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Abstract 

A modified self-normalizing combiner is presented and its performance is analyzed 
under partial-band jamming. This is compared with other non-linear combining schemes. 

Continuing on our previous work, the throughput performance of a coded Fast Fre-
quency Hopped M-ary Frequency Shift Keying (FFH/MFSK) system with a fixed hop rate 
is evaluated using the cutoff rate argument. The analysis upperbounds the gains which can 
be realized using coding for various system parameters. 

As a prelude to the study of coding for Slow Frequency Hopped Differential Phase 
Shift Keying (SFH/DPSK), we derive the probability distribution of DPSK in tone inter-
ference. 

A comparison of two powerful DSP integrated circuit processors for implementation 
of a decoder for the (127,99) BCH code is presented as an Appendix. 

Suggestions for future work include investigation of coding for SFH/DPSK; er-
ror control coding to alleviate very high error rate situations; implementation aspects of 
CODECS and a theoretical investigation of communications over an intentional interference 
channel. 
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Chapter 1 

Introduction 

In previous contracts, the use of various types of channel coding were studied to im-

prove the jamming resistance of satellite communications using fast frequency hopping [1]. 

Coding for slow frequency hopping systems has received little attention up to this point. 

.In this annual report, we present the work performed during the period October 

13, 1988 to March 31, 1989. The majority of our efforts has centered upon slow frequency 

hopping systems. 

1.1 Plan of the Report 

The plan of the report is as follows. In Chapter 2 a modified self-normalizing 

combiner is presented and its performance is analyZed under partial-band jamming. 

Chapter 3 presents an analysis of the throughput performance of coded FFHP.IFSK 

with a fixed hop rate based on the cutoff rate. 

Cha.pter 4 is a prelude to the study d coding for slow frequency hopped DPSK 

(SFII/DPSK). The effects of jamming without coding are analyzed. The main result is the 

derivation of the probability distribution of DPSK in tone interference with applications to 

SFII/DPSK. 
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Chapter 5 provides some directions for future work in the areas of: 

1. coding for SFH/DPSK, 

2. coding for high channel error rate situations, and 

3. identifying and analyzing various approaches to the general problem of communicating 

over an intentional interference channel. 

As an adjunct to the report, a comparison of the Motorola DSP56000 and the 

Texas Instruments TMS320C25 Digital Signal Processors for implementation of a four error 

correcting BCH Error Control Code Decoder is presented as an Appendix. 



Cha.pter 2 

A Modified Self-Normalizing 

Combiner and Its Performance 

Analysis under Partial-Band 

Noise Jamming 

2.1 Introduction 

In frequency-hopped /1/./TSK systems, diversity combining can be used to combat 

partial-band noise (PBN) jamming. Several forms of diversity combining have been pro-

posed and their performance under jamming investigated [2,3,4,5]. These include linear 

combining, adaptive gain control combining, clipping combining, self-normalizing combin-

ing and product combining. Here these schemes are described briefly. We consider a nonco-

herent ITH/FSK system with a square-law detector and diversity, i.e., the outputs of the 

square-law envelope detectors are combined for different hops. We assume that the system 

is interfered by PBN jamming. 

Linear Combining This scheme is depicted in Fig. 2.1. In this method, the detector 

outputs are combined by direct sumrning. Gong[3] and Lee et. al.[6] have shown tha,t 

there is no diversity improvement for the square-law linear combining receiver on the 
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partial-band noise jamming channel. 

Adaptive Gain Control (AGC) Combining The structure of this scheme is given in 

Fig. 2.2. It requires that side information regarding the noise level in each hop be 

available. The detector outputs for each hop are normalized with the noise variance 

of the hop. The normalized outputs of the detectors are then summed together. Some 

diversity gain can be obtained by this nonlinear combining scheme [7]. 

Self-Normalizing Combining- This scheme is shown in Fig. 2.3. Instead of requiring 

side information, the outputs of the detectors for each hop are normalized with the• 

sum of the outputs of the detectors in all channels for that hop. 

Product Combining In this case, the product of the outputs of the detectors for all hops 

is used for the combining [4]. This scheme also does not require side information. Its 

structure is depicted in Fig. 2.4. 

Clipping Combining This is shown in Fig. 2.5. The detector outputs are first passed 

through a clipper, (or soft limiter) then summed together. It is known that AGC 

combining has a better anti-PBN jamming performance than clipping combining. 

However, this performance advantage become small when the diversity is large [7]. 

Except for the first, all the above described combining strategies are nonlinear. It is 

known that linear combining cannot combat PBN jamming effectively. Instead, due to the 

noncoherent combining loss, the performance is degraded with increasing diversity. Thus 

our main interest is in nonlinear combining schemes [3]. 

In nonlinear combining, the AGC and clipPer types have relatively better perfor-

mance. However, the AGC combiner requires knowledge of the variance of the noise in 

each hop to the weight of the hop. To determine the clipping threshold in the clipper com-

biner, the bit energy to thermal noise ratio should be known [5]. Both of these combiners, 

4 



BPF 
(W) '-111•H 

BPF 
(13) 

FREQUENCY 
SYNTHESI ZER 

1-00-1 Loo:—B P F 
(B) EVELOPE I 

DETECTOR 	
I 

SAMPLE 

PN 
GENERATOR 

SQUARE- 

ENVELOPE 	I 

 H 
LAW 	I X 

DETECTOR 

SQUARE- 
AW 1_244r..2_<  2 

1111111111111111111M111111111111111111111111111111•111111111111MS11111MOMMIIIIIIIIIIIIIIIII 

Figure 2.1: Linear Combining Scheme for a FFII/BFSK system with L hops/bit. 

Cm 



k=1 

r 

40--1 

SQUARE- 
X , 

LAW H110.1 
EVELOPE I 

DETECTOR 	
I 

SAMPLE 

PN 
GENERATOR 

k 

1/a 2  

BPF 
(B) 

BPF 
(5) 

BPF 
(W) 

FREQUENCY 
SYNTHES I ZER 

SQUARE- 

ENVELOPE 
LAW 	I X 

DETECTOR 

Figure 2.2: Adaptive Gain Control Combining Scheme for a FFH/BFSK system with L hopslbit. 

11111111•111111111•MIIIIIIIMIIIIIIIIIIIIMIIII11111111•111111111111111111111•1•111111111.8111111 



BPF 
(W) 

L-ale•H 

FREQUENCY 
SYNTHESI ZER 

PN 
GENERATOR 

x 

SAMPLE 

111111111111111111111111111111111111111111IIIIIIIIIIMMIIIIIIIIIIIIIIIIIIIIIII11111•11.11 

Figure 2.3: Self-Normalizing Combining Scheme for a FFH/BFSK system with L hops/bit. 



PN 
GENERATOR 

BPF 
(B) 

BPF 
(B) 

1-11n1 BPF 
(W) 

FREQUENCY 
SYNTHESI ZER 

CYD 

SQUARE- 

ENVELOPE 
LAW 	I X 

DETECTOR 

(i) 
SQUARE- 

DETECTOR  k=1 
EVELOP E 	, 

LAW 	 21(  I-0>H 

k=1 

SAMPLE 

Figure 2.4: Product Combining Scheme fôr a FFH/BFSK, system with L hops/bit. 

• UM MI UM MI MIR 	 MI MI MI MIR MI MI MIR MI MI MI MI 



MI UM MI OM PM MI 111111 	 MO MIR OM .11111 	MI MI MI MI OM 

x 

X 2 

BP F 
(B) 

SQUARE- 
LAW 

ENVELOPE 
DETECTOR k=1 

BPF 
(W) r 

FREQUENCY 
SYNTHESI ZER 

BPF 
(B) 

SQUARE- 
LAW 

EVELOPE 
DETECTOR 

k=1 

PN 
GENERATOR 

SAMPLE 

Figure 2.5: Clipping Combining Scherne for a FFII/BFSK system with L hopsIbit. 



therefore, require information which may not be available in practical situations. In order 

to implement these combiners, either some form of measurement or estimation must be 

employed. We can think of the self-normalizing scheme as an AGC type combiner with 

estimation of the variance of the noise in the channels. 

If estimations are used, the quality of the estimation will determine the performance 

of the combiner. There may be some good approaches which can estimate the variance of 

the channel noise accurately. This in turn would mak-e the performanée of the correspond-

ing combiner similar to that of the AGC combiner. To obtain.  such a method, a modified 

method of estimating the channel noise level is proposed and studied. Its performance under 

PBN jamming is analysed, and is compared with other nonlinear combining schemes. 

2.2 Modified Self-Normalizing Combiner 

The basic idea of an AGC combiner is to limit the influence 6f the large jamming 

energy which may be present in a hop. The weight of the hop output is small when 

interfered by a jammer, thus the contribution to the total sum is small, and the influence 

of the jamming is reduced. 

In a true AGC combiner, the noise power in each channel is normalized to a unit. 

In a self-normalizing combiner, all channel outputs are less than one after normalizing. 

However, after comparison with the AGC combiner, we found that a drawback of this 

scheme is that it does not emphasize the influence of the hops which are not jammed. 

In a self-normalizing scheme, the estimation of the variance of the channel noise is 

the sum of the outputs of M channels. To decide if a channel contains a signal, probably a 

better method to estimate the noise variance is to make use of the outputs of the other M-1 

channels. Thus if the channel actually contains a signal, the outputs of the other M — 1 

channels are purely noise samples. If the channel under consideration does not contain a 

signal, the other M —1 channels will contain both signal and noise samples. Because of the 

10 



signal energy in the samples used for estimation, the estimation of the noise variance may 

tend to be leger than the true value. This causes the weight of the noise only channel to 

be smaller, which is desirable. 

In the modified self-normalizing Combiner shown in Fig. 2.6, instead of normalizing 

with the sum of all M channel outputs, the channel output is normalized with the-sum of 

the other  IVI — 1 outputs. 

2.2.1 Some Intuitive Considerations 

If there is a hop without jamming, and the signal to thermal noise ratio is large, 

the weight of this hop tends to be large, and so will make a large contribution to the sum. 

The AGC combining schème lias a similar property, where the small thermal noise variance 

makes the weight of a clean hop relatively large. The product scheme is also similar, though 

in a reverse way, i.e., if there is a clean hop, the combining output of the channels- without 

a signal is near zero. 

The proposed scheme also makes the fluctuation in data large when the number 

of channels, M, is small. This is an undesirable property. Further analysis is needed to 

determine whether the influence of this property is dominant or not. 

2.3 Performance Analysis 

In this Section we analyse the performance of the normalized combiner under PBN • 

jamming. Both numerical methods and Monte Carlo simulation ar. e used in the analysis. 

First we show that for the BFSK case, with diversity L = 2, the modified self-

normalizing combiner and the conventionaal  self-normalizing combinei- are equivalent. In 

fact, we show that the product combiner [4] is also equivalent to the above two combining 

• schemes when L = 2. 

11 
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71 = 

and 

2.3.1 Equivalence of Three Combiners for L = 2 in a BFSK System 

Let xik; X2k be outputs of square-law envelope detectors in two channels at the kth 

hop, respectively (see Fig. 2.6). When L = 2, let 

x11 

X21 '  
771 = 

and 

X22 

rh and 772  are the weighted outputs of channel 1 respectively, in two hops. The outputs of 

the two channels in the proposed combiner are 

X11 	X12 
= 711 +  772, 

X21 	-X22 

X21 	X22 	1 	1 	7/1 + 712  = 	 = 
X11 	X12 	711 	772 	711772 

The detection statistic r is 

711 + 772771 + 772  , 
01 722 — 

771772 	771772 

The decision criteria is thus if 

r > 0, 

the transmitted signal is in channel 1, otherwise, it is in channel 2. However, r > 0 if and 

only if rhy/2 — 1 > 0. Hence we can restate this decision criteria as 

711 712 — 1 > 0 

if channel 1 has a signal. Otherwise it is in channel 2. 

For the original self-normalizing combiner, the corresponding outputs are 

X11 	 X12 	7/1  = 	 112 + 	, 
+ X21 	X12 + X22 	1  + 7/1 	I + 1/2 

X12 
772 = 

13 



a+13  exp 	2 ,2, 	Pk 'o 2cYe;
k

k 	if a,0 >  o,  
0, 	 otherwise; 

(2.1) Pxi,x2 (a, 0) = 

and 
X21 	 X22 	1 	1 
=, 	, 

X11  + x21 	x12 + X22 	1 -1- 771 	I I"  172 

The detection statistic r is 

171 712 	F' 	1 	1 	2(7/1 972  — 1)  
r 171 +  1+ 772) 	(1+10(1+172)' 

and therefore the decision criteria is also 

771 772 — 1 > 0 

then channel 1 has the signal, otherwise it is in channel 2. since the decision criteria are 

the same, the two combiners are equivalent. 

For the product combining scheme, the detection statistic r is 

r = xnxi2 — X21X22 

X22 
99 (.1.1-  ' 1"2" - 1) \2 = X21X•n • X1.  

= X21X22( 7/1 772 	1 ), 

and the decision still depends on whether 

171972 - 1 > O. 

Therefore all three schemes are equivalent, and their performance without coding should 

be identical. However, in a receiver with coding or using soft decisions, this may not be the 

case. 

2.3.2 The BFSK Case 

The joint distribution probability density function of the outputs of the square-law 

envelope detector in two channels is 

14 



> 0 ; 
otherwise; 

> 0 ; 
otherwise. 

(2.2) 

(2.3) 

= Pl ik. ( 77)) 

where we assume channel 1 contains the signal. This signal has a SNR of 

42  
Pk = 

„Crk  

where A is the signal amplitude and 

2 { NoB 	with probability 1 — -y, 
ak = (No + J0/7)B with probability 7. 

71k. = —
Xik 

X2k 

X2k 
95k = 

Xlk 

Ok, k 	1,2, • • • ,L are the weighted outputs of channels 1 and 2, respectively. After 

some derivations (see Section 2.5 for details), we obtain' the following probability dénsity 

function for rm. and Ok, 

Let 

and 

l+n+17 Pk  p — Ii7n Pk 

Pnk( 1)) = 	
(1+77) 3  '- 

0 

and 
cb - 	'IT—. P 

POk(q5) = 	(1+95)3  0 
After combining, the outputs of the two channels are 

E 77k> 
k=1 

and 

i=k 

77 and q5 are then compared, and the detection decision nia:de. The probability density 

function of 77 and 0 are Lth order convolutions of pnk (77), po k (0), respectively, i.e., 

k=1 

15 



and 

P0(0) OPok(0), 
k=1 

where  Q  means continuous convolution. 

For L = 1, the conditional error rate pe('y  I p i ) is 

1 	1 
Pee7 I pi) = Pr(rli 	1) = 	Pn (n)d77 = 

where 

{ No  
P1  — 	 

NO+JO h 

Thus the total error probability is 

not jammed with probability 1 — 7; 
jammed with probability -y. 

1 — 	-y 	Eh 
Pe(-y) = 	e  2N0 	_ e  2(N0 +J0 h .  

2 	2 

This is the same as [2, (15)], which is intuitive, since when L = 1 the normalization has 

no influence on the decision. This result however, is useful since it verifies that the derived 

formula is correct. 

For L = 2, we have shown that the performance is the same as that of a conventional 

self-normalizing combiner. For L > 2, the conditional probability of error is 

foo r  f r) 	L-1 

Pe(7 I P1, P2, 	=1— jo [Jo  p4,(0)ddril 	Pn(71)(171, 

and the total errbr rate is 

Pe(7) = L  ( 
0  le 	)k L—k 

.7 	Pe( Pll P2, • • Pk = "Et, 
Eb  

Pk+1,' • • PL = L(N0-1-J0h) )  

For moderate L, p(7) can be computed numerically using a reasonably powerful computer. 

For a simple performance comparison under some typical conditions, Monte Carlo 

simulation can be used. The time requirements for multiple numerical integration are enor- 

mous, so simulation is used to obtain some quick results. The modified self-normalizing 
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scheme was compared with the other schemes using.simulation. 

Simulation results for L = 4 and M = 2 are given in Fig. 2.7 and Fig. 2.8, where 

the probability of error, pe , is plotted versus bit energy to jamming noise density ratio, 

Eb/Jo. The bit energy to thermal noise density ratio, Eb/No, was chosen as 12.31 dB, for 

which a bit error rate of 10 -4  can be achieved without jamming, for L = 1. Five types of 

combining schemes, linear, AGC, self-normalizing, modified self-normalizing, and product 

combining, were tested. The results for 7 = 0.1 and -y = 0.01 are given in Figs. 2.7 and 2.8 

resp ectively. 

From the two Figures, we can see that the anti-jamming performance of the nonlin-

ear combining schemes are similar. However, the tendency of the modified self-normalizing 

scheme to create large fluctuations in the data does have a negative influence, which causes 

a higher probability of error. The reason  for  these fluctuations is the small number of data 

values used in the estimation when M is small. We expect that the modified self-normalizing 

scheme would perform much better when M is large. While the differences between these 

nonlinear combining schemes are not large, it is not known if this will be the case when 

coding is used. 

2.3.3 The MFSK Case 

For MFSK, bound analysis and simulation seem to be good choices  for  comparison. 

Simulation  results for M = 4, L = 4, 7 = 0.1 and 7 = 0.01 are given in Figs. 2.9 and 

2.10, respectively. For comparison with different M, the bit energy to thermal noise density 

ratio,  E&/No,  was chosen such that a bit error rate (BER) of 10 -4  can be achieved without 

jamming for L = 1. It is known that [12, vol. 1, Ch. 4, Eq. 4.76] 

1 	E og2 M  

Pb < —
4

Me 2N0 , 

and when Pb < 10-4 , the bound is very tight. Thus for Pb < 10-4 , we have 

1 	Eb 	111 

Pb 
4
—Me 2 N0  , 
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hence 
Eb 	2  

(--) . 

No log2 M 4Pb 

For Pb =  i0 , 	= 4 and 8, the corresponding E6/No are 9.64 dB and 8.20 dB, re- 

spectively. Therefore Eb/No was chosen to be 9.64 dB. The results indicate that the 

differences between the anti-jamming performances of the four schemes, i.e., modified self-

normalizing, product combining, self-normalizing, and AGC combining, are not very large. 

In fact, the differences in the performance of the modified self-normalizing and product 

combining schemes is quite small, and the performance of the self-normalizing scheme is 

quite close to that of AGC combining. AGC combining can be viewed as a lower bound of 

the anti-jamming performance for the self-normalizing type combining schemes, since the 

AGC scheme uses the exact noise variance in each hop. 

Simulation results for M = 8, L = 4, 7 = 0.1, and 7 = 0.01 are given in Figs. 2.11 

and 2.12, respectively. In Fig. 2.10, the performance of the self-normalizing technique and 

its modified version are quite close to that of AGC combining when Eb/Jo is low. In general, 

the performance of the product, self-normalizing and modified self-normalizing techniques 

approach that of AGC combining as M increases. As well, the performance of linear com-

bining is superior when the jamming is weak, i.e., when the main factor determining the 

BER is the thermal noise (Gaussian white noise). In this case, the linear combining of the 

outputs of the square-law envelope detector is almost optimum. However, when Eb/Jo is 

high, the performance of self-normalizing combining is doser to that of AGC combining 

than its modified version. 

2.4 Comments 

Some nonlinear combining schemes without coding have been analysed. Schemes 

without coding are compared first to determine if there is an outstanding nonlinea,r com-

bining scheme which has a much better anti-jamming performance than the others. 
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Substituting pk = into above expression, we obtain A2  
7.70' k  

Let 

and 
A 

2.5 Derivation of (2.2) and (2.3) 

The joint probability of xi and x2 is given in 2.1 and let 

X2 0= 
xi  

then,  p(0), the probability density function of 95, po(q5), is 

co 

P0(0) =  I la Psi ,x, (a, 0a)da 

= f c°  a eXp [ (1 4".  95)a  pill° (12:kP2 k ) da. .10 	 2o-2  

po(0) 	1 a 	(1+ 0) (1 + A r 	 r ex., 	
2cr2 o 4o-4 	 yl\ri-  da. 0.k2 

EY 2  =  (1+  Sb)a, 

A=  

Then' 

po( 0) 
r°  1 	1_3 	EY 2  -I- (1 + 0)112 ] 	(ila 

20. '1! (1 + 0)2 a exp 	 _To 	) da À 2 172 	 0-k 

1 	1  
exp 

20-12, (1+ 0) 2  
çbÂ1 c°  1 _3 a  exp 	

2o 

À2) 

	

20- 2 	I 	2 

	

k 	'0  al 	 -/2, 

1 
2o- (1+ 0) 2 exP  

F(À,c4), 
201, j 

where 

F(À, o- 
co - 	Â23 	 ) 

/0) = 	a exp 
2 2  o- Cik  
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is the second order moment of the Rician distribution [8], and 

F(Â, (31,) = 2(a12, —

À2

). 
2 

Therefore 

po(0) = 
1+0+p),  
(1-1-0)' 

2u2k (i)2  e_xp (— 02,21,7' 	k2( 	2  0'2  + -11.2>) 
1 

and because ri = 

Pn(n) = 
po ( 77-1) 

1 -1- 11+77 , k  
(1.-1-77) - 



Chapter 3 

An  An.alysis of the Throughput 

Performance of Coded 

FFH/MFSK with a Fixed Hop 

Rate Based on the Cutoff Rate 

3.1 Introduction 

In previous work [1], the performance of various' error correcting (EC) codes in an 

FFII/MFSK system was evaluated under the condition of a fixed hop rate. Continuing frOm 

this work, we analyse the throughput performance of the coded system using the cutoff rate 

argument. This analysis is intended to upperbound the improvement that can be realized 

through the use of coding for various system parameters. In this Chapter, we attempt to 

present the results in a more or less self-contained manner, while more information can' be 

found in Chapter 3 of [1]. 

A fixed hop rate is a practical requirement for satellite communications when mul-

tiple users access the same onboard dehopper. This constant hop rate is determined by 

many factors, such as the response time of a potential repeat-back jammer and the syn-

chronization capability of communication receivers. That is, the hop rate sliould be high 
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enough to avoid repeat-back jammers but low enough to avoid synchronization problems. 

As in [1], the Chernoff union bound method is used for the performance evaluation. 

Suppose that the average signal power S is fixed. Since the hop rate Rh is fixed, so 

is the energy per hop Eh = S/ Rh.  In this case the term optimum diversity is meaningless, 

because the diversity factor, L (the number of hops per M-ary symbol), is no longer an 

independent parameter. Specifically, L is given by 

rE 	R' 
L = „ 	=  	 (3.1) 

14/ uh 14/ -ah 

where r is the EC code rate and M =2K. R' is the code rate in data bits per M-ary symbol 

before diversity. Note that (3.1) must satisfy the restriction L> 1. This means that R b /R h  

cannot exceed the upper limit R'. For a given bit error rate (BER), the information bit 

rate Rb reflects the throughput of the system. A larger Rb means a larger throughput. 

Eb/J0 is determined by 

SIRh 	Eh/JO  Eb1J0 =  	
• 	

(3.2) 

	

Rao (Rb/Rh )Jo  Rb/R h 	• 

For a fixed hop rate, Eb/Jo depends on Rb/Rh and Eh/Jo (which is fixed as mentioned 

above). Thus we will use Eh!  JO  as a basic parameter to evaluate the system performance 

rather than Eb /Jo. This results in two system performance criteria. One is Rb/Rh, re-

flecting  the  system throughput, and the other is the more traditional BER, Or Pb. Note 

that to determine Rb/Rh for a fixed  Eh/JO,  Pb must be fixed. In fact, as mentioned above, 

only for a given Pb can Rb/Rh reflect the throughput in a meaningful way. On the other 

hand, to determine Pb, Rb/Rh  and therefore L must be given. This method of evaluating 

the system performance is equivalent to the Pb versus Eb1J0 format, for a given Rb/Rh as 

given in (3.2). Another useful format is Pb versus Rb/Rh for a given Eh/J0, which shows 

explicitly the tradeoff between them. It is not difficult to see that these formats present 

the saine  results in different ways. In this Chapter, we focus on the Rb/Rh versus Eh/J0 

format, which is consistent with a cutoff rate analysis given later in the Chapter. 

28 



System assumptions are the same as in Chapters 1 and 2 of [1], with the critical 

exception that there is no optimum diversity. In Section 3.2, we present the basic formulas 

for performance evaluation. The results for uncoded systems (but with diversity) can be 

found in [1]. A theoretical analysis of a coded system using the cutoff rate argument is 

given. The purpose of this Chapter is to show quantitatively the improvement that can be 

gained using Error Correction coding, (as opposed to diversity). 

We consider two types of worst case (WC) intelligent but non-repeat-back jam-

ming, namely partial band noise and multitone interference. For partial band noise (PBN) 

jamming, J is restricted to a fraction p (0 < p <1) of the full spread spectrum bandwidth, 

but in this band the power spectral density is increased to Jo I p. Multitone jamming (MT) 

includes band multitone jamming and independent multitone jamming. It has been shown 

that worst case multitone jamming tends to have a single jamming tone per jammed band[9], 

using equal power tones. We consider only this type of worst case multitone jamming. In 

this case the jammer has one p-arameter to optimize, namely the ratio of signal power .of 

one hop to the power of the jamming tone, denoted as a. 

3.2 An Analysis of Coded Systems Based on the Cutoff 
Rate 

It is useful to see how, in general, EC coding can improve performance over the 

uncoded case (but with diversity). This analysis is based on the cutoff rate of a channel. 

The use of the cutoff rate has been proposed and well argued in [10,11]. In this case, the 

cutoff rate Ro is given by [12], 

R0  = log2  M — log2 [1 (M —1)D L ], 	 (3.3) 
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(3.4) 

(3.5) 

(3.6) 

(3.7) 

where D is given in (3.4) through (3.7) as follows. 

4e-1  
Eh/JO  

A  ;PA 
e À7E 1  

1—A 2  
1  

Eh/J0 
1 
2 

Eh/Jo 
1 	r cewe(M-2)1 1—°('  

Eh/J0 L 1—aw. 

PBN 	 > Q. 

PBN 	 < 3. 
' MT, E =1, -;), > 2; 

MT, K=1  ELL < 2 

MT, K > 2, 7h-,)  > aoM; 

MT, K > 2, t- < a0M, 

with A equal to 

1 Eh 
À 	 1 + 3 -j7)  

Note that D should be raised to the power L to get DL . 13 is given in Table 2.1 of [1]. The 

worst case a, a,„, is then 	 • 

{ 
	Eh/JO  a0M ; ao  

aw. = Eh/J0  M  Eh! JO  < aoM • 

with ao given in Table 2.1 of [1]. The worst case p, denoted as pwc , is given by 

-471-° 
 Eh/JO 3; 

Awe =  1 	Ehl < 3. 

If a code is so powerful (we call it a very powerful code) that the cutoff rate is achieved, we 

have 

= Ro. 	 (3.8) 

Using (3.1), (3.3) and (3.8), we have 

Rb 	1 = flog2  M - log2 [1 + 	- 1)DL ]1. 
RhL  

(3.9) 
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Now we show that Rb/Rh in (3.9) as a function of L is maximized when L = 1. This is 

a sensible result, since it means that if a very powerful EC code is used, no diversity is 

necessary to add more redundancy. 

Thus, when a very powerful code is used, the maximum throughput R b /Rh that 

can be achieved is in effect the cutoff rate of the M-ary channel without using diversity 

given by 
Rb 
—

Rh 

= log2  — log2 [1 + (M — 1)D]. 	 . (3.10) 

Note that for the case L = 1, Rb/Rh = R' always. Thus we can plot Rb/Rh vs.  Eh/JO  

without concern that Rb/Rh will exceed its upper limit R'. Using (3.10), the throughput 

performance of a coded system is plotted in Figs. 3.1 and 3.2 respectively for WC PBN 

jamming and WC MT jamming. Comparing these Figures with the results for an uncoded 

system, (but with diversity)[1], we make the following conclusions: 

1. As was observed for uncoded systems, for all  Eh/JO,  PBN is the worst case jamming 

for K = 1 (binary) and MT is the worst for E > 2 (nonbinary). Results similar to 

these were observed for systems with fixed data rates[1]. 

2. As reported in Section, 3.2 of [1], under worst case jamming (PBN for E = 1 and 

• MT for K > 2), the optimum E is an increasing function of Eh/J0 and E = 1 is 

never optimum. It is interesting to note that the regions of Eh/J0 for the optimum 

K are basically the same as those given for the uncoded systems. The regions are 

4.8 dB < Eh/JO  < 8.4 dB, when  K = 2 is optimum, 8.4 dB < Eh/J0 < 13.1 dB, 

when K = 3 is optimum, 13.1 dB < Eh/Jo < 18.0 dB, when K = 4 is optimum, and 

Eh/JO  > 18.0 dB, when K = 5 is optimum. The optimum K increases as Eh/J0 

increases. This result differs from that for systems with a fixed data rate, for which 

an increase in K above 2 always gives a poorer performance under MT jamming. 

These results indicate that we can determine (or estimate) the best K for a particular 

Eh/Jo. Note that K.= 1 never gives the best  Rb/Rh. 
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Figure 3.1: Maximum throughput performance of a coded system using a very powerful 
code with MFSK for K = 1 to 5 (M = 2K), and fixed hop rates under WC PBN jamming. 
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Figure 3.2:" Maximum throughput performance of a coded system using a very powerful 
code with MFSK for K = 1 to 5 (M = 2K ), and fixed hop rates under WC MT jamming. 
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3. EC coding can provide a few dB gain in Rb/Rh over systems using only diversity. This 

is shown in Fig. 3.3. These curves represent the difference between the results for 

the coded system shown in Fig. 3.1 and 3.2 and the results for the un.coded system 

shown in Fig. 3.7 of [1]. Note that this coding gain decreases to zero as Eh/Jo 

increases. This seems to suggest that for "large" Eh/J0, the uncoded system using 

simple diversity can perform nearly as well as the coded system. It is seen from Fig. 

3.3, however, that for Eh/J0 up to 30 dB, the coding gain is still significant, I.e., 

greater than 2 dB. 
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Figure 3.3: Throughput performance gain over an uncoded system (but with diversity) of a 
coded system using a very powerful code with MFSK for K = 1 to 5 (M = 2K), and fixed 
hop rates under WC jamming. 

35 



Chapter 4 

Probability Distribution of DPSK 

in Tone Interference and 

Applications to SFH/DPSK 

4.1 Introduction 

In previous work, the performance of fast frequency hopped (FFH) systems has 

been considered (see, e.g., Chapter 2 of [12] and [13,9,14] and their references). In an 

FFH system, the information bit rate Rb is relatively low so that an M-ary symbol can 

be transmitted over one or more hops. If Rb is very high relative to the hop rate Rh, 

FFH is impossible. For example, it may be required to transmit 1.5Mbit/s information at 

Rh --= 20khOpi S. In this case, slow frequency hopping (SFH) must be used. 

In slow frequen.cy hopping there are several transmitted symbols during one hop. 

This chapter is concerned with SFH/DPSK where the transmitted symbols are modulated 

in the form of differential PSK. Differential PSK is used because the hop period in SFH 

is usually not long enough to allow the receiver to recover the carrier phase, and to'main-

tain the phase coherence between different hops at the transmitter. Thus genuine coherent 

detection is usually impossible. However, since there are many symbols transmitted over 

one hop, differential coherent detection is possible. Because differential coherent detection 
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outperforms noncoherent detection such as that used in FFH/MFSK, it is a logical choice 

for an SFII system. 

In this Chapter, both binary and nonbinary (4-ary, 8-ary, etc.) DPSK, i.e., general 

M-ary DPSK, are considered. Anticipated interference may be both Gaussian noise and 

tone jamming. Unlike FFH/MFSK, little has been published on SFH/DPSK in the liter-

ature. There are many basic questions yet to be answered. In this paper we focus on the 

effects of jamming and hence coded systems are not considered. The intent is to study the 

effects of jamming against SFH/DPSK, specifically to provide some tools for the analysis 

of such a system. 

At the receiving end of an uncoded SFH/DPSK system, the differential phase 

between two consecutive received symbols is detected, and this is used to decide which 

information symbol was transmitted. Houston[15] and Simon[16] (which is also a part of 

Chapter 4 in [12]) have analysed the performance of SFH/DPSK under multiple continu-

ous tone jamming for a specific set of signal phases and equally spaced decision regions. 

Recently, Gong analysed the performance of a specific binary SFH/DPSK scheme in both 

ton e and noise interference[17]. 

If the jamming tone over a jammed hop is continuous, i.e., the amplitude and 

initial phase are constant over a particular hop, then - the received symbols over that hop 

are subject to an interference which is highly correlated from symbol to symbol. Recently, 

Winters has suggested that in correlated noise, the performance of DPSK depends on the 

set of signal phases and decision regions[18]. In order to minimize the demodulator output 

symbol error rate, we must consider the dependence of the performance of SFH/DPSK, 

under highly correlated tone jamming, on the signal phases and decision regions. 

While the probability distribution of a received differential phase in Gaussian noise 

lias  been widely studied and well documented[19,20], no general results have been published 

on the probability distribution of DPSK in tone interference. Therefore we will derive in 
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the next section the general probability distribution of a received DPSK signal interfered 

by continuous tone jamming. By "continuous tone jamming" we mean that a jamming tone 

interferes with two consecutively transmitted DPSK symbols (with the same amplitude, fre-

quency and initial phase). When DPSK symbols are jammed by a single tone, the jamming 

tone is assumed to have the same frequency as the DPSK carrier frequency. In Section 4.3, 

we apply the results obtained in Section 4.2 to the evaluation of SFH/DPSK systems. 

4.2 Probability Distributions of the Received DPSK Signal 

under Tone Jamming 

In complex form, the transmitted DPSK signal in the i-th signalling interval is 

• represented by 

s( i) 	Eei (2 6-14 -1) ), 

where el)  is the total accumulated phase in the (i- 1)-th signalling interval and 20 is  thé 

differential phase transmitted in the i-th signalling interval with 0 < 0 < 7r. The jamming 

tone is represented by 

J = 

where 0 1,1  is a random phase uniformly distributed in an interval of length 27r. Let denote 

the ratio of ihe amplitude of the jamming tone to that of the signal tone, 

The received signals, (on which a decision on the transmitted differential phase in the i-

th signalling interval is to be based), are represented by Y( i-1 ) and Y(i)• The received 

differential phase is then 

= arg(Y (0 Y(i-1)* ), 
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and 

We define 

and 

Y(i)  = Eei(2914-1))  

= 

R2 -=  

where the phase angle function arg has a main value in the range (-7r, r1 and the asterisk 

denotes complex conjugation. 

Simon [16] derived the probability of — 20 within equally spaced decision regions 

for a specific set of 0. The final results are very complicated. This seems to suggest that 

for any 0, the derivation of the probability of 111 or IF — 20, (or equivalently the probability 

distribution), over any region would be prohibitively complex. However, we have found 

that unlike or 1r — 20, r — 0 has some symmetry that can be utilized to simplify the 

derivation significantly, as is shown below. 

Under continuous tone jamming, we have 

y(i-1 ) = Eei41;- 1)  + _re3 9 1 , 

To analyse the bit error rate (BER) performance under strong tone jamming and negligibly 

low system thermal noise, only the probability distribution of r is required. Otherwise we 

must consider the joint probability distribution of r, R1  and R2 as will be seen later. To 

clarify the derivation procedure, we first derive the probability distributions of r, R 1  and 

R2, separately, and then consider the joint one. 

39 



1 
1 

1 
1 
1 

1 
1 
1 

1 • 

1 
1 

1 

4.2.1 Probability Distribution of the Differential Phase under Contin-
uous Tone Jamming 

We first consider the probability distribution of r, and those of Zi and — 29. For 

F,  we have 

F  = arg[Y(i)(Y(i-1 ))*e-iej 
ej(2e-Feg -1) ) 	pejoi,)( e -ieg -1)  = arg[( 	 ee_iy,)e_jo] 

argRei" pei(og- ' ) +29-o,) pei(e,-4-4) ) p2)e-ie] 

= arg[ei e  +132 6-0  -1- .0(e.i(8-1) +0-01J) e-i(01)+0-8f1))] 
= arg[ei° P 2 e-j8  4- 20 cos 0j] 

where 

9j =9 j  — e, -1)  —  o.  

Since 0 1,7- can be assuined to be uniformly distributed over (e1)  + 0 — 7r, 4-1" )  +  9  +7r], 

Oj is uniformly distributed over (-7r, r]. Suppose > 0 and denote 

cos 9(1 + ,32) 	sin 0(1  _ /32)  
2f3 	 2/3 

and 

V = + cos 0j. 

Then we have 

F  = arg(V). 

It is clear that Bj does not change the value of the imaginary part of V. Consequently, 

/m(V) is equal to /m(U). Let 

= arg(U). 

Obviously if 0 = 0, F is always equal to 0 and the probability density function 

(PDF) of r is 

prey) = ber), 
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where 8(x) is the Dirac delta function. 

If j3  = 1, U = cos 0 and V = cos 0 -1- cos 0.1. Consider cos -I- cos 0j > 0, i.e., 

cos Oj > — cos O.  Then we have 10j1 < arccos(cos(7r — 0)) = 7F -  O.  Thus P equals 0 with 

 probability 1 — 0/7r and 7r with probability 0/7r. For 0 < 0 < 7r, 

0 	0 
Pr(7) = (1)6(7) +8(7 — 7r). 

Now we assume 0 0 0 and 3 o 1, i.e.,  sin()  0. Suppose p < 1 (i.e., /m(V) > 0). 

Then 0 < 	Ir and 

Probt—r  < r 	= o. 

Now we calculate 

Pr(7) = Prob{0 < r < -y}, 

where 0 < -y < Ir . As shown in Fig. 4.1, the intermediate variable d is defined as 

d = 1U1(sin(14, 1) cot 1-y1 — cos 4, ). 	 (4.2) 

Noting that 1 cos 0.71 < 1, we have a symmetric region of 0j centered at 0 in which 0 < r  < 7.  

Specifically, for —1 < d <1, the corresponding 0j is in [—Or, Or], where 

Or(7)= arccos(d), I dl  < 1. 

For d < —1, the corresponding ej can be anywhere in (-7r, 7r]. For d > 1, there is  no  such 

0,1 that may result in 0 < r < -y. Then we have 

{ 
1, 	d < —1; 

Pr(-y)= 	1--9;r-r , —1 < d < 1; 	 (4.3) 
0, 	d> 1. 

The cumulative distribution function (CDF) of 1.‘ is then 

0,  
Pr(7) = 	Pr(7), 0  <'y  < 7r; 

1, 	7 > 7r. 
(4.4) 
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Figure 4.1: Illustration of the relation between the intermediate variable d and U and 
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+ cot 	< 7<  arcco t( lui 	+ cot 141. 1); 

Note that, from (4.2), for -y > 0, we have 

d 
cot -y — 	+ cot I n1.1, 

PI sin 

and 
a d 
-07); = HUI 	csc2  -y: 

Then the PDF of I' is 

lUisin(M)csc2  •-y  arccot( 77 	+ cot  II) <'7 < arccot( ii1ii  -I- cot PI. I); 
Pr(7) 	 ' 	I sin M 

0, 	 elsewhere. 

(4.5) 

Suppose p > 1 (i.e., /m(V) < 0). Then —Tr < < 0 and 

Prob{0 <  F  < r} = O. 

By symmetry, and noting the term 14n 1 in (4.2), we have 

Prob{-7 <  r  < 0 }  = 

where 0 < -y < r, (note Fig. 4.1). Then the CDF of r is 

{ 

o,  
Pr(y) = 1 — Pr(-7), —r < y < 0; 	 (4.7) . 

1,  

(4.6) 

and the PDF of r for 0  <0 <  7r is 

lUlsin(1(1)l)csc2  -,7 	 i 	—1  
= 	71-11_d2 	, 	arcco .4 p i  sin priq pr(y) { 

0, 	 elsewhere. 

(4.8) 

43 



Note that using the absolute value of 7 in (4.2) is only for conciseness in (4.8), where we 

actually have 

d = 1U1(sin(1.1, 1)cot(-7) — cos eb). 

Using the CDFs or PDFs given above, we can calculate the arbitrary probability 

Prr(71,72) = Probtyi  < F  5_ 721, 

where -y i  < -y2  and both are main valued bounds, (both are in the main value interval of 

arg). To use Prr to calculate the probability distribution of or — 20, all we need do 

is shift the specified region and convert it into one or two pairs of main-valued bounds for 

use in Prr . For example, for main-valued bounds b 1  and b2 , we want to calculate 

= Prob{bi  < — 20 < b2} 
= Prob{bi - 0 < — 0 < b2  + 0} 	 (4.9) 
= Prob{bi  +  0  < r < b, + 0}. 

By adding multiples of 27r to b1  + 0 and b2  -I- 0, respectively, we can obtain a pair of bounds 

bmi  and bm2  ( corresponding to b 1  + 0 and b2  + 0, respectively) such that both bm i  and 

bm2  are in (-7r, r]. If bmi  < bm2 , they are main-valued bounds and 

= Prr(bmi, bm2). 

If bmi  > bm2, 

= Prr(bmi, 7r) Prr( 	bm2). 

In terms of PDFs, we can obtain the PDFs of and —20 by periodically extending 

and then shifting by ±0. The periodic extension of pr(-y), (with period 2r), is. 

• 4.co 
= E Pr("7 — 12r). 

1,00 

pw(0) = f  iir(//) - 0 ), —7r < 	< 7r; 
0, 	elsewhere, 	• 

• • 
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en the Plii)E1  of 	is Then the PbF of is 

(4.10) 



and the PDF of — 20 is 

{ Pr/-20(02) . 
13r(&2  + 0), - 7r < 02 < r; 

 0, 	elsewhere. 

For later use in deriving the joint probability distribution, we define 

H(0j) = { 
1 if r < -y; 
0, other—wise. 

For 0 = 0, 
1, lf 7 > (); Hr(0J) = 	13, otherwise. 

For /3 = 1 and 0 <  0  < 7r, 

{ 

 
Hr(0J) = 	11(+1U), if 0 < -y < 7r; 

0, 	otherwise. 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Here  11 (x) is the rectangular function which is equal to 1 if jx1 < 1 and 0 otherwise. In the 

above equation, it is implied that arg(X) = 0 if IXI = O. In this case we have 

0Hr 	{b ( y), 	if 10j1 < 7r — 0;  
(4.15) 

8 (-y — 7r), otherwise. 

For p 	1 and 0 <  0  < 7r, from (4.3) through (4.8), it is clear that for Idl < 1, (or 

< < 72  ‘Vhere 	= arccot( 	1 ,1) , + cot I !el), 	= arccot( luilm  + cot I 49 l) for <1, 

and 71 = — arccot( 	 + cot 1.t)I), 72  = arccot( 	slin 	COt I I) for > 1), we have 

1-1e, 	< 1;  
Hro,)= 	 (4.16) 

11), 
 if/3 >1. 
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Here II- (x) is a function which is equal to 1 if ixi > 1 and 0 otherwise. Then we have 

OHr 	 00r 
—

Dry 
= (8(x + Or) + .5(s -  

where 
co)  = { 1, 	if < 1;  

-1, if p > 1. 

We can also write the inverse function of Or 

arccot(  cose,lui sinm  + cot e) I ), 	if  /9  < 1;  
Or-i (0) = 

ar CCOt 
cos  û1  

( IU I sin14.1 	C(3t 	if /3 > 1. 

(4.17) 

(4.18) 

4.2.2 Probability Distribution of the Amplitude under Continuous Tone 
Jamming 

In this section we consider the probability distribution of R1  and R2, in particular 

as a function of 0.1. They will be used in deriving the joint probability distribution. 

Note that R1  and R2 are nonnegative. For R1  we have 

= iy(i-i)e -i(04-0(7 -1) )12 

= 1E(&°-.4) 	13e3eJ)e-3(0+0-1) )1 2  

= IE(e -j e  + pei(e.i-e-1)--c))12 	 (4.19) 
= I E(e-ie 'Wei )1 2  
= 	[(cos 0 + i3 cos 0j) 2  (- sin 0 -1- 13 sin i9j) 2] 
= E2 [1 -1-' /3 2  + 2,e cow) + 04]. 

If ri 	(1 -1- 0)E, Prob{R i 	9. 1 } , = 1. If 7.1  < 11 -  PIE ,  Prob{lii  < 7'1} = 0. If 11 - PIE < 

<  ï  + PIE, then we have 

Prob{lii < ri} = Prob{cos(0 + 0) < cos 0 

R? 
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fl  

PRI(ri) 	7r  ari  

{ _1 89  R,  «._ 

o, 

11- plE <  r < (1+ f3)E; 
(4.21) 

elsewhere. 

II(
0j — 	— 0)—  /27r

), —71- < 0j < 7r; 
7r — R, 

(4.23) H (0 j) = 
= —00 

where 
2 	2  1 

0R1 	KI-1  arccos 	— 1 — p )-20 ]. E2 

This implies a symmetrical region of 0j centered at 7r —  G  with a width of 7r — 0 Ri  on either 

side in which R1 < 7-1. Thus the CDF of R1 is 

{1, 

PRi (ri) = 	1 — 
0,  

7-1  > (1+ )6)E; 

-- PIE < 	< 11+ P1E; 
_< 11 — p1E. 

(4.20) 

The PDF of R1 is 

Similar to Hr(0J), we define 

{ 1, if Ri  < ri; H R, (0 j) = 
0, otherwise. 

(4.22) 

For 11 — plE < < (1 + ME and —71-  < 0j < 7r, we have 

and 

ar1 — 
) 

—7r < 0j  < 7r. 
(4.24) 
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We can also write the inverse function of ORi , 

Op1 (Or1 ) = E.V1 + 02 + 2/3 cos(0„ ). (4.25) 

Similarly, for R2 we have 

ly(i) e-j(0-4 -1) )12 

I E( ei(eg- ')  +20) + pejej ) e -j(8+4-1) )12 

= IE(ej°  Pei(0j—e-1)-64 ))1 2  
= 1E(eic  PeieJ)12  
= E2 [(cos0 p cos 0,1) 2  + (sin 0 + p sin 0j) 2] 
= E2 [1 + 02 + 2/3 cos(0 - 

As well, if r2 ?_ (1 + P)E, Prob{R2  < r2} = 1. If r2  < 11 - 01E, Prob{R 2  < r2 }  

I - PIE < r2 <  l  -I- 	then we have 

Prob{R2< r2} = Prob{cos(0j  - O)  < cos OR2 }, 

where 
2 

OR, = arccos R 	1 /3 2) 1 ]  
E2  

(4.26) 

=-- O. If 

This implies a symmetrical region of 0j centered at B -I- 7r with a width of r - OR, on either 

side in which R2 < r2. It can be seen that the CDF and PDF of R2 are the same as those 

of R1. That is, the CDF of R2 iS 

PR2 (r2)= PR1 (r2). 

The PDF of R2 iS 

PR2(r2)= PR1 (r2). 

As was done above, we define 

{ 1, if R2 < r2 ; 
IIR2( °J) = 	0, otherwise. 

(4.27) 

(4.28) 

(4.29) 
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Pr,Ri  ,R2 (7, 	7'2) = 	 27r 
err Hr(0J)HR1 (04BR 2 (0,)de, 

(4.33) 

For 11 - filE < r2 < (1 + P)E and 	< 0.1 < 7r, we have a slightly difierent result from 

+co 	oj  _ ( R. + 0)- /27r 
HR2 (0J) = E ll( 	r - OR2 
	 ), 	< ej  < 

 1=-00 
(4.30) 

and 

ar2  = 

aeR, 

87,2 ), r < Oj < r. 

We can also write the inverse function of 0R2 , 

Op-'(O„) = E.\/1 -I- 02 + 2/3 cos(Or2 ). 

(4.31) 

(4.32) 

4.2.3 The Joint Distribution and the Expectation 

Using Hr, HRi  and HR, defined previously, we have the joint CDF of r, Ri and 

112,  

The joint PDF, pr,Ri ,R2 (7,r1, r2), has a somewhat unconventional form. Considering 

Pr ,R2(7 ri,r2)d-ydridr2 = Probt7 <1' < 7 + d7,ri <  R  < ri+dri,r2 <  112 

we can see that Pr ,Ri,R2(7 ,ri,r2) is nonzero only over a line (or several lines) in the three 

dimensional space which consists of values of -y, r 1  and r2. In fact, it can be shown that 

over these lines, the PDF assumes infinite values. 

For the analysis of the BER performance, all we need know is the expectation of 
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G(r, R1, R2) where  G is  assumed to be an arbitrary continuous function. This will be shown 

later. When 0 < 0 < 7r and fi 0 1, the expectation is given by 

G = f f ff.' G(7, ri, r2)Pr,R1  ,R2 (7,r1, r2)d-ydricir2 

f f i (11-1.:(3PEE  dr1dr2 1:7712  G 	r2) 83,9,y1Drar' Re2  d'y  

r aHr (OA 	(i i f ) 811R2 (9')  d0j — 	f 1 (141(3)E  dr dr2 P2  (17G (Y) 7'1, 7'2) il7r 	a-y 	ari 	ar2 2ir 	11—PIE 	1 _ 

f 
fi -13E 	 de XE  dridr2 fir 	

(0,) aHR,,(04  
j ari 	8r2 

f;i2 d-yG( -nri,r2)(6(0.1 + Or) + 8(0./.  — Or))(*)c(P) 

1 f r(1-1-0)E d  d, fir  egRi (13j) 811R2  (9J)  dO x — 	27r 	 rl 7 2 	ari 	.97.2 	j 

dorG(0, (Or), ri, r2)(8 (0,i + 00+ 8 ( 0,1 — 00)1  

= *.r  f f1 (1 -1- 1 0  
'el jE\ E  drldr 2 *I% 	allZ2( e4 G(er—i (1 0./1), r1, r2)d0j2  

= 	fl(11+11): dr2 f 7r,d0j d0R1 x 

G(0r-i(ieJi),ORi-i(OR1), 27, )(8(ardej(0,1-8)) 	ORi ) 	8(arg( ei(0, 1-0)) —  OR,))  

=  j fi(11+PEE  dr2  frir  dOJG(Or-1 (1 0J1),ORTi (1arg(ei (OJ +°) )1), re 

= 	f G(01A-, (10j1), 0/r i (1 arg(ei0J -H9 ))1), OR2-1( I arg(ei(8J-e))1))d0j. 

From (4.18), (4.25) and (4.32) we can slightly simplify (4.34) to 

(4.34) 

ir -a = - 	G(0
r 
 -1(0j), OR-1(0 j + 0), OR -1(0 j — 0))d0j. 

2w J 2 

1 See Appendix A. 
2 See Appendix A. 
3 See Appendix A. 

(4.35) 
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If 0 = 0, it is clear that r is independent of R1  and R2. Thus 

Pr ,Ri,R2(7 r1, r2) 	6(7)PR1,R2(n., 7'2)5 

where pR1 ,R2 (ri, r2) is the joint PDF of R1 and R2. Note that the joint CDF of R1 and R2 

is given by 
f H R,(0j)H R 2 (19 j)(10 

PRI,R2(ri, r 2) = 	  27r 

Then following a procedure similar to that of deriving (4.35), we have 

G  = —11.  G(0, OR-1(0j), O
R2

-1 (60j))c/Oj. 
27r  (4.36) 

When 0 = 0, = 0 and lUi = 142-73 2  , and lim„.0 cot x - 1/ sin x = 0, (for 0 o 1), so (4.18) 

gives 

Or-1 (0.7 ) 	0. 	 (4.37) 

When 0 .1, (4.37) is also valid except for ay = (2k + 1)7r, where k is an integer. Since_ G is 

a continuous function, (4.35) also applies when 0 = O. From the point of view of numerical 

computation, (4.36) provides a good approximation when 0 ,c-4 O. 

For = 1 and 0 < 0 < 7r using (4.15), we similarly have 

G 	-k. .107 r  dry fir, G(-y, 0 Rri (0 j + 0), 0 R;-.1. (0 j — 	,y(e  d0J 

= 	f _V_ 0)  d0 JG(0 , 0 Ri-1(0 j 0), 0 R .1.1. (0 j — 0)) 

d0 jG(7r , 0 	(0 j + 0), 0 	(0 j — 0)) 

f, 7_ 0  d0 jG(7r, 0 	(0 j + 0), 0 R;-1(0 j — 

= -2-;-,[1177,°_ 0)  dO jG'(0 , 0 	(0 j + 0), 0 R7 1(0 — 0)) 

f__°  0  d0 jG (7r , 0 	(0 J — 7r + 0), OR1.1 (0.1 — 7r — 0))]. 

( 4. 38) 
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Now we examine the relation between (4.35) and (4.38). When p = 1, u = cos 0 

and =O or r. If cos 0 > 0, =O and from (4.18), 

cos 0 	
cot14.1 — (

cos 
 0-Y  -I- 	

1 	 1  
1)  	

sin II  IUI sinII 	 cos 0 	sini151 

Then except for the single point 0.-y  = 7r — 0, we have when /3 	1 

0, if 10.7 1 < 7r 	0; lim  Or-'(0 )  = 	7r, if ir > 10.7 1 > 7r —  O.  (4.39) 

If cos°  <O, = ir and from (4.18), 

cos 0.), 
	 + cot 1 .1) 1 = ( 

COS 0
1 	1) 	

1 	 1  
COt I I + 

IUIsinII 	 cos 0 	sin le,' 	 sinII  

Note limx„ cot x +-1/ sin x = O. Then we can get (4.39) again. In conclusion, (4.38) is 

the limit form of (4.35) when p 1 and p = 1 is a continuous point. For numerical 

computation, (4.38) may be used to provide a good approximation for p 1. 

4.3 Performance of SFH/MDPSK under Multitone Jam-
ming 

In this section we consider the performance of uncoded SFH/MDPSK under mul-

titone jamming. The transmitted M-ary DPSK signal has M possible differential phases 

20i for i = 1, • • • ,  M,  wi .th  equal probability of transmission.- The signal is hopped over 

N frequencies and is jammed with probability p. When the signal is jammed, it has the 

probability  distribution, calculated in Section 4.2. We assume that there are enough symbols 

per hop so that the energy loss due to the first dummy symbol of each hop is negligible. 

We assume that all jamming tones have equal power 12 /2. With a total jamming power J 

available, the number of jammed frequency slots is 

J 	J  
Q 	= /2 /2 	3/32  
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E b is the signal energy per bit. Therefore p is defined as 

1 
= 

-Vlog2MpEb/Jo 
(4.41) 

where S 	E2 12 is the signal power. Suppose the hop frequency spacing is 1/T„ where 

T3  is the M-ary symbol period. Then the total number of hop frequency slots with total 

spread spectrum bandwidth W„ is 

Was  N = 11T
3 
 = W33TblOg2 M, 

where Tb is the bit period. Then 

J/(S0) 	 1  
p = — = 

N W3 3  Tb log2  M log2  Mf3 2 Eb/J0 

where Jo is the equivalent broadband jamming power spectral density given by 

Jo = J/W„ . 

(4.40) 

Note that p < 1 is a constraint, which implies p 	1 > 	. The above result is 
/10g2mEb/Jo 

available in [12]. As well, since Q and N are integers, p is not continuous as it appears to 

be. Nevertheless, when N is large we may assume that p is continuous for computational 

simplicity. 

A decision region is specified for each of the M phases representing the M-ary 

signal. The probability that the received phase falls outside the decision region is the 

symbol error probability conditioned on the transmission of that signal.. The sum of all M 

such conditional probabilities divided by M and averaged over the jamming state (whether 

a hop is jammed or not) is the average symbol error probability P3 . Specifically, when there 

is AWGN with one-side spectral density No, (system thermal noise), which is not negligible, 

= PPsi + (1— p)P3 2 P, 

= P(Ps1 — P32) Ps2  

= 	/141-  log2 b/J0,02  (P31 	P32) Ps2 

0> 	 
V1og2mEbp0' 

(4.42) 
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where Psi.  and  P32 are the symbol error rates (SER) conditional on that hop being jammed 

or not, respectively. P31  is a function of both Eb/J0 and Eb/No, and P3 2 is a function of 

E&/N0 only. Ps 1 can be calculated by considering the signal as first being jammed and then 

further contaminated by the additive noise. Then we can use (4.35) and (4.38) to compute 

P31 Let Gi be the SER conditional on r =  y , R1 = r1  and R2 = r2. Let 14 1  and bi2 , with 

bil  < bi2 , be the bounds determining the decision region for differential phase 20i. bi l  and 

bi2  lie within the particular 27r interval of interest (not necessarily (-7r,7r]). Then if 20i is 

transmitted, we have the conditional SER [19] 

G 	= 	 F(bi2), 	14 1  - Oi <y < bi2  - Oi; 
. (4.43) i(7, 	r2) - Oi > -y or -y > bi 2  - Oi, 

where 

F(b) - 
W sin(-y Oi - b)  72 	e-[u-v sin t— W cos ey+ —b) cos 1 

47r 	_,/2 
dt 

U - V sin t - W cos(y Oi - b) cos t' 	
(4.44) 

 

n. 
= l712 771. ) , v 	iV12 — 711), W = 07172, 

and 

and 

riTblog2 M 	lTb log2  M 
17i = 	 , 712 = 2 N o 	 2N0 

Then we can write 
,2T r2 Tb  b 	2 	). G(7, 7'1, 7'2) = G7(7, 2N0' 2N0 

(4.45) 

For fi 1, from (4.35), we have 

Psi  = P3 1 (13 	= A,12 .71. 	f d65- x 
G7(0r-i 	t-(1 + 02  + cos(0j Of)), kj, (1 + 0 2  + 20 cos(0,1 — OM) 

(4.46) 
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For 0 =  1, from (4.38), we have 

Psi = 1 	-.+1‘1 r  
m2ir 	 dOJC;(0, t) ( 1  + 02 + 20 cos(e + esi )), t(1 + 02 + 2/3 cos(Oj — 

f eioi  dO JG'i' (7r ,(1+  02 — 

Similarly, we have 

213 cos(Oj 0i)), ; 1,2)-(1 + 02 — 20 coso — 
(4.47) 

Eb \ 	1 	 Eb Eb \ 
Ps2 = rs2 	= 	2_, Li 	— )• 	 (4.48) No 	No No 

Note that for a given  Lb/ No, P5 2 is a constant and P51 is the function of p . 

To determine the worst case p, pwc , which maximizes Pa  for a given Eb/Jo and 

Lb/No, we rewrite (4.42) as 

Eb Eb 	1 	 El, 	Lb 	Lb 

No — (Ps — ps2( --- )) = log2 
Mi32 (Psi(P, ---) — P52( --- )) = (0 N , —). 	(4.49) 

Jo 	 No 	No 	o 

Suppose that, with the constraint 13 > 1/N/log2  mEblJo, 0 = 0 gives the maximum 

( (/3 , it) = (max . Then 
1 

Pwc  — log 2  M Ebl Jo Plc' 	
(4.50) 

and the worst case SER is 
(*max Eb 

P3,cc  = 
Lb/JO 

 + a2V 	 (4.51) 
NO 

Note that, in general, Pipc  and (max  are functions of both  Lb/NO  and  Lb/JO. In 

two special case which are commonly encountered, Ow, and (max  are functions of  Lb/NO 

only. 

If f3„,c  = 1/ \/log2  MEb/J0 for a range of Eb/Jo (which may bccur for small Eb/Jo 

when, e.g., is a function of )3 with a single maximum), then p„, = 1 which corresponds 

to full band multitone jamming and 

1 	Lb 

P3 WC PS1  ( N/1og2  MEb/Jo NO ). 
(4.52) 
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If f3 „,c = Pwc(Ebl No) for a range of Eb/J0 (which may occur for large Eb/Jo when, 

e.g., is a function of [3 with a single maximum), then 

1 	1 
Pwc = log2  m0,Eb/J0' 

which corresponds to an inverse linear function of Eb/Jo with a slope (or thé vertical shift 

in the logarithmic scale) dependent on Eb/No, and 

(4.53) 

(max 	Eb 
Pstuc  = Ps2( --- ) 

Eb1.10 	No 
(4.54) 

which corresponds to a similar inverse linear function plus a floor SER due to the AWGN. 

If the the system thermal noise can be neglected, then Ps2 = 0 and 

bi2 	 • 

34-  . 
P,91 = 1- 	E j Prey) I e=ei  d'7. 	 (4.55) 

t.1 

The function Pswc  may be optimized with  respect  to the signal phases and decision 

regions.  For èxatnple, for binary DPSK (M=2), we can havé; (1) phase 201 = 7r/2 corre-

sponding to 0 and phase 202  = 37r/2 corresponding to 1; reasonable decision regions in titis 

case are [0,71 for 0 and (-7r, 0) for 1; or (2) phase 20 1  = 0 corresponding to 0 and phase 

202  = Ir corresponding to 1; reasonable decision regions are ei] for 0 and the rest of 

the phasor plane for 1. In scheme (2), without thermal noise, el  0 would make P, = 0 

because when 0 is transmitted, the continuous jamming tone could never alter the trans-

mitted differential phase. Thus in this case inclusion of the thermal noise in the analysis 

is indispensable and the desirable el  is greater than O. The peculiarity in scheme (2) does 

not exist for similar signal phase schemes with  M>  2. 

To compare system performances for different M i,ve must convert P, into an equiv-

alent bit error rate (BER), Pb. For a small signal to noise ratio, we can use an orthogonal 

model which results in 

Pb 2(M —  
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If a Gray code is used, so that the Hamming distance of the binary representation of adjacent 

differential signal phases is 1, we may have, for a large signal to noise ratio[22], 

1  
Pb 	 313  . 

log2  /V/ 

4.3.1 Performance Results 

We now present some numerical results based on the analysis in the preceding Sec-

tions. Performance is measured by the worst c,ase BER for the DPSK signalling scheme, 

and the specific Eb/Jo and  E6/NO. Two  configurations  were given in the preceding section 

for binary DPSK. The first of these had 201  = 0 and 202  = 7r. Fig. 4.2 shows the worst 

case BER performance of this scheme for Eb/Jo(dB) from 2 to 28, and Eb/No(dB) = 4, 

5, 6, 8, 10 and 28. This Figure is the same as Fig. 3 in [17]. Note the error floor due to 

the noise level. The corresponding plot of Eb/No(dB) vs BER for Eb/Jo(dB) = 0, 2, 4, 6, 

10, 15 and 20 is given in Fig. 4.3. This plot also shows the error floor, this time due to the 

fixed Eb/Jo. This figure differs from Fig. 2 in [17] because it uses SIJ instead of Eb/Jo, 

which is used in the Figures in this report. The meaning of S/J is unclear to the authors. 

The worst case jamming parameter vs Eb/Jo is given in Fig. 4.4. This is the same as Fig. 

4 in [17]. The second signalling scheme for binary DPSK is 201  = 7r/2 and 202  = 37r/2. The 

BER performance of this scheme, vs Eb1J0 is given in Fig. 4.5. Comparison with the first 

scheme shows that 201  .= 0 is superior, as indicated in the previous section. AsymptoticallY, 

they are identical in performance, but for large Eb/J0, the first scheme is better, i.e., when 

E&/JO >> Eb/No. The two previous schemes were evaluated with symmetric decision re-

gions. If we now take the first scheme and modify the decision regions so that b 11  = —7r/4 

and b12 = 7r/4, and b21 = 7r/4 and b22 = 

performance of this scheme is worse than those with equal decision regions when Eb /No  

is large, but superior when  Lb/No is small. Thus the choice of the best DPSK signalling 

scheme, and decision regions, is dependent upon the relative strength of the noise and tone 

77r/4, we get the result shown in Fig. 4.6. The 
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Figure 4.2:, Worst Case BER vs Eb/J0(dB) for  E6/No(dB) = 4, 5, 6, 8, 10 and 28, for 
binary DPSK with 201 = 0 and 202 =7r. DecisiOn regions are equal and symmetric. 
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Figure 4.3: Worst Case BER vs Eb/No(dB) for Eb/./.0(dB) = 0, 2, 4, 6, 10, 15 and 20, for 
bina.ry DPSK with 201 = 0 and 282 = 7r. Decision regions are equal and symmetric. 
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jamming. 

For M = 4 we look at two symmetric signalling schemes with equal decision regions. 

The first has 201 = 0, and the second has 201 = r/4. Figs. 4.7 and 4.8 give the BER 

performance of these schemes, respectively, for Eb/Jo = 2 to 28, and Eb/No(dB) = 4, 6, 

8, 10, 20 and 28. From these Figures, it is clear that choosing 201  = 0 is best when Eb/Jo 

is large, as was the case for binary DPSK. As expected, the performance of 4-ary DPSK is 

better than binary DPSK. 

4.4 Concluding Remarks 

This chapter has addressed some basic problems associated with SFH/DPSK. Gen-

eral probability distributions are derived for arbitrary DPSK signals. Applying these distri-

butions, we have evaluated the performance of SFH/DPSK under both tone jamming and 

system thermal noise for M = 2 and 4. The performance results indicate that choosing 

201 = 0 is best under tone jamming, and equal and symmetrical decision regions are best 

when noise is predominant, with the choice of 201 arbitrary. 
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Chapter 5 

Suggestions for Future Work 

5.1 Coding for Slow Frequency Hopping Systems 

TO analyse the performance of coded SFH/DPSK, we will first investigate some 

error exponent type of bounds. These bounds will faci litate the performance evaluation of a 

specific coding scheme. They may also provide information on the expected implementation 

complexity to meet certain performance requirements. They can also be used to optimize 

system parameters such as the code rate. 

5.1.1 Reed-Solomon Codes 

Continuing  with  our work on the probability distribution of SFH/DPSK, we will 

study the coded symbol error rate. One coded symbol may consist of several channel 

symbols. Under tone jamming, channel symbol errors occur .in a correlative way which 

complicates the calculation of the coded symbol error rate. The use of codes such as Reed-

Solomon codes may be quite effective in such channels. 

5.1.2 Coding with Deep Interleaving 

Random error correcting codes are usually used to  combat  bursty errors through 

interleaving. Since jammed SFH/DPSK signals can have long error bursts, the interleaving 
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used should have a large depth. Unfortunately, interleaving all coded symbols over one 

hop is costly in terms of complexity, interleaver cost and decoding delay. The benefits 

of this scheme are improved performance and robustness as far as error burst lengths are 

concerned. Thus it may be used as a benchmark to  compare  with in assessing other coded 

systems. 

5.1.3 Long Error Correcting Codes to Correct Both Burst and Random 
Errors 

In this technique, a long codeword is continually transmitted over several hops 

without interleaving. Then the longest error burst is limited to the number of bits per hop, 

and the code should be designed to correct bursts of that length. If the error bursts are 

short and frequent, however, the burst error correcting code performance is degraded. Thus 

the task in this section is to design a combined code that can efficiently correct both burst 

and random errors. This type of coding is also attractive if the jamming signal level is close 

to the level of system thermal noise, which causes random errors. 

5.1.4 Diversity and Coding 

This is described in section 5.4.1. 

5.2 Error Correctin.g Codes for a High Channel Error Rate 

In order to correct errors with an error rate as high as 10 -1 , low rate codes will 

be considered. Low rate codes can provide larger minimum distances (or free distances 

for convolutional codes), which result in increased error correcting Power. To verify the 

correctness of decoded information, which may be control commands, an error detection 

code can be used as an inner code concatenated with an error correction outer code. At the 

receiving end, error correction is performed first, and then the decoded output is tested by 

the error detection circuit. This will generate a highly reliable command whenever errors 
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can be detected. 

An alternative to this method could be to repeat a coded command several times. 

After error correction decoding, the copies of the same command are compared and a 

majority vote taken to decide which is the most likely command transmitted. 

5.3 Implementation of CODECs 

We will concentrate on  the design of Reed-Solomon CODECs and the implementa-

tion of a Galois Field processor. In addition, implementation using Xilinx technology will 

continue. 

5.4 Communications Over An Intentional Interference Chan-
nel 

In this section we propose various approaches to the general problem of communicat-

ing over an intentional interference channel. These will be pursued to provide a framework-

in which the work for particular systems of interest may be evaluated. The approaches 

taken here are quite theoretical and are 'intended to provide insights into certain aspects of 

the general problem, insights that can hopefully be of use to the central consideration of the 

work. Several lines of work have been identified that might be of interest and use and two 

of these are introduced here. Section 5.4.1 considers the problem of diversity versus coding, 

a problem that has been of considerable interest to the literature in this area for some time. 

Numerous papers report results on the problem, although most consider a large number 

of coding and diversity schemes and give probability of error curves and reach  conclusions 

based on these. A more "universal" approach is proposed here. SUbsection 5.4.2 has a 

few comments on the problems of modeling and evaluating the appropriateness of jamming 

models. It is felt that such an area of research might be of use to test the robustness of 

system models shown to perform acceptably well in the more conventional channel models. 
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5.4.1 Diversity versus Coding 

Typically a spread spectrum system will operate in an environment that requires 

the nse of large amounts of redundancy for successful communication. Such redundancy can 

be achieved by coding or diversity (repetition coding) or a combination of the two (concate-

nated coding). Numerous studies have evaluated the performance of a variety of specific 

diversity and coding schemes and some of these are reported in the volumes of Simon et. 

al. [12]. The problem is of such complexity that it is difficult, at best, to gain insight. 

In order to alleviate the problems that some of these studies have, an information-

theoretic approach is sometimes used [23] where the minimum SNR to achieve either capac-

ity or computational cut-off rate in the presence of partial band jamming, say, is computed. 

This approach appears to be very interesting although it is not clear how closely the in-

tuition achieved from such a study matches reality. Some relevant work on this approach 

that is in progress [24] uses the simplified interference channel model of Chase and Ozarow 

[25] in an attempt to gain further insight. This work includes consideration of the coherent 

and noncoherent systems and the effects of both coding and diversity. Although this study 

was not motivated by the present contract, the results should prove interesting to it and 

will hopefully suggest lines of inquiry of more direct interest to this work. 

Another possible approach to the diversity/coding problem is studied in the work 

of Chase [26], which considered code combining for a packet network application. While 

this approach was not felt to be of interest to spread spectrum situations, many of the 

observations mentioned there are most relevant. In particular, he compared the minimum 

distance obtainable from a "pure" code (no diversity) to that obtainable from a repetition 

code (diversity) with a given fixed code of some rate. For convolutional codes he noted that 

the well known rate 1/2, E = 7 convolutional code has a free distance of 10 and achieves 

the upper bound. With diversity 8 a code with rate 1/166 and free distance 80 is obtained 

while the maximum free distance possible is 82. For diversity 64 the code rate is 1/128 and 
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the free distance is 640 as opposed to a maximum possible of 658. Similar observations are 

made for binary block codes. The implications of these observations are that, for such low 

rate codes, there is little to be gained from "pure" coding since the combination of diversity 

and coding will be so much easier to decode and the performance difference negligible. 

This approach can be modified as follows. An asymptotic form of the Varshamov-

Gilbert bound shows that, for large values of block length n, there exists an infinite sequence 

of codes with rate at least R and minimum distance d as long as 

R> 	II(dIn),0 < R <1,0 < dln < 1/2, 	 (5.1) 

where H (s) = — xlog2(s)— (1— s)log 2(1- s),0 < < 1, [21]. For binary convolutional codes 

of rate R and constraint length E we have the Heller upper bound on the free distance, 

min  2h  E  h — 1  
d1  < 	 (5.2) 

h 2h — 1 2R 

Assuming for the moment that codes exist that meet these bounds, these expressions allow 

an accurate determination of the trade-off between the minimum distance of "pure" and 

concatenated codes. It should be possible to take these trade-offs and translate them into 

performance trade-offs in a direct manner. It should be noted that the Varshamov-Gilbert 

lower bound is an existence result only and most well known classes of codes fall well short of 

it. However, it is expected that the performance differences between actual codes with and 

without diversity will closely follow the performance differences of the assumed codes with 

and without diversity. For schemes using diversity, of course, the effect of the combining 

loss will have to be considered. Hopefully this can be done in a reasonable manner to yield 

some useful insights into the problem. This approach should provide, at the least, one more 

tool to consider in the complex a.nalysis of these systems. 

5.4.2 Interference Channel Modeling 

The problem of designing systems to operate in an intentional interference envi-

ronmdnt is complex. The system performance is determined by its performance in the 
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worst-case scenario and thus the systems must be robust, operating in an acceptable man-

ner in all possible environments. The modeling of these environments is thus an important 

aspect of the problem. 

The usual partial band noise model assumes the jammer has available a noise source 

of two-sided power spectral density J0/2. The jammer is able to adjust the noise source to 

achieve a power spectral density of Jo 12p over a fraction p of the band for any p, 0 < p < 1. 

It is sometimes assumed in the simplest form of this conventional jamming model, that 

when the transmission is not jammed, perfect reception is made. This last assumption is 

often modified by including a background or thermal noise component to the total received 

noise and this complicates matters further. 

The model of Chase and Ozarow mentioned in the previous section [25] appears to 

be simpler than the conventional one, yet intuitively useful. It assumes that, when there 

is no jamming, which happens with probability 1 — p, signal plus noise is received where 

the noise has a' power spectral density of J0/2. In the presence of jamming, which happens 

with probability p, the received signal consists of noise only. The assumption is that in the 

presence of jamming the noise completely masks the signal. This model has the advantage 

that only one noise power spectral density is involved and yet accounts for the effects of the 

jamming. As well, this model appears to be simpler than the conventional one, yet it has 

intuitive appeal. It would be of interest to reconsider the performance of systems evaluated 

for the conventional model to determine the performance sensitivity to such model changes. 

The lack of robustness of such systems might have serious implications. As mentioned in 

the previous section, the Chase-Ozarow investigation [25], which considers the problem only 

from an information-theoretic point of view, should prove interesting. 

There  lias  been a considerable amount of recent work on the modeling channels, 

inspired by the interference channel model. This includes channels with block interference 

[27] and game theoretic approaches to jamming situations [28]. More recently there  lias  
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been growing interest in the study of Arbitrarily Varying Channels (AVC's) (e.g. [29],[30]). 

Again, much of the interest of this work has been of an information-theoretic nature, proVing 

coding bounds and error rate exponents etc. It may be however that some of this work will 

have practical implications and it is intended to monitor this area for future consideration. 

5.4.3 Comments 

Section 5.4 of has attempted to outline some apprdaches to the investigation of the 

problem of coding and diversity on intentional interference channels with the view that the 

results obtained will be of use to the systems of interest in.this contract. It is also intended 

that the approaches of subsections 5.4.1 and 5.4.2 be somehow aligned when they have 

progressed far enough so that coding and diversity can be considered for a wider variety of 

channel models than is presently the case. 
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Appendix A 

Notes on the Derivation of (4.34) 

1. Here we use the integral transformation specified by 

Or(7) = arccos(d),-Yi 7 

with d given in (4.2). 

For a <1,c(0) =1, and Or(7i) = 0, Or(72) = 7r. Thus 

d-yG('yri,r2)(6(0J + Or) + (5(0j - Or))*C(P) 

= fôr  derG(er-i 	r2)(6( 0,1 :-E.  Or) + 8( 0J - Or)). 

For ,8>  1,  C(/3)=  1 and Or('y) = r,Or(72) = O. Thus (A.1) is still valid. 

2. For 0 < 10,11 < 7r, it is obvious that 

derc(o, (Or), r1, r2)(8(0,1 + Or) + 8(ej - Or)) 

G(Or-i (gyp, 	r2)) 

because either Gj + Or = 0 or Od. - Or < 0 can be satisfied for some 0 < -y < 7r, but 

not both. For Oj = 0, the right hand side of (A.2) will be 2G(Or-1(I0J1),ri,r2).  Since 

the integration with respect to 0,1 is over a continuous integrand, changing the value 

of the integrand at a single point of 0j, i.e., Oj = 0, will not affect the integration 

result. Thus (A.2) is valid for all 10j1 < 7r. 

(A.1) 

(A.2) (A.2) 
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3. Using exactly the same arguments as in item 2, we have 

for  dOrti  G(Or-1( 10i I), OR-1 (ORI  ), r2)(8(arg(exe,-1-0)) o Ri 	8(arg ( ei(0J+0)) _ eRi  )) 

= G(Or—i(10,11),OR,71(larg(ei( e-rf e))1),r 2 ) 

In this case the arg function is used to ensure that the angles concerned are in the 

range (-7r, r], because On  varies from 0 to r. 
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App endix B 

A Comparison of the Motorola 

DSP56000 and the Texas 

Instruments TMS320C25 Digital 

Signal Processors for 

Implementing the (127,99) BCH 

Code 

This Appendix presents algorithms for efficient microprocessor implementations of 

a decoder. The ability to implement time critical steps in these algorithms is the basis 

for comparing the DSP56000 and TMS320C25. The DSP56000's comparatively general 

purpose architecture and certain unique features provide a higher bit rate decoder than 

can be implemented on the TMS320C25. Assembly language programs were written and 

then tested for performance and timing using IBM PC based simulators of the processors. 

A complete decoder was implemented on the DSP56000, achieving an average bit rate in 

excess of 1 million bits per second. 
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Bd Introduction 

This Appendix investigates and compares the Motorola DSP56000 and the Texas 

Instruments TMS320C25 digital signal processors based on their use in implementing a four 

error correcting (127,99) BCH code decoder. This code was chosen as a good compromise 

between performance and implementation complexity [31]. Previous to the implementa-

tion outlined in this Appendix, two decoders had already been created. The first decoder 

was implemented in software using the C programming language. The second decoder was 

implemented in hardware using the XILINX programmable logic device with peripheral 

memory and logic integrated circuits. 

Section B.2 provides some background on the theory of error control coding and 

digital signal processors. Section B.3 outlines the high level operation of a decoder and 

presents the decoding algorithms chosen and developed for a digital signal processor imple-

mentation. The time critical operations of the decoding algorithms are pinpointed. Section 

B.4 compares the Motorola DSP56000 and Texas Instruments TMS320C25 on the basis of 

how well they can perform the time critical operations of the decoding algorithms. Section 

B.5 presents performance results of the complete decoder which was implemented on the 

Motorola DSP56000. Results presented in Sections B.4 and B.5 are based on code tested 

for both processors with IBM PC based simulators. Section B.6 gives the conclusions of the 

Appendix. 

B.2 Background 

B.2.1 Error Control Coding Theory 

Error control coding is implemented by adding redundant information (parity bits) 

to a message before transmission. This redundant information is used by the receiver to 

detect and/or correct errors in the received message. In this Appendix, the decoder imple-

mentation corrects errors as opposed.to  just detecting errors. The number of errors which 
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can be corrected depends on the error control coding scheme used and is proportional to the 

amount of redundant information added to a message. A (127,99) BCH code will correct 

all one, two, three and four bit errors in a single 127 bit received message (which includes 

the parity bits). A simple block diagram of a digital transmission system incorporating 

a (127,99) BCH error control code is given in Fig. B.1. The error control coding is ac-

complished in the encoder block of the transmitter and the decoder block of the.receiver. 

In a system using (127,99) BCH coding, the encoder receives a message vector m 

containing 99 bits. The encoder uses the message vector to compute 28 parity bits. The 

encoder outputs a code vector c containing 127 = 99 + 28 bits, the parity bits having been 

tagged onto the end of the message vector. Encoded messages are transmitted one vector at 

a time. If no errors occur during transmission, the received vector r output by the receiver 

demodulator is identical to the code vector c. In this case, the decoder simply removes the 

28 parity bits from the received vector and outputs the message vector m. 

If errors occur during transmission, the received vector r is not identical to the 

code . vector c, as some bits are flipped where errors have occurred. As long as the number 

of errors is less than or equal to four, the decoder corrects the flipped bits in the message 

portion of the received vector and outputs the message vector m. , (Errors in the 28 parity 

bits are included in the total number of errors, but are not corrected since the parity bits 

are not output from the decoder.) If the number of errors is greater than four, the decoder 

erroneously corrects the received vector. This erroneous correction may or may not be de-

tected. The error correcting power of a decoder should in general be sufficient to make the 

probability of undetected erroneous correction almost zero. 

Implementing the encoder is a trivial problem. The decoder implementation, how-

ever, is nontrivial, and increases in complexity with the number of correctable errors. The 

decoder typically requires significantly more time than the encoder to process data when 

correcting errors. The maximum achievable data rate for a system is limited by the maxi- 
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Figure. B.1: Block Diagram of a Digital Transmission System Incorporating the (127,99) ÉCH Error Correcting 
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mum rate at which the decoder can correct errors. Thus optimizing the decoder for speed 

is a primary goal in implementation. In general, implementing a decoder is a practical way 

to evaluate the usefulness of any technology or device for error control coding apPlications. 

The reader is referred to [32] or [33] for further information on error control coding 

in general and BCH codes in particular. 

B.2.2 Digital Signal Processors 

Digital signal processors (DSP's) are special purpose microprocessors which have 

been designed specifically for implementing signal processing functions such as digital filters 

and Fast Fourier Transforms (FFT). Important features distinguishing DSP's, such as the 

.Motorola DSP56000 and Texas Instruments TMS320C25, from most general purpose micro-

processors are fast instruction cycles, parallel and/or pipelined operation, internal memory 

(RAM and ROM), multiple data/program buses, DSP oriented addressing modes and a 

fast multiplication circuit. All of these features except the fast multiplication circuit can be 

exploited in implementing a decoder. 

There exist faster and more powerful DSP's than the DSP56000 and TMS320C25. 

These include the Motorola DSP96002 and the Texas Instruments TMS320C30. However, 

this comparison serves to identify which decoding algorithms are computationally intensive, 

and what  hardware  features are desirable for decoder implementation. 

B.3 Decoder Operation and Algorithms 

The decoder for a (127,99) BCH code performs the high level algorithm presented 

in Fig. B.2. The key steps of this algorithm are: 

1. coMputing the syndromes, 

2. forming the error locator polynomial, and 
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3. finding the roots of the error locator polynomial. 

Input and output, and correcting the locations of the erroneous bits are comparatively trivial 

steps and will not be discussed further here. It is the above three steps that constitute the 

bulk of the decoding process. 

while (receiving transmitted code vectors) 
input 127 bit received vector 
detect errors by computing syndromes 
if (errors detected) 

locate errors by forming error locator 
polynomial and finding its roots 

correct errors in received vector 
end if 
output (corrected) 99 bit message vector 

end while 

Figure 11.2: The High Level Decoder Algorithm 

All three steps are based on mathematical calculations in a 128 element finite field 

(Galois Field), denoted as GF(27). Individual elements in the finite field are represented 

by a unique 7 bit vector. There are 128 unique 7 bit vectors and thus 128 elements in 

the finite field. Only 3 finite field mathematical operations are required for the decoder 

implementation, addition, multiplication and division. The important feature of a finite 

field, and operations in the finite field, is that the result of any calculation is always one of 

the elements in the finite field. The reader is referred to [32] or [33] for further information 

on finite field (Galois Field) theory. 

A number of algorithms exist for the decoding steps. Some are oriented to hardware 

implementation, while others are better for software. The algorithms given in this Appendix 

are considered the best for a (127,99) BCII code implemented on a microprocessor. The 

reader is referred to [31] for a thorough discussion of the relative merit of different algorithms 
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useful for a software implementation. The algorithms for the three decoding steps follow. 

B.3.1 The Syndrome Computation Algorithm 

The first step in the decoding process is to compute the four syndromes (symptoms 

of errors), Si. , S3, 55 and 87. If any of the syndromes are nonzero, errors have been detected. 

The syndromes are 7 bit finite field elements and are computed using the following equations: 

ro 	rice  4_ 7,20,2 + 	+ 7, 126 _126 
u 

53 = ro ri a3  r2C/6  + • • • +  ?l26 378 

r2 _10 
S5 	 ria 5 	-r • • • ri26a630  = ro 	 , 

r0 	r1a
7 	

r2a
14 
 -r- • • • + r126a

882
) 

where ri is bit i in the received code vector, and a i  is a 7 bit element of the finite field. 

An efficient algorithm for computing the syndromes based on the above equations 

uses table lookup. The individual syndromes are concatenated to form a single 28 bit syn-

drome word S. Similarly, the coefficients a i  for each bit ri are concatenated to form 28 bit 

syndrome masks, Mi. The Mi are explicitly defined as follows: 

m0 	{c ° , a°, ao, 

= [a,a3 , a5 , 

= [a2 ,a6 , a10 , a14] ,  

111126 = [
a126 , a378 , a630 , 882 ]  a 

These syndrome masks are stored in a 127 x 28 bit table. The algorithm for com-

puting the syndrome word S is given in Fig. B.3. The bit index i runs from 126 down to 0 
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because in most cases, if the message is being transmitted serially to the decoder, the first 

bit received is r 128 . The addition of the 28 bit masks is an extension of finite field addition. 

After the syndrome word S is computed, the individual syndromes S1, S3, 55 and ..97 are 

extracted. 

S = 0 
for (i = 126 down to 0) 

if (ri = 1) 

end if 
end for 

Figure B.3: The Syndrome Computation Algorithm 

B.3.2 The Error Locator Polynomial Algorithm 

If any of the syndromes computed for a received vector are nonzero, bit errors 

have been detected. The next step in the decoding process is to form the error locator 

polynomial. This is done by computing the coefficients cri of the error locator polynomial: 

0- (X) =  0 4 +  0 3X (72X 2  0-1X 3  + X 4 . 

The roots of the error locator polynomial  o(x) are the indexes of the erroneous bit locations 

in the received vector. For example, if one root is the finite field element a 87 , then the bit 

r87  in the received vector is in error and must be flipped. 

The quickest algorithm for computing the error locator polynomial coefficients for 

a four error correcting BCH code is Peterson's direct solution [33] .. The algorithm consists 

of two steps: 

1. determine an estimate of the range of errors that are contained in the received vector. 
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2. based on this number and the syndrome values, use the appropriate set of equations 

to compute the polynomial coefficients. 

All of these calculations use the the previously computed syndromes. 

The first step is to compute the following determinant: 

determinant = S3(e 83) + S1(S15.  -I- 85 ). 

If the determinant is zero, there are one or two bit errors, and if the determinant is nonzero, 

there are three or four bit errors. 

The second step is to compute the cri. Three sets of equations are available: 

1. for one or two bit errors detected, 

2. for three or four bit errors detected with S i  0 0, 

3. for three or four bit errors detected with S i  = O. 

The equations for each case are presented in Table B.1. 

After computing the cri, the exact number of bit errors in the received vector is 

determined as follows: 

number  of  errors = 4  if  0.4 0 0, 

number of errors = 3 if o-4  = 0 and a3  0 0, 

number of errors = 2 if (74  = os = 0 and o-2  0 0, 

number of errors = 1 if (74  = a3 = o-2  = 0 and al  0 O. 

This covers all possible cases for the computed o-i. 

B.3.3 The Polynomial Root Finding Algorithm 

Unfortunately, there are no elegant algorithms for finding the roots of a polynomial 

defined over a finite field. The standard algorithm is the Chien search, which is really just 
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1. Two error correcting formulas: 

01 

0.2 

0.3 

(74 

= 
S3 + S13.  

= 0, 

= O. 

2. Four error correcting formulas: 

= 

0.2 = 

= 

0-4 - 

Si(S7 SD+ S3(e.  + 55)  

s3(si +,93)+.91.(n. + 
(e+s3)+sio-2, 
(.95+ sfs3) + (5,13. +s3 )0-2  

Si 

3. Simplified four error correcting formulas for Si = 0: 

= 	 • 

Table B.1: Formulas for the Error Locator Polynomial Coefficients 
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an exhaustive search. Each element of the finite field is substituted into the error locator 

- polynomial to determine whether or not it is a root. The efficiency of this algorithm can 

be increased by: 

1. only testing those finite field elements which, if a root, specify an erroneous bit in the 

99 message bits of the 127 bit received vector, 

2. nested evaluation of the polynomial, 

3. degrading the polynomial after a root is found, 

4. using a lookup table for one and two error cases. 

An algorithm including the above optimization is given in Fig. B.4. Note that 

i is the bit index corresponding to the received vectôr and a i  is the finite field element 

'corresponding to the received bit ri. If a i  is found as a root of o- (x), ri is in error. It is only 

necessary to degrade  a(x) from degree four to three and from degree three to two. The 

equations for degrading  a(x) are presented in Table B.2. 

The algorithm presented in Fig. B.4 also includes correction of the bits in error. 

For  implementation purposes, it is more efficient to simply store each error location fo -und 

and continue the search. When all of the error locations have been found and stored, a bit 

correction routine uses the stored error locations to determine which bits to flip in the 99 

message bits of the 127 bit received vector. This variation of the algorithm is implied by 

the high level decoding algorithm presented at the beginning of this Section. 

B.3.4 Time Critical Components of the Algorithms 

Of the three decoding steps, the first and the third are the most computationally 

intensive. This is because both syndrome computation and polynomial root finding are done 

on a per bit basis. The implementations of both algorithms must minimize execution time. 

The syndrome computation algorithm can be considered on an entire codeword basis when 
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i = 126 
while (number of errors > 2) and (i > 27) 

13 _ o (ai) 

if (0 = 0) 
correct ri 
degrade o-(x) 
number of errors = number of errors - 1 

end if 
i = i - 1 

end while 
if (i > 27) 

lookup error locations two and one 
if (error location two > 27) 

correct riwo  
end if 
if (error location one > 27) 

correct  r0 
 

end if 
end if 

Figure B.4: The Algorithm to Find the Roots of the Error Locator Polynomial 
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1. Formulas for degrading  o(x) from degree 4 to 3: 

01. = 
= 010 + 

(7  = + 
04 ---- O. 

2. Formulas for degrading or(x) from degree 3 to 2: 

= 	+ 0, 

• (71/3  + 

• 0. 

(71 
„. 

2 

(74 

Table B.2: The Polynomial Coefficient Degradation Formulas 



attempting to minimize its execution time. The execution time of the root finding algorithm 

is primarily dependent on how fast finite field multiplies and additions are performed. To 

adequately compare implementation alternatives, it is generally sufficient to compare how 

fast syndrome computation, multiplication and addition can be performed. 

B.4 Comparison of the Motorola DSP56000 and Téxas In-
struments TMS320C25 

Both the Motorola DSP56000 and the Texas Instruments TMS320C25 processors 

are designed to efficiently implement standard digital signal processing functions such as 

digital filters and FFTs. When compared on this basis, the processors achieve compara-

ble processing rates. Neither processor is specifically designed for error correcting decoder 

implementations. A very basic problem with both processors, as well as with any gen-

eral purpose microprocessor, is that the mathematical instructions operate on fixed point 

numbers (on the TMS320C25, integers) as opposed to finite field elements. As discussed 

previously, the fast implementation of finite field mathematical operations is essential to 

fast decoding. Implementation alternatives using lookup tables provide the fastest finite 

field mathematical operations on both processors. Before comparing the DSP56000 and 

TMS320C25 on the basis of implementing the time critical components of the decoding 

algorithms, it is useful to provide a brief overview and comparison of their architectures. 

B.4.1 The Processor Architectures 

This section presents those features of the DSP56000 and TMS320C25 architectures 

which are relevant to a decoder implementation. 
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DSP56000 

The DSP56000 can execute up to 10.25 million instructions per second based on an 

instruction cycle time of 97.5 ns. Most instructions take only one instruction cycle. This 

fast instruction cycle time is achieved by pipelining the fetch, decode and execution opera-

tions for a single instruction. During instruction execution the program controller, address 

arithmetic logic unit (address ALU) and data ALU operate in parallel. 

The DSP56000 uses a 24 bit program and data word size. The data ALU has 

potentially eight independent 24 bit registers. Two of the registers (A and B) are available 

as 24 bit accumulators to hold the results of 24 bit data ALU operations. 

The DSP56000 lias  three separate 64K-word memory spaces, program memory, X 

data memory and Y data memory. Some on board memory is provided in each of the mem-

ory spaces.  Internai  program memory consists of 2K words of ROM. Internal X and Y data 

memories both include 256 words of RAM and 256 words of ROM, so they provide a total 

of 1K words of internal data memory. Internal program and data memory are important, 

as they allow zero wait state memory accesses and thus instructions can be performed in 

one instruction cycle. External memory can also provide zero wait states, but is expensive. 

Internal memory accesses are performed using three internal 16 bit address buses and four 

internal 24 bit data buses. This is another advantage of internal memory, allowing program, 

X data and Y data to be moved in parallel internally. External memory (program, X or Y 

data) is accessed using a single external 16 bit address bus and a single external 24 bit data 

bus. 

Memory addressing is primarily indirect, using any of the eight 16 bit address reg-

isters in the address ALU. Seven indirect addressing  modes are provided with three types 

of address update arithmetic. Each address register  lias a dedicated index•register and ad-

dress arithmetic register. Four of the addressing modes allow memory to be read or \.vritten 

and the address register to be updated in the same instruction cycle. This is important 
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for moving through data in an array. Circular buffers are supported in hardware by mod-

ulo address update arithmetic. Some direct addressing is supported, but only for memory 

mapped I/O  and writing or storing control registers. This can prove to be a limitation when 

implementing several distinct variables that are used in the same program section but are 

not suited to being stored in an array. 

The instruction set for the DSP56000 is in many ways close to that of a reduced 

instruction set computer (RISC), having only 62 basic instructions. The data ALU im-

plements all of the standard fixed point arithmetic instructions and logical instructions. 

Two important features of the instruction set are parallel data moves and hardware DO 

loops. Most of the instructions involving the data ALU allow up to two data words to 

be moved simultaneously with the execution of the instruction. This is facilitated by the 

multiple internal address and data buses mentioned previously. Nine types of parallel data 

moves are provided involving registers and/or memory. A single instruction is provided 

for setting up the execution of program loops. A set of hardware registers and a system 

stack provide all the necessary control for executing the looping operation as well as nesting 

loops. Thus no time is lost in loops executing a "decrement counter and branch" instruction. 

Both serial and 24 bit parallel input and output (I/O)  are provided on the DSP56000. 

Asynchronous and synchronous serial I/O  are implemented using a serial communications 

interface  (SC) and/or a synchronous serial interface (SSI). The SCI provides asynchronous 

rates up to 320K bits per second and synchronous rates up to 2.5M bits per second. The 

SSI provides synchronous rates up to 5M bits per second. Parallel I/O  is memory mapped 

to the high address segment of Y data memory. A single input or output takes a minimum 

of two instruction cycles. The reader is referred to [35] and [36] for detailed information on 

the DSP56000. 
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TMS320C25 

The TMS320C25 can execute up to 10 million instructions per second based on 

an instruction cycle time of 100 ns. Most instructions take only one instruction cycle. 

This fast instruction cycle time is achieved by pipelining the fetch, decode and execution 

operations for a single instruction. During instruction execution, the program controller, 

central arithmetic logic unit (CALU) and auxiliary register arithmetic unit (ARAU) operate 

in parallel. 

The TMS320C25 uses a 16 bit program and data word size. The CALU has one 32 

bit accumulator register and two registers used in conjunction with the hardware multiplier. 

The lack of registers is somewhat compensated by the fact that memory operands can be 

used as input in CALU instructions. Some instructions involving the accumulator operate 

only on 16 bits while others opeiate on the full 32 bits. The groupings of 16 bit and 32 bit 

instructions does not always make sense. For example, the logical instructions" And, Or and 

Exclusive Or operate only on 16 bits of the accumulato' r but Logical Shift Left and Logical 

Shift Right operate on the full 32 bits. This can be a problem in implementing certain 

algorithms requiring logical operations and shifts on the same 16 bit word. Having only one 

accumulator is also a definite restriction in that two ,separate mathematical operations on 

different data can not be implemented conveniently in parallel. 

The TMS320Ç25 has two separate 64K-word memory spaces: program memory and 

data memory. Some on board memory is provided in both of the memory spaces. Internal 

program memory consists of 4K words of ROM. Internal data memory consists of 544 words 

of RAM. Of this RAM, 256 words can be configured to be part of the program memory 

space instead of the data memory space. Internal memory accesses are perfornied using two 

internal 16 bit address buses and two internal 16 bit data buses. One of each is used for 

prograin memory accesses and the other of each is used for data memory accesses. External 

memory (both program and data) are accessed using a single external 16 bit address bus 
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and a single external 16 bit data bus. 

Memory addressing can be either direct or indirect. In the case of direct addressing, 

memory is paged such that 128 words of data memory are addressable at any one instant. 

Indirect addressing is provided using eight 16 bit auxiliary registers which are also used for 

looping control. Seven addressing modes are provided which include two types of address 

update arithmetic. One of the auxiliary registers is available as an index register and must be 

shared between the other seven auxiliary registers. The ARAU performs all address updates, 

operating in parallel with the CALU. Six of the addressing modes (which encompass both 

types of address arithmetic) allow memory to be read or written and the auxiliary register 

to be updated all in the same instruction cycle. 

The instruction set for the TMS320C25 contains 133 instructions, over half of 

which involve the CALU. For many operations, one or two instructions using immediate 

addressing mode exist as well as a separate instruction performing the same operation 

with direct or indirect addressing. Separate instructions exist for performing similar or 

even identical operations on separate operands, as opposed to one instruction operating on 

several possible operands. For example, instead of there just being a single data movement 

instruction, several data movement instructions exist which are specific to certain registers in 

the processor. These aspects of the instruction set alone account for the comparatively large 

number of instructions. The CALU implements all of the standard .fixed point arithmetic 

instructions and logical instructions. A number of CALU instructions incorporate significant 

parallelism to speed up digital signal processing algorithms. 

Both serial and parallel I/O  are provided on the TMS320C25. Synchronous serial 

I/O  is implemented in an on board serial port which can run at rates up to 5M bits per 

second. Parallel I/O  is supported by the IN and OUT instructions which use the external 

16 bit address port and 16 bit data port. A single parallel input or output typically takes 

two instruction cycles. The reader is referred to [37] and [38] for detailed information on 
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the TIVIS320C25. 

B.4.2 Implementation of the Time Critical Components of the Decod-
ing Algorithms 

As was explained in Section B.3.4, syndrome computation, finite field multiplica-

tion and finite field addition are the time critical computations of the decoding algorithms. 

.Of these, finite field addition is the simplest to implement. Finite field additions can be 

implemented as the Exclusive Or function, which is available on both processors as a one 

cycle instruction. The word sizes for both processors are larger than the 7 bit word size 

required to represent a finite field element and are thus sufficient to implement addition 

with the Exclusive Or instruction. 

The remainder of this section will compare implementations of the syndrome com-

putation algorithm and multiplication on the two processors. 

Implementation of the Syndrome Computation Algorithm 

Recalling the syndrome computation algorithm presented in Section B.3.1,'the crit. - 

ical operations of this algorithm are executing a loop, testing successive bits of a 127 bit 

vector, accumulating a 28 bit syndrome word and looking up successive 28 bit masks to add 

to the accumulating syndrome word. The accumulation/addition operation equates to a 28 

bit Exclusive Or. Testing successive bits of a 127 bit vector breaks down to successively 

loading a subvector of size equal to the word size of the processor into an accuMulator and 

shifting out one bit at a time to test. A fast implementation requires that one accumulator 

be dedicated to this task throughout the syndrome computation. Another accumulator 

of word size greater than or equal to 28 bits is required to hold the accumulating 28 bit 

syndrome word. 

Summarizing the above, the efficient implementation Of  the syndrome computation 

algorithm requires tw6 accumulators: one of arbitrary length for shifting, and one of at least 
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28 bits in length for Exclusive Or operations. Neither processor provides a 28 bit Exclusive 

Or operation. Thus the 28 bit syndrome word must be broken up into two subwords which 

are computed separately using two separate submask tables. Breaking up the syndrome 

word into subwords increases the requirement for the number of separate accumulators to 

three if the complete syndrome is to be computed efficiently in a single loop. Further details 

and results of implementing syndrome computation on the two processors follows. Timings 

are normalized on a per message bit basis as opposed to a per received vector bit 1Sasis, since 

it is the rate of meaningful/non-redundant data transmission which is of primary concern. 

DSP56000 

The two 24 bit accumulators combined with parallel data moves allow the 28 bit 

syndrome word to be computed in a single loop almost as efficiently as if a 28 bit or greater 

word size was available on the DSP56000 for the Exclusive Or operation. Accumulator 

A is used to perform shifts/bit tests on a received subvector as well as accumulate 7 bits 

of the syndrome. This is done by swapping the subvector and 7 bits of syndrome in and 

out of Accumulator A with parallel data moves. Accumulator B is used to accumulate the 

remaining 21 bits of syndrome. The DSP56000 also provides very efficient implementation 

of the looping operation and fetching syndrome masks with the hardware DO loop and 

parallel data moves respectively. 

The memory requirements for performing the syndrome computation with table 

lookup is for two 127 word tables. These can be set up in internal ROM. One table contains 

7 bit submasks, while the other table contains 21 bit submasks. 

The syndrome computation program on the DSP56000 takes a different amount of 

time to process a received 1 bit than a received 0 bit. In the case of the received vector being 

all l's, syndrome computation is performed at a rate of 0.91 its/message bit. In the case of 

an all O's received vector, syndrome computation is performed at a rate of 0.54 ils/message 

bit. On average, if a received vector contains a near equal number of O's and I.'s, syndrome 
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computation is performed at a rate of 0.73 ,us/message bit. 

TMS320C25 

The single accumulator on the TMS320C25 only provides 16 bit Exclusive Or op-

erations. An efficient implementation requires two separate loops to compute the syndrome 

subwords. The upper 16 bits of the accumulator and a single word in memory are used to 

perform shifts/bit tests on a received subvector while the lower 16 bits of the accumulator 

is used to accumulate 14 bits of the syndrome. 

The memory requirements for performing the syndrome computation with table 

lookup is for two 127-word tables. These can be set up in internal RAM. Both tables con-

tain 14 bit submasks. 

For any given received vector, the program on the TMS320C25 performs syndrome 

computation at a rate of 2.91 us/message bit. 

Implementation of Finite Field Multiplication 

Finite field multiplication is best imiilemented using log and antilog tables as follows, 

(in a manner similar to integer arithmetic), 

• 	 a • b = antilog((log(a) log(b)) mod 127). 

This requires 3 table lookups, 1 addition and 1 modulus. The addition operation is just 

integer addition. The log and antilog are performed using table lookups. The modulus 

operation can be avoided by constructing a double length antilog table or using modulo 

addressing. A double length antilog table simply repeats the first 127 antilog table values  

in the second 127 table locations. The addition of log(a) and log(b) will never overflow the 

second section of the table. 

A problem arises with multiplication by zero. Multiplication by zero gives a. result 

of zero but log(0) is undefined for a finite field as it is for integer arithmetic. The solution 

is to build an even longer antilog table, just over twice the size of that already required. 
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The added section forming this table is initialized to zero. If log(0) returns a value which 

just indexes the zeroed section of the antilog table, then multiplication by zero is realized. 

An efficient implementation on the DSP56000 uses modulo addressing with a zero 

extended antilog table. The log table requires 128 words of memory and the antilog table 

requires 255 words of memory. The low 127 words of the antilog table can just be the 

127-word syndrome submask table which contains the 7 bit submasks as opposed to the 21 

bit 'submasks. This requires that the appropriate portion of the 28 bit syndrome masks be 

used for the 7 bit submasks. Recalling the definition of the syndrome masks Mi given in 

Section 3.2, the first elements of each mask vector should form the 7 bit submasks. 

An efficient implementation on the TMS320C25 uses normal linear addressing with 

a double length zero extended antilog table. The log table requires 128 words of memory 

and the antilog table requires 506 words of memory. Both syndrome mask tables contain 14 

bit masks and therefore cannot be designed to form the lower portion of the antilog table. 

Multiplication can be implemented with comparable efficiency on the two proces-

sors, disregarding memory usage. When memory usage is considered, the TMS320C25 

requires more internal data memory than is available. Syndrome computation requires 254 

words of memory and multiplication requires 634 words. The total requirement, 888 Words, 

exceeds the 544 words of internal data RAM available. Fast external RAM is required to 

optimize an implementation. The DSP56000 requires 254 words for syndrome computation 

and only an additional 256 words of memory for multiplication. The 512 words of internal 

ROM split between X and Y memory is sufficient to hold all of the tables. 

B.4.3 Comparison Summary 

Based primarily on the speed of computing syndromes and secondarily on the total 

memory requirements for table lookups used in computing syndromes and performing finite 

field multiplies, the DSP56000 is a better processor than the TMS320C25 for implementing a 

(127,99)  Bd H code decoder. Comparing syndrome computation speed alone, the DSP56000 
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is almost four times faster than the TMS320C25. Because of this, no work beyond imple-

menting syndrome computation and multiplication has been done for the TMS320C25. A 

complete decoder has been implemented for the DSP56000. Performance results are given 

for this decoder in the next section. 

B.5 Performance Results for Decoder Implementation on 
Motorola DSP56000 

A complete (127,99) BCH error control code decoder has been implemented on the 

Motorola.DSP56000 using the algorithms presented in Section B.3. The decoder perfor-

mance is measured in message bit rate (bits per second or bps) as opposed to raw received 

bit rate since received data contains redundant parity bits. In other words, the message bit 

rate is the data rate achievable at the decoder output, not input. The average performance 

statistics are: - • 

• 1.4 Mbps when no errors detected/corrected, 

• 1.1 Mbps when correcting 1 or 2 errors, 

• 250 Kbps - 1 Mbps when correcting 3 or 4 errors. 

The range of rates at which 3 or 4 errors are corrected is due to the exhaustive search algo 

rithm used to locate the first 1 or 2 errors before performing table lookup of the remaining 

•2 error locations. The Worst case is when all of the erroneous bits are in the parity bits of 

the received vector. All 99 message bits aie tested to see  if  any  âne  is in error. This is the 

worst case deçoding rate of 250 Kbps. The probability of occurrence of errors causing this 

worst case decoding rate is likely quite low. Otherwise, a more powerful decoder would be 

used. 
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B.6 Conclusions and Recommendations 

The Motorola DSP56000 is a better processor than the Texas Instruments TMS320C25 

for the purpose of implementing an error correcting decoder. The worst case message bit 

rate for a complete four error correcting (127,99) BCH code decoder on the DSP56000 is 

250 Kbps, only sliglitly slower than the rate of 340 Kbps at which the TMS320C25 could 

implement just the first of the three steps in the decoding process. Three key differences 

between the processors stand out as the main reasons why the DSP56000 can be used to 

implement a significantly faster decoder than one implemented on the TMS320C25. 

The first key difference lies in the overall architecture of the two processors. Al-

though the DSP56000 is specifically designed for digital signal processing, its architecture 

is still quite general purpose and not restricted to only being useful for implementing DSP 

or similar applications. The architecture of the TMS320C25 is much more specialized. In 

optimizing  certain  features of the architecture for important DSP applications, generality 

has been sacrificed. In particular, the specific architecture of this central arithmetic logic 

unit is detrimental to implementing an efficient decoder. 

The second key difference between the two processors is the hardware DO loop 

available on the DSP56000. This allows an efficient implementation of the key program 

loops of the decoder with no instruction overhead for controlling loops. The TMS320C25 

does not have an equivalent feature for efficient looping through a block of program code. 

The third key difference between the two processors is the parallel data move opera-

tions available on the DSP56000. The ability to move data around in parallel with arithmetic 

operations enhances the performance of the decoder implemented on the DSP56000. The 

TMS320C25 does implement a number of instructions which move data in parallel with an 

operation in the ariffimetic logic unit, but the instructions are very application specific. 

The DSP56000 could be used to implement a (127,99) BCH decoder with a through-

put in excess of 1 Mbps. The implementation described in this Appendix could easily be 
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extended to include data buffering and make use of the on board serial ports. The primary 

external logic required for the decoder is a 16K x 16 bit ROM to store the one/two error 

lookup table. 

Considering that the performance of the DSP56000 as a decoder is hampered by its 

24 bit word size, it would be worthwhile to investigate implementing the same decoder on a 

general purpose 32 bit microprocessor. Such a processor in conjunction with zero wait state 

external RAM would likely yield a faster decoder than that implemented on the DSP56000. 
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