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Abstract 

The performance of Reed-Solomon (RS) error correcting codes with slow frequency 
hopped (SHF) differential phase shift keying (DPSK) signalling is analyzed and evaluated 
under worst case partial band noise and worst case multitone jamming. A representative 
set of the performance curves is shown. Based on these results, recommendation on the 
choice of RS code parameters is given. 

Two in-hop jamming cancellation schemes for SFII/DPSK systems are proposed. 
One scheme is based on balanced coding; the other one uses notch filter to cancel jamming 
tone. The performance of both schemes are illustrated. It is shown that both schemes can 
work well under certain conditions. 

Basic principles and techniques for designing interleavers are presented. Block, 
convolutional and the more recent helical interleavers are considered. Certain questions 
are considered on the trade-off between diversity and coding for spread spectrum systems, 
where a low code rate is anticipated. 

An error correction scheme is presented for an M-ary symmetric channel (MSC) 
characterized by a large error probability pe . The value of p e  can be near, but smaller than, 
1-11M, for which the channel capacity is zero. Such a large pe  may occur for example, 
in a jamming environment. Monte-Carlo simulation results are presented. For the binary 
symmetric channel (BSC), it is shown that the overall code rate is larger than 0.6R0, where 
Ro  is the cutoff rate of the channel. For BSC and a large in, a method is presented for BER 
approximation based on the central limit theorem. 

Logic-cell array implementation of a (31,k) "programmable" Reed-Solomon CODEC 
is presented as an Appendix. 

Suggestions for future work include investigation of coding and detection for slow 
frequency hop systems using DPSK, robust techniques for generation of erasures, use of 
constrained sequences to cancel interference and perform error correction, analysis of coded 
systems using-finite interleavers, trade-offs between coding and diversity and implementa-
tion aspects of CODEC. 
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a 	Chapter 1 
a • • Introduction 

a 
1.1 Background 

101 
ID 	 In previous contracts, the use of various types of channel coding were studied to improve 
1111 

the jamming resistance of satellite communications systems using fast frequency hopping. 

• Systems with fixed data rate as well as systems with fixed hop rate were examined under 

worst case jamming. A modified self-normalizing combiner was analyzed and compared 

•

fle 
with other non-linear combining saemes. To study coding for Slow Frequency Hopped 

• Differential Phase Shift Keying (SFH/DPSK), the probability distribution of DPSK in tone 

• interference was derived[1]. 

• In this annual report, we present the work performed during the year 1989-90. We 

first consider coding for slow frequency-hopping DPSK systems. Repeated convolutional 

• codes for high error rate channels are analyzed. The effects of interleaving and certain 

• questions on the trade-offs between diversity and coding are considered. We also present a 

• tone jamming cancellation scheme for SFH/DPSK systems. 

• 1.2 Objective 

• The broad objectives of the work carried out during 1989-90 are described below. 

1. Consideration of coding for SFH/DPSK systems using Reed-Solomon codes under 

•• tone and partial band noise jamming. 

ele 
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2. Examination of low rate codes with large minimum distance for high error-rate sys- 

tems. 

3. Consideration of interleaving and diversity versus coding for communications over 

intentional interference channels. 

4. CODEC implementation using current technology, e.g. Xilinx. 

La Plan and Scope of the Report 

The plan and scope of the report is as follows. In Chapter 2, coding for slow frequency 

hopped differential phase shift keying systems is presented. 

Chapter 3 presents an analysis of two in-hop jamming cancellation schemes for 

SFH/DPSK systems. 

Basic principles and techniques for designing interleavers are provided in Chapter 4. 

Chapter 5 presents trade-off between diversity and coding for systems, such as spread 

spectrum systems, where a low code rate is anticipated. 

Repeated convolutional codes are examined in Chapter 6 for channels characterized 

by large error probabilities. Emphasis is placed on using a binary convolutional code due 

to the consideration that there exist commercial CODECs for such a code. 

Chapter 7 contains suggestions for future work. 

As an adjunct to the report, a logic-cell array implementation of a (31,k) Reed-

Solomon CODEC is presented as an Appendix. 
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Coding for Slow Frequency 
• Hopped Differential Phase Shift • 
• Keying 
O 
a 
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2.1 Introduction r e  

Spectrum spreading via frequency hopping is commonly utilized in satellite communications 

• systems to provide some protection against jamming. An intelligent jammer can, however, 

11111 	 drastically reduce the effectiveness of such a system. This effectiveness can be regained 

through the use of error correcting (EC) codes. This chapter presents the results of a 

• study of the performance of EC codes in a slow frequency hopping (SFR) system with 

binary differential phase shift keying (DPSK). By slow we mean one or more symbols per 
Me 
• transmitted hop. SFH is employed because the differential signalling requires the phase of 

101 	 the previous received symbol as a reference. Using DPSK eliminates the need to establish 

•
a phase reference for the hop. 

• Transmitted  signais hop over a total spread spectrum bandwidth Wss . If the total 

jamming power is J (referenced to the receiver input), the effective jamming power spectral 

• density is 

Jo = 

• The objective is to minimize the bit error rate (BER) for a given signal to jamming ratio, 

E3 1Jo. E, is the energy in a DPSK symbol. An EC code is used to improve upon the ge 
fle 	 severely degraded performance of uncoded DPSK when it is jammed. The analysis of the 
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coded channel is based on [2]. 

Under strong jamming, the receiver thermal or non-hostile background noise is usu-

ally small compared to the jamming, so receiver noise is neglected here. We consider two 

types of worst case (WC) intelligent but non-repeat-back jamming, namely partial band 

noise (PBN) and multitone (MT) interference. For partial band noise (PBN) jamming, J is 

restricted to a fraction p (0 <p < 1) of the full spread spectrum bandwidth, but in this band 

the power spectral density is increased to Jo I p. Multitone jamming (MT) occurs when the 

jammer distributes J as continuous wave tones across Wss . There are N = W„T, possible 

tone positions, where T, is the signal symbol duration. If the jammer can place tones in 

Nt  of these positions, then the fraction of the spread spectrum band which is jammed is 

p = Ni /N. In anti-jam communications, a good code should perform well regardless of 

the type of jamming. Thus good codes are those with the best performance for the most 

effective type of jamming, WC MT jamming or WC PBN jamming, at a given low BER. 

The WC BER performance of an RS code with a specific set of parameters is a function of 

E3 /J0 and p, where p is optimised to determine pwc• 

We consider (n,k) Q-ary Reed-Solomon (RS) block codes with symbol size q = 

log2  Q bits, block length Q —1, k information symbols per block, and minimum distance 

d = n — k +1. RS codes are maximum distance separable, that is they achieve the highest 

possible distance for their code parameters. Since jamming tends to cause burst channel 

errors, RS codes are well suited for this system. In addition, RS codes have a low probability 

of decoding error [3]. 

2.2 Analysis of the Coded Systern 

To find the BER for WC jamming, we proceed as follows. Suppose the DPSK symbol 

energy is E,, and a hop has Lb coded bits, (note that each hop should in addition contain 

a phase reference bit). With an RS code, Lb bits can affect  1--41,1  -1 symbols, if Lb is chosen so 

that code symbols are aligned to a particular hop. ri] is the smallest integer greater than 

or equal to x. Here we assume Lb > q. Then a codeword can be affected by about 

nq 
H = Fr 1 

..ib  

4 
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hops. When a hop is jammed, Lb bits in this hop will be in error independently with 

probability Pj. Although this independence assumption is not true in general, it has been 

shown to provide a good approximaiion in PBN jamming, and seems reasonable for MT 

jamming based on previous experience and results. Pj is derived from [4] and [2], with 

p chosen to be the worst possible, pia,c . For PBN jamming, p represents the fraction of 

the spread spectrum bandwidth which is jammed, while for MT jamming p represents the 

fraction of the total number of available frequency slots which are jammed. Pj is then given 

by 

Pj = 
E

8 
 I Jo), MT jamming, 

pE3P0'  
with the probability of error under MT jamming, Pe , defined by Eq. (52) in [2]. The 

number of erroneous q-ary symbols in these [L'12q ] symbols corresponding to a jammed hop 

is denoted as z. Then the probability that 1 symbols are in. error is given by 

pr ( z  = 1) = ([Lbl )  (1—  (1_ pj )q) 1 (1_ p ) (1-L b/1t) .  
1 

The RS code output symbol error probability is then 

. E pr(Ezi  > t)(  1= 1  .2
z•  

) pi(i - p)H-i 
i=1 	 zi >i 

- 
where t is the number of symbol errors which can be decoded by an RS code, 

—1 
t = L

d
--2--j, 

and 	is the largest integer less tha,n or equal to x. zj is the number of erroneous q-ary 

symbols in the j-th jammed hop, given that i hops are jammed in a codeword. The event 

for a specific set of z3 's  is denoted by 

Ezi  > t. 
j=1 

The summation is over all sets that cause a decoding failure. The probability of these events 

occurring is 

Pf (E zi > t) 
j=1 

5 

{ exp(—pE s 1J0), 	PBN jamming; 
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which is computed using 13,(z =1). 

The final BER is given by 

Pb 	 
2(Q —1) 

Pive is the value of p which maximises Pb, for a given Lb, RS EC code, (n,k), and type of 

jamming. The objective is then to determine the effects of these parameters on the BER 

and develop a set of guidelines for proper EC code selection. In the next section, various 

RS codes are evaluated and the results compiled. 

2.3 Computation Results 

To provide a benchmark and a check on the optimisation algorithms, uncoded DPSK was 

first evaluated. These results are given in Fig. 2.1. They are identical to the worst case re-

sults given in [4]. The performance of Reed-Solomon error correcting codes with q = 3,4,5 

and 6, and Lb < 2q — 1, was determined under worst case jamming via optimisation with 

respect to p. Since error probability evaluation for PBN jamming is much less computa-

tionally intensive than for MT jamming, candidate good codes were first found for this type 

of jamming and then the performance determined for MT jamming. 

For q = 3, the (7,k) RS codes require Lb < 21. Figs. 2.2 to 2.7 present the perfor-

mance results of these codes for k  = 1,3,5 and Lb =- 6,11,21. From these figures, it 

can be seen that the (7,5) code is unable to improve upon uncoded DPSK. For the (7,1) 

and (7,3) codes, and Lb  = 6,  there is a dramatic improvement. In this case, performance 

with WC MT jamming is 3 to 5 dB worse than with WC PBN jamming. The next set 

of curves shows the (15,k) RS codes. We examined the (15,5) and (15,9) codes, with 

Lb = 10,15,20,30,60, with results given in Figs. 2 8  to 2.11. The (15,5) code shows 

improvement when Lb < 20 and the (15,9) when Lb = 10. From this we can conclude that 

substantial performance improvements over un.coded DPSK can be achieved only when 

t> Lblq. Otherwise, the RS code cannot correct the erroneous bits on a jammed hop and 

decoding will not succeed, resulting in a performance near that of uncoded DPSK. Finally, 

we evaluated the block length 31 and 63 RS codes. Results for the (31,11) and (63,31) 

codes are presented here in Figs. 2.12 to 2.15. From these figures, we again see the role 
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Lb lq plays in the performance. With the (31,11) code, t = 10 symbols, or tq = 50 bits can 

be corrected. Thus only for Lb < 50 is performance improved. This is most dramatically 

shown in Figs. 2.12 and 2.13 when Lb is dropped from 52 to 50. Similarly for the (63,31) 

code, when Lb < 96 performance is dramatically improved. WC MT jamming is always 

worse than WC PBN jamming, and for small Lb the difference is 2 to 5 dB. 

2.4 Concluding Remarks 

From the results of the previous section it is clear that the number of codeword symbols per 

hop must be small in order for the RS code to provide protection against jamming. Other-

wise, no improvement over uncoded DPSK is gained. Lowering the symbols per hop can be 

achieved either by reducing the number of bits per hop, as was done here, or interleaving 

the RS codewords to a depth determined by the hop length and RS code parameters. 

It remains to evaluate the performance when diversity is also employed and when 

nonbinary DPSK is used. Both of these directions should provide performance improve-

ments over the results found in this chapter. As well, the use of interleaving will reduce the 

number of erroneous symbols in a given RS codeword when a hop is jammed. It also allows 

a long hop length, which reduces the amount of lost data due to the phase reference bit. 
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Chapter 3 

Tone Jamming Cancellation in 
SFH/DPSK Systems 

3.1 Introduction 

In a slow frequency hopped (SFH) differential phase shift keying (DPSK) system, there are 

typically at least a few tens of bits in a hop. We can not afford the loss of even one hop. 

One way to improve the system anti-jam capability is to employ a long error correction code 

such as, a Reed-Solomon code. Error correction codes with long codewords spanned over 

several hops can be designed to correct burst errors as well as random errors. Random error 

correcting codes with deep interleaving can also be used. This type of method is based on 

multiple-hop information. 

For tone jamming, however, it is possible to employ some signal processing tech-

niques to combat jamming in a single hop. This can improve system performance signif-

icantly. If the system in-hop anti-jam capability is increased, the jammer must put more 

jamming power in a frequency slot to achieve the same jamming effect. Thus the total 

number of frequency slots jammed will be reduced when total jamming power is constant. 

Therefore the whole system anti-jam capability is increased. 

In a previous report, we have analyzed the probability distribution of signals in 

DPSK systems in tone interference [1]. In this chapter, we propose two in-hop jamming 

cancellation schemes for SFH/DPSK systems. One is based on using balanced coding, while 

the other one uses adaptive filtering to cancel the jamming tone. The performance of these 
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schemes is analyzed as well. 

3.2 Cancelling Tone Jamming by Balanced Coding 

3.2.1 Assumptions 

We consider a SFH spread spectrum system with binary DPSK modulation. We assume 

that the amplitude of the transmitted signal is constant, that initial phase of the signal does 

not vary in a hop, and that the amplitude information of the received signals is available. 

This means that there are no envelope limiting circuits in the receivers. We also assume 

that the frequency of the jamming tone is the same as the carrier frequency, so that the 

amplitude and initial phase of the jamming tone are constant in a hop. 

3.2.2 Problem Description 

In a SFH/DPSK system, when a hop is hit by a multitone jammer, the received signals in 

the hop contains highly correlated interference. Assume that the transmitted DPSK signals 

in a hop are: -E1,Ê2,• • •, en , 

. -É1= Eeici 	i =1,2, • • • , m 

where m is the number of channel symbols in a hop, and E and Oi are the amplitude and 

phase of the ith transmitted signal, respectively. Then the received signals under tone 

jamming are: /71,14 ' . • 

= Eeie 	_fee" 	i= 1, 2, • • • , m 

where IejeJ is the tone jamming with amplitude I and phase Oj which is uniformly dis-

tributed in [0, 2r). In DPSK modulation information is carried by phase change; therefore 

detection is usually based on phase change of two consecutive signals. 

When signal to thermal noise ratio (SNR) is high, the influence of tone jamming on 

DPSK signal can be illustrated by a geometric relation, as depicted in Fig. 3.1 (a) and (b). 

In Fig. 3.1 (a), there is no phase change between two consecutive transmitted 

signals, . -É1  and É.2, i.e.  L(Ê1 ,  E2) = 0, where L(.,.) is the angle betweuen two vectors. It is 
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easy to see that there is also no phase change between two consecutive received signals, 

and 172. So a correct decision can always be made no matter how large the tone jamming 

is ( when neglecting errors due to thermal noise, and noting that the probability of the 

jamming vector exactly cancelling the signal vector is zero). Therefore tone jamming does 

not have direct influence on detection in this situation. However, an indirect influence is 

the change in the probability of erroneous decision due to thermal noise as a result of the 

amplitude change in the received signal caused by the jamming component. 

In Fig. 3.1 (b), there is 7r radian phase change between two consecutive transmitted 

signals, i.e., L(. -4,É2) 	We can see that due to strong tone jamming the phase change 

of two consecutive received signals,  ii  and 1 2 , can be less than 	Therefore an erroneous 

decision can be made. When jamming is strong enough the phase difference between fti 

and 12  can always be less than -121 , hence a zero phase change will be incorrectly detected. 

In summary, the main influence of tone jamming on DPSK system is that the prob-

ability of the receiver not detecting phase change between two signals is mua higher. This 

conclusion is directly based on the assumption that jamming tone hits the carrier frequency 

exactly. 

One way to combat tone jamming is to cancel the jamming tone before a decision 

is made. This can be carried out by employing the so called balanced code. 

3.2.3 Cancelling Scheme 

Consider a block of transmitted signal vectors such that the sum of vectors is zero, and 

suppose the whole block is transmitted in the same hop. Then neglecting the influence of 

thermal noise, the vector sum of the corresponding received symbols divided by the number 

of symbols in the block is the tone jamming component. Thus the amplitude and phase of 

the jamming tone can be estimated from the sum of the recieved signals, and then the tone 

jamming can be cancelled from the received signals. 

Suppose the block length is n signals, and the transmitted signals are si,  j  = 

1,2, • • • ,n. The requirement on the transmitted signals is 

E Si = O. 
i=1 

25 

(3.1) 



0
11

11
0

8
1
1

0
11

0
8

•1
1

0
0
.1

1
11

11
11

11
8

11
5

81
1

0
0
0
1

11
11

1
11

11
11

01
1

0
1

11
11

1
11

11
0

0
0
1
1

11
11

8
0

11
11

11
8

11
 

Decision boundary 

(a) 

Decision boundary 

(b) 

Figure 3.1: The effect of tone jamming on phase change detection when noise is small, and 
the jamming tone hits the carrier exactly. 
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a 
• In the binary case, Equation (3.1) means that in the sequence there must be the same 

• number of signals with a phase 9 and signals with a phase 0 -I- 7r. This can be achieved by 
SI 
Ile 	making the codeword balanced before PSK modulation. 

• A balanced code has codewords with equal numbers of zeros and ones. One im- 
ià 

portant feature of a balanced code is that it is dc-free. They have been used in magnetic 
1111 
10 	 storage and optical communication systems where a dc-free signal is required. Here we can 

411 	 use the dc-free feature to estimate jamming tone. a 
• For a coherent binary PSK system, the balanced code can be used by simply plac- 

• ing the balanced code encoder before PSK modulation and the balanced code decoder after 
Ile PSK demodulation. But for binary DPSK systems it is more complex to use a balanced 

•
111 

code. Two possible schemes are considered in this report. 

• One scheme (Scheme I) is shown in Fig. 3.2. Differential encoded information data 

• is encoded with a balanced code before PSK modulation. At the receiver the received signal 

111 	 is first downshifted to the baseband to generate in-phase and quadratic components. The 
111 

balanced encoded signals at the baseband have a property that the vector sum of signals 
10 se  in a codeword is zero. Then the average of received signals in a balanced codeword is corn- 

«) 	 puted. The average is an estimation of the jamming tone. Thus by subtracting the average 
11, 
• from each codeword the tone jamming is cancelled. The data is then passed to what we 

• call a semi-differential PSK demodulator followed by a balanced decoder and a differential 

decoder. 

• The semi-differential PSK demodulator is a PSK demodulator based on differential 
111 	 phases of consecutive received signals. It works in the following way: assume the first re- 

11111 	 ceived signal represents 1 (or 0 arbitrarily), then compare the phase difference between the 

• second and the first received signals. If the phase difference is greater than 7r/2, then declare 

the second signal to represent 1; otherwise it represents O. This procedure is repeated for 

• the following signals. 

The output of the semi-differential PSK demodulator is a received balanced coded 

• sequence or its inversion. For instance, if the balanced sequence is 1010 ..., the received 

a 	sequence may be 1010 ..., or 0101 .... The ambiguity comes from the differential PSK 

demodulator. Therefore, in order to recover the original information data with a differ- 

s) 
• 27 
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ential decoder following a balanced decoder, the balanced code should be transpa,rent[8]. 

Transparent code is a code in which an inversion of a codeword is also a codeword, and the 

corresponding information bits of a codeword and its inversion also have an inverse relation. 

Thus, by using transparent balanced coding, the tone jamming can be cancelled, and the 

original information sequence can be obtained from outputs of the differential decoder. 

The other scheme (Scheme II) is shown in Fig. 3.3. The information data is encoded 

with a balanced code before PSK modulation. The cancellation algorithm is the same as 

that in the first scheme. Following the cancellation circuits is a differential demodulator in 

a DPSK receiver. The output of the decoder is a differentially decoded balanced sequence. 

A mapping between a differentially decoded balanced codeword and its corresponding in-

formation bits is used to decode the differentially decoded balanced codeword sequence. 

Specifically, suppose we use a (n,k) balanced code. k information bits are encoded 

into a balanced codeword n bits long. At the receiver the differential demodulator is op-

erated on every balanced codeword, and generates a n — 1 bit long output, which is a 

differentially decoded balanced codeword and corresponds to the original k bits of informa-

tion. 

Because a codeword and its inversion are identical after being differentially decoded, 

the inversion of a balanced codeword should either correspond to the same information bits 

or not be a valid codeword. 

3.3 Performance An.alysis 

We first analyze the tone jamming cancellation performance, which is the same for both 

schemes. The symbol error probability at the output of the differential demodulator in 

scheme II is derived. This symbol error probability is the same as the transition error 

probability at the output of the semi-differential PSK demodulator, where the transition 

of signals carries information. Next we discuss different balanced coding methods and 

performances in the two schemes separately. 
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Figure 3.3: Balanced coding tone jamming cancellation scheme II. 
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3.3.1 Symbol Error Probability at Differential Demodulator Output in 
Scheme II 

Let us observe a received data sequence corresponding to a balanced codeword, r 1 , r2 , 	, 

rn , and where 

ri = si Iej8 .1  + ni 	i = 1,2,...,n 

where n is the length of balanced code; si is the transmitted signal with energy E3 ; IejeJ 

is the tone jamming; and 

ni = xi + jyi 

where xi and yi are zero mean additive white Gaussian noise (AWGN) with variance cr2  = 

N0/2 respectively. No  is the AWGN spectral density. 

The arithmetic average of the sequence is 

1 n 	1  
a= — Eri  = 	+lee' +  

n i=1 	 n i=1 

If the transmitted signal sequences si, which is encoded by a balanced code, has the property: 

E Si = 
i=1 

then 
1 n  

a = IejeJ +  

n.=1 

We can see that a is a good estimation of the jamming tone when n is large enough. 

Subtracting a from ri, we have 

1 11  
i = 1,2,...,n 

n k=1 

where 
1 n  
n k.1 

Therefore the tone jamming component has been cancelled. Since cancellation involves more 

than one sample, after cancellation the signal is imbeded in noise  ñ  which is correlated with 

others in a codeword. ñ  can be rewitten as 
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and r is defined by 

r — 
xixi+i  	 
- 

a-2 

a 

and 
1 \—,n  

• 
71 	k. 

k=1,Icei 	 a 

which is given by 

(1 —) 2  cr2 n  — 1  cr 2 	 a 
n 	n2  

n — 1 2 = 	 (3.2) 

a 

= XiYi+1 

e A 	5.2 

a 
Therefore after tone cancellation, the signal is perturbed by coloured Gaussian noise with 

a correlation coefficient r. 

Pawula et al. derived the distribution of the phase angle between two vectors per- 

turbed by correlated Gaussian noise[5]. By using their results we can derive the bit error 	 a 
probability of binary DPSK signalling in coloured Gaussian noise. The bit error probability 

of binary DPSK signalling is given by: 

1 	iv 	3ir 	 1 	iv 	iv 	 a 
2 	2 	2 2 	2 	2 

where AT is the phase change between two consecutive transrnitted signals; iji is the phase 

change between corresponding received signals, and we have assumed the two transmitted 

signals to be equalprobable. According to [5, Eq.(9)], 

2 	2 	 2 	2 
a 

a 
32 

n 	 n 	n n 	• 	n 

Yi - - Yk 	- -n  n 

and yj are linear combination of Gaussian variables, and thus are still Gaussian. It is 

easy to see that the niean of j and"yi are zero, and that they have the same variance 5-2 , 

The correlation between adjacent ñ  can be described with the auto-correlation coefficient 

r and the cross-correlation coefficient A. Because for arbitrary i and j, xi and yi are 

uncorrelated, 'Xi and j  are also uncorrelated. So 

a 



a 
a 

O  
O  • • 2 
• where 
• Fe, w ( 0) = 	In 2  [a ( .0 + (i)le-.Ert) , dt 	 (3.3) • 47r —712 
11111 	and 

•
ID 

U — V  sin  t — W  cos(AT — e) cos t  E(t) = 	 (3.4) 
• 1 — (r cos e 	sin e) cos t 

W sin(AT — 	e)  a(t) 	 (3.5) • U — V sin t — W cos(AT — e)cost' 
• r sin — Àcose 

fi(t)= 1 — (r cos e -I- sin e) cos t. 	 (3.6) 

ID 	 In our case U = W = signal to coloured noise ratio, V = 0, and À = O. Substituting these 

• relations into Equations (3.4), (3.5), and (3.6), we have 

• 1 — cos( 	— 7,b)  cos t TT  
• E(t)  = 	

AT 
  1 — r cos e cos t 

• sin(AT — e)  
O  a(t )  = 1_ cos(AT — lk) cos t 

r sin  

	

e ( t )  — 	r cos e cos t .  
O  Note that when E(t), a(t), P(t) are constants, Equation (3.3) can be written as 
O 

O 
O  
• When AT = 0, 
O  1-  cos  e  cos  t TT  •  	 = U for  E(t)  = 1— r cos lp cos t 

— sin e  
• a(t) =. 	— T1 for 	= 1 — cos cos t 	 2 

• P(t) = 	"in 	= ±r for e = ± 71  1 — r cos e cos t 	 2 
O  
• Thus 
O 

• F0 	= 71 (r — 1)e-u , 
O 
• F0  ( 37r 	 _7) = .F0  ( — 7 	-4 (1 — r)e-u . 
O 
O 
O 
O 

 1 

a 
O 
O  • 

FA ,p(0)= (ce + 	-E  
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37r 
0 5_ —2  IAT -_ -_ _1 (1 _ r) e-u .  

2 
(3.7) 

When AT = 

-U (3.8) 

Therefore 

E(t) = 
1 + cos II) cos t 

1 r cos cos t
U U for 

• 
a(1) = 	

 
=±1  for 

i_  r cos cos t 
r sin 
	  - ±r for 

= 1 - r cos e cos t 

Thus 

= 711  (1 + r)e—u  , 

1 
-4(-1 — 

Therefore 

1-21. 1AT = 7r) = F, (-1) — F, (- 7 ) — 1  (1 
2 	2 2 + 

And thirs the bit.error probability is 

1 	-u 1 
-re + -(1+ r)e — U = —U 

	

4 	 2e 

where U is signal to coloured noise ratio. From Equation (3.2) we know that the coloured 

noise variance is (n - 1)/n tirnes of original thermal noise variance. Thus 

n Es 	• n rbEb U = — 
 n - 1 No
- 
 n - 1 No 

where  Tb  is the code rate of the balanced code. And finally, we have 

1 	1 	n  7'6E6 P
e 
 = — exp 
 2 
	

n-1  No  

This expression does not contain the amplitude of jamming tone I, and other pa- 

rameters related to jamming tone. Therefore the jamming tone has clearly been cancelled. 

Two types of error probability are given in Equations (3.7) and (3.8), respectively. 

Obviously they are not the same for a fixed r. Especially when 171 is large (Ill is close to 

2 ' 

< 
2 - 

(3.9) 
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one), the difference of two types of error probability can be quite large. However, it can be 

shown that in our case 

1 	,, 	 1, 	1 	x--,n 	, 	1, 	1 	'-., 
r = 	u. — —)xi — — 2_, x k  (1— — Fi+i — —

n 
z 	Xk a 	n 	n 	 n k=1,14i 	 k=1,k0i-1-1. 

1 
n — 1 

where we have used the following relations: 

= 0.2 	and 	IT±T, = 0 	i5Lk. 

So when n is not very small r is much less than one, and thus the two types of error 

probability are almost the same. 

Recall that the bit error probability of binary DPSK system with thermal noise only 

is 
1Eb 

PDPSK —
2 
exp (--) 

No  

Comparing with Equation (3.9), we can see that after cancellation the bit error probability 

has a form similar to that of binary DPSK system with noise only. But we can not compare 

the two expressions directly because Equation (3.9) gives the coded symbol error probability, 

and Equation (3.10) gives the bit error rate without coding. The bit error probability after 

decoding bas to be evaluated with the specified balanced code in coloured Gaussian noise. 

This problem needs further investigation. 

However, we can compare the coded symbol error rate given in Equation (3.9) with 

that of a binary DPSK system with a code of the same code rate rb in thermal noise. The 

later is given by 
rbEb = exp

( 
—

)

70  — exP 2 

In this case, the coded symbol error rate of the DPSK system with balanced coding tone 

jamming cancellation is a little bit less than that of the DPSK system without cancellation, 

but employing a code with code rate rb. But if n is very large, the difference is very small. 

The coded symbols error rate of the binary DPSK sytem and that of the DPSK sytem with 

balanced coding tone jamming cancellation for n = 8, and 16 are plotted in Fig. 3.4. 

35 

(3.10) 



Figure 3.4: The coded symbol error rate of DPSK system with balanced coding tone jam-
ming cancellation scheme and that of DPSK system employing a code with the same code 
rate in thermal noise. 
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3.3.2 Application of Balanced Coding in Scheme I 

As mentioned early, the balanced code used in Scheme I should be transparent. The bal-

anced codec operates on differentially encoded data with ambiguity on the data's absolute 

values. 

Several papers have discussed balanced codes with high code rate, i.e. a code rate 

larger than 0.5 without considering the transparent property. D.E. Knuth [6] proposed a 

kind of balanced code which is very simple in encoding and decoding. 

One trivial case of balanced transparent coding is simply adding the Vs complement 

of the information bits. This results in a rate -} balanced code with the transparent property. 

For example, if an information sequence is w, then the corresponding codeword is imp, where 

ID is 1's complment of w. 

Recently several papers have discussed error-correcting balanced codes [7]. Usually 

we want to use a linear error correcting code to avoid a complex decoder. Thus we wish 

to have transparent linear balanced error-correcting code. However, no such codes exist 

because linear codes must have the all-zero codeword and linear transparent code must 

have the all-one codeword. These two codewords are not balanced codewords (in general, a 

balanced code is not necessarily a linear code; and there is only a one to one correspondence 

between information bits and codewords). But we can construct a code having similar 

properties. The code has the following structure: 

1. (n, k) block code (n is even); 

2. linear code; 

3. transparent code; 

4. all codewords are balanced codewords, except the all-one and all-zero codeword. 

We call this code pseudo balanced code, and the code has the following properties: 

1. The minimum distance dmin  > L;; otherwise the sum of two balanced codewords 

would result in non-balanced codeword. 

2. There are only three possible weights: 0, -T21 , and n. 
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3. If w is a codeword, ID is also a codeword; this is a property of a transparent code. 

In communications, when data words happen to be the saine as control words they 

are modified in certain ways to remove confusion. By using similar techniques, we can avoid 

encoding the a11-zero and the all-one codewords at the transmission end. Then the code 

described above can be used in our tone jamming cancelling scheme as if it were a linear 

transparent balanced code. This code can help us eliminate the tone jamming and can 

correct random errors as well. Following are examples of two of such codes. 

Example 3.1 

The (7,4) Hamming code has weight enumerator: 

A(z) =  1  +. 7z3  7z4  z 7 . 

This code can be modified to be a pseudo balanced code by adding a parity bit. This results 

in a (8,4) code with dmin  = 4. The code can correct 1 bit error and detect 2 bit errors at 

the same time. 

Example 3.2 

1st-order R,eed-Muller codes are pseudo balanced codes. When m = 4 and n = 16, 

the generator matrix of the lst-order Reed-Muller code is: 

1 1 1 1 1 1 1 1 1 1 1 1 1  111  
0 0 0 0 0 0 0 0 1 1 1 1 1 1 11 

G=  0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

• 	_ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

This is a (16,5) code with dmin  = 8. 

In the output of the differential demodulator in Scheme I, a one bit error may cause 

all of the following bits to be inverted. For a specific balanced codeword, if a bit error 

happens at the first bit or in a previous codeword the whole codeword will be inverted. 

Because the code is transparent, it can be correctly decoded. But if a bit error happens at 

a bit after the first bit in a codeword, all bits in the codeword after the error bit will be 

inverted, causing a burst of errors. 
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Code rate bound of error correcting balanced codes 

For any (n,k,d) linear code there is a bound on minimum distance d: 

n — k > d —1. 

When d = L/  we have 2 

n — k > —
n 

 —1 
— 2 

and therefore the code rate r is bounded by: 

k 	1 	1 
n2 n, 

Hence it is not possible for the code rate of a pseudo linear transparent balanced code to 

be much larger than 0.5. 

According to the Plotkin bound, 

k<n— 2d + 2 + log2  d. 

When d = Li  we have 2 

k < 0 +2 +log2 -
2 

=log2 n-1-1 

and hence 
k 	log2  n  1 

r 	< 	+ 
n

. 

This upper bound is tighter than the first one. 

Note that the code rate of the lst-order Reed-Muller code is 

m + 1 log2  n + 1 
r 

2m 

where n = 2'. So the code rate of the 1st-order Reed-Muller code achieves the Plotkin 

bound on code rate. 

3.3.3 Application of Balanced Coding in Scheme II 

The balanced decoder in Scheme II does not work on balanced encoded data, but on dif- 

ferentially decoded balanced encoded data. This is because the output of a differential 
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Information 	Codewords 	Diff. Decoded Codewords  
0000 	0 0 0 0 0 0 0 0 	0 0 0 0 0 0 0  
1000 	1 1 0 1 0 0 0 1 	0 1 1 1 0 0 1  
0100 	0 1 1 0 1 0 0 1 	1 0 1 1 1 0 1  
1100 	1 0 1 1 1 0 0 0 	1 1 0 0 1 0 0  
0010 	1 1 1 0 0 1 0 0 	0 0 1 0 1 1 0  
1 0 1 0 	0 0 1 1 0 1 0 1 	0 1 0 1 1 1 1  
0110 	1 0 0 0 1 1 0 1 	1 0 0 1 0 1 1  
1110 	0 1 0 1 1 1 0 0 	1 1 1 0 0 1 0  
0001 	1 0 1 0 0 0 1 1 	1 1 1 0 0 1 0  
1001 	0 1 1 1 0 0 1 0 	1 0 0 1 0 1 1  
0 1 0 1 • 	1 1 0 0 1 0 1 0 	0 1 0 1 1 1 1  
1101  	0 0 0 1 1 0 1 1 	0010110  
0011 	0 1 0 0 0 1 1 1 	1 1 0 0 1 0 0  
1 0 1 1 	1 0 0 1 0 1 1 0 	1 0 1 1 1 0 1  
0111 	0 0 1 0 1 1 1 0 	0 1 1 1 0 0 1  
1 1 1 1 	1 1 1 1 1 1 1 1 	0 0 0 0 0 0 0 

Table 3.1: Extended Hamming (8,4) code and its differentially decoded codewords. 

demodulator is differential decoded data. For a decoder, a mapping between the informa-

tion bits and the differentially decoded balanced codeword is established. The mapping ca,n 

be obtained easily by differentially decoding all balanced codewords. 

The balanced coding can also provide some error correction capability in Scheme II. 

This can be implemented by choosing a balanced code whose codewords after differentially 

decoding have a large minimum Hamming distance. 

Example 3.3 

Consider the extended Hamming (8,4) balanced code discussed in Example 3.1. All 

codewords are listed in Table 3.1. This is a transparent code. We can only use the upper 

half codewords with the exception of the all-zero one. Thus in fact we use it as a (8,3) code. 

Note that the code is linear in the differential decoded domain, and ha,s a minimum weight 

3. Therefore the code can correct one error in a codeword at the output of differential 

demodulator. 
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3.4 Frequency Offset Problem 

The analysis in the previous sections is based on the assumption that jamming tone hits 

the carrier tone exactly. However, in practice there is a frequency offset between carrier 

and jamming tone. 

Frequency offset causes the tone jamming component in a baseband signal to be no 

longer constant. Instead the jamming has a sinusoidal form. 

Suppose the jamming tone toj is: 

Loa-  = wc+Aco, 

where wc is the carrier frequency, and AO is the frequency offset. Then the tone jamming 

component in the baseband signal is: 

IejP,t+04 e—iwct = iej(àwt-F0 J) .  

Note that it is a sinusoid with frequency Aw, which is the frequency offset. The balanced 

code tone jamming cancel ling scheme is based on the assumption that a tone jamming 

component is constant. Thus we need to analyze the cancelling performance when there is 

a frequency offset. 

First we will study how much the phase change of consecutive jamming components 

is caused by frequency offset. Consider that the bandpass filter has a bandwidth B, so that 

2 
B = 

and 
„ B 27r 

AcomAx = z7r— = 
2 Tb 

The phase change between two consecutive jamming components is 

AO = AL,Tb 

and the maximum phase change is 

A0mAX AWMAxTb = 27r. 
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Thus the frequency offset can cause AO to be as large as 27r. 

We then analyze the sensitivity of the cancelling performance to AO. When there is 

a frequency offset Aw, the received baseband signal is 

ri = S i 	ni 	
/ei[eJ+(i-1)A0]. 

The average over a codeword of length n is 

1 
a =  

n i=1 
n  

= — ni E 
n i=1 	n i=1 
n • 

ni Glee' 

where 

_1  7\4  e (i-1)A0 
n L—e i=1 

sin M2  )  j(n-1) ,e0 
n sin (-A-) e  2 

And after cancelling we have 

= 

11 — CI can be used as an indication of the cancelling effects, which is a function of AO and 

the codeword length n. 11 — CI versus AO with n as parameter is plotted in Fig. 3.5. 

It is shown that the cancelling region (where  Il — CI is near zero) is relatively wider 

for small n. We also see that when AO > 0.27r, 11 — CI is almost unity, indicating no 

cancelling at all. When 3.0 <0.057i- , about 3 dB cancellation may be obtained for n < 10. 

Thus, in principle this tone jamming cancelling scheme can work well when the frequency 

offset is less than 2.5% of the total bandwidth in either direction. 

3.5 Tone Jamming Cancelling by Adaptive Notch Filter 

As mentioned in section 3.4, when there is a frequency offset of the tone jamming to carrier 

tone the jamming tone component in the baseband signal is a sinusoid. Its frequency is the 
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Figure 3.5: 11 — C1 versus AO with n as parameter. 
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difference between the jamming tone and the carrier frequency. Thus the received signal at 

baseband can be modeled as: 

ri= si 	ni 	ie j( 0 .1+0 - 1 )1 0 ) 

where AO = (coj - coc)Tb. AO can be as large as 27r. Because the si's are uncorrelated 

with each other and ni is AWGN, the spectrum of si ni is much wider than that of the 

tone jamming component. Hence si -I- ni and the jamming component can be separated by 

signal processing techniques. One method is to use an adaptive notch filter based on an 

estimation of AO. 

Because there are at least a few tens of bits in a hop, the amount of data which can 

be used in estimation of AG is large. The simple FFT method can provide a good quality 

estimation[9]. 

A notch filter which has a zero on the unit circle with an angle AG can cancel the 

jamming tone clearly if the estimation of 3.0 is accurate. There are two problems associated 

with the use of a notch filter. One is sensitivity to estimation errors, the other one is the 

distortion of transmitted signals. To reduce the sensitivity of estimation errors the stopband 

of the notch filter should be wider. However, to reduce the distortion of useful signals the 

stopband should be as narrow as possible. The basic solution to both problem is to improve 

the estimation of AG. 

The performance of the notch filter cancelling scheme is illustrated by simulations. 

The notch filter used in the simulations is a simple one-zero one-pole TIR  filter. The zero is 

on the unit circle with an angle of AG, and the pole is at rei'm and r < 1, i.e. the pole is 

within the unit circle with the same angle. The transfer function of the filter is 

1 - 	z - 1  

i = 1,2, 

H(Z) = 1 rejA0z-1 • 

The system diagram is shown in Fig. 3.6. The bit error rate versus  E&/No  with r 

as a parameter, assuming no error in the estimation of AG, is shown in Fig. 3.7. Because 

there are no estimation errors, the tone jamming is cancelled completely. Thus BER is not 

related to Eb/Nj. These curves can be viewed as the optimum performance that can be 

achieved by the first order  TIR  filter. For comparison, the BER without a notch filter under 
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tone jamming with Eb/Nj=0 dB and without jamming are also plotted in Fig. 3.7. We can 

see that when r = 0.9 there is about 5 dB performance loss for BER around 10-5 . When 

r = 0.99 the performance loss is very small. And the performance loss is very large for 

r <0.8  because of large signal distortion. 

The bit error rate versus Eb/Nj, with r as parameter and with estimation error 0.05 

rad and 0.025 rad, are plotted in Fig. 3.8 and Fig. 3.9 respectively.  E6/N0  is 10.34 dB 

(corresponding to BER = 10-5  without jamming). These figures show that when the signal 

is not much stronger than the jamming (Eb/Nj < 10 dB), there is more than one order of 

improvement over BER by using a notch filter, i.e. BER drops from 10-1  to 10-2  or 10-3 . 

But when the jamming is very much stronger than the signal, the notch filter can only 

cancel a small part of tone jamming, and the cancellation does not work because of errors 

in the estimation of AO. We can see that the smaller the estimation error, the stronger the 

jamming that is needed to defeat notch filter cancellation. When a signal is much stronger 

than the jamming, the filter distortion to useful signals is dominant, and therefore the BER 

with notch filter is higher than BER without notch filter. 

It should be noted that the notch filter used in simulations is a first order  TIR  filter, 

a very simple digital filter. Filters with higher order may have better performance. This 

needs further investigation. 

According to our simulation results, the following conclusions can be made: (1) 

the notch filter can cancel tone jamming when jamming is not very strong; (2)it would 

be beneficial to have channel state information of the jamming condition to switch on or 

off the notch filter according to whether the hop is jammed or not (such side information 

need not be perfect and may be obtained by using FFT); (3) random error correcting codes 

may be needed to improve performance under jamming (it is also interesting to note that 

notch filter cancellation makes it possible for error correcting codes to be effective, because 

cancellation brings the BER from 10-1  to 10-3  and error correcting codes can make the 

BER drop to 10-5  with a reasonable code rate). 

45 



binary 
data PSK 

Modulator 
Differential 
Encoder 

received 
data 

Channel 

Differential 
Demodulator 

Notch Filter 

8
11

8
8

8
8

11
11

11
11

8
8

8
1

1
8

8
81

1
11

11
11

0
11

11
8

11
11

11
11

11
11

11
11

81
1

11
8

6
11

8
11

8
8

11
81

11
11

11
11

11
11

8
11

11
8

  
Figure 3.6: Notch filter tone jamming cancellation scheme. 
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DPSK (no notch filter) with noise only — 
Simulation 4 — 

Figure 3.7: BER of binary DPSK system with notch filter tone jamming cancellation scheme 
versus Eb/No with r as parameter without estimation errors. AO = / 3. 
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Figure 3.9: BER of binary DPSK system with notch filter tone jamming cancellation scheme 
versus Eb/Nj and with r as parameter with estimation error 0.025 rad. AO = 1.0 rad, and 
fiter notch at 1.025 rad. 
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3.6 Conclusion 

The balanced coding based tone jamming cancellation scheme can work well when the tone 

jamming frequency offset is very small. This scheme has little distortion on useful signals, 

and the corresponding performance loss is less than 2 dB. Balanced coding can be combined 

with error correction coding. 

The notch filter tone jamming cancellation scheme can cancel tone jamming with 

arbitrary frequency offset in the passband provided there is accurate estimation of the 

frequency offset. The notch filter has some distortion to useful signals. Therefore, it is 

better to switch it off for hops without jamming. Notch filter cancellation can also make 

error correction coding effective. 
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II 

Chapter 4 

Interleaving 

4 . 1 Introduction 
se 
• Interleaving is the process of reordering a sequence of symbols in a one-to-one deterministic 

I se  
manner so that any two symbols within a given separation in the input sequence are sepa- 

l@ 
rated by at least some minimum number of symbols in the output sequence. The concept 

• finds application in burst and fading channels where bursts of aannel noise occur and the 

action of the interleaver/deinterleaver is intended to randomize the resulting error patterns, 

•
• 

hopefully resulting in improved effectiveness of the codi ng. It is also used on intentional 

11, 	 interference (jamming) channels and a convenient assumption in the analysis of systems 

•
fle 

on all these channels is that the use of interleaving renders the channels memoryless. In 

• practice the situation is not so simple and the analysis of coded systems employing finite 

interleavers can be difficult. For example the use of a periodic interleaver on a jamming 

• channel, where the jammer hits only certain symbols in each period, might have a disastrous 

• effect on communication performance. In sua applications one might have the choice of 

• using a random error correcting code with interleaving or a burst error correcting code with- 

• out interleaving. A burst error correcting code will typically have greater efficiency than a 
Ià random error correcting code for a given burst length, but might have limited ability ability 

•
II0 

to correct additional random errors. The behavior of either class of code when the burst 

• length exceeds either the burst correcting capability or interleaver/code design capability 
rà 

is sometimes difficult to assess. 

• The amount of work on the design of interleavers appears to be limited and much 

• 
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of the interesting work is not in the open literature. The scope of this chapter is narrow be-

ing limited to presenting the basic principles and techniques for designing interleavers. The 

more complicated problem of analyzing the performance of coded systerns using a particular 

finite interleaver will be considered in later work. The section 4.2 includes some elementary 

properties and definitions of interleavers. The following sections consider, respectively, de-

scriptions of block, convolutional and the more recent helical interleavers. The material for 

this chapter is drawn from the references listed and a brief review of their contents might be 

useful. The book of Clark and Cain [10] contains a discussion on interleavers and systems 

using them, although somewhat restricted in both the analysis and variety of interleavers 

it considers. The paper by Ramsey [11] discusses fundamental properties of interleavers in 

terms of delay and storage requirements, as well as implementations of some optimal con- 

• volutional interleavers. Forney [12] suggests a particular type of convolutional interleaver, 

a special case of a more general dass considered in [13]. Richer [14] discusses a particular 

type of pseudo-randorn block interleaver. The report [15] is quite far ranging, introducing 

the notion of helical interleavers and analyzing and comparing their performance to stan-

dard interleavers. In addition it describes a block pseudo-random interleaver attributed to 

• McEliece as well as many other aspects of the implementation and analysis of interleavers. 

A method of randomizing the rows of a block interleaver is discussed in [17] and in [18] an 

algorithm for the design of a pseudo-random interleaver with a certain distance property is 

considered. 

4.2 Properties of Interleavers 

A few properties that pertain to all interleavers are discussed, drawn mainly from the work 

of Ramsey. [11]. Since the terminology is not quite standard we introduce our own. We define 

a (b, n)  interleaver as one that reorders an input sequence so that any pair of n contiguous 

symbols of the input is separated by at least b symbols at the output (i.e. at least b — 1 

symbols between the pair). Equivalently, a (b, n)  interleaver is such that any ,  contiguous 

sequence of b symbols at the output contains no pair of symbols that lie in a contiguous 

block of n symbols at the input. Notice that, since the deinterleaver restores the order of 
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a 
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1 10  a 

«11 	the original sequence with some delay, the deinterleaver of a (b, n)  interleaver is an (n, b) 

110 	 interleaver. To express the notions more formally, if the input sequence is  

and the reordered sequence is 	 (note that symbol azi  appeared in position 

ell 

	

	 j in the output and position zi at the input and j > zi) then a (b, n)  interleaver has the 

property that 

• — zil > n 	whenever 	ji < b. 
«1 
• The terminology reflects the situation that if n is chosen as the block length of a code and b 

• as the maximum noise burst length on the channel, then for an isolated burst, no codeword 

at the input to the decoder is hit more than once by the burst. Typically then b might be 

•
fià 

chosen on the order of the maximum burst length, in symbols, expected on the channel and 

10 	n as the block length or constraint length of the code used. 

• To consider the delay of an interleaver, we first assume without loss of generality 

• that min(i— zi) ----- 0 where, as noted, since the interleaver is assumed to be realizable, i >  z.  

Let the maximum delay experienced by a symbol through the interleaver be d  = max(j—zi). 

• Since the output sequence of the deinterleaver is a delayed version of the input sequence to 

ele 	 the interleaver, say by D symbols, the sum of the delays of a symbol in the interleaver and 

•
«1 

the deinterleaver is D. Since it is assumed there is at least one symbol with a delay of zero 

• through the interleaver, and similarly through the deinterleaver, the overall delay D is at 
OD 

most d. Since there is at least one symbol with a delay of d in the interleaver the overall delay a 
• is at least d and so the delay in the interleaver is the same as the delay in the deinterleaver 
101 	 which is the same as the overall delay d. If the overall delay is d then when symbol ai 

• appears at the output of the deinterleaver, symbols ai+i , ai+2,..., ai+ d must all have entered 

• the interleaver. It follows that the combined storage of the interleaverideinterleaver is at 
111 
111 	least d. It is a simple matter to show that the maximum delay of a (b, n) interleaver is 

• at least (b — 1)(n — 1) and to see this consider the location of the n contiguous symbols 
e aiai.+1 ...ai+n_ i  at the output of the interleaver. By definition there must be at least b —1 «1 
111 	symbols between each of these symbols at the output. The span of these symbols in the 

101 	output sequence is thus at least (n — 1)b. In the "worst" case the last symbol in the input 
«I 
• sequence is also the last symbol in this output sequence and the maximum delay must 

1111 
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therefore be at least (n 1)b — (n — 1) = (n — 1)(b — 1). It is also noted in [13] that the 

average delay of a (b,n) interleaver is at least (n — 1)(b — 1) 12. The period of a periodic 

interleaver is the minimum sequence length for which the entire pattern of delays repeats. It 

is noted, again in [13], that the period of a (b, n) interleaver is at least min(b, n). The depth 

[15] of an interleaver is defined as one less than the shortest,burst length which can hit any 

codeword twice, where it is assumed that the interleaver input is divided into codewords. 

These delay arguments are slightly refined in [11]. An interleaver is defined to be 

uniform if there is no set of (141) contiguous symbols in the output sequence for which every 

pair of symbols is separated by at least n symbols in the input sequence. If the interleaver 

is not uniform it is referred to as nonuniform. It is shown in [11] that the encoding delay of 

a uniform (b, n) interleaver is at least (b —1)(n +1) and for a nonuniform is at least b(n + 1). 

It is also shown that the deinterleaver for any (b, n) interleaver that achieves the minimum 

possible encoding delay is an (n, b)  interleaver which also achieves the minimum possible 

encoding delay. 

An interleaver/deinterleaver pair is called optimum if it achieves both the minimum 

encoding delay and the minimum combined storage requirements. Optimum interleavers 

are given in [11] for all pairs n, b that satisfy certain relative primeness conditions. The 

realizations of these interleavers are in terms of one long shift register. The work of Forney 

([12],[13]) realizes the interleaving by means of shorter registers and commutators. These 

will be considered in the section 4.4 on convolutional interleavers. 

4.3 Block Interleavers 

The usual (b,n) block interleaver consists of an array of n rows and b columns. The symbols 

are read into the array by columns and out by rows and it is assumed the upper left symbol 

is the first read in and the first read out. Any burst of fewer than b errors on the channel 

results in errors separated by at least n symbols at the output of the deinterleaver. Labeling 

the rows of the array from 0 to n-1 and the columns from 0 to  b-1,  then a symbol in position 

(j, k) receives a delay of nb+ (b —1)j — (n— 1)k at the interleaver and nb+ (n —1)k — (b —1)j 

at the deinterleaver. The characters at the top left and lower right each receive a delay of 
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nb symbols at both the interleaver and deinterleaver, assuming the array is filled before any 

symbols are read out. The minimum delay of the interleaver occurs for the symbol in the 

upper right hand corner and is b n — 1. At the deinterleaver this element experiences a 

delay of 2nb — b — n 1 for a total delay of 2nb. From previous considerations it is possible 

to arrange matters so that the delay at both the transmitter and receiver is reduced by 

b n — 1 to give a total delay of 2(n — 1)(b — 1), twice the minimum possible established 

earlier. It is easy to see that it is not necessary to wait until the array is completely filled 

before beginning the read out process and a simple strategy achieves the reduction in the 

delay. 

The obvious implementation of this block interleaver might use two n x b RAM's 

and ping-pong back and forth. In [15] the following one-RAM implementation is given. 

View the addresses of the RAM as the integers modulo nb — 1, running sequentially down 

the columns and moving from the bottom of one column to the top of the next. This is 

augmented by the special symbol co corresponding to the lower right location. At any 

location the symbol is first read and then replaced by an incoming symbol. The procedure 

works by passes. On the zeroth pass, symbols are read in only with the address sequence 

0,1,2, •-•,nb— 2,00. 

On the first pass, the above address sequence is multiplied by n, all addresses taken modulo 

nb — 1. On the kth pass the address sequence is 

0, nk  ,2nk  , • • ,(nb — 2)n k  

modulo nb — 1. Clearly the period of the address sequence generator is the multiplicative 

order of n modulo nb— 1. Similarly, the address sequence on the kth pass for the deinterleaver 

is 

0, bk  ,2bk  , ...,(nb — 2)b k  ,00 

and note that, since nb 1 modulo (nb — 1), the multiplicative orders of n and b modulo 

nb —1 are the same. Notice that the storage capacity of the interleaver and the deinterleaver 

are the same, nb, apprcodmately one half of the total delay d = 2(n — 1)(b — 1), and hence 

55 



11
8

81
8

8
1

1
8

11
11

8
4

8
41

1
8

11
81

8
8

8
•

8
1
1
8
8

11
11

11
11

81
1

11
8

8
81

1
1
0

8
8

1
1

8
11

11
11

11
81

1
11

81
1
8

•
81

1 

close to optimum. It is not clear to the author how to achieve the optimum implementation, 

assuming it exists for this structure. 

For some applications a periodic interleaver is unsuitable due to either intentional 

or unintentional periodicities in the interference. For such applications pseudo-random 

interleavers will be of interest. A scheme due to McEliece, reported in [15] is described. 

A RAM of size 277/-1  is used. The address sequence is taken from the lower (m — 1) bits 

of an m bit maximum length linear feedback shift register, except for the state labeled fl 

where the (m — 1) low order bits are zero and the mth bit is one. The period of the address 

generator is clearly 2' — 1 and the delays encountered by bits going through the interleaver 

are uniformly distributed among the integers 1,2,...,2' — 1. To see this recall that the 

state of the register at time t may be assumed to be at where a is a root of the primitive 

polynomial of the shift register. If at = p then the character which enters the RAM at time 

t leaves the RAM at time r where 

= ai  fl 

for a delay of e5 r t. Consequently 

a6  =1+ fia—t  

Or 

1+a6  
As 5  runs through 0 <  8  < 2' — 1, the values of at obtained are distinct, indicating that 

once in every period (length 2' — 1) one symbol experiences a delay of b. Notice that every 

address of the RAM is generated twice every period of the shift register, except the all 

zero address, corresponding to p which is generated only once. Characters in this address 

experience the full delay of 2 — 1. To maintain the full delay of transmitter and receiver at 

2' — 1 either the interleaver or deinterleaver must be modified so that the symbol destined 

for this zero address bypasses the RAM altogether - a delay of zero. 

Notice that the depth of this interleaver is one, i.e. it is possible for a burst of length 

two on the channel to hit the same codeword, and all delays are realized. 

A similar type of pseudo-random interleaver has been proposed ([10],[14]). Here a 

sequence of L symbols is read into a RAM sequentially and then read out according to 
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some permutation. It is suggested in [14] that the permutation used correspond to a linear 

congruence: 

An+1= aAn  + c mod L 

which generates a sequence of integers from 0 to L —1. To obtain all  the integers from 0 to 

L —1 i.e. obtain a maximum length sequence, a and c must be chosen as follows [16]: 

0 a, c < L 

ii) (c, 	1 

iii) if pIL then pl(a — 1) 

iv) if 4IL then pl(a — 1) 

Sua an approach is convenient for implementation. For example, in an intentional inter-

ference environment it will be desirable to change the permutation frequently, necessitating 

storage of the permutations. The above approach requires only the storage of pairs (a, c) 

representing the complete permutation. 

There have been two more recent contributions to pseudo-random interleaving. In 

[17] it is noted that in a periodic  (b, n)  block interleaver, for example, a burst of length 

exceeding b will manifest itself as a burst in the deinterleaver output. If such occasional 

long channel bursts are anticipated and a burst error-correcting code of sufficient strength 

is used, then, as noted previously, good system performance is expected. If a random error 

correcting code is used, however, then such bursts may lead to degraded performance. In an 

attempt to make such bursts at the output of the deinterleaver appear more random, it is 

suggested in [17] that the rows of a block interleaver be read out in a random manner rather 

periodic. There, a parameter a is chosen and q,r defined by n = aq r,0 < r < a,q > O. 

If tii is the number of rows transmitted between the transmission of row i and j and 

t = min tii, then t is the minimum number of rows transmitted between any two rows 
li—i1<a-1 

that are within a of each other in the array. Alternatively if each row of the (b, n) block 

interleaver is treated as one symbol, then what is required is a (t, a) interleaver operating on 

the rows. This is actually a concatenated interleaver, discussed briefly later in section 4.5 on 
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helical interleaving. In [17] it is shown that t cannot be greater than  q—  1 and an algorithm 

is given that achieves this upper bound. 

Recall that for a periodic block interleaver, a certain minimum separation at the 

interleaver output of any pair of symbols within a given span at the input can be assured. For 

pseudo-random interleavers, this is not the case and, for example, for the implementation 

of McEliece [15] the depth is one, as noted and the delays are uniformly distributed. In 

[18] a RAM read out/read in implementation of a pseudo-random interleaver is considered 

and an algorithm is given that is both pseudo-random and attempts to guarantee a given 

depth. The approach is interesting but is not pursued here. 

4.4 Convolutional Interleavers 

In contrast to the block interleavers of the previous section, convolutional interleavers utilize 

shift registers or delay lines. Data is fed through on a continuous basis with various stages 

being tapped sequentially. It remains only to arrange the taps and the commutator sequence 

to ensure all data symbols are transmitted with an appropriate delay. Only the interleavers 

of Forney ([12],[13]) will be described here. The work of Ramsey [11] appears similar in 

spirit although no formal equivalence between the two approaches has been established 

to our knowledge. Essentially Ramsey utilizes one long shift register with certain stages 

tapped at certain times while Forney considers a horizontal bank of shift registers of varying 

lengths with the output of each register transmitted sequentially on the channel. 

A simple version of Forney's scheme will be considered [12]. Symbols are first divided 

into blocks of length P and it is convenient to view this as a serial-to-parallel conversion. 

The ith symbol of each block is fed into a shift register of length iD, i = 0, 1,...P — 1. The 

outputs of the ' P shift registers are sampled sequentially (parallel-to-serial conversion) and 

transmitted on the channel. The structure of the deinterleaver is similar except that the ith 

element of each block enters a shift reg,ister of length (P — 1 — i)D i  j  =  0, 1, ...P — 1. Each 

symbol receives a total delay of (P — 1)D time units (each unit corresponding to P symbols) 

or (P — 1)DP symbols and the total storage requirements of interleaver and deinterleaver.  

is (P — 1)DP. In our previous terminology we would identify n with DP and b with P and 
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a 
• refer to this as a (b, n)  interleaver. 

• A more general version of this interleaver that will have implementation advantages 

in some situations is described in [13] .  Retaining the same notation as above we describe a 

• (P, D, m) modular interleaver as follows (here m is a new parameter with the property that 
111 	 1 < m < P —1,(P,m) = 1 and (P,mD +1) 1). Let ri im mod P, i = 0,1,...,P —1 and 

• note that, by assumption,  mis a unit in the set of integers mod P and so  {ro ,  r1, • rP—i} = 

• {0, 1,...,P — 1}. The interleaver thus consists of a serial-to-parallel converter, converting 

to parallel blocks of size P, and the ith symbol of each block is fed into a shift register of 

• length di = r1D,  j  = 0, 1,...,P —1. The outputs of the shift registers are then parallel to 

11/ 	 serial converted for transmission on the channel. ei 
• Note that this modular interleaver is a permuted version of the first one described 

I  
• i.e. all the shift registers of the varying lengths occur but in a different order. The previous 

one would then be an (P,D,1) interleaver. Thus, as before, the period of the interleaver 

• is P, the maximum delay is (P — 1)DP and the average delay is (P — 1)DP12. If one 

defines m-1 , k and k-1  by the equations mm-1 	1 mod P, k(mD +1) —m mod P 

• and kk -1 	1 mod P respectively (note that by assumption, le -1  exists), then it can be 

• shown that the inverse of a (P, D, m) interleaver is a (P,D,k) interleaver, and if k = m (i.e. 
• 

mD —2 mod P then the (P,D,m) interleaver is its own inverse. 

•
OD 

it is sometimes possible to realize modular interleavers as a cascade of two in- 
t. 	 terleavers. Suppose P = P1P2 and (Pi, P2) = 1. Then the first interleaver uses delays 

111 	 iPi D, 0 < i < P2 - 1 and a second uses delays jD,0  <j  <  Pi  — 1 ensuring that in a P 

• symbol interval a delay of kD is experienced by one symbol, k 0,1,...P —1. If (P1 , P2) > 1 

then let b be the smallest integer such that the least common multiple of P1  and bP2  is P. 

• Then the first interleaver uses delays iPi. D but operates on b symbol groups i.e. the b sym- 
• bols in the ith group of each bP2 symbol block experiences a delay of  iP1  D, i  = 0,1, ..., P2  -1.  

 •  I 	The period of the second interleaver is still  P1  with delays of jD, 0 < j <  Pi  — 1. 

• It has been observed that the periodic interleavers might not be suitable for jamming 
10 

channels where a periodic jammer would be very effective. To alleviate this problem it is 

• suggested in [13] that the ith delay path might be modified to have delay iD ji, i = 

0, 1,...,P —1, where the ji are small integers. 

•

a 
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Figure 4.1: Helical interlea-ver, n = 

It is noted that it is only necessary for the deinterleavers to establish synchronism 

modulo P for these modular interleavers, an improvement from the block interleavers where 
• 

synchronism modulo nb is required, usually necessitating the insertion of special synchro-

nization sequences. 

4.5 Helical Interleavers 

Helical interleavers are very similar to block interleavers with successive columns slipped by 

one symbol. Figure 4.1, taken from [15], illustrates the technique. 

Symbols are read in by columns of length four (say codewords) and read out by 

rows. In general the columns will be of length n and the number of columns will be n 1. 

Thus there is not the flexibility of choosing the "width" of the helical interleaver. 

The capital and lower case letters represent the same physical location of memory 

and it is easily verified that such an assignment works as claimed. Figure 4.2 demonstrates 

the order of the symbols into and out of the interleaver/deinterleaver. It is clear that the 

interleaver of Figure 4.1 has a period of 12, a minimum delay of 3, a maximum delay of 9 

and can be implemented with a RAM of size 6. - 

To extrapolate from Figure 4.1, consider the length 6 interleaver of Figure 4.3. 

The inherent symmetries of the helical interleaver are clear and the RAM size re-

quired for the helical interleaver of length n is n(n — 1)/2, the minimum delay is n — 1, the 
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time 	--> 

into interleaver: 	AB f aCDb cEF d e 
into channel: 	a bFA c dBCe f DE 
out of deinterleaver: AB f a CD b c EF d e 

Figure 4.2: Input/output of helical interleaver, n = 4, period 12 and overall delay 12. 

* * * * * 
A d e f 
BDg h i 
CEG j k 
1 F H J 
n oIKM 
ab cLN 
A d e  f0 

 BDg h i 
CEG j k 
1 FHJm 
* * * * 	* 

Figure 4.3: Helical interleaver, n = 6. 
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ABC  
A A D 
B A A 
C D A 
A BC 
A A D 
B A A 
C D A 
* * * 

Figure 4.4: Helical interleaver memory read-in sequence, n = 4. 

* * 	* 

A 

1 il 1 
A 	B 

1 
A 	D 

/ 
A 	C 
* * 	* 

Figure 4.5: Helica1 interleaver memory address generation, n = 4. 

maximum delay is (n — 1) 2  and the total interleaving delay is n(n — 1). In our previous 

terminology this would be referred to as an (n — 1,n) interleaver. 

The total interleaving delay of a helical interleaver can in fact be reduced to (n — 

1)(n — 2) + 2, close to the minimum maximum delay established earlier of (n — 1)(n — 2). 

An example [15] of the RAM organization and address assignment that achieves this delay, 

and also reduces the memory requirement to 4 (from 6) for the case of n = 4, are given in 

Figures 4.4 and 4.5. This address assignment technique is easy to extend for the case of n 

even and appears more difficult for n odd. 

The advantages of helical interleavers appear to lie in the reduced synchronization 

requirements, compared to block interleavers, and their relatively simple memory imple-

mentations. 
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Figure 4.6: The effect of deep staggering for n = 4,i = 3. 
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• Figure 4.7: The effect of shallow staggering for n = 4,i = 2. 

• The concatenation of helical interleavers with block interleavers is also considered 

in [15]. If a block interleaver precedes a helical interleaver, the combination is referred to 

• as deep staggered interleaving. If a code of length n symbols is used and an (i, n)  block 

interleaver is used, then the depth of the deep staggered interleaver is (n — 1)i. At the 

•
• 

output of the block interleaver, each block of i symbols is treated as a single character to 

• the helical interleaver. Thus the memory and total delay of the two helical interleavers 

is n(n — 1)i input symbols and the memory and total delay of the two block interleavers 

11111 	 is 2ni symbols. The staircase effect of the deep staggering is depicted in Figure 4.6, for 

n = 4,i =  3, where the step size is elongated with respect to the usual helical interleaver. 

• Interchanging the block and helical interleavers yields a shallow staggered interleaver. If 
a 	the code has length ni symbols then each i consecutive input symbols is treated as a single 

• character for the helical interleaver. The block interleaver uses a block length of i and is of 

• depth n — 1. The memory and total delay of the two helical interleavers is then n(n — 1)i 
• 

symbols and the memory and total delay of the two block interleavers is 2(n — 1)i symbols. 

• The staircase effect of shallow staggering is depicted in Figure 4.7 for n 	4,i = 2 where 

• the elongated step riser is observed. 
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4.6 Comments 

This chapter has attempted to survey interleaver design techniques. Since the essence of 

interleaving is the implementation of variable delay, it is natural to realize them in terms 

of delay lines. It is commented in [15] that when the delay lines begin to exceed several 

tens of thousands of bits long then a RAM implementation may be more effective. At this 

point one is advised to abandon the delay line concept and design the interleaver from the 

beginning from a RAM point of view. 

The actual performance of an interleaver in a system seems difficult to assess and 

depends on the actual distribution of delays rather than just the parameters b and n for 

example. One would like a graceful degradation of performance as the designed burst length 

is exceeded. It is hoped to further investigate interleaver properties and their impact on 

system performance in future studies. 
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• Chapter 5 

a 	Coding and Diversity 

a 
a 	5.1 Introduction 

• The purpose of this chapter is to consider certain questions on the trade-off between di-
al 	 versity and coding for systems, such as spread spectrum systems, where a low code rate 

•
fib 

is anticipated. Ultimately, the aim is to determine actual performance trade-offs in terms 

111 	of signal-to-noise ratios and probability of error. For this report however, only distance 

properties of codes, both block and convolutional, will be examined. 

• The work finds its origin in the interesting paper of Chase[19] who showed that in 

some cases wben a low rate code is to be used there is very little penalty in terms of code 

• distance, if any, in using a higher rate code and replicating the code symbols (diversity) 

• to achieve a lower rate. While this observation was not a focus of that work it appears 

to be an interesting one. The advantages of using a higher rate code with diversity is 

• the lower complœdty of the decoder. This theme is expanded upon here. Specifically, the 

trade-off between diversity and coding for codes over nonbinary alphabets is considered 

•
• 

from the point of view of minimum distance. The section 5.2 investigates this question 

• for convolutional codes. It begins with a closer look at the Heller bound for convolutional 

codes over Fq . Punctured convolutional codes are also considered to obtain good initial 

•
1111 

higher rate codes. Section 5.3 briefly considers the same problem for block codes where, 

for simplicity, only Reed-Solomon codes are considered. The section 5.4 considers future 

• directions for this work. 

• 
411 
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5.2 Diversity and Convolutional Codes 

A more general version of the Heller[20] bound for convolutional codes is first derived 

using a trivial extension of an argument in Ryan and Wilson[21]. Some implications of the 

bound are then considered and the question of the trade-off between diversity and coding 

is investigated using the bound. A subsidiary question of codes over alphabets of different 

sizes is also considered. 

5.2.1 The Heller Bound 

The Heller bound is proved in [21] using the Plotkin bound which, in its general form states 

that for a code (linear or nonlinear) with M codewords over Fq , the minimum distance 

between any two codewords, d, is upper bounded by 

The bound is essentially a reflection of the fact that the minimum distance cannot be greater 

than the average distance between codewords. 

To apply this to convolutional codes of rate b I n over Fq  with memory m = K — 1, 

the code generator circuit is viewed as having b shift registers, each of length k with n 

output adders with connections to the bK register cells. The generator matrix of the code 

may be viewed in the form 

where each gi  is abxn matrix over Fq . Consider input words of length (m L)b symbols 

comprising Lb data symbols followed by mb zeros. This gives rise to q1-'1' — 1 nonzero 

codewords of length (m 1)n. Applying the Plotkin bound to this situation then yields 

df  5 	 + (qm i) q  

and since L can be chosen as an arbitrary positive integer and df is an integer, we have 

	

Lb ( 	1) 

	

d f min L .'  " 	' (m + L)n . (g.Lb _ i)q 
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a 

• The bound appears to be the strongest for b = 1 i.e. for codes of rate 1/n for which it 

becomes • nL-1(q  _ 
• df  _< min L" 	(m + L)nj . 

L 	(qL — 1) 	 (5.1) 

It is observed in [21] that for most cases the minimization of Equation (5.1) is 

• obtained for values of L of 1 or 2 where L is the data sequence length. This situation is 

first investigated. For L =1 the bound is (recall that m = K —1) 

• Equation (5.1) becomes 

• d(2)  < 	 
q2  — 1 

	= 
(q1) 
	(K -1-1)71 

f 	 + 

• whià can be manipulated to 

• 42)  < [nE + 	. 	 (5.2) 

• The argument in Equation (5.2) is less than nK if  K>  q, requiring the considera-
te 

• 43)  < LnK (q —1)n{ 2q2  ---
1

g(q + 1)  }j . 	 (5.3) • q3  - 
• It is an easy matter to verify that 43)  < 42)  if E > q2  q — 1 and also that if K > 

• 2q2 1(q +1) = 2(q —1) +21(q + 1) or K > 2q — 1, then 43)  < 41) . 
• From such arguments a dear picture emerges as to when path lengths greater than 

one must be considered to achieve d1.  For the remainder of this section interest will be 

• largely in convolutional codes over Fq  that achieve (11 = nK and so these observations 

are not of direct interest. It is likely however that they will become important for later 

• investigations. 

a 
• 67 
a 
a 

a 

a 
• d(f1)  nK 
• 

and in many cases that will be of interest here, this bound is actually achieved. For L = 2 

tion of paths of length at least 2. 

• When L = 3 the argument in Equation (5.1) is 

q3 -1  
	

(q3  — 1)
(K + 2)n 

a 
• and the bound can be manipulated to 



K Rate 1/2 	Rate 1/4 
d1 	dbound 	d f 	dbound 

3 	5 	5 	10 	10 
4 	6 	6 	13 	13 
5 	7 	8 	16 	16 
6 	8 	8 	18 	18 
7 	10 	10 	20 	20 
8 	10 	11 	22 	22 
9 	12 	12 	24 	24 
10 	12 	13 	27 	27 
11 	14 	14 	29 	29 
12 	15 	16 	32 	32 
13 	16 	16 	33 	33 
14 	16 	17 	36 	36 

Table 5.1: Maximum free distance for rate 1/2 and 1/4 binary codes (Larsen[22]). 

5.2.2 Diversity versus Coding 

The question of the trade-off between diversity and coding is considered from an elementary 

point of view in that codes are compared for free distance. While simplistic, this approach is 

adequate for the present purpose. Denote by r the rate of a convolutional code and by 1 the 

order of diversity i.e. each symbol is repeated 1 times and by  (r, 1)  a combination of coding 

and diversity to give an overall code rate of r11. The purpose here is to determine under 

what conditions it is possible to achieve the same, or similar, df with an (r, 1)  combination 

as with coding alone. The complexity of decoding a convolutional code of rate 1/n over 

Fg  with memory m (shift register length E = m +1) is proportional to  q " 1 ,  and this 

quantity will be independent of the code rate for the codes of interest here. Nonetheless 

when using a low code rate there may be advantages to implementing it as a high rate 

code with diversity. Although the Viterbi decoder will have the same number of states, 

the implementation can take advantage of the diversity to achieve simplifications. Consider 

first the work of Larsen[22] who found, by computer search, rate 1/2, 1/3 and 1/4 binary 

codes that achieve maximal free distance. Part of those results are reproduced in Table 5.1 

where the bound is that of Equation (5.1) for the appropriate parameters. 
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1 	df dbound 

1 	10 	10 
2 20 	20 
4 40 	41 
8 80 	82 
16 160 	164 
32 320 329 
64 640 	658 

Table 5.2: The coding/diversity example of Chase[19]. 

It is seen that in most cases the bound is close to being adlieved and that in some 

cases the best rate 1/4 code can be achieved by using a rate 1/2 code with diversity 1 := 2 

diversity. 

In a similar vein, Table 5.2 shows the observation of Chase[19]. Starting from the 

well known rate 1/2,K = 7,c11 = 10 code, the minimum distance achieved using diversity 

1= 2i  is compared with  the bound of Equation (5.1). 

It is noted that the relative difference between the distance achieved with diversity 

is small compared to the maximum possible by the bound of Equation of (5.1). It is not 

known if the bound is tight for the very low rates but it is clear from this information that 

it would be easier to implement the rate 1/2 code with diversity 2i than the best rate 1/2i 

code. Again the evidence indicates that it will involve very little loss to implement the high 

rate code with diversity compared to the corresponding low rate code. 

A few comments on the q-ary case will support the same general conclusion. It 

appears from equations (5.1) to (5.3) that for q > le, rate 1/n codes exist over Fg  with 

df = nE. In the following this will be assumed to be the case without specific mention of 

it. 

For rate 1/2 codes, df = 2K and for rate 1/4 codes (11 = 4K. Clearly the rate 1/4 

codes are easily achieved by using a rate 1/2 code with 2 diversity i.e. a (1/2,2) code rather 

than designing a rate 1/4 code. It is also possible to consider starting with a rate 3/4 code 

and using a 3-diversity i.e. a (3/4,3) code. Since the free distance cannot be improved upon 

and the simplest way to achieve the rate 3/4 code would be to puncture a rate 1/2 code, 
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(2/3,2) 	1/3 
K 	d 	2df df 
2 	3 	6 	6 
3 	4 	8,9 
4 	6 	12 	12 
5 	7 	14 	15 
6 	9 	18 	18 
7 	10 	10 	21 
8 	12 	24 24 

Table 5.3: Rate 1/3 q-ary codes. 

there seems little point in pursuing this approach. 

For a rate 1/3 code it appears they can be constructed with df  = 3E for all q> K. 

In fact they can be constructed by puncturing every fourth symbol of the rate 1/4 code 

(which we have observed can be constructed as a (1/2,2) code) and this does indeed yield 

a code with df = 3E. To illustrate another (inferior) approach consider the following. For 

the rate 1/2 code, puncture every fourth symbol to yield a rate 2/3 code. Use this code in 

a (2/3,2) code to give a rate 1/3 code. The free distances achievable by this approach are 

shown in Table 5.3. 

As noted previously it is assumed that q is sufficiently large (> 8) to allow the 

existence of maximal clf codes. 

Consider next the rate 1/6 codes. Clearly the maximum free distance of 6K can be 

achieved by using either a maximum distance rate 1/2 code and 3 diversity or a maximum 

rate 1/3 code and diversity 2. The rate 2/3 code mentioned previously obtained by punc-

turing might also be used with 4 diversity to give the results of Table 5.4, in which only 

the codes for even values of K give the maximum free distance and for K odd have a free 

distance of two less than the maximum possible. 

Rate 1/5 codes with maximum free distance can be obtained by puncturing every 

sixth symbol from a maximum free distance rate 1/6 code. 
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K d 4d d f = 6K 
2 3 12 	12 
3 - 4 16 	18 
4 6 24 	24 
5 7 28 	30 
6 9 36 	36 
7 10 40 	42 
8 12 48 	48 

Table 5.4: df for the (2/3,4) codes compared to the 1/6 codes. 

5.2.3 The Role of the Alphabet Size 

Implicit in much of the discussion found in the literature on q-ary convolutional codes is the 

notion that q is chosen so that some natural modulation scheme such as q-FSK or q-PSK is 

to be used. For q-ary block codes, however, in particular Reed-Solomon codes, it is not at all 

uncommon for q-ary symbols to be transmitted as bit streams by some binary modulation 

scheme. This section initiates a discussion on the problem by considering the construction 

of codes to be transmitted for one value of q but constructed from another value of q. The 

discussion is very preliminary and only one simple example is considered as an introduction 

to the kind of problems of interest. 

Consider a rate 1/2 code over Fq  for K = 4 and df = 8. The code could be decoded 

using a Viterbi decoder with 83  states (high by current practice). If pairs of symbols are 

grouped together and interpreted as symbols of F64 , the coded stream can be viewed as 

coming from a rate 1/2 code over F64, df = 4 although some caution is required for this 

interpretation. There may be some advantage to reviewing the relationship between q and 

the modulation system used. Again the determining factor will be in the error performance. 

5.3 Diversity and Reed-Solornon Codes 

The arguments of the preceeding section can be repeated for block codes. It is easier and 

more instructive to deal only with Reed-Solomon codes. The extended Reed-Solomon codes 

over Fg  have the parameters: length = q, dimension k and minimum distance = q — k + 1. 
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Assume that a low rate code r = klq is to be used with distance q — k +1. The minimum 

distance is relatively high and the code is capable of correcting many errors, implying a 

relatively complex decoding algorithm. Suppose now that /-diversity is used i.e. a (kit q,1) 

code/diversity combination, kl < q. The minimum distance of this code (now of length lq) 

is 1(q — lk +1). The structure of this code might allow novel uses of the diversity before 

using the lower error correction capability of the code. Notice that the minimum distance of 

the (kl I q,1) code is greater than that of the coded case only when lq — 1 2 k +1 > q— k +1 or 

when k < (q-1-1)1(m +1). For example, when 1 = 3 and q = 256 this gives k < 257/4 = 64 

indicating that perhaps the code with diversity has an advantage over the pure code case 

for these parameters. 

Notice that although the (lklq,1) decoder is less complex than the klq code, since 

it is required to correct far fewer errors, it does in fact have an effective block length of 

1 times that of the pure code case. It is argued however that this extra length does not 

significantly add to the decoder complexity and the comparison of the two systems is fair. 

Again the final determination between the two systems will be in the error perfor-

mance which in turn will depend on how the diversity information is used in the receiver. 

These are topics for future investigation. 

5.4 Comments 

This initial investigation has considered the trade-off between diversity and coding from 

the point of view of minimum distance for both block and convolutional codes. Of more 

importance is the translation of the trade-offs considered here into an understanding of how 

it affects system performance on a variety of cha,nnels, such as the additive white Gaussian 

noise, Rayleigh fading and interference channels. Future work will consider these questions 

and attempt to determine guidelines for this trade-off. 
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Chapter 6 

Repeated Convolutional Codes for 
High Error Rate Channel 

6.1 Introduction 

In this chapter, we consider error correction schemes that can correct errors at the output 

of a high error rate channel. Such a large channel error rate may result from the presense of 

strong interference or jamming. Conventional error correction schemes, such as the widely 

used constraint length 7 and rate 1/2 binary convolutional code due to Odenwalder[23] 

which is an international standard[24], may fail in such situations. It is clear that a low rate 

code must be used for such a channel by considering the channel capacity or cutoff rate. 

Recently, Kasami, et al have considered a cascaded coding scheme for a binary 

symmetric channel (BSC) with a large error probability pe  [25]. Their sclieme consists of 

two linear block codes. The inner code (closer to the channel) is a binary code and the 

outer code is a Reed-Solomon (RS) code. The parameters of the inner and outer codes have 

to be properly chosen to match each other in order to obtain a good performance. It turns 

out that for a large pe  whether a coding scheme works or not is very sensitive to pe . For 

example, in [25], a scheme that consists of (63,31) RS outer code and (32, 6) biorthogonal 

inner code works well at pe  = 0.2 but will not work at pe  = 0.3. The sensitivity to the values 

of pe  and the somewhat rigid structure of the cascaded scheme implies that we should know 

pe  before designing a coding scheme. Also, two encoder/decoder systems are needed for a 

cascaded scheme. In a jamming environment, however, it is hardly possible to predict pc . 
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Thus a system that can easily adapt to the actual I), would be desirable. 

In 1977, Shaft searched low rate convolutional codes and considered their use to 

combat burst interference[26]. Use of repeated convolutional codes seemed to be favored. In 

1985, Chase proposed the scheme again for BSC more clearly with well made arguments[19]. 

To show that repeated binary convolutional codes are near optimum, both Shaft and Chase 

compared their free distances with Heller's bound for binary convolutional codes[20]. Chase 

also made a comparison of code rates with the channel capacity of BSC. 

Nevertheless, there are still some practical problems that need to be addressed. 

For instance, for the BSC, if each code symbol is repeated m times, maximum likelihood 

decoding requires m 1 levels of quantization. Since m can be very large for a high channel 

error rate and practical convolutional decoders have a finite, and likely a smaller number 

of quantization levels, what is the corresponding performance degradation? Further, can 

we use a repeated binary convolutional code for an M-ary symmetric channel (MSC) and 

what is the best way to generate a binary decoding metric for use in the binary decoder? 

This question is motivated by the fact there are commercially available binary codecs at 

high speed and considerable efforts are being made to further improve the speed and reduce 

the cost of such codecs. 

In this chapter, we consider repeated convolutional codes for an MSC (with BSC 

as a special case) with a large error probability p e . The value of I), can be near, but smaller 

than, 1 — 1/M for which the channel capacity is zero. In Section 6.2, we focus on the 

BSC and begin with a conventional analysis based on the union bound for BSC. For a 

large m, the central limit theorem is applied to provide another analytical tool. In Section 

6.3, Monte Carlo simulation results for BSC are provided and compared with theoretical 

analyses. The quantization effect is shown. Based on these results, we compare the code 

rates of repeated convolutional code with the channel cutoff rate. In Section 6.4 we consider 

the use of a binary code over an MSC. The emphasis is placed on the methods to generate 

binary decoding metrics and their performances. 
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6.2 Theoretical Analysis for BSC 

In this paper, we are particularly interested in the above mentioned Odenwalder rate 1/2 

constraint length 7 convolutional code. The single-chip encoder/Viterbi decoder is com-

mercially available at a low price from several sources. The decoder normally has up to 

eight levels of quantization. We consider the Viterbi decoding which is maximum likelihood 

decoding when infinite quantization is assumed. Each M-ary channel symbol is repeated 

m times. We call m the repetition order. 

In the case of BSC, for each encoded symbol, it is repeated rn times over a BSC. 

The BSC is assumed to have a large error probability (transition probability) I), which is 

in the neighborhood of 0.1 or higher, but of course, smaller than 0.5. BSC is a proper 

channel model for anti-jam communication systems with complex demultiplexing between 

demodulator and decoder. In sua a situation, the decoder has to cope with a liard  decision 

channel and explicit and/or implicit interleaving/deinterleaving makes the errors random. 

One example of possible implicit interleavineleinterleaving is a multiplexed multi-user sys-

tem where each user has a decoder after demultiplexing. 

It is clear that for two trellis paths at Hamming distance d, the repetition of order 

m will increase the distance to d x m. It is well known that the decoder output bit error 

rate (BER) Pb can be upperbounded by an exponentially tight union bound. Specifically, 

suppose the Pd is the pairwise error probability of two trellis paths with Hamming distance 

d, then 

Pt < E cd pdm 	 (6.1) 
d=d ree 

where df ree  is the free distance of the convolutional code and Cd is the total number of 

information bit errors when pairwise errors between paths with Hamming distance d occur. 

For the Odenwalder code, Cd is nonzero only for even d and d > 10, since df„e  = 10. Over 

the BSC, for an even d, 

Pd 
	 ( d d 

),,,d12(1_ pey12 	E 	d 	 \ 
Pel-L 	Fe

d—i
' 	 (6.2)l 2 dI2 

i=d12-1-1 

Cd can be found by expanding the transfer function of the convolutional code or using 

computer search through the trellis of the code. For the Odenwalder code, the first nine 
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terms are[: Cio = 36, C12 = 211, C14 = 1,404, Ci6 = 11,633, C18 =  77,433, C20 = 

502,690, C22  = 3,322,763,  C24 = 21,292,910, C26 = 134,365,911. 

Using Equations (6.1) and (6.2), for m = 3, 7 and 15, respectively, Pb is plotted 

versus pe  for the Odenwalder code in Fig. 6.1 using the first term, the first four terms and 

the first nine terms of Cd, respectively. It can be seen from the figure that nine terms of the 

transfer function provides a sufficiently accurate bound, especially at a low Pb. The results 

using the first nine terms are used in the rest of the paper. In fact, it has been known 

that the union bound provides an accurate approximation for a low Pb provided enough 

quantization levels are available to facilitate the maximum likelihood decoding (MLD). For 

MLD it is well known that the decoding metric should be 

= Erki 	 (6.3) 

where rki is the received i-th repeated symbol (0 or 1) over the BSC for k-th convolutional 

encoded symbol. Here mtk = 0 represents the k-th encoded symbol to be most likely a 0 

and mtk = m represents the k-th encoded symbol to be most likely a 1. For eight levels 

of quantization from 0 to 7 (where 0 represents the most reliable logic 0 and 7 represents 

the most reliable logic 1), uniform quantization is natural and reasonable. Then, the above 

metric is modified as 

•

mik 	 rki  x 7 -I- 0.5j 

where Lxi is the largest integer not exceeding x. 

As mentioned earlier, the repetition order m must be large in order to correct the 

errors with a large probability pe . For a large m we may apply the central limit theorem or 

the Gaussian approximation of the binomial probability distribution. Consider the following 

metric which is equivalent to Equation (6.3) 

i=m 
Ei—i (- 1 )rki  ak — 

Note that (-1)ri has a mean E =1-2p, (= (1— pe ) X 1 + pe  X (-1)) if the k-th encoded 

symbol is 0, and a mean E = —(1 — 2/4) if the k-th encoded symbol is 1. The variance is 

the same and is given by 

= — ( 1  — 2Pe)] 2 ( 1  Pe) + [-1  — ( 1  — 2Pe)1 2Pe= 4Pe( 1  — Pe)• 	(6.6) 
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Figure 6.1: Union bounds for the repeated Odenwalder code over the BSC using the first 
term, the first four terms and the first nine terms of the transfer function, respectively. 
m = 3, 7 and 15. 
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By use of the central limit theorem (see, e.g. [27]), we know that 

- E]  flk  = 
yrn 

is a zero-mean Gaussian random variable with variance .72  when m -› oo (or m is very 

large). Since 

1 Eii:fin (-4)rki 	1 [r[( - 1)rk 1  - E)] -1- mE 	)3k 
E v 772 	V 772 	 vm 	 N/777, 

then, for a large m, ak is also a Gaussian random variable with mean equal to E and 

variance 
2 	4Pe(1 Pe)  

— 

Thus for a sufficiently large m, the variance can be reduced to an arbitrarily small num-

ber. Compared with the coherently demodulated BPSK in additive white Gaussian noise 

(AWGN) with the noise spectral density N0 [10], the asymptotical Gaussian distribution 

of ak implies an effective symbol energy (half of the bit energy for the rate 1/2 code) 

= (1- 2/4)2  and an effective noise spectral density NU2 = cr e,2 , i.e., 

E's1N 	
4(122

o= 	m. 	 (6.10) 
pe

2  
) 

Note the effective signal to noise ratio is proportional to the diversity order m. Since the 

simulated or measured BER curve for the Odenwalder code is well known (see, e.g. [8]), 

for a large m and a given pe , we can use Equation (6.10) to determine the required E.97.11T1) , 

and thus m to sustain a required Pb. Even for a small m, the Gaussian approximation can 

be used to estimate the required m, and then adjust it therefrom. 

Since the simulated or measured BER curves for the Odenwalder code take into 

account the finite levels of quantization and other practical constraints such as a finite trel-

lis length, these factors are also included in the BER curves of the repeated convolutional 

code if the Gaussian approximation is used. In other words, for a large m performance 

degradation due to finite quantization, etc., will be about the same as what wé have known 

for the convolutional coded coherent BPSK in AWGN. 

In Fig. 6.2, Pb, obtained from Gaussian approximation, vs. pe  is given for m = 3, 

7, 15, and 31, respectively. For m> 7, eight levels of quantization and trellis length 84 are 
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assumed. This trellis length is considered instead of five or six times the constraint length 

because 84 or so has been used in commercial realizations in order to accommodate the 

punctured rate 3/4 code[24]. For m < 7, MLD decoding is assumed which can be material-

ized with eight levels of quantization. In this case, the interest is to see the approximation 

error of the Gaussian approximation. For comparison, the results based on the union bound 

are also given in Fig. 6.2. 

It can be seen from the figure that for a small m the Gaussian approximation results 

in a lower BER. For a reasonably large m (e.g. m > 15) the Gaussian approximation seems 

to be fairly accurate which needs to be verified by simulation. 

It is also noted that for m = 31, the BER obtained from Gaussian approximation is slightly 

higher than the union bound. The basic reason for this difference is that for the union 

bound, ideal maximum likelihood decoding is assumed, i.e., no quantization and infinite 

trellis length, etc., while for the Gaussian approximation curve, practical constraints have 

been taken into account. 

6.3 Computational Results for BSC 

In order to verify the BER performance, Monte Carlo simulation has been performed. The 

trellis length is 84 and eight levels of quantization is assumed and Equation (6.4) is used 

to generate the metric for various m. Fig. 6.3 shows simulated Pb vs. I), for m = 3, 5, 7, 

15 and 31, respectively. Union bounds and the Gaussian approximation are also shown for 

comparison. For the latter only m = 15 and 31 are considered because m is supposed to be 

large for the Gaussian approximation. 

It can be seen from the figure that for m < 8 the union bound, which assumes 

the MLD, is almost exact. Note now for m = 3, we have metric 0, 2, 5, 7 which means 

that we are not doing exactly MLD. This applies to m = 5 as well. But the performance 

degradation is insignificant. For a large m, the Gaussian approximation is fairly close to 

the simulation results. Note that finite quantization results in a higher BER that is not 
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upperbounded by the union bound, and in fact, Gaussian approximation is more accurate 

than the union bound at a high BER. 

For m = 5 the overall code rate is 0.1 which is slightly higher than the rate, 0.092, of 

the abovementioned coding scheme considered in [25] with comparable BER performance. 

In consideration of its simplicity, the repeated Odenwalder code is favoured. 

Fig. 6.4 shows the cutoff rate Ro  for the BSC[27] and the overall code rate r = —1— 2m 

to sustain Pb = 10-4  (based on the simulated BER) which was also used in [19]. From this 

figure, it seems that r moves doser to Ro  as pe  increases. But from r/Ro  vs. pe  as shown 

in Fig. 6.5, r decreases faster than Ro  as pe  increases. Nevertheless, it is interesting to note 

that the deviation between r and Ro  is bounded: as pe  approaches 0.5, r approaches 0.6R 0 . 

If compared to the channel capacity, r is near 30 percent of channel capacity. In conclusion, 

the repeated Odenwalder code can achieve more than one half of what is promised by the 

cutoff rate even for very large pe , say, 0.3 to 0.5. 

6.4 M-ary Symmetric Channel 

In this section, we consider the M-ary symmetric channel  (MS C)  with high symbol error 

probability, which is illustrated in Fig. 6.6. Here pe  is the symbol error probability, which is 

near 1—k, but smaller than it. Again, the coding scheme consists of an outer convolutional 

code and an inner repetition code where each M-ary channel symbol is repeated m times. 

This MSC model directly reflects the hard-decision demodulated fast frequency hopped 

MFSK (FFH/MFSK) where the repetition is inherent in the system. Here we are especially 

interested in M  = 4 and 8. Previous work has shown that, under certain conditions, 

they represent best compromise in order to combat both partial band noise jamming and 

multitone jamming (see, e.g. [4]). As mentioned earlier, hard decision may be due to 

complex demultiplexing between the demodulator and decoder. We first consider a Trumpis 

code[30] as the outer code which is optimum for an M-ary orthogonal channel. 4-ary and 

8-ary R = 1 bit/channel symbol Trumpis codes with constraint length 7 are considered. 

This code has the same implementation complexity as the Odenwalder code because of the 

same constraint length. In view of commercially available binary codecs, we then consider 
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the possible use of the constraint length E =7, rate R= Odenwalder code for the MSC. 

The emphasis is placed on how to generate binary decoding metrics. 

6.4.1 M-ary Metric 

For the Trumpis codes, it is known that the union bound of the decoder output BER Pb is 

[30] 

Pb < 7  P7m + 39-P87  + 104P9m ± 352Pi0m  1187Piim + • • for 4-ary channel 	(6.11) 

and 

Pb < P7m 4P8m 8P9m 49Piom  92Pnm + • • • for 8-ary channel 	(6.12) 

where Pd is the pairwise error probabi lity between two trel lis paths with Hamming distance 

d. 

To consider the use of the Odenwalder code over a 4-ary symmetric channel (4SC), 

the most natural way is as follows. Recall that the encoder of the rate 1/2 code generates a 

pair of encoded bits at the encoder output for each incoming information bit. This pair of 

encoded bits can be considered as a 4-ary symbol and transmitted in times over the 4SC. 

In decoding, ideally, two encoded bits corresponding to one trellis branch will be assigned 

a 4-ary metric. This assumes that the decoder can accommodate 4-ary metrics. Using a 

trellis search algorithm, we found the union bound of the decoder output BER Pb as 

Pb < 	P6m 10P7m 38P9m 92P9rn  355Piom  1440-Pum  

+4684Pum  16043/13m + 52240/314m  + 170679Pi5m  + • • • 

Note the Trumpis codes are optimum over MSC in the sense that they have the 

largest M-ary free Hamming distance (7 for the 4-ary code) and fewest information bit 

errors due to path errors at the free distance. The Odenwalder code is not optimum for the 

4SC. The free 4-ary Hamming distance is 6, which is one less than the optimum Trumpis 

code. But the number of information bit errors due to an incorrect trellis path at the free 

distance is only one. Thus we may expect that the Odenwalder code will have near optimum 

BER performance. 
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The use of the Odenwalder code over 8-ary symmetric channel (8SC) is similar. The 

encoder of the rate 1/2 code generates three pairs of encoded bit for every three incoming 

information bits. Then the first pair of encoded bits and one bit of the second pair of 

encoded bits are considered as an 8-ary symbol. The other bit of the second pair and 

the third pair are considered as another 8-ary symbol. Each of these 8-ary symbols is 

transmitted over 8SC m times. At the decoder, an 8-ary metric will be assigned to three 

encoded bits corresponding to one and a half trellis branches. Of course, it is assumed that 

the decoder can accommodate an 8-ary metric. We found the union bound of this kind of 

decoder output BER as 

Pb < 	3P5m 28P6m 83P7m  649P8m  2419P9m  10295Pi0m 

+45175Piim 193378Pum  + • • • 	 (6.14) 

By comparing with (6.12), we find the Odenwalder code is not bad over 8SC. The 

8-ary free Hamming distance is 7 for the rate 1/3 Trumpis code, and 5 for the rate 1/2 

Odenwalder code. 

For the MSC with a repeated M-ary code, the maximum likelihood decoding met-

ric for each M-ary symbol is the Hamming distance between the sequence of m repeated 

symbols and the corresponding received symbol sequence of length in. Here it is implied 

that for an M-ary symbol, a smaller metric is more favorable in that the M-ary symbol is 

more likely to be transmitted. This MLD metric is an M-ary metric in the sense that there 

are a total of M metrics for all M M-ary symbols. 

For MLD, we can find the pairwise error probability between two paths with Ham-

ming distance d, Pd. Recall that the exact meaning of Pd is, given a correct transmitted 

trellis path, the probability of a specific trellis path at Hamming distance d having a more 

favourable path metric than the correct path. Let us consider one symbol period where 

there is a symbol difference from the two paths. The correct symbol is called c and the 

symbol from the incorrect path is called e. Because  M> 2, the MSC output can be neither 

c nor e. In fact the probability for the channel output to  bec or e, denoted as pce , is given 

by 
Pe  

Pce = 1  — Pe + 	• 
M — 1 
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Then over d symbol periods where two paths have different symbols, there can be j (0 < 

j G d) periods where the channel output is neither c nor e and hence no contribution can 

be made to the metrics for either c or e. We can calculate a conditional pairwise error 

probability 4(j) over the rest d - j symbol periods where the channel output must be 

either c or e with probabilities (which are conditional probabilities under the condition that 

the channel output must be either c or e) of 1-- =P-1,  and p-724-1-1),  respectively. Specifically, 
Pce 	 ce0 

we have 
d—j (d j 	 i (1 - pe yi— j—i  

P(j) . 	
d - j 	- E (1 _ 0.56(i — —2--)) 	i  ) 

( 
( 	Pe 	) 	 (6.15) 

1/ - 1-)Pce 	Pce ) 
i=rci---M 

where [xl is the smallest integer greater than or equal to x, and 

5(x)=  { 1 
if x = O.

'  .- 	0 otherwise. 

In fact, the 8 function is equal to 1 (so that  1- 0.58 = 0.5) only if d- j is even and i = 

Otherwise b function is 0 and 1 - 0.58 = 1. The probability that j of d periods where the 

channel output is neither c nor e is 

ni,d) = ( d  ) Pcdji  ( 1  - Pce)j  . 	 (6.16) 
./ 

Therefore, the pairwise error probability is 

d 

E P(i,d)ni) 
j=0 

Pd 

(d 	(1  _ pce v x  

d—j 
E (1 — 0.58(i d j))  d 	( 	Pe 	(1 	Pe  

2 	 /9ce(M - 1)) 	Pce ) 

There is a factor Pcde-j in the inner summation and it can be canceled with the one at 

outside. So finally we get 

Pd -= 
d E 3d.  (mm  2ce)i 

j=0 

d—j 
x E (1 —  0.58(i- 

 d - j 
--2—)) d - j 	

M 	
(1 - 	(6.17) Pe 

- i=1,1711  
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Using Equations (6.11), (6.13) and (6.17) for m = 3,7,15, and 31, the bound of Pb 

versus p e  is plotted for the Trumpis code and Odenwalder code with M-ary MLD decoding 

metric in 4-ary channel in Fig. 6.7 ( curve a and b). From this figure, we can see that the 

Trumpis code is indeed better. However, it is interesting to note that the performance of 

the Odenwalder code is only slightly inferior to that of the Trumpis code. This is the basis 

for considering the use of the Odenwalder code over the 4-ary channel. 

Using Equations (6.12), (6.14) and (6.17) for m = 3,7,15, and 31, the bound of Pb 

in an 8-ary channel is plotted in Fig. 6.8 (curve a and b). It appears that the performance 

of the Trumpis code is much better than that of the Odenwalder code in the 8-ary case. 

But recall that the 8-ary Trumpis code is a rate 1/3 code. So the code rate of this Trumpis 

code is only two thirds of the code rate of the Odenwalder code. The direct comparison in 

Fig. 6.8 is not fair. 

Since the whole code rate of the repeated Trumpis and Odenwalder code are 

and respectively, if the repetition order m for the Odenwalder code is chosen to be 50 

percent larger than that for the Trumpis code, the code rate for both repeated codes are 

the same, and then comparison can be made. So the union bound of Pb for the Odenwalder 

code with m = 5, 11, 23, and 47, and with m = 4, 10, 22, and 46 are plotted in Fig. 6.9. 

The bound of Pb for the Trumpis code with m = 3,7,15, and 31 are also plotted in Fig. 6.9. 

The corresponding code rate of the three groups are almost the same, but code rates of the 

Odenwalder code with m = 5,11,23, and 47 are a little bit lower than that of the Trumpis 

code, and code rates of the Odenwalder code with m=4,10, 22 and 46 are a little bit higher. 

From Fig. 6.9, we can see that for BER less than 10 -4 , the curve for the Trumpis 

code is in the middle of the space between the two curves for the Odenwalder code. Consid-

ering two curves corresponding to the Odenwalder code with a higher and a lower code rate, 

respectively, we can see that the repeated Odenwalder code would have almost the same 

performance as the repeated Trumpis code at the same overall code rate. Therefore, the 

same conclusion as in 4-ary channel can be drawn that the performance of the Odenwalder 

code is only slightly inferior to that of the Trumpis code. Because the comparison is based 

on the union bounds which are quite loose at high BER area, and the number of terms used 

in computing those union bounds are different, our comparison is only made at a low BER. 
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Union bound for Odenwalder code with 4-ary metric 
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Pb 

Figure 6.7: The union bound for the repeated Trumpis code and Odenwalder code with 
three kinds of metrics over 4-ary symmetric channel. m=3,7,15, and 31. 
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kinds of metrics over 8-ary symmetric channel. m=3,7,15, and 31. 
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Note that the union bound for the Odenwalder code is based on the assumption 

that the decoder can accommodate M-ary metrics for MLD. This is generally not the case 

if we want to use commercially available decoding chips directly. In this case, the decoder 

is designed to accommodate binary metrics only. With this constraint, the above union 

bound should be understood as an upperbound for the BER performance of the decoder 

using binary metrics. But the free M-ary Hamming distance of the binary code shown in 

the union bound of Equation (6.13) and the corresponding error coefficient provide a basic 

indicator on whether or how well the binary code can work over the M-ary channel at all. 

Since the performance degradation of the Odenwalder code is small relative to the 

optimum Trumpis code using M-ary metrics, the code is a good candidate for the M-ary 

system from a practical point of view. The practicality is that we can use commercially 

available codec chips provided we can properly generate binary decoding metrics. Further 

performance degradation will be introduced by using binary metrics because a binary met-

ric is not a MLD decoding metric in an M-ary channel. How much the degradation will be 

depends on how binary metrics are generated. In the following sections, we consider several 

possible methods of generating binary decoding metrics and their performances. 

Binary Metric Approximation of M-ary Metrics 

Since the use of a binary decoder requires binary metrics, M-ary metrics can not 

be used directly in binary decoder. The most natural attempt would be to approximate 

M-ary metrics with log 2  M binary metrics. This method avoids interleaving. 

Since the trellis decoding is based on comparing the metrics of different trellis 

paths, adding a number to all M metrics in one symbol period will not affect the decoding 

performance. Therefore, we only need to be concerned about differences between metrics 

for different M-ary symbols. There are M — 1 M-ary metric differences. 

Let moo , moi , m10  and mn  be the 4-ary metrics, respectively. The maximum like-

lihood decision decoding requires that branch metric for symbol ij is and the survivor 

has the smallest path metric. Thus MLD can be implemented by considering three differ-

ences between four miis. Unfortunately, they can not be represented by two binary metrics 
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exactly. 

Assume the metric range is [0,7]. Without loss of generality, we assume moo  to be 

the smallest. Suppose the branch metric is Boo  =  a+ b corresponding to two binary metrics 

for symbol 00, a and b. Then for symbol 01, the branch metric is Bol = a + 7 — b. And we 

have 

Boo  — Bol  = 2b — 7. 

Because moo  < mol, it is natural to require Boo  — B01 < 0, i.e., b < 3.5. If we require 

Boo — Bol = moo — moi 

then 

2b — 7 = moo — mol 

hence 

b = 7 — (mol — moo) 

For symbol 10, the branch metric B10 = 7 — a + b. Similarly, because moo < 

a <3.5. And if we let 

Boo — B10 = moo — mio 

then 
7   a 	— (mio — moo)  

2 

For symbol  11, the branch metric B11  is 

2 

Because a < 3.5 and b < 3.5, 

and 

B 11  =7—a+7—b. 

— B01 = 7 — 2a > 

Bn  — B10 = 7 — 2b > 0. 

This means that no matter what mn  — moo  is, the term B11  always gives the least favorable 

metric. This problem is inveitable as long as there are only two binary metrics used. This 

is simply because if 00 is the most favorable symbol, 11,  which is the farthest symbol to 00 
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in binary Hamming distance, should be the least favorable in binary metric representation. 

Thus the 4-ary metric m 11  is not always preserved depending on its value, but the metrics 

rnio and m01 are genuinely preserved. 

In summary, the proposed method to generate binary metrics to approximate 4-ary 

metrics is as follows: 

1. Find mii = min(moo, mcn , 	mil), where i, 	(0, 1). Denote 1's complement of i 

as i and j as 3. 

2. Then compute 
7  — ( 772;ii mii)  a- 

b   = 	  

2 
7 — (m1.7 — mii) 

2 

3. The actual two binary metric sent into the decoder, b 1  and b2  are 

b1  a(1 — i) + (7 — a)i, 

b2  = b(1 — j) +  (7—  b)j. 

For a larger  M,  for example, M =  8, there are seven 8-ary metric differences but 

only three binary metrics. The method given above can only accurately represent three out 

of seven differences. Thus it does not appear to be proper to extend the method to a larger 

M.  In the following sections, we consider more general methods. The basic principle of 

these methods is to generate  "sensible"  binary metrics directly from M-ary metrics without 

attempting to approximate them. 

6.4.2 Binary Metric Generation 

When a binary code is used over an M-ary channel, the log2  M encoded bits at the output 

of encoder are mapped into M-ary symbols through a one-to-one mapping. At the receiver, 

the received M-ary symbol is mapped back to the group of binary bits, and the corre-

sponding metric for each binary bit is generated accordingly. The optimum binary metric 

generation method is the one which has the BER performance closest to that of Odenwalder 

codes with M-ary metrics, i.e., the curve b in Fig. 6.7. Here we propose a binary metric 
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generation method called the direct binary metric generation method. 

Direct Binary Metric Generation Method 

At the receiver, after receiving m M-ary symbols, we can generate the binary metric 

in the following way: 

1. Mapping m received M-ary symbols back to m binary bits groups, respectively. 

2. For each of log2  M bits, accumulate over m repetitions the number of 0 or 1 received 

and form a binary metric like the one discussed in Section 2 for BSC. 

3. Feed these binary metrics to the decoder in a certain order. 

For example, for 4-ary symbols 0,1,2, and 3, we can map them to four groups of two 

binary bits, say, 00, 01,10, and 11, respectively. If m = 3 and the three received symbols 

are 0, 1, and 3, the corresponding two binary metrics are 1 and 2. 

"Certain order" in step 3 depends on whether interleaving is used or not. Here we 

analyze two extreme cases, i.e., ideal interleaving and no interleaving at all. 

Direct Binary .  Metric Gen.eration With Ideal Interleaving 

Obviously, the binary metrics generated using this direct method bear some depen-

dence. Ideal interleaving makes that incoming metrics to the decoder are all statistically 

independent of each other over one decoder trellis length. This would require a block inter-

leaver with an interleaving depth log 2  M and a span of at least of 5 to 6 times that of the 

constraint length. In this case, the M-ary symmetric channel can be simplified to the BSC 

model with the transition probability of BSC p'13)  

	

(B) _ 	 

	

Pe — 	 e •  2(M — 	 (6.18) 
 1) P  

Then analysis can be carried out easily in the same way as for the BSC model. Specifically, 

the analytical results in binary channel given in Equations (6.1) and (6.2 ) can be applied 

directly by substituting transition probability pe  by  2 1) Pe . The bounds of Pb versus pe 

 are plotted for the Odenwalder code, with a direct binary metrics with ideal interleaving 
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for the 4-ary channel in Fig. 6.7 (curve c) and for the 8-ary channel in Fig. 6.8 (curve c), 

respectively. 

Direct Binary Metric Generation Without Interleaving 

No interleaving means that log 2  M consecutive binary decoding metrics are gener-

ated from one M-ary symbol. Here we consider the 4-ary case. Generalization for a larger 

M involves a higher level of sophistication but no more ingenuity. 

For 4SC, the probability of receiving one of three wrong 4-ary symbols is p e /3. 

However, two of three wrong symbols result in only one binary bit error, and the other one 

leads to two binary bit errors. 

Consider two trellis pathes which differ in d bit positions, and where each branch 

in the paths contains one 4-ary symbol, or two binary bits. One path is considered as the 

correct path, while the other one is considered as the incorrect path. Assume d different 

positions reside in Z branches in the incorrect path. Among Z branches, there are two 

kinds of branches. One kind of branches are those with only one bit different from the 

corresponding branch in the correct path. The other kind are those with both bits different 

from the branch in the correct path. We call the first kind as one-bit-error branches, and 

the second kind as two-bit-error branches. For a received symbol, the metrics are different 

for these two kinds of branches. 

Suppose the branch in the correct path is 00. Then the one-bit-error branch is 

either 01 or 10; and the two-bit-error branch is 11. We consider 01 as an example of one-

bit-error branch. With the binary Hamming distance used as the metric, we have: 

metric for 	metric for 
symbol received probability correct branch (00) error branch (01) 

00 	 1-pe 	 0 	 1 
01 	 Pe/3 	 1 	 0 
10 	 Pe 13 	 1 	 2 
11 	Pe/ 3 	 2 	 1 

For a two-bit-error branch, similarly, we have: 
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metric for 	metric for 
symbol received probability correct branch (00) error branch (11) 

00 	 1-pe 	 0 	 2 
01 	 Pe/3 	 1 	 1 
10 	 Pe/3 	 1 	 1 
11 	 Pe/3 	 2 	 0 

Here we can see that the metrics are different for the two kinds of error branches, 

and therefore, for different combination of the two kinds of branches the pairwise error 

probabilities are different even for the same d, the total number of different position in bits. 

To compute the union bound of the BER at the output of a decoder, we need to 

know how many one-bit-error branches and how many two-bit-error branches exist for each 

d, and the corresponding contributions of each combination to information bit errors. 

Suppose there are X one-bit-error branches, and Y two-bit-error branches, and 

X + Y =  Z.  Then the union bound of BER at the output of the decoder is 

00 

Pb 	E E cd(x,y)pd(x,y) 	 (6.19) 
d=d f ree  x,yEr d  

where rd  is the set of all possible X and Y combinations which are determined by the code. 

Cd(X,Y) is the information bit error contribution for a trellis path with X one-bit-error 

branches, Y two-bit-error branches, and total d different positions from the correct path. 

Pd (X, Y) is the pairwise probability of two trellis pathes with the binary Hamming distance 

d, and X one-bit-error branches and Y two-bit-error branches. 

Cd(X,Y) can be obtained by computer search. We have found Cd(X,Y) for the 

Odenwalder code, and those for a small d are given in Table 6.1. 

Now we compute the pairwise error probability Pd(X, Y). Suppose that the correct 

path is the all zero path. If during Z = X + Y transmission, symbol 00 is received ko times, 

symbol 01 k 1  times, symbol 10 k2  times, and symbol 11 k3  times, then the metric for the 

correct path corresponding the Z branches is 

me = 	k2 2k3 . 	 (6.20) 

To compute the metric of the error path, we have to consider how received symbols match 

the branches in the error path. 
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d 	X 	Y 	Cd(X,Y)  
10 - 	2 	4 	1 	 

4 	3 	10  
25  

12 	4 	4 	13  
6 	3 	61  
8 	2 	137  

14 	4 	5 	29  
6 	4 	176  
8 	3 	792  
10 	2 	407  

16 	2 	7 	2 	 
4 	6 	42  
6 	5 	597  
8 	4 	3019  
10 	3 	5177  
12 	2 	2796 

Table 6.1: Cd(X,Y) of constraint length 7 Odenwalder code. 

Let kox  be the number of 00 received corresponding one-bit-error branches in the 

incorrect path, and ko y  be the number of 00 received corresponding two-bit-error branches 

in the incorrect path, and so on. Obviously, 

ko kox  koy  

k1 = klx  kly  

k2 = k2s  k2y  

k3=  k3x  k3y  

and 

kox 	k2x  k3x  = X 

/coy  + kly  k 2y  k 3y  = Y. 

As discussed in section 6.6, we can assume, without loss of generality, that all one-bit-error 

branches are 01. Then the metric for the incorrect path corresponding to the Z branches is 

m e  = kox  2k2x  kas 2koy  kly  k2y. 	 (6.21) 
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a 

a 
The pairwise error probability is • 

X! 	Y! 	pe  ki +k2+k3 	 • 
Pd(X, Y) = E «me  — me ) 	 (1 — pe )ko (6.22) 

kox !k ix !k2s !ku ! koy !kiy !k2y !k3y ! 	3 

where 	 a 

0 < kix ,0 < kiy ,i = 0,1,2,3, 	 a 
3 	 3 	 a 

i=0 	 i.0 	 a 
and 

	

0 x < 0; 	 • 

	

u(x) = 0.5 x = 0; 	 • 
1 	x > 0. 

By using (6.19), the union bound for the Odenwalder code in an 4-ary channel with direct 
• 

generation metric without interleaving is computed and is also plotted in Fig. 6.7 (curve d). 

a 
Binary Metric Generation Based on M-ary Metric Without Interleaving 

	

In order to generate binary metrics, Gong proposed a conversion scheme which 	 • 
• converts the M-ary metrics into binary metrics [31]. For the i-th bit in log2  M bits corre- 

sponding to an M-ary symbol, the binary metric is given by 	 • 

bi = max{M-ary metrics for symbols with i-th bit to be "1"} • 
• — max{M-ary metrics for symbols with i-th bit to be "0"} 

i = 1,2,...,log2  M. 
• 

	

Here we use Gong's conversion scheme in the following way: first we find M-ary MLD 	• 
metrics; then binary metrics are generated using the above equation. Since interleaving can • 

• 
cause a substantial delay in addition to its implementation cost, which sometimes is not 	 • , 
desirable or tolerable, it is always interesting to know the trade-off between interleaving 

and the BER performance. Thus we consider both Gong's conversion scheme and our 

direct scheme without interleaving. It is interesting to compare the performance of these 	 • 

two schemes. Further, we note that the use of Trumpis codes does not require interleaving. 
• 
• 

Thus comparison based on no interleaving is fair to all cases. 	 • 
811 
• 
• 

100 
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a 
a 	6.4.3 Simulation Results a 
• A Monte Carlo simulation is carried out to obtain the bit error rate at the decoder output 

for the Odenwalder code in a 4-ary symmetric channel with three metrics, our approxima- 

• tion of M-ary metrics, directly generated metric and Gong's conversion metric, and for the 

Odenwalder code in an 8-ary symmetric channel with two metrics, our directly generated a 
• metric and Gong's conversion metric, both without interleaving. The results are plotted in 

• Fig. 6.10 for the 4-ary case and in Fig. 6.11 for the 8-ary case. For comparison, the union 

bound for the Odenwalder code with the M-ary metric, and the directly generated metric 

• with ideal interleaving are also depicted in Fig. 6.10 and Fig. 6.11. The union bound for the 
O1 Odenwalder code in a 4-ary channel with the direct generation metric without interleaving 

• is plotted in Fig. 6.10 as well. 

• From simulation results in a 4-ary channel (Fig. 6.10), we can see that the directly 

• generated metric gives the best performance among three metrics. For small m (m < 7), the 

le 	 approximation metric and the conversion metric have almost the same performance. But 

for large m, the conversion metric has a better performance. In Fig. 6.11, the simulation 

• results in an 8-ary channel are similar. The direct generated metric has better performance. 

• All three metrics are considered to work without interleaving, therefore the direct binary 

metric generation method is recommended when no interleaving is preferred. 

• It is also noted that the union bound for direct generation metric without inter- 
. 

leaving is quite tight for BER less than 10-'3 . Comparing the union bounds and simulation 

• results with ideal interleaving and those for direct generation metric without interleaving, 
111 	 we can see that the difference of two cases gets smaller when m becomes larger. So when m 
ID 
• is large (m > 15), interleaving may not improve the performance significantly, and therefore 

• may not be necessary. 

6.5 Concluding Remark 
O  •
• 

We have considered a repeated convolutional coding scheme for the MSC with a large pe . 

BER performance has been both analyzed and simulated. We first considered BSC. A BER 

approximation method is proposed for a large m based on the central limit theorem. The 

101 • • • 



0.01 

0.001 

Pb 

0.0001 

10 -5  

10 -6  

10 -7  
0.10 

m=3 I m.7I m. 15 

0.20 0.30 0.50 0.40 
Pe 

0.70 0.60 

11
0

11
111

11
11

11
11

111
11

8
11

0
0
0

11
01

1
111

8
11

11
11

11
8

0
1

11
11

11
1

11
11

11
11

0
8

•
11

11
11

11
8

11
11

8  
0

01
1

81
1

8
1

1
 s

a
s

 

Union bound for 4-ary metric • • • 
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Figure 6.10: The Monte-Carlo simulation in 4-ary symmetric channel for BER of repeated 
Odenwalder code without interleaving and with direct generation metric, approximation 
metric, and conversion metric. 
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Figure 6.11: The Monte-Carlo simulation in 8-ary symmetric channel for BER of repeated 
Odenwalder code without interleaving and with direct generation metric and conversion 
metric. 
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overall code rate r is considered relative to the channel cutoff rate Ro . It has been shown 

that r is larger than 0.6R 0 . In comparison with a cascaded coding scheme proposed in [25], 

the repeated coding scheme has some clear advantages. One of them is that we can vary m 

to match the unknown pe  without changing the decoding procedure. 

We then extended the repeated convolutional coding scheme to the M-ary sym-

metric channel. We have investigated the influence of various decoding metrics in the MSC 

model. If ideal interleaving is available, and 7n is not very large, then the repeated Oden-

walder code with binary metric is almost as good as the one with M-ary metric. Further, 

the performance of the Odenwalder code over 4-ary and 8-ary channels is quite close to that 

of the optimum Trumpis code. When interleaving is not available, three methods of gener-

ating binary metrics from M-ary channel are proposed. The first is based on approximation 

of the differences of M-ary metrics with binary metrics. In the second, binary metrics are 

generated directly from M-ary metrics. The third method is a conversion method. Simu-

lation results indicate that the direct binary generation method is the best for our coding 

scheme among all these binary metric generation methods. Therefore, the direct binary 

metric generation method is recommended if no interleaving is preferred. Union bound and 

simulation results also indicate that there is not much improvement by interleaving when 

m is large. 

6.6 Further Analysis of One-bit-error Branch 

In this appendix, we will show that no matter what one-bit-error branches actually are (all 

01 or all 10 or combinations of 01 and 10), the pairwise probability can be obtained by 

assuming a convenient form, e.g. they are all 01. 

Suppose the incorrect trellis path is A, and there are Xi 01 branches and X2 10 

branches in path A. Suppose that there are koxi  00 symbols, kix, 01 symbols, k2x1  10 sym-

bols, and k3x1  11 symbols received corresponding to 01 branches, and k0x2  00 symbols, kix, 

01 symbols, k2s2  10 symbols, and k3x2  11 symbols received corresponding to 10 branches, 

respectively. Obviously, 

kix, k1x2  = k 	for i = 0, 1, 2, 3 
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and 
3 

• E ki„ = 
 i=0 

3 

E kiœ, = X2 • 

 i=0 

Then the metric for path A is 

me(k2s, kix2) = 2(k2, kix2 ) C 	 (6.23) 

where C = kos 	-1- 2ko y  kly  k2y . The pairwise error probability is 

	

X1! 	X2!  
PjA) (X, Y ) = E u(mc — me(k2x, + k1s2)) k

0x1 !k 1x1 !k2 x1 !k3 ,! k 0,2 !k1, 2 !k2s 2 !k3x 2 ! 
nA 

Y! 	ki+k2+k3 
re ) 	(1 —M k° 	 (6.24) 

koy !kiy !k2y !k3y ! 	3 

where 

SZ A  = {kixi ,ki x,,ki y ,i = 0, 1, 2, 3 I 	0 < ki x1 ,0 < kis2 , 

0 < 	= 0,1,2,3, 
3 	 3 	 3 

E kix , = X1 , Ek1,2 = X2, E kiy  = Y}. 
i=o 	i=o 	i=o 

Note that in the above equation, the summation constraint on k1s2  and k2x2  is 

identical. In another word, k1 s2  can assume the same range of values as the k2 s2 . Thus, we 

can exchange these two variables in (6.24) without affecting the value of Pr) (X,Y). The 

right hand side of the equation is not changed, except that the argument of me  becomes 

k2s1  k2s2  =  k2œ.  By definition of multinomial coefficients, it is not difficult to see that 

P(A) (X,Y) is equal to the right hand side of the Pd(X,Y) in (6.22), which is based on the d 

assumption all one-bit-error branches have 01. It is worth mentioning that the advantage 

of using Equation (6.22) is that the summation involves much fewer terms, thus much less 

computing time, than that in Equation (6.24). 
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Suggestions for Future Work 

The main objectives will be the study of coding and detection for frequency hopped spread 

spectrum communications. The major empha,sis will be on slow frequency hop systems, 

especially using differential phase shift keying (DPSK) modulation scheme. 

7.1 Slow Frequency Hopping Systems 

For such systems, it remains to evaluate the performance when diversity is also employed, 

and when nonbinary DPSK is used. Both of these directions should provide performance 

improvement over the results found in Chapter 2. As well, the use of interleaving will reduce 

the number of erroneous symbols in a given RS codeword when a hop is jammed. It also 

allows a long hop length, which reduces the amount of lost data due to the phase reference 

bit. Some specific problems to be addressed are as follows: 

1. Multi-symbol probability distribution of DPSK in Gaussian noise. This will facilitate 

the performance evaluation of coded systems in the presence of partial band noise 

jamming or multi-tone jamming plus thermal noise. 

2. Multi-symbol probability distribution of DPSK in the presence of tone jamming. This 

will facilitate the performance evaluation in the presence of multi-tone jamming. 

3. Block code system evaluation using M-ary codes. Robust techniques such as erasure 

generation and erasure correction decoding will be considered. 
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• 4. Study the use of constrained sequences to cancel interference and perform error cor-
O 

rection. 

O  
• 5. Consider possible alternative convolutional coding techniques and corresponding de- 

• coding metric generation problem. 

1111 7.2 Interleaving 

•

• 

Building on Chapter 4, we propose to examine the complicated problem of analyzing the 

• performance of coded systems using a particular finite interleaver. The performance degra- 

	

O 	 dation, when the designed burst length is exceeded, is worth investigating. 

•

a 

7.3 Coding and Diversity 
O  
• The objective here will be to to investigate the trade-off between diversity and coding for 

systems, such as spread spectrum systems, where a low code rate is anticipated. Ultimately, 

	

,• 	 the aim is to determine actual performance trade-offs in terms of signal-to-noise ratios and 

• probability of error. Of more importance is the translation of the trade-offs considered here 

• into an understanding of how it affects system performance on a variety of channels, such as 

• the additive white Gaussian noise, Rayleigh fading and interference channels. Future work 
• will consider these questions and attempt to determine guidelines for this trade-off. 

O  
• 7.4 Implementation of CODECs 

• We shall concentrate on implementation of practical error correcting codes using current 

technologies (e.g. VLSI gate array designs) and future technologies (e.g. artificial neural 

•
Ile 

networks). 

We shall study and develop new algorithms and/or architectures that take maximal 

• advantage of the circuit regularity and parallelism afforded by VLSI technology. Of special 

• interest, we shall concentrate on the cellular structure which allow cascadability of identical 

chips to form long codes. 

O  
a 
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Appendix A 

Logic-Cell Array Implementation 
of a (31,k) Reed-Solomon Codec 

This algorithm presents designs for a programmable gate array 

implementation of a user programmable (31,k) Reed-Solomon encoder-decoder. The 

programmable encoder and decoder algorithms were first implemented in the C 

programming language, using a Galois Field software development package written 

for this purpose. The control hardware of five independent modules was simulated in 

C; based upon the simulation programs a number of designs involving differing 

amounts of pipelining and different storage architecture and Galois Field bases were 

developed. One design is currently being implemented using the Xilimc 3000 series 

Programmable Gate Arrays. 

A. 1 Introduction 

This Appendix examines a number of design options for programmable gate 

array (PGA) implementation of a (31,k) user programmable Reed-Solomon codec. A 

key consideration was maintaining a high level of modularity in the design process; 

this not only simplifies the task of making small changes in the design if necessary, 

but also allows the same design with minor alterations to be used for larger size 

Reed-Solomon codecs. Although only the (31,k) RS codec is described in this 

Appendix, C source code has also been written and tested for the (15, k), (63, k), 

(127, k) and (255, k) Reed-Solomon codecs. These RS codecs would be relatively easy 

to implement in PGA's or other hardware if the need arose. 
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The use of programmable gate arrays is in itself based on the need for a quick 

• 
turn-around time in the design and testing of a circuit. The design is loaded from a 

• computer terminal or from ROM onto the Xilinx chip; a change in design only 

• requires changing the program loaded into the ROM, in contrast to a period of weeks 

• 
and considerable more cost required for a custom integrated circuit. If high 

• production of the PGA decoder was felt to be desirable, software exists[32] to convert 

between the files needed by Xilinx and the standard schematic capture format used in 

• custom integrated circuit contruction. 

Although both programmable RS encoders and decoders have been designed, 
111 
111 	 only the decoder designs will be discussed in this appendix. The encoder design is a 
a 
• variation of the standard linear feed-back shift registers used in non-programmable 

RS encoders, and so is straight-forward. In the process of writing the C language 

111 	 implementations of the programmable RS codecs, C language software tools were 
• 
113 	 developed for the Galois fields GF(2m), where m = 4 to m = 8. These software tools 

find the Galois field elements generated by a primitive polynomial, produce the RS 

• generator polynomials for a Galois field, produce Karnough mappings, and test the 

•
111 

encoder/decoder programs by introducing random errors into the pipeline between 

• the encoder and the decoder programs. 

Section 2 provides background on the algorithm used to decode Reed-Solomon 
111 
• codes. Section 3 gives an outline of some of the options considered in designing the 

• (31,k) codec: the choice of Galois Field basis, the internal bus and register design, the 

111 	 pipelining options and the external logic and memory. Finally Section 4 describes 

• the design that is being implemented at the time of writing. 

• 
• 
• 

• 
• 113 
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A.2 Background 

A.2.1 Background 

Reed-Solomon codes are a class of cyclic random error-correcting non-binary 

block codes discovered by Reed and Solomon in 1960 [33]. The symbols of a Reed-

Solomon code are Galois field GF(2m) elements, where m is a positive integer. An RS 

code with symbols from GF(2m) has a block length of 2m-1 symbols, and can be 

written to correct te errors, where 1 t— 2 1.11- 1 -1. A te  error correcting RS code of 

block length n = 2m-1 has 2te parity check and n - 2te information symbols per 

block, and a minimum distance 

d = 2te+1. Decoding an RS code involves four basic logical modules[34][35]: 

(1) computing the syndrome components Si, I = 1,2,•••,2te• 

(2) determining the error-location polynomial am. 
(3) finding the roots of the error-location polynomial a(X). 

(4) finding and correcting the error at each error location. 

(1) 	The symbols rk in the received block of an RS code are the coefficients of the 

received vector 

r(X) = ro + riX + r2X2  + ••• + rn-1Xn- 

where k is the position of the symbol rk in the received block. The received vector 

r(X) is the sum: 

r(X) = t(X) + e(X) 

where t(X) is the transmitted vector and e(X) is the vector of errors introduced during 

transmission. The 2t e  syndrome components are found by substituting ai into the 

received vector r(X) for 1=  

Si = r(ai) = t(ai) + e(ai)= e(ai) 	 (A.1) 

where ai is a primitive element of GF(2m). 
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• (2) 	The decoder must find the locations of the the errors introduced by 

•
transmission; that is, the non-zero coefficients of e(X). Directly solving the system of 

• equations (A.1) is difficult; an alternative approach is to introduce a polynomial, the 

• error- location polynomial D(X), whose roots are the locations of the transmission 

errors. 

• a(x) = (i+six)(1-1-e2x)...(1+.f3p.x) 

• = ao + alx+ a2,x2  + + awe 

where 131 is the location of the ith error and g is the number of errors introduced 

during transmission. A number of methods exist for determining the error location- 
. 
• polynomial, a(X) [34]; Berlekamp's iterative method [36] was used in the 
111 
• programmable (31,k) Reed-Solomon decoder. 

• 

• (3) The roots J31 of the error-location polynomial must be found. This can be done 

1111 	 either by the Chien [35] search or by substituting all the elements al  in  GF(2m) into 

the error locator polynomial and noting the elements which give  a(ai) = O. • 

• (4) Finding the errors at the error locations requires solving the equations: 

Sk = Y1131 + Y2132 + + Ygeg  where k = 1, 	2t 

• for the g errors Yi , 	Y. An easy way of doing this is to first find the function 

• Z(X) = 1 -F (Si ai)x + (s2 + aisi + a2)x2  + 

+ ( Sp, + a1sg..1+a2s2 + 

The g errors Yi can then be found using 

a 
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The transmitted vector t(X) can then be found by adding the error vector e(X) to the 

received vector r(X) 

t(X) = e(X) + r(X). 

A.2.2 The (31,k) RS Decoder Algorithm 

Based on the above formulation, an algorithm was written to code and decode 

a t-error correcting RS code, where t is user programmable and 1 t 2m -1 -1. The 

algorithm consists of logical modules (1) to (3) as given in the introduction, plus two 

logical modules from logical module (4) above which determine Z(X) and find and 

correct the transmitted errors. Each logical module of the algorithm is dependent 

upon earlier logical modules for intermediate results, but runs independent of earlier 

logical modules once those intermediate results are received. This independence 

allows each logical module to be implemented on a separate physical module. 

The programmable RS decoding algorithm was initially written and tested 

using the C programming language. After testing the algorithm, C code was written 

simulating the hardware controllers needed in the PGA implementation of the 

programmable RS codec. All references to the number of algorithm operations and 

bit rate refer to the hardware implemented algorithm. 

A.3 Implementation Options 

Implementation of the algorithm requires decisions to be made on: 

(1) which basis to use to represent the Galois field and the 

design of the Galois field arithmetic units. 

(2) the number of bus lines and registers to provide for 

logically independent operations. 

(3) the amount of pipelining to be used. 
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• 
• (4) the external logic and memory needed to co-ordinate a 

pipelined codec. 

• These decisions are made on the basis of how they will effect the trade-off between • 
• speed and hardware requirements. These decisions are not independent; decisions 

made on different aspects of the implementation effect each other. 

• A.3.1 Basis and Galois Field Arithmetic 
I . 

The Galois field elements can be represented in either vector or power 

• notation. For example, the element a27  from GF(2 5 ) may be represented as the 
• 
• vector: 
O 
• a27  = la° + 1a 1  + 0a2  + la3  + 0a4  

ci 0 o) a 
• or as the integer 
O  
• 27 	= (1 1 0 1 1). 
• The advantages and disadvantages in a representation lie in the implementations 

1.1 	 they allow for Galois field arithmetic, and in the complexity of the hardware needed 
O  
• to implement the decoder in the representation. The comparison of vector and power 

a representation implementations of Galois field arithmetic is dependent on the size of 

• the Galois field, and on the medium on which the arithmetic unit is implemented. In 
O  
• this appendix only single step Xilinx[32I implementations of arithmetic on the 
• 

Galois fields GF(2 5) will be discussed. The number of configurable logic blocks (CLB's) 

of the LCA needed to implement arithmetic on the Galois field GF(2 5) for vector and 
1111 
• power representations is given in Table A.1. 
O  
• Galois Field Adders 

In the vector representation, Galois field addition is simply bit-wise integer 

• addition modulo 2. On the Xilinx 3000 series LCA[32] a vector representation adder 
O  
•  
O  
• 117 
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requires one configurable logic block for every two bits of the field size, plus input 

registers, for a total of 8 CLB's for a GF(25 ) adder. The easiest implementation of 

power representation addition on GF(25) on the Xilinx 3000 series LCA is to translate 

from power to vector representation, add mod 2, and translate back to the power 

representation. The five function logic of the Xilinx 3000 series LCA allows all of 

this to be done in the input and output registers, and requires 18 CLB's. 

Galois Field Multipliers 

Choosing the normal basis for the vector representation allows the Massey-

Omura[37] multiplier to be used for the Galois field multiplication. For the GF(2 5) 

multiplier, the least-complex parallel Massey-Omura multiplier requires 20 CLB's, 

plus 5 CLB's for the input registers. Galois field multiplication using the power 

representation is equivalent to integer addition modulo 2m • For the GF(2 5 ) 

multiplier 10 CLB's plus 5 CLB's for the input registers are needed. 

Galois Field Inverter 

Inversion over GF(25) for the normal basis representation normally requires 

either repeating a shift and multiply over GF(2 5) four times[37], or a parallel inverter 

requiring four Galois field multipliers. However the five function logic of the Xilinx 

3000 series LCA's may be used to translate directly from an element to its inverse; 

the total space requirement for the normal basis GF(25) inverter is 8 CLB's. Inversion 

over GF(25) in the power representation for elements other than a° only requires 

inverting each bit of the integer representation; an extra CLB is required to return a° 

when a0  is input. The power representation GF(2 5) inverter requires in total 4 CLB's. 
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Representation 	GF Adder 	GF Multiplier 	GF Inverter 

(CLB's) 	(CLB's) 	(CLB's)  

Normal 	 8 	 25 	 8  

Power 	 18 	 15 	 4 

Table A.1: CLB requirements for GF Arithmetic 

The Galois field arithmetic operations needed by the RS decoding algorithm are 

addition, multiplication and inversion. From Table 3.1 it can be seen that the power 

representation requires about 10% fewer CLB's to implement the Galois field 

arithmetic operation than the vector representation. The power representation also 

has the additional advantage of allowing the Galois field elements to be used as 

incremental counters; this simplifies the design of some parts of the decoder. 

elb 	 A.3.2 Memory and Bus Lines 

O 	 During the decoding process the algorithrn requires storage space to hold 
O  
• results of intermediate calculations. The intermediate results include results used 

a 
only in a given module and results to be used in modules after the module in which 

•
4111 

they are calculated. If there is pipelining the received RS code blocks must also be 

• stored from the first to the last stage in the pipeline. The storage space in bits of 

• required by each module is given in Table A.2; the first row gives the storage space 

• needed to carry out the calculations of the module itself, the second row includes the 

lie 	 storage space required from previous modules. 
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a 
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a 
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Module 	Syndrome 	Delta 	Location 	Z(X) 	Error  

Storage (bits) 	330 	410 	100 	95 	100  

Total Storage (bits) 	330 	565 	185 	415 	335 

Table A.2: Storage Space Requirements by Module 

Dedicating CLB's to each intermediate variable simplifies the design and speeds up 

the decoder, but at the cost of space. The implementation of the 5-bit buses required 

by the GF(2 5 ) can be done either as common buses using Xilimes tri-state 

capabilities, or as buses between each set of communicating decoder components or 

storage block. It was found that the latter scheme allowed for tighter routing. 

A.3.3 Pipelining 

The independence of the five modules in the decoding algorithm allows a 

trade-off to be made between the decoder speed and the amount of hardware needed 

for implementation. 

Speed 

The number of operations each module requires to complete as a function of 

the number of correctable errors is given in Fig.A.1. Not only does each module 

require a different number of operations to complete, but the number of operations 

varies among modules either linearly or as a square with respect to the number of 

operations to completion. 

Since the decoder must finish decoding each received block in the same 

amount of time, the pipelining should be made so that each stage in the pipeline 

takes approximately the same number of modules. The five pipelining options which 

meet this requirement are given in Table A.3. 
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Pipeline Option 	 Logical Modules  

no pipelining 	 • syndrome & delta & location & z(X) & error correction 

two stage pipelining 	• syndrome & delta 

• location & z(X) & error correction  

three stage pipelining 	• syndrome & delta 

• delta 

• location & z(X) & error correction  

four stage pipelining 	• syndrome 

• delta 

• location& z(X) 

• error correction  

five stage pipelining 	• syndrome 

• delta 

• location 

• z(X) 

• error correction 

Table A.3: Pipelining Options 

The overall number of decoder operations for each pipelining option as a function of 

correctable errors is given in Fig.A.2. 

Hardware 

Each module uses a different number of CLB's to carry out it's function. The 

CLB requirements are given in Table A.4; the requirements include CLB storage of 

results calculated in the module, Galois field arithmetic and control logic, but not 

storage of arrays passed to other modules. Routing limitations may give rise to 

higher CLB requirements than those listed in Table A.4. ' 
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Module 	Syndrome 	Delta 	Location 	Z(X) 	Error  

CLB requirements 	90 	_ 320 	75 	 90 	160 

Table A.4 : CLB requirements by Module 

The received block for each stage in the pipeline must also be saved and 

passed on from the first to last stage, as well as some intermediate calculations. 

Hardware is minimized if modules are combined which share intermediate 

calculations. The coordination of the stages and the shared intermediate 

calculations also becomes more complex as more stages of pipelining are used. 

A.3.4 External Logic and Memory 

Each of the five stages requires as its input either the received codeword or an 

array of intermediate values calculated in previous stages; this dependency is shown 

in Fig.A.3. The received codeword and the syndrome are an-ays of 155 bits (31 Galois 

field elements), the size of each of the other arrays is 75 bits. If no pipeling is used 

these values can be passed on by using the same memory for each stage. Because the 

RS decoding algorithm requires both the received codeword and each intermediate 

value array to be completed before being passed on, each level of pipelining 

introduced increases both the number of arrays that must be passed on and the 

number of copies of each passed array that must be stored. 

Two strategies for passing arrays between stages have been considered. The 

first strategy passes the data between the storage elements associated with each 

stage. Consider the case of five stage pipelining as an example. If some array AfX,t] is 

calculated in the first stage and used in the fourth stage, the copy of AfX,t] generated 

at time t = 1 will reach the fourth stage three stage shifts later. This means thatwhen 

the array AEX,t =1  1  will be used in the fourth stage there will be an array AfX, t =4] 
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being calculated in the first stage and two arrays, AIX, t =2] and  AIX,  t =3] being 

stored for use in the fourth stage. 

Received 
Block 

Number of 
Correctable 
Errors 

.:•-•:: 	 .. 

• •• .... Find_Syndrome c•-. 	 .... 	 ....  

Output of 
Information 
Block 

Fig.A.3: Intermediate Array Passing 

Since passing an array of 75 or 155 bits in one clock cyclerequires too many 

input/output pins to be practical, the modules must shift the array in one stage 
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before the array is to be used to ensure the complete array will be available when 

required. In some cases this requires the module to have two copies of the array; the 

copy being used A[X, t =0] and the copy being shifted in APC, t =1]. 

Since only the arrays needed by a particular stage are passed to that stage, this 

strategy minimizes the amount of storage needed. It has the disadvantage however of 

requiring relatively complex logic to control the passing process, which reduces the 

modularity of the design and makes design alterations more difficult. 

The first strategy requires either shift registers or Xilinx chips with a very 

large number of input/output pins to store and pass the arrays; either option is 

expensive to implement in Xilinx, and requires a large number of chips if 

implernented in standard register chips. The flow of the arrays in the case of the five 

stage pipelined RS decoder is shown in Fig.A.4. 

Fig.A.4: Direct Array Passing for a Five Stage Pipelined RS Decoder 
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The second strategy is to pass a pointer to the data associated with each stage. 

Since one copy of each array used in the decoding algorithm must exist for each 

stage, this strategy requires more memory space than the first option. However, it 

maintains the modularity of the design and keeps the control logic simple. The 

arrays may also be stored in relatively inexpensive external 8-bit RAM; because the 

sequence of steps in each module varies with the number of errors to be corrected, it 

is not possible to time RAM access among the modules. Instead each module has its 

own RAM thus allowing the same memory design to be used with little change for 

Galois fields of size 28  and smaller. An example of the switching network is shown 

in Fig.A.5. 

Fig.A.5 External RAM Storage of Arrays for a Five Stage Pipelined RS Decoder 

A.4 Implementation 

Implementation of some of the stages of the (31,k) RS codec on the Xilinx 3000 

Series Programmable Gate Arrays has shown the Xilinx clock speed to be about 3.5 

MHz for this design. This clock speed gives the bit rates for each of the pipeline 

options given in Section A.3 as a function of correctable errors as shown in Fig.A.6. 

The bit rate increases as more pipelining stages are added until four stage pipelining 
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O 
413 
O 
111 
• is reached; adding a fifth pipelining stage only increases the bit rates for low rate 

10 	 codes. However, a fifth stage of pipelining may be desirable in order to increase the 

modularity of the design. 

• The number of correctable errors that an incoming received word is coded to 

• correct must also be stored along with the received word if to allow the user to 

program the (31,k) RS codec without interrupting the transmission. This is done in 

• an array passed along each stage with the received word. The Xilinx 3000 Series PGA 

• cornes in chips of five different sizes[32]. The design options can be either 

O  
implemented on one or two larger chips, or with a separate smaller chip for each 

•
111 

module if ease of modification or expansion is desirable. The module designs are 
O  
• saved in software in the design's .LCA files (32); therefore it is relatively easy to 

•
design the options on separate chips and then combine the smaller chip designs onto 

fià 	 the larger chips. Xilinx reportedly will soon be releasing the Xilinx 4000 series 

• PGA's, with denser on chip routing, and faster internal switching. If the Xilinx 3000 
O  
• series PGA's will be upwardly compatible with the 4000 series PGA's, the (31,k) RS 

Decoder may be implemented with little alteration on the Xilinx 4000 series PGA's, 

fià 	 increasing the bit-rates shown in Fig.A.6. 
0 
• No-Pipelining Option: 

Since only one logical module may be carried out in each clock cycle, only 

• one unit of each of the Galois field arithmetic units is needed, and all the storage can 

• be saved in either in registers within the Xilinx chips or preferably, in one external 

RAM. Because most of the chip space in the (31,k) RS codec is in storage of space and 

•
lie 

the Galois field arithmetic unit, the no-pipelining option is relatively easy to 

• implement, and requires considerably less hardware than the pipe-lined options. 

The bit rate of the no-pipelined option is about one-quarter that of the fully 

pipelined codec (see Fig.A.6). 

O 

a 
a 
O  
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Two Stage and Three Stage Pipelining Options: 

Since only three arrays (see Fig.A.3) need be passed a distance of one stage, 

directly passing the arrays is the easiest strategy to implement in the two stage 

pipelining option. Three arrays are also passed in the three stage pipelining option, 

one of which is passed a distance of two stages; directly passing the arrays is then 

also the best strategy for storing intermediate calculations. The bit-rate of the two 

stage option is about half that of the five stage pipelined option, while the bit rate of 

the three stage option about two-thirds that of the five stage pipelined option. If 

modification is an important consideration, external RAM should be used instead of 

directly passing the arrays as it simplifies the task of altering the control logic. 

Four Stage and Five Stage Pipelining Options: 

External RAM should be used for both the four stage and the five stage (fully) 

pipelining options to maintain modularity and reduce the complexity of the control 

logic. The bit-rates of the four stage option and the fully pipelined option are the 

same for much of the range of correctable errors. The fully pipelined option can be 

built with each module on its own small Xilimc chip, making it the easiest to modify 

and test. The module designs of the fully pipelined option may later be transformed 

into one of the lower level pipelining options with minimal reworking. 

A.5 Applications of the CODEC 

The (31, k) CODEC can be modified to form a (16, 12) CODEC which is a 

standard for Advanced Train Control systems[38]. This may be accomplished by 

considering a (31, 27) code and then shortening it by 15 symbols to obtain a (16, 12) 

code. The data rate requirement is 4.8 kbps with future upgrades to 9.6 and 19.2 kbps. 

130 



11
11

11
81

1
81

1
8

8
8

1
1
8

1
1
8
8

11
11

11
81

11
1
6
1

18
11

11
11

81
1

11
0

8
1

1
8

8
1

1
8

8
8

81
11

11
8

8
8

11
11

6
8

11
8
8

 se
a 

With k = 15, we have a (31, k) CODEC which is a standard for Joint Tactical 

Information Distribution System (JTIDS)[271. The data rate requirement for this 

system is 57.6 kbps. 

The CODEC is ideally suitable for Meteor Burst Communication Systems(391. 

Such systems have recently been proposed for data communications from trucks to 

dispatch centers. 
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