
Coding For Frequency Hopped
Spread Spectrum Satellite Communications

Final Report
Period Covered: April 1 1989 to March 31 1990

Prepared for
The Department of Communications of Canada
under DSS Contract No. 36001-8-3529/01-SS

t1,1

•
•

• •

• • •
• • • • • •
• - • •

•
• • •
•
•
•
•
• • •
•

[1..KC

TK

5102.94
.C6

1990

Department of Electrical
and Computer Engineering

THE UNIVERSITY OF VICTORIA
PO. BOX 1700, VICTORIA, B.C. CANADA V8W 2Y2

Final Report (3
Period Covered: April 1 1989 to March 31 1990/

Prepared for
The Department of Communications of Canada
under DSS Contract No. 36001-8-3529/01-SS

, Coding For Frequency Hopped

• Spread Spectrum Satellite Communications 5

Ô

• by

a

a

a

a

Technical Report ECE-90-1

• April 15, 1990

a
a
Ô
a
a

V.K. Bhargava, Q. Wang, I.F. Blakel, G. Li, T.A. Gulliver',
and O. Dravnieks

Department of Electrical and Computer Engineering
University of Victoria

P.O. Box 1700 	 ,
1 	Industry Canada

Victoria, B.C. 	 LIBRARY
I

Canada V8W 2Y2 	 1
',Ii_Yâ 9 7 1998

BIBLIOTHEQUE
Scientific Authority: Dr. L.J. Mason i

1 Professor Ian Blake is with the University of Waterloo, and is a consultant to the University of Victoria
on this project.

2 Now with Defence Research Establishment, Ottawa.

11
8
8

0
1
1

0
9

8
1

11
11

11
1

11
•

11
0

81
1

11
8

1
1
0
8
1
1

0
1

11
1

11
11

11
8

11
1

11
11

11
11

81
1

•0
1

11
1
8

8
11

11
11

08
•
•
•
•

•

Abstract

The performance of Reed-Solomon (RS) error correcting codes with slow frequency
hopped (SHF) differential phase shift keying (DPSK) signalling is analyzed and evaluated
under worst case partial band noise and worst case multitone jamming. A representative
set of the performance curves is shown. Based on these results, recommendation on the
choice of RS code parameters is given.

Two in-hop jamming cancellation schemes for SFII/DPSK systems are proposed.
One scheme is based on balanced coding; the other one uses notch filter to cancel jamming
tone. The performance of both schemes are illustrated. It is shown that both schemes can
work well under certain conditions.

Basic principles and techniques for designing interleavers are presented. Block,
convolutional and the more recent helical interleavers are considered. Certain questions
are considered on the trade-off between diversity and coding for spread spectrum systems,
where a low code rate is anticipated.

An error correction scheme is presented for an M-ary symmetric channel (MSC)
characterized by a large error probability pe . The value of p e can be near, but smaller than,
1-11M, for which the channel capacity is zero. Such a large pe may occur for example,
in a jamming environment. Monte-Carlo simulation results are presented. For the binary
symmetric channel (BSC), it is shown that the overall code rate is larger than 0.6R0, where
Ro is the cutoff rate of the channel. For BSC and a large in, a method is presented for BER
approximation based on the central limit theorem.

Logic-cell array implementation of a (31,k) "programmable" Reed-Solomon CODEC
is presented as an Appendix.

Suggestions for future work include investigation of coding and detection for slow
frequency hop systems using DPSK, robust techniques for generation of erasures, use of
constrained sequences to cancel interference and perform error correction, analysis of coded
systems using-finite interleavers, trade-offs between coding and diversity and implementa-
tion aspects of CODEC.

a

a
a

a 	Contents

• 1 Introduction 	 1
• 1.1 Background 	1
• 1.2 Objective 	1
• 1.3 Plan and Scope of the Report 	2

• 2 Coding for Slow Frequency Hopped Differential Phase Shift Keying 	3

• 2.1 Introduction 	3
• 2.2 Analysis of the Coded System 	4
• 2.3 Computation Results 	6

2.4 Concluding Remarks 	 22

3 Tone Jamming Cancellation in SFH/DPSK Systems 	 23
• 3.1 Introduction 	 23
• 3.2 Cancelling Tone Jamming by Balanced Coding 	 24
• 3.2.1 Assumptions 	 24
• 3.2.2 Problem Description 	 24
• 3.2.3 Cancelling Scheme 	 25
• 3.3 Performance Analysis 	 28
• 3.3.1 Symbol Error Probability at Di fferential Demodulator Output in Scheme

	

 	31
• 3.3.2 Application of Balanced Coding in Scheme I 	 37
• 3.3.3 Application of Balanced Coding in Scheme II 	 39
• 3.4 Frequency Offset Problem 	 41
• 3.5 Tone Jamming Cancelling by Adaptive Notch Filter 	 42
• 3.6 Conclusion 	 50

4 Interleaving 	 51
4.1 Introduction 	51
4.2 Properties of Interleavers 	52
4.3 Block Interleavers 	54
4.4 Convolutional Interleavers 	 58 a 	4.5 Helical Interleavers 	 60
4.6 Comments 	 64

• • •

•

• • • •
a

5 Coding and Diversity 	 65
5.1 Introduction 	65
5.2 Diversity and Convolutional Codes 	 66 	 n

5.2.1 The Heller Bound 	 66
5.2.2 Diversity versus Coding 	68
5.2.3 The Role of the Alphabet Size 	 71

5.3 Diversity and Reed-Solomon Codes 	 71
5.4 Comments 	 72

le
6 Repeated Convolutional Codes for High Error Rate Channel 	 73

6.1 Introduction 	73
6.2 Theoretical Analysis for BSC 	 75
6.3 Computational Results for BSC 	 79
6.4 M-ary Symmetric Channel 	 82 	 a

6.4.1 M-ary Metric 	 86 	 •
6.4.2 Binary Metric Generation 	 95 	 •
6.4.3 Simulation Results 	 101 	 •

6.5 Concluding Remark 	 101
6.6 Further Analysis of One-bit-error Branch 	 104

7 Suggestions for Future Work 	 106 	 5.
7.1 Slow Frequency Hopping Systems 	 106 	 •
7.2 Interleaving 	 107 	 a
7.3 Coding and Diversity 	 107
7.4 Implementation of CODECs 	 107

A Logic-Cell Array Implémentation of a (31,k) Reed-Solomon CODEC 	112
A.1 Introduction 	 112 	 •
A.2 Background 	 114

A.2.1 Background 	 114
A.2.2 The (31,k) RS Decoder Algorithm 	 116

A.3 Implementation Options 	 116
A.3.1 Basis and Galois Field Arithmetic 	 117
A.3.2 Memory and Bus Lines 	 119
A.3.3 Pipelining 	 120
A.3.4 External Logic and Memory 	 124

A.4 Implementation 	 127
A.5 Applications of the CODEC 	 130 	 a

S
S •
•

11
1

0
8
8
0

1
1

11
1

1
8

8
1

1
$

8
8
•8

1
1

8
8

1
1

8
8

1
1
8

11
11

1
1

1
8

8
1

-0
1

1
1

8
11

8
0

•1
1
8

11
8
1

1
11

0
11

11
11

•
81

1
8

11

List of Figures

2.1 Uncoded SFH/DPSK Performance under worst case PBN and MT jamming. 7
2.2 SFH/DPSK Performance of (7,1) RS code under worst case PBN jamming. 	8
2.3 SFH/DPSK Performance of (7,1) RS code un.der worst case MT jamming. . 	9
2.4 SFH/DPSK Performance of (7,3) RS code under worst case PBN jamming. 	10
2.5 SFH/DPSK Performance of (7,3) RS code under worst case MT jamming. . 11
2.6 SFH/DPSK Performance of (7,5) RS code under worst case PBN jamming. 12
2.7 SFH/DPSK Performance of (7,5) RS code under worst case MT jamming. . 13
2.8 SFH/DPSK Performance of (15,5) RS code under worst case PBN jamming.

Lb = 10,15,20,30,60. 	 14
2.9 SFH/DPSK Performance of (15,5) RS code -under worst case MT jamming.

Lb = 10,15,20,30,60. 	 15
2.10 SFH/DPSK Performance of (15,9) RS code under worst case PBN jamming.

Lb = 10,15,20,30,60. 	 16
2.11 SFH/DPSK Performance of (15,9) RS code under worst case MT jamming.

Lb = 10,15,20,30,60. 	 17
2.12 SFH/DPSK Performance of (31,11) RS code under worst case PBN jamming.

Lb = 26,39,50,52,78,155 	 18
2.13 SFH/DPSK Performance of (31,11) RS code under worst case MT jamming.

Lb = 26,39,50,52,78,155 	 19
2.14 SFH/DPSK Performance of (63,31) RS code under worst case PBN jamming.

Lb = 63,95,126,189,378. 	 20
2.15 SFH/DPSK Performance of (63,31) RS code under worst case MT jamming.

Lb = 63,95,126,189,378. 	 21

3.1 The effect of tone jamming on phase change detection when noise is small,
and the jamming tone hits the carrier exactly. 	 26

3.2 Balanced coding tone jamming cancellation scheme I. 	 29
3.3 Balanced coding tone jamming cancellation scheme II 	 30
3.4 The coded symbol error rate of DPSK system with balanced coding tone

jamming cancellation scheme and that of DPSK system employing a code
with the same code rate in thermal noise. 	 36

3.5 11 — CI versus AO with n as parameter. 	 43
3.6 Notch filter tone jamming cancellation scheme. 	 46

11
8

11
1,
8

8
1

1
11

8
8

9
8

0
8

8
8

11
9

8
8

81
1

8
8
8

11
11

81
1

1
1
8
4
•

11
11

11
8

1
e

8
8

11
8

8
0

11
11
•

8
•1

1
11

9
11

81
1

3.7 BER of binary DPSK system with notch filter tone jamming cancellation
scheme versus Eb/No with r as parameter without estimation errors. 3.0 =
7r/3 r 47

3.8 BER of binary DPSK system with notch filter tone jamming cancellation
scheme versus Eb/Nj and with r as parameter with estimation error 0.05
rad. AO = 1.0 rad, and filter notch at 1.05 rad 48

3.9 BER of binary DPSK system with notch filter tone jamming cancellation
scheme versus Eb/Nj and with r as parameter with estimation error 0.025
rad. z19 = 1.0 rad, and fiter notch at 1.025 rad 49

4.1 Helical interleaver, n = 4. 	60
4.2 Input/output of helical interleaver, n = 4, period 12 and overall delay 12. 	61
4.3 Helical interleaver, n = 6. 	61
4.4 Helical interleaver memory read-in sequence, n - 4. 	 62
4.5 Helical interleaver memory address generation, n= 4. 	62
4.6 The effect of deep staggering for n = 4,i = 3. 	 63
4.7 The effect of shallow staggering for n = 4,i - 2. 	63

6.1 Union bounds for the repeated Odenwalder code over the BSC using the first
term, the first four terms and the first nine terms of the transfer function,
respectively. m = 3, 7 and 15. 	 77

6.2 BER based on the Gaussian approximation and the union bound for the
repeated Odenwalder code over the BSC. m = 3, 7, 15 and 31. 	 80

6.3 BER based on simulation, the union bound and the Gaussian approximation
for the repeated Odenwalder code over the BSC. m =3, 5, 7, 15, and 31. . . 81

6.4 Comparison of the cutoff rate Ro of the BSC and the overall code rate r of
the repeated Odenwalder code over the BSC to sustain Pb = 10-4 . 	 83

6.5 Ratio of the overall code rate r of the repeated Odenwalder code over the
BSC to sustain Pb = 10-4 to the cutoff rate Ro of the BSC 	 84

6.6 Model of M-ary Symmetric Channel 	 85
6.7 The union bound for the repeated Trumpis code and Odenwalder code with

three kinds of metrics over 4-ary symmetric channel. m=3,7,15, and 31. . . . 90
6.8 The union bound for the repeated Trumpis code and Odenwalder code with

two kinds of metrics over 8-ary symmetric channel. m=3,7,15, and 31 	 91
6.9 The union bound for the repeated Trumpis code and Odenwalder code with

8-ary metric over 8-ary symmetric channel. m=3,7,15, and 31 for Trumpis
code; m=4,10,22, and 46 and m=5,11,23, and 47 for Odenwalder code. 93

6.10 The Monte-Carlo simulation in 4-ary symmetric channel for BER of repeated
Odenwalder code without interleaving and with direct generation metric,
approximation metric, and conversion metric 102

6.11 The Monte-Carlo simulation in 8-ary symmetric channel for BER of repeated
Odenwalder code without interleaving and with direct generation metric and
conversion metric. 103

iv

1
8
8
8
1

11
1
1

1
1

1
9
1
1
•8

1
1
8
8
8
-

11
8

11
8-

8
8
8
1
1
1

1
8
1
1
8
8

11
11

11
11

11
8
8
8
8
1

0
8

1
1

$
9

11
8

9
11

8
11

,1
1
8

8
1

1

A.1 Module steps vs correctable errors 	 122
A.2 Pipeline option steps vs correctable errors. 	 123
A.3 Intermediate array passing. 	 125
A.4 Direct array passing for a five stage piplined RS decoder. 	 126
A.5 External RAM storage of arrays for a five stage pipelined RS decoder. . . . 	 127
A.6 Pipeline option rates vs correctable errors 	 128

V

•
a

a

a
-

1111
a
a 	List of Tables

•
 «I

3.1 Extended Hamming (8,4) code and its differentially decoded codewords. . . 40

5.1 Maximum free distance for rate 1/2 and 1/4 binary codes (Larsen[22]). . . . 	68
5.2 The coding/diversity example of Chase[19]. 	69 a 5.3 Rate 1/3 q-ary codes. 	70
5.4 df for the (2/3,4) codes compared to the 1/6 codes. 	71

110 	 6.1 Cd(X,Y) of constraint length 7 Odenwalder code. 	 99
el
1111 	 A.1 CLB requirements for OF arithmetic. 	 119

A.2 Storage space requirements by module. 	 120

4111 	 A.3 Pipelining options. 	 121
A.4 CLB requirements by module 	 124

a
a
a
a

111

a
a
a
a

a

a
a
a

vi

O
a
a

a
a

a
a
a

a
a

O
a

a
a
a
a

a

a

O
a

a

a

a

a

a
a
a
a
O

Acknowledgement

We wish to thank Drs. Lloyd J. Mason and E. Barry Felstead for their useful

comments related to material presented in this report.

One of the authors (Dr. Ian F. Blake) is grateful to Drs. Elwyn Berlekamp and G.

David Forney, Jr. who made available material for Chapter 4 that would have otherwise

been difficult to obtain.

vii

a

a 	Chapter 1
a • • Introduction

a
1.1 Background

101
ID 	 In previous contracts, the use of various types of channel coding were studied to improve
1111

the jamming resistance of satellite communications systems using fast frequency hopping.

• Systems with fixed data rate as well as systems with fixed hop rate were examined under

worst case jamming. A modified self-normalizing combiner was analyzed and compared

•

fle
with other non-linear combining saemes. To study coding for Slow Frequency Hopped

• Differential Phase Shift Keying (SFH/DPSK), the probability distribution of DPSK in tone

• interference was derived[1].

• In this annual report, we present the work performed during the year 1989-90. We

first consider coding for slow frequency-hopping DPSK systems. Repeated convolutional

• codes for high error rate channels are analyzed. The effects of interleaving and certain

• questions on the trade-offs between diversity and coding are considered. We also present a

• tone jamming cancellation scheme for SFH/DPSK systems.

• 1.2 Objective

• The broad objectives of the work carried out during 1989-90 are described below.

1. Consideration of coding for SFH/DPSK systems using Reed-Solomon codes under

•• tone and partial band noise jamming.

ele
11,

• 1

a

al

a

a
a •
a
a
a

Se
01,

O

a

a
a

a
a
O
a
O

O

a
a

O
a
a

a
a

2. Examination of low rate codes with large minimum distance for high error-rate sys-

tems.

3. Consideration of interleaving and diversity versus coding for communications over

intentional interference channels.

4. CODEC implementation using current technology, e.g. Xilinx.

La Plan and Scope of the Report

The plan and scope of the report is as follows. In Chapter 2, coding for slow frequency

hopped differential phase shift keying systems is presented.

Chapter 3 presents an analysis of two in-hop jamming cancellation schemes for

SFH/DPSK systems.

Basic principles and techniques for designing interleavers are provided in Chapter 4.

Chapter 5 presents trade-off between diversity and coding for systems, such as spread

spectrum systems, where a low code rate is anticipated.

Repeated convolutional codes are examined in Chapter 6 for channels characterized

by large error probabilities. Emphasis is placed on using a binary convolutional code due

to the consideration that there exist commercial CODECs for such a code.

Chapter 7 contains suggestions for future work.

As an adjunct to the report, a logic-cell array implementation of a (31,k) Reed-

Solomon CODEC is presented as an Appendix.

2

a

O

O
a
a
a
a
a

ea 	Chapter 2
a

Coding for Slow Frequency
• Hopped Differential Phase Shift •
• Keying
O
a
a

2.1 Introduction r e

Spectrum spreading via frequency hopping is commonly utilized in satellite communications

• systems to provide some protection against jamming. An intelligent jammer can, however,

11111 	 drastically reduce the effectiveness of such a system. This effectiveness can be regained

through the use of error correcting (EC) codes. This chapter presents the results of a

• study of the performance of EC codes in a slow frequency hopping (SFR) system with

binary differential phase shift keying (DPSK). By slow we mean one or more symbols per
Me
• transmitted hop. SFH is employed because the differential signalling requires the phase of

101 	 the previous received symbol as a reference. Using DPSK eliminates the need to establish

•
a phase reference for the hop.

• Transmitted signais hop over a total spread spectrum bandwidth Wss . If the total

jamming power is J (referenced to the receiver input), the effective jamming power spectral

• density is

Jo =

• The objective is to minimize the bit error rate (BER) for a given signal to jamming ratio,

E3 1Jo. E, is the energy in a DPSK symbol. An EC code is used to improve upon the ge
fle 	 severely degraded performance of uncoded DPSK when it is jammed. The analysis of the

3

es
a

as
C I

C
C
a
C

a
a

C

C

a
a
a

a
C

a
a
C

a

a
a
a
a
a
a
a
a

coded channel is based on [2].

Under strong jamming, the receiver thermal or non-hostile background noise is usu-

ally small compared to the jamming, so receiver noise is neglected here. We consider two

types of worst case (WC) intelligent but non-repeat-back jamming, namely partial band

noise (PBN) and multitone (MT) interference. For partial band noise (PBN) jamming, J is

restricted to a fraction p (0 <p < 1) of the full spread spectrum bandwidth, but in this band

the power spectral density is increased to Jo I p. Multitone jamming (MT) occurs when the

jammer distributes J as continuous wave tones across Wss . There are N = W„T, possible

tone positions, where T, is the signal symbol duration. If the jammer can place tones in

Nt of these positions, then the fraction of the spread spectrum band which is jammed is

p = Ni /N. In anti-jam communications, a good code should perform well regardless of

the type of jamming. Thus good codes are those with the best performance for the most

effective type of jamming, WC MT jamming or WC PBN jamming, at a given low BER.

The WC BER performance of an RS code with a specific set of parameters is a function of

E3 /J0 and p, where p is optimised to determine pwc•

We consider (n,k) Q-ary Reed-Solomon (RS) block codes with symbol size q =

log2 Q bits, block length Q —1, k information symbols per block, and minimum distance

d = n — k +1. RS codes are maximum distance separable, that is they achieve the highest

possible distance for their code parameters. Since jamming tends to cause burst channel

errors, RS codes are well suited for this system. In addition, RS codes have a low probability

of decoding error [3].

2.2 Analysis of the Coded Systern

To find the BER for WC jamming, we proceed as follows. Suppose the DPSK symbol

energy is E,, and a hop has Lb coded bits, (note that each hop should in addition contain

a phase reference bit). With an RS code, Lb bits can affect 1--41,1 -1 symbols, if Lb is chosen so

that code symbols are aligned to a particular hop. ri] is the smallest integer greater than

or equal to x. Here we assume Lb > q. Then a codeword can be affected by about

nq
H = Fr 1

..ib

4

8
8
1
1
8
1
1

11
11

1
1

1
8

8
8

8
8

1
8

1
11

1
1

1
8

6
1

1
8

8
1
1
8
8

8
1

11
11

11
10

11
11

8
1
1
1

8
81

1
8

8
1

1
8

8
8

11
8

81
1

11
8

1
1

8

hops. When a hop is jammed, Lb bits in this hop will be in error independently with

probability Pj. Although this independence assumption is not true in general, it has been

shown to provide a good approximaiion in PBN jamming, and seems reasonable for MT

jamming based on previous experience and results. Pj is derived from [4] and [2], with

p chosen to be the worst possible, pia,c . For PBN jamming, p represents the fraction of

the spread spectrum bandwidth which is jammed, while for MT jamming p represents the

fraction of the total number of available frequency slots which are jammed. Pj is then given

by

Pj =
E

8
 I Jo), MT jamming,

pE3P0'
with the probability of error under MT jamming, Pe , defined by Eq. (52) in [2]. The

number of erroneous q-ary symbols in these [L'12q] symbols corresponding to a jammed hop

is denoted as z. Then the probability that 1 symbols are in. error is given by

pr (z = 1) = ([Lbl) (1— (1_ pj)q) 1 (1_ p) (1-L b/1t) .
1

The RS code output symbol error probability is then

. E pr(Ezi > t)(1= 1 .2
z•

) pi(i - p)H-i
i=1 	 zi >i

-
where t is the number of symbol errors which can be decoded by an RS code,

—1
t = L

d
--2--j,

and 	is the largest integer less tha,n or equal to x. zj is the number of erroneous q-ary

symbols in the j-th jammed hop, given that i hops are jammed in a codeword. The event

for a specific set of z3 's is denoted by

Ezi > t.
j=1

The summation is over all sets that cause a decoding failure. The probability of these events

occurring is

Pf (E zi > t)
j=1

5

{ exp(—pE s 1J0), 	PBN jamming;

11
8

8
0

8
11

8
1

8
8

8
11

9
8
8

9
•

11
8

8
9

11
8

11
8

1
1

8
0

1
1

9
81

1
8

1
1
1

9
0

11
11

8
0
0

11
0

8
8

11
11

0
0

8
11

9
8
0

which is computed using 13,(z =1).

The final BER is given by

Pb 	
2(Q —1)

Pive is the value of p which maximises Pb, for a given Lb, RS EC code, (n,k), and type of

jamming. The objective is then to determine the effects of these parameters on the BER

and develop a set of guidelines for proper EC code selection. In the next section, various

RS codes are evaluated and the results compiled.

2.3 Computation Results

To provide a benchmark and a check on the optimisation algorithms, uncoded DPSK was

first evaluated. These results are given in Fig. 2.1. They are identical to the worst case re-

sults given in [4]. The performance of Reed-Solomon error correcting codes with q = 3,4,5

and 6, and Lb < 2q — 1, was determined under worst case jamming via optimisation with

respect to p. Since error probability evaluation for PBN jamming is much less computa-

tionally intensive than for MT jamming, candidate good codes were first found for this type

of jamming and then the performance determined for MT jamming.

For q = 3, the (7,k) RS codes require Lb < 21. Figs. 2.2 to 2.7 present the perfor-

mance results of these codes for k = 1,3,5 and Lb =- 6,11,21. From these figures, it

can be seen that the (7,5) code is unable to improve upon uncoded DPSK. For the (7,1)

and (7,3) codes, and Lb = 6, there is a dramatic improvement. In this case, performance

with WC MT jamming is 3 to 5 dB worse than with WC PBN jamming. The next set

of curves shows the (15,k) RS codes. We examined the (15,5) and (15,9) codes, with

Lb = 10,15,20,30,60, with results given in Figs. 2 8 to 2.11. The (15,5) code shows

improvement when Lb < 20 and the (15,9) when Lb = 10. From this we can conclude that

substantial performance improvements over un.coded DPSK can be achieved only when

t> Lblq. Otherwise, the RS code cannot correct the erroneous bits on a jammed hop and

decoding will not succeed, resulting in a performance near that of uncoded DPSK. Finally,

we evaluated the block length 31 and 63 RS codes. Results for the (31,11) and (63,31)

codes are presented here in Figs. 2.12 to 2.15. From these figures, we again see the role

PBN MT

10'

10-1

10 -2

10'

10'

1 0 -5

10 -6

O
a
a
a
a
a
O
a
O
O
O
a
a
a
a
O

a
O
a

O

O

a •

O
O

a
O
a

a
a
a

a
O
a
a
a
a
a
O
a

O

•

Bit Error Rate

2 	5 	8 11 14 17 20 23 26 29

E3 /J0 (dB)

Figure 2.1: Uncoded SFH/DPSK Performance under worst case PBN and MT jamming.

7

a

Lb*.= 11

Lb =

N

10 -°

10 -1

10 -2

l o -3

10'

10'

10 -6

11
8

11
0
8

•
0

11
11

11
8

0
11

8
1
•

11
11

0
11

11
8

0
8

11
0

1
1
8
8

11
11
.

8
11

0
9
0

8
1

11
1

11
1

0
8

11
1

11
8

0
0

8
8

1M

Bit Error Rate

2 	5 	6 11 14 17 20 23 26 29

E3 /J0 (dB)

Figure 2.2: SFII/DPSK Performance of (7,1) RS code under worst case PBN jamming.

I-- Lb = 21

= 11 -+

= 6

10 -°

10 -1

1 0 -2

1 0 -3

10 -4

1 0 -5

10 -6

8
8
1

1
8

8
1

1
8
11

1 1
8
0
6
8
8
1
1
8
1

1
1

1
9

8
8

8
8

1
1 1

18
11

8
11

11
81

11
1

81
1

11
.1

11
1

11
6

0
8

8
11

8
8

1
1

•
8

1
11

18
8
8

Bit, Error Rate

2 	5 	8 11 14 17 20 23 26 29

E3 / J0 (dB)

Figure 2.3: SFH/DPSK Performance of (7,1) RS code under worst case MT jamming.

9

Lb = 11

\Lb

Bit Errgr Rate

8 11 14 17 20 23 26 29

EJJ0 (dB)

2

Er. °

10 -1

10 -2

10 -3

10 -4

io-

io -6

8
8

0
11

8
81

1
0

8
11

0
1

11
1
8
0

11
11

01
1

8
•1

1
8

1
1

8
0

1
1
8
8

11
4

11
1 1

0
0
9
8
1

1
1
1
0
0
1
1
0
0
0
0
1
1

81
1

8
1
1

8
8

8

Figure 2.4: SPH/DPSK Performance of (7,3) RS code under worst case PBN jamming.

10

Lb

Lb = 6

Hy°

lo-1

10-2

10 -3

1 o-

10 -5

10-6

1
1

8
1

1
0

8
8

1
11

11
11

11
1

8
81

11
1

8
1

1
8

6
1
1
8
8
1
1
8

11
8

91
1

8
8
8

1M
O

S
S

8
8

11
1

01
1

11
11

11
11

8
8
8
1

,1
1

0
1

11

Bit, Error Rate

2 	5 	B 11 14 17 20 23 26 29
Es Po (dB)

Figure 2.5: SFH/DPSK Performance of (7,3) RS code under worst case MT jamming.

11

b = 21

11 Lb =.

Bit Error Rate

10 -c)

10 -1

10 -2

10 -3

10 -4

10 -5

10 -6

11 14 17 20 23 26 29

Espo (dB)

2 	5

11
8

8
8

8
8

11
9

4
11

0
0

0
11

8
11

11
8

4
11

0
8

8
11

11
1

1
•
8
8

11
8

4
11

8
0

0
0
1

1
81

1
11

11
1

0
11

11
0

1
10

1
1

8
1
1

0
8

0

Figure 2.6: SFH/DPSK Performance of (7,5) RS code under worst case PBN jamming.

12

L b = 11

L6 r----- 6

t-- L, = 21

10 -- °

1 0 —1

10-2

lo -3

10 —a

10'

10-6

11
11

11
1 1

1
1

1
1

0
9

0
9

0
0
8
8
8
8
8
0
1

1
8
8
1

11
1

8
8
1

11
1

11
11

11
8
0
8
8
6

0
1

16
11

11
8

1
1
8
8

11
11

11
11

•1
1

8
8

8
81

1

Bit Error Rate

2 	5 	8 11 14 17 20 23 26 29
Lisp° (dB)

Figure 2.7: SFH/DPSK Performance of (7,5) RS code under worst case MT jamming.

13

10 -- °

10 -1

10-2

1 0 -3

i o -5

1 0 -6

4
81

1
8

11
11

11
9

11
0
M

0
11

8
8

0
11

8
0
1

1
.1

11
1

11
01

11
1

8
11

0
0

11
,

11
9

0
1

11
1
0
0

8
.1

1
0

8
1

1
•

11
11

8
81

1
11

Bit Error Rate

decreasing Lb J.

IIII

 • 	

+— Lb = 60

\.\-- Lb -= 20 	
-----..,

\ \
\

\
‘.

2 	5 	8 11 14 17 20 23 26 29

Edlo (dB)

Figure 2.8: SFH/DPSK Performance of (15,5) RS code under worst case PBN jamming.
Lb = 10, 15, 20, 30, 60.

14

10-°

10 -1

10 -2

10 -3

10 -4

10 -5

10-6

91
1

11
81

1
11

1
1

8
0

1
1

8
0

11
6
0
8

0
9

8
11

8
1

1
9

11
8
8

81
1

11
11

8
6
0

9
 •

9
8
8
8

8
6

8
8

11
11

8
8

11
8

8
8

1
11

1
11

0

Bit Error Rate

decreasing Lb i IlkiI gi = 60 11

= 10 1 	,
Lb = 20 \ ‘

2 	5 	6 11 14 17 20 23 26 29

E,P0 (dB)

Figure 2.9: SFH/DPSK Performance of (15,5) RS code under worst case MT jamming.
Lb = 10,15,20,30,60.

15

10 —°

10 -1

1 0 -2

10'

10'

10 -5

10 -6

11
11

11
.1

1
11
,

0
11

11
4

11
0

0
11

11
11

•
11

11
01

1
1
8
•

8
11

01
18

8
•

0
8

8
11

9
0

8
8

8
9

6
1

1
8

8
1

11
1
8

0
8

11
11

81
1

0

Bit Error Rate

s.,:,72.›......

Ns

decreasing Lb i.

8 11 14 17 20 23 26 29
E,Po (dB)

Figure 2.10: SFH/DPSK Performance of (15,9) RS code under worst case PBN jamming.
Lb = 10,15,20,30,60.

16

2

i

9
8

11
11

11
11

•1
1
6

11
11

8
1

11
11

11
1

11
11

11
0
8
•
8

8
11

11
11

11
11

8
11

01
1

11
8

11
11

8
8

11
9

8
8

0
11

8
8

8
8

8
11

8
1

11
11

1

10-°

10'

10 -2

10'

10'

10'

10 -6

Bit Error Rate

decr asing Lb I

=60

Lb = 10

..

2 	5 	8 11. 1.4 1.7 20 23 26 29

E,/J0 (dB)

Figure 2.11: SFH/DPSK Performance of (15,9) RS code under worst case MT jamming.
Lb = 10,15,20,30,60.

17

N Lb = 26

decreasing Lb

Bit Error Rate

5 	8 11 14 17 20 23 26 29

E3 /J0 (dB)

10"

10-1

10-2

10 -3

10-1

10 -5

1 0'

a

a
a

' a
O
a
O
O
O
O
O
ai
O
a

'

a
O
a
O

O
O

O
O
O

O
O
a
O
a

a

O
a
O
O

O
O
O

O
O

Figure 2.12: SFH/DPSK Performance of (31,11) RS code under worst case PBN jamming.
Lb = 26,39,50,52,78,155.

18

10 -o

10 -1

10 -2

1 0'

10-4

10'

10 -6

6
1

1
0
8

11
8

1
,
8
0
1

11
11

1
0
•1

1
8

11
0

9
.

11
11

11
0

11
8

6
91

1
11

11
11

11
11

11
11

$
11

8
11

0
•1

1
6

11
81

1
8

1
1

111
8

11
11

11
$

Bit Error Rate

,

IBIn... 	decreasing Lb 1

111,111111111 gi 	...,
el hi.

1
2 	5 	6 11 14 17 20 23 26 29

E3 /J0 (dB)

Figure 2.13: SFR/DPSK Performance of (31,11) RS code under worst case MT jamming.
Lb = 26,39,50,52,78,155.

19

0
8

0
01

1
•0

11
11

11
11

11
9

0
8

8
0

0
11

0
8
0

11
8
8

11
0

01
1

8
•

4
8

11
1

8
0

11
0
1

1
0

11
0

0
11

8
11

81
1

11
11

8
1

1
1 1

9

Bit Error Rate

10 -°

10 -1

10-2

10 -3

10 -4

10-5

10-6

2 	5 	8 11 14 17 20 23 26 29

E,P0 (dB)

Figure 2.14: SFH/DPSK Performance of (63,31) RS code under worst case PBN jamming.
Lb 7= 63,95,126,189,378.

20

Lb = 126,189,378

Lb = 63 -->

= 95

10 -13

10.-1

10-2

l o -3

10 - '1

10 -5

10-6

•8
11

11
11

11
61

11
1
8
0
8

80
11

11
11

0
11

6
0

9
0

11
81

1
81

1
81

1
9

•1
1

6
8
0

6
8

8
61

1
6
8

8
0

1
1

11
11

11
11

8
1

11
1

8
9

Bit Error Rate

2 	5 	8 11 14 17 20 23 26 29

EsPo (dB)

Figure 2.15: SFH/DPSK Performance of (63,31) RS code under worst case MT jamming.
Lb = 63,95,126,189,378.

21

0
11

11
11

8
1
1

9
8

11
11

0
11

0
0

11
11

•1
1
8

0
0

1
1

0
11

0
11

0
8
1
1

11
0

1
1
0

0
 11

0
1
1
0
0
1
1

11
11

11
0
1
1
•1

11
1

0
1

1
81

1
11

11
0

Lb lq plays in the performance. With the (31,11) code, t = 10 symbols, or tq = 50 bits can

be corrected. Thus only for Lb < 50 is performance improved. This is most dramatically

shown in Figs. 2.12 and 2.13 when Lb is dropped from 52 to 50. Similarly for the (63,31)

code, when Lb < 96 performance is dramatically improved. WC MT jamming is always

worse than WC PBN jamming, and for small Lb the difference is 2 to 5 dB.

2.4 Concluding Remarks

From the results of the previous section it is clear that the number of codeword symbols per

hop must be small in order for the RS code to provide protection against jamming. Other-

wise, no improvement over uncoded DPSK is gained. Lowering the symbols per hop can be

achieved either by reducing the number of bits per hop, as was done here, or interleaving

the RS codewords to a depth determined by the hop length and RS code parameters.

It remains to evaluate the performance when diversity is also employed and when

nonbinary DPSK is used. Both of these directions should provide performance improve-

ments over the results found in this chapter. As well, the use of interleaving will reduce the

number of erroneous symbols in a given RS codeword when a hop is jammed. It also allows

a long hop length, which reduces the amount of lost data due to the phase reference bit.

22

01
1

8
8

1
1
•0

8
9

•8
8

11
11

11
0
•0

8
11

•1
1
•

8
0

0
01

11
18

0
6

1
1

01
1

0
11

81
1

11
0

9
0

11
6

11
11

8
8

11
8
8
1
1
1

1
1,

Chapter 3

Tone Jamming Cancellation in
SFH/DPSK Systems

3.1 Introduction

In a slow frequency hopped (SFH) differential phase shift keying (DPSK) system, there are

typically at least a few tens of bits in a hop. We can not afford the loss of even one hop.

One way to improve the system anti-jam capability is to employ a long error correction code

such as, a Reed-Solomon code. Error correction codes with long codewords spanned over

several hops can be designed to correct burst errors as well as random errors. Random error

correcting codes with deep interleaving can also be used. This type of method is based on

multiple-hop information.

For tone jamming, however, it is possible to employ some signal processing tech-

niques to combat jamming in a single hop. This can improve system performance signif-

icantly. If the system in-hop anti-jam capability is increased, the jammer must put more

jamming power in a frequency slot to achieve the same jamming effect. Thus the total

number of frequency slots jammed will be reduced when total jamming power is constant.

Therefore the whole system anti-jam capability is increased.

In a previous report, we have analyzed the probability distribution of signals in

DPSK systems in tone interference [1]. In this chapter, we propose two in-hop jamming

cancellation schemes for SFH/DPSK systems. One is based on using balanced coding, while

the other one uses adaptive filtering to cancel the jamming tone. The performance of these

23

•
a

a
a

•
a

a

a

a

a

a
a
a

a

a

•
a

a
a
a

schemes is analyzed as well.

3.2 Cancelling Tone Jamming by Balanced Coding

3.2.1 Assumptions

We consider a SFH spread spectrum system with binary DPSK modulation. We assume

that the amplitude of the transmitted signal is constant, that initial phase of the signal does

not vary in a hop, and that the amplitude information of the received signals is available.

This means that there are no envelope limiting circuits in the receivers. We also assume

that the frequency of the jamming tone is the same as the carrier frequency, so that the

amplitude and initial phase of the jamming tone are constant in a hop.

3.2.2 Problem Description

In a SFH/DPSK system, when a hop is hit by a multitone jammer, the received signals in

the hop contains highly correlated interference. Assume that the transmitted DPSK signals

in a hop are: -E1,Ê2,• • •, en ,

. -É1= Eeici 	i =1,2, • • • , m

where m is the number of channel symbols in a hop, and E and Oi are the amplitude and

phase of the ith transmitted signal, respectively. Then the received signals under tone

jamming are: /71,14 ' . •

= Eeie 	_fee" 	i= 1, 2, • • • , m

where IejeJ is the tone jamming with amplitude I and phase Oj which is uniformly dis-

tributed in [0, 2r). In DPSK modulation information is carried by phase change; therefore

detection is usually based on phase change of two consecutive signals.

When signal to thermal noise ratio (SNR) is high, the influence of tone jamming on

DPSK signal can be illustrated by a geometric relation, as depicted in Fig. 3.1 (a) and (b).

In Fig. 3.1 (a), there is no phase change between two consecutive transmitted

signals, . -É1 and É.2, i.e. L(Ê1 , E2) = 0, where L(.,.) is the angle betweuen two vectors. It is

24

11
11

8
8

1
1

0
1

11
11

01
11

1
8
1
1
0
0
8
1
1

11
01

1
8

8
0

8
8
0
0

11
81

1
11

11
01

1
9

0
1
,8

0
0

8
11

0
1

11
0

11
11

•1
1

11
11

11
11

11
1

11

easy to see that there is also no phase change between two consecutive received signals,

and 172. So a correct decision can always be made no matter how large the tone jamming

is (when neglecting errors due to thermal noise, and noting that the probability of the

jamming vector exactly cancelling the signal vector is zero). Therefore tone jamming does

not have direct influence on detection in this situation. However, an indirect influence is

the change in the probability of erroneous decision due to thermal noise as a result of the

amplitude change in the received signal caused by the jamming component.

In Fig. 3.1 (b), there is 7r radian phase change between two consecutive transmitted

signals, i.e., L(. -4,É2) 	We can see that due to strong tone jamming the phase change

of two consecutive received signals, ii and 1 2 , can be less than 	Therefore an erroneous

decision can be made. When jamming is strong enough the phase difference between fti

and 12 can always be less than -121 , hence a zero phase change will be incorrectly detected.

In summary, the main influence of tone jamming on DPSK system is that the prob-

ability of the receiver not detecting phase change between two signals is mua higher. This

conclusion is directly based on the assumption that jamming tone hits the carrier frequency

exactly.

One way to combat tone jamming is to cancel the jamming tone before a decision

is made. This can be carried out by employing the so called balanced code.

3.2.3 Cancelling Scheme

Consider a block of transmitted signal vectors such that the sum of vectors is zero, and

suppose the whole block is transmitted in the same hop. Then neglecting the influence of

thermal noise, the vector sum of the corresponding received symbols divided by the number

of symbols in the block is the tone jamming component. Thus the amplitude and phase of

the jamming tone can be estimated from the sum of the recieved signals, and then the tone

jamming can be cancelled from the received signals.

Suppose the block length is n signals, and the transmitted signals are si, j =

1,2, • • • ,n. The requirement on the transmitted signals is

E Si = O.
i=1

25

(3.1)

0
11

11
0

8
1
1

0
11

0
8

•1
1

0
0
.1

1
11

11
11

11
8

11
5

81
1

0
0
0
1

11
11

1
11

11
11

01
1

0
1

11
11

1
11

11
0

0
0
1
1

11
11

8
0

11
11

11
8

11

Decision boundary

(a)

Decision boundary

(b)

Figure 3.1: The effect of tone jamming on phase change detection when noise is small, and
the jamming tone hits the carrier exactly.

26

O
O

a
• In the binary case, Equation (3.1) means that in the sequence there must be the same

• number of signals with a phase 9 and signals with a phase 0 -I- 7r. This can be achieved by
SI
Ile 	making the codeword balanced before PSK modulation.

• A balanced code has codewords with equal numbers of zeros and ones. One im-
ià

portant feature of a balanced code is that it is dc-free. They have been used in magnetic
1111
10 	 storage and optical communication systems where a dc-free signal is required. Here we can

411 	 use the dc-free feature to estimate jamming tone. a
• For a coherent binary PSK system, the balanced code can be used by simply plac-

• ing the balanced code encoder before PSK modulation and the balanced code decoder after
Ile PSK demodulation. But for binary DPSK systems it is more complex to use a balanced

•
111

code. Two possible schemes are considered in this report.

• One scheme (Scheme I) is shown in Fig. 3.2. Differential encoded information data

• is encoded with a balanced code before PSK modulation. At the receiver the received signal

111 	 is first downshifted to the baseband to generate in-phase and quadratic components. The
111

balanced encoded signals at the baseband have a property that the vector sum of signals
10 se in a codeword is zero. Then the average of received signals in a balanced codeword is corn-

«) 	 puted. The average is an estimation of the jamming tone. Thus by subtracting the average
11,
• from each codeword the tone jamming is cancelled. The data is then passed to what we

• call a semi-differential PSK demodulator followed by a balanced decoder and a differential

decoder.

• The semi-differential PSK demodulator is a PSK demodulator based on differential
111 	 phases of consecutive received signals. It works in the following way: assume the first re-

11111 	 ceived signal represents 1 (or 0 arbitrarily), then compare the phase difference between the

• second and the first received signals. If the phase difference is greater than 7r/2, then declare

the second signal to represent 1; otherwise it represents O. This procedure is repeated for

• the following signals.

The output of the semi-differential PSK demodulator is a received balanced coded

• sequence or its inversion. For instance, if the balanced sequence is 1010 ..., the received

a 	sequence may be 1010 ..., or 0101 The ambiguity comes from the differential PSK

demodulator. Therefore, in order to recover the original information data with a differ-

s)
• 27
a
a

a
O

ential decoder following a balanced decoder, the balanced code should be transpa,rent[8].

Transparent code is a code in which an inversion of a codeword is also a codeword, and the

corresponding information bits of a codeword and its inversion also have an inverse relation.

Thus, by using transparent balanced coding, the tone jamming can be cancelled, and the

original information sequence can be obtained from outputs of the differential decoder.

The other scheme (Scheme II) is shown in Fig. 3.3. The information data is encoded

with a balanced code before PSK modulation. The cancellation algorithm is the same as

that in the first scheme. Following the cancellation circuits is a differential demodulator in

a DPSK receiver. The output of the decoder is a differentially decoded balanced sequence.

A mapping between a differentially decoded balanced codeword and its corresponding in-

formation bits is used to decode the differentially decoded balanced codeword sequence.

Specifically, suppose we use a (n,k) balanced code. k information bits are encoded

into a balanced codeword n bits long. At the receiver the differential demodulator is op-

erated on every balanced codeword, and generates a n — 1 bit long output, which is a

differentially decoded balanced codeword and corresponds to the original k bits of informa-

tion.

Because a codeword and its inversion are identical after being differentially decoded,

the inversion of a balanced codeword should either correspond to the same information bits

or not be a valid codeword.

3.3 Performance An.alysis

We first analyze the tone jamming cancellation performance, which is the same for both

schemes. The symbol error probability at the output of the differential demodulator in

scheme II is derived. This symbol error probability is the same as the transition error

probability at the output of the semi-differential PSK demodulator, where the transition

of signals carries information. Next we discuss different balanced coding methods and

performances in the two schemes separately.

28

Differential
Encoder

Balanced Code
Encoder

PSK
Modulator

Channel

EJ Codeword
Average

Balanced
Code

Decoder
Semi-Differential

Demodulator
hot+

01
11

11
1

11
11

•
•
•
•
1
1

11
91

11
1 1

11
1

11
81

11
1

1
1

8
8

•0
0

8
1

11
1

0
1

11
18

81
1

1
1

8
8

11
11

8
8
8
1
1

0
8
8

11
11

81
1

8
8

1
1

binary

data

received
data

...,0_1 Differential
Decoder

Figure 3.2: Balanced coding tone jamming cancellation scheme I.

29

binary

data

received
data r

Mapping:
From differentially
decoded balanced

codeword to
information bits

Balanced Code
Encoder

Differential
Demodulator

PSK
Modulator

Channel

Codeword
Average

Figure 3.3: Balanced coding tone jamming cancellation scheme II.

30

11
11

11
11

11
11

8
1
1
8
1

1
11

8
9

11
11

11
•1

11
1

8
0

1
1

0
11

11
11

8
8

1
11

11
8

8
9

8
11

8
8

11
11

8
10

8
8

11
4
8
•
•

•
81

1
11

8
1

1

3.3.1 Symbol Error Probability at Differential Demodulator Output in
Scheme II

Let us observe a received data sequence corresponding to a balanced codeword, r 1 , r2 , 	,

rn , and where

ri = si Iej8 .1 + ni 	i = 1,2,...,n

where n is the length of balanced code; si is the transmitted signal with energy E3 ; IejeJ

is the tone jamming; and

ni = xi + jyi

where xi and yi are zero mean additive white Gaussian noise (AWGN) with variance cr2 =

N0/2 respectively. No is the AWGN spectral density.

The arithmetic average of the sequence is

1 n 	1
a= — Eri = 	+lee' +

n i=1 	 n i=1

If the transmitted signal sequences si, which is encoded by a balanced code, has the property:

E Si =
i=1

then
1 n

a = IejeJ +

n.=1

We can see that a is a good estimation of the jamming tone when n is large enough.

Subtracting a from ri, we have

1 11
i = 1,2,...,n

n k=1

where
1 n
n k.1

Therefore the tone jamming component has been cancelled. Since cancellation involves more

than one sample, after cancellation the signal is imbeded in noise ñ which is correlated with

others in a codeword. ñ can be rewitten as

31

and r is defined by

r —
xixi+i 	
-

a-2

a

and
1 \—,n

•
71 	k.

k=1,Icei 	 a

which is given by

(1 —) 2 cr2 n — 1 cr 2 	 a
n 	n2

n — 1 2 = 	 (3.2)

a

= XiYi+1

e A 	5.2

a
Therefore after tone cancellation, the signal is perturbed by coloured Gaussian noise with

a correlation coefficient r.

Pawula et al. derived the distribution of the phase angle between two vectors per-

turbed by correlated Gaussian noise[5]. By using their results we can derive the bit error 	 a
probability of binary DPSK signalling in coloured Gaussian noise. The bit error probability

of binary DPSK signalling is given by:

1 	iv 	3ir 	 1 	iv 	iv 	 a
2 	2 	2 2 	2 	2

where AT is the phase change between two consecutive transrnitted signals; iji is the phase

change between corresponding received signals, and we have assumed the two transmitted

signals to be equalprobable. According to [5, Eq.(9)],

2 	2 	 2 	2
a

a
32

n 	 n 	n n 	• 	n

Yi - - Yk 	- -n n

and yj are linear combination of Gaussian variables, and thus are still Gaussian. It is

easy to see that the niean of j and"yi are zero, and that they have the same variance 5-2 ,

The correlation between adjacent ñ can be described with the auto-correlation coefficient

r and the cross-correlation coefficient A. Because for arbitrary i and j, xi and yi are

uncorrelated, 'Xi and j are also uncorrelated. So

a

a
a

O
O • • 2
• where
• Fe, w (0) = 	In 2 [a (.0 + (i)le-.Ert) , dt 	 (3.3) • 47r —712
11111 	and

•
ID

U — V sin t — W cos(AT — e) cos t E(t) = 	 (3.4)
• 1 — (r cos e 	sin e) cos t

W sin(AT — 	e) a(t) 	 (3.5) • U — V sin t — W cos(AT — e)cost'
• r sin — Àcose

fi(t)= 1 — (r cos e -I- sin e) cos t. 	 (3.6)

ID 	 In our case U = W = signal to coloured noise ratio, V = 0, and À = O. Substituting these

• relations into Equations (3.4), (3.5), and (3.6), we have

• 1 — cos(— 7,b) cos t TT
• E(t) = 	

AT
 1 — r cos e cos t

• sin(AT — e)
O a(t) = 1_ cos(AT — lk) cos t

r sin

	

e (t) — 	r cos e cos t .
O Note that when E(t), a(t), P(t) are constants, Equation (3.3) can be written as
O

O
O
• When AT = 0,
O 1- cos e cos t TT • 	 = U for E(t) = 1— r cos lp cos t

— sin e
• a(t) =. 	— T1 for 	= 1 — cos cos t 	 2

• P(t) = 	"in 	= ±r for e = ± 71 1 — r cos e cos t 	 2
O
• Thus
O

• F0 	= 71 (r — 1)e-u ,
O
• F0 (37r 	 _7) = .F0 (— 7 	-4 (1 — r)e-u .
O
O
O
O

 1

a
O
O •

FA ,p(0)= (ce + 	-E

33

37r
0 5_ —2 IAT -_ -_ _1 (1 _ r) e-u .

2
(3.7)

When AT =

-U (3.8)

Therefore

E(t) =
1 + cos II) cos t

1 r cos cos t
U U for

•
a(1) = 	

=±1 for

i_ r cos cos t
r sin
	 - ±r for

= 1 - r cos e cos t

Thus

= 711 (1 + r)e—u ,

1
-4(-1 —

Therefore

1-21. 1AT = 7r) = F, (-1) — F, (- 7) — 1 (1
2 	2 2 +

And thirs the bit.error probability is

1 	-u 1
-re + -(1+ r)e — U = —U

	

4 	 2e

where U is signal to coloured noise ratio. From Equation (3.2) we know that the coloured

noise variance is (n - 1)/n tirnes of original thermal noise variance. Thus

n Es 	• n rbEb U = —
 n - 1 No
-
 n - 1 No

where Tb is the code rate of the balanced code. And finally, we have

1 	1 	n 7'6E6 P
e
 = — exp
 2
	

n-1 No

This expression does not contain the amplitude of jamming tone I, and other pa-

rameters related to jamming tone. Therefore the jamming tone has clearly been cancelled.

Two types of error probability are given in Equations (3.7) and (3.8), respectively.

Obviously they are not the same for a fixed r. Especially when 171 is large (Ill is close to

2 '

<
2 -

(3.9)

34

01
1

6
8
8
1
1
8
1
1
1
1

11
11

11
1

1
1
8

1
1

8
1 1

8
8

8
0

8
8

8
8

1
1

11
11

0
1

1
8

8
8
8

11
11

11
11

11
11

11
8

11
11

8
8

11
•
8

8
9

11
8

1
1

one), the difference of two types of error probability can be quite large. However, it can be

shown that in our case

1 	,, 	 1, 	1 	x--,n 	, 	1, 	1 	'-.,
r = 	u. — —)xi — — 2_, x k (1— — Fi+i — —

n
z 	Xk a 	n 	n 	 n k=1,14i 	 k=1,k0i-1-1.

1
n — 1

where we have used the following relations:

= 0.2 	and 	IT±T, = 0 	i5Lk.

So when n is not very small r is much less than one, and thus the two types of error

probability are almost the same.

Recall that the bit error probability of binary DPSK system with thermal noise only

is
1Eb

PDPSK —
2
exp (--)

No

Comparing with Equation (3.9), we can see that after cancellation the bit error probability

has a form similar to that of binary DPSK system with noise only. But we can not compare

the two expressions directly because Equation (3.9) gives the coded symbol error probability,

and Equation (3.10) gives the bit error rate without coding. The bit error probability after

decoding bas to be evaluated with the specified balanced code in coloured Gaussian noise.

This problem needs further investigation.

However, we can compare the coded symbol error rate given in Equation (3.9) with

that of a binary DPSK system with a code of the same code rate rb in thermal noise. The

later is given by
rbEb = exp

(
—

)

70 — exP 2

In this case, the coded symbol error rate of the DPSK system with balanced coding tone

jamming cancellation is a little bit less than that of the DPSK system without cancellation,

but employing a code with code rate rb. But if n is very large, the difference is very small.

The coded symbols error rate of the binary DPSK sytem and that of the DPSK sytem with

balanced coding tone jamming cancellation for n = 8, and 16 are plotted in Fig. 3.4.

35

(3.10)

Figure 3.4: The coded symbol error rate of DPSK system with balanced coding tone jam-
ming cancellation scheme and that of DPSK system employing a code with the same code
rate in thermal noise.

36

8
0
1

11
1
8

11
11

11
11

11
11

8
8
8
8

8
1

11
1

11
81

1
11

1
1

1
81

1
8

8
1

1
9
8

8
0

8
8

11
11

6
8

11
11

8
1

11
11

1
8

81
1

11
1
1

1
8
8
8

3.3.2 Application of Balanced Coding in Scheme I

As mentioned early, the balanced code used in Scheme I should be transparent. The bal-

anced codec operates on differentially encoded data with ambiguity on the data's absolute

values.

Several papers have discussed balanced codes with high code rate, i.e. a code rate

larger than 0.5 without considering the transparent property. D.E. Knuth [6] proposed a

kind of balanced code which is very simple in encoding and decoding.

One trivial case of balanced transparent coding is simply adding the Vs complement

of the information bits. This results in a rate -} balanced code with the transparent property.

For example, if an information sequence is w, then the corresponding codeword is imp, where

ID is 1's complment of w.

Recently several papers have discussed error-correcting balanced codes [7]. Usually

we want to use a linear error correcting code to avoid a complex decoder. Thus we wish

to have transparent linear balanced error-correcting code. However, no such codes exist

because linear codes must have the all-zero codeword and linear transparent code must

have the all-one codeword. These two codewords are not balanced codewords (in general, a

balanced code is not necessarily a linear code; and there is only a one to one correspondence

between information bits and codewords). But we can construct a code having similar

properties. The code has the following structure:

1. (n, k) block code (n is even);

2. linear code;

3. transparent code;

4. all codewords are balanced codewords, except the all-one and all-zero codeword.

We call this code pseudo balanced code, and the code has the following properties:

1. The minimum distance dmin > L;; otherwise the sum of two balanced codewords

would result in non-balanced codeword.

2. There are only three possible weights: 0, -T21 , and n.

37

11
8

8
*

1
8
8
8

11
8

8
11

81
1

8
1

1
11

11
11

8
8
0

11
81

1
1

8
8

8
8

81
1

8
8

1
1

8
11
4

•
8

81
11

1
11

81
11

1
8

8
1

1
8

1
1

8
11

11

3. If w is a codeword, ID is also a codeword; this is a property of a transparent code.

In communications, when data words happen to be the saine as control words they

are modified in certain ways to remove confusion. By using similar techniques, we can avoid

encoding the a11-zero and the all-one codewords at the transmission end. Then the code

described above can be used in our tone jamming cancelling scheme as if it were a linear

transparent balanced code. This code can help us eliminate the tone jamming and can

correct random errors as well. Following are examples of two of such codes.

Example 3.1

The (7,4) Hamming code has weight enumerator:

A(z) = 1 +. 7z3 7z4 z 7 .

This code can be modified to be a pseudo balanced code by adding a parity bit. This results

in a (8,4) code with dmin = 4. The code can correct 1 bit error and detect 2 bit errors at

the same time.

Example 3.2

1st-order R,eed-Muller codes are pseudo balanced codes. When m = 4 and n = 16,

the generator matrix of the lst-order Reed-Muller code is:

1 1 1 1 1 1 1 1 1 1 1 1 1 111
0 0 0 0 0 0 0 0 1 1 1 1 1 1 11

G= 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

• 	_ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

This is a (16,5) code with dmin = 8.

In the output of the differential demodulator in Scheme I, a one bit error may cause

all of the following bits to be inverted. For a specific balanced codeword, if a bit error

happens at the first bit or in a previous codeword the whole codeword will be inverted.

Because the code is transparent, it can be correctly decoded. But if a bit error happens at

a bit after the first bit in a codeword, all bits in the codeword after the error bit will be

inverted, causing a burst of errors.

38

01
11

81
18

111
8

8
8

8
8
8

11
11

11
8

11
81

1
11

8
1
,1

8
1

11
1

11
81

8
9

11
11

11
8
8

8
11

0
8

$
8

1
11

11
8

1
11

11
11

11
8

111
8

1
8

11
11

Code rate bound of error correcting balanced codes

For any (n,k,d) linear code there is a bound on minimum distance d:

n — k > d —1.

When d = L/ we have 2

n — k > —
n

 —1
— 2

and therefore the code rate r is bounded by:

k 	1 	1
n2 n,

Hence it is not possible for the code rate of a pseudo linear transparent balanced code to

be much larger than 0.5.

According to the Plotkin bound,

k<n— 2d + 2 + log2 d.

When d = Li we have 2

k < 0 +2 +log2 -
2

=log2 n-1-1

and hence
k 	log2 n 1

r 	< 	+
n

.

This upper bound is tighter than the first one.

Note that the code rate of the lst-order Reed-Muller code is

m + 1 log2 n + 1
r

2m

where n = 2'. So the code rate of the 1st-order Reed-Muller code achieves the Plotkin

bound on code rate.

3.3.3 Application of Balanced Coding in Scheme II

The balanced decoder in Scheme II does not work on balanced encoded data, but on dif-

ferentially decoded balanced encoded data. This is because the output of a differential

39

8
8

8
11

8
8

11
8

8
8

8
8

8
11

11
11

11
81

1
11

8
11

11
81

1
81

1
4
1

1
8
1
1
8

81
1

11
8

11
•

8
8

8
8

8
8

8
1

11
18

11
8

11
11

11
11

0

Information 	Codewords 	Diff. Decoded Codewords
0000 	0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0
1000 	1 1 0 1 0 0 0 1 	0 1 1 1 0 0 1
0100 	0 1 1 0 1 0 0 1 	1 0 1 1 1 0 1
1100 	1 0 1 1 1 0 0 0 	1 1 0 0 1 0 0
0010 	1 1 1 0 0 1 0 0 	0 0 1 0 1 1 0
1 0 1 0 	0 0 1 1 0 1 0 1 	0 1 0 1 1 1 1
0110 	1 0 0 0 1 1 0 1 	1 0 0 1 0 1 1
1110 	0 1 0 1 1 1 0 0 	1 1 1 0 0 1 0
0001 	1 0 1 0 0 0 1 1 	1 1 1 0 0 1 0
1001 	0 1 1 1 0 0 1 0 	1 0 0 1 0 1 1
0 1 0 1 • 	1 1 0 0 1 0 1 0 	0 1 0 1 1 1 1
1101 	0 0 0 1 1 0 1 1 	0010110
0011 	0 1 0 0 0 1 1 1 	1 1 0 0 1 0 0
1 0 1 1 	1 0 0 1 0 1 1 0 	1 0 1 1 1 0 1
0111 	0 0 1 0 1 1 1 0 	0 1 1 1 0 0 1
1 1 1 1 	1 1 1 1 1 1 1 1 	0 0 0 0 0 0 0

Table 3.1: Extended Hamming (8,4) code and its differentially decoded codewords.

demodulator is differential decoded data. For a decoder, a mapping between the informa-

tion bits and the differentially decoded balanced codeword is established. The mapping ca,n

be obtained easily by differentially decoding all balanced codewords.

The balanced coding can also provide some error correction capability in Scheme II.

This can be implemented by choosing a balanced code whose codewords after differentially

decoding have a large minimum Hamming distance.

Example 3.3

Consider the extended Hamming (8,4) balanced code discussed in Example 3.1. All

codewords are listed in Table 3.1. This is a transparent code. We can only use the upper

half codewords with the exception of the all-zero one. Thus in fact we use it as a (8,3) code.

Note that the code is linear in the differential decoded domain, and ha,s a minimum weight

3. Therefore the code can correct one error in a codeword at the output of differential

demodulator.

40

11
8

8
9

1
1

11
8

8
1

1
8

1
8

1
1

1
8

8
81

11
1

11
8
$
8

8
8
1

1
81

11
8
1

8
8

8
11

8
1
1
8

11
11

11
11

8
8

11
8

11
8

11
11

8
11

11
8

11
8

3.4 Frequency Offset Problem

The analysis in the previous sections is based on the assumption that jamming tone hits

the carrier tone exactly. However, in practice there is a frequency offset between carrier

and jamming tone.

Frequency offset causes the tone jamming component in a baseband signal to be no

longer constant. Instead the jamming has a sinusoidal form.

Suppose the jamming tone toj is:

Loa- = wc+Aco,

where wc is the carrier frequency, and AO is the frequency offset. Then the tone jamming

component in the baseband signal is:

IejP,t+04 e—iwct = iej(àwt-F0 J) .

Note that it is a sinusoid with frequency Aw, which is the frequency offset. The balanced

code tone jamming cancel ling scheme is based on the assumption that a tone jamming

component is constant. Thus we need to analyze the cancelling performance when there is

a frequency offset.

First we will study how much the phase change of consecutive jamming components

is caused by frequency offset. Consider that the bandpass filter has a bandwidth B, so that

2
B =

and
„ B 27r

AcomAx = z7r— =
2 Tb

The phase change between two consecutive jamming components is

AO = AL,Tb

and the maximum phase change is

A0mAX AWMAxTb = 27r.

41

C =

•nnn

8
8

8
0

,1
1

11
8

1
1
8
4

11
8

8
11

1
11

11
11

11
4

8
8

11
11

11
8
1
1

1
1

1
0

1
1
8

8
8
8

11
11

1
1

4
8

8
11

11
88

11
81

1
81

1
11

8
1
1

8

Thus the frequency offset can cause AO to be as large as 27r.

We then analyze the sensitivity of the cancelling performance to AO. When there is

a frequency offset Aw, the received baseband signal is

ri = S i 	ni 	
/ei[eJ+(i-1)A0].

The average over a codeword of length n is

1
a =

n i=1
n

= — ni E
n i=1 	n i=1
n •

ni Glee'

where

_1 7\4 e (i-1)A0
n L—e i=1

sin M2) j(n-1) ,e0
n sin (-A-) e 2

And after cancelling we have

=

11 — CI can be used as an indication of the cancelling effects, which is a function of AO and

the codeword length n. 11 — CI versus AO with n as parameter is plotted in Fig. 3.5.

It is shown that the cancelling region (where Il — CI is near zero) is relatively wider

for small n. We also see that when AO > 0.27r, 11 — CI is almost unity, indicating no

cancelling at all. When 3.0 <0.057i- , about 3 dB cancellation may be obtained for n < 10.

Thus, in principle this tone jamming cancelling scheme can work well when the frequency

offset is less than 2.5% of the total bandwidth in either direction.

3.5 Tone Jamming Cancelling by Adaptive Notch Filter

As mentioned in section 3.4, when there is a frequency offset of the tone jamming to carrier

tone the jamming tone component in the baseband signal is a sinusoid. Its frequency is the

42

0.27r 	0.37r
AO

1.4

1.2

LU

0.8

1 1 — cl

0.6

0.4

0.2

0.0
0.17r 0.07r 0.57r 0.47r

1
1

11
1
8
8

1
1

8
8

8
1
1
8
8
1
1
8
.8

1
1

1
1

8
8

8
11

11
81

11
1

8
1
1
8
8
8
8
1
1
8

11
8

6
8

1
1

11
11

11
11

11
11

11
11

8
8

11
11

8
11

81
1

Figure 3.5: 11 — C1 versus AO with n as parameter.

43

•
8

1
1

11
*1

1
18

8
8
8

•
11

11
11

1,
8
•1

1
1

1
8

.8
11

11
11

8
1
1
8
8
8
8
1

1
8

8
8

0
0

01
11

11
1

8
11

11
1 1

11
81

11
11

18
1 1

1
1
1
1

1

difference between the jamming tone and the carrier frequency. Thus the received signal at

baseband can be modeled as:

ri= si 	ni 	ie j(0 .1+0 - 1)1 0)

where AO = (coj - coc)Tb. AO can be as large as 27r. Because the si's are uncorrelated

with each other and ni is AWGN, the spectrum of si ni is much wider than that of the

tone jamming component. Hence si -I- ni and the jamming component can be separated by

signal processing techniques. One method is to use an adaptive notch filter based on an

estimation of AO.

Because there are at least a few tens of bits in a hop, the amount of data which can

be used in estimation of AG is large. The simple FFT method can provide a good quality

estimation[9].

A notch filter which has a zero on the unit circle with an angle AG can cancel the

jamming tone clearly if the estimation of 3.0 is accurate. There are two problems associated

with the use of a notch filter. One is sensitivity to estimation errors, the other one is the

distortion of transmitted signals. To reduce the sensitivity of estimation errors the stopband

of the notch filter should be wider. However, to reduce the distortion of useful signals the

stopband should be as narrow as possible. The basic solution to both problem is to improve

the estimation of AG.

The performance of the notch filter cancelling scheme is illustrated by simulations.

The notch filter used in the simulations is a simple one-zero one-pole TIR filter. The zero is

on the unit circle with an angle of AG, and the pole is at rei'm and r < 1, i.e. the pole is

within the unit circle with the same angle. The transfer function of the filter is

1 - 	z - 1

i = 1,2,

H(Z) = 1 rejA0z-1 •

The system diagram is shown in Fig. 3.6. The bit error rate versus E&/No with r

as a parameter, assuming no error in the estimation of AG, is shown in Fig. 3.7. Because

there are no estimation errors, the tone jamming is cancelled completely. Thus BER is not

related to Eb/Nj. These curves can be viewed as the optimum performance that can be

achieved by the first order TIR filter. For comparison, the BER without a notch filter under

44

11
8

8
1
1
8

81
11

18
11

11
8

8
8

8
8

8
8
8

11
11

18
8
1
8

11
81

1
$

8
8

1
1

1,
11

81
1
1
1
8

8
11

11
11

8
1

18
11

11
11

$
8

8
11

8
8

tone jamming with Eb/Nj=0 dB and without jamming are also plotted in Fig. 3.7. We can

see that when r = 0.9 there is about 5 dB performance loss for BER around 10-5 . When

r = 0.99 the performance loss is very small. And the performance loss is very large for

r <0.8 because of large signal distortion.

The bit error rate versus Eb/Nj, with r as parameter and with estimation error 0.05

rad and 0.025 rad, are plotted in Fig. 3.8 and Fig. 3.9 respectively. E6/N0 is 10.34 dB

(corresponding to BER = 10-5 without jamming). These figures show that when the signal

is not much stronger than the jamming (Eb/Nj < 10 dB), there is more than one order of

improvement over BER by using a notch filter, i.e. BER drops from 10-1 to 10-2 or 10-3 .

But when the jamming is very much stronger than the signal, the notch filter can only

cancel a small part of tone jamming, and the cancellation does not work because of errors

in the estimation of AO. We can see that the smaller the estimation error, the stronger the

jamming that is needed to defeat notch filter cancellation. When a signal is much stronger

than the jamming, the filter distortion to useful signals is dominant, and therefore the BER

with notch filter is higher than BER without notch filter.

It should be noted that the notch filter used in simulations is a first order TIR filter,

a very simple digital filter. Filters with higher order may have better performance. This

needs further investigation.

According to our simulation results, the following conclusions can be made: (1)

the notch filter can cancel tone jamming when jamming is not very strong; (2)it would

be beneficial to have channel state information of the jamming condition to switch on or

off the notch filter according to whether the hop is jammed or not (such side information

need not be perfect and may be obtained by using FFT); (3) random error correcting codes

may be needed to improve performance under jamming (it is also interesting to note that

notch filter cancellation makes it possible for error correcting codes to be effective, because

cancellation brings the BER from 10-1 to 10-3 and error correcting codes can make the

BER drop to 10-5 with a reasonable code rate).

45

binary
data PSK

Modulator
Differential
Encoder

received
data

Channel

Differential
Demodulator

Notch Filter

8
11

8
8

8
8

11
11

11
11

8
8

8
1

1
8

8
81

1
11

11
11

0
11

11
8

11
11

11
11

11
11

11
11

81
1

11
8

6
11

8
11

8
8

11
81

11
11

11
11

11
11

8
11

11
8

Figure 3.6: Notch filter tone jamming cancellation scheme.

46

5 	 10
Eb/No (dB)

0 15 20

Pb

• ...'rn:Wden1n1n

"

'111141.1111 'we".

»M•à.: MM

1 	111111 ."e*IM

IMMILIONnn•n•nnnn111n MI•nn••nnn•nIi•Ok;•7n1111

MilaelliKIMMICMUMMnIMMIMMI

MIKIMMINIMM
I I I LI I LI I I I 	I I • I II I Mi I
1111: 1111Mi
MOIMMI1.1111
11n11111•1111n1

r = 0.991

11
11

11
8

11
11

11
8

1
1
8

8
8

8
1
1
8

1
1
8
3

11
11

1
1

8
1

11
1

8
8
1

11
1

81
1
8

111
11

1
8
8
0

11
8
1

1
8

1
11

1
8

11
11

8
8

11
11

11
11

8
8

DPSK (no notch filter) with noise only —
Simulation 4 —

Figure 3.7: BER of binary DPSK system with notch filter tone jamming cancellation scheme
versus Eb/No with r as parameter without estimation errors. AO = / 3.

47

0.0001
—10 —5 	0 	5 	10

Eb/Nj (dB)
15 20

.1

0.01

0.001

r = 0.5

r = 0.9

r = 0.8

No notch filter 4P-
With notch filter 4—

Figure 3.8: BER of binary DPSK system with notch filter tone jamming cancellation scheme
versus Eb/Nj and with r as parameter with estimation error 0.05 rad. AO = 1.0 rad, and
filter notch at 1.05 rad.

48

1

1

r = 0.5

0.01

p:z.- 04e 4),

0.0001

10-5

Pb

0.001

r = 0.8

15 20

11
11

81
11

1
1

1
8

1
11

11
1

81
1

11
81

11
11

1
11

11
1

1
1

$
8

9
1
1
8
8
8
8
1
.

8
1

1
11

18
11

11
8

8
11

8
8

1
1
8
8

11
11

11
11

11
11

1
11

8
8
8

No notch filter -g--
With notch filter 4—

—10 	—5 	0 	5 	10
Eb/Nj (dB)

Figure 3.9: BER of binary DPSK system with notch filter tone jamming cancellation scheme
versus Eb/Nj and with r as parameter with estimation error 0.025 rad. AO = 1.0 rad, and
fiter notch at 1.025 rad.

49

11
8
1

1
11

11
8

8
0

8
8
1

11
8
8
1
1

1
1
8
8

11
11

8
8
1
1

8
8

11
11

11
8

8
8

1
1

11
11

8
8

01
1

8
8

11
8

8
81

11
1

11
11

8
11

81
1

8
8

1
1

3.6 Conclusion

The balanced coding based tone jamming cancellation scheme can work well when the tone

jamming frequency offset is very small. This scheme has little distortion on useful signals,

and the corresponding performance loss is less than 2 dB. Balanced coding can be combined

with error correction coding.

The notch filter tone jamming cancellation scheme can cancel tone jamming with

arbitrary frequency offset in the passband provided there is accurate estimation of the

frequency offset. The notch filter has some distortion to useful signals. Therefore, it is

better to switch it off for hops without jamming. Notch filter cancellation can also make

error correction coding effective.

50

II

Chapter 4

Interleaving

4 . 1 Introduction
se
• Interleaving is the process of reordering a sequence of symbols in a one-to-one deterministic

I se
manner so that any two symbols within a given separation in the input sequence are sepa-

l@
rated by at least some minimum number of symbols in the output sequence. The concept

• finds application in burst and fading channels where bursts of aannel noise occur and the

action of the interleaver/deinterleaver is intended to randomize the resulting error patterns,

•
•

hopefully resulting in improved effectiveness of the codi ng. It is also used on intentional

11, 	 interference (jamming) channels and a convenient assumption in the analysis of systems

•
fle

on all these channels is that the use of interleaving renders the channels memoryless. In

• practice the situation is not so simple and the analysis of coded systems employing finite

interleavers can be difficult. For example the use of a periodic interleaver on a jamming

• channel, where the jammer hits only certain symbols in each period, might have a disastrous

• effect on communication performance. In sua applications one might have the choice of

• using a random error correcting code with interleaving or a burst error correcting code with-

• out interleaving. A burst error correcting code will typically have greater efficiency than a
Ià random error correcting code for a given burst length, but might have limited ability ability

•
II0

to correct additional random errors. The behavior of either class of code when the burst

• length exceeds either the burst correcting capability or interleaver/code design capability
rà

is sometimes difficult to assess.

• The amount of work on the design of interleavers appears to be limited and much

•

a
a

a
a
a •

a
a

a
a

a
a
a

a
a

a

a

a

a

O

O

a

O

O

of the interesting work is not in the open literature. The scope of this chapter is narrow be-

ing limited to presenting the basic principles and techniques for designing interleavers. The

more complicated problem of analyzing the performance of coded systerns using a particular

finite interleaver will be considered in later work. The section 4.2 includes some elementary

properties and definitions of interleavers. The following sections consider, respectively, de-

scriptions of block, convolutional and the more recent helical interleavers. The material for

this chapter is drawn from the references listed and a brief review of their contents might be

useful. The book of Clark and Cain [10] contains a discussion on interleavers and systems

using them, although somewhat restricted in both the analysis and variety of interleavers

it considers. The paper by Ramsey [11] discusses fundamental properties of interleavers in

terms of delay and storage requirements, as well as implementations of some optimal con-

• volutional interleavers. Forney [12] suggests a particular type of convolutional interleaver,

a special case of a more general dass considered in [13]. Richer [14] discusses a particular

type of pseudo-randorn block interleaver. The report [15] is quite far ranging, introducing

the notion of helical interleavers and analyzing and comparing their performance to stan-

dard interleavers. In addition it describes a block pseudo-random interleaver attributed to

• McEliece as well as many other aspects of the implementation and analysis of interleavers.

A method of randomizing the rows of a block interleaver is discussed in [17] and in [18] an

algorithm for the design of a pseudo-random interleaver with a certain distance property is

considered.

4.2 Properties of Interleavers

A few properties that pertain to all interleavers are discussed, drawn mainly from the work

of Ramsey. [11]. Since the terminology is not quite standard we introduce our own. We define

a (b, n) interleaver as one that reorders an input sequence so that any pair of n contiguous

symbols of the input is separated by at least b symbols at the output (i.e. at least b — 1

symbols between the pair). Equivalently, a (b, n) interleaver is such that any , contiguous

sequence of b symbols at the output contains no pair of symbols that lie in a contiguous

block of n symbols at the input. Notice that, since the deinterleaver restores the order of

52

a
a
a

1 10 a

«11 	the original sequence with some delay, the deinterleaver of a (b, n) interleaver is an (n, b)

110 	 interleaver. To express the notions more formally, if the input sequence is

and the reordered sequence is 	 (note that symbol azi appeared in position

ell

	

	 j in the output and position zi at the input and j > zi) then a (b, n) interleaver has the

property that

• — zil > n 	whenever 	ji < b.
«1
• The terminology reflects the situation that if n is chosen as the block length of a code and b

• as the maximum noise burst length on the channel, then for an isolated burst, no codeword

at the input to the decoder is hit more than once by the burst. Typically then b might be

•
fià

chosen on the order of the maximum burst length, in symbols, expected on the channel and

10 	n as the block length or constraint length of the code used.

• To consider the delay of an interleaver, we first assume without loss of generality

• that min(i— zi) ----- 0 where, as noted, since the interleaver is assumed to be realizable, i > z.

Let the maximum delay experienced by a symbol through the interleaver be d = max(j—zi).

• Since the output sequence of the deinterleaver is a delayed version of the input sequence to

ele 	 the interleaver, say by D symbols, the sum of the delays of a symbol in the interleaver and

•
«1

the deinterleaver is D. Since it is assumed there is at least one symbol with a delay of zero

• through the interleaver, and similarly through the deinterleaver, the overall delay D is at
OD

most d. Since there is at least one symbol with a delay of d in the interleaver the overall delay a
• is at least d and so the delay in the interleaver is the same as the delay in the deinterleaver
101 	 which is the same as the overall delay d. If the overall delay is d then when symbol ai

• appears at the output of the deinterleaver, symbols ai+i , ai+2,..., ai+ d must all have entered

• the interleaver. It follows that the combined storage of the interleaverideinterleaver is at
111
111 	least d. It is a simple matter to show that the maximum delay of a (b, n) interleaver is

• at least (b — 1)(n — 1) and to see this consider the location of the n contiguous symbols
e aiai.+1 ...ai+n_ i at the output of the interleaver. By definition there must be at least b —1 «1
111 	symbols between each of these symbols at the output. The span of these symbols in the

101 	output sequence is thus at least (n — 1)b. In the "worst" case the last symbol in the input
«I
• sequence is also the last symbol in this output sequence and the maximum delay must

1111

• 53

a

O
O
O
O
a
O

O
a

O
O

O
O
O
a
a

O
O
O
a
O

a

O
a
a
O
O

a

O
O
a

O
O
O

O

a
a

therefore be at least (n 1)b — (n — 1) = (n — 1)(b — 1). It is also noted in [13] that the

average delay of a (b,n) interleaver is at least (n — 1)(b — 1) 12. The period of a periodic

interleaver is the minimum sequence length for which the entire pattern of delays repeats. It

is noted, again in [13], that the period of a (b, n) interleaver is at least min(b, n). The depth

[15] of an interleaver is defined as one less than the shortest,burst length which can hit any

codeword twice, where it is assumed that the interleaver input is divided into codewords.

These delay arguments are slightly refined in [11]. An interleaver is defined to be

uniform if there is no set of (141) contiguous symbols in the output sequence for which every

pair of symbols is separated by at least n symbols in the input sequence. If the interleaver

is not uniform it is referred to as nonuniform. It is shown in [11] that the encoding delay of

a uniform (b, n) interleaver is at least (b —1)(n +1) and for a nonuniform is at least b(n + 1).

It is also shown that the deinterleaver for any (b, n) interleaver that achieves the minimum

possible encoding delay is an (n, b) interleaver which also achieves the minimum possible

encoding delay.

An interleaver/deinterleaver pair is called optimum if it achieves both the minimum

encoding delay and the minimum combined storage requirements. Optimum interleavers

are given in [11] for all pairs n, b that satisfy certain relative primeness conditions. The

realizations of these interleavers are in terms of one long shift register. The work of Forney

([12],[13]) realizes the interleaving by means of shorter registers and commutators. These

will be considered in the section 4.4 on convolutional interleavers.

4.3 Block Interleavers

The usual (b,n) block interleaver consists of an array of n rows and b columns. The symbols

are read into the array by columns and out by rows and it is assumed the upper left symbol

is the first read in and the first read out. Any burst of fewer than b errors on the channel

results in errors separated by at least n symbols at the output of the deinterleaver. Labeling

the rows of the array from 0 to n-1 and the columns from 0 to b-1, then a symbol in position

(j, k) receives a delay of nb+ (b —1)j — (n— 1)k at the interleaver and nb+ (n —1)k — (b —1)j

at the deinterleaver. The characters at the top left and lower right each receive a delay of

54

11
11

11
8

11
8
1
1

6
1

1
1
1
8
8

0
11

11
81

1
81

1
8
0

8
0

8
11

11
1
1
1
1
$
•

8
8
8
8

1
1

8
$

0
8

11
8
8
8

11
8
8
8

0
8

6
8

11
8

$
8

nb symbols at both the interleaver and deinterleaver, assuming the array is filled before any

symbols are read out. The minimum delay of the interleaver occurs for the symbol in the

upper right hand corner and is b n — 1. At the deinterleaver this element experiences a

delay of 2nb — b — n 1 for a total delay of 2nb. From previous considerations it is possible

to arrange matters so that the delay at both the transmitter and receiver is reduced by

b n — 1 to give a total delay of 2(n — 1)(b — 1), twice the minimum possible established

earlier. It is easy to see that it is not necessary to wait until the array is completely filled

before beginning the read out process and a simple strategy achieves the reduction in the

delay.

The obvious implementation of this block interleaver might use two n x b RAM's

and ping-pong back and forth. In [15] the following one-RAM implementation is given.

View the addresses of the RAM as the integers modulo nb — 1, running sequentially down

the columns and moving from the bottom of one column to the top of the next. This is

augmented by the special symbol co corresponding to the lower right location. At any

location the symbol is first read and then replaced by an incoming symbol. The procedure

works by passes. On the zeroth pass, symbols are read in only with the address sequence

0,1,2, •-•,nb— 2,00.

On the first pass, the above address sequence is multiplied by n, all addresses taken modulo

nb — 1. On the kth pass the address sequence is

0, nk ,2nk , • • ,(nb — 2)n k

modulo nb — 1. Clearly the period of the address sequence generator is the multiplicative

order of n modulo nb— 1. Similarly, the address sequence on the kth pass for the deinterleaver

is

0, bk ,2bk , ...,(nb — 2)b k ,00

and note that, since nb 1 modulo (nb — 1), the multiplicative orders of n and b modulo

nb —1 are the same. Notice that the storage capacity of the interleaver and the deinterleaver

are the same, nb, apprcodmately one half of the total delay d = 2(n — 1)(b — 1), and hence

55

11
8

81
8

8
1

1
8

11
11

8
4

8
41

1
8

11
81

8
8

8
•

8
1
1
8
8

11
11

11
11

81
1

11
8

8
81

1
1
0

8
8

1
1

8
11

11
11

11
81

1
11

81
1
8

•
81

1

close to optimum. It is not clear to the author how to achieve the optimum implementation,

assuming it exists for this structure.

For some applications a periodic interleaver is unsuitable due to either intentional

or unintentional periodicities in the interference. For such applications pseudo-random

interleavers will be of interest. A scheme due to McEliece, reported in [15] is described.

A RAM of size 277/-1 is used. The address sequence is taken from the lower (m — 1) bits

of an m bit maximum length linear feedback shift register, except for the state labeled fl

where the (m — 1) low order bits are zero and the mth bit is one. The period of the address

generator is clearly 2' — 1 and the delays encountered by bits going through the interleaver

are uniformly distributed among the integers 1,2,...,2' — 1. To see this recall that the

state of the register at time t may be assumed to be at where a is a root of the primitive

polynomial of the shift register. If at = p then the character which enters the RAM at time

t leaves the RAM at time r where

= ai fl

for a delay of e5 r t. Consequently

a6 =1+ fia—t

Or

1+a6
As 5 runs through 0 < 8 < 2' — 1, the values of at obtained are distinct, indicating that

once in every period (length 2' — 1) one symbol experiences a delay of b. Notice that every

address of the RAM is generated twice every period of the shift register, except the all

zero address, corresponding to p which is generated only once. Characters in this address

experience the full delay of 2 — 1. To maintain the full delay of transmitter and receiver at

2' — 1 either the interleaver or deinterleaver must be modified so that the symbol destined

for this zero address bypasses the RAM altogether - a delay of zero.

Notice that the depth of this interleaver is one, i.e. it is possible for a burst of length

two on the channel to hit the same codeword, and all delays are realized.

A similar type of pseudo-random interleaver has been proposed ([10],[14]). Here a

sequence of L symbols is read into a RAM sequentially and then read out according to

56

t a =

81
1

11
8
1

1
81

1
11

0
8

1
1

8
11

1 1
8
8
0

8
1

18
11

11
11

8
11

11
•

8
1

1
8

1
18

11
8

8
1

1
4
8

11
81

1
8

8
8

1
1
8
8
0

11
8

11
11

11
8
8

some permutation. It is suggested in [14] that the permutation used correspond to a linear

congruence:

An+1= aAn + c mod L

which generates a sequence of integers from 0 to L —1. To obtain all the integers from 0 to

L —1 i.e. obtain a maximum length sequence, a and c must be chosen as follows [16]:

0 a, c < L

ii) (c, 	1

iii) if pIL then pl(a — 1)

iv) if 4IL then pl(a — 1)

Sua an approach is convenient for implementation. For example, in an intentional inter-

ference environment it will be desirable to change the permutation frequently, necessitating

storage of the permutations. The above approach requires only the storage of pairs (a, c)

representing the complete permutation.

There have been two more recent contributions to pseudo-random interleaving. In

[17] it is noted that in a periodic (b, n) block interleaver, for example, a burst of length

exceeding b will manifest itself as a burst in the deinterleaver output. If such occasional

long channel bursts are anticipated and a burst error-correcting code of sufficient strength

is used, then, as noted previously, good system performance is expected. If a random error

correcting code is used, however, then such bursts may lead to degraded performance. In an

attempt to make such bursts at the output of the deinterleaver appear more random, it is

suggested in [17] that the rows of a block interleaver be read out in a random manner rather

periodic. There, a parameter a is chosen and q,r defined by n = aq r,0 < r < a,q > O.

If tii is the number of rows transmitted between the transmission of row i and j and

t = min tii, then t is the minimum number of rows transmitted between any two rows
li—i1<a-1

that are within a of each other in the array. Alternatively if each row of the (b, n) block

interleaver is treated as one symbol, then what is required is a (t, a) interleaver operating on

the rows. This is actually a concatenated interleaver, discussed briefly later in section 4.5 on

57

a

a

a
a
a

a
a

a

a

a

a

a

a

a

a

a

a

helical interleaving. In [17] it is shown that t cannot be greater than q— 1 and an algorithm

is given that achieves this upper bound.

Recall that for a periodic block interleaver, a certain minimum separation at the

interleaver output of any pair of symbols within a given span at the input can be assured. For

pseudo-random interleavers, this is not the case and, for example, for the implementation

of McEliece [15] the depth is one, as noted and the delays are uniformly distributed. In

[18] a RAM read out/read in implementation of a pseudo-random interleaver is considered

and an algorithm is given that is both pseudo-random and attempts to guarantee a given

depth. The approach is interesting but is not pursued here.

4.4 Convolutional Interleavers

In contrast to the block interleavers of the previous section, convolutional interleavers utilize

shift registers or delay lines. Data is fed through on a continuous basis with various stages

being tapped sequentially. It remains only to arrange the taps and the commutator sequence

to ensure all data symbols are transmitted with an appropriate delay. Only the interleavers

of Forney ([12],[13]) will be described here. The work of Ramsey [11] appears similar in

spirit although no formal equivalence between the two approaches has been established

to our knowledge. Essentially Ramsey utilizes one long shift register with certain stages

tapped at certain times while Forney considers a horizontal bank of shift registers of varying

lengths with the output of each register transmitted sequentially on the channel.

A simple version of Forney's scheme will be considered [12]. Symbols are first divided

into blocks of length P and it is convenient to view this as a serial-to-parallel conversion.

The ith symbol of each block is fed into a shift register of length iD, i = 0, 1,...P — 1. The

outputs of the ' P shift registers are sampled sequentially (parallel-to-serial conversion) and

transmitted on the channel. The structure of the deinterleaver is similar except that the ith

element of each block enters a shift reg,ister of length (P — 1 — i)D i j = 0, 1, ...P — 1. Each

symbol receives a total delay of (P — 1)D time units (each unit corresponding to P symbols)

or (P — 1)DP symbols and the total storage requirements of interleaver and deinterleaver.

is (P — 1)DP. In our previous terminology we would identify n with DP and b with P and

58

a

a

a
• refer to this as a (b, n) interleaver.

• A more general version of this interleaver that will have implementation advantages

in some situations is described in [13] . Retaining the same notation as above we describe a

• (P, D, m) modular interleaver as follows (here m is a new parameter with the property that
111 	 1 < m < P —1,(P,m) = 1 and (P,mD +1) 1). Let ri im mod P, i = 0,1,...,P —1 and

• note that, by assumption, mis a unit in the set of integers mod P and so {ro , r1, • rP—i} =

• {0, 1,...,P — 1}. The interleaver thus consists of a serial-to-parallel converter, converting

to parallel blocks of size P, and the ith symbol of each block is fed into a shift register of

• length di = r1D, j = 0, 1,...,P —1. The outputs of the shift registers are then parallel to

11/ 	 serial converted for transmission on the channel. ei
• Note that this modular interleaver is a permuted version of the first one described

I
• i.e. all the shift registers of the varying lengths occur but in a different order. The previous

one would then be an (P,D,1) interleaver. Thus, as before, the period of the interleaver

• is P, the maximum delay is (P — 1)DP and the average delay is (P — 1)DP12. If one

defines m-1 , k and k-1 by the equations mm-1 	1 mod P, k(mD +1) —m mod P

• and kk -1 	1 mod P respectively (note that by assumption, le -1 exists), then it can be

• shown that the inverse of a (P, D, m) interleaver is a (P,D,k) interleaver, and if k = m (i.e.
•

mD —2 mod P then the (P,D,m) interleaver is its own inverse.

•
OD

it is sometimes possible to realize modular interleavers as a cascade of two in-
t. 	 terleavers. Suppose P = P1P2 and (Pi, P2) = 1. Then the first interleaver uses delays

111 	 iPi D, 0 < i < P2 - 1 and a second uses delays jD,0 <j < Pi — 1 ensuring that in a P

• symbol interval a delay of kD is experienced by one symbol, k 0,1,...P —1. If (P1 , P2) > 1

then let b be the smallest integer such that the least common multiple of P1 and bP2 is P.

• Then the first interleaver uses delays iPi. D but operates on b symbol groups i.e. the b sym-
• bols in the ith group of each bP2 symbol block experiences a delay of iP1 D, i = 0,1, ..., P2 -1.

 • I 	The period of the second interleaver is still P1 with delays of jD, 0 < j < Pi — 1.

• It has been observed that the periodic interleavers might not be suitable for jamming
10

channels where a periodic jammer would be very effective. To alleviate this problem it is

• suggested in [13] that the ith delay path might be modified to have delay iD ji, i =

0, 1,...,P —1, where the ji are small integers.

•

a

59
•

a

a
a
a
a
a
a
a

a

a
O

a

O
a
a

O
O

a
a
a
O

a
a
a
a

O

a

a
a

O

a

Ac d
B Ce
IDE
a b F
A c d
B C e
IDE
a b F
*

Figure 4.1: Helical interlea-ver, n =

It is noted that it is only necessary for the deinterleavers to establish synchronism

modulo P for these modular interleavers, an improvement from the block interleavers where
•

synchronism modulo nb is required, usually necessitating the insertion of special synchro-

nization sequences.

4.5 Helical Interleavers

Helical interleavers are very similar to block interleavers with successive columns slipped by

one symbol. Figure 4.1, taken from [15], illustrates the technique.

Symbols are read in by columns of length four (say codewords) and read out by

rows. In general the columns will be of length n and the number of columns will be n 1.

Thus there is not the flexibility of choosing the "width" of the helical interleaver.

The capital and lower case letters represent the same physical location of memory

and it is easily verified that such an assignment works as claimed. Figure 4.2 demonstrates

the order of the symbols into and out of the interleaver/deinterleaver. It is clear that the

interleaver of Figure 4.1 has a period of 12, a minimum delay of 3, a maximum delay of 9

and can be implemented with a RAM of size 6. -

To extrapolate from Figure 4.1, consider the length 6 interleaver of Figure 4.3.

The inherent symmetries of the helical interleaver are clear and the RAM size re-

quired for the helical interleaver of length n is n(n — 1)/2, the minimum delay is n — 1, the

60

11
11

11
8

11
11

11
11

11
8
8
1

1
8

11
88

11
8
8

11
8

11
81

1
8

1
11

1
8

8
8

8
8

8
•

11
8

8
0

8
81

1
8

8
11

11
01

18
8
8
8

11
8

8
8

time 	-->

into interleaver: 	AB f aCDb cEF d e
into channel: 	a bFA c dBCe f DE
out of deinterleaver: AB f a CD b c EF d e

Figure 4.2: Input/output of helical interleaver, n = 4, period 12 and overall delay 12.

* * * * *
A d e f
BDg h i
CEG j k
1 F H J
n oIKM
ab cLN
A d e f0

 BDg h i
CEG j k
1 FHJm
* * * * 	*

Figure 4.3: Helical interleaver, n = 6.

61

a
a

a

a

a

'

a
a

a

a
a

a

a
a
a
a
a

a
a

* * *

ABC
A A D
B A A
C D A
A BC
A A D
B A A
C D A
* * *

Figure 4.4: Helical interleaver memory read-in sequence, n = 4.

* * 	*

A

1 il 1
A 	B

1
A 	D

/
A 	C
* * 	*

Figure 4.5: Helica1 interleaver memory address generation, n = 4.

maximum delay is (n — 1) 2 and the total interleaving delay is n(n — 1). In our previous

terminology this would be referred to as an (n — 1,n) interleaver.

The total interleaving delay of a helical interleaver can in fact be reduced to (n —

1)(n — 2) + 2, close to the minimum maximum delay established earlier of (n — 1)(n — 2).

An example [15] of the RAM organization and address assignment that achieves this delay,

and also reduces the memory requirement to 4 (from 6) for the case of n = 4, are given in

Figures 4.4 and 4.5. This address assignment technique is easy to extend for the case of n

even and appears more difficult for n odd.

The advantages of helical interleavers appear to lie in the reduced synchronization

requirements, compared to block interleavers, and their relatively simple memory imple-

mentations.

62

a

a

a
• xxx
• xxx
• xxx

Figure 4.6: The effect of deep staggering for n = 4,i = 3.
111

X
X

X
X

X 110
X

• Figure 4.7: The effect of shallow staggering for n = 4,i = 2.

• The concatenation of helical interleavers with block interleavers is also considered

in [15]. If a block interleaver precedes a helical interleaver, the combination is referred to

• as deep staggered interleaving. If a code of length n symbols is used and an (i, n) block

interleaver is used, then the depth of the deep staggered interleaver is (n — 1)i. At the

•
•

output of the block interleaver, each block of i symbols is treated as a single character to

• the helical interleaver. Thus the memory and total delay of the two helical interleavers

is n(n — 1)i input symbols and the memory and total delay of the two block interleavers

11111 	 is 2ni symbols. The staircase effect of the deep staggering is depicted in Figure 4.6, for

n = 4,i = 3, where the step size is elongated with respect to the usual helical interleaver.

• Interchanging the block and helical interleavers yields a shallow staggered interleaver. If
a 	the code has length ni symbols then each i consecutive input symbols is treated as a single

• character for the helical interleaver. The block interleaver uses a block length of i and is of

• depth n — 1. The memory and total delay of the two helical interleavers is then n(n — 1)i
•

symbols and the memory and total delay of the two block interleavers is 2(n — 1)i symbols.

• The staircase effect of shallow staggering is depicted in Figure 4.7 for n 	4,i = 2 where

• the elongated step riser is observed.

• 63 •
at

a

a

O
O
O
O
O

a

a
a

a

•
a
a
a
a

O
a
me

O

O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O

4.6 Comments

This chapter has attempted to survey interleaver design techniques. Since the essence of

interleaving is the implementation of variable delay, it is natural to realize them in terms

of delay lines. It is commented in [15] that when the delay lines begin to exceed several

tens of thousands of bits long then a RAM implementation may be more effective. At this

point one is advised to abandon the delay line concept and design the interleaver from the

beginning from a RAM point of view.

The actual performance of an interleaver in a system seems difficult to assess and

depends on the actual distribution of delays rather than just the parameters b and n for

example. One would like a graceful degradation of performance as the designed burst length

is exceeded. It is hoped to further investigate interleaver properties and their impact on

system performance in future studies.

64

O

O
a

a

• Chapter 5

a 	Coding and Diversity

a
a 	5.1 Introduction

• The purpose of this chapter is to consider certain questions on the trade-off between di-
al 	 versity and coding for systems, such as spread spectrum systems, where a low code rate

•
fib

is anticipated. Ultimately, the aim is to determine actual performance trade-offs in terms

111 	of signal-to-noise ratios and probability of error. For this report however, only distance

properties of codes, both block and convolutional, will be examined.

• The work finds its origin in the interesting paper of Chase[19] who showed that in

some cases wben a low rate code is to be used there is very little penalty in terms of code

• distance, if any, in using a higher rate code and replicating the code symbols (diversity)

• to achieve a lower rate. While this observation was not a focus of that work it appears

to be an interesting one. The advantages of using a higher rate code with diversity is

• the lower complœdty of the decoder. This theme is expanded upon here. Specifically, the

trade-off between diversity and coding for codes over nonbinary alphabets is considered

•
•

from the point of view of minimum distance. The section 5.2 investigates this question

• for convolutional codes. It begins with a closer look at the Heller bound for convolutional

codes over Fq . Punctured convolutional codes are also considered to obtain good initial

•
1111

higher rate codes. Section 5.3 briefly considers the same problem for block codes where,

for simplicity, only Reed-Solomon codes are considered. The section 5.4 considers future

• directions for this work.

•
411
11111
• 65
11111

grn — 1

0

gm • • •
go g1
0 go

5.2 Diversity and Convolutional Codes

A more general version of the Heller[20] bound for convolutional codes is first derived

using a trivial extension of an argument in Ryan and Wilson[21]. Some implications of the

bound are then considered and the question of the trade-off between diversity and coding

is investigated using the bound. A subsidiary question of codes over alphabets of different

sizes is also considered.

5.2.1 The Heller Bound

The Heller bound is proved in [21] using the Plotkin bound which, in its general form states

that for a code (linear or nonlinear) with M codewords over Fq , the minimum distance

between any two codewords, d, is upper bounded by

The bound is essentially a reflection of the fact that the minimum distance cannot be greater

than the average distance between codewords.

To apply this to convolutional codes of rate b I n over Fq with memory m = K — 1,

the code generator circuit is viewed as having b shift registers, each of length k with n

output adders with connections to the bK register cells. The generator matrix of the code

may be viewed in the form

where each gi is abxn matrix over Fq . Consider input words of length (m L)b symbols

comprising Lb data symbols followed by mb zeros. This gives rise to q1-'1' — 1 nonzero

codewords of length (m 1)n. Applying the Plotkin bound to this situation then yields

df 5 	 + (qm i) q

and since L can be chosen as an arbitrary positive integer and df is an integer, we have

	

Lb (1)

	

d f min L .' " 	' (m + L)n . (g.Lb _ i)q

66

a

• The bound appears to be the strongest for b = 1 i.e. for codes of rate 1/n for which it

becomes • nL-1(q _
• df _< min L" 	(m + L)nj .

L 	(qL — 1) 	 (5.1)

It is observed in [21] that for most cases the minimization of Equation (5.1) is

• obtained for values of L of 1 or 2 where L is the data sequence length. This situation is

first investigated. For L =1 the bound is (recall that m = K —1)

• Equation (5.1) becomes

• d(2) < 	
q2 — 1

	=
(q1)
	(K -1-1)71

f 	 +

• whià can be manipulated to

• 42) < [nE + 	. 	 (5.2)

• The argument in Equation (5.2) is less than nK if K> q, requiring the considera-
te

• 43) < LnK (q —1)n{ 2q2 ---
1

g(q + 1) }j . 	 (5.3) • q3 -
• It is an easy matter to verify that 43) < 42) if E > q2 q — 1 and also that if K >

• 2q2 1(q +1) = 2(q —1) +21(q + 1) or K > 2q — 1, then 43) < 41) .
• From such arguments a dear picture emerges as to when path lengths greater than

one must be considered to achieve d1. For the remainder of this section interest will be

• largely in convolutional codes over Fq that achieve (11 = nK and so these observations

are not of direct interest. It is likely however that they will become important for later

• investigations.

a
• 67
a
a

a

a
• d(f1) nK
•

and in many cases that will be of interest here, this bound is actually achieved. For L = 2

tion of paths of length at least 2.

• When L = 3 the argument in Equation (5.1) is

q3 -1
	

(q3 — 1)
(K + 2)n

a
• and the bound can be manipulated to

K Rate 1/2 	Rate 1/4
d1 	dbound 	d f 	dbound

3 	5 	5 	10 	10
4 	6 	6 	13 	13
5 	7 	8 	16 	16
6 	8 	8 	18 	18
7 	10 	10 	20 	20
8 	10 	11 	22 	22
9 	12 	12 	24 	24
10 	12 	13 	27 	27
11 	14 	14 	29 	29
12 	15 	16 	32 	32
13 	16 	16 	33 	33
14 	16 	17 	36 	36

Table 5.1: Maximum free distance for rate 1/2 and 1/4 binary codes (Larsen[22]).

5.2.2 Diversity versus Coding

The question of the trade-off between diversity and coding is considered from an elementary

point of view in that codes are compared for free distance. While simplistic, this approach is

adequate for the present purpose. Denote by r the rate of a convolutional code and by 1 the

order of diversity i.e. each symbol is repeated 1 times and by (r, 1) a combination of coding

and diversity to give an overall code rate of r11. The purpose here is to determine under

what conditions it is possible to achieve the same, or similar, df with an (r, 1) combination

as with coding alone. The complexity of decoding a convolutional code of rate 1/n over

Fg with memory m (shift register length E = m +1) is proportional to q " 1 , and this

quantity will be independent of the code rate for the codes of interest here. Nonetheless

when using a low code rate there may be advantages to implementing it as a high rate

code with diversity. Although the Viterbi decoder will have the same number of states,

the implementation can take advantage of the diversity to achieve simplifications. Consider

first the work of Larsen[22] who found, by computer search, rate 1/2, 1/3 and 1/4 binary

codes that achieve maximal free distance. Part of those results are reproduced in Table 5.1

where the bound is that of Equation (5.1) for the appropriate parameters.

68

O

O

O

O

a

a
O

a

O]

O
O
O

O
O
O
O

O
O

O
O

I

8
8
8
8
1
1
8
1
1
8
8
8
8
8
1
1
8
0
8
0
8
8
8
8
8
8
1
8
1
1
8
8
1
1
0
8
8
8
0
8
8
6
8
0
8
0
8
8
8
8
8
8
8
8
6
8
8

0-

1 	df dbound

1 	10 	10
2 20 	20
4 40 	41
8 80 	82
16 160 	164
32 320 329
64 640 	658

Table 5.2: The coding/diversity example of Chase[19].

It is seen that in most cases the bound is close to being adlieved and that in some

cases the best rate 1/4 code can be achieved by using a rate 1/2 code with diversity 1 := 2

diversity.

In a similar vein, Table 5.2 shows the observation of Chase[19]. Starting from the

well known rate 1/2,K = 7,c11 = 10 code, the minimum distance achieved using diversity

1= 2i is compared with the bound of Equation (5.1).

It is noted that the relative difference between the distance achieved with diversity

is small compared to the maximum possible by the bound of Equation of (5.1). It is not

known if the bound is tight for the very low rates but it is clear from this information that

it would be easier to implement the rate 1/2 code with diversity 2i than the best rate 1/2i

code. Again the evidence indicates that it will involve very little loss to implement the high

rate code with diversity compared to the corresponding low rate code.

A few comments on the q-ary case will support the same general conclusion. It

appears from equations (5.1) to (5.3) that for q > le, rate 1/n codes exist over Fg with

df = nE. In the following this will be assumed to be the case without specific mention of

it.

For rate 1/2 codes, df = 2K and for rate 1/4 codes (11 = 4K. Clearly the rate 1/4

codes are easily achieved by using a rate 1/2 code with 2 diversity i.e. a (1/2,2) code rather

than designing a rate 1/4 code. It is also possible to consider starting with a rate 3/4 code

and using a 3-diversity i.e. a (3/4,3) code. Since the free distance cannot be improved upon

and the simplest way to achieve the rate 3/4 code would be to puncture a rate 1/2 code,

69

0

de

a

on

•
a

a

ou
0
to

de

se

'

•

le
me
le

(2/3,2) 	1/3
K 	d 	2df df
2 	3 	6 	6
3 	4 	8,9
4 	6 	12 	12
5 	7 	14 	15
6 	9 	18 	18
7 	10 	10 	21
8 	12 	24 24

Table 5.3: Rate 1/3 q-ary codes.

there seems little point in pursuing this approach.

For a rate 1/3 code it appears they can be constructed with df = 3E for all q> K.

In fact they can be constructed by puncturing every fourth symbol of the rate 1/4 code

(which we have observed can be constructed as a (1/2,2) code) and this does indeed yield

a code with df = 3E. To illustrate another (inferior) approach consider the following. For

the rate 1/2 code, puncture every fourth symbol to yield a rate 2/3 code. Use this code in

a (2/3,2) code to give a rate 1/3 code. The free distances achievable by this approach are

shown in Table 5.3.

As noted previously it is assumed that q is sufficiently large (> 8) to allow the

existence of maximal clf codes.

Consider next the rate 1/6 codes. Clearly the maximum free distance of 6K can be

achieved by using either a maximum distance rate 1/2 code and 3 diversity or a maximum

rate 1/3 code and diversity 2. The rate 2/3 code mentioned previously obtained by punc-

turing might also be used with 4 diversity to give the results of Table 5.4, in which only

the codes for even values of K give the maximum free distance and for K odd have a free

distance of two less than the maximum possible.

Rate 1/5 codes with maximum free distance can be obtained by puncturing every

sixth symbol from a maximum free distance rate 1/6 code.

70

81
11

8
8
8
8

-1
1

1
1
1

1-
1 1

11
11

81
11

11
1

11
8

11
81

11
11

8
8

1
11

11
11

1
9
0

11
11

8
8

8
8
8

0
8

8
8
8
8

81
1

8
11

11
8

11
11

8
1

1
e

K d 4d d f = 6K
2 3 12 	12
3 - 4 16 	18
4 6 24 	24
5 7 28 	30
6 9 36 	36
7 10 40 	42
8 12 48 	48

Table 5.4: df for the (2/3,4) codes compared to the 1/6 codes.

5.2.3 The Role of the Alphabet Size

Implicit in much of the discussion found in the literature on q-ary convolutional codes is the

notion that q is chosen so that some natural modulation scheme such as q-FSK or q-PSK is

to be used. For q-ary block codes, however, in particular Reed-Solomon codes, it is not at all

uncommon for q-ary symbols to be transmitted as bit streams by some binary modulation

scheme. This section initiates a discussion on the problem by considering the construction

of codes to be transmitted for one value of q but constructed from another value of q. The

discussion is very preliminary and only one simple example is considered as an introduction

to the kind of problems of interest.

Consider a rate 1/2 code over Fq for K = 4 and df = 8. The code could be decoded

using a Viterbi decoder with 83 states (high by current practice). If pairs of symbols are

grouped together and interpreted as symbols of F64 , the coded stream can be viewed as

coming from a rate 1/2 code over F64, df = 4 although some caution is required for this

interpretation. There may be some advantage to reviewing the relationship between q and

the modulation system used. Again the determining factor will be in the error performance.

5.3 Diversity and Reed-Solornon Codes

The arguments of the preceeding section can be repeated for block codes. It is easier and

more instructive to deal only with Reed-Solomon codes. The extended Reed-Solomon codes

over Fg have the parameters: length = q, dimension k and minimum distance = q — k + 1.

71

8
11

8
8
9

•
11

11
6

•1
1

8
1

1
11

11
8

11
8

8
8

8
11

11
11

8
11

8
8
,

0
1

1
8

8
8

1
8

11
0

11
11

8
1

1
11

1
8

8
1
1
8

11
81

1
8
8
1
1
0

Assume that a low rate code r = klq is to be used with distance q — k +1. The minimum

distance is relatively high and the code is capable of correcting many errors, implying a

relatively complex decoding algorithm. Suppose now that /-diversity is used i.e. a (kit q,1)

code/diversity combination, kl < q. The minimum distance of this code (now of length lq)

is 1(q — lk +1). The structure of this code might allow novel uses of the diversity before

using the lower error correction capability of the code. Notice that the minimum distance of

the (kl I q,1) code is greater than that of the coded case only when lq — 1 2 k +1 > q— k +1 or

when k < (q-1-1)1(m +1). For example, when 1 = 3 and q = 256 this gives k < 257/4 = 64

indicating that perhaps the code with diversity has an advantage over the pure code case

for these parameters.

Notice that although the (lklq,1) decoder is less complex than the klq code, since

it is required to correct far fewer errors, it does in fact have an effective block length of

1 times that of the pure code case. It is argued however that this extra length does not

significantly add to the decoder complexity and the comparison of the two systems is fair.

Again the final determination between the two systems will be in the error perfor-

mance which in turn will depend on how the diversity information is used in the receiver.

These are topics for future investigation.

5.4 Comments

This initial investigation has considered the trade-off between diversity and coding from

the point of view of minimum distance for both block and convolutional codes. Of more

importance is the translation of the trade-offs considered here into an understanding of how

it affects system performance on a variety of cha,nnels, such as the additive white Gaussian

noise, Rayleigh fading and interference channels. Future work will consider these questions

and attempt to determine guidelines for this trade-off.

72

11
11

8
8
8
1
,8

1
1
8
•8

8
11

1 1
1
1
8
8
1
1
8

81
11

11
18

1
11

1
11

8
8
1
1

8
8
1
1

0
8

8
1

1
8

s
e

ll
e

s
s
is

e
e

s
c

e
s
s

e
s

Chapter 6

Repeated Convolutional Codes for
High Error Rate Channel

6.1 Introduction

In this chapter, we consider error correction schemes that can correct errors at the output

of a high error rate channel. Such a large channel error rate may result from the presense of

strong interference or jamming. Conventional error correction schemes, such as the widely

used constraint length 7 and rate 1/2 binary convolutional code due to Odenwalder[23]

which is an international standard[24], may fail in such situations. It is clear that a low rate

code must be used for such a channel by considering the channel capacity or cutoff rate.

Recently, Kasami, et al have considered a cascaded coding scheme for a binary

symmetric channel (BSC) with a large error probability pe [25]. Their sclieme consists of

two linear block codes. The inner code (closer to the channel) is a binary code and the

outer code is a Reed-Solomon (RS) code. The parameters of the inner and outer codes have

to be properly chosen to match each other in order to obtain a good performance. It turns

out that for a large pe whether a coding scheme works or not is very sensitive to pe . For

example, in [25], a scheme that consists of (63,31) RS outer code and (32, 6) biorthogonal

inner code works well at pe = 0.2 but will not work at pe = 0.3. The sensitivity to the values

of pe and the somewhat rigid structure of the cascaded scheme implies that we should know

pe before designing a coding scheme. Also, two encoder/decoder systems are needed for a

cascaded scheme. In a jamming environment, however, it is hardly possible to predict pc .

73

a
a
a
a
a
a

a

a

a

a

a

a
a
a
a
a
a

a
a

a
a

a

a
a
a

a
0

O

Thus a system that can easily adapt to the actual I), would be desirable.

In 1977, Shaft searched low rate convolutional codes and considered their use to

combat burst interference[26]. Use of repeated convolutional codes seemed to be favored. In

1985, Chase proposed the scheme again for BSC more clearly with well made arguments[19].

To show that repeated binary convolutional codes are near optimum, both Shaft and Chase

compared their free distances with Heller's bound for binary convolutional codes[20]. Chase

also made a comparison of code rates with the channel capacity of BSC.

Nevertheless, there are still some practical problems that need to be addressed.

For instance, for the BSC, if each code symbol is repeated m times, maximum likelihood

decoding requires m 1 levels of quantization. Since m can be very large for a high channel

error rate and practical convolutional decoders have a finite, and likely a smaller number

of quantization levels, what is the corresponding performance degradation? Further, can

we use a repeated binary convolutional code for an M-ary symmetric channel (MSC) and

what is the best way to generate a binary decoding metric for use in the binary decoder?

This question is motivated by the fact there are commercially available binary codecs at

high speed and considerable efforts are being made to further improve the speed and reduce

the cost of such codecs.

In this chapter, we consider repeated convolutional codes for an MSC (with BSC

as a special case) with a large error probability p e . The value of I), can be near, but smaller

than, 1 — 1/M for which the channel capacity is zero. In Section 6.2, we focus on the

BSC and begin with a conventional analysis based on the union bound for BSC. For a

large m, the central limit theorem is applied to provide another analytical tool. In Section

6.3, Monte Carlo simulation results for BSC are provided and compared with theoretical

analyses. The quantization effect is shown. Based on these results, we compare the code

rates of repeated convolutional code with the channel cutoff rate. In Section 6.4 we consider

the use of a binary code over an MSC. The emphasis is placed on the methods to generate

binary decoding metrics and their performances.

74

81
11

18
8

8
1

1
8

8
8

8
8

1
1

11
11

88
81

11
11

1
1

4
8

6
.

11
81

1
8

8
1

1
8

11
11

11
$

6
61

1
11

11
1
1

18
11

6
1
1
0
8

8
8

8
9

,

6.2 Theoretical Analysis for BSC

In this paper, we are particularly interested in the above mentioned Odenwalder rate 1/2

constraint length 7 convolutional code. The single-chip encoder/Viterbi decoder is com-

mercially available at a low price from several sources. The decoder normally has up to

eight levels of quantization. We consider the Viterbi decoding which is maximum likelihood

decoding when infinite quantization is assumed. Each M-ary channel symbol is repeated

m times. We call m the repetition order.

In the case of BSC, for each encoded symbol, it is repeated rn times over a BSC.

The BSC is assumed to have a large error probability (transition probability) I), which is

in the neighborhood of 0.1 or higher, but of course, smaller than 0.5. BSC is a proper

channel model for anti-jam communication systems with complex demultiplexing between

demodulator and decoder. In sua a situation, the decoder has to cope with a liard decision

channel and explicit and/or implicit interleaving/deinterleaving makes the errors random.

One example of possible implicit interleavineleinterleaving is a multiplexed multi-user sys-

tem where each user has a decoder after demultiplexing.

It is clear that for two trellis paths at Hamming distance d, the repetition of order

m will increase the distance to d x m. It is well known that the decoder output bit error

rate (BER) Pb can be upperbounded by an exponentially tight union bound. Specifically,

suppose the Pd is the pairwise error probability of two trellis paths with Hamming distance

d, then

Pt < E cd pdm 	 (6.1)
d=d ree

where df ree is the free distance of the convolutional code and Cd is the total number of

information bit errors when pairwise errors between paths with Hamming distance d occur.

For the Odenwalder code, Cd is nonzero only for even d and d > 10, since df„e = 10. Over

the BSC, for an even d,

Pd
	 (d d

),,,d12(1_ pey12 	E 	d 	 \
Pel-L 	Fe

d—i
' 	 (6.2)l 2 dI2

i=d12-1-1

Cd can be found by expanding the transfer function of the convolutional code or using

computer search through the trellis of the code. For the Odenwalder code, the first nine

75

terms are[: Cio = 36, C12 = 211, C14 = 1,404, Ci6 = 11,633, C18 = 77,433, C20 =

502,690, C22 = 3,322,763, C24 = 21,292,910, C26 = 134,365,911.

Using Equations (6.1) and (6.2), for m = 3, 7 and 15, respectively, Pb is plotted

versus pe for the Odenwalder code in Fig. 6.1 using the first term, the first four terms and

the first nine terms of Cd, respectively. It can be seen from the figure that nine terms of the

transfer function provides a sufficiently accurate bound, especially at a low Pb. The results

using the first nine terms are used in the rest of the paper. In fact, it has been known

that the union bound provides an accurate approximation for a low Pb provided enough

quantization levels are available to facilitate the maximum likelihood decoding (MLD). For

MLD it is well known that the decoding metric should be

= Erki 	 (6.3)

where rki is the received i-th repeated symbol (0 or 1) over the BSC for k-th convolutional

encoded symbol. Here mtk = 0 represents the k-th encoded symbol to be most likely a 0

and mtk = m represents the k-th encoded symbol to be most likely a 1. For eight levels

of quantization from 0 to 7 (where 0 represents the most reliable logic 0 and 7 represents

the most reliable logic 1), uniform quantization is natural and reasonable. Then, the above

metric is modified as

•

mik 	 rki x 7 -I- 0.5j

where Lxi is the largest integer not exceeding x.

As mentioned earlier, the repetition order m must be large in order to correct the

errors with a large probability pe . For a large m we may apply the central limit theorem or

the Gaussian approximation of the binomial probability distribution. Consider the following

metric which is equivalent to Equation (6.3)

i=m
Ei—i (- 1)rki ak —

Note that (-1)ri has a mean E =1-2p, (= (1— pe) X 1 + pe X (-1)) if the k-th encoded

symbol is 0, and a mean E = —(1 — 2/4) if the k-th encoded symbol is 1. The variance is

the same and is given by

= — (1 — 2Pe)] 2 (1 Pe) + [-1 — (1 — 2Pe)1 2Pe= 4Pe(1 — Pe)• 	(6.6)

76

8
11

11
9
2
1
1

8
11

11
8

11
11

11
11

1
11

11
11

8
8

8
1

1
8

8
1

1
8
1
1
8
4

11
1

1
1

1
1

8
8

8
8

1
11

1
8

8
1

1
81

1
8

8
.1

18
11

1 1
1

1
8

8
8

1
e

(6.4)

(6.5)

1 term • • •

4 terms —
9 terms —

8
8
1

1
1

1
1

1
1

8
8

8
8

8
1

1
1

8
1

1
1

8
8

8
1

1
9

1
1
8
8
1
1

8
8

9
$

1
1

8
8

8
8

1
11

18
1 1

1
8

8
11

1 1
11

11
8
1

11
11

1
11

8
11

1
8
1

1

0.10 	0.15 	0.20 	0.25 	0.30 	0.35 	0.40
Pe

Figure 6.1: Union bounds for the repeated Odenwalder code over the BSC using the first
term, the first four terms and the first nine terms of the transfer function, respectively.
m = 3, 7 and 15.

0.45

77

m =3 m = 7

1

1

0.01

0.001

0.0001

10-5

10-6

l o-7

a
a

a
a
a
a
a
a
a

a
a

a ,

a
a

a

Ô
a
a

a
a
a

a
O
a
a
a

a
Ô
Ô
a

By use of the central limit theorem (see, e.g. [27]), we know that

- E] flk =
yrn

is a zero-mean Gaussian random variable with variance .72 when m -› oo (or m is very

large). Since

1 Eii:fin (-4)rki 	1 [r[(- 1)rk 1 - E)] -1- mE)3k
E v 772 	V 772 	 vm 	 N/777,

then, for a large m, ak is also a Gaussian random variable with mean equal to E and

variance
2 	4Pe(1 Pe)

—

Thus for a sufficiently large m, the variance can be reduced to an arbitrarily small num-

ber. Compared with the coherently demodulated BPSK in additive white Gaussian noise

(AWGN) with the noise spectral density N0 [10], the asymptotical Gaussian distribution

of ak implies an effective symbol energy (half of the bit energy for the rate 1/2 code)

= (1- 2/4)2 and an effective noise spectral density NU2 = cr e,2 , i.e.,

E's1N 	
4(122

o= 	m. 	 (6.10)
pe

2
)

Note the effective signal to noise ratio is proportional to the diversity order m. Since the

simulated or measured BER curve for the Odenwalder code is well known (see, e.g. [8]),

for a large m and a given pe , we can use Equation (6.10) to determine the required E.97.11T1) ,

and thus m to sustain a required Pb. Even for a small m, the Gaussian approximation can

be used to estimate the required m, and then adjust it therefrom.

Since the simulated or measured BER curves for the Odenwalder code take into

account the finite levels of quantization and other practical constraints such as a finite trel-

lis length, these factors are also included in the BER curves of the repeated convolutional

code if the Gaussian approximation is used. In other words, for a large m performance

degradation due to finite quantization, etc., will be about the same as what wé have known

for the convolutional coded coherent BPSK in AWGN.

In Fig. 6.2, Pb, obtained from Gaussian approximation, vs. pe is given for m = 3,

7, 15, and 31, respectively. For m> 7, eight levels of quantization and trellis length 84 are

78

(6 .7)

(6.8)

(6.9)

1
1
8
8
9
1

11
11

18
81

1
8

1
1

1
1

1
8

8
8

8
1

1
11

11
1

1
1

1
8

8
8

1
11

1
8

8
8

8
1

11
1

11
8

111
11

8
8
8

81
1

8
11

81
1

11
8
8

11
8
1

1I
s

assumed. This trellis length is considered instead of five or six times the constraint length

because 84 or so has been used in commercial realizations in order to accommodate the

punctured rate 3/4 code[24]. For m < 7, MLD decoding is assumed which can be material-

ized with eight levels of quantization. In this case, the interest is to see the approximation

error of the Gaussian approximation. For comparison, the results based on the union bound

are also given in Fig. 6.2.

It can be seen from the figure that for a small m the Gaussian approximation results

in a lower BER. For a reasonably large m (e.g. m > 15) the Gaussian approximation seems

to be fairly accurate which needs to be verified by simulation.

It is also noted that for m = 31, the BER obtained from Gaussian approximation is slightly

higher than the union bound. The basic reason for this difference is that for the union

bound, ideal maximum likelihood decoding is assumed, i.e., no quantization and infinite

trellis length, etc., while for the Gaussian approximation curve, practical constraints have

been taken into account.

6.3 Computational Results for BSC

In order to verify the BER performance, Monte Carlo simulation has been performed. The

trellis length is 84 and eight levels of quantization is assumed and Equation (6.4) is used

to generate the metric for various m. Fig. 6.3 shows simulated Pb vs. I), for m = 3, 5, 7,

15 and 31, respectively. Union bounds and the Gaussian approximation are also shown for

comparison. For the latter only m = 15 and 31 are considered because m is supposed to be

large for the Gaussian approximation.

It can be seen from the figure that for m < 8 the union bound, which assumes

the MLD, is almost exact. Note now for m = 3, we have metric 0, 2, 5, 7 which means

that we are not doing exactly MLD. This applies to m = 5 as well. But the performance

degradation is insignificant. For a large m, the Gaussian approximation is fairly close to

the simulation results. Note that finite quantization results in a higher BER that is not

79

Union bound —
Gaussian approximation —

11
11

8
8

8
11

8
8

11
11

8
8

8
1

8
•
8

11
11

11
11

0
11

11
8

9
1
1

8
8

11
11

11
8
*
M

1
1
8
8

9
11

11
11

1
8

11
41

11
11

,1
11

11
1

m = 7

m = 3

1

1

0.01

0.001

Pb

0.0001

i o -5

i o-6

i o-7
0.10 0.15 	0.20 0.25

Pe
0.30 0.35 0.40

Figure 6.2: BER based on the Gaussian approximation and the union bound for the repeated
Odenwalder code over the BSC. m = 3, 7, 15 and 31.

80

m = 15

m = 31

0.35 0.40 0.30 0.15 0.20 0.10 0.25
Pe

	 ? 	

11111111/11Mmtimm.
111111M1/111111111111MIIIMMINIATIMINII

1D1 I' ii
11/101111/11/111111111/11111
	 ii

MIMES

sarall111111111
MIAMI 	

	

111111T 	11111111111 	 	
riza 	 ii

‘,111111111111,

	

4 	r 	

1m= 15

m = 31

0

9
8

11
11

11
11

8
11

8
8

8
8

11
8

8
1

1
8

8
8

8
1
1
8

8
8

8
8
9

81
1

11
8

8
8

1
1

81
1
8

$
8

8
1

1
1

1
8

8
11

11
8
8
1

18
8

8
8

11
0

Union bound —
Gaussian approximation —

Simulation 4—

0.01

0.001

Pt

0.0001

10 -5

10 -6

Figure 6.3: BER based on simulation, the union bound and the Gaussian approximation
for the repeated Odenwalder code over the BSC. m = 3, 5, 7, 15, and 31.

81

a

a
a

a
SI
a

a
a

a
a
a

a
a
a
a

a

a

a

a

a

a

a

a
O
O
a
a
a
O

upperbounded by the union bound, and in fact, Gaussian approximation is more accurate

than the union bound at a high BER.

For m = 5 the overall code rate is 0.1 which is slightly higher than the rate, 0.092, of

the abovementioned coding scheme considered in [25] with comparable BER performance.

In consideration of its simplicity, the repeated Odenwalder code is favoured.

Fig. 6.4 shows the cutoff rate Ro for the BSC[27] and the overall code rate r = —1— 2m

to sustain Pb = 10-4 (based on the simulated BER) which was also used in [19]. From this

figure, it seems that r moves doser to Ro as pe increases. But from r/Ro vs. pe as shown

in Fig. 6.5, r decreases faster than Ro as pe increases. Nevertheless, it is interesting to note

that the deviation between r and Ro is bounded: as pe approaches 0.5, r approaches 0.6R 0 .

If compared to the channel capacity, r is near 30 percent of channel capacity. In conclusion,

the repeated Odenwalder code can achieve more than one half of what is promised by the

cutoff rate even for very large pe , say, 0.3 to 0.5.

6.4 M-ary Symmetric Channel

In this section, we consider the M-ary symmetric channel (MS C) with high symbol error

probability, which is illustrated in Fig. 6.6. Here pe is the symbol error probability, which is

near 1—k, but smaller than it. Again, the coding scheme consists of an outer convolutional

code and an inner repetition code where each M-ary channel symbol is repeated m times.

This MSC model directly reflects the hard-decision demodulated fast frequency hopped

MFSK (FFH/MFSK) where the repetition is inherent in the system. Here we are especially

interested in M = 4 and 8. Previous work has shown that, under certain conditions,

they represent best compromise in order to combat both partial band noise jamming and

multitone jamming (see, e.g. [4]). As mentioned earlier, hard decision may be due to

complex demultiplexing between the demodulator and decoder. We first consider a Trumpis

code[30] as the outer code which is optimum for an M-ary orthogonal channel. 4-ary and

8-ary R = 1 bit/channel symbol Trumpis codes with constraint length 7 are considered.

This code has the same implementation complexity as the Odenwalder code because of the

same constraint length. In view of commercially available binary codecs, we then consider

82

I
SP me
a

a

a
O
a 0.6

O

• 0.5

a 	 0.4

a
• Ro 0.3

a

•
0.2

0.1
a

a
Ô
~ . 	

0.0
0.00 	0.05 	0.10 	0.15 	0.20 	0.25 	0.30 	0.35 	0.40

elé 	 Pe
Ô

• Figure 6.4: Comparison of the cutoff rate Ro of the BSC and the overall code rate r of the
repeated Odenwalder code over the BSC to sustain Pb = 10-4 .

a
Ô
a

411)

a
a
a

83

0.10 0.20 0.30
Pe

0.50 0.40

8
,

8
8

1
11

9
11

8
8

8
11

4
11

8
8

8
1

11
11

18
11

81
18

11
11

8•
11

11
11

8
•1

1
8

91
1

81
1

91
11

11
11

1
0
1
1
8
1
1
8
1

11
18

11
8

0.70

0.68

0.66

r/Ro

0.64

0.62

0.60

Figure 6.5: Ratio of the overall code rate r of the repeated Odenwalder code - over the BSC
to sustain Pb = 10-4 to the cutoff rate Ro of the BSC.

84

o o
1 - p e

i) e /(M-1)

p,,/(M-1)

1 1

p e /(M-1)

• •
• • iii 	

• •
pm/14)

l - pe
M-1

81
1

11
81

1
8
8
1
1
8
1
1
8
1

11
1
1
1
8
8
9
1
1
1

11
18

11
81

1
8

8
11

91
11

18
11

11
81

1
8

$
8

$
8

8
1
1
8
0

11
81

1
8

1
1
8
8

8
1

8
8

M-1

Figure 6.6: Model of M-ary ,Symmetric Channel

85

8
8

11
81

11
1

8
11

11
8

8
1

6
*

81
1

8
8

11
11

11
01

1
11

4
8

8
1

1
0

1
1

8
8

8
8

1
11

1
11

11
0

8
9

8
8
0
8

8
11

98
11

0
4

1
18

11

the possible use of the constraint length E =7, rate R= Odenwalder code for the MSC.

The emphasis is placed on how to generate binary decoding metrics.

6.4.1 M-ary Metric

For the Trumpis codes, it is known that the union bound of the decoder output BER Pb is

[30]

Pb < 7 P7m + 39-P87 + 104P9m ± 352Pi0m 1187Piim + • • for 4-ary channel 	(6.11)

and

Pb < P7m 4P8m 8P9m 49Piom 92Pnm + • • • for 8-ary channel 	(6.12)

where Pd is the pairwise error probabi lity between two trel lis paths with Hamming distance

d.

To consider the use of the Odenwalder code over a 4-ary symmetric channel (4SC),

the most natural way is as follows. Recall that the encoder of the rate 1/2 code generates a

pair of encoded bits at the encoder output for each incoming information bit. This pair of

encoded bits can be considered as a 4-ary symbol and transmitted in times over the 4SC.

In decoding, ideally, two encoded bits corresponding to one trellis branch will be assigned

a 4-ary metric. This assumes that the decoder can accommodate 4-ary metrics. Using a

trellis search algorithm, we found the union bound of the decoder output BER Pb as

Pb < 	P6m 10P7m 38P9m 92P9rn 355Piom 1440-Pum

+4684Pum 16043/13m + 52240/314m + 170679Pi5m + • • •

Note the Trumpis codes are optimum over MSC in the sense that they have the

largest M-ary free Hamming distance (7 for the 4-ary code) and fewest information bit

errors due to path errors at the free distance. The Odenwalder code is not optimum for the

4SC. The free 4-ary Hamming distance is 6, which is one less than the optimum Trumpis

code. But the number of information bit errors due to an incorrect trellis path at the free

distance is only one. Thus we may expect that the Odenwalder code will have near optimum

BER performance.

86

(6.13)

11
0

8
8

11
1

1
11

1
8

1
11

11
1

11
8
8
8

8
1

1
8

1
8

8
8

1
11

18
8
1
1
1
,8

8
8
8

8
8
8
$
1

1
11

8
8
8

8
1

1
9

8
8

1
11

1
8

11
8

0
11

The use of the Odenwalder code over 8-ary symmetric channel (8SC) is similar. The

encoder of the rate 1/2 code generates three pairs of encoded bit for every three incoming

information bits. Then the first pair of encoded bits and one bit of the second pair of

encoded bits are considered as an 8-ary symbol. The other bit of the second pair and

the third pair are considered as another 8-ary symbol. Each of these 8-ary symbols is

transmitted over 8SC m times. At the decoder, an 8-ary metric will be assigned to three

encoded bits corresponding to one and a half trellis branches. Of course, it is assumed that

the decoder can accommodate an 8-ary metric. We found the union bound of this kind of

decoder output BER as

Pb < 	3P5m 28P6m 83P7m 649P8m 2419P9m 10295Pi0m

+45175Piim 193378Pum + • • • 	 (6.14)

By comparing with (6.12), we find the Odenwalder code is not bad over 8SC. The

8-ary free Hamming distance is 7 for the rate 1/3 Trumpis code, and 5 for the rate 1/2

Odenwalder code.

For the MSC with a repeated M-ary code, the maximum likelihood decoding met-

ric for each M-ary symbol is the Hamming distance between the sequence of m repeated

symbols and the corresponding received symbol sequence of length in. Here it is implied

that for an M-ary symbol, a smaller metric is more favorable in that the M-ary symbol is

more likely to be transmitted. This MLD metric is an M-ary metric in the sense that there

are a total of M metrics for all M M-ary symbols.

For MLD, we can find the pairwise error probability between two paths with Ham-

ming distance d, Pd. Recall that the exact meaning of Pd is, given a correct transmitted

trellis path, the probability of a specific trellis path at Hamming distance d having a more

favourable path metric than the correct path. Let us consider one symbol period where

there is a symbol difference from the two paths. The correct symbol is called c and the

symbol from the incorrect path is called e. Because M> 2, the MSC output can be neither

c nor e. In fact the probability for the channel output to bec or e, denoted as pce , is given

by
Pe

Pce = 1 — Pe + 	•
M — 1

87

Then over d symbol periods where two paths have different symbols, there can be j (0 <

j G d) periods where the channel output is neither c nor e and hence no contribution can

be made to the metrics for either c or e. We can calculate a conditional pairwise error

probability 4(j) over the rest d - j symbol periods where the channel output must be

either c or e with probabilities (which are conditional probabilities under the condition that

the channel output must be either c or e) of 1-- =P-1, and p-724-1-1), respectively. Specifically,
Pce 	 ce0

we have
d—j (d j 	 i (1 - pe yi— j—i

P(j) . 	
d - j 	- E (1 _ 0.56(i — —2--)) 	i)

(
(Pe) 	 (6.15)

1/ - 1-)Pce 	Pce)
i=rci---M

where [xl is the smallest integer greater than or equal to x, and

5(x)= { 1
if x = O.

' .- 	0 otherwise.

In fact, the 8 function is equal to 1 (so that 1- 0.58 = 0.5) only if d- j is even and i =

Otherwise b function is 0 and 1 - 0.58 = 1. The probability that j of d periods where the

channel output is neither c nor e is

ni,d) = (d) Pcdji (1 - Pce)j . 	 (6.16)
./

Therefore, the pairwise error probability is

d

E P(i,d)ni)
j=0

Pd

(d 	(1 _ pce v x

d—j
E (1 — 0.58(i d j)) d 	(Pe 	(1 	Pe

2 	 /9ce(M - 1)) 	Pce)

There is a factor Pcde-j in the inner summation and it can be canceled with the one at

outside. So finally we get

Pd -=
d E 3d. (mm 2ce)i

j=0

d—j
x E (1 — 0.58(i-

 d - j
--2—)) d - j 	

M 	
(1 - 	(6.17) Pe

- i=1,1711

88

11
0

8
8

8
8

1
1

8
8

11
11

11
•

1
1
8
8
1

11
11

18
11

11
8
8

11
11

8
8

11
8

81
11

11
t

O
te

$
0

8
6

8
11

11
1
1
8
8

6
8

6
8

8
11

8
8

Using Equations (6.11), (6.13) and (6.17) for m = 3,7,15, and 31, the bound of Pb

versus p e is plotted for the Trumpis code and Odenwalder code with M-ary MLD decoding

metric in 4-ary channel in Fig. 6.7 (curve a and b). From this figure, we can see that the

Trumpis code is indeed better. However, it is interesting to note that the performance of

the Odenwalder code is only slightly inferior to that of the Trumpis code. This is the basis

for considering the use of the Odenwalder code over the 4-ary channel.

Using Equations (6.12), (6.14) and (6.17) for m = 3,7,15, and 31, the bound of Pb

in an 8-ary channel is plotted in Fig. 6.8 (curve a and b). It appears that the performance

of the Trumpis code is much better than that of the Odenwalder code in the 8-ary case.

But recall that the 8-ary Trumpis code is a rate 1/3 code. So the code rate of this Trumpis

code is only two thirds of the code rate of the Odenwalder code. The direct comparison in

Fig. 6.8 is not fair.

Since the whole code rate of the repeated Trumpis and Odenwalder code are

and respectively, if the repetition order m for the Odenwalder code is chosen to be 50

percent larger than that for the Trumpis code, the code rate for both repeated codes are

the same, and then comparison can be made. So the union bound of Pb for the Odenwalder

code with m = 5, 11, 23, and 47, and with m = 4, 10, 22, and 46 are plotted in Fig. 6.9.

The bound of Pb for the Trumpis code with m = 3,7,15, and 31 are also plotted in Fig. 6.9.

The corresponding code rate of the three groups are almost the same, but code rates of the

Odenwalder code with m = 5,11,23, and 47 are a little bit lower than that of the Trumpis

code, and code rates of the Odenwalder code with m=4,10, 22 and 46 are a little bit higher.

From Fig. 6.9, we can see that for BER less than 10 -4 , the curve for the Trumpis

code is in the middle of the space between the two curves for the Odenwalder code. Consid-

ering two curves corresponding to the Odenwalder code with a higher and a lower code rate,

respectively, we can see that the repeated Odenwalder code would have almost the same

performance as the repeated Trumpis code at the same overall code rate. Therefore, the

same conclusion as in 4-ary channel can be drawn that the performance of the Odenwalder

code is only slightly inferior to that of the Trumpis code. Because the comparison is based

on the union bounds which are quite loose at high BER area, and the number of terms used

in computing those union bounds are different, our comparison is only made at a low BER.

89

1
11

8
8

11
11

8
8

81
1

11
8

0
11

8
8
1
1
1

1
1

1
1

.0
1
1
0
0

1 1
0
1
1
9

8
0

11
0

1
1

0
8

11
0

01
1

9
1
1
8

•1
11

1
•
M

e
s

s
a

s

Union bound for Trumpis code
Union bound for Odenwalder code with 4-ary metric

Union bound for Odenwalder code with direct metric and ideal interleaving
Union bound for Odenwalder code with direct metric and without interleaving

Pb

Figure 6.7: The union bound for the repeated Trumpis code and Odenwalder code with
three kinds of metrics over 4-ary symmetric channel. m=3,7,15, and 31.

90

O
S

S
11

8
1
1
8
0

11
11

81
1

61
1

11
0

8
11

11
11

1
1

8
•

8
81

1
$

11
1

8
8

11
•1

11
8
8

1
,

11
8
6

•
8
1
,1

10
•

8
8

$
6

0
1

1
0
8

Union bound for Trumpis code —
Union bound for Odenwalder code with 8-ary metric —

Union bound for Odenwalder code with direct metric and ideal interleaving

1

0.01

0.001

Pb 0.0001

10 -5

10 -6

io -7

10 -8

0.10

Figure 6.8: The union bound for the repeated Trumpis code and Odenwalder code with two
kinds of metrics over 8-ary symmetric channel. m=3,7,15, and 31.

91

=7 	m = 15 m = 31

0.20 	0.30 	0.40 	0.50 	0.60 	0.70 	0.80
Pe

11
8
1

1
11

8
1

1
8

11
0

11
8

11
0

11
11

4
8

11
11

11
11

11
8

0
.

8
0

0
11

0
91

1
11

1
8
1
1
•

0
1

1
11

11
11

8
0

1
1

11
0

10
8
0

11
1

1
0

0
8

Note that the union bound for the Odenwalder code is based on the assumption

that the decoder can accommodate M-ary metrics for MLD. This is generally not the case

if we want to use commercially available decoding chips directly. In this case, the decoder

is designed to accommodate binary metrics only. With this constraint, the above union

bound should be understood as an upperbound for the BER performance of the decoder

using binary metrics. But the free M-ary Hamming distance of the binary code shown in

the union bound of Equation (6.13) and the corresponding error coefficient provide a basic

indicator on whether or how well the binary code can work over the M-ary channel at all.

Since the performance degradation of the Odenwalder code is small relative to the

optimum Trumpis code using M-ary metrics, the code is a good candidate for the M-ary

system from a practical point of view. The practicality is that we can use commercially

available codec chips provided we can properly generate binary decoding metrics. Further

performance degradation will be introduced by using binary metrics because a binary met-

ric is not a MLD decoding metric in an M-ary channel. How much the degradation will be

depends on how binary metrics are generated. In the following sections, we consider several

possible methods of generating binary decoding metrics and their performances.

Binary Metric Approximation of M-ary Metrics

Since the use of a binary decoder requires binary metrics, M-ary metrics can not

be used directly in binary decoder. The most natural attempt would be to approximate

M-ary metrics with log 2 M binary metrics. This method avoids interleaving.

Since the trellis decoding is based on comparing the metrics of different trellis

paths, adding a number to all M metrics in one symbol period will not affect the decoding

performance. Therefore, we only need to be concerned about differences between metrics

for different M-ary symbols. There are M — 1 M-ary metric differences.

Let moo , moi , m10 and mn be the 4-ary metrics, respectively. The maximum like-

lihood decision decoding requires that branch metric for symbol ij is and the survivor

has the smallest path metric. Thus MLD can be implemented by considering three differ-

ences between four miis. Unfortunately, they can not be represented by two binary metrics

92

m=4

z
m = 3

m = 5

Union bound for Trumpis code —
Union bound for Odenwalder code —

m = 15

•

•

111
II

m = 7

m=loy 	m = 22igardu

23 	in = 47 771 = 111 	in 	23

0.10 	0.20 	0.30 	0.40 	0.50 	0.60 	0.70
Pe

Figure 6.9: The union bound for the repeated Trumpis code and Odenwalder code with 8-ary
metric over 8-ary symmetric channel. m=3,7,15, and 31 for Trumpis code; m=4,10,22, and
46 and m=5,11,23, and 47 for Odenwalder code.

0.80

93

•
8

11
11

11
11

11
8

1
11

11
18

11
1
8
1
1
8

11
11

01
11

1
8
1
1

8
1

1$
11

11
8

8
11

8
8

11
11

81
1

0
8
•

11
•

11
6

1
1

8
8

8
8

8
8
8

8
1

1

1

1

0.01

0.001

0.0001

Pb

10 -5

10 -6

10 -7

10 -8

10 -9

wanragmainatrims..m -mmag,

WIIIMIIMM•nn •nnnnMIMMn•n•••nn1
»Mat • • MOW MIMIIn• • 	 •••••nn
v. wnliwmufrnwwwnwaruameaw

WIMMIONNIONIMWM11011

;7=
.........nnn •nnn • 	 ...lam

mommamn Inraw MMIMIn11 lira
A1n11/ AIM1111111n11• la • • IIIMMIMI11 ,1n1 «RIM

NM 	11 	I

galin • I I I WM I la I
••nnn••••nnnn 11 ,8n1n11nn•n
IMInIIMMnIIIIMMMIMIMIn15/1n 111n 110n1111•1

En111M1 	 IBMIMIIIIM/ DM

11111n11111#11111111111M111111111111'

WRIM1121.1.11

m = 31

a

a
a

a
a
a
a

fle

a
a

a
a
a

a

a

a

,

a
a
a
a

a
a

a

a

a
a

a

exactly.

Assume the metric range is [0,7]. Without loss of generality, we assume moo to be

the smallest. Suppose the branch metric is Boo = a+ b corresponding to two binary metrics

for symbol 00, a and b. Then for symbol 01, the branch metric is Bol = a + 7 — b. And we

have

Boo — Bol = 2b — 7.

Because moo < mol, it is natural to require Boo — B01 < 0, i.e., b < 3.5. If we require

Boo — Bol = moo — moi

then

2b — 7 = moo — mol

hence

b = 7 — (mol — moo)

For symbol 10, the branch metric B10 = 7 — a + b. Similarly, because moo <

a <3.5. And if we let

Boo — B10 = moo — mio

then
7 a 	— (mio — moo)

2

For symbol 11, the branch metric B11 is

2

Because a < 3.5 and b < 3.5,

and

B 11 =7—a+7—b.

— B01 = 7 — 2a >

Bn — B10 = 7 — 2b > 0.

This means that no matter what mn — moo is, the term B11 always gives the least favorable

metric. This problem is inveitable as long as there are only two binary metrics used. This

is simply because if 00 is the most favorable symbol, 11, which is the farthest symbol to 00

94

11
11

81
11

1
1
1

1
8

8
•8

8
11

11
8
8
8

11
8

61
11

11
11

1
11

8
11

11
11

8
8

1
1

8
8

11
8

8
6

9
8
9

11
8
0

11
9

8
8
8

8
8

81
11

11
1

in binary Hamming distance, should be the least favorable in binary metric representation.

Thus the 4-ary metric m 11 is not always preserved depending on its value, but the metrics

rnio and m01 are genuinely preserved.

In summary, the proposed method to generate binary metrics to approximate 4-ary

metrics is as follows:

1. Find mii = min(moo, mcn , 	mil), where i, 	(0, 1). Denote 1's complement of i

as i and j as 3.

2. Then compute
7 — (772;ii mii) a-

b = 	

2
7 — (m1.7 — mii)

2

3. The actual two binary metric sent into the decoder, b 1 and b2 are

b1 a(1 — i) + (7 — a)i,

b2 = b(1 — j) + (7— b)j.

For a larger M, for example, M = 8, there are seven 8-ary metric differences but

only three binary metrics. The method given above can only accurately represent three out

of seven differences. Thus it does not appear to be proper to extend the method to a larger

M. In the following sections, we consider more general methods. The basic principle of

these methods is to generate "sensible" binary metrics directly from M-ary metrics without

attempting to approximate them.

6.4.2 Binary Metric Generation

When a binary code is used over an M-ary channel, the log2 M encoded bits at the output

of encoder are mapped into M-ary symbols through a one-to-one mapping. At the receiver,

the received M-ary symbol is mapped back to the group of binary bits, and the corre-

sponding metric for each binary bit is generated accordingly. The optimum binary metric

generation method is the one which has the BER performance closest to that of Odenwalder

codes with M-ary metrics, i.e., the curve b in Fig. 6.7. Here we propose a binary metric

95

•
0
8

11
11

8
11

11
8

11
11

1
1

0
8

0
0

8
1

1
8

4
1

11
1

1 1
0
8

8
9
1

11
,1

1
9

0
0

0
1

11
1
8
0

0
8

11
11

11
11

11
1

1
0

0
8

8
1

1
0

11
8

11

generation method called the direct binary metric generation method.

Direct Binary Metric Generation Method

At the receiver, after receiving m M-ary symbols, we can generate the binary metric

in the following way:

1. Mapping m received M-ary symbols back to m binary bits groups, respectively.

2. For each of log2 M bits, accumulate over m repetitions the number of 0 or 1 received

and form a binary metric like the one discussed in Section 2 for BSC.

3. Feed these binary metrics to the decoder in a certain order.

For example, for 4-ary symbols 0,1,2, and 3, we can map them to four groups of two

binary bits, say, 00, 01,10, and 11, respectively. If m = 3 and the three received symbols

are 0, 1, and 3, the corresponding two binary metrics are 1 and 2.

"Certain order" in step 3 depends on whether interleaving is used or not. Here we

analyze two extreme cases, i.e., ideal interleaving and no interleaving at all.

Direct Binary . Metric Gen.eration With Ideal Interleaving

Obviously, the binary metrics generated using this direct method bear some depen-

dence. Ideal interleaving makes that incoming metrics to the decoder are all statistically

independent of each other over one decoder trellis length. This would require a block inter-

leaver with an interleaving depth log 2 M and a span of at least of 5 to 6 times that of the

constraint length. In this case, the M-ary symmetric channel can be simplified to the BSC

model with the transition probability of BSC p'13)

	

(B) _ 	

	

Pe — 	 e • 2(M — 	 (6.18)
 1) P

Then analysis can be carried out easily in the same way as for the BSC model. Specifically,

the analytical results in binary channel given in Equations (6.1) and (6.2) can be applied

directly by substituting transition probability pe by 2 1) Pe . The bounds of Pb versus pe

 are plotted for the Odenwalder code, with a direct binary metrics with ideal interleaving

96

•1
18

11
11

11
11

81
1
1
1
8
8
•

1
1

1
1

6
•
8
8
1
6

11
11

11
8
8

8
11

11
11

8
11

11
8

8
8
6
1

11
1
0

8
1
1
0

8
11

11
11

11
11

8
11

11
11

11
11

for the 4-ary channel in Fig. 6.7 (curve c) and for the 8-ary channel in Fig. 6.8 (curve c),

respectively.

Direct Binary Metric Generation Without Interleaving

No interleaving means that log 2 M consecutive binary decoding metrics are gener-

ated from one M-ary symbol. Here we consider the 4-ary case. Generalization for a larger

M involves a higher level of sophistication but no more ingenuity.

For 4SC, the probability of receiving one of three wrong 4-ary symbols is p e /3.

However, two of three wrong symbols result in only one binary bit error, and the other one

leads to two binary bit errors.

Consider two trellis pathes which differ in d bit positions, and where each branch

in the paths contains one 4-ary symbol, or two binary bits. One path is considered as the

correct path, while the other one is considered as the incorrect path. Assume d different

positions reside in Z branches in the incorrect path. Among Z branches, there are two

kinds of branches. One kind of branches are those with only one bit different from the

corresponding branch in the correct path. The other kind are those with both bits different

from the branch in the correct path. We call the first kind as one-bit-error branches, and

the second kind as two-bit-error branches. For a received symbol, the metrics are different

for these two kinds of branches.

Suppose the branch in the correct path is 00. Then the one-bit-error branch is

either 01 or 10; and the two-bit-error branch is 11. We consider 01 as an example of one-

bit-error branch. With the binary Hamming distance used as the metric, we have:

metric for 	metric for
symbol received probability correct branch (00) error branch (01)

00 	 1-pe 	 0 	 1
01 	 Pe/3 	 1 	 0
10 	 Pe 13 	 1 	 2
11 	Pe/ 3 	 2 	 1

For a two-bit-error branch, similarly, we have:

97

11
8

8
11

11
11

8
11

11
11

11
11

11
81

1
11

11
11

11
11

01
11

1
11

11
8

0
8

9
1

11
11

1
•

0
1
1
9

11
0

0
0

1
11

11
11

0
0

0
8

11
11

01
1

8
8

11

metric for 	metric for
symbol received probability correct branch (00) error branch (11)

00 	 1-pe 	 0 	 2
01 	 Pe/3 	 1 	 1
10 	 Pe/3 	 1 	 1
11 	 Pe/3 	 2 	 0

Here we can see that the metrics are different for the two kinds of error branches,

and therefore, for different combination of the two kinds of branches the pairwise error

probabilities are different even for the same d, the total number of different position in bits.

To compute the union bound of the BER at the output of a decoder, we need to

know how many one-bit-error branches and how many two-bit-error branches exist for each

d, and the corresponding contributions of each combination to information bit errors.

Suppose there are X one-bit-error branches, and Y two-bit-error branches, and

X + Y = Z. Then the union bound of BER at the output of the decoder is

00

Pb 	E E cd(x,y)pd(x,y) 	 (6.19)
d=d f ree x,yEr d

where rd is the set of all possible X and Y combinations which are determined by the code.

Cd(X,Y) is the information bit error contribution for a trellis path with X one-bit-error

branches, Y two-bit-error branches, and total d different positions from the correct path.

Pd (X, Y) is the pairwise probability of two trellis pathes with the binary Hamming distance

d, and X one-bit-error branches and Y two-bit-error branches.

Cd(X,Y) can be obtained by computer search. We have found Cd(X,Y) for the

Odenwalder code, and those for a small d are given in Table 6.1.

Now we compute the pairwise error probability Pd(X, Y). Suppose that the correct

path is the all zero path. If during Z = X + Y transmission, symbol 00 is received ko times,

symbol 01 k 1 times, symbol 10 k2 times, and symbol 11 k3 times, then the metric for the

correct path corresponding the Z branches is

me = 	k2 2k3 . 	 (6.20)

To compute the metric of the error path, we have to consider how received symbols match

the branches in the error path.

98

11
81

11
1

11
11

11
11

11
6
1
1
1

8
8
8

0
8

8
8

11
1

81
11

1
8
8
1
1
8
8

11
11

11
8

8
8

8
1
1

8
8

1
11

18
11

11
11

11
11

8
1

1
11

81
1

11
8
0

d 	X 	Y 	Cd(X,Y)
10 - 	2 	4 	1 	

4 	3 	10
25

12 	4 	4 	13
6 	3 	61
8 	2 	137

14 	4 	5 	29
6 	4 	176
8 	3 	792
10 	2 	407

16 	2 	7 	2 	
4 	6 	42
6 	5 	597
8 	4 	3019
10 	3 	5177
12 	2 	2796

Table 6.1: Cd(X,Y) of constraint length 7 Odenwalder code.

Let kox be the number of 00 received corresponding one-bit-error branches in the

incorrect path, and ko y be the number of 00 received corresponding two-bit-error branches

in the incorrect path, and so on. Obviously,

ko kox koy

k1 = klx kly

k2 = k2s k2y

k3= k3x k3y

and

kox 	k2x k3x = X

/coy + kly k 2y k 3y = Y.

As discussed in section 6.6, we can assume, without loss of generality, that all one-bit-error

branches are 01. Then the metric for the incorrect path corresponding to the Z branches is

m e = kox 2k2x kas 2koy kly k2y. 	 (6.21)

99

a

a
The pairwise error probability is •

X! 	Y! 	pe ki +k2+k3 	 •
Pd(X, Y) = E «me — me) 	 (1 — pe)ko (6.22)

kox !k ix !k2s !ku ! koy !kiy !k2y !k3y ! 	3

where 	 a

0 < kix ,0 < kiy ,i = 0,1,2,3, 	 a
3 	 3 	 a

i=0 	 i.0 	 a
and

	

0 x < 0; 	 •

	

u(x) = 0.5 x = 0; 	 •
1 	x > 0.

By using (6.19), the union bound for the Odenwalder code in an 4-ary channel with direct
•

generation metric without interleaving is computed and is also plotted in Fig. 6.7 (curve d).

a
Binary Metric Generation Based on M-ary Metric Without Interleaving

	

In order to generate binary metrics, Gong proposed a conversion scheme which 	 •
• converts the M-ary metrics into binary metrics [31]. For the i-th bit in log2 M bits corre-

sponding to an M-ary symbol, the binary metric is given by 	 •

bi = max{M-ary metrics for symbols with i-th bit to be "1"} •
• — max{M-ary metrics for symbols with i-th bit to be "0"}

i = 1,2,...,log2 M.
•

	

Here we use Gong's conversion scheme in the following way: first we find M-ary MLD 	•
metrics; then binary metrics are generated using the above equation. Since interleaving can •

•
cause a substantial delay in addition to its implementation cost, which sometimes is not 	 • ,
desirable or tolerable, it is always interesting to know the trade-off between interleaving

and the BER performance. Thus we consider both Gong's conversion scheme and our

direct scheme without interleaving. It is interesting to compare the performance of these 	 •

two schemes. Further, we note that the use of Trumpis codes does not require interleaving.
•
•

Thus comparison based on no interleaving is fair to all cases. 	 •
811
•
•

100

•
11111

a
a
O
O

a
a 	6.4.3 Simulation Results a
• A Monte Carlo simulation is carried out to obtain the bit error rate at the decoder output

for the Odenwalder code in a 4-ary symmetric channel with three metrics, our approxima-

• tion of M-ary metrics, directly generated metric and Gong's conversion metric, and for the

Odenwalder code in an 8-ary symmetric channel with two metrics, our directly generated a
• metric and Gong's conversion metric, both without interleaving. The results are plotted in

• Fig. 6.10 for the 4-ary case and in Fig. 6.11 for the 8-ary case. For comparison, the union

bound for the Odenwalder code with the M-ary metric, and the directly generated metric

• with ideal interleaving are also depicted in Fig. 6.10 and Fig. 6.11. The union bound for the
O1 Odenwalder code in a 4-ary channel with the direct generation metric without interleaving

• is plotted in Fig. 6.10 as well.

• From simulation results in a 4-ary channel (Fig. 6.10), we can see that the directly

• generated metric gives the best performance among three metrics. For small m (m < 7), the

le 	 approximation metric and the conversion metric have almost the same performance. But

for large m, the conversion metric has a better performance. In Fig. 6.11, the simulation

• results in an 8-ary channel are similar. The direct generated metric has better performance.

• All three metrics are considered to work without interleaving, therefore the direct binary

metric generation method is recommended when no interleaving is preferred.

• It is also noted that the union bound for direct generation metric without inter-
.

leaving is quite tight for BER less than 10-'3 . Comparing the union bounds and simulation

• results with ideal interleaving and those for direct generation metric without interleaving,
111 	 we can see that the difference of two cases gets smaller when m becomes larger. So when m
ID
• is large (m > 15), interleaving may not improve the performance significantly, and therefore

• may not be necessary.

6.5 Concluding Remark
O •
•

We have considered a repeated convolutional coding scheme for the MSC with a large pe .

BER performance has been both analyzed and simulated. We first considered BSC. A BER

approximation method is proposed for a large m based on the central limit theorem. The

101 • • •

0.01

0.001

Pb

0.0001

10 -5

10 -6

10 -7
0.10

m=3 I m.7I m. 15

0.20 0.30 0.50 0.40
Pe

0.70 0.60

11
0

11
111

11
11

11
11

111
11

8
11

0
0
0

11
01

1
111

8
11

11
11

11
8

0
1

11
11

11
1

11
11

11
11

0
8

•
11

11
11

11
8

11
11

8
0

01
1

81
1

8
1

1
 s

a
s

Union bound for 4-ary metric • • •
Union bound for direct metric and without interleaving —

Union bound for direct metric and ideal interleaving —
Simulation, direct metric 4—

Simulation, approximation metric -x—
Simulation, conversion metric

A 	I /,3

	

n141M011111111111111M117n111•FaMii: 	•
n11111111111n1•111n1111M AM •••nn11M/MMalitn IMI111/teal.n:11101, 1n11•1111111111U1 I I IIIIMIIIIIIMIMILZBIIPnWi IMIIIIIIIIIIMInIMIUMIIIIII
0/1n11111 11,111/InIMMOMMUIFIMallaallinagianaliallii '
11n11n111n111VIMIlilIVIIIIIIMIWI111111111111 '

IlMirldillUrateemanwimio
le ma ea Ewe

nnnnnn,..-ff_e.......n=1....n ru-==_ lem="zan=riam iz... ; .,=redrizz

	IMIIIIIIIMIEMIMMIMILIII
limmungreratalawataimie4 lawatazie

1111M111111111e7ILIMIVIeffilllil

IIMIMINVOIMantall .-......1 MIMI IMII IIIIMIlfard.IVIIMII 1n11n01•1•11M• IM11n111.11AIMM
OIMIIIII••n V illIIIIInMMIIIIIIMM n111n1nVIIIIRM IMBn1111U.InM
nIIII i i MVP:WI 111MOMMINI•111•1 MIIIIMIONII MIIIIIIIIIIIMI MILT Mal • NM MI I MIMI
IMÉMIIIMÉlietWal liMMINIMMUll If Vaii IiMeMIUMUI
MMIIIIIIIMMnIIIIIIIIMIIIIIIIIIIIIIMIIIIWIMUJIMI

1111M rallivitilli 	:: 	 ineasitantaiszaammanumalevargy
n•,,,reama mIlimmard,wmmauggamssamweiwinammaanal :
rouwarg wasammermanninumwmumsemeat •
111111e1111111n111WIMMIVIIIIIIIIIIMIU . rim a ma r gay, _......_;,_____.........___ Ira :. , IfT,

	

..:: 	
......./
	

,:

. M = 31

Figure 6.10: The Monte-Carlo simulation in 4-ary symmetric channel for BER of repeated
Odenwalder code without interleaving and with direct generation metric, approximation
metric, and conversion metric.

102

=131

immaangamormammilimmu.
1•11211MIVIIIIIMEIM V à

.

VÆTM
................................,....

-,....

...............

	

F1111111111111, 	1 	
/IIIPn/Ifà1/IIIIIII•1IIIM'IMMIMIIIIf//OMIIIIMMIMIIMIII/IIIN/IIIIMMIIIIIIMIIIIIIIIIIIII
railiMailIMMMUMMIMMINWraMMOMB I
IMIIIIIIIMIEWAIMIIIIIIIIIMIIVIIIIII
MIIIIIIIIIIIIIIIIIIIIIIIVIIIII , r
	4....

/ Br• game ,4,

„__=._.._;
	11 	4fr

eINIIMI

3 I 	 m = 15

I

8
8

8
8

8
8

•1
11

1
1

1
8

8
11

8
1

1
9

•1
11

1
•1

1
8

1
18

8
8

••
1

1
1

11
11

11
11

1
8
•
8

8
8

8
•
8
0

11
11

11
11

8
1

1
•

61
1

8
•1

1

Union bound for 8-ary metric —
Union bound for direct metric and ideal interleaving —

Simulation, direct metric 4—
Simulation, conversion metric

0.01

0.001

Pb 0.0001

10 -5

1 0 6

10 -7

10 -8
0.10 	0.20 	0.30 	0.40 	0.50 	0.60 	0.70

Pe

Figure 6.11: The Monte-Carlo simulation in 8-ary symmetric channel for BER of repeated
Odenwalder code without interleaving and with direct generation metric and conversion
metric.

103

0.80

11
11

11
11

0
8

0
11

0
6

11
8

0
8

1
1
0
0
1
1

0
1

11
1

11
11

11
11

0
1

11
1
8
0

81
1

11
8
0
8

0
9

11
11

9
1

11
1

11
11

0
0
1
1

11
11

01
1

11
11

8

overall code rate r is considered relative to the channel cutoff rate Ro . It has been shown

that r is larger than 0.6R 0 . In comparison with a cascaded coding scheme proposed in [25],

the repeated coding scheme has some clear advantages. One of them is that we can vary m

to match the unknown pe without changing the decoding procedure.

We then extended the repeated convolutional coding scheme to the M-ary sym-

metric channel. We have investigated the influence of various decoding metrics in the MSC

model. If ideal interleaving is available, and 7n is not very large, then the repeated Oden-

walder code with binary metric is almost as good as the one with M-ary metric. Further,

the performance of the Odenwalder code over 4-ary and 8-ary channels is quite close to that

of the optimum Trumpis code. When interleaving is not available, three methods of gener-

ating binary metrics from M-ary channel are proposed. The first is based on approximation

of the differences of M-ary metrics with binary metrics. In the second, binary metrics are

generated directly from M-ary metrics. The third method is a conversion method. Simu-

lation results indicate that the direct binary generation method is the best for our coding

scheme among all these binary metric generation methods. Therefore, the direct binary

metric generation method is recommended if no interleaving is preferred. Union bound and

simulation results also indicate that there is not much improvement by interleaving when

m is large.

6.6 Further Analysis of One-bit-error Branch

In this appendix, we will show that no matter what one-bit-error branches actually are (all

01 or all 10 or combinations of 01 and 10), the pairwise probability can be obtained by

assuming a convenient form, e.g. they are all 01.

Suppose the incorrect trellis path is A, and there are Xi 01 branches and X2 10

branches in path A. Suppose that there are koxi 00 symbols, kix, 01 symbols, k2x1 10 sym-

bols, and k3x1 11 symbols received corresponding to 01 branches, and k0x2 00 symbols, kix,

01 symbols, k2s2 10 symbols, and k3x2 11 symbols received corresponding to 10 branches,

respectively. Obviously,

kix, k1x2 = k 	for i = 0, 1, 2, 3

104

se
 8

•
1

11
11

11
11

11
11

8
0

1
1
1

8
•1

11
1

0
1
1
0

81
1

11
81

11
1
9

11
11

11
8

1
1

11
11

11
11

11
11

1
8
1
1
0

8
9

0
11

8
11

s
11

11
11

11

and
3

• E ki„ =
 i=0

3

E kiœ, = X2 •

 i=0

Then the metric for path A is

me(k2s, kix2) = 2(k2, kix2) C 	 (6.23)

where C = kos 	-1- 2ko y kly k2y . The pairwise error probability is

	

X1! 	X2!
PjA) (X, Y) = E u(mc — me(k2x, + k1s2)) k

0x1 !k 1x1 !k2 x1 !k3 ,! k 0,2 !k1, 2 !k2s 2 !k3x 2 !
nA

Y! 	ki+k2+k3
re) 	(1 —M k° 	 (6.24)

koy !kiy !k2y !k3y ! 	3

where

SZ A = {kixi ,ki x,,ki y ,i = 0, 1, 2, 3 I 	0 < ki x1 ,0 < kis2 ,

0 < 	= 0,1,2,3,
3 	 3 	 3

E kix , = X1 , Ek1,2 = X2, E kiy = Y}.
i=o 	i=o 	i=o

Note that in the above equation, the summation constraint on k1s2 and k2x2 is

identical. In another word, k1 s2 can assume the same range of values as the k2 s2 . Thus, we

can exchange these two variables in (6.24) without affecting the value of Pr) (X,Y). The

right hand side of the equation is not changed, except that the argument of me becomes

k2s1 k2s2 = k2œ. By definition of multinomial coefficients, it is not difficult to see that

P(A) (X,Y) is equal to the right hand side of the Pd(X,Y) in (6.22), which is based on the d

assumption all one-bit-error branches have 01. It is worth mentioning that the advantage

of using Equation (6.22) is that the summation involves much fewer terms, thus much less

computing time, than that in Equation (6.24).

105

a

a

a
a

a
a
a

a

a
a

a

a

a
a

a

a

a

a

a
a
a
Cl

a

Cha.pter 7

Suggestions for Future Work

The main objectives will be the study of coding and detection for frequency hopped spread

spectrum communications. The major empha,sis will be on slow frequency hop systems,

especially using differential phase shift keying (DPSK) modulation scheme.

7.1 Slow Frequency Hopping Systems

For such systems, it remains to evaluate the performance when diversity is also employed,

and when nonbinary DPSK is used. Both of these directions should provide performance

improvement over the results found in Chapter 2. As well, the use of interleaving will reduce

the number of erroneous symbols in a given RS codeword when a hop is jammed. It also

allows a long hop length, which reduces the amount of lost data due to the phase reference

bit. Some specific problems to be addressed are as follows:

1. Multi-symbol probability distribution of DPSK in Gaussian noise. This will facilitate

the performance evaluation of coded systems in the presence of partial band noise

jamming or multi-tone jamming plus thermal noise.

2. Multi-symbol probability distribution of DPSK in the presence of tone jamming. This

will facilitate the performance evaluation in the presence of multi-tone jamming.

3. Block code system evaluation using M-ary codes. Robust techniques such as erasure

generation and erasure correction decoding will be considered.

106

O
O
O
O
O
O

• 4. Study the use of constrained sequences to cancel interference and perform error cor-
O

rection.

O
• 5. Consider possible alternative convolutional coding techniques and corresponding de-

• coding metric generation problem.

1111 7.2 Interleaving

•

•

Building on Chapter 4, we propose to examine the complicated problem of analyzing the

• performance of coded systems using a particular finite interleaver. The performance degra-

	

O 	 dation, when the designed burst length is exceeded, is worth investigating.

•

a

7.3 Coding and Diversity
O
• The objective here will be to to investigate the trade-off between diversity and coding for

systems, such as spread spectrum systems, where a low code rate is anticipated. Ultimately,

	

,• 	 the aim is to determine actual performance trade-offs in terms of signal-to-noise ratios and

• probability of error. Of more importance is the translation of the trade-offs considered here

• into an understanding of how it affects system performance on a variety of channels, such as

• the additive white Gaussian noise, Rayleigh fading and interference channels. Future work
• will consider these questions and attempt to determine guidelines for this trade-off.

O
• 7.4 Implementation of CODECs

• We shall concentrate on implementation of practical error correcting codes using current

technologies (e.g. VLSI gate array designs) and future technologies (e.g. artificial neural

•
Ile

networks).

We shall study and develop new algorithms and/or architectures that take maximal

• advantage of the circuit regularity and parallelism afforded by VLSI technology. Of special

• interest, we shall concentrate on the cellular structure which allow cascadability of identical

chips to form long codes.

O
a

107

O

Bibliography

[1] Bhargava, V.K., Blake, I.F., Gulliver, T.A., Li, G., Wang, Q., and Weeks, B., "Cod-

ing for frequency hopped spread spectrum satellite communications,"Fina/ Report

prepared for the Department of Communications under SSC Contract No. 36001-8-

3529-01-SS, April 15, 1989.

[2] Wang, Q., Gulliver, T.A., and Bhargava, V.K., "Probability distribution of DPSK in

tone interference and applications to SFH/DPSK," accepted for publication in IEEE

J. on Selected Areas in Communications.

[3] Berlekamp, E.R., "The technology of error correcting codes,"Proc. IEEE, Vol. 68,

May 1980, pp. 564-593.

[4] Simon, M.K., Omura, J.K., Scholtz, R.A. and Levitt, B.K., Spread Spectrum Com-

munications, Vol. II, Rockville: Computer Science Press, 1985.

[5] Pawula, R.F., Rice, S.O., and Roberts, J.H., "Distribution of the phase angle between

two vectors perturbed by Gaussian noise," IEEE Trans. on Communications, Vol.

COM-30, No. 8, August 1982, pp. 1828-1841.

[6] Knuth, D.E., "Efficient balanced codes," IEEE Trans. on Information Theory, Vol.

IT-32, No. I, Jan. 1986, pp. 51-53.

[7] vanTilborg, H., and Blaum, M., "On error-correcting balanced codes," IEEE Trans.

on Information Theory, Vol. IT-35, No. 5, September 1989, pp 1091-1095.

[8] Bhargava, V.K., Haccoun, D., Matyas, R., and Nuspl, P.P., Digital Communications

by Satellite, New York: Wiley, 1981.

108

•8
8

1
1

8
11

11
8
8
8
0

8
11

8
8

8
1

1
81

1
8
•8

11
11

81
11

1
8
8

11
8
1

1
•1

1
81

1
8

1
0

8
1

1
81

1
0

11
8

1
1

8
8

11
8

8
8

0
11

[9] Oppenheim, A.V., and Schafer, R.W., Digital Signal Processing, New York: Prentice-

Hall, Inc., 1975.

[10] Clark, Jr., G.C., and Cain, J.B., Error-Correction Coding for Digital Communica-

tions, New York: Plenum Press, 1981.

[11] Ramsey, J.L., "Realization of optimum interleavers," IEEE Trans. on Information

Theory, Vol. IT-16, 1970, pp. 338-345.

[12] Forney, Jr., G.D., "Burst-correcting codes for the classic bursty channel," IEEE Trans.

on Communications Technology, Vol. COM-19, 1971, pp. 772-781.

[13] Forney, Jr., G.D., "Interleavers," U.S. Patent No. 3,652,998, March 28, 1972.

[14] Richer, I., "A simple interleaver for use with Viterbi decoding," IEEE Trans. on

Communications, Vol. COM-26, 1978, pp. 406-408.

[15] "Interleaved coding for bursty channels," Final Report, Phase I, NSF Grant No. ECS-

8260180, Cyclotomics Inc., Berkeley, California, April 12, 1983.

[16] Knuth, D.E., The Art of Computer Programming: Volume 2, Seminumerical Algo-

rithms, Reading, Massachusetts: Addison-Wesley Publishing Co., 1981.

[17] Dunscombe E., and Piper, F.C., "Optimal interleaving scheme for convolutional cod-

ing," Electronics Letters, Vol. 25, 1989, pp. 1517-1518.

[18] Darmon, M.M., and Sadot, P.R., "A new pseudo-random interleaving for antijamming

applications," Proc. of M1LCOM'89, Boston, Mass. November, 1989, pp. 1.2.1-1.2.5.

[19] Chase, D., "Code combining - a maximum-likelihood decoding approach for combining

an arbitrary number of noisy packets," IEEE Trans. on Communications, Vol. COM-

33, No. 5, May 1985, pp. 385-393.

[20] Heller, J.A., "Sequential decoding: short constraint length convolutional codes," JPL

Space Programs Summary 37-54, Vol. III, pp. 171-177; October-November, 1968.

109

a

a

a
O
a
a

a

O
a

a.
O

a
O

O
O

O
a
a

a

O
O
O

a
a
a
O
O
a

a
O

[21] Ryan, W.E. and Wilson, S.G., "Convolutional coding over GF(g) with application to

frequency hopping channels," Proceedings, 1987 Conference on Information Sciences

and Systems, pp.439-445.

[22] Larsen, K.J., "Short convolutional codes with maximal free distance," IEEE Trans.

on Information Theory, Vol. IT-19, 1973, pp. 371-372.

[23] Odenwalder, J.P., "Optimal decoding of convolutional codes," Ph.D. Dissertation,

University of California, Los Angeles, 1970.

[24] Wang, Q., Nicholson, R.D., and Onotera, L.Y., "Some practical issues in the design

and application of a VLSI FEC chip," International J. of Satellite Communications,

Vol. 7, No. 3, July - September, 1989, pp. 129-142.

[25] Kasami, T., Fujiwara, T., Takata, T. and Lin, S., "A cascaded coding scheme for

error control and its performance analysis," IEEE Trans. on Information Theory,

Vol. IT-34, No. 3, May 1988, pp. 448-462.

[26] Shaft, P.D., "Low-rate convolutional code applications in spread-spectrum communi-

cations," IEEE Trans. on Communications, Vol. COM-25, No. 8, August 1977, pp.

815-821.

[27] Ziemer, R.E. and Peterson, R.L., Digital Communications and Spread Spectrum Sys-

tems, NewYork: MacMillan, 1985.

[28] Wozencraft, J.M. and Jacobs, I.M., Principles of Communication Engineering, New

York: Wiley, 1965.

[29] Massey, J.L., "Coding and modulation in digital communications," Proc. of Interna-

tional Zurich Seminar, 1974.

[30] Trumpis, B.D., "Convolutional coding for M-ary channels," Ph.D. Dissertation, Uni-

versity of California, Los Angeles, 1975.

110

8
•

11
11

11
11

8
1

1
8

11
11

8
•
8
8
8

8
8
1
1

81
18

1
11

11
11

1
11

11
8
1

11
1

8
8

11
11

11
11

•1
1

0
11

•
•
•
•
•

•
•
•
•

•
•
•

•
•

[31] Gong, K.S., "Performance of diversity combining technique for FH/MFSK in worst

case partial band noise and multi-tone jamming," Proc. of MILCOM'83, pp. 17-21,

1983.

[32] The Programmable Gate Array Data Book, Xilinx Inc., San Jose, C.A., 1988.

[33] Reed, I.S., and Solomon, G., "Polynomial codes over certain finite fields," J. Soc. Ind.

Appl. Math., Vol. 8, June 1960, pp. 300-304.

[34] Lin, S. and Costello, D.J., Jr., Error Control Coding, Englewood Cliffs: Prentice-Hall,

1983.

[35] Michelson, A.M., and Levesque, A.H., Error-Control Techniques for Digital Commu-

nications, New York: John Wiley & Sons, 1985.

[36] Berlekamp, E.R., Algebraic Coding Theory, New York: McGraw-Hill, 1968.

[37] Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., and Reed, I.S.,

"VLSI architecture for computing multiplications and inverses in GF(2m)," IEEE

Trans. on Computer, Vol. C-34, August 1985, pp. 709-717.

[38] Bhargava, V.K., Le-Ngoc, T., Shayan, Y.R., and Sheikh, A.U.H., "Control coding

systems for mobile communications with applications to Advanced Train Control

System (ATCS) and other UHF/VHF mobile systems," Transport Canada Publica-

tion No. 9596E. Prepared by Binary Communications Inc. under DSS Contrcat No.

1OSB.T8200-7-7516, January 1989.

[39] Bhargava, V.K., "Communications and Transportations", technical paper prepared

for Transport Canada under their "Visiting Expert" program, July 1989.

111

a

a
O

O
a

O
O
O
O

O
O ,

O

O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O

O
O
O
O
a
O

O

Appendix A

Logic-Cell Array Implementation
of a (31,k) Reed-Solomon Codec

This algorithm presents designs for a programmable gate array

implementation of a user programmable (31,k) Reed-Solomon encoder-decoder. The

programmable encoder and decoder algorithms were first implemented in the C

programming language, using a Galois Field software development package written

for this purpose. The control hardware of five independent modules was simulated in

C; based upon the simulation programs a number of designs involving differing

amounts of pipelining and different storage architecture and Galois Field bases were

developed. One design is currently being implemented using the Xilimc 3000 series

Programmable Gate Arrays.

A. 1 Introduction

This Appendix examines a number of design options for programmable gate

array (PGA) implementation of a (31,k) user programmable Reed-Solomon codec. A

key consideration was maintaining a high level of modularity in the design process;

this not only simplifies the task of making small changes in the design if necessary,

but also allows the same design with minor alterations to be used for larger size

Reed-Solomon codecs. Although only the (31,k) RS codec is described in this

Appendix, C source code has also been written and tested for the (15, k), (63, k),

(127, k) and (255, k) Reed-Solomon codecs. These RS codecs would be relatively easy

to implement in PGA's or other hardware if the need arose.

112

a
a

The use of programmable gate arrays is in itself based on the need for a quick

•
turn-around time in the design and testing of a circuit. The design is loaded from a

• computer terminal or from ROM onto the Xilinx chip; a change in design only

• requires changing the program loaded into the ROM, in contrast to a period of weeks

•
and considerable more cost required for a custom integrated circuit. If high

• production of the PGA decoder was felt to be desirable, software exists[32] to convert

between the files needed by Xilinx and the standard schematic capture format used in

• custom integrated circuit contruction.

Although both programmable RS encoders and decoders have been designed,
111
111 	 only the decoder designs will be discussed in this appendix. The encoder design is a
a
• variation of the standard linear feed-back shift registers used in non-programmable

RS encoders, and so is straight-forward. In the process of writing the C language

111 	 implementations of the programmable RS codecs, C language software tools were
•
113 	 developed for the Galois fields GF(2m), where m = 4 to m = 8. These software tools

find the Galois field elements generated by a primitive polynomial, produce the RS

• generator polynomials for a Galois field, produce Karnough mappings, and test the

•
111

encoder/decoder programs by introducing random errors into the pipeline between

• the encoder and the decoder programs.

Section 2 provides background on the algorithm used to decode Reed-Solomon
111
• codes. Section 3 gives an outline of some of the options considered in designing the

• (31,k) codec: the choice of Galois Field basis, the internal bus and register design, the

111 	 pipelining options and the external logic and memory. Finally Section 4 describes

• the design that is being implemented at the time of writing.

•
•
•

•
• 113
•

a

a
a

a

a
a
a
a

a
a

a
O

a

a

a

a

a
a

A.2 Background

A.2.1 Background

Reed-Solomon codes are a class of cyclic random error-correcting non-binary

block codes discovered by Reed and Solomon in 1960 [33]. The symbols of a Reed-

Solomon code are Galois field GF(2m) elements, where m is a positive integer. An RS

code with symbols from GF(2m) has a block length of 2m-1 symbols, and can be

written to correct te errors, where 1 t— 2 1.11- 1 -1. A te error correcting RS code of

block length n = 2m-1 has 2te parity check and n - 2te information symbols per

block, and a minimum distance

d = 2te+1. Decoding an RS code involves four basic logical modules[34][35]:

(1) computing the syndrome components Si, I = 1,2,•••,2te•

(2) determining the error-location polynomial am.
(3) finding the roots of the error-location polynomial a(X).

(4) finding and correcting the error at each error location.

(1) 	The symbols rk in the received block of an RS code are the coefficients of the

received vector

r(X) = ro + riX + r2X2 + ••• + rn-1Xn-

where k is the position of the symbol rk in the received block. The received vector

r(X) is the sum:

r(X) = t(X) + e(X)

where t(X) is the transmitted vector and e(X) is the vector of errors introduced during

transmission. The 2t e syndrome components are found by substituting ai into the

received vector r(X) for 1=

Si = r(ai) = t(ai) + e(ai)= e(ai) 	 (A.1)

where ai is a primitive element of GF(2m).

114

a
a
a

• (2) 	The decoder must find the locations of the the errors introduced by

•
transmission; that is, the non-zero coefficients of e(X). Directly solving the system of

• equations (A.1) is difficult; an alternative approach is to introduce a polynomial, the

• error- location polynomial D(X), whose roots are the locations of the transmission

errors.

• a(x) = (i+six)(1-1-e2x)...(1+.f3p.x)

• = ao + alx+ a2,x2 + + awe

where 131 is the location of the ith error and g is the number of errors introduced

during transmission. A number of methods exist for determining the error location-
.
• polynomial, a(X) [34]; Berlekamp's iterative method [36] was used in the
111
• programmable (31,k) Reed-Solomon decoder.

•

• (3) The roots J31 of the error-location polynomial must be found. This can be done

1111 	 either by the Chien [35] search or by substituting all the elements al in GF(2m) into

the error locator polynomial and noting the elements which give a(ai) = O. •

• (4) Finding the errors at the error locations requires solving the equations:

Sk = Y1131 + Y2132 + + Ygeg where k = 1, 	2t

• for the g errors Yi , 	Y. An easy way of doing this is to first find the function

• Z(X) = 1 -F (Si ai)x + (s2 + aisi + a2)x2 +

+ (Sp, + a1sg..1+a2s2 +

The g errors Yi can then be found using

a
115

111

• = 	
z

 (131
7') •

+ Pie)
j=1

a
•

a
a

a

a

a

a

a

a

a

a

a

The transmitted vector t(X) can then be found by adding the error vector e(X) to the

received vector r(X)

t(X) = e(X) + r(X).

A.2.2 The (31,k) RS Decoder Algorithm

Based on the above formulation, an algorithm was written to code and decode

a t-error correcting RS code, where t is user programmable and 1 t 2m -1 -1. The

algorithm consists of logical modules (1) to (3) as given in the introduction, plus two

logical modules from logical module (4) above which determine Z(X) and find and

correct the transmitted errors. Each logical module of the algorithm is dependent

upon earlier logical modules for intermediate results, but runs independent of earlier

logical modules once those intermediate results are received. This independence

allows each logical module to be implemented on a separate physical module.

The programmable RS decoding algorithm was initially written and tested

using the C programming language. After testing the algorithm, C code was written

simulating the hardware controllers needed in the PGA implementation of the

programmable RS codec. All references to the number of algorithm operations and

bit rate refer to the hardware implemented algorithm.

A.3 Implementation Options

Implementation of the algorithm requires decisions to be made on:

(1) which basis to use to represent the Galois field and the

design of the Galois field arithmetic units.

(2) the number of bus lines and registers to provide for

logically independent operations.

(3) the amount of pipelining to be used.

116

111
•

•
• (4) the external logic and memory needed to co-ordinate a

pipelined codec.

• These decisions are made on the basis of how they will effect the trade-off between •
• speed and hardware requirements. These decisions are not independent; decisions

made on different aspects of the implementation effect each other.

• A.3.1 Basis and Galois Field Arithmetic
I .

The Galois field elements can be represented in either vector or power

• notation. For example, the element a27 from GF(2 5) may be represented as the
•
• vector:
O
• a27 = la° + 1a 1 + 0a2 + la3 + 0a4

ci 0 o) a
• or as the integer
O
• 27 	= (1 1 0 1 1).
• The advantages and disadvantages in a representation lie in the implementations

1.1 	 they allow for Galois field arithmetic, and in the complexity of the hardware needed
O
• to implement the decoder in the representation. The comparison of vector and power

a representation implementations of Galois field arithmetic is dependent on the size of

• the Galois field, and on the medium on which the arithmetic unit is implemented. In
O
• this appendix only single step Xilinx[32I implementations of arithmetic on the
•

Galois fields GF(2 5) will be discussed. The number of configurable logic blocks (CLB's)

of the LCA needed to implement arithmetic on the Galois field GF(2 5) for vector and
1111
• power representations is given in Table A.1.
O
• Galois Field Adders

In the vector representation, Galois field addition is simply bit-wise integer

• addition modulo 2. On the Xilinx 3000 series LCA[32] a vector representation adder
O
•
O
• 117
O •
O

requires one configurable logic block for every two bits of the field size, plus input

registers, for a total of 8 CLB's for a GF(25) adder. The easiest implementation of

power representation addition on GF(25) on the Xilinx 3000 series LCA is to translate

from power to vector representation, add mod 2, and translate back to the power

representation. The five function logic of the Xilinx 3000 series LCA allows all of

this to be done in the input and output registers, and requires 18 CLB's.

Galois Field Multipliers

Choosing the normal basis for the vector representation allows the Massey-

Omura[37] multiplier to be used for the Galois field multiplication. For the GF(2 5)

multiplier, the least-complex parallel Massey-Omura multiplier requires 20 CLB's,

plus 5 CLB's for the input registers. Galois field multiplication using the power

representation is equivalent to integer addition modulo 2m • For the GF(2 5)

multiplier 10 CLB's plus 5 CLB's for the input registers are needed.

Galois Field Inverter

Inversion over GF(25) for the normal basis representation normally requires

either repeating a shift and multiply over GF(2 5) four times[37], or a parallel inverter

requiring four Galois field multipliers. However the five function logic of the Xilinx

3000 series LCA's may be used to translate directly from an element to its inverse;

the total space requirement for the normal basis GF(25) inverter is 8 CLB's. Inversion

over GF(25) in the power representation for elements other than a° only requires

inverting each bit of the integer representation; an extra CLB is required to return a°

when a0 is input. The power representation GF(2 5) inverter requires in total 4 CLB's.

118

Representation 	GF Adder 	GF Multiplier 	GF Inverter

(CLB's) 	(CLB's) 	(CLB's)

Normal 	 8 	 25 	 8

Power 	 18 	 15 	 4

Table A.1: CLB requirements for GF Arithmetic

The Galois field arithmetic operations needed by the RS decoding algorithm are

addition, multiplication and inversion. From Table 3.1 it can be seen that the power

representation requires about 10% fewer CLB's to implement the Galois field

arithmetic operation than the vector representation. The power representation also

has the additional advantage of allowing the Galois field elements to be used as

incremental counters; this simplifies the design of some parts of the decoder.

elb 	 A.3.2 Memory and Bus Lines

O 	 During the decoding process the algorithrn requires storage space to hold
O
• results of intermediate calculations. The intermediate results include results used

a
only in a given module and results to be used in modules after the module in which

•
4111

they are calculated. If there is pipelining the received RS code blocks must also be

• stored from the first to the last stage in the pipeline. The storage space in bits of

• required by each module is given in Table A.2; the first row gives the storage space

• needed to carry out the calculations of the module itself, the second row includes the

lie 	 storage space required from previous modules.

a
a

a
a

119
11,

a

a

O
a

a
O

a
O

11
11

8
8

8
8

11
8

11
11

11
11

11
•

8
11

8
8

8
8

11
11

11
8

4
8

1
1

11
11

11
11

6
11

01
1

8
8

88
11

11
11

4
1

1
1
8
1
1
1

81
1

6
1

11
1

8
8

Module 	Syndrome 	Delta 	Location 	Z(X) 	Error

Storage (bits) 	330 	410 	100 	95 	100

Total Storage (bits) 	330 	565 	185 	415 	335

Table A.2: Storage Space Requirements by Module

Dedicating CLB's to each intermediate variable simplifies the design and speeds up

the decoder, but at the cost of space. The implementation of the 5-bit buses required

by the GF(2 5) can be done either as common buses using Xilimes tri-state

capabilities, or as buses between each set of communicating decoder components or

storage block. It was found that the latter scheme allowed for tighter routing.

A.3.3 Pipelining

The independence of the five modules in the decoding algorithm allows a

trade-off to be made between the decoder speed and the amount of hardware needed

for implementation.

Speed

The number of operations each module requires to complete as a function of

the number of correctable errors is given in Fig.A.1. Not only does each module

require a different number of operations to complete, but the number of operations

varies among modules either linearly or as a square with respect to the number of

operations to completion.

Since the decoder must finish decoding each received block in the same

amount of time, the pipelining should be made so that each stage in the pipeline

takes approximately the same number of modules. The five pipelining options which

meet this requirement are given in Table A.3.

120

Pipeline Option 	 Logical Modules

no pipelining 	 • syndrome & delta & location & z(X) & error correction

two stage pipelining 	• syndrome & delta

• location & z(X) & error correction

three stage pipelining 	• syndrome & delta

• delta

• location & z(X) & error correction

four stage pipelining 	• syndrome

• delta

• location& z(X)

• error correction

five stage pipelining 	• syndrome

• delta

• location

• z(X)

• error correction

Table A.3: Pipelining Options

The overall number of decoder operations for each pipelining option as a function of

correctable errors is given in Fig.A.2.

Hardware

Each module uses a different number of CLB's to carry out it's function. The

CLB requirements are given in Table A.4; the requirements include CLB storage of

results calculated in the module, Galois field arithmetic and control logic, but not

storage of arrays passed to other modules. Routing limitations may give rise to

higher CLB requirements than those listed in Table A.4. '

121

r 	2.0

o

1.0

4.0

(X 10 3)

Correctable Errors

Fig. A.1: Module Steps vs Correctable Errors

3.0

0.0
00

, ,

.. 	.
. 	.,

OPP- 	xy '

.... 	,e« 	
•. 	•

,....- 	.
.e--

e
e

e 	 il 	•' 	"

0 5

122

1 0 1.5

(X 10 1)

module

X -> syndrome

-> delta

<> -> location

[] -> z(X)

<>.. -> error

11
11

8
8

8
81

1
11

11
11

11
0

8
11

8
8

8
8
1
1

8
8

0
8
8
4
8
8
8
8

11
11

8
11

6
8

11
8

01
1

8
8
8
4
8
1
1
1
1

11
0

11
11

•
8
8
8
8

0.6

IITD1

o
0.4

0.2

Pipe Option

X -> none

+ -> two

<> -> three

[1 -> four

+ ..-> five

0.0

1.0

(x 10 4)

0.8

05 	10 	1.5

Correctable Errors 	(X 10 1)

Fig. A.2: Pipeline Option Steps vs Correctable Errors

00

1 1
8

8
1

1
8

8
8

1
1

1
1

1
1

1
1

8
8

1
1

8
1

1
8

8
1

1
8

8
6

8
1

11
11

11
1 1

6
8

8
1

18
11

1
1
8
8

11
1

1
.

1
1

8
8

8
1

11
11

11
11

11
11

1
8
8
8

1 23

•
8
1

1
9

1
1

8
1

1
1

111
8

8
1
1
•8

9
0
8
8
8
1
1
8
1

1
8
9
8
1

1
1 1118

1111
1
1
1
1
0
1
1
8

8
1

1
11111 111111111181

1
8

1
1

1
1118

1111

Module 	Syndrome 	Delta 	Location 	Z(X) 	Error

CLB requirements 	90 	_ 320 	75 	 90 	160

Table A.4 : CLB requirements by Module

The received block for each stage in the pipeline must also be saved and

passed on from the first to last stage, as well as some intermediate calculations.

Hardware is minimized if modules are combined which share intermediate

calculations. The coordination of the stages and the shared intermediate

calculations also becomes more complex as more stages of pipelining are used.

A.3.4 External Logic and Memory

Each of the five stages requires as its input either the received codeword or an

array of intermediate values calculated in previous stages; this dependency is shown

in Fig.A.3. The received codeword and the syndrome are an-ays of 155 bits (31 Galois

field elements), the size of each of the other arrays is 75 bits. If no pipeling is used

these values can be passed on by using the same memory for each stage. Because the

RS decoding algorithm requires both the received codeword and each intermediate

value array to be completed before being passed on, each level of pipelining

introduced increases both the number of arrays that must be passed on and the

number of copies of each passed array that must be stored.

Two strategies for passing arrays between stages have been considered. The

first strategy passes the data between the storage elements associated with each

stage. Consider the case of five stage pipelining as an example. If some array AfX,t] is

calculated in the first stage and used in the fourth stage, the copy of AfX,t] generated

at time t = 1 will reach the fourth stage three stage shifts later. This means thatwhen

the array AEX,t =1 1 will be used in the fourth stage there will be an array AfX, t =4]

124

loc_errn

syndromel]

.".

Find Delta

Imu deltan

ee Find_Location

num_err

Find_Errors

11
11

1 1
1 1

11
11

81
11

11
11

1•
81

11
1
1
1
8
8
8
8
0
8
8
9

0
8

1
1

8
8

0
1

1
8
8
8

11
11

11
11

11
11

11
8

1
11

1
8

1
1

8
6
11

8
8

8
1
1

8
8

being calculated in the first stage and two arrays, AIX, t =2] and AIX, t =3] being

stored for use in the fourth stage.

Received
Block

Number of
Correctable
Errors

.:•-•:: 	 ..

• •• Find_Syndrome c•-. 	

Output of
Information
Block

Fig.A.3: Intermediate Array Passing

Since passing an array of 75 or 155 bits in one clock cyclerequires too many

input/output pins to be practical, the modules must shift the array in one stage

125

z(x) 0

location[0] syndrome[2]

location[1]

location[2]

rreceived[4]

received[5]

received[0]

received[1]

received[2]

received[3]

input

delta[2] delta[1] 	1_1• I 	I z[o]

delta[3]
syndrome[1]

ezencleinee

x.> Location
'eîserrezerzeemeeeffe

'Delta rv
7.ffle.4:40::e00,;

LI
syndrome[3]

syndrome[4]

Syndrome ynctreecemozemne

8
0

1
11

11
11

8
8
8

8
8

11
1

1
1

8
11

8
1

1
8

8
0

4
8
1
1
0

•8
8

1
11

1
11

8
1

1
9

1
1
8
8
••

1
0

11
11

11
8

8
11

8
11

8
11

11
11

11
8

before the array is to be used to ensure the complete array will be available when

required. In some cases this requires the module to have two copies of the array; the

copy being used A[X, t =0] and the copy being shifted in APC, t =1].

Since only the arrays needed by a particular stage are passed to that stage, this

strategy minimizes the amount of storage needed. It has the disadvantage however of

requiring relatively complex logic to control the passing process, which reduces the

modularity of the design and makes design alterations more difficult.

The first strategy requires either shift registers or Xilinx chips with a very

large number of input/output pins to store and pass the arrays; either option is

expensive to implement in Xilinx, and requires a large number of chips if

implernented in standard register chips. The flow of the arrays in the case of the five

stage pipelined RS decoder is shown in Fig.A.4.

Fig.A.4: Direct Array Passing for a Five Stage Pipelined RS Decoder

126

counter

eFeeeffl
Location

meemee‹.:« Nagemeelemmef `43MeilMatle NZIMmeme2É

MISIBMIUMIMMI

11
8
8
•

8
1

8
1

11
1
8

1
1

8
8

8
1

1
8

8
8

8
1
1
•

11
11

11
81

1
8

8
1

1
0

8
1

11
1

8
1

11
8

8
11

•1
11

11
1

8
•1

11
18

8
11

11
8

8
8
0

The second strategy is to pass a pointer to the data associated with each stage.

Since one copy of each array used in the decoding algorithm must exist for each

stage, this strategy requires more memory space than the first option. However, it

maintains the modularity of the design and keeps the control logic simple. The

arrays may also be stored in relatively inexpensive external 8-bit RAM; because the

sequence of steps in each module varies with the number of errors to be corrected, it

is not possible to time RAM access among the modules. Instead each module has its

own RAM thus allowing the same memory design to be used with little change for

Galois fields of size 28 and smaller. An example of the switching network is shown

in Fig.A.5.

Fig.A.5 External RAM Storage of Arrays for a Five Stage Pipelined RS Decoder

A.4 Implementation

Implementation of some of the stages of the (31,k) RS codec on the Xilinx 3000

Series Programmable Gate Arrays has shown the Xilinx clock speed to be about 3.5

MHz for this design. This clock speed gives the bit rates for each of the pipeline

options given in Section A.3 as a function of correctable errors as shown in Fig.A.6.

The bit rate increases as more pipelining stages are added until four stage pipelining

127

2.5

(X 10 6)

2.0

1.5

a
1.0

H

0.5

Pipe Option

X -> none

+ -> two

<> -> three

[] -> four

+ ..-> five

8
8

11
11
,

11
11

11
81

1
81

1
11

11
11

11
11

0
11

11
0
0

8
0
0

1
1
8

8
1

10
11

8
8
9
8
1
1

11
9
1

18
11

8
8
8
8

8
1
1
8

8
1

11
1

4
8

8
1

1

0.0
0.0 	05 	10 	1.5

Correctable Errors 	(X 10 1)

Fig. A.6: Pipeline Option Rates vs Correctable Errors

128

O
413
O
111
• is reached; adding a fifth pipelining stage only increases the bit rates for low rate

10 	 codes. However, a fifth stage of pipelining may be desirable in order to increase the

modularity of the design.

• The number of correctable errors that an incoming received word is coded to

• correct must also be stored along with the received word if to allow the user to

program the (31,k) RS codec without interrupting the transmission. This is done in

• an array passed along each stage with the received word. The Xilinx 3000 Series PGA

• cornes in chips of five different sizes[32]. The design options can be either

O
implemented on one or two larger chips, or with a separate smaller chip for each

•
111

module if ease of modification or expansion is desirable. The module designs are
O
• saved in software in the design's .LCA files (32); therefore it is relatively easy to

•
design the options on separate chips and then combine the smaller chip designs onto

fià 	 the larger chips. Xilinx reportedly will soon be releasing the Xilinx 4000 series

• PGA's, with denser on chip routing, and faster internal switching. If the Xilinx 3000
O
• series PGA's will be upwardly compatible with the 4000 series PGA's, the (31,k) RS

Decoder may be implemented with little alteration on the Xilinx 4000 series PGA's,

fià 	 increasing the bit-rates shown in Fig.A.6.
0
• No-Pipelining Option:

Since only one logical module may be carried out in each clock cycle, only

• one unit of each of the Galois field arithmetic units is needed, and all the storage can

• be saved in either in registers within the Xilinx chips or preferably, in one external

RAM. Because most of the chip space in the (31,k) RS codec is in storage of space and

•
lie

the Galois field arithmetic unit, the no-pipelining option is relatively easy to

• implement, and requires considerably less hardware than the pipe-lined options.

The bit rate of the no-pipelined option is about one-quarter that of the fully

pipelined codec (see Fig.A.6).

O

a
a
O

129

11
0

1
8

81
1

81
1

8
8

8
11

11
11

8
8

11
11

11
8

8
0

8
8
8
1
1

0
8

8
0

11
8
1

1
8
8
8
8

0
1

11
1

11
11

11
11

8
8

11
11

8
1

11
11

11
18

11

Two Stage and Three Stage Pipelining Options:

Since only three arrays (see Fig.A.3) need be passed a distance of one stage,

directly passing the arrays is the easiest strategy to implement in the two stage

pipelining option. Three arrays are also passed in the three stage pipelining option,

one of which is passed a distance of two stages; directly passing the arrays is then

also the best strategy for storing intermediate calculations. The bit-rate of the two

stage option is about half that of the five stage pipelined option, while the bit rate of

the three stage option about two-thirds that of the five stage pipelined option. If

modification is an important consideration, external RAM should be used instead of

directly passing the arrays as it simplifies the task of altering the control logic.

Four Stage and Five Stage Pipelining Options:

External RAM should be used for both the four stage and the five stage (fully)

pipelining options to maintain modularity and reduce the complexity of the control

logic. The bit-rates of the four stage option and the fully pipelined option are the

same for much of the range of correctable errors. The fully pipelined option can be

built with each module on its own small Xilimc chip, making it the easiest to modify

and test. The module designs of the fully pipelined option may later be transformed

into one of the lower level pipelining options with minimal reworking.

A.5 Applications of the CODEC

The (31, k) CODEC can be modified to form a (16, 12) CODEC which is a

standard for Advanced Train Control systems[38]. This may be accomplished by

considering a (31, 27) code and then shortening it by 15 symbols to obtain a (16, 12)

code. The data rate requirement is 4.8 kbps with future upgrades to 9.6 and 19.2 kbps.

130

11
11

11
81

1
81

1
8

8
8

1
1
8

1
1
8
8

11
11

11
81

11
1
6
1

18
11

11
11

81
1

11
0

8
1

1
8

8
1

1
8

8
8

81
11

11
8

8
8

11
11

6
8

11
8
8

 se
a

With k = 15, we have a (31, k) CODEC which is a standard for Joint Tactical

Information Distribution System (JTIDS)[271. The data rate requirement for this

system is 57.6 kbps.

The CODEC is ideally suitable for Meteor Burst Communication Systems(391.

Such systems have recently been proposed for data communications from trucks to

dispatch centers.

131

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

. 	ORIGINATOR 	(the name and address of the organization preparing the document 	2. 	SECURITY CLASSIFICATION
Organizations f or whom the document was prepared, e.g. Establishment sponsoring 	(overall security classification of the document.
a contractor's 	report, 	or 	tasking agency, are 	entered 	in section 	8.) 	 including 	special 	warning terms 	if 	applicable)

University of Victoria,Department of Electrical & 	UNCLASSIFIED
Computer Engineering,P.O. Box 1700,VICTORIA, B.C.

_Me 7 V 2
3. TITLE 	(the 	complete document title as indicated on the title page. 	Its classification should be 	indicated by the appropriate

abbreviation 	(S,C or 	U) 	in parentheses after the title.)

Coding for Frequency Hopped Spread Spectrum Satellite Communications (u).

4. AUTHORS 	(Last name, first name, middle initial)
Bhargava, Vijay K.; Wang, Qiang; Li, Gang; Gulliver, T. Aaron; Dravnieks, Olaf.

5. DATE OF PUBLICATION 	(month and year of publication of 	6a. NO. OF PAGES 	(total 	6b. NO. OF REFS (total cited in
document) 	 containing 	information. 	Include 	document)
April, 	1990 	 Annexes, Appendices, etc.)

140 	39

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, 	e.g. 	interim, 	progress, 	summary, annual 	or 	final. 	Give 	the 	inclusive 	dates when a specif ic 	reporting period 	is 	covered.)

Technical Report (Final)

8. SPONSORING ACTIVITY 	(the name of the department project office or laboratory sponsoring the research and development Include the
address.)

Communications Research Centre
P.O. Box 11490, Station "H"
OTTAWA, ONTARIO K2 11 8S2

9a. PROJECT OR GRANT NO. 	(if appropriate, the applicable research 	96. CONTRACT NO. 	(if appropriate, the applicable number under
and development project or grant number under which the document 	which the document was written)
was written. Please specify whether project or grant)

36001-8-3529/0 041LG 	 1-SS

10a. ORIGINATOR'S DOCUMENT NUMBER (the official document 	10b. OTHER DOCUMENT NOS. 	(Any other numbers which may
number by which the document is identified by the originating 	 be assigned this document either by the originator or by the
activity. This number must be unique to this document) 	 sponsor)

Technical Report No. ECE 90- 1

11. DOCUMENT AVAILABILITY 	(any limitations on further dissemination of the document, other than those imposed by security classification)

(X)f 	Unlimited distribution
1) 	Distribution limited to def ence departments and defence contractors; 	f urther distribution only as approved .
1) 	Distribution limited to def ence departments and Canadian defence contractors; 	f urther distribution only as approved
() 	Distribution 	limited to 	government departments and agencies; 	further 	distribution only as approved

() 	Distribution 	limited to def ence departments; 	further distribution only as approved
(1 	Other 	(please 	specify):

12. DOCUMENT ANNOUNCEMENT 	(any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availabilty (11). However, where f urther distribution (beyond the audience specif led in 	11) 	is possible, a wider
announcement audience may be selected.)

Unlimited

•

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

DCD03 2/06/87

•0
1

1
8

11
•1

1
8

8
8

8
1

1
11

1
0
8

11
11

8
8

1
1
0

8
11

11
11

11
11

1 1
•

11
8

1
1

0
8

8
8

•
8

0
M

8
8

1
11

11
1

11
11

8
0

11
01

1

UNCLAS S IF IED

SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not .necessary to include here abstracts in both off bal languages unless the text is bilingual).

The performance of Reed-Solomon (RS) error correcting codes with slow frequency hopped (SFH) differential phase shift
keying (DPSK) signalling is analysed and evaluated under worst case partial band noise and worst case multitone
jamming. A representative set of the performance curves is shown. 13ased on these results, recommendations on the
choice of RS code parameters is given.

Two in-hop jamming cancellation schemes for SFH/DPSK systems are proposed. One scheme is based on balanced
coding; the other one uses notch filter to cancel jamming tone. The performances of both schemes are illustrated. It is
shown that both schemes can work well under some conditions.

Basic principles and techniques for designing interleavers are presented. Block, convolutional and the more recent
helical interleavers are considered. Certain questions on the trade-off between diversity and coding for spread spectrum
systems, where a low code rate is anticipated are considered.

An error correction scheme is presented, for an M-ary symmetric channel (MSC) characterized by a large error
probability /Jo . The value of pe can be near, but smaller than, 1-11M for which the channel capacity is zero. Such a large
/Jo may occur,. for example, in a jamming environment. Monte Carlo simulation results are presented. For the binary
symmetric channel (BSC), it is shown that the overall code rate is larger than 0.6R0,where R o is the cutoff rate of the
channel. For BSC and a large m, a method is presented for BER approximation based on the central limit theorem.

Logic-cell array implementation of a (31,k) "programmable" Reed Solomon CODEC is presented as an Appendix.
Suggestions for future work include investigation of coding and detection for slow frequency hop systems using DPSK,

robust techniques for generation of erasures, use of constrained sequences to cancel interference and perform error
correction, analysis of coded systems using finite interleavers, trade-offs between coding and diversity and implementation
aspects of CODECS.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Frequency hopping
Spread Spectrum
Error—correcting codes
Satellite communications
M—ary FSK modulation
DPSK modulation
Tone cancellation
Interleaving
Diversity

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

CODING FOR FREQUENCY HOPPED SPREAD
SPECTRUM SATELLITE COMMUNICATIONS :

FINAL REPORT PERIOD COVERED : APRIL
1 1989 TO '4ARCH 31 1990

LKC

TK5102.94 .C6 1990

Coding for frequency hopped

spread spectrum satellite

communications : final

report : period covered:

April 1 1989 to March

DATE DUE

I I
 in ma I

•,•••••• • e le. Se.. I O aim e se

