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ABSTRACT

In this final report, comprehensive results on hopped spread spectrum transmission that
employs band-efficient modulations that are coherent during each hop, are presented. A broad
rénge of system considerations are prgsented, including: signaling spectrum, optimum receivers,
system complexity, and performance in the presence of noise and jamming. The particular cases

where the hopped modulation is minimum-shift keying (MSK), duobinary minimum-shift key-

ing (DMSK), or tamed-FM (TFM) are considered in detail. As well, results are presented for

various modulation indices, rectangular and raised-cosine pulse shapings, and a range of hop
interval lengths.

Various maximum likelihood receivers are presented. These receivers are complicated
and so simplifications to achieve more practical sequence estimation algorithms are carried out.
The algorithm which carries out a sequence estimation over each hop appears most promising.
Its performance has been evaluated in Gaussian noise, partial band jamming and multiple-tone
jamming, using bounds and a simulation of the system. In general, the compact nature of the
signal spectrum prior to hopping, appears to offer dramatically improved performance in

multiple-tone jamming.
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Chapter One
INTRODUCTION

There is currently a high interest in military satellite communications (MILSATCOM)
that is immune to electronic countermeasures, Spread spectrum communications, with its
inherent interference rejection capability, has over the years become an increasingly popular
military antijamming tactical communications technique. Although the current applications for
spread spectrum are primarily for military communications, there is a growing interest in the
use of this technique for mobile radio networks (radio telephony, packet radio and amateur
radio). Other applications include collision avoidance, range measurement and position finding

[1,2].

Spread spectrum signaling is a means of transmission in which the signal occupies a
bandwidth in excess of the minimum necessary to send the information. The bandwidth
spreading is accomplished by means of a code which is independent of the data. At the receiver
the same code is 1;sed for despreading and subsequent data recovery [2]. Two commonly used
techniques for spreading the spectrum are direct sequence modulation and frequency hopping
[1-5]. Direct sequence modulation causes rapid phase transitions in the information carrying
signal by modulating the signal directly with a pseudorandom code sequernce whose bit rate is
much higher than the information signal bandwidth. The spread bandwidth is directly deter-
mined by the clock rate of the pseudorandom sequence. Frequency h.opping changes the
transmitter carrier frequency periodically with a pseudorandom hopping pattern controlled by
a pseudorandom sequence [1-5]. This spreads the spectrum sequentially rather than instan-
taneously. The bandwidth occupied by the frequency-hopped signal during a hop interval de-

pends on both the hopping rate and symbol rate. The spread spectrum system bandwidth is



equal to the frequency excursion from the lowest available ffequency-hopped band to the
highest available frequency-hopped band. With the spectrum of the signal spread over a-wide
bandwidth, a jammer with a fixed finite power is forced to spread his resources thus making

jamming more difficult and less effective.

The performance improvement that is achieved through the use of spread spectrum

signaling is defined as the processing gain of the spread spectrum system. Processing gain is |

given by the ratio of the spread spectrum system bandwidth to the information bandwidth [1-6].
The greater the spread bandwidth, the greater the pro,céssing gain. For a direct sequénce Sys-
tém, the spread bandwidth is limited to the clock rate of the pseudorandom sequenc'e, which is
-limited by the achievable speed of the digifal circuitry. It also requires phase coherence over
the spreaci bandwidth. Frequency-hopped systems have no such restrictions. Large spread
bandwidths can be more easily achieved by frequency hopping than by direct sequence modu-
lation. Thus, provided that a sufficient béndwidth can be allocated such as in the Extremely
High Frequency (EHF) band which is defined as the frequency band from 30 GHz to 300 GHz,
frequency hopping can achieye much higher processing gain than direct sequ’e'nce modulation
techniques. Since the spread bandwidth need not be contiguous in a'frequency-hopped system.
frequency bands which are uhusually noisy, are jammed, or exhibit severe fading can be hopped
éround. Frequency hopping also hag an inherently shorter acquisition time i»n a serial search
acquisition system, due to the fewer code states required to be tested than in direct sequencé
modulation with the same processing gain [5]. Judging from the above mentioned advantages,
frequency hopping is hence the prefe.rred spread spectrum technique over direct sequence
modulation technique whén the information signal is to be spread over the wide bandwidths

available at the EHF band in MILSATCOM.
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1.1 Frequency-Hopped Spread Spectrum Systems

In a frequency-hopped spread spectrum system, the transmitter carrier freqtiency is
usually chosen from a set of 2* frequencies which are spaced approximately the width of the
data modulation spectrum apart. The hopping pattern of the carrier frequency is commonly
controlled by a pseudorandom sequence or other encrypted sequence. - In the receiver, the re-
ceived signal is down-converted (dehopped) by a frequency synthesizer controlled by the same
pseudorandom sequence which has been synchronized with the transmitter [3]. A block diagram

of a frequency-hopped spread spectrum system is shown in Fig. 1.1.

The fact that frequency hopping spreads the spectrum sequentially rather than instan-
taneously leads to consideration of the rate at which the hops occur. The processing gain
actually realized can be significantly less, depending on the jammer’s abili;y to negate the effect
of the frequency hopping. The faster the frequency hopping, the more the vulnerability to
jamming by sophisticated jammers is reduced. Some sophisticated jammers, such as the
repeat-back jammer which is also called the follower jammer, measure the operating signal fre-
quency and tune the interference to that portion of the band. . The difficulty of implementing
such a jammer increases as the hopping rate increases. To achieve a desired bit error rate, the
minimum frequency hopping rate is determined by a number of parameters such as the infor-
mation rate, the amount of redundancy used, if any, and the distance to the nearest potential
interferer [1]. Clearly, a repeat-back jammer’s influence will be entirely eliminated if the carrier
frequency hops to another new frequency before the jamming signal arrives, that is, if the
hopping rate is the inverse of the difference in arrival time between the communication and

jamming signals at the receiver.

Generally, hopping the carrier frequency several times during a bit interval, so-called fast

frequency hopping [4], is applied to defeat the sophisticated jammers like the repeat-back
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jammer. When fast frequency hopping is used, some frequency diversity gain is seen (the same
data is transmitted several times using different frequencies). This is particularly beneficial in
a partial band jamming environment [3. p.354]. However, for a given spread spectrum band-
width, the processing gain does not increase as the hopping rate increases. (How fast one hops
between channels does not increase the number of available channels and, therefore, processing
gain does not increase as the hopping rate increases.) The processing gdin actually will decrease
because of a reduction in the number of independent frequency-hopped bands within a given
spread spectrum bandwidth due to the increase in the bandwidth of the frequency-hopped signal

in any particular hop interval when faster hopping is employed.

For less critical antijam applications, slow frequency hopping [4], in which the carrier
frequency remains constant for a time period far in excess of the propagation time may be
employed. This usually allows many data bits to be transmitted at each frequency and the re-
sulting transmitter and receiver equipment is simpler and less expensive than tha; for a faster
frequency hopping. The point is higher data rate transmission can be achieved. Slow frequency
hopping can also be used to interleave many frequency multiplexed channels within the same

spread bandwidth for a multiple-user system. The multiple-access system will make it difficult

~ for the jammer to identify a specific target signal [4].

Because of the difficulty of building truly coherent frequency synthesizers for spreading
and despreading the desired information, that will hop quickly over a wide band, most
frequency-hopped spread spectrum systems use noncoherent modulation schemes. Frequency-
hopped noncohereﬁt M-ary frequency shift keying (FH/NCMFSK) is the most widely used fre-
quency hopping scheme. Its performance ovér channels of different characteristics and in
various types of jamming environments has been studied extensively [1-13]. The degradation
in the performance of FH/NCMFSK due to the effect of various imperfections in imple-

mentation such as frequency offset and phase jitter has also been studied [12,13]. The effect



‘of varying the processing gain of a FH/NCMFSK system'using nonorthogonal tones under the
constraint of fixed total spread spectrum bandwidth in the presence of partial-band noise jam-

ming and partial-band tone jamming has also been studied [6].

Another popular frequency-hopped spread spectrum system reported in the literature is
frequenc.y—hopped differential phase shift keying (FH/DPSK) [14-16]. ﬁoweyer, very often the
system is assumed to be coherent, such that the carrier phase remains continuous when the
frequency is changed. At high im’plememation frequency such as at the EHF band, coherent
phase between hops is difficult to achieve. In fact, Lee and Miller state that frequency-hopped
systems employing DPSK modulation and differentially coherent detection are not 6ommon1y

employed in practice [15].

Several slow frequency-hopped spread spectrum schemes, including binary phase shift
keying (BPSK), quadrature phase shift keying (QPSK) and M-ary orthogonal signaling under
partial-band noise jamming and partial-band tone jamming have been considered in [8] where
a slow frequency-hopped system model is adopted with coherent dehopping and demodulation.
Slow frequency-hopped MFSK in simultaneous partial-band and repeat-back jamming has also
been studied in [9]. - Due to the vulnerability of slow frequency hopping to a repeat-back
jammer, other measures such as coding, diversity and interleaving for improved antijam capa-
bility have been introduced [8,9]. A multiple-access system using slow freqﬁency—hopped FSK
has been considered and bounds and approximations are obtained for the average error proba-

bilities over nonselective fading and wide-sense-stationary uncorrelated-scattering fading chan-

nels {11].

Consider a frequency-hopped spread spectrum system that is required to handle high

speed data. Thus although on an absolute scale the frequency hopping may be fast, relative to.

the data rate we can have a slow frequency hopping situation, that is, many or at least several
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bits of data are transmitted per chip or hop interval. Due to the wideband nature of the high
speed data, a bandwidth efficient modulation scheme is highly desirable in order to enhance the
electronic counter-countermeasure performance and to allow more users. When several bits are
to be transmitted over a hop interval, a bandwidth efficient continuous phase modulation
scheme can be used rather than simple noncoherent M-ary FSK. Recent studies have shown
that continuous phase modulation (CPM) [17] schemeés are band-effic.ient and are also power
efficient when detected coherently. Correlative encoding [18], also termed partial response
signaling (PRS) [19], can be used for spectral shaping and to gain spectral efficiency. Further-

more, baseband pulse shaping can be used to obtain more compact spectra as well.

The use of binary CPM schemes in a direct sequence spread spectrum system has been
studied [20]. In this system, during a symbol interval the transmitter transmits one of the two
different CPM waveforms generated from two different chip sequences corresponding to +1
and -1 depending on the transmitted data. The use of CPM in a direct sequence spread spec-
trum system is to concentrate the power in a given spread bandwidth and to control the level

of energy contained in the spectral sidelobes.

The reason for proposing the use of band-efficient CPM schemes for fransmitting a
number of symbols per hop in a frequency-hopped system [21-24] is to obtain a more compact
frequency-hopped signal~bandwidth such that more frequency-hopped bands are available in a
given spread bandwidth, to increase processing gain and to allow more users in a multiple-access
communication system. Also, it should be noted that the slow frequency hopping situation
under consideration here may arise as a result of a high data rate rather than a particularly slow
absolute hopping rate. The system may have a hop time shorter than the sum of the processing
time of the jammer plus the difference in arrival time between the communication and jamming
signals, as in a fast frequency hopping system. Hence the usual disadvantage of slow frequency

hopping such as vulnerability to a sophisticated jammer may not apply.




Even if slow frequency hopping in the usual sense is considered, the system can be usefui
either against simple jammers, or in conjunction with frequency division multiplexing of many
signals in the wide spread spectrum system bandwidth to provide multiple-access commu-
nications. In many cases,'these features, along with the lower relative cost com’paréd with fast

frequency hopping, may make this slow frequency hopping technique attractive.

1.2 Outline of the Report

The bandwidth occupied by the frequency-hopped spread spectrum signal is of prime
importance as it relates directly to the processing gain, hence the degree of antijam protection
achievable, and the number of possible users.” Thus the power spectral density of the
frequency-hopped spread spectrum signal will be evaluated in Chapter Two. The baseband
autocorrelation function of the frequency-hopped spread spectrum signal is first derived. The
power density spectrum is then easily obtained via a Fast Fourier Transform of the
autocorrelation function. Results are presented for rectangular as well as raised cosine pulse

shaping for various partial response encoding polynomials and different lengths of hop interval.

In Chapter Three, noncoherent receivers for demodulating the frequency-hopped signal
will be presented. A hop-by-hop maximum likelihood noncoherent receiver is first dérived.
This receiver, which is optimum over each hop interval, is impractical when the hop length is
ldhg‘, that is when a large number of bits are transmitted during each hop interval. And so a
sequential decoding algorithm aiming to achieve the performanée of a maximum likelihood se-
quence estimation (MLSE) algorithm is presented't_ogether wifh the receiver structure. A ML
noncoherent receiver, which detects the transmitted sequence with maximum likelihood over
the entire transmission period spanning frequency hops, is also derived. A sequential decoding
algorithm with metric compﬁtation spanning hops is then presented together with possible de-

coding algorithm simplification. A suboptimum simplified noncoherent receiver, which treats
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the symbol intervals in a hop as if they were noncoherent and neglects the phase states of the
frequency-hopped CPM signal during a hop, is presented. The receiver structure and decoding

algorithm for this simplified receiver will also be given.

In Chapter Four, performance of the hop-by-hop sequence estimation receiver will be
evaluated first in an additive white Gaussian noise (AWGN) environment. An upper bound on
the bit error rate of the receiver under AWGN will be evaluated based on the union bound
approach, with some approximations necessary for cases when the length of the hop interval is
long. The bit error probability bounds for various correlative encoding schemes and different
baseband pulse sﬁaping will be presented for different lengths of hop interval. The receiver
performance when a known symbol segment is transmitted at the beginning of each hop, for the
purpose of synchronization and to improve the error performance, is also evaluated. Since
ultimately the spread spectrum system is more likely to operate under intentional interference,
the performance of the receiver in the presence of partial band noise jamming and multiple-tone

jamming is also evaluated.

In Chapter Five, a computer simulation study of the hop-by-hop sequence estimation
receiver will be presented in order to obtain a more precise error performance evaluation and
to indicate the accuracy of the bounds evaluated in Chapter Four. Only frequency-hopped
minimum shift keying (MSK) and differentially precoded duobinary MSK with rectangular
pulse shaping are simulated for various hop lengths. Simulation results are compared with the

corresponding error bounds evaluated in Chapter Four.

Finally in Chapter Six, conclusions are drawn and a summary of the report is given.
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.Chapter Two
SPECTRAL ANALYSIS

The spectral density function, or power spectrum, of a digitally modulated signal is an

important characteristic, since it defines the distribution of average signal power as a function \

of frequency. Estimates of bandwidth occupancy, interference to or from adjacent channels,
and relative comparisons of different modulation techniques all exemplify situations where a
khowledge of the power spectrum is imperative. By calculating the power spectrum of the sig-

nal, all relevant information concerning the bandwidth efficiency can be obtained.

There are a large number of possible approaches for obtaining the power spectra of
digital frequency modulated signals. In the direct approach by Anderson and Salz [25], the
Fourier transform of the signal over the time interval from 0 to NT is first calculated. The

power spectrum is then obtained by calculating the expected value of the square of the Fourier

transform divided by the time duration NT, as N goes to infinity. Another approach is the -

Rowe-Prahbu methoq [26-28] which is a matrix method for which each pos;ible modulator
waveform is assigned to one of the dimensions of an N dimensional signal vector. The Fourier
transform of this signal vector is then‘ taken and multipled with othér matrices and vectors to
yield the power spectral density of the signal. An asymptotic e%;ﬁression for the power density
spectrum at frequencies away from the center frequency can be obtained using the approach
due to Baker [29]. Another approach due to Garrison [30] approximatés the modulating pulses
by a quantized staircase function and the resulting spectrum is computed. Note that while the
power spectrum so obtained is an approximation for implementations using analog premodu-
lation filters, it will be the power spectrum of the actual signal if the implementation uses D/A

convertors to obtain the modulating pulses. An easy way to calculate the power spectra for

000300200000 00000000000000000800000000000000COCECEOIOINOONRNIIOOS
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digital FM is the so-called autocorrelation function method [27,31,32], in which the
autocorrelation function of the signal is first calculated. The power spectrum is then obtained
via a Fourier transform on the autocorrelation function, usually calculated numerically. Com-

puter simulation can also be used to estimate the power spectra,

Although the spectral properties of CPM schemes are well understood and had been
calculated extensively [17,27,28,31,32], the spectral characteristics of FH/CPM have not been
presented. In this Chapter the power spec&al density of the slow frequency-hopped CPM
spread spectrum signal will be derived using the autocorrelation function method, which is
conceptually simple and straightforward to carry out. The model of the spread spectrum signal

will first be presented.

2.1 Signal Model

The frequency-hopped spread spectrum signal considered in this report, is basically a
continuous phase modulation signal but with a random phase jump every N transmitted symbols
or every NT seconds. During any one hop interval, the modulation is assumed to be coherent
frequency modulation, with correlative, or partial response encoding and shaping of the modu-
lating pulses permissible. The information to be transmitted as denoted by
e = { ..,0_jo_j, a @), o, .. }is asequence of uncorrelated input data symbols. For
an M-ary scheme, each data symbol <can take any of the values
o = 1, £ 31 w, £ (M — 1) with equal probability 1/M. The frequency-hopped correlative

encoded CPM signal can be represented by

s(t) = 2E i p(t = iNT) cos[2rf; t + $(t,a) + 6; ], 2.1)

T 1= =00
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where E is the symbol energy, T is the symbol time, N is the number of symbols in a hop

interval, p(t) is a unit amplitude rectangular pulse of length NT given by

1 0<t<NT :
pw = { . (22)

0 elsewhere,

f; is the carrier frequency during the i™® hop, §; is the random unknown initial phase at the
beginning of the i hop, and the 6;'s are assumed to be independent random variables

uniformly distributed from 0 to 2x. #(t,a) is the information carrying phase function given

by

= —00

P(t,@) = 2rh i o, q(-t — nT), . ‘ (2.3)

where h is the modulation index, q(t) is the phase response given by

av = [ gy | | (24)

g(t) is called the frequency pnlse. Normally it is a positive smooth pulse shape over a finite time
interval 0 < t < LT and zero elsewhere. Thus L is the length of the frequency pulse in units
of the symbol time T. The shape of g(t) determines the smoothness of the transmitted infor-
mation carrying phase and influences the power density spectrum of the signal. In general, the
smoother the resultant phase path of the signal for a given modulation index, the more compact
is the spectrum. Correlative encoding or parfial response signaling is one technique for gener-
ating a smoother pnase path. A correlative encoder is characterized by its vpartialvresponse sys-

tem (PRS) polynomial [18,19]

|
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F(D) = % (kg + kD + k,D* + .. + kD) (2.5)

where D is Huffman’s delay operator and the k,'s are the coefficients of the polynomial. For
convenience a normalization of the polynomial has been carried out with the normalization

constant C given by

C = f] | k, 1. (2.6)
=0

The effect of the correlative encoding is to create a new equivalent frequency pulse g(t) given

by

g = & 3 kbt - i), (2.7)
i=0

where b(t) is the baseband pulse with a duration of one symbol interval. For a rectangular

baseband pulse, b(t) is given by

1 0<t<T

b(t) = { 2T (2.8)

0 elsewhere,

Spectral shaping can be accomplished by the choice of system polynomial F(D) and by

using various baseband pulse shapes such as the raised cosine for which b(t) is given by

—1—(1~cos-21t) 0<t<T
b(t) = { 2T T (2.9)
0

elsewhere,
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The length of the frequency pulse g(t) is then L=m+ 1 symbol intervals. For the PRS
polynomial F(D) and the amplitude of the baseband pulse b(t) specified above, the phase re-

sponse ((t) is normalized such that

g(LT) = —;-: (2.10)
This means that for schemes with positive frequency pulses of finite length, the maximum

absolute phase change over any symbol interval is (M — 1)h .

2.2 Spectral Analysis

Amohg the various methods mentioned at the beginning of this Chapter, the
autocorrelation function method [27,31,32], is straightforward and easy to to use, With this
method the autocorrelation function is first calculated and then the Fourier transform is

numerically calculated, yielding the power spectrum.

In order to determine the power spectrum of the frequency-hopped spread spectrum
signal, it is sufficient to consider the normalized complex lowpass equivalent signal u(t,a) as

given by

ute) = 3 p(t - iNT) exp [j6;] exp [j#(t @)l - (2.11)

i=—o0
The complex lowpass autocorrelation function is then given by

R,(Lt+7) = < Ep{u'(ta)ult +r,a)} > | (2.12)
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where the superscript *  denotes the complex conjugate, < . > denotes the ensemble aver-
age with respect to the information symbols and E 4 {.} denotes the expectation with respect to

the random phase. Substituting Eq.(2.11) into Eq.(2.12), we have

Ry(tt+r) = < Eg{ 3] p(t=iNT) exp [ =j6;] exp [ —j#(t,a)]

ti,wp(tw—m)exp o) e Live s ral) >
= < Eg{ Y Y expli® -0y ]p(t — iNT) p(t + r — £NT)
i= -0 l=—0

explj (¥t +71,2) —¥(t.a))]} >.

Since the 6's are statistically independent and uniformly distributed in [0, 27]

Eg{ explj(6, — 0]} = 6; 4 ' (2.14)
Hence,
[o.0)
Ry(tt+7) = Y p(t = iNT)p(t + 7 ~ iNT) Repyy (4, t + 7) (2.15)
i=-m

where Repyy(t, t + 7) is used to denote the complex baseband autocorrelation function of the

CPM signal without any frequency hopping and is given by

Repmlt, t + 1) < explj@(t+r,e) = P(ta))] >

(2.16)

< exp[j2rh i o, [qt + 7 = nT) — q(t — nT)]] >.

n=—oo

The sum in the exponent in Eq.(2.16) can be written as a product and averaged with respect
to the sequence @ . Assuming that the M-ary data are independent and take on the values of

+1, +3, ..., £ (M — 1) with equal probability /M, we have
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. : = M2 :
Repp(ty t + 1) = I I {%Ecos 2rh(2j-1)[q(t + 7 —nT) — q(t — nT)}}.

j=1

(2.17)

It can be easily observed from Eq.(2.17) that Repy(t,t + 1) is periodic‘ in t with a period of T,

However, Ry (t,t *+ 7) as given by Eq.(2.15) is periodic in t with a period of NT. Since in prac-

tice we do not have a precise time origin, we can assume that the origin is uniformly distributed

over.[ 0, NT ]. The average autocorrelation is then given by

R, (1) L fNTR t,t + r)dt
T , T
Ll( \IT 0 u(

NT

[0) B
L 37 p(t = iNT) p(t + 7 = INT) Repy (1. t + 7 dt
NT ) :
1

foe] .
NT f_oop(t) p(t + ) Repy (6t + 1) dt.

It can be easily seen that

1

L M TRt + 1) d 0 NT
it t <r <

N cpml( T) T

R,(r) = 1 NT -
_N?I_TRCPM(t’t+T)dt NT<r <0
0 . fr| > NT.

(2.18)

1(2.19)

Since Repy (1, t + 7) as given by Eq.(2.17) is real, R, (7 ) is then also real and therefore an

even function of r.

R,(r) = R, ( — ).

(2.20)




Hence, we need to consider only positive 7. Let 7 =aT + ¢ ., where 0=7=T and

a =012 ..,N—-1 Wehave

R, () = Ry(aT + 1)
1 (N=-a)T-7
NT v

I S +aT +7)d +f(N—a)T_T'RV (1t + aT + ) d
_— t,t a T t t,t a T t
NT { 0 cpul ) (N-a-pT M }

Repm(t, t + aT + 7') dt

N-a-2 p
1 (k+1)T ' (N-a)T —r , }
_— R tt +aT + 7)dt + R t,t+aT + 7)dt » .

NT { k2=:0 fkT cem ) f(N—a—l)T .CPM( )

(2.21)

Since Reppm(t,t + 7) as given by Eq.(2.16) is periodic in t with a period of T, integrating over
any interval of [ kT, (k+1)T ] with respect to t will be the same as integrating over [ 0, T ].

Hence we have

R, (r) = R,(aT +1")

1 {N—Ea—.?
NT k=0
LI~ l)fTR (tit + aT + ')dt+fT_T'R (tt + aT + ’)dt}
—_— ~a- G+ a T . a 7
NT { 0 CPM : 0 CPM

- N-a-1
NT

T T—7 ,
fo Reppm(tit + aT + 7') dt + fo Reppm(tit + aT + 7) dt}

fR (tt + aT + 7)) dt + —— f_T'R (t,t +aT + ') d
t,t a T t t,t a T t;
0 CPM NT 0 CPM

r=71 +aT,
0<7<T, (2.22)

a =012 ..,N-1,

where Repy(tit + aT + 1) consists of an infinite product of terms as rewritten below by

substituting 7 = aT + 7' into Eq.(2.17)
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‘ = M/2 : -
Reppm(t, t +aT + 1) = I l {%Zcos 2rh(2j-D[q(t + 7 — (n-a)T) ~ q(t-nT)]}. (2.23)
n=—oo j=vl '

The number of terms in the infinite product in the above equation can be reduced, since the

frequency pulse is of finite duration LT. From Eq.(2.4) it can be noted that

'

q(t + 7 - (n-a)T) = q(t = nT) = 0 for t+7 —(n—-aT<0 (224)
and
q(t + 7' - (n-a)T) = q(t.— nT) =

q(LT)  for t-nT >LT. (2.25)

Heﬁce for t+7 - (n—a)T<0 and t- nT >LT the product terms will be equal to
unity and can be omitted from Eq.(2.23). Since only te [0, T] need be considéred for calcu-
lating R, () as is evident from Eq.(2.22) and also from the fact that RépM(t,t + r) is periodic
- in t with period T, the product terms in Eq.(2.23) will be unity forn = a+2andn'< - L. The

infinite product in Eq.(2.23) then réduces to

RCPM(t,t + T) = RCPM(t’t + aT + Tl)

a+tl
M/2
- I I {23 cos 2nh(2-Dla(t + 7~ (n-a)T) = q(e-nT)] ), (2.26)
=1 |
n=1-L

The power spectral density of the dehopped signal is then given by
E .
Si(F) = S {Su(f+ i) + Sy(=f-£) ) | (2.27)

where f_ is the intermediate carrier frequency and S, (f) is the power spectrum of the equiv-

alent lowpaés signal u(t‘, a) defined as
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S,(f) = fw R (r)e 1 ¥ ar, (2.28)

-0

Since R, (r) is real and even and R,(r) = 0 for |r| > NT , from Eqs.(2.19) and (2.20), we

have

NT
S, (f) = 2f0 R, (r) cos 2fr dr | (2.29)

where R, (7) is given by Eq.(2.22). The dehopped signal spectrum can then be calculated by

using Eqs.(2.29),(2.22) and (2.27). Numerical integration is performed according to Eq.(2.22)

for calculating the autocorrelation function, which is then numerically Fourier transformed to

obtain the spectrum.

2.3 Results

The power densi‘ty spectra of the dehop_péd signals with various partial response en-
codings together with different baseband pulse shapings have been calculated. The unspread
power density spectra for frequency-hopped MSK for different lengths of hop interval are
shown in Fig. 2.1. As the length of the hop interval increases, the dehopped power density
spectrum becomes more compact and approaches that of coherent MSK without frequency
hopping. The dehopped spectrum of frequency-hopped MSK is almost identical to the spec-

trum of coherent MSK for hop intervals of length greater than 2048 T.

With a modulation index of 0.7 and no correlative encoding, the spectrum of hopped
CPFSK is as shown in Fig. 2.2. If a comparison is made with the spectrum of MSK which has

a modulation index of 0.5, we see that a change in the modulation index from 0.5 to 0.7 changes




the shape of the spectrum quite significantly especially for short hop intervals. There are large

side lobes when the length of the hop interval is equal to the transmitted symbol interval T.

To see the effect of correlative encoding on the signal spectrum, the spectra for
duobinary MSK are shown in Fig. 2.3. Again the bandwidth occupied by the frequency-hopped
signal reduces as the length of the hop interval increases, and the spectrum approaches that of
coherent duobinary MSK E'lS the length of the hop interval becomes large. If the spectra aie
compared with MSK without correlative encoding, we notice that correlative encoding does not
give much bandwidth reduction for short hop intervals. With long hop intervals it does. For the
same duobinary polynomial (1+ D)/2, but a higher kmodulation index of 0.7, the spectra for the
different hop lengths are as shown in Fig. 2.4, The signal bandwidth'increases with an increase
in modulation index when the length of the hop interval is large. To see if a higher order en-
coding polynomial would give a. further improvement in the spectral characteristic, spectra for
the Ta1ﬁed FM (TFM) polynomial, which for coherent signaling is known to be an attractive
second order PRS bolynomial, were calculated as shown in Fig, 2.5. A comparison of Fig. 2.5
and Fig. 2.1, shows that even for a_higher order polynomial the reduction in bandwidth is in-
significant at short hop intefvals. However, for long hop intervals the higher order PRS

polynomial yields a spectrum of even greater compactness with very low sidelobes.

To illustrate the effects of baseband pulse shaping on the spectra, the spectra for raised
cosine pulse shaping with various encoding polynomials are as shown in Figs. 2.7 to 2.10. For
- long hop lengths the spectra of the signals with raised cosine shaping are more compact than

their rectangularly shaped counterparts,

" A spectral occupancy comparison of the frequency-hopped signals with different modu-

lation indices, partial response encodings, pulse shapings and lengths of hop interval is made

by calculating the 99 percent power bandwidth of the frequency-hopped signals.. The 99 percent .
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power bandwidths of the various frequency-hopped signals with rectangular pulse shaping and
raised cosine pulse shaping are tabulated in Table 1 and Table 2 respectively for different
lengths of hop interval. We can see that the 99 percem.power bandwidth of the FH/CPM signal
decreases with the increase in the length of hop interval. In general, with a hop length greater
than 1024 symbol intervals, the 99 percent power bandwidth of the FH/CPM signal is the same
as that for the CPM signal with no frequency hopping. Comparing entries in Table 1 with those
in Table 2, it can be seen that the 99 percent power bandwidth of the FH/CPM signal with
rectangular pulse shaping is smaller than the corresponding 99 percent power bandwidth of the
same modulation scheme but with raised cosine pulse shaping. However, it should be noted that
while the 99 percent power bandwidth is smaller for rectangular pulse shaping, the same
modulation scheme but with raised cosine pulse shaping actually has a more compact spectral

mainlobe and lower sidelobes as shown previously.
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99% bandwidth in 1/T

F(D) = (1 +Dy2

F(D)= F(D)=(1+2D+D2)4
N h=0.5 h=0.7 h=0.5 h=0.7 h=0.5 h=0.7
1 18,844 18.688 18.891 18.859 18.891 18.875
2 9.9375 9.9688 9.9375 9.9688 9.9375 9.9531
4 5.1875 5.2656° | 5.0938 5.1250 | 5.0781 5.1094
16 1.8906 21250 1.5938 | 1.8125 1.4688 1.6250
64 1.2813 1.8750 0.9688 1.3750 0.8438 1.0156
256 1.2031 1.8125 0.8906 1.2969 0.7813 0.9844
1024 11876 | 1.7969 | 0.8750 | 1.2813 | 0.7813 0.9688
No Hopping 1.1875 | 1.7813 0.8750 1.2813 0.7656 0.9688 |
Table 1 99 % power baﬁdwidth comparison between different modulation

schemes for rectangular pulse shaping




1
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99% bandwidth in 1/T

F(D)=(1+D)2 F(D)=(1+2D +D2)/4
N h=0.5 h=0.7 h=0.5 h=0.7
1 15.875 18.844 18.891 18.859
2 9.9375. 9.9531 9.9219 5.9375
4 5.0625 5.0781 5.0469 5.0625
16 2.2813 2.6719 2.1875 2.5313
64 1.7500 2.5156 1.6250 2.3438
256 1.6250 2.4688 1.5156 2.2656
1024 1.6094 2.4531 1.4844 2.2344
4096 1.5938 2.4531 1.4844 2.2344
16384 1.5938 2.4531 1.4844 2.2344
65536 1.5938 2.4531 1.4844 2.2344
262144 1.5938 2.4531 1.4844 2.2344
No Hopping 1.5938 2.4531 1.4844 2.2344

Table 2 99 % power bandwidth comparison between different modulation

schemes for raised cosine pulse shaping
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2.4 Summary

In this chapter, a model of the frequency-hopped CPM signal is presentéd. The baseband

autocorrelation function of the FH/CPM signal is derived for drbitrary pulse shaping, modu-

lation index, number of levels of the data and length of hop interval. Spectra of the spread
spectrum signals with various correlative encoding schemes and baseband pulse shapes are

evaluated and examined for various lengths of hop interval.

Frém these results we conclude that the spectrum becomes more compact as the hop
interval lengthens and in general approaches that of the CPM signal without hopping. An in-
crease in thé modulatién index will increase the bandwidth occupied by the signal for long hop
lengths. For short hop lengths the increase in bandwidth due to a\n increase in modulation index
is not significém. Alfhough it is well known that correlative encoding and raised cosine
baseband pulse shaping reduce the signal bandwidth and sidelobe level for conventional
continuous phase modulation, for frequency-hopped_ signals with short hop interval lengths
these techniques do not yield much reduction in bandwidth. Substantial spectral imp}ovement

with these methods can be achieved at the longer hop intervals.
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Chapter Three
NONCOHERENT RECEIVER

As shown in the previous chapter, FH/CPM has attractive spectral mainlobe compactness

and low sidelobes when a number of symbols are transmitted using CPM schemes during a hop
interval., This spectral compactness is highly desirable for providing higher processing gain for

possible increased antijam protection.

In this chapter, reception of the FH/CPM signal is considered. Due to the unknown
random phase of the received carrier as the carrier hops from one frequency to another, a form
of noncoherent demodulation has to be used. To make use of the continuous phase and the
partial response memory of the signal, the optimum observation interval for deciding on a

specific data symbol should be longer than one symbol interval.

The optimum symbol-by-symbol noncoherent detector for the class of constant envelope
modulated signals having a continuous phase, has been derived previously [33-37]. Osborne and
Luntz [33] and also Schonhoff [34] have derived the maximum likelihood noncoherent receiver
for CPFSK yielding symbol-by-symbol decisions in the binary and general M-ary cases respec-
tively. For noncoherent detection, an odd number of symbols is observed and a decision is made
on the middle symbol. Aulin and Sundberg [35] have generalized the detection algorithm to
allow the detected symbol to be anywhere in an observation interval of arbitrary length rather
than just in the middle of the observation interval and have included pértially coherent de-
tection, where the unknown carrier phase is estimate.d by a tracking loop, which is assumed to
have a tracking error density function. It has been shown that the optimum noncoherent

detector should decide on the middle symbol lying in an observation interval consisting of an
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odd number of symbols [35]. Noncoherent symbol-by-symbol detection of correlative encoded

CPM is also reported in [36] and [37]. By using proper time delay and phase compensation

networks, a much simpler noncoherent receiver than that in [33,34] has been devised by Pawula

and Golden [38] for .multiple symbol noncoherent demodulation of convolutionally coded

CPFSK. The maximum likelihood demodulator is the same as that for ordinary -noncoherent .

‘FSK but with additional circuitry following the integrators to remove the effects of the unknown
phase of the local data tone oscillator. Additional time delay and phase weighting networks are
_required to form the maximum likelihood demodulator outputs of the noncoherent receiver

with an observation interval of three symbols.

Due to the noncoherent frequency hopping and dehopping processes, the dehopped sig-

nal will have signal phase discontinuities every NT seconds. Symbol-by-symbol detection of the '

middle symbol based on multiple symbol observation, mentioned above, cannot be directly ap-
plied for optimum detection of this piecewise phase continuous signal. It has been observed that
the symbol decisions ought to be based on the entire received sequence [39]. However, the
transmitted signal corresponding to the information sequenée can be of very long duration and
there could be very long decoding delays. Also, since the source is pro.viding a new information
digit every T seconds, there will be an exponential increase with time in the number of possible
signals, making decision after complete observation formidable unless a dramatic receiver
simplification occurs. It is clear that some sor£ of sequential decision process is needed. 'In this
chapter, a noncoherent receiver with a sequential decoding algorithm will be derived first for
optimum detection on a hop-by-hop basis and then for optimum decisions based on the entire
transmission spanning hops. A simplified subopti.mum sequence estimation receiver is also de-

rived by treating the signal as if every symbol interval is noncoherent, hence resulting in a

simpler decoding algorithm and receiver structure. We shall first derive the maximum likeli- -

hood noncoherent receiver, which is optimum on a hop-by-hop decision basis, with the obser-

vation interval being the hop interval.
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3.1 Hop-By-Hop Maximum Likelihood Receiver

We assume that the receiver mixes the received spread spectrum signal with a locally
generated reference signal, which hops synchronously with the same pattern as that at the -
transmitter and produces a data modulated signal at some convenient intermediate carrier fre-

quency f.. The received dehopped waveform can be written as

2E

. i p(t = iNT) cos[2nft + %(t,e) + 6] + n(t) (3.1)

1= =00

r(t) =

where the symbols and notation are as defined and used previously in Chapter Two. f. is the
intermediate carrier frequency and n(t) is additive white Gaussian bandpass noise with zero

mean and one-sided power spectral density of Ny W/Hz which can be given by [3.36]
n(t) = V2 ng(t) cos 2nft — \/2 ny(t) sin 2nf.t, (3.2)

The baseband processes n.(t) and ny(t) are statistically independent, white and Gaussian with

- zero mean and one-sided power spectral density of N, W/Hz,

During the ih hop, the received dehopped signal can be written as

r(t) = '\/g cos[2mf .t + %(t, @) + 6;] + n(t) | (3.3)

for /1 T<t<(i+ 1)NT.

The random phase 6; is constant over the hop interval and is assumed to be uniformly distrib-
uted from 0 to 2 7. We shall adopt the notation developed in [33,34] for the dehopped trans-

mitted waveform in the ith hop as s(t, a, 8;) defined below

s(t, @, 8;) = '\/? cos[2nf .t + P(t, @) + 6] (3.4)

for iNT <t < (i + 1)NT.
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Without loss of generality, we may only consider the detection over the first hop from

~t = 0toNT. Subsequent hops are detected in the same manner on a hop-by-hop basis.
3.1.1 Likelihood Function

The detector must find the sequence of data symbolsa , which maximizes the likelihood

function [33,34,36]

NT
tla @) = Eg{ expl 73—'\/—2?—[0 (1) s(t, &, Bg)dt ] ) (3.5)

where an{ .} denotes the mathematical expectation with respect to the random variable 6 .
Since the random phase 8 is assumed to be uniformly distributed from 0 to 2 =, the average
over the random phase yields, as is well known [33,34,36], the zeroth-order modified Bessel

function. The likelihood function is then given by

ta o) = Io{r\i,'\/%—g'\/e—?(g,a_m + ) ) (3.6)

where Iy{ . } denotes the zeroth-order modified Bessel function, and

o
o .
_
°
IR,
S

n

NT :
tea) = | ) 1O st + (6 @) di (3.7b)

For convenience, we shall refer to £.(a,o) and £(e, o) respectively, as the inphase and

quadrature correlations over a hop interval.

NT
f | 1) cosfanft + $(ie)ldt (3.72)
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Since the Bessel function Ip{ . } is a monotone increasing function, an equivalent likeli-

hood function can simply be

£(e,) = o) + L) | | (3.8)

The maximum likelihood noncoherent receiver on a hop-by-hop decision basis would
correlate the received signal with the iﬁphase and quadrature components of all possible trans-
mitted waveforms in a hop interval. The equivalent likelihood is then formed as the sum of the
squares of the ilnphase and quadrature correlations over the hop interval and the receiver will
choose the sequence ¢ , which gives the largest equivalent likelihood. Unfortunately, the

number of possible transmitted signal waveforms for M-ary transmission in a hop interval of

"NT is MM, which is exponentially increasing with the length of the hop interval. This brute

force approach to decide on the most likely transmitted signal would be highly impractical
considering the large number of correlators or matched filters required, particularly when the

length of the hop interval is long.

3.1.2 Sequential Decoding Algorithm

For coherent detection, the Viterbi Algorithm, which was originally proposed for de-
coding convolutional codes, has been used for estimating the maximum likelihood sequence by
calculating the likelihood recursively [39-43]. Since the likelihood for hop-by-hop noncoherent
detection as given by Eq.(3.8) is the sum of the square of the inphase correlation and the square
of the quadrature correlation, the metric calculation is not as straightforward as in the coherent

case.

To derive a sequential decoding algorithm, we note that £.(e, ') and Zs(gz_,g’) given by

Eq.(3.5) can be written as the sum of the partial likelihoods as




-40-
N—-1}
(e, o) = Db () _ | (3.92)
k=0
-1
ble o) = D) 642 o), ~ (3.9p)
k=0 '

where é; ) (2, o) and & ; (e, o) denote the partial inphase and quadrature correlations over the

k th symbol interval as given by

(k+ 1T )
fonle @) = [ r( coslanft + d(neH]dt | (3.102)
. (k+ 1T e
bl ) = fn r(t) sin[2nf.t + (1, )] dt. (3.10b)

These partial correlations can be formed by correlating the received signal with the in-
phase and quadrature components of the transmitted signal in the kth symbol interval for an

estimated sequence ¢,

The information carrying phase during the k th symbol interval can be written as

k k-L
¥(t, @) = 2rh E ay gt — nT) + 27h Z a,q(LT)
n=k-L+1 n=0 : (3.11)

for kt<t<(k+ 1)T.

The first term represents the contribution of inputs actively affecting the shape of the phase
path during the k™ interval.” The second term represents the underlying phase due to past in-

" puts.
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The output of a correlative encoder can be regarded as the output of a linear finite state
machine much as in the case of a convolutional encoder. For a given correlative encoder with
PRS polynomial F(D) of degree m, the encoder state can be defined by the last m, or L-1 input

digits. A correlative state vector can be defined as
Cy = logorep e ag-iox1 ] (3.12)

The second term in Eq.(3.11) represents the underlying phase due to past inputs, which can be

called the phase state [41]

k-L
¢, = [2rh ZanQ(LT)]mod 27
n=0
O | (3.13)
= [”hzan]mod 27
n=0

For M-ary transmission, o, can take on the values £1,+ 3, .., (M — 1), hence the sum

k=L . - . . L
Y. a, can take on any integer values. Forh = %— with r and p relatively prime integers,
n=0

there are at most p possible distinct phase states ( 0, 2a/p, 4x/p, ..., 27(p — 1)/p ).

This does not mean that there are necessarily p phase states at any time kT. If we

examine the difference between the phase states at alternate symbol intervals, we notice that
$r+2 ~ O = Th(ogio-p T ooy o) (3.14)
For M-ary transmission, @) can take on the values { £ 1,+3,...,+ (M — 1) }, hence

@x+2 — @))€ [0,% 2xh, + dzh, ..., £ 2(M — )zh ]. (3.15)

Hence if p is even, there will be only —g— phase states possible at the even symbol times and the
other % phase states at the odd symbol times, although there are a total of p possible phase

states.
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The combined state sk. = [Ck.4x] , that is, the correlative state véctor and the phase
state, together with the present input oy completely specify the transmitted signal waveform
during the k'h interval. For M-ary transmission there will then be M ™ different Co‘rrelat.ive
states and p phase states for a fotal of n = pM™ combined states at the most. The sequence
estimation receiver must operate with as 'few states as possible. If P is eQen, then there are
actually —g— M™ states per interval in the Markov state description. And so, actually only a total
of n = % M ™ states are required for the sequence estimation receiver for h = _2p_r with p even.

Since the mapping of the input data sequence to the state sequence is one-to-one, estimation

of the state sequence will give the corresponding estimated transmitted data sequence.

A typical state trellis ( the trellis for duobinary MSK [42] ) showing the state transitions
as a function of discrete time k is shown in Fig. 3.1. The trellis is drawn under the assumption
tha£ the initial state at time 0 is 1. All possible state transitions over 5 time units are shown,
Each Inode corresponds to a state at a given time and the branches joining the states indicate
state transitions to some new state at the next instant of time due to the input of an information
bit. Dashed and solid lines correspond to state transitions for 1 and 0 input information bits,

respectively.

For coherent detection, the likelihood can be bréken into a sum of partial log likelihoods
(branch metrics). When a path is extended by one branch, the metric of the new path is the surﬁ
of the new branch metric and the old path metric, The path with the largest accumulated log
likelihood (path metric) leading to a node will always belong to the maximum likelihood path
through tﬁat node, hence other paths leading to that node can be discarded from further
consideration. In the case of noncoherent detection, tﬁe equivalent likelihood as given by Eq.

" (3.8) cannot be broken up into a sum of branch metrics, hence a branch transition metric cannot

be defined. In order to determine the the.maximum likelihood sequence, the decoder has to .

calculate and accumulate the inphase and quadrature likelihoods for all possible paths through

...O..O......OO......Q.Q..Q..QQ..0.".00..0.0.‘.......-.
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A typical state trellis

k
Figure 3.1
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the trellis in a hop interval, besides retaining the path histories of all vthe possible paths. At the
end of a hop interval, the equivalent likelihoods for each of the possible paths are formed by
summing the squares of the inphase and quadrature likelihoods of the paths. The path history
of the path with the maximum equivalent likelihood is then output as the maximum !ikelihood
sequence over the hop interval. Only this brute force decoding approach is able to determine
the maximum likelihood sequence. Unfortunately, the number of possible paths for an N
symbol sequence is MN, Thus, this brute force decoding approach quickly becomes impractical
as N increases. However, the decoder may form the equivalent likelihood up to kT by summing
the squares of the inphase and quadrature likelihoods of the path accumulated up to time kT.
The path leading to node s, = j with the largest equivalent likelihood up to kT is the most likely
path among the M paths leading to the node s, = j, based on the observation interval from 0
toAkT. To reduce the memory and computations from that required for maximum likelihood
decoding, at any time kT thev decoder may maintain only one path, which> has the largest
equivalent likelihgod up to time k"i;, leading to each of the nodes s, = j, j = 1,2,..,7. Some

performance has been sacrificed to achieve a reduction in complexity.

The sequential decoding algorithm proceeds as follows. Starting from a known initial

state s = i, the decoder stores the inphase and quadrature likelihoods of the mode s, = j as
£.,() = (i) - (3.16a)

£,G) = &) | | (3.16b)

for all the M allowable transitions from state i to state j. The path history of the path leading

to state j is also stored. 6.(i,j) and 64(i,j) are just the inphase and quadrature correlations over a
symbol interval for the allowable transition from state i to state j corresponding to an estimated
sequence o as given by Eq. (3.10). They are formed from appropriate matched filter outputs

with proper phase compensation weightings.




In general at time kT ( k = 2 ), the decoder computes for each node s =j .

j = 1,2, ..,n. the equivalent likelihood functions of the M different paths leading to s, = j, i.e.

£0G) = [lox1() + 6.GDT + [Eox_ () + 8D (3.17)

~ for all allowable state transitions i to j. The sequential decoder must eliminate some paths from

further consideration in order to keep the computation and memory requirement feasible. At
)

any time kT, the only decision parameter available to the decoder is the equivalent likelihood
accumulated up to KT for each of the paths leading to each state in the trellis as given by Eq.
(3.17). Without prior knowledge of which one is a portion of the maximum likelihood path
over the hop interval, the decoder should preserve the path with the largest equivalent likeli-
hood accumulated up to kT leading to each node sy =j, j = 1,2,..,7 . Other M-1 paths
ending at s, = j are discarded in order to keep the decoding process feasible for long hop
lengths, We shall call the path with the largest equivalent likelihood function terminating in the
node s, = j the survivor of state j, since the other paths leading to state j are discarded by the
decoder. Although the survivor at node s, = j may not be a portion of the maximum likelihood
path through the trellis in a hop interval, it is the most likely path leading to node s; = j based
on the equivalent likelihood up to time kT among the M contend.ing paths leading to node
Sk =]

Thus we define the metric of the survivor at s; = j as

max » _

66 = (Hoxoi@) * &GP+ ko) + &GITD (3.18)
V(L)

where j =1,2,..,7 ,k 2 2 and VY(i,j) denotes over all allowable transitions from state i to

state j.
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While  £5(j) is defined as the metric of the node s =j at time k, the pair

{ £2(). £ () } are stored for node s, = j, as given by
L@ = L1 + 8(i) , (3.192)
i) = Lp—() + &) : (3.19b)

where i is the node index satisfying Eq.(3.18). The metric is computed sequentially from the old
information { £, _ (i), £, — (i)} and the partial correlations {&.(i.j),6,(i,))} in the kB
interval according to Eq.(3.18). The sequential decoding al.gorithm now has to accumulate both
the inphase and quadrature likelihood parameters rather than just the inphase likelihood
parameter as in the coherent case. The path histories of the survivors terminating at each of

the nodes s, = j,j = 1, 2, ..., 7 are also stored.

In principle the algorithm can make a final decision on the initial state sequence segment
up to time (k-d)T when and only wheﬁ all survivors at time kT have the same initial state se-
quence segment up to time (k-d)T. That is; all survivors branch out from a common node, say
Sk-d = j The initial segment of the estimated sequence is then uniquely determined independ-
ent of succeeding observation and a firm decision is available from the algorithm before the end
of a hop. For this hop-by—hop sequence estimation algorithrﬁ, the ;urvivor having the largest
metric (equivalent likelihood) at time NT, that is at the end of a hop, is output as the estimated
sequence. The decoding delay d for this hop-by-hop sequence estimation algorithm is at the

most the length of a hop interval.
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3.1.3 Receiver Structure

The noncoherent receiver must be able to provide the inphase and quadrature corre-
lations of the received signal with every possible duration-T signal segment as indicated by
Eé{.(3.10). The inphase correlation over the k" symbol interval required for the possible

transition from state i to state j during the k' symbol interval is given by

(k+1)T
6(i) = [ x(t) cos[2nft + w(t,&)]dt
KT (3.20)
f(k+1)T . B gt f(k+1)T ) sin Bz, @)t 2
= : . - T t,
- ro(t) cos ¥(t. @) o rs(t) sin %(t, ')
where
r(t) = r(t) cos 2xf.t : (3.21)
ry(t) = r(t) sin 2xf_t (3.22)

The information carrying phase function #(t, @) during the k' symbol interval as given by

Eq.(3.11) can be written as

P(ta) = B() + dy kT<t<(k+1)T, (3.23) -
where
k
Bi(t) = 2rh Y, o, q(t — nT). (3.24)
n=k-L+1

By;(t) is one of the ML posible phase paths and ¢y; is one of the p possible phase states as given

by Eq.(3.13). Substituting Eq.(3.23) into (3.20), we obtain
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o Wk+1)T
6.(i,j) = cosgy fkT r.(t) cos By (t)dt

_ (k+1)T _
— sinéy; fkT re(t) sin By (t)dt

o (3.25)

(k+1)T ' :
= OS¢y fkT rs(t) sin By; (t)dt

. (k+1)T
= singy; fkT rg(t) cosﬂki(t)dt

Similarly, the quadrature correlation over the k ' symbol interval for the transition from state

i to state j is given by

L ‘ (k+1)T
5,310 = singy [ o TelD) cos B(t)ae

(k+ 1T _
+  Cos ¢y fkT re(t) sin By (t)dt

) “ak+ DT ) ’ (3.26)
= sing¢y fkT rs(t) sin Gy;(t)dt

(x+1)T
+ CoS Py fkT r4(t) cos By, (t)dt

where r(t) and ry(t) are given by Eqs.(3.21) and (3.22), which are obtained by multiplying the
received signal by cos 2xf .t and sin 2xf.t to form quadrature channels. For some frequency
dehoppers, r.(t) and ry(t) may actually be available directly from the inphase and quadrature
channel_ outputs of the dehopper. A baseband matched filter bank is requiréd to provide the
correlations with ‘the césine and sine of all posible phase paths fy;(t) over each symbol interval
to obtain the 6.(i,j) and 6,(i,j) required by the decoder. Notice that 6.(1,j) and 6.(i;j) given by
Eqgs.(3.25) and (3.26) can share the same matched filtet bank, sinée the difference is only in the

scaling multipliers, sin ¢y; and cos ¢y; and the sign,

The matched filter impﬁlse response is simply

.
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hi(t) = { cos[B (T - 1)] 0<t<T
“ 0 elsewhere
0
_ { cos2rh Y  ayuql(1 - &)T - ] 0<t<T (3.27)
t=-L+1 elsewhere '

0

to provide the correlation with the cosine of the i'h possible phase path. For the correlation

with the sine of the i'h possible phase path, the impulse reponse of the required matched filter

is given by
o = { T o <eT
0 elsewhere
0
{ sin2rh )] a,q[(1 - )T ~ ] 0<t<T (3.28)
Ct=-L+1 elsewhere. o
0

For a PRS polynomial with & nonzero coefficients and M-ary data transmission the
number of distinct symbols at the output of a correlative encoder lies in the range
kM-1)+1 = N £ M* | with the minirﬂum number of distinct correlative encoded sym-
bols being obtained when the PRS coefficients are all the same [19]. The number of distinct
correlative encoded symbols corresponds to the number of different possible transmitted phase
trajectories‘ during a symbol interval. The number of matched filters required for the receiver
is 4\, For a PRS polynomial of degree m, there will be m+1 = L nonzero coefficients at the
most, hence the number of matched filters required is 4M L at most. The number of matched
filters can be reduced by a factor of two by noting that for every digit sequence, there is another

sequence with opposite signs. Therefore, at the most, 2M L baseband matched filters are re-




quired in total. A block diagram of this sequence estimation noncoherent receiver is shown in

Fig. 3.2.

- The matched filter outputs are sampled every T seconds followed by proper phase
weightings to obtain the inphase and quadrature correlations 6,(i,j) and 6(i,j) for the k th symbol
interval. There willben = pMm™ = pML-1 combined states per interval at most. Hence the

decoding algorithm requires 1 buffers for storing the n survivors and 27 storage locations for

storing the inphase and quadfature likelihoods E:k_ 1(i) and E:,k_ 1), 1 =i =19 Ateach time

kT, -the algorithm has to perform 2Mpy additions to find [£ei () + 6.(ij)] and
[E;k_l(i) + 6(i,j)] followed by 2Mpn squaring operations and Mn additions to obtain the

likelihood £'(a, @) . (M-1)n binary comparisons are then required to determine the 5 survivors

§j, 1=j=n with the largest likelihood £;(j), 1=<j<n . Hence, at each time kT, a total of '

N,qq¢ = 3pML additions, N, = 2pM L squaring operations and N = (M — 1)pML-1 bi-
add p , sq P q g op comp P

nary comparisons are performed by the decoder.

The hop-by-hop sequence estimation noncoherent receivers for different modulation
schemes are compared in terms of the number of possible phase states, the number of baseband
matched filters, the number of decoder states and the number of mathematical operations re-
quired per symbol.interval as shown in Table 3. We can see that with é modulation index of
0.5, the simplest recéi\;er can be obtained with the minimum number of decoder states and
consequently the minimum number of mathematical operations are required to be performea

per symbol interval by the decoder.
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p number of possible phase states
MF number of baseband matched filters
n number of decoder states
N.gq number of additions
s number of squaring operations
Neomp number of binary comparisons
Modulation Operations per interval
F(D) h p MF n Nadd qu Ncomp
1/3 6 4 6 36 24 6
1 1/2 4 4 2 12 8 2
2/3 3 4 3 18 12 3
1/3 6 8 12 72 48 12
(1+Dy2 1/2 4 8 . 4 24 16 4
2/3 3 8 6 36 24 6
173 | 6 12 24 144 96 24
(1+2D+D?)/4 1/2 4 12 8 48 32 8
2/3 3 12 S 12 72 48 12

Table 3

Complexity comparison between different modulation schemes
for the hop-by-hop sequence estimation receiver




3.2 ML Receiver Spanning Frequency Hops

In Sectioﬁ 3.1, the sequential decoding noncoherent receiver that decodes transmitted
sequences on a hop-by-hop basis has been presented. We now extend the detection algorithm
so that the receiver detects a transmitted sequence of arbitary length (greater than the hop
length), based on the maximum likelihood accumulated over the entire transmission period
spanning frequency hops. There will be periodic random phase jumps in the dehopped
waveform every NT seconds. As one would expect, the receiver algorithm is more complex than
the previous algorithm. However, a special case of the algorithm can be combined with the
algorithm described in the previous section to give a simple practical algorithm for the situation

where the hop interval is much longer than the length of the frequency pulse g(t).

3.2.1 Receiver Theory

The received dehopped waveform is the same as that presented previously in Eq.(3.1).
Again we shall adopt a shorthand notation developed in [33,34] for the dehopped transmitted
waveform as s(t,a.8) , where 8 = {6;,6,,0,,... } is a random vector, such that

s(t,a,8) = s(t,e,8;), for INT < t < (i+1) NT and s(t, ¢, 8;) is defined in Eq. (3.4).

For a transmitted sequence of length n symbols, with n greater than the length of the hop
interval N, the number of hop intervals for which the signal has a different value of random
phase 8;, would be the nearest integer greater than n/N denoted by q. The detector must now

find the sequence of data symbols @' , which maximizes the likelihood function

. nT
£, @) = Eqf exp[NiO’\/z—TE—f | TSt 8)dt])
q=-1 ..
- 2 2E (i INT »
Eg{ exp[ T\I—O—'\/_T__ iz__;()fiNT r(t) s(t, e, 8;) dt ] }.

(3.29)




-54-

The sum in the exponent can be written as a product giving

q-1 . ’ } )
o (i+1)NT , .
ta, @) = Eqf l I exp| —éﬁ '\/—— e IR CECR AT b (3.30)
i=0 ° .

Since the random phaées 8, are statistically independent, the expectation over the random phase

can be taken as

q-1

. (1+ 1)NT
L d) = I I Eg { exp[—%ﬁfm_r r(t) s(t, /. 8;) dt ] ). (3.31)

1=()

Assuming that the random phases 8; are uniformly distributed between 0 and 2 w, the average
over the random phaée yields as is well known, the zeroth-order modified Bessel function and

the likelihood becomes .

q-1 . '
te, o) = I Ilo{ Nio'\/—z_?——‘\/éi(g,g') + L)) (3.32)
. 0 . : .

where
(i+ )NT :
tile ) = [ o T cosfarfet + G(,a) (3.33a)
1
and




(i+ )NT

ti@e) = [ r(t) sin[2rft + P(t,¢) ] dt. (3.33b)

T\

18

Ip{ . } denotes the zeroth-order modified Bessel function. Comparing the likelihood function
in Eq.(3.32) with that for the hop-by-hop detection given in Eq.(3.8), we see that the maximum
likelihood calculation is now more complicated. The likelihood calculation involves multi-

plications, Bessel function weighting, squaring and square root operations.

Generally in receiver implementation, addition is preferred over multiplication and the
log likelihood function may be used to reduce the number of multiplications by taking the

logarithm on both sides of Eq. (3.32) giving

q—1
(e ¢) = E :en o K"'O—’\/—";?— taled) + @)} (3.34)
i=0

To find the most likely transmitted sequence, the receiver will have to compute the log
likelihood as given by Eq. (3.34) for every possible sequence o' and choose the one which has

the largest likelihood.
3.2.2 Sequential Decoding Algorithm

The computation for the log likelihood as given by Eq.(3.34) for an estimated sequence
' can be carried out in a serial manner as follows. Again estimation of the state sequence will
give the corresponding estimated data sequence, since the mapping from a data sequence to a

state sequence is one to one. Initially during the first hop interval the equivalent likelihood
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given by Eq.(3.8) can be used to determine the most likely transmitted sequence in the first hop.
Hence, the decoding algorithm spanning frequency hops can proceed in the same manner as for

the hop-by-hop sequential decoding algorithm described in Section 3.1.2. At the end of the first

hop, the decoder retains n survivors having the largest equivalent likelihoods ending at each of .

the nodes sy = j,j = 1,2, ...,7 . The decoder now has to compute the log likelihoods of the

survivors terminating at each of the 1 nodes at time NT given by

Ti() = zZn(Io{Tj——’\/—zTE ften@ + 60" D) (3.35)

for each of the states 1 = j = n. We shall refer to these as the partial log likelihoods accu-

mulated over the first hop. To determine the survivors in the second hop for time kT > NT,
the decoder must use the likelihood given by Eq.(3.34) rather than the equivalent likelihood
£ (e, o) as given by Eq.(3.8). Hence, to determine the survivor at time (N +1)T, the decoder

computes the metric of the survivor at g4 = jas

, . max 2‘ E o 5 12
£ty () = (1) + nlol == (&) + &G 7] (3.36)
V(i) 0 _ : ‘
forj = 1,2, ..,n and all allowable state transitions i to . 6.(1,j) and 64(i,j) are the inphasé and

quadrature correlations for the transition from state i to state j during a symbol interval. These
are obtained in the same way as for the noncoherent receiver on a hop-by-hop detection basis

presented previously.

For each of the nodes sy4+; = j, 1 = j = 7, the registers for storing the inphase and

-quadrature correlations over the second hop, £; 5 n+1(j) and £55 y+1(j) , are initialized as
Loon+1() = 83 : (3.37a)

£on+10) = &(1)) . : : (3.37b)
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where i is the node index satisfying Eq. (3.36). Note that in the nowation £; ,, , and £ ;| . a
second subscript m, has been introduced to indicate that the m'® hop is under consideration
and the subscript k, as before, indicates that the states at time kT are being evaluated. The
partial log likelihood accumulated over the first hop for the survivor at node sy41 = j is also

stored as
I'6) =T,() . (3.38)

where i is the survivor state at time N and it is the node index i that satisfies Eq. (3.36).

In general, for time k laying in the m™ hop other than the first hop, (m-1)N < k <

mN, the metric of the node s, = j is defined as

max

%, 0 2 E * : Sy 2
ny(j) = (P + fnlp{ = -2T— [ Clemx-1(0) + 6.(i4))
V(i) 0 (3.39)
* . ca a2 12
o Bsmyx-1() + 6G)) 173
The metric is computed ' sequentially from the old information

{8 mx-10)s Lomi—-10), Tr-1(1) } and the new information {&.(i.,j), &(ij) } recursively ac-
cording to Eq. (3.39). Ty — (i) is the sum of the partial log likelihoods accumulated over the
previous (m-1) hop intervals for the survivor ending at s, _; = i. The likelihood parameters

are updated through

Lomi @ = Lomu—1®) + 80D | (3.402)
Lokl = Lomk—1() + 8(L) *(3.40b)
Trm-10) = T 1) (3.41)

where i is the state index that satifiies Eq. (3.39).
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At the end of each hop interval say the m'® hop, T}, (j) is updated through

Il

ToQ) = 20 £mnG)

(3.42)

Toi@) + 01l =N/ [emmnOF + (o)1)

for j=1,2,..,7 and £n @an(j) is the metric of state j as given by Eq.(3.39) Wheg k = mN.
The registers storing the inbhase and quadrature correlations over a hop interval Z;m'k(j) and
£ () are reset to zero at the end of each hop interval. Note that the values '\/? and
Ny aré required, which was not fhe case in the receiver considered in Section 3.1 and the partial
log likelihood sum T'f, - ;(j) has to be stored in addition to the usual inphase and quadrature
correlations £¢ ., 1 (j) and £, (i) . Natural log and Bessel function weightings have to be per-
formed. This dictates a more complex detection algorithm than previously obtained in hop-

by-hop detection.

The sequential decoder can output the initial segment of the estimated sequence when

all survivors go through the same nodes up to time k-d, that is, a merge occurs at time (k-d)T~

and all survivors branch out from the same common node s, _4. The initial segment of the

estimated sequence is then determined independent of succeeding observation. The decoding

delay d is unbounded. In actual implementation, the buffers for storing the path histories of-

the survivors will be of finite length. The path histories of the survivors are the;n truncated to
the length of the storage buffers. The decoder.will have to come to a definite deciéion after
some fixed delay, which is the length of the storage buffers. In general, if the buffer length is
chosen large enough, there is a high'probability that all survivor sequences share the same initial
segment a'md the initial segment can then be output as the decoder’s firm decision. In this case,
truncation of the survivor path histories does not affect the decoder’s decision. In the event

" when all survivors at time kT do not share any common initial Segment, the oldest bit of the

survivor sequence with the largest metric among the n survivors is output. If the buffer length
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is large enough, the effect on performance is negligible. The decoding delay for finite-length-

buffer implementation is then at the most the length of the storage buffers.

3.2.3 Decoder Simplification for L < < N

If the length of the frequency pulse denoted by L is much less than the hop length N,
then merges in the modulation treilis will usually occur much before the end of a hop. All the
n different survivors at time kT, branch out from a common node, say s, , where (m-1)N < t
< k, hence D', _ 1‘(1) will be the same for all the contending paths leading to the node S = j

and can be dropped.

. max « . 5
() = (T + L { [-= N/ (1€ () + 6.6 T
¥ (i.j) No T

+ [E:.m.k-l(i) + as(i,j)]z)uz} )

max

Il

Cntot I\ (Lemioa®) + 6D 1

V(i) (3.43)

+ [fomk-1) + &G T3y

Since the log Bessel function is a monotone increasing function, the log Bessel function
weighting can then be omitted without affecting the decision. Once the log Bessel function
weighting is dispensed with, the multiplication with a constant and taking the square root
operations can also be omitted, resulting in a simple likelihood parameter, which is the equiv-
alent likelihood used in the hop-by-hop detection receiver. Hence once a merge has occurred
within a hop the equivalent likelihood over the current hop interval can be used for determining

the maximum likelihood sequence via

60 = lleme(® * 80D + [mumi @ + 8GEIF Y. SNEXY)
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The decoding algorithm can then ;evert to the simple one as for the first hop. Note that the
more complicated mefric calculation in Eq.(3.39) is required only for a few symbol intervals
after a frequ;ency hop. Once a merge has occurred the comparison can then revert to the simple
one as in Eq.(3.44). Although the parametérs ane 1(G) for j = i, 2, ..., n can be omitted in the
comparison in Eq. (3.44) after a merge has occurred, they are still needed to be stored and up-
dated for the n survivors terminating at each of the nodes s, =j,j = 1,2, ...,7, as outlined in
Eq.(3.41) during a hop interval. At the end of the mtb hop interval, the parameters I"r*n(j) for
all the states j = 1, 2, ..., n are required to be updated through Eq. (3.42). The algorithm reverts

back to the more complicated calculation as the next hop begins.
3.2.4 Receiver Structure

The only difference between the receiver obtained in this section and the one discussed
in the previous section is the decoding algorithm. The receiver structure for generating 6.(1,j)

and 6,(i,j) is the same as that presented in section 3.1.3.

3.3 Suboptimum Simplified Noncoherent Receiver

The noncoherent receiver described previously is quite complex,jeépecially if the ﬁqetric
calculations are to be carried on across the hop intervals. A‘simplified sub-optimum recei;/er
structure with reduced complexity may be obtain’ed, althouéh error performance will be saéri-
ficed. For the correlative encoded CPM signal described, there are correlative encoder' states
as given by Eq.(3.12) and phase states as given by Eq.(3.13). If the phase states are ignored and
only the correlative enchder states are used to estimate the transmitted sequence, we have a
simplified sub-optimum decision algorithm, which automatically takes care of the metric ca]cﬁ-

lation across a frequency hop. Symbol intervals are treated as if they are all noncoherent, the
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continuous phase memory inherent in the signal structure is then ignored and poorer perform-

ance will result.

3.3.1 Suboptimum Receiver Algorithm

The information carrying phase function 9(t) given in Eq.(3.11) can be alternatively ex-

pressed in term of the correlated data symbols J,, as

P(t) = 2wh§] J, v(t = nT), (3.45)
n=0

where the J, are correlated data symbols given by

1 m .
= & Nikee,_, (3.46)
t=0
and .
I .
v(t) = f b(r)dr, (3.47)
oo A -

where b(t) is the baseband pulse of length T. v(t) is normalized such that

wT) = L. (3.48)
During the k ™" symbol interval the information carrying phase function can be given by
k-1
$(t) = 2rhJiv(t = KT) + wh), J; kKT <t < (k + DT, (3.49)
n=0
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The underlying phase which stays constant during the k ' symbol interval is then

k-1
g = wh 3,1, + 6; iN <k < (i+ 1N, \ (3.50)
" n=0

Rather than having a random phase angle once per hop interval, we can assume for
noncoherent bit detection that we have a noncoherent phase angle in each symbol interval. The

suboptimum receiver must find the data sequence ¢ that maximizes the following likelihood

function.
e &) = E{CXP[L'\/EI“Tr(t) s(t. . €)dt ]}
e ¢ N, T Yy = o
’ n—1 5 5 (3.51)
_ E ,
= l1{[;[010{ ~ T ale @)}
where
(k+1)T 2
nlee) = [([ 1@ cos[anfr + B(te)]dt)
kT (3.52)

(k+1)T ‘
f. oo sinf2nft + B (L) ]dt)? ]2

and By (t, &) is the shape of the phase path during the k™ symbol interval due to the kb

correlated symbol J', given by

B, (t,&) = 2rhY,v(t = kT) _ (3.53)
and
l m
T o= < 37 ko g (3.54)
=0

.O‘OQ.OO....QOOOQ..........OOV.Q.C...‘.....OQQ....QCC..O
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For M-ary transmission and a PRS polynomial of degree m, there would be at most M™ states
rather than pM ™ states for the MLSE receivers presented in Sections 3.1 and 3.2, The memory

and computational requirement is then reduced.

Instead of having the likelihood function as a product of Bessel function weighted Rician

variables zy(a,¢') in Eq. (3.51), the log likelihood function can be used as given by

= 2 2E
Tee) = denl{ =—="\/F x@a)}. (3.55)
k=0 0

By treating signal symbol intervals as if they were noncoherent with random phase, a subopti-
mum log likelihood parameter, which can be broken into sum of branch metrics, has resulted.
The path metric is now additive as in the coherent case, although the metric'is suboptimum.
A sequential decoding algorithm similar to the Viterbi algorithm can now be used for calculating

the path metric recursively through

y max . 5 E
() = {Ty_ (i) + el rT'\/_T_ z(i)) 1 3. (3.56)
V(i) No

where T _,(i) is the old path metric of the survivor terminated at node s _, =i and
£n Iyl —13—— % z)(i,j) ] is the branch metric for the transition from state i to state j with

z;.(i,J) corresponding to that given by Eq. (3.52).

3.3.2 Suboptimum Receiver Structure

Since the phase path 8y (e, &) during a symbol interval depends on the correlated symbol
Jy only, the number of possible distinct phase paths is the number of possible distinct correlated

symbols. The receiver structure must be able to provide the partial log likelihood
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£n[ In{ %'\/%zk(ge_, ') } ] for every possible phase path during a symbol interval. Fol-
0 ,

lowing the approach used in section 3.1.3, we have

(k+1)T
[ r(t) cos[2nft + Bi(t)] dt
kT -
(3.57)
(k+1)T o pk+ DT _
= fkT r.(t) cos By;(t)dt — fkT r5(t) sin By;(t)dt

and

(k+ DT
f r(t) sin[2nf.t + By, (t)] dt
kT (3.58)

f(k+l)T ) sin By (0de + f('k+1)T 6. d,
= () s ;(t)dt 5(t) cos By;(t)dt
oo Te(sin () o s(0) cosBa(t)

where r,(t) and ry(t) are as given by Eqs.(3.21) and (3.22) respectively. A baseband matched
filter bank is then required to provide the correlations with the cosine and sine of all possible
phase paths ﬁk-,v(t) over each symbol interval. For the correlation with the cosine of the ith

possible phase path, the matched filter impulse response is given by

hei(t) = { cos[By; (T = 1)] 0<t<T
“ 0 elsewhere
_ { cos[ 2zh J;v(T — 1) ] 0<t<T (3.59)
0 elsewhere, '

and the matched filter impulse response for the correlation with the sine of the ith possible

phase path is given by

ha(t) = { sin[By;(T = t)] 0<t<T
3 0 elsewhere

) { sinf b (T = 9] 0<t<T (3.60)

0 ‘ elsewhere.
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Comparing Eqs.(3.57) and (3.58) with Eqs.(3.25) and (3.26), we see that this suboptimum
receiver requires the same number of matched filters as the ML receiver. The scaling multi-
pliers for the ML receiver are not required but squaring operations and summers are required
as well as the weightings £n I { I‘?‘B—'\/—%r?—‘\/(—)-} . Note that although the receiver may
look as complex as the ML receiver, the function weighting is now being done in hardware
which can be much faster. In the case where the software can handle the required mathematical
operations, the structure of the receiver is much simpler indeed. The receiver block diagram

is as shown in Fig. 3.3.
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34 Sunimary

In this Chapter, three noncoherent receivers with sequential decoding algorithms have
been derived. The first receiver has the simplest decoding algorithm. It is optimum over an
observation interval of a single hop interval and the sequence estimation is carried out on a
hop-by-hop basis. In general, a sequence estimation receiver which could decode symbols
continuously rather than on a hop by hop basis is more desireable. Hence, a receiver algorithm
with maximum likelihood decoding spanning hops, is derived together with the decoding algo-
rithm, However, the resulting decoding algorithm is rather complex with a subprocedure
necessary for calculating metric across hops, although simplification may be possible when the
length of the frequency pulse is much shorter than the hop length. Another simplified sub-
optimum receiver is also derived by treating symbols as if they were all noncoherent with ran-
dom phase, hence resulting in a much simpler decoding process. Only memory introduced by
correlative encoding in the signal is utilized in the decoding process while the memory due to
phase continuity of the signal is not put to use. The performance of this simplified receiver
would be inferior to the optimum one spanning hops but the decoding algorithm is much sim-
pler with no additional subprocedure for computing the metric across hops. However, the sec-
ond and the third receivers, both of which attempt to attain a longer observation interval than
the length of one hop by calculating metric across hops, require the signal to noise ratio to be
known. Hence, extra circuitry for estimating the signal to noise ratio is required in order for
the receivers to compute the metric across hops. This additional complexity and the already
complicated decoding algorithm will drivé the practical implementation to favor the noncoher-

ent receiver on a hop-by-hop decision basis.
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Chapter Four
ERROR PERFORMANCE ANALYSIS

Three algorithm-based sequence estimation receivers for decod’mg the dehopped CPM
- signal have been presented in Chapter Three. Except for the first receiver which decodes the
transmitted sequence on a hop-by-hop basis, the other two receivers require the transmitted
signal amplitude and the noise spectral density to be knbwn by the receiver in order to calculate
the metric across the frequency hops. Auxiliary circuitry is then required to estimate the noise
spectral density and signal amplitude. This extra tircuitry requirement together with the addi-
tional complexity in the decoder for spanning hopé would justify a retréat to the simpler hop-
by-hop sequence estimation receiver unless the difference in performance is dramatic. The
hop-by-hop sequence estimation receiver thus appears to be the most promising design among

the three receivers proposed in Chapter Three, for implementation.

In this chapter, the error performance of the hop-by-hop sequence estimation receiver
is evaluated. The primary additive disturbance on a satellite channel can usually be reasonably
modelled by white Gaussian noise. Hence the error performance of the noncoherent receiver

under additive white Gaussian noise will be evaluated first. An upper bound on the bit error

rate (BER) is evaluated for various partial response polynomials and with both rectangular'and:

raised cosine baseband pulse shabings. The BER upper bounds would provide a. basis for
choosing the various operating parameters of the systems, such as length of the hop interval,
partial response system polynomial and type of pulse shaping to be used to achieve a desired
system performance. The performance improvement by transmitting an initial segment of
known symbols once the carrier hops to a new frequency, either for synchronization purpose

or solely for improving the error performance of the receiver, is also examined. Since many
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spread spectrum communications systems are designed to operate in the presence of intentional
interference, the performance of the receiver in the presence of partial band noise jamming and

multiple-tone jamming will also be evaluated.

4.1 Performance In Additive White Gaussian Noise

The error probability for noncoherent detection of binary FSK has been derived by Stein
[44,45]). Osborne and Luntz [33] and also Schonhoff [34] have evaluated upper bounds on the
BER for symbol-by-symbol detection of CPFSK with a multiple symbol observation interval in
the binary case and M-ary case respectively. Svensson and Sundberg [36,37} have analysed the
error performance of the noncoherent symbol-by-symbol decision receiver for CPM, by using
an equivalent distance, which asymptotically at high SNR plays the same role as the Euclidean
distance in coherent reception. For the symbol-by-symbol noncoherent detection of CPM with
a multiple symbol observation interval, approximate upper bounds and lower bounds on the

BER have been derived in [36,37].

4.1.1 Probability of An Error Event

We shall begin our error analysis for the noncoherent hop-by-hop sequence estimation
receiver presented in section 3.1 of the previous chapter. Without loss of generality, consider
detection over the first hop. Lete = {og, a1, 0, ..,y } denote the transmitted sequence
in the hop interval. For hop-by-hop sequence estimation, at time kT ( k 2 2 ) the receiver
keeps n survivor paths leading to the » states in the trellis at time kT. The equivalent likelihoods
for every possible path extended from the 7 survivors at time (k-1)T leading to each node at
time kT in the modulation trellis, are compared. That is, the decoder has to decide on the
maximum likelihood path leading to each state in the trellis over an observation interval of

length kT. The decoder then keeps the path with the largest simplified decoder metric at time
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kT as the survivor at each node. However, the path segment with the largest vmetric cioes not
necessarily have to be an initial 'portion of the maximum likelihood path wi_th the largest
equivalent likelihood over [ 0, NT ]. Hence unless the decoder keeps all possible paths over
the hop interval and only decides on the maximum likelihood path at the end of a‘ hop interval
(Which would be impractical considering the large memory and computation requirement), the
decoder may make an érroneous decision by discarding the initial segment of the true path early
~ at the start of a hop. Once any initial segment of the; trl;le path has been discarded by the de-
coder, it would never be included again. However, the 1'émaining survivor paths may étill have
a large portion of the sequence the same as that of the true path and élso may remerge with the
true path at some later time. The final estimated path will be the one with the largest simplified
decoder metric at time NT. The estimated sequence is not the maximum likelihood pa‘th over
the hop interval. if any initial portion of the maximgm likelihood path is prematurely discarded
by the decoder during the decoding process. Maximum likelihood decoding perfp;mance can
be guaranteed only if the decoder keepé all the possible paths through the ‘trellis in a hop

interval and decides on the maximum likelihood sequence at the end of a hop interval.

During a hop interval the estimated path and the true path may diverge and remerge a
number of times. Each distinct separation is called an error event [39,40]. The set of all
possible error events starting atAsorrhle time kT is a tree-like trellis which starts at Sk and e.ach
of whose branches ends on the correct path. Unlike the case of coherent detection in which the
errof events are probabilistically independent of each oihér‘ [40], an error event starting at any
particular time ;actually depends on the previous histdry of the estimated path due the nature
of’the decision parameter (which is the equivalent likelihood and the sum of the squares of the
inphase and quadrature likelihoods) for noncoherent detection. However, if we consider the
probability of only one error event to occur, some insight into the error mechanism can be

gained.

Q..O.Q..C...C.OQ....Q.O.’.Q.Q...00.00..0.........000...
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For the hop-by-hop sequence estimation receiver, the decoder compares the 5 possible
paths leading to each node in the trellis and keeps the one which has the largest equivalent
likelihood, for each node. An error event occurs whenever the true path is rejected by the de-:
coder at any time kT, since then the true path segment from 0 to kT will never be included in
the final decision path. The probability of an erroneous decision is the probability of any error
event occurring during the hop interval. For an error event ¢ starting at time k;T and ending
at time k,T, the probability of € is simply the probability that given the observation over the
interval fromOtok, T, Q'kz , which is the estimated sequence corresponding to the error event

e. is more likely than the transmitted sequence e, . This error probability is given by

Prle] = Pr{£(ey, @,) > ZI(ka’ka) 1

e (4.1)
where
va 2
ey, dyy) = ([ () coslanfet + (i, )] dt )?
S 0 (4.2)
kyT ' , 5 ‘
+ (fo (1) sin[2nft + (&) dt)
and
kyT ,
lery o) = ([ 7 x(t) cos[2mft + 9t @)] dt )
- 0 (4.3)

+ ( f ZzTr(t) sin[2rf t + ¥(t, @)] dt ),

where 9(t, @) is the information carrying phase function given previously. Since the correlator
references are the inphase and quadrature components of a constant amplitude waveform,
£ (e, ¢') may be regarded as the output of a complex correlator with reference s(t, ¢') , which is

given by
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s(t,o) = cos[2nf. + (1, &) ] + j sin[2nf. + (1, a) ] (4.4)
= exp[j(2rfct + ¥(t, &) |. '

The likelihood parameter é’(gkj, @y ) may be written in complex notation as

1 ’ sz . ’ 2 2

£(ay, @k,) = |f0 r(t) expjl2nfet + p(t, &)ldt]” = 1Z,]° (4.5)
Similarly, we have

kT ' ‘ , ’

Oy o) = |f 02 K1) exp jl2af.t + v(ta)ldtl? = 12,2 (4.6)
Thus we have

Prle] = Pr[lz,]? > 12,171 ' - (4.7)

The probaBility of an error event is just the probability of one Rician variable exceeding another

and the solution is known to be given by [36,44]

Prle] = —:}Z-N[I—Q('\/b—,’\/a_)_-i-Q('\/a_l_,'\/b_)], ' (4.8)

where Q ( x, y ) is the Marcum Q function [45] defined by

2

2 o
Q) = [ Texp( = 2T ) N )

and Ip( . ) is the zeroth-order modified Bessel function. Techniques for recursive evaluation of

the Marcum Q function are given in [46,47]. The parameters a and b are given by

0000000000000 000000000000000000000000000000000Q0000090000
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a1 IM 12+ M, |7 = 2Re{MMsp} _ IMp 17 = M) ]° |
{b} - =5 { . T VT } (4.10)
with
M, = E{Z,}, (4.11)
M, = E{Z,}, (4.12)
of = var[Z,] = var[Zy] = E{(Z, - M) (Z) ~ My) ), (4.13)
p = 013 E{(Z, - M) (Z, - M) }. (4.14)

where the expectation is taken with respect to the complex Gaussian variables and the super-
script ™ denotes the complex conjugate. By straightforward evaluation of Eqs.(4.11) to (4.14)

and substituting the values of the parameters into Eq.(4.10), we have [33,34,35,44]

a _ kEy , > N
{b} = N leeM [T F V1= ety €)% ) (4.15)

o

where p(ay., ‘l'kq) is the normalized complex crosscorrelation between the two random variables

Z; and Z, and the parameter |P(Qk7’ a'y,) |2 is given by

lp(ay., o' )|2 = (1 l{ZTcos[z,b(t a) — Pt cr)]dt)2
p—kz’—kz KT 4o & » &
. < ' (4.16)
+ (= 2 Ginl(t, ) - B(t, a)lde)?
k, T Yo T T )
Since

P, ) — Y(t,e) = P(t,7). : (4.17)
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where
Ty, = Lk, T Uy o ('4-18)

the evaluation of a and b in Eq. (4.8) actually depends only on the difference sequence Yk,

rather than on both individual sequences, o and @. Eq. (4.16) can be rewritten as

/ 2 _ 2
‘P(&kg’&kzﬂ = |P(’lk2)| |
) ] 4.19)
1 kT 5 1 kT 5 (
= (—— cos[¢(t, V] dt)” + (—— sin[¥(t,7)] dt)".
(g [, oo nlan? + (o [ * sinlv, D] dn)
For an error event starting at time k; T, ¥(t,7) = 0 for t < k;T. Hence we have
] 1 k_‘ET 2
n) " = [—= (KT + cos9(t,7) dt) ]~
o) 1* = [ (4T + [ cosv, )]
(4.20)
+ [ szTsihil)(t 7) dt]?
kT Y kT i '

The probability of any particular error event starting at time k; T and ending at k,T , can then

be calculated using Eqs.(4.8), (4.15) and (4.20). Error paths having the largest complex cross-

correlations p(7y,) will have the highest probability of occurrence for all values of

E : .
_I\J_b_[37’44’45]' A quantity related to the Euclidean distance in coherent detection is the equiv-
o .

alent Euclidean distance, introduced as an error performance measure for the noncoherent

receiver in [36,37). At high SNR, we have b> 1, a>1and Vb >Vb -Va > 0 ..

Approximation of the Marcum Q function gives

P =~Q(Vb - Va ) large —El (4.21)

[¢]

where

..‘0.'0..Q...............‘Q..QQ..OiQ.‘0.0.....'.0....‘..
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I ~al
Q = 2 du. 4.22
) Wf e” T du (4.22)

Substituting expressions for a and b into Eq.(4.21) and putting the probability expression in a

form similar to that for coherent detection, we have

Ey Eyp
P(1)=Q (’\/ ; ); large —>, (4.23)
€N, N

0
where dJ denotes the squared equivalent distance. The equivalent distance between the two

signals corresponding to o' and @ over a time interval [ 0, k,T ] relates to the complex corre-

lation through the following expression.

4 = k(1= lp(x,)|) loga(M). (4.24)

From Eq.(4.23), it is clear that asymptotically at high SNR the equivalent Euclidean distance

plays the same role as the Euclidean distance in the coherent case.

A set of the error events which start at time 0 and have the smallest equivalent distances,
is first determined. The equivalent distances of the error signal paths associated with these error
events starting at various times k; T are then calculated. The equivalent distance results for MSK,

DMSK and TEM with h = 0.5 and with rectangular pulse shaping are shown in Figs. 4.1 to 4.3.

Different error events having different phase differences may have the same value of
squared equivalent distance. Hence, each squared equivalent distance curve in Figs. 4.1 to 4.3
may correspond to more than one error event. In general the equivalent distance of an error

event is the lowest when the error event starts at time 0. It is because the noncoherent receiver
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has not acquired any infolrmation about the initial phase of the signal at time O and the-equiv-
alent distance between the error éignal_ iaath and the transmitted signal is then the lowest. Once
the noncoherent receiver has received symbols and does'not make an error (the error event
starts at some time k; T > 0 ), the noncoherent receiver then gradually acquir_es the phase of the
received signal. The equivalent distance of the signal hence increases if it starts at some time
greater than 0. Also, as can be seen from these results, son;le error events have equivalent dis-
tances that stay constant ihdependent of tﬁe starting time of the error event. If the error phase

path 9(t,7) has a particular shape over kT to k,T such tﬁat

ko T i '
[ sing(t,p) de = o, (4.25)
kT |
then
2 1 koT 2
o )I? = [z T + flecow(t.l) d) | (4.26)

and the squared equivalent distance for this particular error path over the time interval

[0, K,T] is

2 kT ' :
a2 = (ky — k) - -T-fk _cos (e, ) dt. (4.27)
1

For any error event which satisfies Eq.(4.25), dZ will be independent of the starting time kT

of the error event. This explains why some of the d? are constant independent of starting time.

The probability of each of these error events at an SNR of 10 dB'is evaluated and plotted
in Figs. 4.4 t0 4.6. We can see that the probability of the error events with small equivalent

distances is much higher than for the other error events which have larger equivalent distance,
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even at a moderately high SNR of 10 dB. At high SNR, we should expect the error performance
of this sequence estimaton receiver to be dominated by those error events which have small
equivalent distances. Also, error events are more likely to occur at the start of the hop interval
than at some later time during the interval. This suggests the possibility of performance
improvement by transmitting a known initial data segment as the carrier hops to a new fre-

quency. Transmitting a known initial symbol segment will be investigated in section 4.1.4.

4.1.2 Upper Bound on Bit Error Probability

So far we have examined the probability of only one error event occurring during the
decoding process. A number qf error events may occur in the detection of the transmitted se-
quence in a hop interval. Since the error events are not independent but depend on the previous
portion of the estimated path, the error performance of the hop-by-hop sequence estimation
receiver cannot be based on the probability of only one error event to occur during a hop
interval but has to be based on the probability of erroneous decisions over the entire hép
interval. At the end of a hop interval, the receiver  will choose the sequence
o = {dp |, 05 .0 y_1} , which has the largest simplified decoder metric at time NT.
Any number of error events may have occurred during the decoding period of a hop interval.

A sequence error occurs whenever the estimated sequence ¢ is different from ¢ in one or more

places.

Given that ¢ is the transmitted sequence, the probability of an erroneous decision is then
given by
max

P(Error|@) = Prf (e, o) > (e )] ' (4.28)
o #Fa

This error probability is difficult to calculate exactly but it can be upper bounded by
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P(Errorle) < Y Pr[f(a, &) > £(a,a)].

= M

(4.29)
/ % g‘

IR

The bit error probability is given by weighting each probability Pr[ £'(a, &) > (e, @) ] with the

number of bit errors over the number of bits decoded as

. (2, o)
P(viterror|a) = > S22 Pi{ (o) > £(z,a) ]
N
o o (4.30)

o #a

where e(a, &) is the number of bit errors for detecting ¢ given that ¢ is transmitted. The
average bit error probability is then given by averaging over all the possible transmitted se-

quences as

. %Z Zfﬁ%ﬁl Prif(e, ¢) > £(z,) ], (4.31)

where p = 2N is the total number of possible transmitted sequences in a hop interval of length
NT. Since the error probability depends on only the difference between ¢ and @ rather than
on the individual ¢ and ¢/, the upper bound on the bit error probability can be rewritten in

terms of 7 as

P2 X ) S P,

1#0

- (4.32)

0000080000000 00000000000000000000000000000000000000000%0°
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where e(7) is the number of nonzero sequence elements of 7, which corresponds to the number

!

of bit errors when ¢

is detected given that « is the transmitted sequence. w(Y) is the total
number of pairs of ¢ and & corresponding to a di::erence sequence 4. Since a difference se-
quence 7 having e(Y) nonzero elements would result from 2 N—e( different pairs of ¢ and ¢/,

w(v) is then given by

w) = 2N (4.33)

P(7) is the probability of error by detecting &' rather than e as the transmitted sequence. Similar
to the expression for the probability of an error event given in the previous section, this

probability is given by
Py = —[1- Ve . Va)+oVa Vb)) (4.34)

where Q( , ) is the Marcum Q function. The parameters a and b are given by Eq. (4.15) with

ky = N and rewritten in terms of 7 as
{ a } _ NE,
b 2N,

with [p(7) |2 given by

oM [1TF V1= lom?], ~ (4.35)

lon 1 = [—I:Il’-l‘— [ :Tcosw(t,’l)dt P+ [N_lT. [ :Tsin¢(t, ydt P (4.36)
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4.1.3 Computation and Approximation

In order to compute the upper bound on the bit error rate as given by Egs. (4.32) to
(4.36) systematically and efficiently, we notice that for binary transmission, the difference se-

quence elements 7, can take on three possible values namely 0, +2 and - 2. Hence there can

be 3N — 1 difference sequences 7, for a hop interval of length NT in Eq. (4.32). For any 7 there

is always another sequeﬁce with opposite signs in all the sequence elements. The number .of
terms in Eq. (4.32) can be reduced by a factor of 2, since P( — ) = P(7) as can be easily seen
from Eqs. (4.34) to (4.36). The number of difference sequences to be considered in Eq. (4.32)
is then -;— (3N - 1). If the three possible values of each difference sequence element 7, Namely
2, 0 and - 2 are mapped as 0, 1 and 2 respectively, then each difference sequence element 7,
can be represented as a base-3 digit and the difference sequence can then be represented by N
base-3 digits. Each 7 to be considered in the bit error rate ceﬂ1]c>ulation in Eq. (4.32) can be re-
preseﬁted by a base-3 n.umber of values from 0 to -;— (3N - 1) = 1. Numbers from 0 to
—;—- (3N ~ 1) - 1 are decoded sequentially as base-3 digits, which are then converted to 0, +2

or - 2 as the difference sequence elements, to be used in evaluating the upper bound on the BER

as given by Eq. (4.32).

lo(2) | 2 is required to calculate P(7) in Eq.(4.34). Eq. (4.36) can be rewritten as

N-1
s 1 (k+ DT )
len 1 = {N_Tkzofn cos (¢, %) dt)
4.37)
1 Nz‘:l (k+1)T e (
+ {— sin 9 (t, ) de}”.
{NT 2 int(t, 7) de}

- Substituting Eq. (3.49) with ¢ replaced by 7 in the above equation for %(t,¥) in the k! symbol

interval, we have

N - —
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N-1
lo)|* = {NL, [‘cos(,C(dy) = sin¢,S(dy) ]
k=0 _ (4.38)
+ 2 [ cos(S(d) + sinGCld) ]
where
C(dy) 1 fmm 2rhd,v(t) d 4.39
L) = = COs 4w Vv(t) dt, 4.
W= T W) (4.39)
S(dy) 1]’““”' 2rhdyv(t) dt (4.39b)
) = == sin 2rhd, v(t) dt, 4,
k T Yyt k
k-1
= th dy. (4.40)
0
dy. is the correlative encoded difference sequence given by
1 "
?2 T g (4.41)

where C is the normalizing constant as defined by Eq. (2.6) and the k, are the coefficients of

the correlative encoding polynomial.

To speed up the calculation of. [p(7) | 2, all possible integrals of the cosine and sine of
the possible phase over a symbol interval, C(dy) and S(dy) are initially calculated and stored in
an array. This avoids repeated numerical integration to obtain C(dy) and S(dy) when the

baseband pulse is not rectangular.
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When N is large, evaluation of the upper bound as given by Eq. (4.32) becomes. compﬁ-
tationally infeaﬁible, since xthe number of difference sequences to be considered is -;- 3N -1),
which grows e'xponemi.ally with N.  Approximation of the upper bound is then necessary for
large N. At high SNR, the probabilities of those error path; which have large equivalent dis-

tances, are small compared with those having small equivalent distances. The paths having large

equivalent distances over a hop interval can then be neglected. The upper bound on the bit error

rate is approximated by

1 e(7)
Po< o 2, w() —— P,
w20

1#0

(4.42)

where S denotes the set of difference sequences corresponding to the set of small equivalent

distance paths over the hop interval.

To determine S. we notice that there will be complete error events during the hop and

also incomplete érror events starting near the end of a hop. For the hop-by-hop detection

receiver, the difference sequences ¥ corresponding to an error event ¢ of duration £ starting at

time k,T. will have v, = Oforn < k; and n > k; + £. The square of the.complex correlation

as given by Eq. (4.36) becomes

(kq +)T ’
o 1? = (T + [ cosb(t ot + (N -k~ OT]Y
. 1

1 pkq +OT N
+ {— s t,7) dt
(=) o SmtD

(4.43)

f(kl +OT

1 -
T 0T b

cos (t, 7) dt ] 3

_ 1 (ky +4)T . 2
+ { — sin (t, 7) dt-}7,
(%7 fle B(t,7) dt )

where k; + £ = N,
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Hence for error events having a particular phase difference path segment from k;T to
(k) + &)T, |p(@)|? will be the same independent of k, as long as 0 < k; < N — £, and hence
the P[e] will be the same. It is then sufficient to determine only the segment of 7 from 0 to
£ — 1 corresponding to the error event e starting from t = 0. For each segment of 7 so deter-

mined, the number of the corresponding error events occurring at different times kT with

0 = k; < N — £ during a hop interval of length NTis N — £ + 1.

For a correlative encoded CPM with frequency pulse of length LT, the minimum length
of an error event is (L + 1)T. Difference sequences of various lengths £ = L + 1 are generated
to find the complete error event paths starting at time 0. Once a complete error event path,
which has vy # 0 and {, = 0 ( that is the difference phase path deviates from zero at time 0 and
merges back to zero at time £T ) is determined, the square of the correlation is calculated by
Eq. (4.43). Since it is computationally infeasible to include all the complete error events for
large N and also since long error events generally have large equivalent distances, hence only
difference sequence segments of length L + 1 = £ = £ are included. For 7 of length
£5x, the number of 7 to be included in the computation is —;—(3 tmax — 1) , which is the
dimension of the arrays used for storing various parameters for eachy. The maximum allowable
array dimension of the program compiler dictates the maximum value of £,,,, to be 10. For
all the approximated upper bounds on BER computed, £,,,, = 8 is used for computational

efficiency.

If an error event starts at some time (N-L)T or later, before the end of a hop, then an
incomplete error event will occur. ( The estimated path will never merge with the true path.)
These incomplete error events starting near the end of a hop have the estimated phase path
differing from the true path in only a small portion and thus are also likely to occur. The
% (3L —1) possible difference sequences corresponding to the incomplete error events at the

end of a hop are generated and their probabilities evaluated.
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“To summarize, the bit error rate upper bound is approximated by

1 N-e +1 &
Pos {2 (N=—g+1) 277 ~ P

eiEEC '
N—e; +1 O (t44)
+ Zz it =P,
EjEEI

where E. is the set of complete error events having small equivalent distances and E; is the set
of incomplete error events occurring near the end of a hop. ¢; denotes the i error event in the
set E; and ¢; denotes the j th error event in the set E;. ¢ and £; are the number of bit errors and

length of ¢ respectively.
4.1.4 Bit Error Rate Upper Bound Results

The upper bound on the error performance éf the hop-by-hop noncoherent receiver has
been evaluated for a variety of correlative encoding and baseband pulse shaping schemes when
the length of the frequency hopping interval is 4, 16 and 64 symbol intervals. For the h'op
length of 4 symbol intervals, the'up'per bound on the BER is evaluated exactly while for the

longer hop intervals of 16 and 64, approximated upper bounds are evaluated.

Minimum shift keying (MSK), duobinary MSK (DMSK) and tamed FM (TFM) encoding
schemes with h = 0.5 and rectangular pulse shaping are compared as shown in Figs. 4.7 to 4.9
for N = 4, 16 and 64 respectively. It can be seen that MSK performs much better than the other
two schemes for the various hop lengths. When raised cosine pulse shaping is used, the bit error
rate .bounds for the three s.chemes are as shown in Figs. 4.10 to 4.12 for N = 4, 16 and 64
respectively‘h Agdin, the higher order correlative encoding schemes have higher probability of

error.
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Next, the effect of the hop length on the error performance for each modulation is
illustrated in Figs. 4.13 to 4.18. As expected, the performance of the receiver improves as the
hop interval lengthens. However, for the same degree of increase in hop length, the improve-
ment in error performance is less for MSK and is more pronounced for the higher order

correlative encoding schemes such as TFM.
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Figure 4.12 N =64, approximated upper bounds on P, for FH/MSK, FH/DMSK

and FH/TFM with raised cosine pulse shaping
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4.1.5 Performance Imi)rovement By Transmitting Known Initial Symbols.

As shown in section 4.1.1, the equivalent distance of the error path correspondi‘ng to an
error event is smallest when the error event starts at the beginning of the hép interval. The
probability of any error event occurring is then higheét at the start of a hop interval. As can
be seen from Figs. 4.1 to 4.3, the equivalent distance of an error event increases if the same
error event starts later. Hence, if a short segment of known symbc;ls were transmitted ‘at the
start of a hop interval, then any error event would have to start after the initial known
synchronization sequence segment. The decoder is less likely to make erroneous decisions on
the subsequent data symbols. The error performance of the receiver would then improve, The

obvious disadvantage is that a fraction of the available transmission time is used by the initial

-sequence segment, which does not carry data information,

Let § be the number of known symbols to be transmitted at the beginning of each hop.

Att ='6T, the decoder knowing the é transmitted symbols, will choose the correcﬂt path through
Vthé modulation trellis corresponding to the § symbols and reject the other M4 — 1 p,os;ible
paths, At time (§ + 1)T, this path will be extended to each of the 5 states in the trellis.
Subsequent decoding proceeds as usual, that is, the decoder computes and compares the M
possible transitions to each state in the trellis. Only the one which has the largest equivélent
likelihood up to the current time, is retained as the survivor for éach state. At the end of a hop,
thé sequenée corresponding to the path with the larges;[ equivalent likelihood is then taken as

the estimated sequence.

The final decided sequence ¢’ would have oz’o, @'y, we, @5 €qual to 0, @], we, &5 , SINCE
they are known to the decoder. For a hop interval of length N symbol intervals, the number
of actual data symbols is only N — 4. Hence the number of possible transmitted sequences

during a hop interval is 2N~=%. Since the first § o/|'s are correct, we have

C.O...‘O...Q.....Q.‘.O.’O.Q.O'..OO.IGG.‘Q.-..QC..Q.Q....
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v =0 for i=0,1,...6 = 1. (4.45)

The upper bound of the bit error probability when a known initial sequence is transmitted is

then given by

1y _EQ

P = L3 win =2 po),
- (4.46)
y#£0 -
% =0 for i=0.1,.,6 -1

where g’ = 2N~9 is the number of possible transmitted sequences. w'(y) = 2N~8-e@ {5 the

number of pairs of @' and a corresponding to the difference sequerice 7, e(7) is the number of
bit errors for the error path corresponding to 7. P(7) is the probability of error by detecting

@' rather than @ and is given by Egs. (4.34) to (4.36).

The total number of ¥'s is 3N~% — 1 rather than 3N — 1, since the first § 7|'s are o's re-

sulting from decoding a known sequence segment. |p(7) | 2 needed for calculating P(Y) becomes

lo)1? = {(——[6T + fNTcosd)(t Ndt]y + {—l—fNTsin'gb(t ydt ¥ (4.47)
- NT 5T T NT Y6t T ' '

The performance improvément obtained by transmitting an initial segment of 1, 2 and
3 known symbols has been evaluated for MSK, DMSK and TFM with h = 0.5 and rectangular
pulse shaping, Figs. 4.19 and 4.20 show the results obtained for MSK when the number of data
bits transmitted during a hop is 4 and 8 respectively. The gain in performance in transmitting
the first known symbol is more significant than for the subsequent 2 or3 symbols, as can be seen
from these figures. For the shorter data length of 4 as shown in Fig. 4.19, the improvement is
also greater than for the data length of 8 as shown in Fig. 4.20. When the modulation scheme

is DMSK, the upper bounds on the BER for transmitting 4 and 8 data bits with different num-
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bers of known symbols are shown in Figs. 4.21 and 4.22. We can see that large ir'nprovem“ent
in BER is obtained for the case when the data length is 4, by just using an. initial known symbol
segment of one symbol. However, the improvement is not so pronounced for the longer data
length of 8 bits, as shown in Fig. 4.22. For TFM with h = 0.5.and rectangular pulse shaping,
the results are shown in Figs. 4.23 and 4.24 for transmitting 4 and 8 b'iis respectively. The

observations are similar to the cases of MSK and DMSK.

0000000000000 00000000000008800000008000C0000000000000000
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4.2 Performance In The Presence Of Jamming

In the previous section the error performance of the noncoherent réceiver has been
evaluated under additive white Gaussian noise. In this section, the performance of the non-

coherent slow FH/CPM spread spectrum system in the presence of intentional interference

(jamming) will be derived. There are a large number of jamming strategies that a jammer may

use for interfering with the spread spectrum communication. Depending on the jammer's
available resources and sophistication, usually the familiar exponential relationship between er-
ror probability and signal to noise ratio will be degraded to an inverse linear relationship be-

tween error probability and signal to jammer power ratio [3, p.555 ][8,9].

There are a large number of jamming signals and jamming strategies postulated [3], such
as barrage noise, partial band noise, single-tone, multiple-tone, pulsed noise and repeat back
jamming. While some jamming strategies may be postula;ed so as to provide the worst case
performance analysis of the system and may not be realistic in actual practice, some jamming
strategies are practical and are real threats to the spread spectrum system. Two most effective
jamming strategies for frequency-hopped systems are partial band noise jamming and multiple-
tone jamming. Multiple-tone jamming is the tone equivalent of parti;al band noise jamming and
has been shown to be more efficient than partial band noise jamming for FH/MFSK and
FH/DPSK [3, p.597-601]. The performance of the noncoherent slow FH/CPM system under

partial band noise jamming will first be evaluated, followed by performance analysis under

multiple-tone jamming.
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4.2.1 Performance In Partial Band Noise Jamming

Hopping the frequency over a wide bandwidth makes broadband noise jamming of the
bandwidth difficult ana much less effective. Jamming power can be more effectively used l;y
transmitting all the available power in a limited bandwidth which is smaller than the spread
spectrum‘system bandwidth. Because of the smaller bandwidth, the partial band jamming signal
is easier to generate than the barrage noise jamming sigpal. The jamming model we consider
is that of a partial band noise jammer [3, p.570]. In this model. the jammer uses all its power
in only a fraction of the spread spectrum bandwidth while the remaihing fraction of the svstem
bandwidth has only backgrounAd thermal noise present: The partial band jammer is particular
effective against a freqﬁency—hopped spread spectrum system because the signal will hop in and

out of the jammed band and can be in effect useless while in the jammed band [3].

Fqllowing the appréach used in [3, p.570], we assume that the frequency hopping pattern
is essentially random and that the ﬁartial band noise jammer does not know or is unable to
predict the hopping pattern. Interference from a jammer during a hop iﬁterval is assumed to
be independent of the interference in other hop intervals. As the éarrier hops to a frequency
band which is jammed, the jamming noise signal is assumed to sfay constar_ft through‘out' the
complete hop interval. The channel is then memoryless from hop to hop and thé BER can be
calculated using quasi—static analysis. That is, the error probability is calculated separately for
hops with thermal noise interference and hops with thermal noise plus jamming interference

and the two results are averaged.

Let the fraction of the spread spectrum bandwidth which is jarﬁmed be denoted by p. If
the total jammer power is J and the spread spectrum bandwidth is W, the partial band jammer

one-sided power épectral density is

0000000000000000000000000000000000000000000000000000000
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Ny = (4.48)
A
over a bandwidth pW. When p = 1, we have the case of full band noise jamming or barrage

noise jamming [3].

Let N, be the one-sided power spectral density of the Gaussian channel thermal noise.
Over the jammed portion of the transmission band we have both the jamming and Gaussian
thermal noise. Assuming that the jamming noise and the Gaussian thermal noise are statistically
independent, the jamming noise and thermal noise can be combined into a single Gaussian
random noise process of total one-sided spectral density of Ny + N;j W/Hz, The remaining
portion of the band will have thermal Gaussian noise of one-sided spectral density of N, W/Hz

only.

The average bit error probability is then given by

P, = Pr[jammed] Pr{ bit error | jammed ] + Pr[not jammed] Pr[ bit error | not jammed ]
= p Pr[ bit error | jammed ] + (1 — p) Pr[ bit error | not jammed ] ('4_49)
= 0 P ) + (1 ) P(2),
No + Ny No
where P( ib ) denotes the bit error probability as a function of the ratio of signal bit energy

n

to the appropriate noise power spectral density.

The evaluation of the bit error probability for our slow FH/CPM system with the hop-
by-hop noncoherent receiver is difficult. Hence only an upper bound can be obtained by -
substituting the upper bound expression for the bit error rate presented in the previous chapter

into Eq.(4.49). The BER under partial band noise jamming has an upper bound




probability P(7) is now denoted by P(7,

116

_ (1) Ey - )Pl =
o= X e S LR )+ (AR ) (450
1# | |

0

where all notation and symbols are the same as defined previously, except that the error

b ) with the second argument displayed to indicate
n

the dependence on the signal bit energy to noise density ratio.

When the spread spectrum system is intended for operation in a jamming environment,
the maximum possible transmitter power is generally used and thermal noise can be safely

neglected. Eq. (4.50) can then be simplified to

_<1Zm>——[9( =)

70

The bit energy to jammer noise spectral density ratio can be expressed as
P W
—= = p — X 4.52
P J R ( )

where P is the signal power, J is the jammer power, W is the spread bandwidth and R = 1/T
is the data rate. Substituting Eq. (4.52) into Eq. (4.51), the bit error rate upper bound is then

expressed as a function of the parameter (P/J)(W/R) by

(4.53)
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When the system is jammed the signal power to noise density ratio is low and the usual
high SNR approximation is not accurate. All % (3N —.l) difference sequences 7 's are then
required for the evaluation of the upper bound on the averge bit error probability given by Eq.
(4.53). Consequently, we are able to obtain the upper bound on the average bit error rate under

partial band noise jamming only for systems with small hop length N.

The performance of FH/CPM systems with MSK, DMSK and TEM modulation schemes
with h = 0.5 and rectangular pulse shaping, have been evaluated in the presence of partial band
noise jamming with the fraction of jammed bandwidth p being 1.0, 0.2, 0.04, 0.008. 0.0016 and
0.00032. For a hop interval of 4 -and 8 symbols, the error performance for these three modu-
lation schemes is illustrated in Figs. 4.25 to 4.30. For a given signal to jammer power ratio P-J,
there is always an optimum value of p, which causes the maximum degradation in BER of the
spread spectrum system. The sophisticated partial band noise jammer will always choose the
optimum value of p, which maximizes the BER of the system, so as to cause maximum de-
gradation to the system performance. The worst case performance of the system then becomes
inversely proportional to the signal to jammer power ratio as evident from these figures.
Comparing the performance of MSK, DMSK and TFM as shown in Figs. 4.25, 4.26 and 4.27 for
N = 4 and Figs. 4.28, 4.29 and 4.30 for N = 8 respectively, we can see that while MSK performs
much better than the other two schemes under normal additive white Gaussian noise environ-
ment or full band noise jamming, the performance of the three schemes for the same hop length
is quite similar under worst case partial band noise jamming. It can be seen that the worst case
performance under partial band noise jamming worsens as the hop length increases from N=4

to N=8,
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4.2.2 Performance Under Multiple-Tone Jamming

In some cases, a more effective jamming strategy can be achieved with, multiple-tone

jamming [3]. The following analysié essentially follows the approach used in [3, p.597]. The

jammer is assumed to have complete knowledge of the transmitted signal structure as well as the.

exact received signal power. However, the jammer does not know or is unable to predict the
frequency ‘hopping pattern. The jammer divides his total jamming power J into q equal power
continuous-wave jamming tones distributed over the spread spectrum system bandwidth W,

Each continuous-wave jamming tone signal will have power equal to
= = : ' (4.54)

The jammer will choose q and the tone spacing so that the optimum degradation occurs. Let
P = —E_— be the power of the frequency-hopped CPM signal. For simplicity, suppose that
thermal Gaussian noise is negligible. The dehopped received signal under multiple-tone jam-

ming is given by

D) = st + I INT <t < (i + I)NT, (4.55)

where s(t, @, 6;) denotes the transmitted signal in the i'" hop interval as given by Eq.(3.4) re-

written below
s(t,e,0;) = \/2P cos[2nf.t + (@) + 6;]; iINT <t < (i + 1)NT, (4.56)
and Jq(t) denotes the continuous-wave jamming tone signal given by

J () = \/ZJq cos[ 2xf.t + .27rth + ¢r], (4.57)

where Jq is the power of the jamming tone, fj is the jammer tone 'frequency offset from the-

intermediate carrier freqhency f. after being dehopped-and ¢; is a random phase. Assuming that
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the multiple-tone jammer knows the transmitted signal structure, the jammer will always select
the tone frequency such that

2efit = P(t, @). (4.58)

That is, the jamming tone is one of the transmitted signals. ( For example when the pulse

shaping is rectangular and the tone jammer selects f; = -2% , then the jamming tone signal

is the same as the signal, which would have been transmitted had the correlated symbols been

all 1's.) The hop-by-hop receiver computes the equivalent likelihood for each of the possible
sequences ¢’. When Jq > P, the receiver will always choose @ as the estimated transmitted se-
quence [ Appendix A ]. Hence for a given jammer power J and knowing the signal power P,

the jammer will choose

q = L%J (4.59)

where |_x | denotes largest integer less than x. Of course, there must be at least one jamming
tone and the maximum number of jamming tones is limited by the total number of frequency-
hopped bands in the spread bandwidth. Let W, be the bandwidth of the dehopped signal. The
number of frequency-hopped bands will then be W/W, . Hence, 1 = q £ W/Wy. When
].%-J = 1.0, no error will be made, since there is insufficient jammer power to jam even a
single frequency-hopped band. The probability of any one frequency-hopped band being

jammed is then

q
= , 4.60
p WIW, (4.60)

For a slow FH/CPM system with a hop interval tength of N symbol intervals, there are
g = 2N possible transmitted sequences. The presence of a jamming tone with power greater

than the signal power will force the hop-by-hop receiver to choose one particular sequence a.
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Assuming that all sequences are equiprobable, when a jamming tone is present in the

frequency-hopped band the bit error probability is given by

P[ bit error |jammed]

=30+

e=1

2 b

(4.61)

where ( ) —————  Since thermal Gaussian noise is assumed to be negligible,

e'(Ne)

probability of bit error is zero when the frequency-hopped band is not jammed.

probability is then given by

NI—*
é,g
A
—

l;.
L_—_

| P
] Wy ' ] w
p. =< L g4 o qos | L= X
e > 4w |__J W,

where the number of jamming tones is taken to be the optimum value as given by Eq.(4.59). *

The bit error

(4.62)

The performance of the system will depend on the number of frequency-hop bands. For a given

spread spectrum system bandwidth W, the smaller the frequency-hopped signal bandwidth Wy

the greater number of tones required by the jammer to effectively jam communications. If we

use the 99 percent poweer bandwidth of the frequeency-hopped signal as the bandwidth of each

frequeenccy-hopped band, the bit error probability can be rewritten in terms of the parameter

(P/I)(W/R) as
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0.5 %-%V—<B,
B 1 P W W
= A S— B = —2L = X
Pe 2 (PI)(WR) T R R (4.63)
0.0 w o 2w
R T R

where B is the 99 percent bandwidth normalized to the data rate, of the frequency-hopped sig-
nal. B has been evaluated for various modulation schemes previously in Chapter Two and listed
in Tables 1 and 2. For example, B = 1.1875, 0.875 and 0.7656 for FH/MSK, FH/DMSK and
FH/TFM with h =0.5 and rectangular pulse shapling for N = 1024 symbol intervals. Comparing
with FH/DPSK which has B =.16 [3, p.127], we see that FH/MSK, FH/DMSK and FH/TFM
outperform FH/DPSK by 11.29 dB, 12.62 dB and 13.2 dB in the inverse linear region. The
more compact the frequency-hopped signal bandwidth, the greater the improvement in
performance under multiple-tone jamming. Hence using slow FH/CPM improves immunity to

multiple-tone jamming compared with conventional FH/MFSK or FH/DPSK.

4.3 Summary

In this chapter, the performance of the hop-by-hop noncoherent receiver is evaluated
first under additive white Gaussian noise and then in the presence qf partial band noise jamming
and multiple-tone jamming. An upper bound on the bit error probébility of the receiver under
white Gaussian noise is derived using a union bound approach. The large number of possible
error paths makes approximation necessary when the hop length is long. The upper bound is
approximated by ignoring those error paths which have large equivalent distances and hence are
less likely to occur. Results are presented for MSK, DMSK and TFM with h = 0.5 and both
rectangular and raised cosine pulse shapings for three different lengths of hop interval: N = 4,
16 and 64. The error performance is better when the length of the hop interval is lengthened,

as expected. The error performance worsens as higher order correlative encoding is employed.
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Performance improvement when a segment of known symbols are transmitted initially at the
start of a hop interval, is also investigated. The results show that for the three schemes namély
MSK, DMSK and TFM, all with h = 0.5 and rectangular pulse shaping, transmission of one
known initial symbol will improve the BER significant.ly for short hop sequences. Transmitting
longer known initial symbol segments gives only slight additional improvement in performance.
Also, for long hop lengths, the improvement in BER is not so pronounced as with the short hop

interval cases.

An upper bound on the bit error probability in the presencé of partial band noise jam-
ming has been derived. Error results under partial band noise jamming are presented for MSK,
DMSK and TFM with h = 0,5 and rectangular pulse shaping for various values of the fractional
band jammed p. It can be seen that the three schemes performs quite similérly under worst case
partial band noise jami‘ning. The performance of the receiver in the presence of multiple-tone
jaxﬁfning is also derived. The antijam capability to multiple-tone jamming will be enhanced by
using bandwicllth efficient slow FH/CPM as compared to conventional schemes such as M-ary

noncoherent FSK.
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Chapter Five
SYSTEM SIMULATION

Theoretical upper bounds on the bit error probability of the hop-by-hop ML noncoher-
ent receiver for various modulation schemes, baseband pulse shapings and hop lengths have
been evaluated in the previous chapter under additive white Gaussian noise. The upper bounds
obtained can serve as an index to the relative performance of the different modulation schemes.
In this chapter, a computer simulation of the slow frequency-hopped spread spectrum systems
with the hop-by-hop sequence estimation will be presented. The objective of the simulation is
to evaluate the performance of the system under additive white Gaussian noise in order to
indicate the tightness of the theoretical error bounds computed previously and to obtain a more
precise performance evaluation of the system. Also, modification of the decoding algorithm can
be easily incorporated in order to observe system performance improvement when more than
one survivor is kept for each state in the modulation trellis. ( A brute force maximum likelihood

decoder would keep all possible paths through the trellis.)

Due to the large amount of computing time required for the simulation, only two systems
employing two different modulation schemes have been simulated. The choice of the systems
to be simulated is based on the findings obtained thus far. As can be seen from Chapter Two,
the spectrum occupied by the frequency-hopped signal is rather insensitive to the type of
correlative encoding scheme employed when the hop interval is short. Hence, for systems de-
signed to transmit a few symbols over each frequency hop, a simple continuous phase modu-
lation scheme will do well in regard to spectrum economy. For systems transmitting a large
number of symbols during a hop interval, it would be beneficial to employ a suitable correlative

encoding scheme in order to obtain a more compact spectrum for enhancing the antijam capa-
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bility of the system, and for allowing more users in a multiple éccess system. With regard to
receiver complexity, a high order correlative encoding scheme will generally reéuire a more
complex receiver due to the increased number of correlated output levels. More matched filters
and more states in the decoder are usually required for correlative enéoding with'a higher order
system polynomial. However for a long hop interval, the increased receiver complexity with a

higher order correlative encoding scheme is accompanied by increased spectral efficiency.

The two systems simulated both have the modulation index h equal to 0.5, corresponding
to four possible phase states. Actually oply two phase_states are possible at odd bit times and
the other two possible at even bit times. Hence two phase states ére actually r'equired in the
Markov state descrip-tion of the signal. This choice of modulation index results in the lowest
number of states in t‘he state. trellis regardless of t.he correlative polynomial employed. The first
modu]atién scheme considered is minimum shift keying (MSK) and the other is the simplest
form of correlative enéoding, Aname]y duobinary MSK. For both schemes, the baseband pulse
shaping is rectangular, allowing possibly easier implementation of matched filter banks than thé
raised cosine examples. For each modulation scheme, systems with three different hop‘ lengths

of 4, 16 and 64 symbols have been simulated.

5.1 System Model

The system model used in the simulation is shown in Fig. 5.1. The data source provides
binary data { ey } at a rate of 1/T bits per seconds. For MSK, the binary data goes directly
into the CPM modulator. For duobinary MSK, differential precoding [19,48], which is generally
applied to prevent error propagation, is applied to avoid the problem of unknown initial en-
coder state, which would result in decoding ambiguity of some input sequences. Consider the
input sequences with alternaté +‘1 and -1. When the input sequence is

{ +1,~1,+1, -1,.. } and the initial_ encoder state is -1, the duobinary encoded sequence
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will be a sequence of all zeros. When the input sequence is { —1, +1, - 1, +1, ... } and'the
initial encoclef state is + 1, the same all zero duobinary sequence will result. Even if the receiver
correctly esfimated the transmitted correlated séquence as an all zero seqﬁénce, the decoder
without prior knowledge of the initial encoder state cannot ;ell whether a
{ +1,-1,+1,=-1,.. Yora{ =1, +1, =1, +1, ... }‘is the input data sequence. Worst of all,
picking the wrong sequence leads to all bits transmitte_d over the hop being in error. A triv_ia’l
solution to this problem is to require the initial state of the encoder at the start of every hop
interval to be known By the decbder. However, this would waste a fraction of the time interval
, for transmitting the initial encoder state, since the initial encoder state at the beginning of every
hop would ot};erwise be the last input symbol in the preQious hop interval. This input sequence
ambiguity due to unknown initial state can be avoided by differential preéoding of the input
sequence. The input sequence { ), } is transformed into another set of independent binary

random variables {by } , with

+1
=1

Il

bk = - bk—l if oy (5 ])

bk = bk—'l if ay

This precoded symbols { by} then go to a duobinary encoder yielding duobinary symbols

{Iy} , which are givén by
1 .
Je = (b + bxy) ; (5.2)

The differentially precoded duobinary sequence will still depend on the initial encoder state but
different initial encoder states will produce the same precoded duobinary sequence but with
opposite signs for all the duobinary sequence elements. The estimated duobinary sequehce

{ J'i{ } is decoded back 1o the input sequence by

oy = 2T - 1. - . (5.3)
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Hence, the maximum likelihood precoded duobinary sequence will always be decoded back to
the same input data sequence independent of the initial encoder state. For FH/DMSK with
differential precoding, the binary data first goes through a differential precoder followed by the
duobinary encoder before going into the CPM modulator. The frequency hopper then transmits
the signal at a carrier frequency that hops every NT seconds. We assume that the only
disturbance on the channnel is the additive white Gaussian noise. The hopping and dehopping
processes are assumed to be perfectly synchronized and the dehopper output is the exact replica
of the transmitted signal but with rz;ndom initial phase occurring at the l;eginn'mg of every hop
interval and the Gaussian channel noise added as given by Eq. (3.1). The dehopped received
signal then goes to a bank of matched filters, which correlate the dehopped signal with every
possible signal phase trajectories over a symbol interval. The matched filter outputs then go to
a phase weighting network to provide the sequential decoder with the inphase and quadrature
partial likelihoods for .every possible signal over a symbol interval. These inphase and
quadrature partial likelihoods for every possible signal phase then go to the sequential decoder,

which estimates the transmitted sequence on a hop-by-hop basis, as described in section 3.1.

5.2 Simulation Method

There are basically two ways to simulate the effects of interferences in a noisy commu-
nications system. The first is to simulate only the noise-free signal path which is deterministic,
and to utilize knowledge of the statistical properties of the noise or any other random inter-
ference to calculate their effects. The second approach is to use a straightforward Monte-Carlo
simulation where all random effects are simulated as well [49]. The advantage of the first ap-
proach is that it is computationally efficient. However, the implementation of the technique
requires extensive knowledge of the random processes. On the other hand the Monte-Carlo
simulation approach does not usually require as much knowledge of the statistical properties

of the random processes. The disadvantage is that it may be computationally less efficient,
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especially if the events of interest occur only rarely ( for example occurrence of errors in a high

signal to noise ratio).

Since the sequential decoder is a nonlinear system with memory, the effect of preceding
noise and signal components on the present samples are very difficult to evaluate. A Monte-
Carlo simulation of the sequential decoder operation is then necessary. As mentioned in the

previous section, the channel noise is modelled as additive white Gaussian noise and is assumed

to be the only disturbance to thé system. The received signal plus noise goes through a bank

of matched filters followed by a phase weighting network to provide the decoder with the in-
phase and quadrature correlations for every possible phase path over a symbol interval: Since
the effect qf the noise can be determined up to the decoder input, a noise-free signal path up
. to the decoder input can be simulated to avoid unnecessary simulation éf the matched filter
- operation. Inphase and quadrature partial likelihoods for every possible signal phase path in a
symbol iﬁterval are calculated as if there were no noise present. The filtered noise components
are then added to form the likelihoods going to the deco”der. Simulation of the éystem up to
the sequential decoder simply requires generation of the inphase and quadrature partial likeli-

hoods for a given transmitted sequence.

5.2.1 Inphase and Quadrature Partial Likelihoods

The inphase and quadrature partial likelihoods as given by Egs. (3.9a) and (3.9b) are

rewritten below.,

(k+1)T ' ‘
box@ ) = [ o T cos[amit + (@] dt . (5.42)
‘ (k+1)T ’ '
6 @) = [ . sl pd)d (5.4b)
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Both partial correlations can be further decomposed by expanding the cosine and sine terms in
Eqs. (5.4a) and (5.4b) as done in section 3.1.3. Without loss of information. Egs. (5.4a) and
(5.4b) can be used to express § (@, @) and §; y (@, &) . During the k' symbol interval in the

ith hop, the dehopped received signal is given by

r(t) = '\/_Z_TE— cos[2mf.t + ¥(t,@) + 6] + n(t) : (5.5)

for INT <t< (i + I)NT

where the svmbols and notation are the same as those defined and used previously. n(t) is the
additive Gaussian bandpass noise with zero mean and one-sided power spectral density N, W/Hz

which can be represented by
n(t) = ’\/2_nC(t) cos 2nf.t — ’\/Z_ns(t) sin 2wf .t (5.6)

The baseband processes n.(t) and ny(t) are statistically independent, white and Gaussian with
zero mean and one-sided spectral density of Ny W/Hz, Substituting Eqs. (5.5) together with
(5.6) into Eqgs. (5.4a) and (5.41)) and assuming that 2rf.t > 1. we obtain the partial likelihoods
corresponding to a transmitted sequence ¢ and an estimated sequence @' over the k' symbol

interval as

, (k+1)T ,
borlend) = % %fﬂ cos[ (1, &) — $(t, @) - ;] dt .
.f/a

L1 j-(k+1)T (1) cos (1, &) it + —L j-(k+l)T (0 sin %1, &) d
n.(t) cosy(t, a ng(t) sin , t
KT ¢ V2 KT °

and

boxla, @) = '\/_Zi_f( Tt sin[ 9(t, &) — ¥(t, @) — 6, ] dt

| (5.7b)
\/2_

f ot n.(t) sin¥(t, &) dt — —— f( 1)Tn (1) cos¥(t, &) dt
1 KT s -

N>
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Let

@) = f :;H)Tnc(t)’cosw(t,g') a + [ :;H)Tns(t) sin¢(t,gz_’? af | (5.82)
, (k+1)T ' (k+ DT

@) = | D siny(e)dt - [ s cos (L) di | (5.80)

Eqs. (5.7a) and (5.7b) can be rewritten as

" a(k+ 1T ' ) )
Sexle @) = —;— '\/?fkT cos[(t. &) = (t,@) = 6; ] dt + \Z_ nex@) (5.9

(k+1)T
balee) = - '\/—2-—TEj [ sinlde) = (te) - 6]dr + \;2_ @) (5.90)

ne (&) and ngy (') are both Gaussian and zero mean, since n.(t) and ng(t) are both zero mean

and white Gaussian processes. Their variances can be shown to be

/ | No 1
var[ ng (@) ] = T (5.10a)

var[ ng y (a') ] -—I\—;Q— (5.10b)

|-

Normalizing the Gaussian noise variables by their variances, we obtain

VN, T 2E 1 kDT
Y o 'T"—f

{ T ccos[ip(t, &) = P(t,a) — 6i]dt + X (@)} (5.11a)

5 ) =
C,k(c—!’g) 2 No
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) VN, T 2E 1 ptk+hT | , e e
s (e o) = —T—{\/;——-ffn sinf$(toe) — P(toe) = 6;]dt + X ()} (5.11b)
o

Since the constant —;—- NyT in Eqs. (5.11a) and (5.11b) is common in the comparison for all

estimated paths, hence it can be dropped, resulting in

(k+1)T
e k(e ) = '\/?\E‘ %fm cos[ ¥(t, @) — ¥(t,@) = 6;]dt + X (&) (5.12a)

ss.k(gs QI)

2E 1 (k+1)T . A , , :
'\/g L[ i) - de) - a1+ Xye)  (5.12)

where L is the signal to noise ratio and X, (') and X, (¢') are the filtered noise components
N D .
-0

of unit variance.

In order to generate the likelihoods efficiently, we note that (t. ') — #(t.e@) = »(1,7)
with ¥ = ¢ — @ and that the signal phase can be expressed as an active time varying phase plus

an underlying constant phase state. Hence, the inphase and quadrature likelihoods can be ex-

pressed as
Sox(@e) = A\ /25 { cosl ~ 0)C() ~ sy ~ OIS Y+ XKeple)  (5:130)
o]
and

by (e e) = \/ZNL { sin(Cx = 6;)C(dy) + cos(Cy = 6;)S(dy) } + X x(e)  (5.13b)

where C(dy), S(dy), () and dy are defined in Eqs. (4.36) to (4.38) rewritten below.
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C(d 1f(k+”T S 2rhd, v(t) dt’ | ' 5.14
) = = . €O 1) clt . . . B
@) = = [ cos 2ehdyu(e) G
s(d 1f(‘k+m' 2rhd, v(t) d | (5.14b
= — sin Zw v(t) dt ' .

(dy) Tder xkV(t) 5.14b)
k-1 ' '

{x = 7hY,d, : (5.15)
n=0

d, is the correlative encoded difference sequence given by

- %2 | (5.16)

whei'e C is the normalizing constant as defined by Eq. (2.6) and the k,'s are the coefficients of

the correlative encoding polynomial.

All possible integrals of the cosine and sine of the possible phase over a symbol interval,
C(dy) and S(dy) , are initially calculated and stored in an array. To get the inphase and
quadrature correlations over the k" symbol int_erval for an estimated path, the correlated
difference symbol d is first determined by subtracting .the corrglated symbol ;)f the.transmit;:ed
path from the correlated symbol of the est.imated path. C(dy) and 5(dy) can then be obtained
through table lookup. Tﬁe correlated differe'nce phase state {,. as defined by Eq. (5.15) can be
obtainedv simply as the phase state of the estimated path minus the phase state qf the transmitted

path. The likelihoods can then be easily determined according to Eq. (5.13a) and (5.13b).
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5.2.2 Generating the Filtered Noise Components

The filtered noise components X, (¢') and X (¢') in Egs. (5.13a) and (5.13b) are the
normalized ng () and ng (@) respectively. They are Gaussian random variables with zero

mean and unit variance and are given by

@) = f(kH)TX(tc w(t &) dt + f(kH)T t) sin 9(t, ') dt (5.17
Xa@) = [ XWeospeaydr + [ X0 sinwit e d 5.172)

) (k+ )T ‘ | ’ (k+ )T ,
X (@) fkT X (t) sin p(t. @) dt — fkT X,(t) cos $(t. &) dt, (5.17b)

where X (t) and X(t) are the normalized n.(t) and ny(t) respectively, and hence are statistically
independent. white Gaussian processes with zero mean and one-sided spectral density of unity.

It can be shown that
E{ Xex(@) Xx(@)} = 0. (5.18)

That is, noise components of the inphase and quadrature partial likelihoods resulting from
matched filtering of the dehopped received signal matched to a particular signal corresponding

to ¢ ., are themselves uncorrelated. However, it can be shown that

1 pk+DT ,

E{X . x(@) Xcx(@)} = ?f_ cos[ $(t, &) ~ ¥(t @) ] dt, (5.19) -
, 1 pk+DT ,

E{Xcx@) Xsx(@)} = — Tfm sin{ $(t, &) — ¥(t, @) | dt. (5.20)

Hence, the noise component of the output of the filter matched to the inphase signal component

for ¢ may be correlated with that from the inphase matched filter for ¢ according to Eq.(5.19).
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The noise component of the output of the filter matched to the inphase component for o may
. ‘ :

also be correlated with the noise component of the output of the quadrature matched filter for

a as indicated by Eq. (5.20). .

-Depending on the modulation schéme employed for lt’ransmission,.the noise components
{Xcx(@), X x(2)} of the inphase and quadrature partial likelihoods of different signals over a
‘symbol interval can ’be generated simply as independent Gaussian random variates, only if their
~ correlations as given by Eqgs. (5.19)-and (5;20) are zero. In order to generate the filtered noise
components having correlations given by Eqs. (5.19) and (5.20), Eq. (3.23) for the phase over

the kM symbol interval is substituted into Egs. (5.17a)bancl (5.17b) yielding

Xei(®@) = 008 9(@) Xeel@) = sin g (@) Xog(e)

_ . ) , , (5.21a)
+osingp(e) X (@) +  cosgy (@) Xy(e)
and
Xok(@) = singy(@) Xee@) + cos dyle) Xes(e) (5.210)
- c0s (@) Xeo (&) F singy (@) Xeg(@), -
where
} (k+1)T ) :
Xe@) = [ o Kelt) cosBy(ne)dt, (5.22a)
, (k+1)T . , '
Xs@) = [ o Xel(t) sin By (o) dt, ,  (5.22b)
, (k+1)T ,
Xel@) = [ o K1) cos By(t o) dt, ( (5.22¢)
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(k+ 1T
Xs@) = [ X sinBy(ne)dt (5.22d)

To generate the filtered noise components X (o) , X&), X (¢) and X (¢'), an
orthonormal expansion of the signals cos By(t, @) and sin Bi(t,¢') is determined using the
Gram-Schmidt orthogonalization procedure [50,51]. The random variates X..(a') , X(),
X (@) and X (') can be obtained by generating independent Gaussian random variates with
zero mean and unit variance and then weighting them by the corresponding orthonormal
coefficients in the orthonormal expansion. These random variates are then multiplied by the
appropriate sines and cosines of the phase state of the estimated path and are summed according

to Egs. (5.21a) and (5.21b) to form the filtered noise components X (') and X (@) .

Considering MSK for example, there are two possible signal phase trajectories over the
kth symbol interval, namely @) ;—Tt corresponding to ¢y = +1 and -1. Using the Gram-
Schmidt procedure, the matched filter signal references can be expanded in terms of
orthonormal functions. The orthonormal representations for the signal references correspond-

ing to o'y are given by

' T — !
COSka—Tt = Qka]_¢1(t),

. (5.23)
sine’y ==t = oy (a¢(t) + a3da(t))
2T
fore’y = +1land —1. The ¢;(t) are orthonormal functions and the orthonormal coefficients
a; are given by
= T
V2T <
a = (5.24)
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The random variates X..(2/) , Xc(@), X (@) and X(e') depend only on o'y and are given

by

Xeeld) = oy ayxy,
Xs@y) = oy (%) + azxp),
X(o'y) = oy a;x;,
Xs(@k) = oy (aax3 + azxy),

(5.25)

where the x; are independent zero-mean Gaussian random variates of unit variance. The in-
phase and quadrature filtered noise components for an estimated sequence can then be formed

using Eqgs. (5.21a) and (5.21b)..
5.2.3 Decoder Simulation

Due to incomplete knowledge of the effect of noise on the decdder operation, a Monte-
Carlo technique is used to simulate the operation of the sequential decoder. The decoder esti-
mates the transmitted sequence by calculating the inphase and quadrature likelihoods
recursively and chooses the one with the largest equivalent likelihood as described in section 3.1.
For MSK, there are onlj;/ four possible phase states in the state description. For DMSK, there
are four possible phase states and two correlative encoder states corresponding to +1 and -1
being the previous symbol. Thus there are a total of 8 Combinedlstates. Decoders with all
possible states at eac.h time kT are simulated for simplicity, although the number of states can
be reduced by a factor of two considering that only half of the states are possible at odd bit times
and the other half at even bit times. The method used to simulate the decoder is given in the

next section together with details of the simulation program.
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5.3 Program Description

A brief description of the simulation program will be given in this section with emphasis
on the methodology, rather than describing the program in detail. For simplicity only binary
data transmission is considered. Separate programs were written to simulate the FH/MSK and

FH/DMSK systems with the hop-by-hop sequence estimation receiver.

There is input of parameters and initialization of various variables and tables at the start
of the program execution as is usual in computer simulation programs. The input parameters
are the length of the hop interval in number of symbols, length of decoder buffer for storing
path histories of the survivors, the number of survivors to be kept for each state in the trellis.
the maximum simulation time and maximum number of bit errors before the simulation
terminated, the range of SNR values to be simulated and lastly, three large odd integers as seeds
for the random number generators. Various constants, variables and tables are then initialized.
These include the coefficients of the orthonormal vector representation of all possible inphase
and quadrature signal components in a symbol interval, a table of the integrals of the cosine and
sine of all possible difference signal phase trajectories in a symbol interval, the value of the
underlying constant phase corresponding to each state and the state transition table which pro-
vides the index of the next state given the index of the present state and the present input
symbol. The system is then simulated for the number of SNR values as specified by the input

parameters.

For each SNR value, the simulation runs for a specified length of time or until a given
number of bit errors has occurred. A flowchart showing the logic flow of the program execution
is shown in Fig. 5.2. A number of counters, flags and tables are first initialized. These include
the counters for simulation time, the number of bits in the current hop, the number of bits

transmitted, the number of bits decoded and the number of bit errors. The random initial phase
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Input parameters and initialization
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Figure 5.2 Simulation program flowchart
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due to the hopping and dehopping processes is generated uniformly distributed from 0 to 2 «.

The initial state of the transmitter is initialized arbitrarily to state one in the state trellis.

Pertinent information associated with each survivor is the state at which the survivor path
ends, the inphase and quadrature likelihoods from which the metric for the path can be formed

by summing the squares, and the history of the survivor path. For the MSK simulation, the

history of the survivor is the estimated data sequence, while for DMSK with precoding, the

correlated sequence is stored as the history of the survivors. All these parameters of the survi-

_vors are stored in a number of variables and arrays which are collectively called the survivor list

for convenience. The survivor list is initialized during the start of the simulation and every time
a frequency hop occurs for the hop-by-hop sequence estimation receiver. In order for the de-
coder simulation program to proceed, the survivor list is initialized with a dummy survivor into
the initial state. Since noncoherent detection is used, the initial state of the decoder can be
arbitrari!y assigned to any state for MSK modulation, which has only four phase states but no
correlator state. For DMSK modulation, there are three different correlatéd symbols, namely
+1, -1 and 0. The transmitted path can either increase or decrease by —g— raclians or stay at the
same constant phase at the.end of the symbol interval. Since there can be only two paths di-
verging from any one state, two initial states are then required for DMSK in order that the
estimated paths will include all three possible phase trajectories. The two initial states for the
DMSK decoder are chosen such that they have different correlative encoder states. The number
of dummy initial survivors is initialized to one for the FH/MSK simulation and to two for the
FH/DMSK simulation. All the likelihood parameters and path bit histories for these initial
survivors are set to zero with the state at which they end assigned to the initial state or states

accordingly.

The simulation of the system then begins by incrementing the counters for the time and

number of symbols in the current hop. The input data for this symbol interval is generated
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randomly with equal probability for +1 and -1 and recorded in an array. For the DMSK
simulation program, differential precoding is first applied followed by duobinary encoding to

form the transmit symbols, Four filtered noise components are needed for the MSK simulation,

while six filtered noise components are needed for the DMSK simulation. Marsaglia’s polar

method [52], which generates two independent Gaussian random variates at a time, is used to .

génerate the required number of independent Gaussian random variates with zero mean and
unjt variance. These random variates are then'multipled by the corresponding orthonormal
coefficients of the orthonormal vector representation of the filter response, to form the ipphase
and quadrature filtered noise components. The required filtered noise components in the partial
likelihoods for each state transition are forfned later when required by summing the appropriate
inphase and quadrature noise components each weighted by the cosine and sine of the phase

state of the estimated path segment.

The program execution then goes to subroutine EXTEND, which extends each survivor

in the survivor list to form two contender paths. One contender path has a +1 as the present

symbol; while the other has a -1 as the present symbol. To obtain the likelihoods of the
contender, the present correlated difference .symbol (which is simply the present correlated
symbdl _for this contender path minus the present correlated symbol of thé transmitted path, is
first calculated. The inphase and quadrature matched filter outputs are then obtained through
table IAookup. The signal component of the'inphase partial likelihood is then obtained by sum-

ming the matched filter outputs weighted by the appropriate cosines or sines of the difference

phase state. The filtered noise components from the matched filters for the present symbol of -

this contender path are obtained by table lookup. The noise component of the inphase partial
likelihood of this contender path during the pfesent symbol interval is then calculated by sum-
ming these noise samples weighted by the cosiné and sine of the phase state of this contender
path. The inphase likelihood of this contender is obtained by adding the signal component and

noise component of the partial likelihood to the inphase likelihood of the survivor from which
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this contender is formed. Similarly, the quadrature likelihood of this contender path is calcu-
lated also. The equivalent likelihood for each contender path which is the sum of the squares
of the inphase and quadrature likelihoods are also calculated to facilitate comparisons. A flag
associated with each contender path to indicate whether this contender has been rejected or not
is then clear. The variables, pointers and flags for all the contenders are collectively referred
to as the contender list. When the program execution returns to the main program from the
subroutine EXTEND, the contender list will contain all possible contender paths, corresponding
to all possible state transitions during a‘symbol interval, with all pertinent information about

each contender paths calculated.

Subroutine REACH is then called to sort out the most likely survivor paths from the
contender list. There are a counter and table for each state to record the number of contender
paths with largest likelihoods and their indices in the contender list. These counters and tables
are first initialized. Starting from the first contender in the contender list, the state which this
contender leads into is noted. The counter for that state is first checked to see how many
contenders have been recorded for that state. If the number of most likely contender paths to
that state is less than the number of survivors to be kept for each state, then the index of the
contender path currently visiting that state is entered in a table associated with that state.
Otherwise if the number of most likely contenders is equal to the number of survivors to be
kept for each state, then the equivalent likelihood for the present visiting contender is compared
against the equivalent likelihoods of all those contenders recorded for that state. If the equiv-
alent likelihood of the present contender is less than all those recorded, it is rejected by setting
the reject flag in the contender list. Otherwise it replaces the one with the smallest likelihood
recorded for that state, and the reject flag for that less likely contender is set. After all the
contenders in the contender list have been checked, the most likely contenders would have been

sorted out. The new survivors are those contender paths which do not have the reject flag set.
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The survivor list is then updated by copying the pertinent information of all those contenders,

which have not been rejected, to the new survivor list.

There are actually two survivor lists in the program for storing pertinent information on
the survivors such as the state at which the survivor ends, the likelihood parameters of the
survivor: namely the inphase and quadrature correlations up to the present time and also the
path history of the survivor. A flag is used to indicate which survivor list contains the valid data.
By using two survivor lists only pointers are required for pointing to the survivor, from which
the contender is extended rather than copying all the information to the contender list. After
the proper contenders which will be the survivors are sorted out, the pertin‘ent data of the
survivors are recorded to the new list by updating the old list. In this way copying long bit

history from the survivor list to the contender list and then copying the updated information

of those new survivors from the contender list back to the survivor list is not required. Hence

execution time is reduced significantly especially when the hop length is long.

Execution then returns to the main program which the;1 checks if this is the end of a hop.
At the end of éach hop, subroutine EOH is called to simulate the procedure of the decoder,
Equivalent likelihoods of all survivors in the survivor list are compared and the index of the
survivor with fhe largest equivalent likelihood is obtained. For the MSK simulation, the bit
history corresponding to this maximum likelihood survivor is fed out as the decoded sequence
for this hop. For the DMSK simulation, the corresponding correlated sequence of the moét
likely survivor is decoded back to the estimated input data sequence by operating on each esti-
mated correlated symbol through Egq. (5.3). The decoded. sequence is‘ checked against the
traﬁsmitted sequence to determined the number of bit errors. The counters for thelnumber of
symbols decoded and the number of bit errors are incremented accordingly. The random initial

phase for the start of the next hob is then generated, and the new survivor list is initialized.
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Provision has been made in the program for simulating systems with long hop intervals,
in which case practical implementation would have the decoder buffers shorter than the hop
length. The buffer pointer is checked to see if the buffers are full. If the buffers are full, then
subroutine OUTBIT is called to release the oldest bit of the survivor which has the largest
equivalent likelihood, and hence is the decoded symbol. The counter for decoded bits is incre-
mented and the bit error counter is incremented if the decoded bit is different from the corre-
sponding transmitted bit. To avoid shifting bit history through the buffers, all buffers are

implemented as circular queues.

The simulation time and number of bit errors are then checked to see if the simulation
is needed to be terminated. If not, program control loops back to simulate the next symbol

interval as described above.

If the simulation for this SNR is complete, the bit error probability calculated as the
number of bit errors divided by the total number of symbols decoded is then recorded in a data
file together with the value of this SNR. If this is the last SNR value to be simulated the pro-

gram comes to an end, otherwise the simulation begins for the next SNR value.

5.4 Simulation Results

Both the FH/MSK and FH/DMSK systems have been simulated for three different hop
interval lengths of 4, 16 and 64 symbol intervals. All simulations are run for at least 100,000
symbol intervals at low signal to noise ratios and until at least 30 bit errors have occurred at high
signal to noise ratios, in order to get statistically significant simulation results. Also the buffer
length of each decoder buffer was set to be of the same length as the hop interval, although
provision was made in the program for simulating systems with very long hop interval and cir-

cular buffers of reasonable length.
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Performance improvement of the decocler by keeping more than one si;lrvivon' for each
state in the modulation trellis was also investigated through computer simulation. It was found
that the error performance of the receiver improves if the decoder keeps more than one survi-
vor for each state in the modulation trellis. The FH/MSK system was simulated also for a hop
interval of a single symbol interval, in which case the system performance shéuld be the same
as noncohérent FSK with h=0.5. ~ The simulated bit error probability for N=1 is plotted
together with the theoretical average bit error rate in Fig. 5.3. We can see that the simulation
result coincides with the theoretically computed bit error rate. For the FH/MSK scheme with
a hop interval of iength N=4, 16 and 64, the performance of the hop-by-hop sequence esti-
mation receiver as the number of survivors to be kept for each state is varied from 1 to 4, is
shown ‘in Figs. 5"4 to 5.6 respectively. We see that if the decoder keeps more than one survivor
for each state in the modulation . trellis, the bit error rate improves. However, keeping more
than' two survivérs improves the bit error rate i'nsignificamly. It can be seen that by increasing
the number of survivors to two, essentially optimum error performance for hop-by-hop non-
coherenf detection is obtained. The error rate improves by about 1 dB at moderate SNR for
- all hop lengths simulated. In Figs. 5.4 té 5.6, the corresponding theoretical upper bouna eval-
uated for FH/MSK with rectangular pulse shaping for N = 4, 16 and 64, is plotted together with
the simulation results in order to indicate the tightnesss of the upper ‘bounlds evaluated- in
Chapter Four. At moderate to high signal to noise ratio, the upper bound for N=4 is tight,
while for longer hop intervals such as 16 and 64, the bounds are not as accurate. It can be seen
that for most of the ran‘ge where simulations ’were carried out, the upper bounds are within 0.5
dB of the simulation results for the decoder keeping 2 survivors per state. The simulation re-
sults for the hop-by-hop sequence estimation receiver for various lengths of hop interval are
shown in Figs. 5.7 and 5.8 for the decoder keeping one and two 'sufvivors for each state
respecti-vely. The upper bound on the bit error probability of a coherent Viterbi receiver for

MSK [42] is plotted also for comparison purposes. It can be seen that the error rate decreases
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as the length of the hop interval increases and approaches the error performance of the opti-

mum coherent MSK receiver.

For DMSK with differential precoding, decoders that keep 1, 2, 4 and 8 survivors for
each state have been simulated. The improvement in bit error rate as the survivors kept for .
each state increases from 1 for hop intervals of length 4, 16 and 64 symbol intervals together
with the corresponding theoretical upper bounds are illustrated in Figs. 5.9 to 5.11 respectively.
For a hop length of 4 symbol intervals, there is little performance improvement in keeping more
than 1 survivor for each state in the modulation trellis, as can be seen from Fig. 5.9. This
apparent small improvement is due to the equivalent baseband pulse length of DMSK being 2
symbol intervals. Symbols transmitted at the end of a hop will have high error probability since
only half of the symbol energy is transmitted at the end of a hop. For a hop length of 4 symbol
intervals, which is small compared with the equivalent baseband pulse length of DMSK, the high
error rate of the symbol at the end of a hop will dominate the error rate. Hence, keeping more
than one survivor for each state in an attempt to avoid premature discarding of the true path
during the decoding process has little effect on the bit error rate. For N =4, the simulated bit
error rate result is higher than the upper bound at moderate to high SNR, but is still close to
the bound. For the cases where N = 16 and 64, we see that keeping 2 survivors for each state
brings significant improvement in the bit error rate as shown in Figs. 5.10 and 5.11. Again the
improvement in error performance levels off as the number of survivors kept at each state has
been increased to 2. The effect of keeping more than one survivor for each state is to retain
more paths during the decoding process. If a competing path which has a likelihood larger than
the true path due to noise merges with the true path, the true path will be retained by the de-
coder with higher probability when the number of survivors to be kept is more than one for
each state. Further increase in the number of survivors to be kept for each state will only retain
more paths which may actually have less likelihood than the true path. Hence the performance

will increase orily marginally once a certain number of survivors are kept for each state. The
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important thing is to make sure that the true path is not being prematurely rejected during the
decoding process unless its equivalent likelihood over the hop interval is less than that for. the
other competing paths. However, at low signal to noise ratio there is not much improvement
in BER in keeping more than one survivor‘for each state. That is because at low SNR there is
a high probability that any competing path will have larger equivalent likelihood than that of
the true path. Even if the .true path is being retained until the end of a hop interval, the
probability that the decoder decides on an incorrect path is still high. Hence the increase in the
number of su'rvivor paths kept by the decoder is of little consequence. At high SNR, the true
path will be very likely to be kept by the decoder even if only one survivor is kept for each state,
Hence the increase in the number of survivors for each state will not help. The BER is largely
determined by the probability that any competing path will have a.high likelihood and hencé
Be chosen by the decoder to be the transmitted path at the end of a hop interval rather than
.due to premature discarding of the true path. The theoretical upper bound is lower than the
simulated bit error rate except at very low SNR range for N = 16 and 64. Generally, the upper
bounds are within a dB of the simulated error performance for the receiver keeping two survi-.

vors per state for most of the range of bit error rate of interest, -

The simulation results for FH/DMSK with precoding when 1 and 2 survivors are kept for
- each state, are plotted in Figs. 5.12 and 5.13 for various lengths of hop interval together with

the bit error rate upper bound provided by the performance of the coherent Viterbi receiver for

DMSK [42]. We see that the error performance improves with the length of the hop interval

whether 1 or 2 survi‘voré are kept for each state during the decoding process. As the hop length
gets longer, the érror performance of the hop-by-hop séquence estimation receiver approaches
that of the coherent DMSK Viterbi réceiver. Comparing Fig. 5.11 to Fig. 5.7 for 1 survivor per
state or Fig. 5.A12 to Fig. 5.8 for 2 survivors per state, we see that the rate at which the error
performance approaches the coherent Viterbi receiver perforrﬁance as the hop length increases.

is not as great for DMSK as it is for MSK.
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The error performance of FH/MSK compared with FH/DMSK with precoding, for N =4,
16 and 64, and for one and two survivors per state are shown in Figs. 5.14 and 5.15 respectively.
We can see that for a given length of hop interval MSK has lower bit error rate than DMSK

with precoding.

5.5 Summary

In this chapter, a simulation study of two frequency-hopped continuoﬁs phase modu-
lation spread spectrum systems with a hop—by-hop sequential decoding receiver have been f)re-
sented. Both the MSK and the precoded DMSK modulation schemes have been simluated for
hop lengths of 4. 16 and 64. The performance improvement to the sequential decdding algo-
rithm by keeping more than one survivor for each state iﬁ the trellis has been presénted. For
both MSK and DMSK, keeping two survivors for each state will bring the performance close to‘
that of the optimum hop-by-hop ML noncoherent receiver. With the continuing decrease in
price of memory devices, the increase in memory required to keep more than one survivor per
state may not b¢ of concern but the increase by more than a factor of .two in computations when
two survivérs are kept for eacﬁ state is not desirable for high speed operation. It is found from
the simulation results that the maximum degradation in error performance by keeping just one
survivor for each state in the trellis is onl}; about 0.5 dB for MSK and about 1 dB for DMSK.
This penalty of .5 or 1 dB in error performance degradation is small considering the number
of computations and the memory saved. It has also been shown that the performance of the
FH/MSK spread spectrum system with the hop-by-hop sequence estimation receiver gets very
close to the performance of the coherent receiver with Viterbi decoding for long hop interval

lengths such as 64 symbol intervals.
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Chapter Six

CONCLUSIONS

A slow frequency-hopped spread spectrum communications system with continuous
phase modulation for transmitting high speed data has been presented. The use of a bandwidth
efficient modulation scheme, namely continuous phase modulation to transmit a number of
symbols during a frequency hop interval results in a frequency-hopped spread spectrum signal,
which has attractive mainlobe compactness and low sidelobes. Its compact hop bandwidth al-
lows higher processing gain to be realized, hence a higher degree of antijam protection. For a
multiplé user system, the compact hop bandwidth allows more users to share a given spread

spectrum system bandwidth.

Spectral analysis of frequency-hopped continuous phase modulations has been presented.
The autocorrelation function of the dehopped spread spectrum signal has been derived for any
arbitrary correlative encoding, baseband pulse shaping, modulation index, number of levels and
length of frequency hop interval. The baseband power density spectrum of the dehopped signal
can then be obtained via a Fourier transform of the autocorrelation function. Results on the
baseband power density spectra of frequency-hopped signals with various partial response en-
codings and pulse shapings, and different hop lengths have been presented. In general, the
spectrum becomes more compact with lower sidelobes and approaches that éf the CPM signal

without hopping, as the length of the hop interval increases.

It is found that the use of higher order PRS polynomials and pulse shaping, which are
known to reduce the bandwidth significantly for usual continuous phase modulation, do not

result in more compact spectra if the hop length is short. The use of higher order PRS




polynomials and pulse shaping is effective in bandwidth and sidelobe reduction for long hop

intervals only.

Due to ihe unknown random phase of the car\rier as it hops from one frequency to an-
other, noncoherent detection has to be used.‘ Thl;ee r;oncoherent receivers with sequential de-
coding have been presented. The first one is derived based ‘on a Hop-by-hop maximum
likelihood decoding approach and is optimum over a hop interval. It has the simplest receiver

structure and decoding algorithm.

The second receiver is derived based on the maximum likelihood spanning frequency
hops and has a more complex decoding algorithm than the first one, although it has the same
general receiver structure. However, simplification of the decoding algorithm is possible when
the length of the hop interval is much greater than the length of the frequency pulse, The
recejver ope‘ratévs genei-ally in the sarﬁe manner as the hop-by-hop receiver, but it has a sub-
procedure for ‘metric éalculaﬁdn across each frequency hop and relies oh the assumption that

a merge in the trellis will occur well before the end of a hop.

With the aim to obtain a simpler decbding algorithm, the third receiver neglects the
continuous phase structure of the signal within a frequency hop. Every symbol interval is
treated as if it were noncoherent but with memory introduced by the partial response signaling.
The performance is expected to be worst than the optimum receivers but a path transition
metric can then be defined. Consequently, a decoding algorithm such as the Viterbi algorithm
can easily be incorpora'ted. However, the last two receivers both need the signal amplitude and
the noise spectral density to be known for computihg the metric. This will necessitate the use
of some extra circuitry for vestimating the signal to noise ratio before the metric computation
can be carried out. The performance of the receiver will then depend also on the accuracy of

the estimated signal to noise ratio. Due to this extra requirement of estimating the signal to
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noise ratio and the complexity involved in the decoding algorithm, the receiver spanning fre-
quency hops and the suboptimum receiver that neglects the signal phase structure are not sug-
gested approaches for demodulating the spread spectrum signal. The noncoherent receiver,
which estimate the transmitted sequence on a hop by hop basis, appears to be the most prom-

ising design.

Error performance of the sequence estimation hop-by-hop noncoherent receiver under
additjve white Gaussian noise has been analysed. Upper bounds on the bit error probability
have been derived and evaluated for different partial response polynomials and pulse shapings
using a union bound approach. As expected, the bit error rate decreases as the hop interval
lengthens. The performance of the system using higher order correlative encoding is generally
inferior to the one with no correlative encoding like minimum shift keying because of the in-
creased number of output levels due to correlative encoding. The performance improvement
by transmitting knowr symbols at the beginning of every hop interval is also investigated. An
error bound on the bit error rate is derived also based on an union bound approacﬁ. Results for
MSK, DMSK and TFM all with h=0.5 and rectangular pulse shaping are presented. It is found
that the gain in performance by transmitting known initial symbols is small whgn the hop

interval is long.

The performance of the hop-by-hop noncoherent receiver under the presence of inten-
tional interference (jamming) has been evaluated in Chapter Four. The performance of the
receiver under partial band noise jamming is calculated based on the union bound approach.
It has been shown that under partial band noise jamming, there is always an optimum value of
the fraction of jammed band to the total éystem béndwidth to bring maximum degradation to
the system. The partia} band jammer can bring the usual exponential relationship between the

bit error rate and the signal t0 noise ratio to an inverse linear relationship.
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In a multiple-tone jamming envirnoment, it is found that the bandwidth efficient prop-
erty of FH/CPM spread spectrum signal increases the system. performance under multiple-tone

jammiing due to the increased number of frequency-hopped_ bands possible.

A simulation study of two systems, namely frequency-hopped MSK and frequency-
hopped differentially precoded duobinary MSK was presented. It is found that the error
performance of the hop-by-hop sequence estimating noncoherent receiver can be improved if
the clecoderv keeps more than one survivor for each state in the trellis. Keeping two survivors
for each state is sufficient to achieve close to the optimum error performance for both MSK and
DMSK with differential precoding. Keeping more than two survivors for each state will im-
prove the bit error rate insignificantly. The degradation in performance if the decoder keeps
just one survivor for each state is only about 0.5 dB for MSK and 1 dB for DMSK, which is

possibly small enough to justify the reduced decoder complexity and simpler decoder operation.
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APPENDIX A

Multiple-Tone Jammer PoWex_‘

" For simplicity, suppose that thermal Gaussian noise is negligible. The dehopped received

signal when a jamming tone is presént is given by

() = sta,6) + Jq(0); INT <t <(i+DNT, (A

where s(t,a,6;) denotes the transmitted signal in the i'® hop interval as given by Eq.(3.4) re-

written below
s(te,8,) = V2P cos[ 2rf.t + P(t.a) + 6] INT <t < (i"+ )NT (A.2)
and Jq(t) denotes the continuous-wave jamming tone signal given by

30 = V21, cos[ 2aft + 2mfit + ], | | (A.3)

where Jq is the power of the jamming tone, f; is the jammer tone frequency offset from the
intermediate carrier freqluency f, after being dehopped and ¢; is a random phase. The hop-
by-hop receiver computes the equivalent likelihood for each of the possible sequences o' given

by

o

NT.
'fo r(t) exp[j(27f.t + ¢(t, @) ) ]dt |7

il

£, o)

Il

[ sta8) el (onf + 9,0)) ] (A4)

NT ,
+ [ Jo) exeli (2nft + p(te))Jat |2

.OO..O‘....'-QOQO...‘QO....OO.’...O....'...Q.O.‘......’.O
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Substituting Eqs.(A.2) and (A.3) into Eq. (A.4) and assuming that f.> 1, we obtain

l(ed) = | £ NTexp[j (Pt ) — ¥(t,a) — 6;)] dt
2990 .

> ¢ (A.5)
PV ewtio o 1
[ eli e) - ety = gy e |2

Assuming that the multiple-tone jammer knows the transmitted signal structure, the jammer

will always select the tone frequency such that

it = P(t, ). (A.6)

That is, the jamming tone is one of the transmitted signals. ( For example when the pulse
shaping is rectangular and the tone jammer selects f; = —21—}-1_— . then the jamming tone signal
will be the same as the signal, which would have been transmitted had the correlated symbols
been all 1's.) The equivalent likelihood for that particular sequence a corresponding to the

jamming tone is then

- _ Jq NT

.'\/‘gfo o3 (4 - e~ 01+ N/ [ el =31
Tq

"\/%_ [ :Texp[j(«p(t, @) ~ (L) ~ 6)]dt + '\/—;- (NT) expl — jéy]

(A.7)

(e, @)

2

The equivalent likelihood for the transmitted sequence @ is given by

NT J NT ~
"\/_g?fo exp[ — j6; ] dt + '\/TQ fo expl j (¥(t,@) ~ $(t,@) — ¢y)] dt
Jg pNT ~ '
.'\/—ET(NT) expl — j6;1 + '\/Tq J , ol e) —d(ta) —¢;)]dt

(e, )

2

2
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(A.8)

The hop-by-hop ML receiver will always choose @ as the estimated sequence, if

) > f(aa).

£(a,a) ~ L2 a)

= {‘\/i_f " cosfb(t,3) - p(ta) - gt + '\/T—“-_(NT) cos ¢}
2 Y9 2 L
o /B[ sl - v - st + V2 (1)sing 3
- A/ sycoss, + '\/_%q—f eosto(0) = #(L B - o)’
- (- ’\/—%— (NT)sin6; + '\/—JT“_I :-fsin[w(t‘ 2) ~ $(LE) - 4Jdt )

_ P . NT ~ _0d2+JqNT2 N
= 5tf, coslbed - wle) - o] de) 5 (D eos’ey

+ ’\V /PJq (NT) cos ¢Jf:Tcos[1/)(t, a) — Pt e) - éi] dt
' 2 J . 2 2

+ _g—{f:Tsm[w(t,&) —p(t,a) — 6] di}’ + Tq(NT)'sin“dzJ
NT - _

= VPRI T sing, [ sinfp(,8) — #(t,0) - 0] de

_ _.P;..(I\‘T)2 coszﬂi - —%{f:Tcos[w(t, g) —P(t,@) — ¢ dt 37
NT -

- /Pl (NT) cosc’)-lfo cos[i(t, @) — (t, &) — ¢ dt

2 2 ‘ J NT ~ 2
- —-P;—-(NT)“sin'c’)i - -;—{fo sin[(t, @) — (1, 3) - ;] dt }°

NT
+ /P, (NT) sin 0if0 sin[(t, ).~ ¥(t, &) — ¢;] dt
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NT . ,
= [ erli (v ® - v - o) e |2
Iy , NT .
* (N + VeI (NDf | CosH(LE) ~b(ba) ~ 6 + ) de
J NT -
- 5|, eelite) - ved) - e @
- Lo - VR D[ costv0) - 90D - 4 + 0] a
NT)> NT .
- 4 2) (Jg = P) + {}‘j} exp[§ ($(1,) ~ $(t, )] at
J NT -
- 3| enti (vt - 0D
NT)? Jg— P) NT ~ >
- - S| el (v ®) - v a |*}
(g

- P
> ){@ﬂf —'f:%wﬁ(¢@§r—wn@ndﬂz}

I

(Jg ~ P)
- {NT +

NT o
J, exlicued - v aner| }

1

NT -
{NT - lfo exp[j(¥(t, @) — ¥(t, @))]dt

Since

NT + [/NTexp[j(¥(t,@) — $(t,e))ldt] >0

and

NT ~ [/ Texp[j(¥(t,@) = $(Le)ldt] >0,

(A.9)




l(a,a) > £ (@, @) when .Iq > P. If .Iq > P, the receiver will always decode the transmitted
* sequence to be @, which corresponds to the jamming tone frequency given by Eq.(A.6) no

matter what the transmitted sequence is.
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