) - tp (t, a) –  0]  dt 

+ p
f NTsinN) (t, 'C'k) – 	a) – 0]  dt } 2  + 	(NT) 2  sin 20j  

2 	0 
NT 

—VP.1,1  (NT) sin jf sinkb(t, 	- ip(t, „:„_) -  0]  dt 
0 

p J 	NT 

— T 
(NT) 2 cos  2 

– 	 0  —

2 	

cos[tb(t, 	– ,/,(t, a) - j ] dt }• 

– VP-Fq  (NT) cos Oif
NT 

 cos[tP(t,) – 	- 0,1 dt 
0 

J 	NT o  
– P  (NT) 2  sin 20i — 	(f Sin[e(t, 	— /P(t,a) - 0,i dt } 2  

2 	 2 	o 

+ \ffrq  (NT) sin O if
NT 

 sin[IP(t, a)_ – 1(t,) – (i)j] dt 
0 



+ 	(NT) 2  + 
2 

Jq  I NT r  ex_r  
2 p 0 	iji" 

(NT)f
NT 

 cos[1P(t,) - 	- 0, + oj i dt 
0 

- e(t,) - 15j )] dt 2 

(NT) 2  
2 
	(J

q 
– P) + -- 

2 

NT 
f exp[ j  ((t, 	-  (t, a))]  dt 

0 

(Jg  – P) 
	 (NT) – 

2 

NT 
f 	exp[ j ( 1, (t, .c1) – 1/)(t, a.))] dt 

0 

NT 
fo  exp[j( •0(t. 	- 1P(t, a))]dt 

(Jq  – P) 

2 
NT + 

NT – 
NT 

f exp[j( 1/4t, 	– '0(t, a))]clt 
0 

(A.9) 
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NT 
f 	exp[ j ( (t,c.1) — (t, a)  — O i )] dt 

2 

– —
2

(NT) 2  – 
NT 

VP.T1  (NT)f cospik(t, a) – 0(t, 'a) – Oj  + O i ] dt 
0 

J cl 	NT — 	fo exp[ j  ((t.  a) – 0(t, 	dt 

(NT) 2 	 (Jci 	P) 

2 
	(J – P) + 	 

2 

NT 
f exp[ j ( 0(t, 	- 0 (t.,,))1 dt 

0 

Since 

NT + I frexp[j( e(t,) – ik(t, a))]clt I > 0 

and 

NT – I fTexp[j( 1P(t,) – (t, q))1cit 	> 0 , 
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£'(, —a) > t(a, a) when Jci  >  P. If .1,1  >  P, the receiver will always decode the transmitted 

• sequence to be a— , which corresponds to the jamming tone frequency given by Eq.(A.6) no 

matter what the transmitted sequence is. 
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