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Abstract

The performance of Reed-Solomon (RS) error correcting codes with slow frequency

" hopped (SHF) differential phase shift keying (DPSK) signalling is analyzed and evaluated

under worst case partial band noise and worst case multitone jamming. A representative

" set of the performance curves is shown. Based on these results, recommendatlon on the

cholce of RS code parameters is given.

Two in-hop jamming cancellation schemes for SFH /DPSK systems are proposed
One scheme is based on balanced coding; the other one uses notch filter to cancel jamming
tone. The performance of both schemes are illustrated. It is shown that both schemes can
work well under certain- conditions. ~

. Basic principles and techniques for designing 1nter1eavers are presented. Block
convolutional and the more recent helical interleavers are considered. Certain questions

“are considered on the trade-off between diversity and coding for spread spectrum systems,

where a low code rate is anticipated.

~An error correction scheme is presented for an M-ary symmetric channel (MSC)

characterized by a large error probability p.. The value of p, can be near, but smaller than,
1-1/M, for which the channel capacity is zero. Such a large p. may occur for example,

in a jamming environment. Monte-Carlo simulation results are presented. For the binary

symmetric channel (BSC), it is shown that the overall code rate is larger than 0.6Ro, where
R; is the cutoff rate of the channel. For BSC and a large m, a method is presented for BER
approximation based on the central limit theorem.

Logic-cell array 1mplementatlon of a (31,k) “programmable” Reed- Solomon CODEC

. is presented as an Appendix.

, Suggestrons for future work include 1nvest1gatlon of codlng and detection for slow )
frequency hop systems using DPSK, robust techniques for generatlon of erasures, use of

constrained sequences to cancel interference and perform error correction, analysis of coded
systems using-finite interleavers, trade-offs between coding and d1vers1ty and implementa-

- tlon aspects of CODEC
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Chapter 1

Introduction

1.1 Background

In previous contracts, the use of various types of channel coding were studied to improve
the jamming resistance of satellite communications systems using fast frequency hopping.
Systems with fixed data rate as well as systems with fixed hop rate were examined under
worst case jamming. A modified self-normalizing combiner was analyzed and compared
with other non-linear combining schemes. To study coding for Slow Frequency Hopped
Differential Phase Shift Keying (SFH/DPSK), the probability distribution of DPSK in tone
interference was derived[1].

In this annual report, we present the work performed during the year 1989-90. We
first consider coding for slow frequency-hopping DPSK systems. Repeated convolutional
codes for high error rate channels are analyzed. The effects of interleaving and certain
questions on the trade-offs between diversity and coding are considered. We also present a

tone jamming cancellation scheme for SFH/DPSK systems.

1.2 Objective

The broad objectives of the work carried out during 1989-90 are described below.

1. Consideration of coding for SFH/DPSK systems using Reed-Solomon codes under

tone and partial band noise jamming.




2. Examination of low rate codes with large minimum distance for high error-rate sys-

' tems.

3. Consideration of 1nterleavmg and diversity versus codlng for commumcatlons over .

1ntent10nal 1nterference channels

4 CODEC 1mplementatlon usxng current technology, e.g. thnx

1. 3 Plan and Scope of the Report

The plan and scope of the report'is as follows. In Chapter 2 cod1ng for slow frequency -

: hopped drﬁ'erentlal phase shift keying systems is presented. }
~ Chapter 3 presents an analysis of two 1n-hop jamming canceﬂation schemes for
SFH/DPSK systems. |
Bas1c pr1nc1p1es and techniques for demgnlng 1nterIeavers are prov1ded in Chapter 4,
Chapter 5 presents trade-off between dxversny and coding for systems, such as spread

spectrum systems, where a low code rate is antlclpated

Repeated convolutlonal codes are examined in- Chapter 6. for channels characterized

by large error probablhtles Emphasrs is placed on using a blnary convolutlonal code due

to the con31derat10n that there exist commercial CODECs for such a code
Chapter T Contalns suggestlons for future work.

As an ad_]unct to the report, a loglc-cell array 1mplementatlon of a (31, k) Reed-

" Solomon CODEC is presented as an Appendlx

~
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Chapter 2

Coding for Slow Frequency
Hopped Differential Phase Shift
Keying

2.1 Introduction

Spectrum spreading via frequency hopping is commonly utilized in satellite communications
systems to provide some protection against jamming. An intelligent jammer can, however,
drastically reduce the effectiveness of such a system. This effectiveness can be regained
through the use of error correcting (EC) codes. This chapter presents the results of a
study of the performance of EC codes in a slow frequency hopping (SFH) system with
binary differential phase shift keying (DPSK). By slow we mean one or more symbols per
transmitted hop. SFH is employed because the differential signalling requires the phase of
the previous received symbol as a reference. Using DPSK eliminates the need to establish
a phase reference for the hop. »

Transmitted signals hop over a total spread spectrum bandwidth W,,. If the total
jamming power is J (referenced to the receiver input), the effective jamming power spectral
density is

Jo = J[Wss.

The objective is to minimize the bit error rate (BER) for a given signal to jamming ratio,
E;/Jo. Ejs is the energy in a DPSK symbol. An EC code is used to improve upon the
severely degraded performance of uncoded DPSK when it is jammed. The analysis of the




" coded channel is based on [2]. _
Under strong jamming, the receiver thermal or non-hostile background noise is usu-
ally small compared to the jamming, so receiver noise is neglected here. We consider two

types of worst case (WC) intelligent but non-repeat-back jamming, namely partial band

noise (PBN) and multitone (MT) interference. For partial band noise (PBN) jamming, J is

restricted to a fraction p (0 < p £ 1) of the full spread spectrum bandwidth, but in this band
the power spectral density is increased to Jo/p. Multitone jamming (MT) occurs when the
jammer distributes J as céntinuous wave tones across W,s. There are N = W, T, possible
tone pésitions, where T, is the signal symbol duration. If the jammer can place tones in
N; of these positions, then tﬁe fraction of the sbread spectrum band which is jammed is
p = Ni/N. In anti-jam communications, a good code should perform well regardless of
the type of jamming. Thus good codes are those with the best performance for the most
effective type of jamming, WC MT jamming or WC PBN jamming, at a given low BER.
The WC BER performance of an RS code with a specific set of parameters is a function of
Es/Jo and p, where p is optimised to determine pye.

We consider (n,k) @-ary Reed-Solomon (RS) block codes with symbol size ¢ =
log, @ Bits, block length @ — 1, k information symbols per block, and minimum distance
d=n—k+ 1. RS codes are maximum distance separable, that is they achieve the highest

possible distance for their code parameters. Since jamming tends to cause burst channel

errors, RS codes are well suited for this system. In addition, RS codes have a low probability

of decoding error [3].

2.2 Analysis of the Coded System

To find the BER for WC jamming, we proceed as follows. Suppose the DPSK symboi

energy'is E,, and a hop has L; coded bits, (note that each hop should in addition contain

a phase reference bit). With an RS code, L bits can affect [-%‘l] symbols, if L is chosen so

that code symbols are aligned to a particular hop. [2] is the smallest integer greater than

or equal to z. Here we assume L; > ¢q. Then a codeword can be affected by about

ng
H=[7




hops. When a hop is jammed, Lp bits in this hop will be in error independently with
probability Py. Although this independence assumption is not true in general, it has been
shown to provide a good approximation in PBN jamming, and seems reasonable for MT
jamming based on previous experience and results. Py is derived from [4] and [2], with
p chosen to be the worst possible, py.. For PBN jamming, p represents the fraction of
the spread spectrum bandwidth which is jammed, while for MT jamming p represents the
fraction of the total number of available frequency slots which are jammed. Py is then given

by
3 exp(—pEs/Jo), PBN jamming;
Py = 1.0 . .
Ps1(m,Es/Jo), MT jamming,

with the probability of error under MT jamming, Ps;, defined by Eq. (52) in [2]. The
number of erroneous ¢g-ary symbols in these I'%h] symbols corresponding to a jammed hop
is denoted as z. Then the probability that [ symbols are in error is given by

P(z=1)= ( I-Lbl/q-l ) 1-(Q1- pJ)q)I(l _ PJ)‘I([Lb/q‘l“I)'

The RS code output symbol error probability is then
I (E : INREAWE H-i
Ps“E( i ) Z Pr(zz]>t)<_—]f{'—)p’(1_p) i
i=1 E;=1 2>t Jj=1 -
where ¢ is the number of symbol errors which can be decoded by an RS code,
t= ‘.";;—J,
and |z] is the largest integer less than or equal to . z; is the number of erroneous g-ary

symbols in the j-th jammed hop, given that ¢ hops are jammed in a codeword. The event

for a specific set of 2;’s is denoted by

i
Z z; >t
i=1

The summation is over all sets that cause a decoding failure. The probability of these events

occurring is

Pr(z z; > 1)
St




which is computed using P,(z = I).
“The final BER is given by
_Q

B=oq-n"

Pue is the value of p which maximises B, for a given L(,, RS EC code, (n,k), and type of

jamming. The ob jective is then to determine the effects of these parameters on the BDR

and develop a set of guidelines for proper EC code selection. In the next section, various

RS codes are evaluated and the results compiled.
2.3 Cdr'nputation' Results

To- prov1de a benchmark and a check on the optimisation algonthms uncoded DPSK was

first evaluated. These results are- glven in Fig. 2.1. They are 1dent1ca1 to the worst case re-

* sults given in [4]. The performance of Reed-Solomon error correctlng codes with ¢ = 3 4 5
and 6, and Lp < 27 — 1, was determined under worst case jamming via opt1mlsatlon with

'respect to p. Since error probabﬂlty evaluatlon for PBN _]ammmg is much less computa-

tionally 1ntens1ve than for MT j jamming, candidate good codes were first found for th1s type

of j _]ammlng and then the performance determined for MT Jammlng

For qg= 3 the (7 k) RS codes requ1re Ly < 21. Figs. 2.2 to 2.7 present the perfor-
mance results of these codes for k = 1,3,5 and Lb = 6,11,21. From these ﬁgures 1t

" can be seen that the (7,5) code is unable to improve upon uncoded DPSK. For the (7,1)

and (7,3) codes, and Ly =6, there is a dramatic improvement. In this case, performance

with WC_MT jamming is 3 to 5 dB worse than with WC PBN jamming. The next set -
of curves shows the (15,k) RS codes. We examined the (15,5) and (15, 9) codes, with
L, = 10,15,20,30,60, with results given in Figs 2.8 to'2 11. The (15,5) code shows o

improvement when Lj < 20 and the (15 9) when Ly = 10. From this ‘we can conclude that

‘substantial performance improvements over uncoded DPSK can be achieved only when
t> Ly/q. .OtherWise,, the RS code cannot correct the verroneous bits on a jammed hop and ’
“decoding ,will not succeed, resulting in a performance near that of uncoded DPSK. Finally,

‘we evaluated the block length 31 and 63 RS codes. Results for the (31,11) and (‘63,.31)

codes are presented here in Figs. 2.12 to 2.15.  From these figures, we again see the role
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Ly/q plays.in the performance. With the (31,11) code, ¢t = 10 symbols, or ¢g = 50 bits can
be corrected. Thus only for L, < 50 is performance improved. This is most dramatically

shown in Figs. 2.12 and 2.13 when L; is dropped from 52 to 50. Similarly for the (63,31)

code, when L < 96 performance is dramatically improved. WC MT jamming is always

worse than WC PBN jamming, and for small L, the difference is 2 to 5 dB.

2.4 Concluding Remarks

From the results of the previous séction it is clear that the number of codeword symbols per
hop must be small in order for the RS code to provide protection against jamming. Other-
wise, no improvement over uncoded DPSK is gained. Lowering the symbols per hop can be
achieved either by reducing the number of bits pei' hop, as was done here, or interleaving
the RS codewords to a depth determined by the hop length and RS code parameters.

It remains fo evaluate the performance when diversity is also employed and when
nonbinary DPSK is used. . Both of these directions should provide performance improve-
ments over the results found in this chapter.v As well, the use of interleaving will reduce the
number of erroneous symbols in a given RS codeword when a hop is jammed. It also allows

a long hop length, which reduces the amount of lost data due to the phase reference bit.
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Chapter 3

Tone Jamming Cancellation in
SFH/DPSK Systems

3.1 Introduction

In a slow frequency hopped (SFH) differential phase shift keying (DPSK) system, there are
typically at least a few tens of bits in a hop. We can not afford the loss of even one hop.
One way to improve the system anti-jam capability is to employ a long error correction code
such as, a Reed-Solomon code. Error correction codes with long codewords spanned over
several hops can be designed to correct burst errors as well as random errors. Random error
correcting codes with deep interleaving can also be used. This type of method is based on
multiple-hop information.

For tone jamming, however, it is possible to employ some signal processing tech-
niques to combat jamming in a single hop. This can improve system performance signif-
icantly. If the system in-hop anti-jam capability is increased, the jammer must put more
jamming power in a frequency slot to achieve the same jamming effect. Thus the total
number of frequency slots jammed will be reduced when total jamming power is constant.
Therefore the whole system anti-jam capability is increased.

In a previous report, we have analyzed the probability distribution of signals in

DPSK systems in tone interference [1]. In this chapter, we propose two in-hop jamming

cancellation schemes for SFH/DPSK systems. One is based on using balanced coding, while

the other one uses adaptive filtering to cancel the jamminvg tone. The performance of these
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_schemes is analyzed as well.

3.2 Cancelling Tone Jamming by Balanced Coding

3.2.1 Assumptions

We consider a SFH spread spectrum system with binary DPSK modulation. We assume ‘

that the amplitude of the transmitted signal is constant, that initial phase of the signal does
not vary in a hop, and that the amplitude information of the received signals is.available.
This means that there are no envelope limiting circuits in the receivers. We also assume
that the frequency of the jamming tone is the same as the carrier frequency, so that the

amplitude and initial phase of the jamming tone are constant in a hop.
3.2.2 Problem Description

In a SFH/DPSK system, when a hop is hit by a multitone jammer, the received signals in
the hop contains highly correlated interference. Assume that the transmitted DPSK signals

in a hop are: Fy,lg, «+, L,
E; = Ee’ i=1,2,---,m

where m is the number of channel symbols in a hop, and E and 6; are the amplitude and

phase of the ith transmitted signal, respectively. Then the received signals under tone

jamming are: Ry,Ra, - Rp,
RizEejei-}-IeJeJ i=1,2,--5,m

where Ie/?7 is the tone jamming' with amplitude I and phase 6; which is uniformly dis-
tributed in [0,27). In DPSK modulation information is carried by phase change; therefore
detection is usually based on phase change of two éonsecutive signals..
When signal to thermal noise ratio (SNR) is high, the influence of tdne jamming on
DPSK signal can be illustrated by a geometric relation, as depicted in Fig. 3.1 (a) and (b)
In Fig. 3.1 (a), there is no phase change betwéen two consecutive transmitted

signals, By and E, i.e. L(El, Ez) = 0, where £(-,+) is the angle between two vectors. It is
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easy to see that there is also no phase change between two consecutive received signals, R
and Ry. So a correct decision can always be made no matter how large the tone jamming
is ( when neglecting errors due to thermal noise, and noting that the probability of the
Jjamming vector exactly cancelling the signal vector is zero). Therefore tone jamming does
not have direct influence on detection in this situation. However, an indirect influence is
the change in the probability of erroneous decision due to thermal noise as a result of the
amplitude change in the received signal caused by the jamming component.

In Fig. 3.1 (b), there is 7 radian phase change between two consecutive transmitted
signals, i.e., L(El, E}) = m. We can see that due to strong tone jamming the phase change
of two consecutive received signals, B; and E2, can be less than Z. Therefore an erroneous
decision can be made. When jamming is strong enough the phase difference between E;

and Ry can always be less than Z, hence a zero phase change will be incorrectly detected.

In summary, the main influence of tone jamming on DPSK system is that the prob-
ability of the receiver not detecting phase change between two signals is much higher. This
conclusion is directly based on the assumption that jamming tone hits the carrier frequency
exactly.

One way to combat tone jamming is to cancel the jamming tone before a decision

is made. This can be carried out by employing the so called balanced code.
3.2.3 Cancelling Scheme

Consider a block of transmitted signal vectors such that the sum of vectors is zero, and
suppose the whole block is transmitted in the same hop. Then neglecting the influence of
thermal noise, the vector sum of the corresponding received symbols divided by the number
of symbols in the block is the tone jamming component. Thus the amplitude and phase of
the jamming tone can be estimated from the sum of the recieved signals, and then the tone
jamming can be cancelled from the received signals.

Suppose the block length is n signals, and the transmitted signals are s;, ¢ =

1,2,.-+,n. The requirement on the transmitted signals is

n

Y si=0. (3.1)

=1
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. Decision boundary

(b)

Figure 3.1: The effect of tone jamming on phase change detection when noise is small, and '
the jamming tone hits the carrier exactly.
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In the binary case, Equation (3.1) means that in the sequence there must be the same
number of signals with a phase 6 and signals with a phase 6 4+ x. This can be achieved by
making the codeword balanced before PSK modulation.

A balanced code has codewords with equal numbers of zeros and ones. One im-
portant feature of a balanced code is that it is dc-free. They have been used in magnetic
storage and optical communication systems where a dc-free signal is required. Here we can
use the dec-free feature to estimate jamming tone. |

For a coherent binary PSK system, the balanced code can be used by simply plac-
ing the balanced code encoder before PSK modulation and the balanced code decoder after
PSK demodulation. But for binary DPSK systems it is mofe complex to use a balanced
code. Two possible schemes are considered in this report.

One scheme (Scheme I) is shown in Fig. 3.2. Differential encoded information data
is encoded with a balanced code before PSK modulation. At the receiver the received signal
is first downshifted to the baseband to generate in-phase and quadratic components. The
balanced encoded signals at the baseband have a property that the vector sum of signals
in a codeword is zero. Then the average of received signals in a balanced codeword is com-
puted. The average is an estimation of the jamming tone. Thus by subtracting the average
from each codeword the tone jamming is cancelled. The data is then passed to what we
call a semi-differential PSK demodulator followed by a balanced decoder and a differential
decoder.

The semi-differential PSK demodulator is a PSK demodulator based on differential
phases of consecutive received signals. It works in the following way: assume the first re-
ceived signal represents 1 (or 0 arbitrarily), then compare the phase difference between the
second and the first received signals. If the phase difference is greater than 7 /2, then declare
the second signal to represent 1; otherwise it represents 0. This procedure is repeated for
the following signals.

Thie output of the semi-differential PSK demodulator is a received balanced coded
sequence or its inversion. For instance, if the balanced sequence is 1010 ..., the received
sequence may be 1010 ..., or 0101 .... The ambiguity comes from the differential PSK

demodulator. Therefore, in order to recover the original information data with a differ-
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ential decoder following a balanced decoder, the balanced code should be tranépagrent[8].
Transparent code is a code in which an inversion of a codeword is also a codeword, and the
corresponding information bits of a codeword and its inversion also have an inverse relation.
Thus, by using transparent balanced coding, the tone jamming can bé cancelled, and the

original information sequence can be obtained from outputs of the differential decoder.

The other scheme (Scheme II) is shown in Fig. 3.3. The information data is encoded
with a balanced code before PSK modulation. The cancellation algorithm is the same as
that in the first scheme. Following the cancellation circuits is a differential demodulator in
a DPSK receiver. The output of the decoder is a differentially decoded balanced sequeﬁce.
A mapping between a differentially decoded balanced codeword and its corl'ésponding in-
formation bits is used to decode the differentially decoded balanced codeword séquence.

Specifically, éﬁppoée we use a (n,k) balahced code. k information bits are encoded
into a balanced codeword n bits long. At the receiver the differential demodulator is bp-
erated on every balanced codeword, and generates a n — 1 bit long output, which is a
differentially decoded balanced codeword and corresponds to the original k bits of informa-
tion. ' |

Because a codeword and its inversion are identical after being differentially decoded,
the inversion of a balanced codeword should either correspond to the same information bits

or not be a valid codeword.

3.3 Performance Analysis

We first analyze the tone jamming cancellation performance, which is the same for both
schemes. The symbol error probability at the output of the differential demodulator in
scheme II is derived. This symbol error probability is the same as the transition error

probability at the output of the semi-differential PSK-demodulator, where the transition

of signals carries information. Next we discuss different balanced coding methods and’

performances in the two schemes separately.
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3.3.1 Symbol Error Probability at Differential Demodulator Output in
Scheme 11

Let us observe a received data sequence corresponding to a balanced codeword, 7y, 72, ... ,

Ty, and where
r; = 8; + Ie?®7 +n; 1=1,2,..,n
where 7 is the length of balanced code; s; is the transmitted signal with energy Es; I'e?%
is the tone jamming; and
ni = Ti + Jyi
where z; and y; are zero mean additive white Gaussian noise (AWGN) with variance 0% =
Ny/2 respectively. Ny is the AWGN speciral density.
The arithmetic average of the sequence is

1 1 ; 1 :
a:;Zr;:;—iZs;-{-IeﬁJ-{-;Zni.

i=1 i=1 =1

If the transmitted signal sequences s;, which is encoded by a balanced code, has the property:

then

\ 1 n
a= IeJHJ + ;Z’IL,

i=1

We can see that a is a good estimation of the jamming tone when n is large enough.

Subtracting a from r;, we have

1& . .
r§‘=r,'—-a=s,—~;2nk+ni:s;+ni i=12,..,n
k=1

where
1 n
iy = Ny — " Z N
k=1
Therefore the tone jamming component has been cancelled. Since cancellation involves more

than one sample, after cancellation the signal is imbeded in noise 7i; which is correlated with

others in a codeword. 7; can be rewitten as
fi; = &; + 34
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: ~and

fi:i:a:,—-—-Zka:(l’—-—)ml—-— Z T,
k=1 o k=1,k#:
N 1< R
Gi=vi—-=Y t=0-=")pi—=" Yk
nk:l i n k=1,k#¢

‘#; and §; are linear combination of Gaussian variables, and thus are still Gaussian. It is
‘ 2

easy ‘to see that the mean of #; and #; are zero, and that they have the same variance & y

»A which is given by

= Va.' - (3.2)

_ The correlation between adjacent 7; can be described with the auto-correlation coefficient
- 7 and the cross-correlation coefficient A. Because for arbitrary ¢ and j, z; and y; are

uncorrelated, &; and §; are also uncorrelated. So

N Eifier
A=,

»and 7 is defined by k

o Billipn Yili+1

2, &2

Therefore after tone cancellation, the signal is perturbed by coloured Gaussian noise with -

a correlation coefficient 7.

Pawula et dl. derived the distribution of the phase angle between two vectors Uper-"

turbed by correlated Gaussian noise[5]. By using their results we can derive the bit error

probability of binary DPSK signalling in coloured Gauss1an noise. The bxt error probablhty

of binary" DPSK signalling is given by: ’
| Pe:EP(+_<_¢s—|A\Ir=0)+1P(—-’Es¢sf|m1r=jw)

where AV is the phase change between two consecutive transmltted signals; 1 is the phase
change between ccorresponding recelved signals, and we have assumed the two transmltted

sxgnals to be equalprobable. Accordmg to [5, Eq.(9)], .
' 3T 22%

- <Y< — = - -
,P(2;—¢'#-2l4wv,°) F"(z) _F"(2)’
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where p
Fau() = = [ fatt) + BOLe P00t
and

U—Vsint— W cos(A¥ — ¢) cost

E@) = 1—(rcosy + Asin¢)cost ’
0 - W sin(A¥ — )

a= U—Vsint — W cos(A¥ — ) cost’

A1) rsiny — Acos

1—(rcost+ Asinep)cost’

(3.3)

(3.4)
(3.5)

(3.6)

In our case U = W = signal to coloured noise ratio, V = 0, and A = 0. Substituting these

relations into Equations (3.4), (3.5), and (3.6), we have
1 — cos(A¥ — ¢ cost

EQ@) = 1-rcostcost v,
sin(AY — )

a(?) 1 — cos(A¥ — 9) cost’

Bt) = rsin 4

1—rcostcost’

Note that when E(t), a(t), 8(t) are constants, Equation (3.3) can be written as

Fau($) = 3(a+9)e”™.

When AT = 0,
1—costecost T
4 = S T
() 1 -—rcoszpcostU v for ¢=43,
—sin ¥ _ T
W) = Ttspot ~ T Tor #=2,
() rSY 4 for p=al

1—rcostcost

Thus

R(D) = le-ner,
7)

= F (-’5) =l1-nev.

2 4
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Therefore T . : -
' T ., 3T . 1 U
5 lav=0)=1-re?. BN (
, I P(2g¢g 21N o) 3= (37)
When AY =7, '
v | 1+cosz/;cost __r k)
(@) 1-rcostpcost ..U for ¢_% ’
: - osiny . N
= * - =41 = -
oft) = 1—rcostcost 1 for =7,
rsing ) T
A = 1 —rcostcost =&r for v= 3
Thus |
Cor 1,y
R (5) = 00
F7r (—-725) = %(—1—7")6_[].‘
‘Therefore ‘ |
T A S ¢ VI G A W PR
‘P*(—.-z'S pslav= W) = I (2) » F"( 2) = L+ m)e (,3,{?)

And thus the bit error pro’bability is

R S (Lt Tl

where U is signal to coloured noise ratio. From Equation (3 2) we know that the coloured

noise variance is (n — 1) /n trmes of original thermal noise variance. Thus

n E n ’I‘bE[,

U:n—lNo n—l No

" where 73 1s the code rate of the balanced code. And ﬁnally, we have

perg‘%exp(»_ n ’“bEb).’ ' I (3.9)

-1 NO

Thls expression does.not contain the amplitude of jamming" tone I and other pa- -

- rameters related to Jammlng tone. Therefore the Jjamming tone has clearly been cancelled
Two types of error probabrllty are given in Fquations (3.7) and (3 8), respectlvely

Obviously they are not the same for a ﬁxed r. Especially when |r| is large (|r| is close to
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one), the difference of two types of error probability can be quite large. However, it can be

shown that in our case

T ! (1 1)2 L zn: zr| (1 1):1: 1 f: T
= Z|l-=)zi-- k - = )Tiy1— = k
‘ & n T g1 ki n T =1, ki+1
_ 1
- n—1
where we have used the following relations:
z? = ¢? and TiZr=0 i#£k

So when 7 is not very small 7 is much less than one, and thus the two types of error
probability are almost the same.

Recall that the bit error probability of binary DPSK system with thermal noise only
is

1 E '
Pppsk = 5 exp (—ﬁ) . (3.10)

Comparing with Equation (3.9), we can see that after cancellation the bit error probability
has a form similar to that of binary DPSK system with noise only. But we can not compare

the two expressions directly because Equation (3.9) gives the coded symbol error probability,

- and Equation (3.10) gives the bit error rate without coding. The bit error probability after

decoding has to be evaluated with the specified balanced code in coloured Gaussian noise.

This problem needs further investigation.

However, we can compare the coded symbol error rate given in Equation (3.9) with

that of a binary DPSK system with a code of the same code rate 7 in thermal noise. The

P—-—1~ex ( E)-—lex (-——TbEb>
e =3P\ TN, T2 T,

In this case, the coded symbol error rate of the DPSK system with balanced coding tomne

later is given by

jamming cancellation is a little bit less than that of the DPSK system without cancellation,
but employing a code with code rate 7. But if n is very large, the difference is very small.
The coded symbols error rate of the binary DPSK sytem and that of the DPSK sytem with

balanced coding tone jamming cancellation for n = 8, and 16 are plotted in Fig. 3.4.
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3.3.2 Application of Balanced Coding in Scheme I

As mentioned early, the balanced code used in Scheme I should be transparent. The bal-
anced codec operates on differentially encoded data with ambiguity on the data’s absolute
values.

Several papers have discussed balanced codes with high code rate, i.e. a code rate
larger than 0.5 without considering the transparent property. D.E. Knuth [6] proposed a
kind of balanced code which is very simple in encoding and decoding.

One trivial case of balanced transparent coding is ~simply adding the 1’s complement
of the information bits. This results in a rate —% balanced code with the transparent property.
For example, if an information sequence is w, then the corresponding codeword is ww, where
@ is 1’s complment of w.

Recently several papers have discussed error-correcting balanced codes [7]. Usually
we want to use a linear error correcting code to avoid a complex decoder. Thus we wish
to have transparent linear balanced error-correcting code. However, no such codes exist
because linear codes must have the all-zero codeword and linear transparent code must
have the all-one codeword. These two codewords are not balanced codewords (in general, a
balanced code is not necessarily a linear code; and there is only a one to one correspondence
between information bits and codewords). But we can construct a code having similar

properties. The code has the following structure:

jumry

. (n,k) block code (n is even);

2. linear code;

3. transparent code;

4. all codéwords are balanced codewords, except the all-one and all-zero codeword.

We call this code pseudo balanced code, and the code has the following i)roperﬁes:

1. The minimum distance dmin = 5; otherwise the sum of two balanced codewords

would result in non-balanced codeword.

2. There are only three possible weights: 0, %, and n.
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3. If wis a codeword, @ is also a codeword; this is a property of a transparent code.

In communications, when data words happen to be the same as control words they
are modified in certain ways to remove confusion. By using similar techniques, we can avoid
encoding the all-zero and the all-one codewords at the transmission end. Then the code
described above can be used in our tone jamming cancelling scheme as if it were a linear
tfanéparent balanced code. This code can help us climinate the tone jamming and can
correct random errors as well. Following are examples of two of such codes.

Ezample 3.1 | ‘

The (7,4) Hamming code has weight enumerator:

Al2) = 1+722 + 724 + 27,

This code can be modified to be a pseudo balanced code by adding a parity bit. This résults’

in a (8,4) code with dp;, = 4. The code can correct 1 bit error and detect 2 bit errors at

the same time.

Ezample 3.2
1st-order Reed-Muller codes are pseudo balanced codes. When m = 4 and n = 16,

the generator matrix of the 1st-order Reed-Muller code is:

1111111111111 111
0000OOOGO 111111111
G=|000011110000T1111
00110011001 10011
01 0101010101010 1

This is a (16,5) code with dp;, = 8.

In the output of the differential demodulator in Scheme I, a one bit error may cause
all of the following bits to be jnvertéd. For a specific balanced codeword, if a bit error
happens at the first bit or in a previous éodeword the whole codeword will be inverted.
Because the code is transparent, it can be correctly decoded. But if a bit error happens at

a bit after the first bit in a codeword, all bits in the codew01d after the error bit w111 be

inverted, causmg a burst of errors.
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Code rate bound of error correcting balanced codes

For any (n, k,d) linear code there is a bound on minimum distance d:
n—k>d-1.
When d = 5 we have
n—Fk> % -1

and therefore the code rate r is bounded by:

k

rT=-
n

IA
o=

1
+=.
n

Hence it is not possible for the code rate of a pseudo linear transparent balanced code to

be much larger than 0.5.

According to the Plotkin bound,

k<n—2d+2+]log,d.

When d = -’2! we have

kS0+2+log2g=log2n+l

and hence

S logzn +l‘
n n

k
n

This upper bound is tighter than the first one.
Note that the code rate of the 1st-order Reed-Muller code is

m+1 logon+1
m n

where n = 2™. So the code rate of the Ist-order Reed-Muller code achieves the Plotkin

bound on code rate.

3.3.3 Application of Balanced Coding in Scheme II

The balanced decoder in Scheme IT does not work on balanced encoded data, but on dif-

ferentially decoded balanced encoded data, This is because the output of a differential
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,Informa,t'ion

Codewords

Diff . Decoded Codewords

‘0000 100000000 0000000
1000 11010001 0111001
0100 01101001 1011101
1100 10111000 1100100
0010 11100100 0010110
1010 100110101 0101111
0110 10001101 01001011
1110 01011100 1110010
0001 |10100011 1110010
1001 01110010 1001011
0101 11001010 0101111
1101 00011011 0010110
0011 01000111 1100100
1011 10010110 ©1011101
0111 00101110 0111001
1111 11111111 0000000

Table 3.1: Ektended Hainming (8,4) code and its differentially decoded codewords. -

demodulator is diﬁ'ei‘ential decoded data. For a decoder, Fa, mappihgtbetween the informa-
1tion bits and the diﬂerentially decoded balanced codeword is established. The mapping can
be obtamed easﬂy by dlfferentlally decodmg a]l balanced codewords. ' N

The balanced coding can also prov1de some error: correction’ ca,pa,blhty in Scheme II
This can be. 1mp1emented by choosing a balanced code whose codewords after dlfferentlally
decoding have a large minimum Hamming distance.

Ezample 3.3

CODS]deI’ the extended Ha,mmmg (8 4) balanced code d1scussed in Fzample 3. 1 All .
codewords are listed in Table 3.1. This is a transparent code. We can only use the upper |

half codewords with the exception of the all-zero one. Thus in fact we use it as a(8,3) code.

- Note that the code is linear in the dlfferentla] decoded domain, and has a minimum weight

- 3. Therefore the code can correct one error in a codeword at the output of dlfferentlal

" demodulator.
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3.4 Frequency Offset Problem

The analysis in the previous sections is based on the assumption that jamming tone hits
the carrier tone exactly. However, in practice there is a frequency offset between carrier
and jamming tone.

Frequency offset causes the tone jamming component in a baseband signal to be no
longer constant. Instead the jamming has a sinusocidal form.

Suppose the jamming tone wy is:
wy = we + Aw,

where w¢ is the carrier frequency, and A#f is the frequency offset. Then the tone jamming

component in the baseband signal is:

Iej(w_]t-i-ﬂ_])e—jwct = Iej(AwH-HJ).

Note that it is a sinusoid with frequency Aw, which is the frequency offset. The balanced
code tone jamming cancelling scheme is based on the assumption that a tone jaﬁxming
component is constant. Thus we need to analyze the cancelling performance when there is
a frequency offset.

First we will study how much the phase change of consecutive jamming components

is caused by frequency offset. Consider that the bandpass filter has a bandwidth B, so that

2
B—-T—b
and _
B 2
AwMAX = 27!‘? = -T;

The phase change between two consecutive jamming components is
Al = AwT
and the maximum phase change is

Abpax = DwpaxTy = 2w,
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_Thus the frequency offset can cause Af to be as large as 2.
We then analyze the sensitivity of the cancelling performance to A#f. When there is

a frequency offset Aw, the received baseband signal is
= 8; + m; + Tedl0st(E=1A0

The average over a codeword of lengfh n is

a =—Z7‘1

1—1
- an 4= Ze][0J+(l 1)Ad]
1—1
= an +C’I6J0J
i=1

where

C = _Ze(z—l)AG ’

1=1

nAf
sin (—) , AB
2 e](n—l)?'
A

7 81n ('—2-'

D
S—

And after cancelling we have
rl=ri—a=si+ni— i+ (1= C)e.
|1 — C| can be used as an indication of the cancelling effects, which is a function of A8 and

the codeword length n. |1 — C| versus Af with n as parameter is plotted in Fig. 3.5.

It is shown that the cancelhng region (where |1~ C| is near zero) is relatlvely wider
for small n. We also see that when A# > 0.2m, |1 - (] is almost unity, indicating no
cancelling at all. When Af < 0.057r about 3 dB cancellation may be obtained for n < 10.
Thus, in principle this tone jamming cancelhng scheme can work well when the frequency

offset is less than 2.5% of the total bandwidth in either direction.

3.5 Tone Jamming Cancelling by Adaptive Notch Filter

As mentioned in section 3.4, when there is a frequency offset of the tone jamming to carrier.

tone the jamming tone component in the baseband signal is a sinusoid. Its frequency is the
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difference between the jamming tone and the carrier frequency. Thus the received signal at

baseband can be modeled as:
7= st mg 4 TOHEDAD o g

where Af = (wg — wo)T‘b. A@ can be as large as 27. Bécause the s;’s are uncorrelated
with each other and n; is AWGN, the spectrum of s; + n; is much wider than that of the
tone jamming component. Hence 8; + n; and the jamming compoﬁent can be separated by
signal processing techniques. One method is to use an adaptive notch filter based on an
estimation of Af.

Because there are at least a few tens of bits in a hop, the amount of da.té which can
be used in estimation of Af is large. The simple FFT method can provide a good quality
estimation[9]. '

A notch filter which has a zero on the unit circle with an angle Af# can cancel the
jamming tone clearly if the estimation of Af is accurate. There are two problems associated
with the use of a notch filter. One is sensitivity to estimation errors, the other one is the
distortion of transmitted signalé. To reduce the sensitivity of estimation errors the stopband
of the notch filter should be wider. However, to reduce the distortion of useful signals the
stopband should be as narrow as possible. The basic solution to both problem is to improve
the estimation of Af. ' _

The pérformance of the notch filter cancelling scheme is illustrated by simulations.
The notch filter used in the simulations is a simple one-zero one-pole IIR filter. The zero is
on the unit circle with an angle of Af, and the pole is at re’d% and v < 1, i.e. the pole is
within the unit circle with the séme angle. The transfer function of the filter is

1— ejAaz-—l
H&) =y

The system diagram is shown in Fig. 3.6. The bit error rate versus Ej/Ng with 7
as a parameter, assuming no error in the estimation of Af, is shown in Fig. 3.7. Because
there are no estimation errors, the tohe jamming is cancelled completely. Thus BER is not
related to Ep/Ny. These curves can be viewed as the optimum performance that can be

achieved by the first order IIR filter. For comparison, the BER witliout a notch filter under
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tone jamming with E,/N ;=0 dB and without jamming are also plotted in Fig. 3.7. We can
see that when 7 = 0.9 there is about 5 dB performance loss for BER around 10~°. When
r = 0.99 the performance loss is very small. And the performance loss is very large for
r < 0.8 because of large signal distortion.

The bit error rate versus Ey /Ny, with r as parameter and with estimation error 0.05
rad and 0.025 rad, are plotted in Fig. 3.8 and Fig. 3.9 respectively. Ey/Np is 10.34 dB
(corresponding to BER = 10~° without jamming). These figures show that when the signal
is not much stronger than the jamming (FE,/Nj < 10 dB), there is more than one order of
improvement over BER by using a notch filter, i.e. BER drops from 10! to 10~2 or 1073,
But when the jamming is very much stronger than the signal, the notch filter can only
cancel a small part of tone jamming, and the cancellation does not work because of errors
in the estimation of Af. We can see that the smaller the estimation error, the stronger the
jamming that is needed to defeat notch filter cancellation. When a signal is much stronger
than the jamming, the filter distortion to useful signals is dominant, and therefore the BER
with notch filter is higher than BER without notch filter.

- It should be noted that the notch filter used in simulations is a first order IIR filter,
a very simple digital filter. Filters with higher order may have better performance. This
needs further investigation.

According to our simulation results, the following conclusions can be made: (1)
the notch filter can cancel tone jamming when jamming is not very strong; (2)it would
be beneficial to have channel state information of the jamming condition to switch on or
off the notch filter according to whether the hop is jammed or not (such side information
need not be perfect and may be obtained by using FFT); (3) randomn error correcting codes
may be needed to improve performance under jamming (it is also interesting to note that
notch filter cancellation makes it possible for error correcting codes to be effective, because
cancellation brings the BER from 107! to 10~ and error correcting codes can make the

BER drop to 107° with a reasonable code rate).

45



binary
data

- Differential

received

Encoder

»]|  PSK

data
—~—————

Modulator

Differential —
Demodulator

Notch Filter  }gg—

Figure 3.6: Notch filter tone jamming cancellation scheme.

Channel




DPSK (no notch filter) with

noise only —

Simulation “—

0.01 |— .\‘\\

‘\‘ \\L AN Xv\\
AN N : N
\\ \\ \\ AN
Py \9\
N Y%
- \ \K \ =050
0-001 \‘\\ \‘ \\
A\ RY N
LAY AY Y
A\ PN \
A\ \ \\
\\ \ \
o W X\
0.0001 @ \ X
\\ ‘\ \\
\ \ \
\ \ \
\ X \
r = 0.9 \
10-5 r=0.8
0 10 15
. Ey/No (dB)

Figure 3.7: BER of binary DPSK system with notch filter tone jamming cancellation scheme

versus Ey/No with r as parameter without estimation errors. A = /3.

47




No notch filter —
‘With notch filter Lo

S X
PR ¢ \
N N
' Q ;5 <{\ A\ . A, VS
. ‘ _ ' \ \ r.= 0.5
Py 0.01 : : Bi
)9\‘\ l ‘Q‘-—-—Q_/\ PN /3‘
SN S
N r = 0.8

0.001

0 0001 = - ‘
10 - -5 0 5 - 10 15
- - Ey/N; (dB)

20

' Figﬁre 3.8: BER of binary DPSK system with notch filter tone jamming cancellation scheme

versus B, /Ny and with T as parameter w1th estimation error 0 05 rad. A() =
filter notch at 1. 05 rad. '

48

1.0 rad, and




No notch filter 3=
With notch filter <—

1
E (]
N
8
AN X
R AY
AN \
AN\ \N]
R T webdy A NI W I A BBt
NN\ N »
\\ \ r=10.5
TR X
\&\M \‘
~ % o g s
P, [N L\\ T =0.8
r=10.9
0.001 5\ o=t
\\ -
\
\
N
N\
0.0001 \S{\
\
X
10-8
-10 -5 0 5 10 15 20
Ey/Ny (dB)

Figure 3.9: BER of binary DPSK system with notch filter tone jamming cancellation scheme
versus E, /Ny and with r as parameter with estimation error 0.025 rad. A8 = 1.0 rad, and
fiter notch at 1.025 rad.

49



3.6 Conclusion

The ba.lanced codmg based tone jamming cancellation scheme can work well when the tone
’ jamming frequency offset 1s very small. Thls scheme has little distortion on useful 81gna1s, ,

and the correspondrng performance loss is less than 2 dB. Belanced chmg can be combined -

with error correct1on codlng ,

The notch ﬁlter tone Jammlng cancellatlon scheme can cancel tone Jammlng with
‘arbrtrary frequency offset 1n the passband provrded there is- accurate estimation of the
" frequency oﬁ"set The notch filter has some distortion to useful 51gnals Therefore it is
better to switch it oﬁ' for hops w1thout Jammlng Notch filter cancellatlon can also make

. eTToT correctlon codmg effective.
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Chapter 4

Interleaving

4.1 Introdﬁction

Interleaving is the process of reordering a sequence of symbols in a one-to-one deterministic
manner so that any two symbols within a given separation in the input sequence are sepa-
rated by at least some minimum number of symbols in the output sequence. The concept
finds application in burét and fading channels where bursts of channel noise occur and the
action of the interleaver/deinterleaver is intended to randomize the resulting error patterns,
hopefully resulting in improved effectiveness of the codi ng. It is also used on intentional
interference (jamming) channels and a convenient assumption in the analysis of systems
on all these channels is that the use of interleaving renders the channels memoryless. In
practice the situation is not so simple and the analysis of coded systems employing finite
interleavers can be difficult. For example the use of a periodic interleaver on a jamming
channel, where the jammer hits only certain symbols in each period, might have a disastrous
effect on communication performance. In such applications one might have the choice of
using a random error correcting code with interleaving or a burst error correcting code with-
out interleaving. A burst error correcting code will typically have greater efficiency than a
random error correcting code for a givén burst length, but might have limited ability ability
to correct additional random errors. The behavior of either class of code when the burst
length exceeds either the burst correcting capability or interleaver/ code design capability
is sometirhes difficult to assess.

The amount of work on the design of interleavers appears to be limited and much
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of the interesting work is not in the open literature. The scope of this chapter is narrow be-

ing limited to presenting the basic principles and techniques for designing interleavers. The
more comphcated problem of ana,lyzmg the performance of coded systems using a partlcular

ﬁmte 1nter1eaver will be con31dered in later work. The sectlon 4.2 1nc1udes some elementa,ry

pr0pert1es and deﬁmtlons of interleavers. The following sectrons cons1der, respectively, de-

scriptions of block, convolutional and the more recent helical interleavers. The matemal for
this chapter i is drawn from the references hsted and a brief rev1eW of their contents mlght be

useful. The book of Clark and Cain [10] contains a discussion, on 111terleavers and systems

/ using them, although somewhat restrlcted in both the analysis and variety of interleavers

it con31ders The paper by Ramsey [11] discusses fundamental propertles of interleavers in

- -terms of delay and storage requlrements, as well as 1mp1ementatlons of some optlmal con-

~ volutional interleavers. Forney [12] suggests a particular type of convolutional mterleaver,

a special case of a more general class considered in [13]. Richer [14] discusses a particular

- type of pseudo-ra.ndom block interleaver. The report‘ [15] is quite far ranging, introducing

the notion of helical mterleavers and analyzing and comparlng their performance to stan-

dard 1nterleavers In addltlon it describes a block pseudo—random 111ter1eaver attrlbuted to

- McEliece as well as many other aspects of the 1mp1ementat10n and analysis of lnterleavers.

A rethod of randomizing the rows of a block interleaver is discussed in [17] and in [18] a,n‘ |

algorlthm for the design of a pseudo random interleaver with a certain dlstance property is

" consi dered

4.2 Pro‘perties' of Interleavers

A few properties that pertain to all interleavers are discussed, drawn mainly from the work

of Ramsey [11]. Since the terminology is not quite standard we introduce our own, We define
-~ a (b, n) interleaver as one that reorders a,ninput sequence so that any pair of 7 contiguous

symhols of the input is separated by at least b symbols at the output (i.e. at least b— 1

symbols between the pair) EquiValently, a (b, n) interleaver.is such that any contiguous o

sequence of b ‘symbols at the output contains no pair of symbols that lie in a contlguous

block of n symbols at the 1nput Notlce that, since the deinterleaver- restores the order of
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the original sequence with some delay, the deinterleaver of a (b,n) interleaver is an (n,b)
interleaver. To express the notions more formally, if the input sequence is ...a;_1@;ai41...
and the reordered sequence is ...a;;_,@;;@s,,,... (note that symbol a,; appeared in position
7 in the output and position 2; at the input and j > 2;) then a (b,n) interleaver has the
property that

|2i —2jl >n  whenever  [i—j| <b.

The terminology reflects the situation that if n is chosen as the block length of a code and b
as the maximum noise burst length on the channel, then for an isolated burst, no codeword
at the input to the decoder is hit more than once by the burst. Typically then b might be
chosen on the order of the maximum burst length, in symbols, expected on the channel and
n as the block length or constraint length of the code used.

To consider the delay of an interleaver, we first assume without loss of generality
that mz_in(z' — z;) = 0 where, as noted, since the interleaver is assumed to be realizable, 7 > ;.
Let the maximum delay experienced by a symbol'through the interleaver be d = max(j —z;).
Since the output sequence of the deinterleaver is a delayéd version of the input séquence to
the interleaver, say by D symbols, the sum of the delays of a symbol in the interleaver and
the deinterleaver is D. Since it is assumed there is at least one symbol with a delay of zero
through the interleaver, and similarly through the deinterleaver, the overall delay D is at
most d. Since there is at least one symbol with a delay of d in the interleaver the overall delay
is at least d and so the delay in the interleaver is the same as the delay in the deinterleaver
which is the same as the overall delay d. If the overall delay is d then when symbol a;
appears at the output of the deinterleaver, symbols a; 1, ai42, ..., @iyq must all have entered
the interleaver. It follows that the combined storage of the interleaver/ déinter]ea,ver is at
least d. It is a simple matter to show that the maximum delay of a (b,n) interleaver is
at least (b — 1)(n — 1) and to see this consider the location of the 7 contiguous symbols
@iGit1.+.0ipn—1 at the output of the interleaver. By definition there must be at least b — 1
symbols between each of these symbols at the output. The span of these symbols in the
output sequence is thus at least (n — 1)b. In the “worst” case the last symbol in the input

sequence is also the last symbol in this output sequence and the maximum delay must
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therefore be at least (n — l)b —-(n=1)= (n —1)(b—1). It is also noted in [13] that the
average delay of a (b,n) mterleaver is at least (n - 1)(b —1)/2. The period of a perlodrc
interleaver is the minimum sequence length for which the entire pattern of delays repeats. It

is-noted, again'in [13], that the period of a (b, n) interleaver is at least nun(b n) The depth

[15] of an interleaver is defined as one less than the shortest burst length which can hit-any |

codeword twice, where it 1s assumed that the interleaver input is divided into codewords.
These delay arguments are sllghtly refined in [11]. 'An interleaver is defined to be
uniform if there is 1o set of (b+1) contiguous symbols in the output sequence for Wthh every

pair of symbols is separated by at least n symbols in the input sequence If the 1nter]eaver

is not uniform 1t is referred to as nonuniform. It is shown in [11] that the encoding delay of .

a uniform (b, n) interleaver is at least (b 1)(n+ 1) and for a nonunrform is at least b(n+ 1). :

It is also shown that the deinterleaver for any (b,n) interleaver that achreves the minimum

possrble encodlng delay is an (n,b) interleaver which also achieves the m1n1mumpossrble :

encodmg delay.

An interleaver / de1nterleaver pair is called optimum if it achieves both the minimum ‘
encoding delay and the minimum combined. storage requirements. Optlmum 1nterleavers v

_are given -in [11] for all pairs n,b that satisfy certain relative primeness conditions. The -

realizations of these interleavers are in terms of one long shift registér. The work of Forney
([12],[13]) realizes the interleaving by means:of shorter registers and commutators. ‘These

will be considered in the section 4.4 on convolutional interleavers.

4.3 Block Interleavers . :

The usual (b,n) block interleaver consists of an array of n rows and b columns. The symbols .'
are read into the array by columns and out by rows and 1t is assumed the upper left symbol .

is the first read in and the first read out. Any burst of fewer than b errors on the channel

results in errors separated by at least 7 symbols at the output of the delnterleaver Labeling
' the rows of the array from 0 to n—1 and the columns from 0 to b— 1,thena symbol in posrtron
(4, k) recerves a delay of nb+(b— 1)] (n—1)k at the interleaver and nb+ (n k- (b 1)j

at the demterleaver. The characters at the top left and lower right each rece1ve. a delay of
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nb symbols at both the interleaver and deinterleaver, assuming the array is filled before any
symbols are read out. The minimum delay of the interleaver occurs for the symbol in the
upper right hand corner and is 6 4+ n — 1. At the deinterleaver this element experiences a
delay of 2nb— b —n 4 1 for a total delay of 2nb. From previous considerations it is possible
to arrange matters so that the delay at both the transmitter and receiver is reduced by
b+ n — 1 to give a total delay of 2(n — 1)(b — 1), twice the minimum possible established
earlier. It is easy to see that it is not necessary to wait until the array is completely filled
before beginning the read out process and a simple strategy achieves the reduction in the
delay.

The obvious implementation of this block interleaver might use two n X b RAM’s
and ping-pong back and forth. In [15] the following one-RAM implementation is given.
View the addresses of the RAM as the integers modulo nb — 1, running sequentially down
the columns and moving from the bottom of one column to the top of the next. This is
augmented by the special symbol oo corresponding to the lower right location. At any
location the symbol is first read and then replaced by an incoming symbol. The procedure

works by passes. On the zeroth pass, symbols are read in only with the address sequence
0,1,2,--,nb — 2, 0.

On the first pass, the above address sequence is multiplied by n, all addresses taken modulo

nb — 1. On the kth pass the address sequence is
0,72%,2nF ... (nb - 2)n*, 00

modulo nb — 1. Clearly the period of the address sequence generator is the multiplicative

order of n modulo nb—1. Similarly, the address sequence on the kth pass for the deinterleaver

s

0, b%,2b%, ..., (nb — 2)b*, 00

and note that, since nb = 1 modulo (nb — 1), the multiplicative orders of n and b modulo
nb—1 are the same. Notice that the storage capacity of the interleaver and the deinterleaver

are the same, nb, approximately one half of the total delay d = 2(n — 1)(b — 1), and hence
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close to optimum. It IS not clear to the author how to achieve the optlmum 1mplementat10n,

, assummg it exists for this structure. v _
For some apphcatlons a perlodrc mter]eaver is unsultable due to elther 1ntent10na1
or umntentlonal periodicities in the ;nterference. For such appllcat;ons pseudo-random
interleavers will be of interest. A scheme due to McEliece, reported in [15) is described.
A RAM of size mel‘ is used. The address sequence is taken from the lower (m — 1) bits
of an m bit maximum length linear feedback shift register, except for the.state labeled g
where the (m —,-'1) low order bits are zero and the mth bit is one. The period of the address
generator is clearly' 2™ — 1 and the delays encountered by bits going through the interleaver
are uniforrrrly distributed among the integers 1,2,...,2™ — 1. To 'see this recall that the
state of the register at time ¢ may be assumed to be o where ‘@ is' a root df the prirhitive
polynom1a1 of the shift register. If of = ,3 then the character wlnch enters the RAM at time
1 leaves the RAM at time 7 where '

— a + IB
for a delay of 6 = 7 — 2. Consequently
o =1+ pa"t
or ‘ '
ot = L
1+ab

" As 6 runs through 0 < 6 < 2™ — 1, the values of o obtamed are distinct, mdlcatmg that

- once in every period (length 2™ — 1) one symbol experiences a delay of §. Notice that every
address of the RAM is generated twice every period of the shift registerv except the all

zero address, correspondmg to ,B which is generated only once. Characters in this address

experlence the full delay of 2’“ —1. To maintain the full delay of tr ansmltter and receiver at

9™ — 1 either the mterleaver or demterleaver must be modified so that the symbol destlned‘

for this zero address bypasses the RAM altogether -a delay of zero.
Notice that the depth of this interleaver is one, i.e. it is possible for a burst of length
two on the channel to h1t the same codeword, and all delays are realized.

* A similar type of pseudo-random interleaver has been proposed ([1,0];[14]). Here a

sequence of L symbols is.read into a RAM sequentially and then read out according to-
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some permutation. It is suggested in [14] that the permutation used correspond to a linear
congruence:

Apy1 =aA, + ¢ mod L

which generates a sequence of integers from 0 to L — 1. To obtain all the integers from 0 to

L — 1 i.e. obtain a maximum length sequence, a and ¢ must be chosen as follows [16]:
i) a,e< L
ii) (e,L) =1
iii) if p|L then pj(a — 1)
iv) if 4|L then p{(a — 1)

Such an approach is convenient for implementation. For example, in an intentional inter-
ference environment it will be desirable to change the permutation frequently, necessitaiing
storage of the permutations. The above approach requires only the storage of pairs (a,c)
representing the complete permutation. V

There have been two more recent contributions to pseudo-random interleaving. In
[17] it is noted that in a periodic (b,n) block interleaver, for ekample,_ a burst of length
exceeding b will manifest itself as a burst in the deinterleaver output. I such occasional
long channel bursts are anticipated and a burst error-correcting code of sufficient strength
is used, then, as noted previously, good system performance is expected. If a random error
correcting code is used, however, then such bursts may lead to degraded performance. In an
attempt to make such bursts at the output of the deinterleaver appear more random, it is
suggested in [17] that the rows of a block interleaver be read out in a random manner rather
periodic. There, a parameter a is chosen and ¢, defined by n = ag + 7,0 < r < a,q > 0.
If #;; is the number of rows transmitted between the transmission of row 7 and j and
t= 1e~§r|liﬂl~1t"j’ then ¢ is the minimum number of rows transmitted between any two rows
that are within a of each other in the array. Alternatively if each row of the (b,n) block
interleaver is treated as one symbol, then what is required is a (¢, ) interleaver operating on

the rows. This is actually a concatenated interleaver, discussed briefly later in section 4.5 on
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hehcal 1nterlea,v1ng In [17] it is shown that t cannot be grea,ter than ¢— -1 and an a,lgorlthm
s g1ven tha,t a,chleves thls upper bound.

~ Recall that for a perxodlc block. mterleaver, a certam minimum sepa,ra,tlon at the

lnterlea,ver output of any pair of symbols within a glven span at the input can be a,ssured For

: pseudo random 1nterleavers thlS is not the case and, for example for the 1mp1ementatlon

of Mthece [15] the depth is one, as noted a,nd the delays are umformly distributed. . In

[18] a RAM read out/read in implementation of a pseudo-random interleaver is considered

and an algonthm is given that is both pseudo—random and attempts to guarantee a g1ven '

“depth. The approach is 1nterest1ng' but is not pursued here.~
4.4 Convolutional Interleavers

In contrast to the block mterlea,vers of the previous section, convolutional 1nterlea,vers utlhze

B shift reglsters or delay hnes Da,ta, is-fed through on a contlnuous basis with va,rlous sta,ges

‘being ta,pped sequentlally It rema,lns only to arrange the taps and the commutator sequence
to ensure all data symbols are transmitted w1th an a,pproprla,te dela,y Only the interleavers

of Forney ([12] [13]) will be described here The work of Ramsey [11] a,ppea,rs similar in

spirit a,lthough no formal equlvalence between the two a,pproa,ches has been established -

to our knowledge Essentla,lly Ra,msey utilizes one long. Shlft 1eglster with certain sta,ges
tapped at certa,m times while Forney con51ders a horlzonta,l ba,nk of sluft registers of va,rylng
lengths with the output of each reglster transmltted sequentlally on the channel.

A simple version of Forney’s scheme will be considered [12]. Symbols are first divided
into blocks of length P and it 1s convement to view thls as a serla,l to- pa,rallel conversion.
The ith symbol of each block is fed into-a shift register of length iD, ¢ = 0,1,..P~1. The
~ outputs of the P shift reglsters are sampled sequentially (parallel~to-ser1al conversion) and
transmitted on the ch/a,nnel.A The structure of the deinterleaver is simila,r' except-that the ith

element of each block enters a shift register of length (P~1-14)D',i=0, 1;, ..P —1. Each

symbol receives a total del.ay‘ of(P -1)D time units (each unit corresponding to P symbols)

~or (P —1)DP symbols and the total storage requirements of interleaver and deinterleaver

is. (P — 1)DVP.>In our previous terminology we would identify n _vﬁth DP and b with P and

‘58‘




refer to this as a (b,n) interleaver. _

A more general version of this interleaver that will have implementation advantages
in some situations is described in [13]. Retaining the same notation as above we describe a
(P, D, m) modular interleaver as follows (here m is a new parameter with the property that
1<m< P-1,(P,m)=1and (P,mD+1)=1). Let r; = immod P, i =0,1,...,P—1 and
note that, by assumption, m is a unit in the set of integers mod P and so {r¢,71,+*,7p—1} =
{0,1,..., P — 1}. The interleaver thus consists of a serial-to-parallel converter, converting
to parallel blocks of size P, and the ith symbol of each block is fed into a shift register of
length d; = r;D,i = 0,1,..., P — 1. The outputs of the shift registers are then parallel to
serial converted for transmission on the channel.

Note that this modular interleaver is a permuted version of the first one described
i.e. all the shift registers of the varying lengths occur but in a different order. The previous
one would then be an (P, D,1) interleaver. Thus, as before, the period of the interleaver
is P, the maximum delay is (P — 1)DP and the average delay is (P — 1)DP/2. If one
defines m~',k and k7! by the equations mm™! = 1mod P, k(mD + 1) = —m mod P

~and kk™' = 1 mod P respectively (note that by assumption, k! exists), then it can be

shown that the inverse of a (P, D, m) interleaver is a (P, D, k) interleaver, and if k = m (i.e.
mD = —2 mod P then the (P, D, m) interleaver is its own inverse.

It is sometimes possible to realize modular interleavers as a cascade of two in-
terleavers. Suppose P = PP, and (Pi,P2) = 1. Then the first interleaver uses delays
1P D,0 <1< Py — 1 and a second uses delays 7D,0 < j < Py — 1 ensuring that in a P
symbol interval a delay of kD is experienced by one symbol, k = 0,1,...P—1. If (P1, Py) > 1
then let b be the smallest integer such that the least common multiple of P; and bP, is P.
Then the first interleaver uses delays ¢P;.D but operates on b symbol groups i.e. the b sym-
bols in the 7th group of each bP, symbol block experiences a delay of iP; D, = 0,1, ..., P,—1.
The period of the second interleaver is still Py with delays of D,0<j < Py —1.

It has been observed that the periodic interleavers might not be suitable for jamming
channels where a periodic jammer would be very effective. To alleviate this problem it is
suggested in [13] that the ith delay path might be modified t6 ha\;e delay ¢D + j;, 7 =

0,1,...,P — 1, where the j; are small integers.
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: Figurc 4.1‘: Helica,l inferleaVer, n = 4.

Itis noted that it is only necessary for the demterleavers to estabhsh synchromsm

modulo P for these modular interleavers, an Jmprovement from the block interleavers where

lsynchromsm modulo nb is reqmred,«usua,lly neces51tat1ng the insertion of speclal synchro-

" nization sequences.
4.5 Helical Interleavers

Hehcal interleavers are very similar to block mterleavers w1th successive columns shpped by

one symbol. Figure 4.1, taken from [15], illustrates the technique.

Symbols are read in by columns of length four (say codewords) and read out by ’

rows. In general the columns will be of length n and the number of columns will be n — 1,

Thus there is not the ﬂe}{lbility of choosjng the “width” of the helical interleavér.

The czipital and 10wer case letters represent the same physica,l location of 'memory :

- and it is easﬂy verified tha‘c such an ass1gnment works as claimed. Flgure 4.2 demonstrates '

_the order of the symbols into and out of the mterleaver/de1nterleavel It is clea.l that the
interleaver of Flgure 4.1 hasa penod of 12, a minimum delay of 3, a ma,XJmum delay of 9

 and can be implemented with a RAM of size 6.

- To extrapolate from Figure 4.1, con51der thev‘lengtll 6 interleaver of Figure 4.3. ‘

The inherent symmetries of the helical interleaver are clear and the RAM size re-

quired for the helical interleaver of length 7 is n(n — 1)/2, the niinimum/delay isn—1, the |
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Figure 4.2: Input/output of helical interleaver, n = 4, period 12 and overall delay 12.
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Figure 4.4: Helical interleaver memory read-in sequence, n = 4.
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Figure 4.5: Helical interleaver memory address generation, n = 4, |

maximum delay is (n — 1)? and the total interleaving delay is n(n — 1). In our previous
terminology this would be referred to as an (n — 1,n) interleaver.

The total interleaving delay of a helical interleaver can in fact be reduced' to (n —
1)(n—2) + 2, close to the minimum maximum delay established earlier of (n — 1)(n — 2).
An example [15] of the RAM.organiza,tion and address assignment that aclliei/es this delay,
and also reduces the memofy requirement to 4 (frorﬁ 6) for the case of n = 4, are given in
Figures 4.4 and 4.5. This address assignment technique is easy to extend for the case of n

even and appears more difficult for n odd.

The advantages of helical interleavers appear to lie in the reduced synchronization
requirements, compared to block interleavers, and their relatively simple memory imple-

mentations.
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Figure 4.7: The effect of shallow staggering for n = 4,7 = 2.

The concatenation of helical interleavers with block interleavers is also considered
in [15]. If a block interleaver precedes a helical interleaver, the combination is referred to
as deep staggered interleaving. If a code of length n symbols is used and an (i,n) block
interleaver is used, then the depth of the deep staggered interleaver is (n — 1)i. At the
output of the block interleaver, each block of i symbols is treated as a single character to
the helical interleaver. Thus the memory and total delay of the two helical interleavers
is n(n — 1)¢ input symbols and the memory and total delay of the two block interleavers
is 2ni symbols. The staircase effect of the deep staggering is depicted in Figure 4.6, for
n = 4,1 = 3, where the step size is elongated with respect to the usual helical interleaver.
Interchanging the block and helical interleavers yields a shallow staggered interleaver. I
the code has length ni symbols then each ¢ consecutive input symbols is treated as a single
character for the helical interleaver. The block interleaver uses a block length of ¢ and is of
depth n — 1. The memory and total delay of the two helical interleavers is then n(n — 1)
symbols and the memory and total delay of the two block interleavers is 2(n — 1)i symbols.
The staircase effect of shallow staggering is depicted in Figure 4.7 for n = 4,7 = 2 where

the elongated step riser is observed.
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4.6 Comments

This chapter has attempted to survey interleaver design techniques. Since the essence of

interleaving is the implementation of variable delay, it is natural to realize them in terms ’

of delay lines. It is commented in [15] that when the delay lines begin to exceed several

tens of thousands of bits long then a RAM implementation may be more effective. At this

point one is advised to abandon the delay line concept and design the interleaver from the

beginning from a RAM point of view.

The actual performance of an interleaver in a system seems difficult to assess and

'depends on the actual distribution of delays rather than just the parameters b and n for
example. One would like a graceful degradation of performance as the designed burst length
is exceeded. It is hoped to further investigate interleaver properties and their impact on

system performance in future studies.
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Chapter 5

Coding and Diversity

5.1 Introduction

The purpose of this chapter is to consider certain questions on the trade-off between di-
versity and coding for systems, such as spread spectrum systems, where a low code rate
is anticipated. Ultimately, the aim is to determine actual performance trade-offs in terms
of signal-to-noise ratios and probability of error. For this report however, only distance
properties of codes, both block and convolutional, will be examined.

The work finds its origin in the interesting paper of Chase[19] who showed that in
some cases when a low rate code is to be used there is very little penalty in terms of code
distance, if any, in using a higher rate code and replicating the code symbols (diversity)
to achieve a lower rate. While this observation was not a focus of that work it appears
to be an interesting one. The advantages of using a higher rate code with diversity is
the lower complexity of the decoder. This theme is expanded upon here. Specifically, the
trade-off between diversity and coding for codes over nonbinary alphabets is considered
from the point of view of minimum distance. The section 5.2 investigates this question
for convolutional codes. It begins with a closer look at the Heller bound for convolutional
codes over Fy. Punctured convolutional codes are also considered to obtain good initial
higher rate codes. Section 5.3 briefly considers the same problem for block codes where,
for simplicity, only Reed-Solomon codes are considered. The section 5.4 considers future

directions for this work.
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5.2 Diversity and Convolutional VCodes‘

A more géneral version of the Heller[20] bound for convolutional codes is first derived
using a trivial extension of an argument in Ryan and Wilson[él]. Some implications of the
bound are then considered and the question of the trade-off between diversity and coding
is investigated using the bound. A subsidiary question of codes over a,lpha,betslof different

sizes is also considered.

5.2.1  The Heller Bqund

The Heller bound is proved in [21] using the Plotkin bound which, in its general form states
that for a code (linear or nonlinear) with M codewords over Fy, the minimum distance
between any two codewords, d, is upper bounded by
d< M_(q:_l_)n .
(M ~1)q

The bound is essentially a reﬂection of the fact that the ' minimum distance cannot be greater
than the average distance between codewords. _

To apply this to convolutional codes of rafe b/n over F, wi'th/ merﬁory m=K - 1,
the code generator circuit is viewed as haviﬁg b shift registers, each of 1ength k with n
output é,dders with connections to the b register cells. The generator matrix of the code
may be viewed in thé form | » |

BEE T
G=10 & oy B,

where each g is a b X n matrix over F;. Consider input words of length (m + L)b symbols
comprising Lb data symbols followed by mb zeros. This gives rise to ¢ — 1 nonzero

codewords of length (m + {)n. Applying the Plotkin bound to this situation then yields

Lb

¢ (¢g—1)
de < =224
= =T

and since L can be chosen as an arbitrary positive integer and dy is an integer, we have

¢ (g - 1)
(qu - l)q

(m+ L)n

df SH%HL

(m+ L)nj .
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The bound appears to be the strongest for b = 1 i.e. for codes of rate 1/n for which it

becomes
" (g-1)
(¢f-1)

It is observed in [21] that for most cases the minimization of Equation (5.1) is

(m+ L)n| . (5.1)

obtained for values of L of 1 or 2 where L is the data sequence length. This situation is

first investigated. For L =1 the bound is (recall that m = K — 1)
dl) < nk

and in many cases that will be of interest here, this bound is actually achieved. For L = 2

Equation (5.1) becomes

@ o de-1) 4
d;’ < | 1 (K + 1)n] I‘(q+ 1)(Ix + 1)n|
which can be manipulated to
-k
d? < |aK + n(Z : 5.2
P < Lok + (2] 5.2

The argument in Equation (5.2) is less than nK iff K > ¢, requiring the considera-
tion of paths of length at least 2.
When L = 3 the argument in Equation (5.1) is

I
1
L—)-(I’ +2)n = (K +2)n — Eqs 3(1& +2)n
and the bound can be manipulated to
dY) < |nK +(q- 1)n (& qK(q + 1)}J (5.3)

It is an easy matter to verify that dg‘s) < dg?) if K > ¢+ q—1 and also that if K >
2¢*/(g+1) = 2(g - 1) +2/(g+1) or K > 2¢— 1, then d < d{".

From such arguments a clear picture emerges as to when path lengths greater than
one must be considered to achieve dy. For the remainder of this section interest will be
largely in convolutional codes over Fy that achieve df = nJ and so these observations
are not of direct interest. It is likely however that they will become important for later

investigations.
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K  Ratel/2 Rate 1/4

df dbound df dpound
3 5 5 10 10
4 6 6 13 13
5 7 8 16 16
6 8 -8 18 18
7 10 10 20 20
8 10 11 22 22
9 12 12 24 24
10 12 13 27 27
11 14 " 14 29 - 29
12 15 16 o 32 32
13 16 16 33 33
14 16 17 36 36

Table 5.1: Maximum free distance for rate 1/2 and 1/4 binary codes (Larsen[22]).

5.2.2 Diversity versus Coding

The question of the trade-off between diversity and coding is considered from an elementary
point of view in that codes are compared for free distance. While simplistic, this approach is

adequate for the present purpose. Denote by r the rate of a convolutional code and by [ the

~ order of diversity i.e. each symbol is repeated ! times and by (r,!) a combination of coding

and diversity to give an overall code rate of r/l. The purpose here is to determine under
~ what conditions it is possible to achieve the same, or similar, dy with an (r,!) combination
as with coding alone. The complexity of decoding a convolutional code of rate 1/n over
Fy with memory m (shift register léngth K=m+1)is proportional to ¢X—1, and this
quantity will be independent of the code rate fof the codes of interest here. Nonetheless

when using a low code rate there may be advé,ntages to implémenting it as a high rate

code with diversity. Although the Viterbi decoder will have the same number of stat.es,'

the implementation can take advantage of the diversity to achieve simplifications. Consider
first the work of Larsen[22] who found, by computer search, rate 1 /2, 1/3 and 1/4 binary
codes that achieve maximal free distance. Part of those results are reproduced in Table 5.1

where the bound is that of Equation (5.1) for the appropriate parameters.

68




I dy  dyound
1 10 10

2 20 20

4 40 41

8 80 82
16 160 164
32 320 329
64 640 658

Table 5.2: The coding/diversity example of Chase[19].

It is seen that in most cases the bound is close to being achieved and that in some
cases the best rate 1/4 code can be achieved by using a rate 1/2 code with diversity ! = 2
diversity.

In a similar vein, Table 5.2 shows the observation of Chase[19]. Starting from the
well known rate 1/2, K = 7,dy = 10 code, the minimum distance achieved using diversity

! = 2! is compared with the bound of Equation (5.1).

It is noted that the relative difference between the distance achieved with diversity
is small compared to the maximum possible by the bound of Equation of (5.1). It is not
known if the bound is tight for the very low rates but it is clear from this information that
it would be easier to implement the rate 1/2 code with diversity 2 than the best rate 1/2¢
code. Again the evidence indicates that it will involve very little loss to implement the high
rate code with diversity compared to the corresponding low rate code.

A few comments on the g-ary case will support the same general conclusion. It
appears from equations (5.1) to (5.3) that for ¢ > K, rate 1/n codes exist over F, with
ds = nK. In the following this will be assumed to be the case without specific mention of
it.

For rate 1/2 codes, dy = 2K and for rate 1/4 codes d; = 4K. Clearly the rate 1/4
codes are easily achieved by using a rate 1/2 code with 2 diversity i.e. a (1/2,2) code rather
than designing a rate 1/4 code. It is also possible to consider starting with a rate 3/4 code -
and using a 3-diversity i.e. a (3/4,3) code. Since the free distance cannot be improved upon

and the simplest way to achieve the rate 3/4 code would be to puncture a rate 1/2 code,
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(2/3,2) 1/3
K d - 2d; dy
2 3 6 6
3 4 8 9
4 6 12 12
5 7 14 15
6 9 18 18
7 10 10 21
8 12 24 24

Table 5.3: Rate 1/3 g-ary codes.

there seems little point in pursuing this approach. -

For a rate 1/3 code it appears they can be constructed with d r=38Kforallg > K.
In fact they can be constructed by puncturing every fourth symbol of the rate 1/4 code
(which we have observed can be constructed as a (1/2,2) code) and this does indeed yield
a code with dy = 3K. To illustrate another (inferior)‘a,pproa,ch consider the following. For
the rate 1/2 code, puncture every fourth symbol to yield a rate 2/3 code. Use this code in
a (2/3,2) code to give a rate 1/3 code. The free distances achievable by this approach are
shown in Table 5.3. :

As noted previously it is assumed that ¢ is sufficiently large (> 8) to allow the

existence of maximal ds codes.

- Consider next the rate 1 /6 codes. Clearly the maximum free distance of 6J{ can be

achieved by using either a maximum distance rate 1/2 code and 3 diversity or a maximum

rate 1/3 code and diversity 2. The rate 2/3 code mentioned previously obtained by punc-
turing might also be used with 4 diversity to give the results of Table 5.4, in which only

the codes for even values of K give the maximum free distance and for K odd have a free

distance of two less than the maximum possible.

Rate 1/5 codes with maximum free distance can be obtained 'by puncturing every

sixth symbol from a maximum free distance rate 1 /6 code.
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K d 4d d;=6K
2 3 12 12 -
3.4 16 18
4 6 24 A
5 7 28 30
6 9 36 36
7 10 40 @ 42
8 12 48 48

Table 5.4: dy for the (2/3,4) codes compared to the 1/6 codes.

5.2.3 The Role of the Alphabet Size

Implicit in much of the discussion found in the literature on g-ary convolutional codes is the
notion that ¢ is chosen so that some natural modulation scheme such as ¢-FSK or ¢-PSK is
to be used. For ¢-ary block codes, however, in particular Reed-Solomon codes, it is not at all
uncommon for g-ary symbols to be transmitted as bit streams by some binary modulation
scheme. This section initiates a discussion on the problem by considering the construction
of codes to be transmitted for one value of ¢ but constructed from another value of ¢. The
discussion is very preliminary and only one simple example is considered as an introduction
to the kind of problems of interest.

Consider a rate 1/2 code over Fy, for i =4 and dy = 8. The code could be decoded
using a Viterbi decoder with 82 states (high by current practice). If pairs of symbols are
grouped together and interpreted as symbols of Fgy, the coded stream can be viewed as
coming from a rate 1/2 code over Fgq,dy = 4 although some caution is required for this
interpretation. There may be some advantage to reviewing the relationship between ¢ and

the modulation system used. Again the determining factor will be in the error performance.

5.3 Diversity and Reed-Solomon Codes

The arguments of the preceeding section can be repeated for block codes. It is easier and
more instructive to deal only with Reed-Solomon codes. The extended Reed-Solomon codes

over Fy have the parameters: length = ¢, dimension k¥ and minimum distance = ¢ — k + 1.
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Assume that a low rate code r = k/q is to be used with distance ¢ — k + 1. The minimum

distance is relatively high and the code is capable of correcting many errors, implying a
‘relatively complex decoding algorithm. Suppose now that [-diversity is used i.e. a (kl/g,!)
codé/ diversity combination, kI < . The minimum distance of this code (now of length lg)
is (g — lk +1). The structure of this codé might allow novel uses of the diversity before
using the lower error correction capability of the code. Notice that the minimum distance of
the (kl/q,!) code is greater than that of the coded case only when lg— 2k +.l >q¢—k+1lor
when k£ < (¢+1)/(m +1). For example, when [ = 3 and ¢ = 256 this gives k < 257/4 = 64
indicating that perhaps the code with diversity has an adva‘nltage over the pﬁre code case
for these parameters.

Notice that although the (Ik/g,!) decoder is less complex than the k/g code, since
it is required to correct far fewer errors, it does in fact have an effective block length of
[ times that of the pure code case. It is argued however that this extra length does not
’sig'niﬁca,ntly add to the decoder compléxity and the comparison of the two systems is fair.

Again the final determination between the two systems will be in the error pér’for-
mance which in turn will depend on how the diversity information is used in the receiver.

These are topics for future investigatioh.

5.4 Comments

This initial investigation has considered the trade-off between diversity and coding from

the point of view of minimum distance for both block and convolutional codes. Of more

importance is the translation of the trade-offs considered here into an understanding of how

it affects system performance on a variety of channels, such as the additive white Gaussian
noise, Rayleigh fading and interference channels. Future work will consider these questions

and attempt to determine guidelines for this trade-off.
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Chapter 6

Repeated Convolutional Codes for
High Error Rate Channel

6.1 Introduction

In this chapter, we consider error correction schemes that can correct errors at the output
of a high error rate channel. Such a large channel error rate may result from the presense of
strong interference or jamming. Conventional error correction schemes, such as the widely
used constraint length 7 and rate 1/2 binary convolutional code due to Odenwalder[23]
which is an international standard[24], may fail in such situations. It is clear that a low rate
code must be used for such a channel by considering the channel capacity or cutoff rate.
Recently, Kasami, et al have considered a cascaded coding scheme for a binary
symmetric channel (BSC) with a large error probability pe [25]. Their scheme consists of
two linear block codes. The inner code (closer to the channel) is a binary code and the
outer code is.a Reed-Solomon (RS) code. The parameters of the inner and outer codes have
to be properly chosen to match each other in order to obtain a good performance. It turns
out that for a large pe whether a coding scheme works or not is very sensitive td Pe. For
example, in [25], a scheme that consists of (63,31) RS outer code and (32, 6) biorthogonal
inner code works well at p, = 0.2 but will not work at p. = 0.3. The sensitivity to the values
of p. and the somewhat rigid structure of the cascaded scheme implies that we should know
Pe before designing a coding scheme. Also, two encoder/decoder systems are needed for a

cascaded scheme. In a jamming environment, however, it is hardly possible to predict pe.
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Thus a system that can easily adépt to the actual p. would be desirable.

In 1977, Shaft searched low fate convolutional codes and considered their use to
combét burst interference[26]. Use of repeated convolutional codes seemed to be favored. In
1985, Chase propose& thé scheme again for BSC more clearly with well made arguments[19].
To show that repeated binary convolutional codes are near optimum, both Shaft and Chase
compared their free distances with Heller’s bound for binary convolutional codes[20]. Chase
also made a comparison of code rates with the channel capacity of BSC.

Nevertheless, there are still some practical problems that need to be addressed.
For instance, for the BSC, if each code symbol is Tepeated m times, maximum likelihood

decoding requires m + 1 levels of quantization. Since m can be very large for a high channel

error rate and practical convolutional decoders have a finite, and likely a smaller number

of quantization levels, what is the correspb_nding performance degradation? Further, can
we use a repéated binary convolutional code for an M-ary symmetric channel (MSC) and
what is the best way to generate a binary decoding metric for use in the binary decoder?
This question is motivated by the fact there are comrhercially available binary codecs at
high speed and considerable efforts are being made to further improve the speed and reduce
the cost of such codecs. _

In this chapter, we consider repeated convolutional codes for an MSC (with BSC
as a special case) with a large error probability pe; The value of p. can be near, but éma]ler
tha,n,l 1 —1/M for which the channel capacity is zero. In Section 6.2, we focus on thé
BSC and begin with a conventional analysis based on the union bound for BSC. For a
large m, the central limit theorem is applied to provide‘another analytical tool. In Section

6.3, Monte Carlo simulation results for BSC are provided and compared with theoretical

analyses. The quantization effect is shown. Based on these results, we compare the code

‘ rates of repeated convolutional code with the channel cutoff rate. In Section 6.4 we consider
the use of a binary code over an MSC. The emphasis is placed on the methods to generate

binary decoding metrics and their performances.

4




6.2 Theoretical Analysis for BSC

In this paper, we are particularly interested in the above mentiqned Odenwalder rate 1/2
constraint length 7 convolutional code. The single-chip encoder/Viterbi decoder is com-
mercially available at a low price from several sources. The decoder normally has up to
eight levels of quantization. We consider the Viterbi decoding which is maximum likelihood
decoding when infinite quantization is assumed. Each M-ary channel symbol is repeated
m times. We call m the repetition order.

In the case of BSC, for each encoded symbol, it is repeated m times over a BSC.
The BSC is assumed to have a large error probability (transition probability) p. which is
in the neighborhood of 0.1 or higher, but of course, smaller than 0.5. BSC is a proper
channel model for anti-jam communication systems with complex demultiplexing between
demodulator and decoder. In such a situation, the decoder has to cope with a hard decision
channel and explicit and/or implicit interleaving/deinterleaving makes the errors random.
One example of possible implicit interleaving/deinterleaving is a multiplexed multi-user sys-
tem where each user has a decoder after demultiplexing.

It is clear that for two trellis paths at Hamming distance d, the repetition of order
m will increase the distance to d X m. It is well known that the decoder output bit error
rate (BER) P, can be upperbounded by an exponentially tight union bound. Specifically,
suppose the Py is the pairwise error probability of two trellis paths with Hamming distance

d, then

Py < E CyPinm (6.1)
d=dfree

where dfye is the free distance of the convolutional code and Cjy is the total number of
information bit errors when pairwise errors between paths with Hamming distance d occur.
For the Odenwalder code, Cy is nonzero only for even d and d > 10, since dyye = 10. Over
the BSC, for an even d,

1{ d d d\ ; »

Py=x PP -pe) 4 Y | T )P - pe)t (62)
2\ d/2 , i
. i=d/241

C4 can be found by expanding the transfer function of the convolutional code or using

computer search through the trellis of the code. For the Odenwalder code, the first nine

75




terms are[4]: Cl() = 36, 012 = 211, 014 = 1;404, 016 = 11, 633, 018 = 77,433, 020 =
502,690, Cag = 3,322,763, Cyy = 21,292,910, Cos = 134,365,911.

Using Equations (6.1) and (6.2), for m = 3, 7 and 15, respectively, P, is plotted -

versus p, for the Odenwalder code in Fig. 6.1,ﬁsing the first term, the first four terms and
the first niné terms of Cy, respectively. It can be seen from the figure that nine térms of the
transfer function provides a sufficiently accurate bound, especially at a low P,. The results
using the first nine terms are used in the rest of the paper. In fé'..ct, it has been known
that the union bound provides an accurate approximation for a low P, provided enough
quantization levels are available to facilitate the maximum likelihood decoding (MLD) For

MLD it is well known that the decoding metric should be S
mty = Zrki ‘ | (6.3)
i=1
where r; is the received i-th repeated symbol (0 or 1) over the BSC for k-th convolutional
encoded symbol. Here mi; = 0 represents the k-th encoded symbol to be most likely a 0
and mt; = m represents the k-th encoded symbol to be most likely a 1. For eight levels
of quantization from 0 to 7 (where 0 represents the most reliable logic 0 and 7 represents
the most reliable logic 1), uniform quantization is natural and reasonable. Then, the above
metric is modified as .
t = ==L :—1 w7405 ' (6.4)
where |z] is the largest integer not exceedmg T.
As mentjoned earlier, the repetition order m must be large in order to correct the
errors with a large probability p.. For a large m we may apply the central limit theorem or
the Gaﬁssian approximation of tﬁe binomial probability distribution. Consider the following

metric which is equivalent to Equation (6.3)

1—m( 1)7';" ' A
o = = | (6.5)
Note that (—1)" has a mean E = 1—2p, (= (1 — pe) X 1 + pe X (—1)) if the k-th encoded
symbol is 0, and a mean E = —(1 — 2p,) if the k-th encoded symbol is 1. The variance is

the same and is given by
= [1 = (1 = 2pe)l(1 = pe) + [-1 — (1 = 2pc)pe = 4pe(1 — pe). (6.6)
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Figure 6.1: Union bounds for the repeated Odenwalder code over the BSC using the first
term, the first four terms and the first nine terms of the transfer function, respectively.
m =3, 7 and 15.
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By use of the central limit theorem (see, e.g. [27]), we know that

S - B
ﬂk \/ﬁ ' -

is a zero-mean Gaussian random variable with variance o? when m — oo (or m is very

(6.7)

large). Since

_ L EEpeye [SEFI-) - B+ mE _ fr
= === = 7 m

then, for a large m, «y is also a Gaussian random variable with mean equal to E and

+F | (6.8)

variance

g2 pe(l=p) | (6.9)

m

Thus for a sufficiently large m, the variance can be reduced to an arbitrariiy small num-
ber. Compared with the coherently demodulated BPSK in additive white Gaussian hoise
(AWGN) with the noise spectral density Ng[lO] the asymptotical Gaussian distribution
of oy implies an effective symbol energy (half of the bit energy for the rate 1/2 code)

= (1 - 2pe)? and an effective noise spectral densxty N{/2 =02 ie.,

1— 2p,)? ' ’
E./N{ = -é(';e—('i'_e—p)e)m. (6.10)

Note the effective signalbto noise ratio is proportional to the diversity order m. Since the
simulated or measured BER curve for the Odenwalder code is well known (see, e.g. [8]),
for a large m and a given pe, we can use Equation (6.10) to.determine the required E./N{,
and thus m to sustain :i fequired Py. Even for a small m, the Gaussian approximation can
be used to estimate the required m, and then adjust it therefrom.

Since the simulated or measured BER curves for the Odenwalder code take into
account the finite levels of quantization and other practical constraints such as a finite trel-
lis length, these factors are also included in the BER curves of the repeated convolutional
code if the Gaussian approximation is used. In other words, for a large m performance
degradation due to finite quantization, etc., will be about the same as what we have known
for the convolutional coded coherent BPSK in AWGN. ' |

In Fig. 6.2, Py, obtained from Gaussian approximation, vs. p.is given for m = 3,

7, 15, and 31, respectively. For m > 7, eight levels of quantization and trellis length 84 are
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assuméd. This trellis length is considered instead of five or six times the constraint length
because 84 or so has been used in commercial realizations in order to accommodate the
punctured rate 3/4 codef[24]. For m < 7, MLD decoding is assumed which can be material-
ized with eight levels of quantization. In this case, the interest is to see the approximation
error of the Gaussian approximation. For comparison, the results based on the union bound

are also given in Fig. 6.2.

It can be seen from the figure that for a small m the Gaussian approximation results
in a lower BER. For a reasonably large m (e.g. m > 15) the Gaussian approximation seems
to be fairly accurate which needs to be verified by simulation.

It is also noted that for m = 31, the BER obtained from Gaussian approximation is slightly
higher than the union bound. The basic reason for this difference is that for the union
bound, ideal maximum likelihood decoding is assumed, i.e., no quantization and infinite
trellis length, etc., while for the Gaussian approximation curve, practical constraints have

been taken into account.

6.3 Computational Results for BSC

In order to verify the BER performance, Monte Carlo simulation has been performed. The
trellis length is 84 and eight levels of quantization is assumed and Equation (6.4) is used
to generate the metric for various m. Fig. 6.3 shows simulated P, vs. p. for m = 3, 5, 7,
15 and 31, respectively. Union bounds and the Gaussian approximation are also shown for
comparison. For the latter only m = 15 and 31 are considered because m is supposed to be

large for the Gaussian approximation.

It can be seen from the figure that for m < 8 the union bound, which assumes
the MLD, is almost exact. Note now for m = 3, we have metric 0, 2, 5, 7 which means
that we are not doing exactly MLD. This applies to m = 5 as well. But the performance
degradation is insignificant. For a large m, the Gaussian approximation is fairly close to

the simulation results. Note that finite quantization results in a higher BER that is not
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upperbounded by the union bound, and in fact, Gaussian approximation is more accurate
than the union bound at a high BER.

For m = 5 the bverall Code rate is 0.1 which is slightly higher than the rate, 0.092, of
the abovementioned coding scheme considered in [25] with comparable BER performdnce.
In consideration of its simplicity, the repeated Odenwalder code is favoured. ’

Fig. 6.4 shows the cutoff rate Rq for the BSC[27] and the overall code rate r = 5=
to sustain P, = 10~ (based on the simulated BER) which was also used in [19]. From this
figure, it seems that » moves closer to.Rg as p, increases. But from r/Rg vs. pe as shown
in Fig. 6.5, r decreases faster than Rp as p. increases. Nevertheless, it is interesting tdnote

that the deviation between r and Ry is bounded: as p, approaches 0.5, r approaches 0.6 Ro.

If compared to the channel capacity, r is near 30 percent of channel capacity. In conclusion,

‘the repeated Odenwalder code can achieve more than one half of what is promised by the

cutoff rate even for very large pe, say, 0.3 to 0.5.

6.4 M-ary Symmetric Channel

In this section, we consider the M-ary symmetric channel (MSC) with high symbol error

probability, which is illustrated in Fig. 6.6. Here p, is the symbol error probability, which is

near 1— A—l,f, but smaller than it. Again, the coding scheme consists of an outer convolutional
code and an inner repetition code where each M-ary channel symbol is repeated m times.
This MSC model directly reflects the hard-decision demodulated fast frequency hopped
MFSK (FFH/MFSK) where the repetition is inherent in the system. Here we are especially
interested in M = 4 aﬁd 8. Previous work has shown that, under certain conditions,
they represent best compromise in order to combat both partial band noise jamming and
multitone jamming (see, e.g. [4]). As mentioned earlier, ha,rd_decision may be due to

complex demultiplexing between the demodulator and decoder. We first consider a Trumpis

code[30] as the outer code which is optimum for an M-ary orthogonal channel. 4-ary and .

8-ary R = 1 bit/channel symbol Trumpis codes with constraint length 7 are considered.
This code has the same implementation complexity as the Odenwalder code because of the

same constraint length. In view of commercially availablé binary codecs, we then consider
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Figure 6.4: Comparison of the cutoff rate R of the BSC and the overall code rate r of the
repeated Odenwalder code over the BSC to sustain P, = 10~4.
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Figure 6.6: Model of M-ary Symmetric Channel
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the possible use of the constraint length K = 7, rate R = % Odenwalder code for the MSC.

The emphasis is placed on how to generate binary decoding metrics.
6.4.1 M-ary Metric |

For the Trumpis codes, it is known that‘the union bound of the decode; output BER P, is
[30] |

Py < TPy + 39Ps,, + 104 Py, + 352Piop + 1187 P11y + « -+ for 4-ary channel — (6.11)
and
Py < Pryn + 4Pom + 8Pom + 49Piom + 92Pim + -+ - for 8-ary channel (6.12)

where P,i is the pairwise error probability between two trellis paths with Hamming distance
d. ,
To consider the use of the Odenwalder code over a 4-ary symmetric channel (4SC),

the most natural way is as follows. Recall that the encoder of the rate 1/2 code generates a

pair of encoded bits at the encoder output for each incoming information bit. This pair of

encoded bits can be considered as a 4-ary symbol and transmitted m times over the 4SC.
In decoding, ideally, two encoded bits corresponding to one trellis branch will be assigned
a 4-ary metric. This assumes that the decoder can accommodate 4-ary metrics, Using a

trellis search algorithm, we found the union bound of the decoder output BER P, as

Py, < Fgm + 10P7, + 38Pop, + 92Psy, + 355 P1oyn + 1440Ps1,
+4684 Py 9,, + 16043 P13,,, + 52240.Py 4y, + 170679 Py5p 4+ - - (6.13)_

, Note the Trumpis codes are optimum over M SC in the sense that they have the
largest M-ary free Ha,mmi‘ng distance (7 for the 4-ary code) and fewest information bit
errors due to path errors at the free distance. The Odenwalder code is not optimum for the
45C. The free 4-ary Hamming distance is 6, which is one less than the optimum Trumpis
code. But the number of information bit errors dﬁe to an incorrect trellis path at the free

distance is only one. Thus we may expect that the Odenwalder code will have near optimﬁm

BER performance.
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The use of the Odenwalder code over 8-ary symmetric channel (85C) is similar. The
encoder of the rate 1/2 code generates three pairs of encoded bit for every three incoming
information bits. Then the first pair of encoded bits and one bit of the second pair of
encoded bits are considered as an 8-ary symbol. The other bit of the second pair and
the third pair are considered as another 8-ary symbol. FEach of these 8-ary symbols is
transmitted over 85C m times. At the decoder, an 8-ary metric will be assigned to three
encoded bits corresponding to one and a half trellis branches. Of course, it is assumed that
the decoder can accommodate an 8-ary metric. We found the union bound of this kind of

decoder output BER as

P < 3Psm + 28PFgm + 83 Py, + 649 g, + 2419Ps,, + 10295 Piom
+45175Py1m + 193378 Pigm + - - (6.14)

| By comparing with (6.12), we find the Odenwalder code is not bad over 8SC. The
8-ary free Hamming distance is 7 for the rate 1/3 Trumpis code, and 5 for the rate 1/2
Odenwalder code.

For the MSC with a repeated M-ary code, the maximum likelihood decoding met-
ric for each M-ary symbol is the Hamming distance between the sequence of m repeated
symbols and the corresponding received symbol sequence of length m. Here it is implied
that for an M-ary symbol, a smaller metric is more favora_ble in that the M-ary symbol is
more likely to be transmitted. This MLD metric is an M-ary metric in the sense that there
are a total of M metrics for all M M-ary symbols.

For MLD, we can find the pairwise error probability between two paths with Ham-
ming distance d, P;. Recall that the exact meaning of Py is, given >a correct transmitted
trellis path, the probability of a specific trellis path at Hamming distance d having a more
favourable path metric than the correct path. Let us consider one symbol period where
there is a symbol difference from the two paths. The correct symbol is called ¢ and the
symbol from the incorrect path is called e. Because M > 2, the M SC output can be neither
¢ nor e. In fact the probability for the channel output to be ¢ or e, denoted as pce, is given

by
De
M-1

Pee =1 —pe+
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Then over d symbol periods where two paths hai}e different symbdls, there can be j (0 <
j < d) periods where the channel output is neither ¢ nor e and hence no contribution can
be made to the metrics for either ¢ or e. We can calculate a conditional pairwise error
probability'Pé(j) over the rest d — j symbol periods where the channel oﬁtput must be
either c or e with probabilities (which are conditional probabilities under the condition that

the channel output must be either ¢ or e) of -—%’* and 7&—, respectively. Spec1ﬁcally,

we have

i=[451]

where [z] is the smallest integer greater than or equal to z, and

o) = { if z = 0;

0 otherwise.

In fact, the § function is equal to 1 (so that 1—-0.56 = 0.5) only if d— j is even and ¢ = d—gi.
Otherwise § function is 0 and 1 — 0.56 = 1. The probability that j of d periods where the

channel output is neither ¢ nor e is

P(J1 d) = ( ;l >pce J(l - pce)J : o (616)

Therefdre, the pairwise error'probability is

d
Py = ZP(]ad)Pé(])

d d |
= Z(] >pcej(1'—p6) X

..—0

| xz_t;‘é—q(l—-ow(z— ( d—j ) (pce(;;a_l))f (12;?)‘”_?.

There is a factor P47 in the inner summation and it can be canceled with the one at

outside. So finally we get

i .‘i(?)‘ (=5)

=0

> <1—056<z— >)(“’ J)(-M%)iu—pe)dﬂ*"- (6.17)

i=[454] z
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Using Equations (6.11), (6.13) and (6.17) for m = 3,7,15, and 31, the bound of P,
versus p, is plotted for the Trumpis code and Odenwalder code with M-ary MLD decoding
metric in 4-ary channel in Fig. 6.7 ( curve a and b). From this figure, we can see that the
Trumpis code is indeed better. However, it is interesting to note that the performance of
the Odenwalder code is only slightly inferior to that of the Trumpis code. This is the basis
for considering the use of the Odenwalder code over the 4-ary channel,

Using Equations (6.12), (6.14) and (6.17) for m = 3,7,15, and 31, the bound of P,
in an 8-ary channel is plotted in Fig. 6.8 (curve a and b). It appears that the performance
of the Trumpis code is much better than that of the Odenwalder code in the 8-ary case.
But recall that the 8-ary Trumpis code is a rate 1/3 code. So the code rate of this Trumpis
code is only two thirds of the code rate of the Odenwalder code. The direct comparison in
Fig. 6.8 is not fair.

Since the whole code rate of the repeated Trumpis and Odenwalder code are z-
and -21—m, respectively, if the repetition order m for the Odenwalder code is chosen to be 50
percent larger than that for the Trumpis code, the code rate for both repeated codes are
the same, and then comparison can be made. So the union bound of P, for the O denwalder
code with m = 5, 11, 23, and 47, and with m = 4, 10, 22, and 46 are plotted in Fig. 6.9.
The bound of P, for the Trumpis code with m = 3,7,15, and 31 are also plotted in Fig. 6.9.
The corresponding code rate of the three groups are almost the same, but code rates of the
Odenwalder code with m = 5,11,23, and 47 are a little bit lower than that of the Trumpis
code, and code rates of the Odenwzﬂder code with m=4,10, 22 and 46 are a little bit higher.

From Fig. 6.9, we can see that for BER less than 104, the curve for the Trumpis
code is in the middle of the space between the two curves for the Odenwalder code. Consid-
ering two curves corresponding to the Odenwalder code with a higher and a lower code rate,
respectively, we can see that the repeated Odenwalder code would have almost the same
performance as the repeated Trumpis code at the same overall code rate. Therefore, the
same conclusion as in 4-ary channel can be drawn that the perfofmance of the Odenwalder
code is only slightly inferior to that of the Trumpis code. Because the comparison is based
on the union bounds which are quite loose at high BER area, and the number of terms used

in computing those union bounds are different, our comparison is only made at a low BER.
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‘Note that the union bound for the Odenwalder code is based on the assumption
that the decoder can accommodate M-ary metrics for MLD. This is generally not the case
if we want to use commercially available decoding chips directly. In this case, the decoder
is designed to accommodate binary metrics oﬁly. With this constraint, the above union
bound should be understood as an upperbound for the BER performance of the deco&er
using binary metrics. But the free M -ary Hamming distance of the binary code shown in
the union bound of Equation (6.13) and the corresponding error coefficient provide a basic
indicator on whether or how well the binary code can work over the M-ary channel at all.

Since the performance degradation of the O-denwalder code is small relative to the
optimum Trumpis code using M-ary metrics, the code is a good candidate for the M-ary
system from a practical point of view. The practicality is that we can use commercially
available codec chips provided we can pfoperly generate binary decoding metrics. Further
performance degradation will be introduced by using binary metrics because a binary met-
ric is not a MLD decoding metric in an M-ary channel. ‘Howb much the degradation will be
depends on how binary metrics are generated. In the following sections, we consider several

possible methods of generating binary decoding metrics and their performances.

Binary Metric Approximation of M-ary Metrics

Since the use of a binary decoder requires binary metrics, M-ary metrics can not

be used directly in binary decoder. The most natural attempt would be to approximate

M-ary metrics with log, M binary metrics. This method avoids interleaving.

Since the trellis decoding is based on comparing the metrics of different trellis
paths, adding a number to all M metrics in one symbol period will not affect the decoding
performance, Therefore, we only need to be concerned about differences between metrics
for different M-ary symbols. There are M — 1 M-ary metric differences.

Let mqo, mo1,M10 and my; be the 4-ary metrics, respectively. Thé maximum like-
lihood decision decoding requires that branch metric for symbol 5 is m;; and the survivor
has the smallest path metric. Thus MLD can be implemented by considering three differ-

ences between four m;;s. Unfortunately, they can not be represented by two binary metrics
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exactly.

Assume the metric range is [0,7]. Without loss of generality, we assume mgo to be
the smallest. Suppose the branch metric is Bop = a+b corresponding to two binary metrics
for symbol 00, @ and b. Then for syrﬁbol 01, the branch metric is Bpy = a + 7 — b. And we
have

Boo - B01 =2b-1.

Because mgo < mo1, it is natural to require Bbo — Boy £0,1i.e., b <3.5. If we require
Boo — Bo1 = moo — mo1

then ,
2b — 7 = mgy — Mo

hence A :
- 7 — (mo1 — moo) -
. 2 .
For symbol'lo, the branch metric Byg = 7 — a + b. Similarly, because mgg < m1o0,

ca < 3.5. And if we let

Boo — B1o = moo — mao

then

0= 7 (mIO"‘mOO)‘

2
For symbol 11, the branch metric Byy is

Bjy=7—a+7-0.

Because ¢ < 3.5 and b < 3.5,

B11-—B01 =7—2a20
and ,

Bi1 ~Bio=7—-2b2>0.

This means that no matter what my; — moo is, the term Bj; always gives the least favorable

metric. This problem is inveitable as long as there are only two binary metrics used. This

is simply because if 00 is the most favorable symbol, 11, which is the farthest symbol to 00
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in binary Hamming distance, should be the least favorable in binary metric representation.
Thus the 4-ary metric my, is not always preserved depending on its value, but the metrics
myg and mg; are genuinely preserved.

In summary, the proposed method to generate binary metrics to approximate 4-ary

metrics is as follows:

1. Find m;; = min(moo,mo1,M10,m11), Where 7,5 € (0,1). Denote 1’s complement of

asiand j as J.

2. Then compute
7 — (mz; — mij)

a = ) 3
p < L= (mig — mij)
. :

3. The actual two binary metric sent into the decoder, b; and b, are
by = a(l =)+ (7 - a)i,
by = b(1 - 3)+ (7 - b)j.

For a larger M, for example, M = 8, there are seven 8-ary metric differences but
only three binary metrics. The method given above can only accurately represent three out
of seven differences. Thus it does not appear to be proper to extend the method to a larger
M. In the following sections, we consider more general methods. The basic principle of
these methods is to generate “sensible ” binary metrics directly from M-ary metrics without

attempting to approximate them.
6.4.2 Binary Metric Generation

When a binary code is used over an M-ary channel, the log, M encoded bits at the output
of encoder are mapped into M-ary symbols through a one-to-one mapping. At the receiver,
the received M-ary symbol is mapped back to the group of binary bits, and the corre-
sponding metric for each binary bit is generated accordingly. The optimum binary metric
generation‘method is the one which has the BER performance closest to that of Odenwalder

codes with M-ary metrics, i.e., the curve b in Fig. 6.7. Here we propose a binary metric
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generation method called the direct binary metric generation method.

Direct Binary Metric Generation Method
' At the receiver, after receiving m M-ary symbols, we can generate the binary metric

in the following way:
1. Mapping m received M-ary symbols back to m binary bits groups, respectively. -

2. For each of log, M bits, accumulate over m repetitions the number of 0 or 1 received

and form a binary metric like the one discussed in Section 2 for BSC.
3. Feed these binary metrics to the decoder in a certain order.

For example, for 4-ary symbols 0,1,2, and 3, we cén map them to four groups of two
binary bits, say, 00, 01,10, and 11, respeétively. If m = 3 and the three received symbols
are 0, 1, and 3, the corresponding two binary metrics are 1 and 2. "

" “Certain order” in step 3 depends on whether interleaving is used or not. Here we

analyze two extreme cases, i.e., ideal interleaving and no interleaving at all.

Direct Binary Metric Generation With Ideal Interleaving

Obviously, the binary metrics generated using this direct method bear some depen-
dence. Ideal interleaving makes that incoming metrics to the decoder are all statistically
independénﬁ of each other over one decoder trellis length. This would require a block inter-
leaver with an intérleaving depth log, M and a span of at least of 5 to 6 times that of the
constraint length. In this case, the M-ary symmetric channel can be sunphﬁed to the BSC
model with the transition probablhty of BSC p(B)

M -
B) = ——— , .

Then analysis can be carried out easily in the same way as for the BSC model. Specifically, .

the analytical results in binary channel given in Equations (6.1) and (6.2 ) can be applied :

directly by substituting transition probability p. by 5(1\],‘!’!—_151)5. The bounds of P, versus p.

are plotted for the Odenwalder code, with a direct binary metrics with ideal interleaving
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for the 4-ary channel in Fig. 6.7 (curve c) and for the 8-ary channel in Fig. 6.8 (curve c),

respectively.

Direct Binary Metric Generation Without Interleaving

No interleaving means that log, M consecutive binary decoding metrics are gener-
ated from one M-ary symbol. Here we consider the 4-ary case. Generalization for a larger
M involves a higher level of sophistication but no more ingenuity.

For 4SC, the probability of receiving one of three wrong 4-ary symbols is p./3.
However, two of three wrong symbols result in only one binary bit error, and the other one
leads to two binary bit errors.

Consider two trellis pathes which differ in d bit positions, and where each branch
in the paths contains one 4-ary symbol, or two binary bits. One path is considered as the
correct path, while the other one is considered as the incorrect path. Assume d different
positions reside in Z branches in the incorrect path. Among Z branches, there are two
kinds of branches. One kind of branches are those with only one bit different from the
corresponding branch in the correct path. The other kind are those with both bits different
from the branch in the correct path. We call the first kind as one-bit-error branches, and
the second kind as two-bit-error branches. For a received symbol, the metrics are different
for these two kinds of branches.

Suppose the branch in the correct path is 00. Then the one-bit-error branch is
either 01 or 10; and the two-bit-error branch is 11. We consider 01 as an example of one-

bit-error branch. With the binary Hamming distance used as the metric, we have:

metric for metric for
symbol received probability correct branch (00) error branch (01)
00 , 1-pe 0 1
01 Pe/3 1 0
10 Pe/3 1 2
11 Pe/3 2 1

For a two-bit-error branch, similarly, we have:
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: - : metric for metric for
symbol received probability correct branch (00) error branch (11)
00 1-pe 0 2
01 Pe/3 1 1
10 P./3 1 1
11 /3 2 0

Here we can see that the metrics are different for the two kinds of error branches,
and therefore, for different combination of the two kinds of branches the pairwise error
probabilities are different even for the same d, the total number of different position in bits.

To compute the union bound of the BER at the output of a decoder, we need to
know how many one-bit-error branches and how many two-bit-error branches exist for each
d, and the corresponding contributions of each co_mbination to information bit errors.

» Suppose there are X one-bit-error 1’br.amches,/ and Y two-bit-error bra,nchés; and

X 4+Y = Z. Then the union bound of BER at the output of the decoder is

oo

d=djree X,Y€lq

where T'y is the set of all possible X and Y combinations which are determined by the code.

Cu(X,Y) is the informaﬁon bit error contribution for a trellis path with X one-bit-error

branches, Y two-bit-error branches, and total d different positions from the correct path.

P4(X,Y) is the pairwise probability of two trellis péthes with the binary Hamming distance

d, and X one-bit-error branches and Y- two-bit-error branches.
C4(X,Y) can be obtained by computer search. We have found Cy4(X,Y) for the
Odenwalder code, and those for a small d are given in Table 6.1. _
Now we compute the pajrwisé error probability Py(X,Y). Suppose that the correct
path is the all zero path. If during Z = X +Y transmission, symbol 00 is recei{'ed ko times,

symbél 01 k; times, symbol 10 k; times, and symbol 11 k3 times, then the metric for the

correct path corresponding the Z branches is

me = k1+ kz + 2k3. v ) . (620)

To compute the metric of the error path, we have to consider how received symbols match

the branches in the error path.
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Cd(X, Y)
1
10
25
13
61
137
29
176
792
407
2
42
597
3019
5177
2796

10

12

14

16

o o] ] or| o[~ po] co| ] o[ pof cof i frof cof i | R

s - Y
S50 o] | o] Bl oo| | x| co| )i | o] i [ ro| B

Table 6.1: C4(X,Y) of constraint length 7 Odenwalder code.

Let kop be the number of 00 received corresponding one-bit-error branches in the
incorrect path, and kg, be the number of 00 received corresponding two-bit-error branches

in the incorrect path, and so on. Obviously,

ko = koz + Koy

k1 =kiz + kly
kg = kog + koy
k3 = k3 + kay

and
koz + kl:z: +kog k3 =X
kOy + kly + k2y + k3y =Y.

As discussed in section 6.6, we can assume, without loss of generality, that all one-bit-error

branches are 01. Then the metric for the incorrect path corresponding to the Z branches is

Me = kO:L‘ + 2k2x + kSa: + 2k0y + kly + k2y- (621)
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The pairwise error probability is

X" Y! ) k1+k2+k3( )ko ( 2)
PiuX,Y) =) u(me—me . : (-——e-) 1- 6.22)
(X,Y) ; S P S T N T T L Pe -
where
Q= {kim,kiy’i = 0,172;3 | 0 S'kimo < kiwi = 0’1’2’3’
3 3 :
D ke =X, kiy=Y}
=0 i=0
and
0 z2z<0
w(z) =4 0.5 z=0;
' 1 z>0.

By using (6.19), the union bound for"s_he Odenwalder code in an 4-ary channel with direct

géneration metric without interleaving is computed and is also plotted in Fig. 6.7 (curve d)

Binary Metric Generation Based on M -ary Metric Without Interleaving
In order to generate binary métrics, Gong proposed a conversion scheme which
converts the M-ary metrics into binary metrics [31]. For the i-th bit in log, M bits corre-
sponding to an M-ary symbol, thé binary metric is given by
b; = max{M-ary ﬁletrics for symbols with i-th bit to be “17}

— max{M-ary metrics for symbols with ¢-th bit to be “0”}
i = 1,2,. .. ,10g2M.

Here we use Gong’s conversion scheme in the. following way: first we find M-ary MLD
metrics; then binary metrics are generated using the above equation. Since interleaving can
cause a substantial delay in addition to its implementation cost, which sometimes is not
desirable or tolerable, it is always interesting to know the trade-off between interleaving
and the BER performance. Thus we consider both Gong’s conversion scheme and our
direct scheme without interleaving. It is interesting to compare the p'erform‘a,nce of these
two schemes. Further, we note that the use of Trurhpis codes does not require interleaving.

Thus comparison based on no interleaving is fair to all cases.
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6.4.3 Simulation Results

A Monte Carlo simulation is carried out to obtain the bit error rate at the decoder output
for the Odenwalder code in a 4-ary symmetric channel with three metrics, our approxima-
tion of M-ary metrics, directly generated metric and Gong’s conversion metric, and for the
Odenwalder code in an 8-ary symmetric channel with two metrics, our directly generated
metric and Gong’s conversion metric, both without interleaving. The results are plotted in
Fig. 6.10 for the 4-ary case and in Fig. 6.11 for the 8-ary case. For comparison, the union
bound for the Odenwalder code with the M-ary metric, and the directly generated metric
with ideal interleaving are also depicted in Fig. 6.10 and Fig. 6.11. The union bound for the
Odenwalder code in a 4-ary channel with the direct generation metric without interleaving
is plotted in Fig. 6.10 as well.

From simulation results in a 4-ary channel (Fig. 6.10), we can see that the directly-
generated metric gives the best performance among three metrics. For small m (m < 7), the
approximation metric and the conversion metric have almost the same performance. But
for large m, the conversion metric has a better performance. In Fig. 6.11, the simulation
results in an 8-ary channel are similar. The direct generated metric has better performance.
All three metrics are considered to work without interleaving, therefore the direct binary
metric generation method is recommended when no interleaving is preferred.

It is also noted that the union bound for direct generation metric without inter-
leaving is quite tight for BER less than 10~3, Comparing the ﬁnion bounds and simulation
results with ideal interleaving and those for direct generation metric without interleaving,
we can see that the difference of two cases gets smaller when m becomes larger. So when m
is large (m > 15), interleaving may not improve the performance significantly, and therefore

may not be necessary.

6.5 Concluding Remark

We have considered a repeated convolutional coding scheme for the MSC with a large pe.
BER performance has been both analyzed and simulated. We first considered BSC. A BER

approximation method is proposed for a large m based on the central limit theorem. The
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overall code rate r is considered relative to the channel éutoﬁ' rate Rg. It has been shown
that r is larger than 0.6Ro. In comparison with a cascaded coding scheme ‘propoSed in [25],
the repeated coding scheme has some clear adifa,nta,ges. One of them is that we can vary m
to match the unknown p, without ’changing the decbding procedure.

We then extended the repeated convolutional coding scheme to the M-ary sym-
metric channel. We have investigated the influence of various decoding metrics in the MSC
model. Ifideal interleaving is available, and m is not very lamge, then the repeated Oden-
walder code with binary metric is almost as goéd as the one with M-ary metric. Further,
the performance of the Odenwalder code over 4-ary and 8-ary channels is quite close to that
of the optimum Tfumpis‘code. Whén interleaving is not available, three methods of gener-
ating binary metrics from M-ary channel are proposed. The first is based on approximation
of the differences of M -ary metrics with binary metrics. In the second, binary metrics are
- generated directly from M-ary metrics. The third method is a conversion method. Simu-
~ lation results indicate that the direct binary generation methéd is the best for our coding
scheme among all these binary metric generation methods. Therefore, the direct binary
metric generation method is recommended if no iﬁterleaving is preferred. Union bound and

simulation results also indicate that there is not much improvement by interleaving when

m is large.
6.6 Further Analysis of One-bit-error Branch

In this appendix, we will show that no matter what one-bit-error branches actually are (all
01 or all 10 or combinations of 01 and. 10), the pairwise probability can be obtained by
assuming a convenient form, e.g. they are all 01. o ’
Suppose the incorrect trellis pé,th is A, and there are X; 01 branches and X, 10
| branches in path A. Suppdée that there are ko, 00 symbols, k1., 01 symbols, kzz; 10 sym-
bols, and k3, 11 symbols received corresponding to 01 branches, a.nd ko_,,;2 00 symbols, k14,

01 symbols, k2, 10 symbols, and ks, 11 symbols received corresponding to 10 branches,

respectively. Obviously,
kt'a‘,‘l + km;z = km; fOI‘ i - O, 1,2,3
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and
3
> ks, = X,
. =0

3

Zk.‘m = Xs.
=0
Then the metric for path A is
me(kazy + k1z,) = 2(k2ay + k12,) +C (6.23)

where C = kog + k3z + 2koy + kiy + k2y. The pairwise error probability is

X! X!
PAXY) = w(me — me(kgg, + kio
& (XY) % (me = me(kzz, 12))kozllkm!km!k3xlskm!klm!km!kw
Y! De ky+katks ko
Pe — e 24
" ooy Figlhizy sy ! (3) (L —pe) (6.24)

where

Q4= '{kf-’b‘nkim»kiy)i =0,1,2,3 | 0< kiz’no < kig,,

0< kiyaz. = 011’2’3)
3 3

3
Zki:vl = Xi, Ekimg = X2’Zkiy = Y}'

i=0 i=0 i=0

Note that in the above equation, the summation constraint on kiz, and kag, is
identical. In another word, k1, can assume the same range of values as the kaz,. Thus, we
can exchange these two variables in (6.24) without affecting the value of chA)(X ,Y). The
right hand side of the equation is not changed, except that the argument of m. becomes
kow, + ko2z, = k2z. By definition of multinomial coefficients, it is not difficult to see that
PéA)(X ,Y') is equal to the right hand side of the Py(X,Y) in (6.22), which is based on the
assumption all one-bit-error branches have 01. It is worth mentioning that the advantage
of using Equation (6.22) is that the summation involves much fewer terms, thus much less

computing time, than that in Equation (6.24).
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Chapter 7

Suggestions for Future Work

The main objectives will be the study of coding and detection for frequency hopped spread
spectrum communications. The major emphasis will be on slow frequency hop systems,

especially using differential phase shift keying (DPSK) modulation scheme.

7.1 Slow Frequency Hopping Systems

For such systems,‘it remains to evaluate the performance when diversity is also employed,
and when nonbinary DPSK is used. Both of these directions should provide performance
improvement over the results found in Chapter 2. As well, the use of interleaving will reduce

the number of erroneous symbols in a given RS codeword when a hop is jammed. It also

allows a long hop length, which reduces the amount of lost data due t6 the phase reference

bit. Some specific problems to be addressed are as follows:

1. Multi-symbol probability distribution of DPSK in Gaussian noise. This will facilitate
the performance evaluation of coded systems in the presence of partial band noise

jamming or multi-tone jamming plus thermal noise. '

2. Multi-symbol probability distribution of DPSK in the presence of tone jamming, This

will facilitate the performance evaluation in the presence of multi-tone jamming,

3. Block code system evaluation using M-ary codes. Robust techniques such as erasure

generation and erasure correction decoding will be considered.
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4. Study the use of constrained sequences to cancel interference and perform error cor-

rection.

5. Consider possible alternative convolutional coding techniques and corresponding de-

coding metric generation problem.
7.2 Interleaving

Building on Chapter 4, we propose to examine the complicated problem of analyzing the
performance of coded systems using a particular finite interleaver. The performance degra-

dation, when the designed burst length is exceeded, is worth investigating.

7.3 Coding and Diversity

Thé objective here will be to to investigate the trade-off between diversity and coding for
systems, such as spread spectrum systems, where a low code rate is anticipated. Ultimately,
the aim is to determine actual performance trade-offs in terms of signal-to-noise ratios and
probability of error. Of more importa,née is the translation of the trade-offs considered here
into an understanding of how it affects system performance on a variety of channels, such as
the additive white Gaussian noise, Rayleigh fading and interference channels. Future work

will consider these questions and attempt to determine guidelines for this trade-off.

7.4 Implementation of CODECs"

We shall concentrate on implementation of practical error correcting codes using current
technologies (e.g. VLSI gate array designs) and future technologies (e.g. artificial neural
networks).

We shall study and develop new algorithms and/or architectures that take maximal
advantage of the circuit regularity and parallelism afforded by VLSI technology. Of special
interest, we shall concentrate on the cellular structure which allow cascadability of identical

chips to form long codes.
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Appendix A

Logic-Cell Array Implementation
of a (31,k) Reed-Solomon Codec

This algorithm presents designs for a programmable gate array
implementation of a user programmable (31,k) Reed-Solomon encoder-decoder, The
programmable encoder and decoder algorithms were first implerhented in the C
programming language, using a Galois Field software development package written
for this purpose The control hardware of five independent modules was simulated in
C; based upon the simulation programs a number of designs 1nvolving differing
amounts of pipelining and different storage architecture and Galois Field bases were
developed. One design is currently being implemented using the Xilinx 3000 series

Programmable Gate Arrays.

A.1 Introduction

This Appendix examines a number of design options for programmable gate .

array (PGA) implementation of a (31,k) user programmable Reed-Solomon codec. A

key consideration was maintaining a high level of modularity in the design process;

this not only simplifies the task of making small changes in the design if necessary, -

but also allows the same design with minor alterations to be used for larger size
Reed-Solomon codecs. Although only the (31,k) RS codec is described in this
Appendix, C source code has also been written and tested for the ‘(15, k), (63, k),
(127, k) and (255, k) Reed-Solomon codecs. These RS codecs would be relatively easy

to implement in PGA's or other hardware if the need arose.
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The use of programmable gate arrays is in itself based on the need for a quick
turn-around time in the design and testing of a circuit. The design is loaded from a
computer terminal or from ROM onto the Xilinx chip; a change in design only
requires changing the program loaded into the ROM, in contrast to a period of weeks
and considerable more cost required for a custom integrated circuit. If high
production of the PGA decoder was felt to be desirable, software exists[32] to convert
between the files needed by Xilinx and the standard schematic capture format used in-
custom integrated circuit contruction.

Although both programmable RS encoders and decoders have been designed,
only the decoder designs will be discussed in this appendix. The encoder design is a
variation of the standard linear feed-back shift registers used in non-programmable
RS encoders, and so is straight-forward. In the process of writing the C language
implementations of the programmable RS codecs, C language software tools were
developed for the Galois fields GF(2IM), where m = 4 to m = 8. These software tools
find the Galois field elements generated by a primitive polynomial, produce the RS
generator polynomials for a Galois field, produce Karnough mappings, and test the
encoder/decoder programs by introducing random errors into the pipeline between
the encoder and the decoder programs.

Section 2 provides background on the algorithm used to decode Reed-Solomon
codes. Section 3 gives an outline of some of the optioﬁs considered in designing the
(31,k) codec: the choice of Galois Field basis, the internal bus and register design, the
pipelining options and the external logic and memory. Finally Section 4 describes

the design that is being implemented at the time of writing,
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A.2 Background
A.2.1 Background

Reed-Solomon codes are a class of cyclic random error-correcting non-binary
block codes Adiscovered by Reed and Soiomdn in 1960 [33]. The symbols of a Reed-
Solomon code are Galois field GF(2™1) elements, where m is a positive integer. An RS
code with symbols from GF(2™) has a block length of 2™-1 symbols, and can be
written to correct te errors., where 1 < t— < 2mM-1.1 A t¢ error correcting RS code of
block length n = 2M.]1 has 2te paﬂty check and n - 2te information symbols per
block, and a minimum distance ‘ | |
d = 2te+1. Decoding an RS code involves foﬁr basic logical modules[34][35]:

(1) computihg the syndrome components Sy, i= 1,2,...,2t¢.

(2) determining the error-locatior;_ polynomial d(X).

(3) finding the roots of the error-location polynomial 9(X).

(4) finding and correcting the error at each error location.

(1) The symbols rk in the received block of an RS code are the coefficients of the
received vector ,

1X) = 1o + 11X + 19X2 + ... + rp.1X0-1 \
where k is the position of the symbol rk in the received block. The received vector
r(X) is the sum: | |

rX) = t(X) + e(X)
where t(X) is the transmitted vector and e(X) is the vector of errors mtfoduced during
transmission. The 2te syndrome components are found by substituting ol into the
received vector r(X) for i = 1,2,...,2te:

S = rlad) = t(od) + efod)= e(od) (A.1)

where ol is a primitive element of GF(2™),
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(2) The decoder must find the locations of the the errors introduced by
transmission; that is, the non-zero coefficients of e(X). Directly solving the system of
equations (A.1) is difficult; an alternative approach is to introduce a polynomial, the
error- location polynomial o(X), whose roots are the locations of the transmission
eITOrS.
d(X) = (1481 X)(1+B2X)...(1+BX)
=90 + 91X + 92X2 + ... + opXH

where £ is the location of the ith error and | is the number of errors introduced
during transmission. A number of methods exist for determining the error location-
polynomial, d(X) [34]; Berlekamp's iterative method [36] was used in the

programmable (31,k) Reed-Solomon decoder.

(3) The roots B4 of the error-location polynomial must be found. This can be done
either by the Chien [35] search or by substituting all the elements o in GF(21) into

the error locator polynomial and noting the elements which give 9(a) = 0.

(4) Finding the errors at the error locations requires solving the equations:
Sk=Y181 + Y282 + ... +Y“13u where k=1,2,..,2t
for the p errors Y1,...,Yy. An easy way of doing this is to first find the function
Z(X) =1+ (S1+01)X + (S2 + 0151 +2)X2 +. ..
+( Sy + 01Sy-1+028p-2 + et OXH
The | errors Yi can then be found using
y = ZB)

=z

1_1(1+ﬁ.-ﬁ;‘)
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The transmitted vector t(X) can then be found by adding the error vector e(X) to the

received vector r(X)

LX) = elX) + 1(X).

A.2.2 The (31,k) RS Decoder Algorithm

Based on thé above formulation, an algorithm was written to code and decode
a t-error correcting RS code, where t is user programfnable and1 < t < 2011 The
algorithm consists ’of logical modules (1) to (3) as given in the introduction, plus two
logical modules from logical module (4) above which determine Z(Xj and find and
correct the transmitted errors. Each logical module of the algorithm is dependent
upon earlier logical modules for intermediate resuits, but runs independent of earlier
logicaln modules once those intermediate results are received. This independence
allows each logical module to be implemented on a separate physical module.

The programmable RS decoding'algorithm was initially‘written and tested
using the C programming Iaﬁguage. After testing the algorithm, C code was written
simulating the ha;‘dware controllefs needed in the PGA implementation of th_e
programmable RS‘ codec. All references to the nﬁrnb,er of algorithm operations and

bit rate refer to the hardware implemented algorithm.

A.3 Implementation Options
| Implementatidn of the algorithm requires decisions to be made on:
(1) which basis to use to represent fhe Galois field and the
design of the Galois field arithmetic units.
(2) the number of bus ﬁnes and registers to proVide for
logically independenf operations.

(3) the amount of pipelining to be used.
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(4) the external logic and memory needed to co-ordinate a
pipelined codec.

These decisions are made on the basis of how they will effect the trade-off between

. speed and hardware requirements. These decisions are not independent; decisions

made on different aspects of the implementation effect each other.

A.3.1 Basis and Galois Field Arithmetic
The Galois field elements can be represented in either vector or power

notation. For example, the element 027 from GF(25) may be represented as the

vector:
27 = 100+ 10l + 002 + 103 + 004
=(11010)
or as the integer
27 =(11011).

The advantages and disadvantages in a representation lie in the implementations
they allow for Galois field arithmetic, and in the complexity of the hardware needed
to implement the decoder in the representation. The comparison of vector and power
representation implementations of Galois field arithmetic is dependent on the size of
the Galois field, and on the medium on which the arithmetic unit is implemented. In
this appendix only single step Xilinx[32] implementations of arithmetic on the
Galois fields GF(25) will be discussed. The number of configurable logic blocks (CLB's)
of the LCA needed to implement arithmetic on the Galois field GF(25) for vector and
power representations is given in Table A.1.
Galois Field Adders

In the vector representation, Galois field addition is simply bit-wise integer

addition modulo 2. On the Xilinx 3000 series LCA[32] a vector representation adder
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requires one configurable logic block for every two bits of the field size, plus input
registers, for a total of 8 CLB's for a GF(29) adder. The easiest ifnplementation of
power representation addition on GF(25) on the Xilinx 3000. series LCA is to translate

from power to vector representation, add mod 2, and translate back to the power

representation. The five function logic of the Xilinx 3000 series LCA allows all of

this to be done in the input and output registers, and requires 18 CLB's. ,
Galois Field Multipliers

Choosing the normal basis for the vector representation allows the MasSey-
Omura[37] multiplier to be used for the Galois field multiplication. For the. GF(25)
multiplier, the least-compléx parallel Massey-Omura multiplier requires 20 CLB's,
plus 5 CLB's for vthe input registers. Galois field multiplication using the power
r’epre‘sentationv is equ’iva]ent. to integer addition modulo 21, For ’;he GF(25)
mulfiplier 10 CLB's plus 5 CLB's vfor the input registers are needed.
Galois Field Inverter

Inversion over GF(29) for the normal basis representation normally requires

' either repeating a shift and multiply over GF(25) foﬁr times[37], or a parallel inverter

requiring four Galois field multipliers. However the five function logic of the Xilinx

3000 series LCA's may be used to translate directly from an element to 'its inverse;
the total space requirement for the normal basis GF(25) inverter is 8 CLB's. Inversion
over GF(29) in the power representation for elements other than 0 only requires
inverting each bit of the integer representation; an extra CLB is required to return o0

when a0 is input. The power representation GF(25) inverter requires in total 4 CLB's.
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Representation GF Adder GF Multiplier GF Inverter
{CLB's) {CLB's) (CLB's)
Normal 8 25 8
Power 18 15 4

Table A.1; CLB requirements for GF Arithmetic

The Galois field arithmetic operations needed by the RS decoding algorithm are
addition, multiplication and inversion. From Table 3.1 it can be seen that the power
representation requires about 10% fewer CLB's to implement the Galois field
arithmetic operation than the vector repvresentation. The power representation also
has the additional advantage of allowing the Galois field elements to be used as

incremental counters; this simplifies the design of some parts of the decoder.

A.3.2 Memory and Bus Lines

During the decoding process the algorithm requires storage space to hold
results of intermediate calculations. The intermediate results include reqsults used
only in a given module and results to be used in modﬁles after the module in which
they are calculated. I there is pipelining the received RS code blocks must also be
stored from the first to the last stage in the pipeline. The storage space in bits of
required by each module is given in Table A.2; the first row gives the storage space
needed to carry out the calculations of the module itself, the second row includes the

storage space required from previous modules.
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Module __| Syndrome | Delta - Location Z(X) Error
Storage (bits) 330 - 410 100 95 100
Total Storage (bits) 330 | 565 | 185 415 335"

Table A.2: Storage Space Requirements by Module

. Dedicating CLB's to each intermediate variable simplifies the design and speeds up
the decoder; but at the cost of space. The implementation of the 5-bit buses required
by the GF(25) can be done either as common buses using Xilinx's tri-state
capabilities, or as buses between each set of communicating decoder components or

storage block. It was found that the latter scheme allowed for tighter routing,.

A.3.3 Pipelining

The independence of the five modules in the decoding algorithm allows é
trade-off to be made between the decoder speed and the amount of hardware needed
for implementation.
Speed

The number of operations each quule requires to complete as a function of
the number of coi‘rectable errors is given in Fig.A.1. Not only does each module
require a different number of operations to complete, but the number of operations

~ varies among modules either linearly or as a square with respect to the number of

operations to completion.

Since the decoder must finish decoding each received block in the same

amount of time, the pipelifling should be made so that each stage in the pipeline
takes approximately the same number of modules. The five pipelining options which

meet this requirement are given in Table A.3.
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| Pipeline Option Logical Modules
no pipelining e syndrome & delta & location & z(X) & error correction
two stage pipelining . . * syndrome & delta
, ¢ location & z(X) & error correction
three stage pipelining ¢ syndrome & delta
¢ delta
e location & z(X) & error correction
four stage pipelining * syndrome
e delta

¢ location& z(X)

¢ error correction

five stage pipelining ¢ syndrome
¢ delta

* location
* z(X)

* error correction

Table A.3: Pipelining Options

The overall number of decoder operations for each pipelining option as a function of
correctable errors is given in Fig.A.2.
Hardware

Each module uses a different number of CLB's to carry out it's function. The
CLB requirements are given in Table A.4; the requirements include CLB storage of
results calculated in the module, Galois field arithmetic and control logic, but not
storage of arrays passed to other modules. Routing limitations may give rise to

higher CLB requirements than those listed in Table A.4.
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Module Syndrome I Delta Location Z(X) Error

CLB requirements | 90 320 75 90 160
V Table A.4 : CLB requirements by Module

The received block for each stage in the pipeline must also be saved and
passed on from the first to last stage, as well as some intefmediate calculations.
Hardware is minimized if modules are combined which share intermediate
calculations. The coordination of the stages and the shared intermediate

calculations also becomes more complex as more stages of pipelining are used.

A.3.4 External ngic and Memory

Each of the five stages requires as its input either the received codeword or an
array of intermediate values calculated in previous stages; this dependeﬁcy is shown
in Fig.A.3. The received codeword and the syndrome are arrays of 155 bits (31 Galois
field elémentS), the size of each of the other arrays is 75 bits. If no pipeling is used
these values can be passed on by using the same memory for each stage. Because the
'RS decoding algdﬁthr’n reqﬁires both the received codeword and each intermediate
- value array to be completed before being passed on, each level of pipelining
introduced increases Both the number of arrays that must be passed on and the

number of copies of each passed array that must be stored.

No strategies for passing arrays between stages have been considered. The
first strategy passes the data between the storage elements associated with each
stage. Consider the case of five stage pipelining as an example. If son'm array A[X,t] is
calculated in the first stage and used in the fourth stage, the copy of AlX,t] generated
at time t = 1 will reach the fourth stage three stage shifts later. This means thatwhen

the array A[X,t =1 ] will be used in the fourth stage there will be an array A[X, t =4]
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being calculated in the first stage and two arrays, A[X, t =2] and A[X, t =3] being

stored for use in the fourth stage.

Received : _
Block Find_Syndrome
Number of l syndrome][] |
Correctable

Errors

| Imu | I delta[] I

loc_err(]

| num_err I l

Find_Errors

Output of-
Information
Block

Fig.A.3: Intermediate Array Passing
Since passing an array of 75 or 155 bits in one clock cyclerequires too many

input/output pins to be practical, the modules must shift the array in one stage
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before the array is to be used to ensure the complete array will be available when
required. In some cases this requirés the module to have two copies of the érra&; thé
copy being used AlX, t =0] and the copy being shifted in A[X, t =1].

Since only the arrays needed by a particular stage are passed to that stage, this
strategy minimizes the amount of storage needgd. It has the disadvantage however of
requiring relatively complex logic to control the passing process, which reduces the
modularity of the design and makes design alterations more difficult.

Thg first strategy requires either shift registers or Xilinx chips with a very
large number of input/output pihs to store and pass the arrays; either option is
expensive to implement in. Xilinx, and requires a large number of chips if
A implemented in standard register chips. The flow of the arrayé in the case of the five

stage pipelined RS decoder is shown in Fig.A.4.

delta[2] | deltal1] _
delta[3] '
' syndrome[1] |-
syndrome(3] ! syndrome[2] location[0]
L pm!  syndrome[4] ' ' location[1]
' | location[2]
: received[0]
received[4] -
: received[1]
received[5]
received[2]
received[3]

Fig.A.4: Direct Array Passing for a Five Stage Pipelined RS Decoder
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The second strategy is to pass a pointer to the data associated with each stage.
Since one copy of each array used in the decoding algorithm must exist for each
stage, this strategy requires more memory space than the first option. However, it
maintains the modularity of the design and keeps the control logic simple. The
arrays may also be stored in relatively inexpensive external 8-bit RAM; because the
sequence of steps in each module varies with the number of errors to be corrected, it
is not possible to time RAM access among the modules. Instead each module has its
own RAM thus allowing the same memory design to be used with little change for
Galois fields of size 28 and smaller. An example of the switching network is shown

in Fig.A.5.

counter

Fig.A.5 External RAM Storage of Arrays for a Five Stage Pipelined RS Decoder

A.4 Implementation

Implementation of some of the stages of the (31,k) RS codec on the Xilinx 3000
Series Programmable Gate Arrays has shown the Xilinx clock speed to be about 3.5
MHz for this design. This clock speed gives the bit rates for each of the pipeline
options given in Section A.3 as a function of correctable errors as shown in Fig.A.6.

The bit rate increases as more pipelining stages are added until four stage pipelining

127




NE el W

2.5
(X 106) :

2.0

1.5

Pipe Option
X -> none
+ => two

NN
e

<> -> three

[] => four
+ ..—> five

t\)e‘x‘*“*-ﬁ

0.0 , 0.5

1.0

Correctable Errors
Fig. A.6: Pipeline Option Rates vs Correctable Errors

128

1.5
(x 101




is reached; adding a fifth pipelining stage only increases the bit rates for low rate
codes. However, a fifth stage of pipelining may be desirable in order to increase the
modularity of the design.

The number of correctable errors that an incoming received word is coded to
correct must also be stored along with the received word if to allow the user to
program the (Sl,k) RS codec without interrupting the transmission. This is done in
an array passed along each stage with the received word. The Xilinx 3000 Series PGA
comes in chips of five different sizes[32]. The design options can be either
implemented on one or two larger chips, or with a separate smaller chip for each
module if ease of modification or expansion is desirable. The module designs are
saved in software in the design's .LCA files [32]; therefore it is relatively easy to
design the options on separate chips and then combine the smaller chip designs onto
the larger chips. Xilinx reportedly will soon be releasing the Xilinx 4000 series
PGA's, with denser on chip routing, and faster internal switching. If the Xilinx 3000
series PGA's will be upwardly compatible with the 4000 series PGA's, the (31,k) RS
Decoder may be implemented with little alteration on the Xilinx 4000 series PGA's,
increasing the bit-rates shown in Fig.A.6.

No-Pipelining Option:

Since only one logical module mﬁy be carried out in each clock cycle, only
one unit of each of the Galois field arithmetic units is needed, and all the storage can
be saved in either in registers within the Xilinx chips or preferably, in one external
RAM. Because most of the chip space in the (31,k) RS codec is in storage of space and
the Galois field arithmetic unit, the no-pipelining option is relatively easy to
implement, and requires considerably less hardware than the pipe-lined options.
The bit rate of the no-pipelined option is about one-quarter that of the fully

pipelined codec (see Fig.A.6).
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Two Stage and Three Stage Pipelining Options:

Since ohly three arrays (see Fig.A.3) need be passed a distance of one stage,

directly passing the arrays is the easiest strategy to implement in the two stage

pipelining option. Thrgae arrays are also passed in the three stage pipelining option,

one of which is passed a distance of two stages; directly passing the arrays is then

also the best strategy for storing intermediate calculations. The bit-rate of the two

stage option is about half that of the five stage pipelined option, while the bit rate of ..

the three stage option about two-thirds that of the five stage pipelined option. If
modification is an important consideration, external RAM should be used instead of
directly; passing the arrays as it simplifies the task of altering the control logic.
Fou‘r‘ Stage and Five Stage Pipelining Options: |

External RAM should be used for both the four stage and the five stage (fully)
pipelining options to maintain modularity and reduce the complexity of the control
logic. The bit-rates of the four stage option and the fully pipelined option are the
same for much of the range of correctable errors. The fully pipelined optibn can be
built with each module on its own small Xﬂinx chip, making it the easiest to modify
and test. The module designs of the fully pipelined option may later be transforrhed

into one of the lower level pipelining options with minimal reworking.

A.5 Applications of the CODEC

The (31, k) - CODEC can be modified to form a (16, 12) CODEC which is a
standard for Advanced Train Control systems[38]. This may be accompiished by
considering a (31, 27) code and then shortening it by 15 symbols to _obtain a (16, 12)

code. The data rate requirement is 4.8 kbps with future upgrades to 9.6 and 19.2 kbps.
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With k = 15, we have a (31, k) CODEC which is a standard for Joint Tactical
Information Distribution System (JTIDS)[27]. The data rate requirement for this
system is 57.6 kbps.

The CODEC is ideally suitable for Meteor Burst Communication Systems[39].
Such systems have recently been proposed for data communications from trucks to

dispatch centers.
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