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1. Introduction 

Over a period of several years, collaborative work in the field of microwave 
propagation between The University of Western Ontario (UWO) and the 
Communications Research Centre (CRC), with help from industrial partners such 
as Bell Canada, has established a substantial data base. As a result of a series of 
contracts, a wide-aperture microwave interferometer was developed and installed 
successively on several microwave links, the last beùig the Kemptville-Avonmore 
link of Bell Canada (DSS contract # 36001-9-3515). Continuation of these efforts 
with augmented observations was deemed to be desirable. 

The objectives of the work described here were as follows: 

1. To reactivate the microwave interferometer equipment already installed on the 
Bell Canada Kemptville-Avonmore microwave link. 

2. To complete the design and construction of an acoustic radar system. 

3. To operate this acoustic radar and the interferometer during the 1990 fading 
season in conjunction with CRC experiments. 

4. To perform detailed statistical  analyses of multiple ray observations made 
during 1988 and 1989. 

The microwave system was successfully reactivated in August, 1990 and new data 
collected for a period of about two months. An accumulation of about 600 hours of 
data was obtained and stored on magnetic tape; of these data, approximately 60 
hours of fading were observed. No further processing of these data has been done 
to date. 

The acoustic radar was developed and deployed in 1990 at the Avonmore end of the 
link./ Unfortunately, small problems with both hardware and software resulted in no 
meaningful data collection due to the lateness with respect to the fading season. The 
planned CRC experiments also hit snags so that no multi-experiment observations 
were possible in the 1990 fading season. The problems with the acoustic sounder 
have been fixed so that it is now ready for deployment. 

Some further data analysis was carried out on the 1988/89 data from the microwave 
system on the Kemptville-Avonmore link. 



2. The Acoustic Radar System 

The principle behind this system is based on the fact that sound waves propagating 
in the atmosphere experience enhanced back-scattering when passing through a 
region where the (potential) temperature gradient in the direction of travel is higher 
than normal. This allows the probing of the lower atmosphere (up to a few hundred 
metres) using an acoustic radar technique in which short pulses of sound waves are 
transmitted vertically upwards resulting in "echoes" from layers which have large 
vertical temperature gradients. Such layers are also likely to produce anomalous 
microwave propagation, such as multipath; hence the interest in concurrent 
experimental measurements. Additional direct measurements of refractivity would 
provide invaluable data for any attempt to model the medium for microwave 
propagation and this area is the one in which CRC is directly liwolved. 

The sodar (acronym referring to radar using sound) system has been designed to 
take advantage of the availability of inexpensive microcomputers which allows 
considerable flexibility of operation to be built-in. A low-end 8086 microcomputer 
is used and this has more than enough power to handle the task, which hwolves the 
following basic operations. 

A short pulse of audio frequency power is radiated upwards. The speed of sound is 
about 330 m/s so that "echoes" are returned with time delay proportional to the 
height above ground; 1000 m. range corresponds to about 6 s. elapsed time. For a 
given fraction of power reflected, the returned echo amplitude is (approximately) 
hwersely proportional to the range and the gain of the amplifier is increased in a 
linear fashion in time to compensate for tiiis, i.e. for a given layer which would 
reflect a given fraction of the incident power, the amplitude of the echo at the 
receiver output is (ideally) constant over the chosen height range. Additional gain 
control is provided in order to allow optimization of the system under different 
ambient conditions and for different height ranges. The microcomputer has control 
of almost all of the variable parameters and these are reset before each sweep. One 
sweep consists of transmission of the audio pulse followed by a short interval (150 
ms) of receiver blanking corresponding to 25 m. in height. Sampling of the receiver 
output then takes place at a fixed rate (set to 100/s. for now) for an interval 
corresponding to the desired height range (e.g. 3s. for a height range of 500 m.). 
In addition, the microcomputer determines the operating frequency, pulse width and 
system bandwidth. An overall block diagram of the system is shown in fig. 1. 
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2.1 The Sodar Hardware. 

The system hardware is divided into three separate sections with each section 
mounted on its own printed circuit board; a fourth board within the unit provides all 
of the necessary power. The division of the various functions amongst these boards 
is as shown in fig. 2. 

The logic (or synthesizer) board provides all of the basic clock signals derived from 
a single crystal oscillator. The ramp clock is a fixed frequency (625 Hz) used to 
develop an analog voltage which controls the gain of the ramp amplifier on the 
receiver card. A Voltage Controlled Oscillator (VCO) is used to generate, under 
computer control, a signal at a frequency (fr) 100 times the desired operating 
frequency (fo). This signal (fr) is used to operate narrow-band digital filters (MF8) 
on both the transmitting (TX) and receiving (RX) boards. 

The transmitting board consists essentially of a dividing network and filter to 
generate the operating frequency signal followed by a gate arrangement which 
determines the "on" time of the transmitter. Further filtering and power 
amplification completes this section and the nominal 100W signal is fed directly to 
the (8W) transducer which serves as both loudspeaker and microphone for 
subsequent reception. It will be noted that the operating frequency (fo) is only 
present for a short time straddling the "TX on" period so that no contamination of 
the received signal occurs during the time allotted for reception. The output stage of 
the power amplifier is permanently connected to the transducer, but presents a high 
impedance when not operating. 

The receiver is also connected to the transducer but a relay is open when the 
transtnitter is operating and remains open for a short period thereafter to protect the 
receiver from damage. The relay is closed after period of 150 ms from the start of 
the transtnitter pulse (corresiionding t,o a height of 25 m.) and a transformer is used 
to present a matched load to the receiver. A fixed high-gain amplifier follows this 
leacling to the ramp amplifier and digital filter. A computer-controlled-gain 
amplifier (to allow final gain adjustment) and a detector completes the receiving 
board. 

Communication between the computer and the above electronics is via an industry 
standard "Data Translation DT2808" analog/digital converter board, which handles 
the two-way digital traffic and the final analog signal from the receiver. 
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The layout of the motiier board sockets for the three main electronics boards and 
the connection to the DT2808 is shown in fig. 3, and detailed schematics are to be 
found in fig. 4. 

2.2 The Sodar Software. 

The microcomputer controls the entire operation using software written in Turbo 
Pascal. On initial power up, the user establishes the desired parameter values using 
an interactive menu. The range of values is shown in Table 1. 

Table 1. 
System Parameters. 

Operating Frequency 	1.2 	to 	2.4 kHz 

Pulse Lengtii 	 20 	to 	70 	ms. 

Height Range 	 500 m. fixed* 

Pulse Repetition Period 	12 	to 	60 	sec. 

Bandwidth 	 25 	to 	80 	Hz. 

Gain Factor 	 1 	to 	8 

Sampling Rate 	 100 is. fixed* 

* these could be made variable at some later date if need be. 

Once tilis is done, the user is led through a series of requests to establish the data 
recording timetable. This fiXes the starting date and time of day, the finish date and 
time of day and whether or not continuous recording is to take place. The 
alternative is to stipulate the same period daily (e.g., 1700 on each day to 0900 on 
the next day) which allows longer unattended recording and/or minimization of 
possible disturbance to otiiers (the nominal transmitted power of 100W is audible 
over a considerable distance). 

The operation from tiiis point on is automatic and the data is recorded in two ways. 
First, a "traditional" type of display is generated using a dot matrix printer and four 
"grey" levels represented by 0, 1, 2 or 3 dots. Such a record is shown in fig. 5 and 
serves to establish periods of time when layering in the lower atmosphere is 
occurring. The second means of recording the data involves sampling the analog 
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signal at a suitable rate (100 Hz nominal) for a period appropriate to the desired 
height range (3 sec. for 500 m.) and converting tco 8-bit digital form. These "bytes" 
are then stored in file,s of suitable length on the computer hard disk drive. 
Currently, the file length is set to correspond to one hour of data, i.e. 100 
samples/sec x 3 sec. x 200 sweeps/hour gives a file length of 60,000 bytes. This 
length of file is a compromise between storage efficiency and data loss should a 
power outage occur. Another limitation is the inability of Turbo Pascal to handle 
data arrays greater than 64 kbytes, although this can be circumvented. The file 
format (in bytes) is shown in fig. 6; the month day and year form the file name 
with the extension giving the hour. Once files totalling a chosen amount have been 
accumulated, they are transferred to cartridge magnetic tape in the drive installed in 
the computer. The nominal capacity of both hard drive and tape drive is 40 Mbytes. 
From this point, the raw data is available in digital form for further processing 
using digital techniques such as filtering, peak (i.e layer) detection etc. 

The entire system has been tested successfully in the laboratory and now awaits 
field tests and evaluation. 

3. Microwave Data Analysis and Results. 

Further analysis of the microwave data collected in previous years on the 
Kemptville-Avonmore link has been performed with a view to looldng at 
conditional statistics related to the angle-of-arrival of the strongest ray under 
multipath conditions. This is intended to augment the results reported previously 
(see Final Report D.S.S. Contract # 36001-8-3515). 

As described in the above report, the data used in the analysis was selected from the 
overall data base by scanning visually a presentation of maximum, minimum and 
average values for each minute from each 9-track magnetic tape, the total capacity 
of each tape being about 88 hours of continuous recording. Complete hours in 
which significant fast fading was evident were included; fast fading exhibits 
relatively rapid changes in amplitude as opposed to general slow variations over an 
extended period. Visual scanning was used because of the difficulty of allowing for 
all contingencies (rain attenuation is one) in automatic computer scanning. 

The rate of occurrence of such fast fading for the Kemptville-Avonmore link in 
1988/89 is shown on fig. 7. Almost continuous recording was achieved for each 
month and the numbers presented have been normalised to a full month. The 
seasonal variation is apparent with Ally being (marginally) the worst fading month. 
The remaining analysis presented here concentrates on the 1989 data, with 
consideration being given to all of the 1989 data and to that of the worst fading 
month (July). 
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Previous analysis has looked at the disribution of various ray parameters conditional 
upon the amplitude of the strongest ray. Here, the emphasis is placed on 
distributions conditioned on the angle-of-arrival of the strongest ray in a resolved 
multipath situation. By this is meant that only records were used which, after 
initial processing using the Fast Fourier Transform, showed the existence of at 
least 3 resolved rays . A limit of 20 dB down from the amplitude of the strongest 
ray was imposed as before. The absolute limit on the resolution, due to finite 
anterma array aperture is about 0.10  while some degradation out to separations of 
0.15° or so are to be expected. All of this, admittedly, is bound to colour the final 
results and the limitations should be borne in rnind. 

Fig. 8 shows distribution in AOA of the strongest ray (in 0.1 0  steps) for the two 
1989 data sets and the corresponding median amplitude; the latter is derived from 
the distribution in amplitude for each 0.10  interval as shown in fig. 9. The overall 
range used here (-0.2° to +0.5°) for the strongest ray encompasses most of these 
rays with insignificant numbers outside of this range. The higher than normal 
median amplitude for elevated rays, at least in the interval 0.0° to 0.2°, is 
consistent with previous results and vvith the predictions of ray tracing. The low 
elevation strongest rays are few in. number and depressed in amplitude. This may 
suggest broad defocussing effects or alternatively defocussing of the elevated rays to 
the point where ground reflected rays become dominant. More work is suggested 
here especially in the area of expected refractivity gradients close to the ground. 

The angle-of-arrival distributions of the second and third strongest rays for the same 
0.1° intervals in AOA of the strongest is shown in fig. 10 for the worst month 
data; the hatched rectangles represent the above 0.10  (strôngest ray) interval and a 
reduced count is to be expected for at least an extra 0.1° either side of this due to 
the limited resolution of the system. The A0As are all relative to the normal angle-
of-arrival under single path conditions. It will be noted that the third strongest ray is 
consistently mainly from below the normal direction suggesting that ground 
reflections are the main origin, though significant numbers of high rays also occur 
in this category. The second strongest is often closest in AOA to the main ray and 
either above or below it depending on the AOA of this strongest one. This may be 
interpreted as interchange between the more direct ray and the strongest ray 
refracted by an atmospheric layer as the amplitudes of the two vary with 
perturbations in refractivity. 
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4. Discussion. 

Because of time and other constraints, it proved to be impractical to carry out the 
planned multi-experiment observations in 1990.  However, equipment developments 
now appear to be at a stage where such activities are possible during the upcoming 
1991 fading season. This would undoubtedly provide significant input in terms of 
realistic modelling of the refractive environment and would represent a major step 
forward in this work. As was noted earlier, the refractivity profile close to the 
ground will influence the importance of ground reflections in the context of 
defocussing and other refractive effects. 

On the data analysis side, much remains to be done even with the data already 
collected and the plan is to continue with this work with a view to providing 
improved statistical data on the actual distributions of incoming rays and direct 
simulation of real microwave links. 

Acknowledgments. 
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Fig. 5. 	The basic Sodar output display using a dot-matrix printer. 

Fig. 6 	The file storage scheme for the digitized data for each sweep. 
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Fig. 7. 	The number of fading hours recorded in the indicated months. Recording 
was near to continuous and the data have been normalized to full months. 
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Fig. 8. 	(a) The relative occurrence of the strongest ray in each 0.10  interval for 
all of the 1989 data and the worst month and (b) the corresponding 
median amplitude. 
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Fig.10(a). The distribution in AOA of the second and third rays with the strongest 
within the indicated (hatched rectangle) 0.10  AOA range; all 1989 data. 
The number of samples are as indicated. 
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Fig.10(b). The distribution in AOA of the second and third rays with the strongest 
within the indicated (hatched rectangle) 0.10  AOA range; worst month. 
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