

Z

I

RESEARCH, DEVELOPMENT AND COMMUNICATION IN THE CANADIAN ECONOMY

Russel M. Wills April 1979

Department of Communications Contract #OSC-78-00253

QUEEN P 91 .C655 G76 1979 V.6

Copies available from: Gamma 3535 Queen Mary Road Montreal, Quebec

1

I

1

1

Industry Canada Library Queen

Industrie Canada Bibliothèque Queen

RESEARCH, DEVELOPMENT AND COMMUNICATION IN THE CANADIAN ECONOMY

> Russel M. Wills April 1979

Department of Communications Contract #OSC-78-00253

69	NRIU	ICATI	ONS CA	NADA
	JU	LA	1979	
LH	BRARY	Y - BH	RIOTH	CUE

Copies available from:

pully

91 C655

G76

1979 #6v.6

Gamma 3535 Queen Mary Road Montreal, Quebec

DD3430555 DL4682278 P 9/ 55 A76 9 \$66

ACKNOWLEDGEMENTS

I would like to express my gratitude to Ms. Rosemary Horan Swann and Mr. Don Thom, my research colleagues at the Ministry of State for Science and Technology, to Dr. Dennis DeMelto of the Economic Council of Canada for critiques of earlier versions of this work, and to Ms. Shirley Serafini and Mr. Michel Andrieu of the Telecommunications-Economic Branch of the Department of Communication for their support and encouragement. The views and opinions herein are my own and do not necessarily express those of the Department of Communication.

OUTLINE

Î

Į

I

ł

Page

•	Executive Summ	ary	
	Introduction	· ·	
	Part I Re	<pre>search and Development</pre>	
		Electrical Products and Service Sectors	8
	Part II · Se	arch Channels for Technical Information Scientific and Technical Information Description of the Survey Size Industrial Sector Company Type Results	12 13 15
	Part III Pc	licy Implications and Future Research	20
	APPENDIX I.	STI Channels for Small, Medium and Large Companies	24
	APPENDIX II.	STI Channels for Multinational and Domestic Canadian Companies	26
	APPENDIX III.	Selection of the Population	28
	APPENDIX IV.	Definitions of Foreign Owned, Foreign Controlled and Multinational Enterprises	3 0
	APPENDIX V.	Source List for Classification of Companies	- 32
	APPENDIX VI.	Program Breakdown	34
	APPENDIX VII.	Cross Tabulations of Company Type vs Frequency of Use of STI Channels	46
	APPENDIX VIII.	Cross Tabulations of Company Size vs Frequency of Use of STI Channels	58
	References		70

EXECUTIVE SUMMARY

This work contains the first analysis by the author of two surveys conducted by the Ministry of State for Science and Technology in 1978, a survey of the industrial concentrations of R&D products, activities, facilities, locations, and personnel in the private sector, and a survey of the information channels actually used by this sector to acquire technical information to perform R&D and related activities.

Research and development contributes to national economic growth only when it is manifested in some tangible products or process and is successfully utilized or marketed, and it is estimated that 80-90 per cent of investment capital in a new product occurs <u>after</u> the R&D stage. Thus it is thought that government policy has given undue emphasis to raising the amount of Canadian R&D, and it is found that a main result of government tax incentive measures in the form of R&D writeoffs is to encourage firms to substitute and report advertising and marketing expenditures for those R&D. The decision of managers to "fund" R&D, it is thought, is thus often based more on an aversion to paying taxes than to any commitment to innovation. The main results of the surveys are as follows:

(1) It was found that manufacturing industries and service industries (including communications, engineering and scientific services to all industry) each perform about 45-46 per cent of the industrial R&D, by labour force. Of the industrial service sector, about half does consulting R&D with one or more of the resource industries, and about half does consulting work with the electrical, electronics, and telecommunications industries.

(2) A considerable percentage of R&D in Canada is dispersed in multidisciplinary scientific and engineering consulting groups, and often the products of such R&D are customized to a specific onetime need and do not result in mass-produced products.

(3) With electrical products/electronics sector R&D, many firms provide components for systems. One sees few firms whose product is the provision of an entire electronics system, which are provided mainly by foreign multinationals.

(4) Variations in both the extent and frequency of use of the information channels used to search for new technology were examined with respect to company size and company ownership type (foreign-owned multinationals, Canadian-owned multinationals, and Canadian domestic companies). In general as one goes from large to small-size companies, the extent of use and frequency of use of all information channels decreases, with the exception of "clients and suppliers". Small and medium sized Canadian companies rely excessively on suppliers -- often agents of foreign-owned multinationals who have a vested interest in selling a particular and perhaps inappropriate product -- as a source of technical information. (5) Commercial information services and research organizations are used by few respondents sampled in Canada as sources of technical information, although respondents in large companies tend to use these channels more often and more extensively than those in small Canadian companies.

(6) Government agencies are not extensively used by any type of company as a source of technical information, but respondents in Canadian-owned multinationals constitute the largest percentage of users of government agencies at the weekly or the monthly rate of use, and respondents in large companies (all three types of ownership), constitute more than half of all users.

(7) The source of technical information utilized most extensively and most frequently by all types of companies is that of "experts, colleagues and associates". Information -- both new awareness of some technology and knowledge of how to implement it -- is transferred in the private sector mainly via personal contact.

INTRODUCTION

The first analysis by the author of two surveys done at the Ministry of State for Science and Technology in 1978 are presented, a survey of the Research and Development (R & D) capabilities in the Canadian private sector, with special attention to the R & D capabilities in the electrical products, communications, and service sectors, and a survey of information channels actually used by the private sector to acquire scientific and technical information. The first part delineates in what sectors R & D activities, products, personnel, and facilities are concentrated in the private sector, while the second part examines the information channels actually used by this private sector to acquire information to perform R & D and related activities.

R & D is economically useful only when it results in tangible, marketable products and processes. Research is quite different from product development and the lack of the latter sometimes arises because Canadian entrepreneurs and innovators have a great deal of difficulty in finding financing. (In a recent study the OECD (1978) notes that the Canadian banking system, although quite suited for the mobilisation of large scale loans, is quite unsuited for domestic high risk situations.) The activity of research and development, in fact, can be seen as a reflection of innovativeness - the tendency to create and utilize new products and processes, and a great deal of innovation in Canada is now occuring in parts of what has come to be called the information sector. Historically this concept was first given content by Fritz Machlup in a classic 1962 book, The Production and Distribution of Knowledge in the U.S. Economy. By knowledge industries Machlup included all communications industries (T.V., radio, newspapers, etc.), all education, all R & D, and all information machines and services in that order. Working with 1958 data Machlup found that this sector comprised approximately 29% of the U.S. economy at that time and was growing at twice the yearly rate of the other sectors. M. Porat, realizing that the main activity of many industries (such as finance and banking) is predominantly of an informational search and transferal nature, attempted a more comprehensive definition of the "information sector" to include the following: All industries whose final product is information, (T.V., Cable, videodisc, software applications industries, information search firms, etc.), all industries whose major intermediate product is information but whose final product usually goes under a different name (finance, insurance, research firms, etc.), and all industries which make and service the information technologies (computers, computer telecommunication systems etc.) (Porat 1974)

In this work we shall understand the information sector as simply encompassing all economic activity concerned with the production, manipulation, reproduction, and distribution of information. We shall limit our discussion to the <u>private</u> information sector and therein include also the informational activities of non-information industries, such as computer aided design and process control in manufacturing. In fact given the centrality of one technology - the microprocessor in information sector growth, we might simply think of the private information sector as all those industries whose capital expenditures are being affected by the applications of microprocessors.

Microprocessors consist of dozens of thousands of transistors in a few square millimeters. They are often several thousand times less expensive than computers of a couple decades ago and are several hundred thousand times smaller. This tiny technology will be eventually used in all information processing activities in industry and is effecting a world class revolution comparable in its effects to the industrial revolution. The applications of this technology will effect major structural changes in the Canadian economy for consumer electronics, electronics components, telecommunications, computers, office and industrial machinery, design, control, and instrumentation equipment, systems electronics, the service sector, the resources sector, and manufacturing as a whole.

But to jump from this realization to the claim that Canada is becoming a "post industrial society" is absurd. We don't as yet have that much industrial activity to be "post" to. The issue rather is this: Can information products and processes become our industry? As of this writing it is generally acknowledged that Canada has for example, the world advantage in technology in TV-information systems, Telidon. Within two years, the British or some other country will have sufficiently modified their system and be marketing it worldwide. Are the results predictable? Why is that?

PART I: RESEARCH AND DEVELOPMENT

A Measure of Innovativeness

During the past year, a great deal of attention by several government departments and a provincial-federal first ministers' conference has been focused on research and development in Canada, understood by the government as "Investigative work carried out to acquire new scientific and technological knowledge, to devise and develop new products or processes, or to apply newly acquired knowledge in making technically significant improvements to the existing products or processes". (MOSST Background Paper, 1978); but these - acquiring of new scientific knowledge, and devising new products are quite different economic activities. Besides the minimal job provision for scientists and engineers, research and development contributes to national economic growth only when it is embodied or manifested in some tangible product or process and is successfully utilized or marketed. From the successful creation of a new idea through prototype and commercially feasible production, through market entry, market research, to market profit are many stages and many barriers to each stage. Often, venture capital must be found to turn the idea into a product, but it is notoriously difficult in Canada to find venture capital much less for product development than for the marketing

and production of proven, successful products. Anyone who regularly reads the Globe and Mail can point to several instances like that of the Canadian who recently successfully invented and produced a mechanism selling for about thirty dollars per unit, which, when inserted on the fuel line of virtually any internal combustion engine, will increase fuel efficiency by 5 to 29%. This device, of which it is estimated will be on 85% of cars in the world within 20 years, was bought by a British firm after the inventor tried unsuccessfully, for several years, to find Canadian development capital, and is now being mass manufactured for placement on cars.

But there are even barriers to export from Canada since multinational "parents", as they are called, often prevent Canadian subsidiaries from exporting via agreements for access to and use of technology. The subsidiary is prevented from altering an innovation and marketing it outside Canada.

Research and development then is merely one part of the chain from new ideas to successful profit, and it has been often estimated that 80 to 90 per cent of investment capital of a new product occurs after the R & D stage. It is perhaps better to think of research and development as a substitute measure for innovativeness, the tendency to create or adopt new products and processes. This is not to claim that the cost of R & D is the same as the cost of innovation, but merely that the more innovative a firm is, the more it uses state-of-the-art technology (created by R & D or adopted from other sources) in its products and/or operations. That is what "innovative" means. If this way of thinking is accepted, then we must see that the government position of merely increasing the amount of R & D which is performed in Canada, or even R & D performed by Canadians, is not a sufficient way to aid industries. We cannot make Canadian companies more innovative simply by trying to increase the amount of Canadian R & D. We might increase the amount of R & D by enacting tax and financial measures to aid Canadian innovators and entrepreneurs, of which there are many. But before examining those matters let us first look at the present funding and performance of Canadian R & D.

R & D Data for Canada

As can be seen from Table One, the total intramural Industrial R & D, it is thought, is centered in several manufacturing industries in Canada. The industries account for about 85% of all the intramural R & D expenditures, and the "electrical products" industry is the single largest performer of intramural R & D, accounting for about 30% of all industrial R & D expenditures.

* See, for example, Report of the Senate Special Committee on Science Policy, <u>A Science Policy</u> for <u>Canada</u>, Vol.2, 1972, p. 395 or E. Mansfield <u>et al.</u>, <u>Research and Development in the Modern</u> <u>Corporation</u> (MacMillan, 1970) Ch.2.

** Intramural R & D expenditures are defined as all funds used for in-house R & D in an industry, including work financed by others.

TABLE 1

TOTAL INTRAMURAL R&D EXPENDITURES, BY INDUSTRY

1971-77

CURRENT DOLLARS (\$ MILLIONS)

		1971	1972	1973	1974	1975	1976	1977
Primary Industries		17.3	26.7	29.9	35.3	40.8	41.3	49.5
,	ક્ર	3.7	5.8	5.9	5.8	5.9	5.3	5.8
Manufacturing		405.7	386.5	430.3	516.7	571.6	645.0	679.2
Industries	£	86.8	84.2	85.4	84.6	82.6	82.6	82.4
Service Industries		44.5	46.3	43.8	58.9	79.8	94.8	99.7
	કુ	9.5	10.0	8.7	9.6	11.5	12.1	11.8
TOTAL		467.5	459.5	504.0	610.9	692.2	781.1	846.4
	¥	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source: Statistics Canada

With regard to source of funding, the private sector in Canada provides about 30% of the funding for R & D, as can be seen from Table 2, with government providing funds for almost half of the entire R & D expenditures.

TABLE 2

PERCENTAGE DISTRIBUTION OR R&D EXPENDITURES

BY SOURCE OF FUNDS

	1963	1971	1977
Government	52.3	50.7	48.3
Business Enterprises	31.2	32.4	34.9
Universities	13.4	12.4	11.8
TOTAL R&D (a)	100.0	100.0	100.0

SOURCE: Statistics Canada

Includes private non-profit organizations and foreign sources. a)

But in most industrialized countries, the private sector is the source of 40 to 50% of the funding for research and development.

When we look at the percentage distribution of R & D expenditures by performer instead of source of funds in Table 3, we see that in Canada only about 40% of R & D is performed by the private sector, while in most industrialized countries, 50 to 65% of R & D is privately performed. This lack becomes especially critical when we remember that private sector R & D more often results in commercially marketable products than R & D performed in government laboratories.

TABLE 3

PERCENTAGE DISTRIBUTION OF R&D EXPENDITURES

BY PERFORMER

1963 1971 1977 Government 41.7 33.6 31.4 Business Enterprises 38.7 41.4 44.2 Universities 19.6 25.0 24.4 100.0 100.0 TOTAL R&D 100.0

SOURCE: Statistics Canada

International Indicators

In terms of international indicators, Table 4 shows, for selected OECD countries, the ratio of Gross Expenditures on Research and Development to Domestic Product, (GERD/GDP), a common international indicator used to delineate the percentage of the domestic product of any country going to research and development. For Canada, this ratio has been consistently one per cent or less, while for many OECD countries, the ratio is approximately 1.5% to 2% of GDP. Only Denmark had a lower figure in 1975.

In terms of foreign performance of Canadian R & D, about 40 to 50% of all R & D through the various industries is done by foreign controlled companies in Canada. In manufacturing, for example, in which Canadian intramural industrial R & D centers, about 50% is done by Canadian controlled companies, and about 50% is done by foreign controlled companies, of which the majority are American.

TABLE 4

GERD AS A PERCENTAGE OF GPD FOR 10 OECD COUNTRIES

	1963	1973	1974	1975	1976
Australia		1.2	-	-	
Canada	1.0	1.0	1.0	1.0	
Denmark	-	1.0	-	1.2	
France	1.6	1.8	1.8	1.9	-
Germany	1.5	2.1	2.2	2.2	2.1
Japan	1.3	1.9	2.0	-	. –
Netherlands	2.3	1.9	2.0	2.1	2.1
Sweden	1.5	1.5	1.6	1.6	
U.K.	2.6	1.9			-
U.S.A.	3.5	2.4	2.3	2.4	2.3
	a . !	- n-			

SOURCE: OECD: Science Resources Newsletter, No. 2, Spring, 1977

In summation, the above tables show us that Canadian R&D is low in comparison with industrialized countries and that there is a serious deficiency in the industrial sector, both as a source of funds for R & D and as an actual performer.

Results - Research and Development in the Electrical Products, Communications, and Service Sectors

Now in spite of this grim picture, one portion of the Canadian economy in which some product research, development and applications are blossoming, in spite of governmental policy, is the industrial service, electrical products and communication sectors. During 1978, I surveyed several thousand firms in the Canadian private sector to obtain data on their products, research and development facilities, locations, activities, and personnel. (Wills, 1978).

In the Directory survey, which is organized according to the SIC (Standard Industrial Classification) number of the firms' main product, I was interested in delineating the R & D capabilities of (1) the traditional industries which the SIC system adequately handles; (2) the industrial service sector - comprising the consulting services predominantly to one industry or a group of related industries (such as resources), plus the engineering, scientific, and computer consulting services - all of which do a great deal of <u>intra</u> industry R & D and therefore cannot be classified under the SIC system as "services incidental to" any specific SIC industry; (3) in addition to R & D groups having separate budgets from parent support organizations, I was also concerned with R & D performed by smaller groups which may ordinarily be a part of an organizations production facilities. In the micro-processor, peripherals, software applications companies complex in Santa Clara country, the "Silicon Valley", much of the useful product research and development is done by this type of group. I was, of course, also interested in obtaining R & D information on the "hard" parts of the Canadian communication sector, any computer and peripheral companies, software applications companies, microprocessor companies, computer-telecommunications systems companies, and so forth.

Much more must be said about "services", but let us first examine some preliminary results of the survey. If we look at R & D in manufacturing alone, without adding in the service consulting groups which provide customized R & D services to manufacturing, we see, in Table 5, that electrical products industries are still the largest sector (23%) followed by the chemical industries (21%), followed by machinery (13%).

TABLE 5

PERCENT OF R & D BY INDUSTRY BY LABOUR FORCE CANADA 1978

(Manufacturing Industries)

INDUSTRY	PERCENT
Food	98
Rubber and Plastics	38
Textiles	28
Paper	5%
Primary Metal	6
Metal Fabricating	5%
Machinery	13%
Transportation	5 %
Electrical Products	23%
Non-Metallic Minerals	3%
Petroleum	5%
Chemicals	21%
All Manufacturing	100%

SOURCE:

Directory of Scientific & Technological Capabilities in Canadian Industry, 1977, MOSST, 1978.

If we merge telecommunications services with other types of services and look at the amount of R & D by labour force, by industry, we see in Table 6 that the manufacturing sectors and business services sectors (comprising communication, engineering and scientific services) both do about 45 to 46% of the industrial R & D in Canada. Now even assuming that there is a non-linear relation between any industry's R & D expenditures and the number of people performing R & D in that industry, these figures are at wide discrepancy with Statistics Canada data for the manufacturing and services industries contributions to R & D expenditures (Table 1).

TABLE 6

PERCENT OF R & D, BY INDUSTRY BY LABOUR FORCE, CANADA 1978 (All Industries)

INDUSTRY	PERCENT
Agriculture, Forestry, Fishing Mining (combined)	78
Manufacturing	45%
Construction	18
Services, including communication, engineering and scientific services to all industry	468
Transportation and utilities	18
TOTAL	100%

SOURCE: Directory of Scientific & Technological Capabilities in Canadian Industry, 1977, MOSST, 1978

To understand why this discrepancy arises and whether it represents something real and significant, or merely reflects definitional differences, we must examine the R & D groups appearing under "service" in the Directory.

When economists speak of service, they traditionally mean things like wholesale and retail trade, food services, entertainment, and so forth, that is, predominately services to consumers. We do not, but include predominantely services to industry. Now if we realize that the criterion of placing a group in this category was that it had a multiple product field which could not be classified under any SIC group, and could not be associated with any single industry and that the predominant activity of the service group is consulting, we realize that a considerable percentage of R & D in Canada is <u>dispersed</u> in such multi-industry scientific and engineering groups and that often the product of such R & D is customized to a specific one shot need and does not necessarily result in a mass produced item.

Secondly the discrepancy arises not merely because of definitional differences but because the SIC system used to classify industries is archaic, more appropriate for the early twentieth century. In present Statistics Canada data, aggregations of industries such as computer software industries and computer peripheral industries are sometimes classified as "Office Equipment" and are listed under manufacturing instead of communications or services, while in the Directory we have listed such companies under engineering and scientific services. In the early twentieth century, the SIC classification made some sense since one of the first main uses of computers was in the office. But now their uses have exploded throughout all industries - from computer-aided design and process control in resources industries and manufacturing to a wide diversity of uses in the service industries themselves, and the SIC categories which we now use to classify industries often obfuscate such trends in the data.

But what does this service sector do? Although computer analysis of this sector is currently under way, preliminary analysis reveals that about half of the service sector does consulting with one or more of the resources industries and about half does consulting work in the electrical, electronics products, telecommunications field. Again, what is significant here is not the amount of R & D but the form in which it is presented - often consulting on a specific customized product.

* Another feature of the electrical products/electronics sector one notices is that most firms provide <u>components</u> for systems. One sees many companies whose main products for example, are things like "electrical test and instrumentation equipment, industrial switching and control equipment, power conversion equipment, special devices for automation, test equipment for switching systems, cable interface devices, and so forth". One sees few firms whose product is the provision of an entire electronics system, which are provided mainly by multinationals for whom Canadian companies supply components. When one does see Canadian companies whose product is the provision of an entire electronics system, the company often is an engineering consulting firm. The implications of this situation are discussed in Part Three.

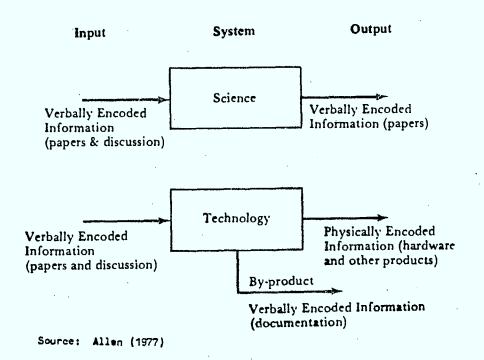
* In the Directory this includes parts of the electrical products sector of manufacturing, parts of communication, and a large portion of service to industry.

PART II: SEARCH CHANNELS FOR TECHNICAL INFORMATION

There are, of course, ways of developing products besides originating the idea of the product, that is, doing research. One may simply buy the information to assembly the product - Canadian companies often "buy" information for products through licencing agreements - or one might search for the information.

Now one of the problems in Canada is that the data upon which to base industrial policy is sometimes unreliable, as we have seen in the case of R & D data. In analyzing a survey conducted by the Ministry of State for Science and Technology, I was interested in the actual information channels used by members of Canadian companies as a source of technical information and in patterns of search between (a) small, medium and large sized companies, (b) between foreign-owned multinationals, Canadian-owned multinationals, and Canadian domestic companies, and finally, in assessing the implications of these findings for the development of technologicallyintensive, competitive Canadian companies.

In 1977-78 the Ministry of State for Science and Technology surveyed respondents in several hundred Canadian companies, asking them among other questions, what channels they used to search for scientific and technical information and how often these channels were used. Respondents ranged from presidents and corporate planners, to research directors and engineers. The selection of the survey population is described in Appendix III. Responding companies were then classified by personnel at the Financial Post's S.V.P. Service and by the author into the following three categories: foreignowned multinationals, Canadian-owned multinationals and Canadian domestic companies.


Foreign-owned multinationals are simply foreign owned companies having one or more subsidiaries in Canada. Canadian owned multinationals are Canadian incorporated firms which are not controlled by foreign companies and whose subsidiaries have half or more of their equity share capital owned by a Canadian parent, and Canadian domestic companies are Canadian companies without any foreign subsidiaries.

It is customary to apply the term "multinational" only to companies which have operations in three or more countries, but for the purpose of study, Canadian multinationals were Canadian companies which have successfully penetrated the American (or some other foreign) market. (Definitions of multinationals are discussed in Appendix IV). I was interested here in successful strategies of searching for information. There were a total of 478 respondents. Of these, questionnaires from 457 respondents were found suitable for purposes of analysis.

It should be emphasized that, while the respondents cover a wide range of industrial sectors, concentrating in manufacturing, the sample was not selected by the author and does not represent a random stratefied sample frame and the responding companies in any sector do not proportionally represent all companies in that sector but We are interested then in the different patterns of searching for STI between foreign-owned multinationals, Canadianowned multinationals, and Canadian domestic companies, and how these patterns vary over company size.

SCIENTIFIC AND TECHNICAL INFORMATION

Little is precisely known about the role of research and development and technology in national economic growth, but it is thought to be substantial, when it is combined with the availability of other factors, such as development capital, market expertise and so forth. If we think of technology as composed of "embodied" information, of hardware and related products, we realize that technology transfer between countries or between companies may occur simply by the purchasing of such hardware (a central way technology enters Canada) or by obtaining the technical information needed to construct and operate such hardware, (via searching for such information or simply purchasing it via licencing agreements and managerial fees). A private sector technologist needs information to understand and formulate problems, and further information to develop solutions. With both science and technology then, the inputs consist of verbal information in the form of papers and discussions.

However, when we turn to the outputs of scientific and technical activity, we see some striking differences.

In science, the outputs, like the inputs, are also verbally encoded information (usually in the form of papers), but with technology, the outputs are physically encoded information in the form of hardware and related products: here verbal information is merely a by-product of outputs in the form of documentation of hardware. (Allen, 1977)

This is not a trivial distinction.

Since the technologist must obtain his or her information via either docoding and transposing physically encoded information or by direct personal contact with others, providing information in technology <u>does not</u> involve the collection, organization and distribution of printed publications to the same extent that it does in science. As Allen (1977) at MIT has written, if "one were to develop an optimum system for communication in science, there is no reason to suspect that it would be at all appropriate for technology", and it is precisely technology, technical information at a utilizable stage, that we are interested in here.

Before we can design efficient systems to provide scientists, engineers and others in the private sector with technical information necessary for their work, much more must be known about the use population in Canada.

In the sixties and early seventies, there were a large number of "user studies" of STI, mainly in the United States, seeking to (1) determine the effectiveness of information channels and (2) examine the criteria which governs the selection of any channel. Until quite recently, however, studies have not differentiated between these two goals. In other words, it has been implicitly thought that the effectiveness of an information channel is the main criterion which governs selection of that channel.

It has been found, however, that there exists no relation whatsoever between channel effectiveness and the extent to which any given information channel is used. Allen (1977) finds that engineers, act "in a manner which is intended not to maximize gains, but rather to minimize loss. The loss to be minimized is the cost in terms of effort, either physical or psychological, which must be expended in order to gain access to an information channel". Engineers, thus seem to follow a "law of least effort", which states that individuals when selecting several paths to a goal will base their selection upon a single criterion of least average rate of probable work.

^{*} Many firms are in fact finding it easier now to enclose microcomputer equipment in glue so it will self-destruct when opened rather than to use the patent system. This is to prevent this physical decoding of the product.

If little is known about how individuals search for technical information, less is known about whether or how channel use varies over company size in Canada, or how channel use varies between Canadian based multinationals and Canadian domestic companies.

In the present'study, respondents were asked the following question: "Which of the following channels do you use as a source of scientific and technical information, and how often do you use them?". Possible information channels were as follows:

1)	libraries	
2)	trade associations	
. 3)	seminars, conventions,	exhibits
4)	company sales force	•
5)	suppliers	
6)	clients and customers	
7)	government agencies	
8)	commercial information	services
9)	research organizations	or consultants
10)	experts colleagues and	associates
11)	magazines	
12)	newspapers	

Description of the Survey

Size

Of the 457 questionnaires found suitable for purposes of analysis, 150 (35%) were from respondents in small sized companies (1 - 100 members), 119 (26%) were from respondents in medium sized companies (101 - 500 members), and 179 (39%) were from respondents in large size companies (more than 501 members).

Industrial Sector

206 of the respondents (45%) were from manufacturing companies; 36 respondents (8%) were from mining companies; 66 respondents (15%) were from construction companies; 41 respondents (9%) were from communication companies; 34 (7%) respondents (16%) were from service companies. The individual variation of size over industrial sector is given in Table 1.

Company Type

Of the 457 respondents, we were able to determine whether 443 were associated with a foreign owned multinational, a Canadian domestic company, or a Canadian owned multinational. Of these 443 respondents, 114 (32%) were from foreign owned multinationals, 224 (51%) were from Canadian domestic companies, and 75 (17%) were from Canadian owned multinationals. As can be seen in Table II, the foreign owned and Canadian owned multinationals are mainly large, while the Canadian companies surveyed are mainly small. Almost 56% of the foreign owned multinationals surveyed are large, with only 15% small sized. For the Canadian owned multinationals, 72% are large with only 13% small sized, and for the Canadian domestic companies, only 16% are large, while 57% are small sized.

				84 * * * * * * * * *		* * * * * * * *	к	
COUNT	GLDSIZE							
ROW PCT COL PCT TOT PCT	ISHALL I I1	I	LARGE	TOTAL		· · ·	· · · · · · · · ·	
NUFACTURING	I 81 I 39.32 I 50.94 I 17.72	I 59 I 28.64 I 49.58 I 12.91	I 66 1	I 206 I 45•08 I I				
[NING -	I 10 I 27•78 I 6•29 I 2•19	I 10 I 27.78 I 8.40 I 2.19	I 16] I 44+4+] I 8+94]	I 36 I 7•88 I	· · ·		· ··· -·· - · - · -	-
SNSTRUCTION 3	I 23 I 42+42 I 17+61 I 6+13	I 20 I 32.30 I 16.81 I 4.38	I 18 I 27+27 I 10+06 I 3+94	I 66 I 14+44 I I			· · · · · · · · · · · · · · · · · · ·	
A BMMUNICATION	I 14 I 34+15 I 8+81 I 3+06	I 7 I 17.07 I 5.88 I 1.53	I 20 I I 20 I I 48.78 I I 11.17 I I 4.38	I 41 I 8•97 I I			.	- 16 -
5 TILITY 5	I 3 I 8•82 I 1•89 I •66	I 11 I 32.35 I 9.24 I 2.41	I 20 1 I 58+82 I 11+17	1 34 I 7•44 I I			· ·	
6 ERVICE	I 23 1 I 31+08 1 I 14+47 1 I 5+03 1	I 12 I 16.22 I 10.08 I 2.63	I 39 I I 52.70 I I 21.79 I I 8.53 I	I 74 I 16+19 I I				
COLUMN		119 26.04	-1] 179 39+17				`	

-

- -- .-

L •

NUMBER OF HISSING OBSERVATIONS - 11

· · · ·

+++ BIGHA SPSS		_	***					•	<u>'</u>	• .		
· · · · · · · · · · · · · · · · · · ·								•				
+ + + + + + + + PULTITYP TYPE	-CONTROL	OF TRGAN	IZATION		BY	`SIZE	-	•	-	* • • • •	* * * # # #	
* * * * * * * *	* * * *	* * * * *	* * * * *	* * * * * *	* * * * *	. * * *	* * * *	* * * *	* * * *	•		
CAUNT T	OLDSIZE										•	
ROW PCT I	SMALL	MEDIUM	LARGE	ROW	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
TOT PCT I	1	1 2	I 3	TOTAL I					•			-
ULIIIYP =====I	*******	I 42		1								
FOR+OWND MULTINA I	15+28	1 2 ⁹ •17 1 3 ⁶ •52	I 55+56	I 32+51	·		•				 	
I	4+97	I 9.48	I 18+06	I								
5 I - I	127	I 62	I	I 224						· •	• • • • • • •	
CANADIAN COMPANY I	56+70	I 27.68	I 15+63	I 50+56	• ,				• •			
1	28+67	I_53.91 I_14.00	I 7+90	I						: -		t
3 1	10	I======== I 11	1 54-	1 75	. 4				,			17 7
CANOWND MULTINAT I	13.33	1 14+67	I 72+00	I 16+93					<u> </u>			I
1	5+56	1 2.48	1_12+19	I I		•						· · · · · · · · · · · · · · · · · · ·
יין אאאניזפט	159	I 115	169	I 443				•				
TOTAL	35+89	25.96	38 • 15	100.00		. : .		· '	· · ·	_	•	·
				•		,						
NUMBER OF MISSING	COSENVAI	1043 - 25							<u>-</u>			
							<i></i>					•
						,	·	•••		•		•
·					· ·							···
· • •	· · ·		. •	Υ.								
	•					,						
		,	•									
•		•	•		•			·	-		•	
					_							

Results

The question(s) which must be answered is whether (and how) the companies can acquire technological information in a more efficient and less costly way so that product development will be improved in the Canadian private sector.

(1) We first eliminated possible variations in channel use due to size differences and compared the most frequently used channel between respondents in (a) small foreign owned multinationals vs. small Canadian companies (b) medium sized foreign owned multinationals vs. medium sized Canadian companies, and (c) large foreign owned multinationals vs. large Canadian companies. These results are summarized in Table III. (It was felt that there were not enough Canadian owned multinationals of varying size in the population for valid comparison purposes of this type.)

(2) The results of extent and frequency of use of each information channel by respondents in small, medium and large sized companies are summarized in Appendix I.

(3) These same results for respondents in companies of varying ownership structure - foreign owned multinationals, Canadian owned multinationals, and Canadian domestic companies - are summarized in Appendix II.

(4) In general, as one goes from large to small-sized companies, the extent of use and frequency of use of all information channels decreases, with the exception of clients and suppliers. Respondents in both medium sized Canadian companies and small sized Canadian companies cite suppliers as among the three most frequently used sources of technical information, while respondents in medium sized and small sized foreign owned multinationals do not. Small and medium sized Canadian companies rely excessively on suppliers (usually agents of foreign owned multinationals) who have a vested interest in selling a particular and perhaps inappropriate product as a source of technical information.

(5) Commercial information services and research organizations are used by few respondents sampled in Canada as sources of technical information, although respondents in large companies tend to use these channels more often and more extensively than those in small companies.

(6) Although governmental agencies also are not extensively used by respondents in any type of company, respondents in Canadianowned multinationals constitute the largest information source at the weekly or monthly rates of use, and those in large companies (of all three types of ownership), constitute more than half of the users.

TABLE III

Most Frequently Used Sources of STI (decreasing order of use)

Large Foreign Owned Multinationals (80 Respondents)

- 1. experts and colleagues
- 2. trade associations
- 3. seminars and conventions

Medium Sized Foreign Owned Multinationals VS. Medium Sized Canadian Companies (42 Respondents)

- 1. experts and colleagues
- 2. company sales force
- 3. seminars and conventions

Small Foreign Owned Multinationals (22 Respondents)

- 1. experts and colleagues
- 2. company sales force
- 3. newspapers

vs. Large Canadian Companies (35 Respondents)

- experts and colleagues 1.
- 2. trade associations
- libraries 3.

(62 Respondents)

experts and colleagues 1.

Q

- 2. suppliers
- company sales force 3.

Small Canadian Companies vs. (127 Respondents)

- experts and colleagues 1.
- suppliers 2.
- 3. newspapers

(7) The source of technical information utilized most extensively and most frequently by <u>all</u> types of respondents is that of "experts, colleagues, and associates". Information -both new awareness of some technology and knowledge of how to implement it -- is transferred in the Canadian private sector mainly via personal contact.

Let us now examine policy implications and the relevant areas of future research.

PART III: POLICY IMPICATIONS AND FUTURE RESEARCH

(1) Rather than concentrating on increasing the amount of R&D performed in Canada, concentrate on increasing the adoption, diffusion and application of existing state-of-the-art technology from all available sources. Funds should be made available to start several centers whose purpose is the encouragement of diffusion and adoption of informatics technology in the private sector.

Certainly as a long-term goal, no one would disagree with the aim of increasing the amount of Canadian R&D. However, given the massively high U.S. ownership of most Canadian industry and the population differences between Canada and the United States, there are compelling economic reasons for Canadians to obtain much, if not most, new technology from foreign (U.S.) sources instead of creating it by doing R&D. The size differential between the U.S. and Canada forces any firm operating in the Canadian market always to take into account the increased Canadian R&D costs per unit of Although research in the diffusion of new technology output. through the Canadian private sector is scant, Globerman has conducted three such studies -- (1975, 1975, 1976) the diffusion of numerical control machine tools, new presses to eliminate water in papermaking, and of tufting equipment in the manufacturing of carpets, duplicating diffusion studies of E. Mansfield in the U.S. In all cases the rate of adoption by firms was significantly slower in Canada than in the United States, and slower than in Europe for the water-press. It is thus astonishing that there presently exists only one federal government agency (the Technical Information Service of the National Research Council, whose budget last year was \$2 million), whose purpose is productivity improvement via utilization of state-of-the-art-technology. We cannot realistically expect Canadian firms to do the sort of R&D done across the board by U.S. firms. Obviously Canada must specialize in areas of special advantage.

Given the clear economic advantages of adopting stateof-the-art-technology we must look at the factors responsible for our slower adoption rates. These may be classified into those of a structural nature which we cannot change, such as higher tooling costs per unit of finished product arising from the population differences between the U.S. and Canada, and those we can change, such as the quality of Canadian management. Funds should be made available to start at least one world class institute for the training of Canadian managers.

(2) Make incentives of the order of \$100 to \$200 million per year available for a minimum of five years to expand existing firms and encourage the formation of large-scale mergers and consortia in the high-technology areas of systems electronics and micro-processors. We have seen that a large part (46 per cent) of R&D and related activities in Canada lie in the industrial service sectors, and comes in the form of customized consulting on specific projects -- some groups serving a multiplicity of industries. Consequently such R&D seldom results in standardized mass products. Also a feature of the electronics sector as we have seen is that many firms provide components for systems instead of entire systems themselves.

Z

I

(3) Technological information, we have seen, is transferred in the Canadian private sector mainly via personal contact. Policy for the improving of the dissemination of technical information in Canada, therefore, must be directed towards those instances involving human carriers -- linking agencies (Rogers, Rogers, Wills, 1976), employee migration (Shapiro, 1967), etc. The best way to transfer technology is to move a human carrier. In the United States, Roberts and Wainer (1971), show effective transfer of space technology to the private sector from universities, for example, only in those cases in which engineers left the university laboratories to create their own businesses, and Shapiro cites the findings by the Engineering Manpower Commission of the Engineers' Joint Council that the turnover in industries classified as "electrical, electronics, aircraft and parts, communications, instruments, and research and development", is 12.1 per cent. Each time an engineer moves to a new company, he or she brings a certain amount of proprietary information, ensuring that any company is not far behind his competitors. The engineer also knows how to apply the information to the new context, and for competent transfer of technology we must utilize this human ability to restructure, to fit the puzzle together again.

(4) Since so many small and medium-sized Canadian companies -- both subsidiaries and non-subsidiaries of multinationals -- use suppliers as a source of technical information, we should investigate, beyond the few existing case studies, the exact terms and mechanisms of licensing and arms-length agreements for technical information among these companies, to see how they affect flows of technology into and across the Canadian private sector, and how such can be altered to Canada's economic interests.

(5) Eliminate the corporate capital gains tax on information industries.

In 1977 the government extended the investment tax credit to include credits for both current and capital R&D expenditures, the credits ranging from 5 to 10 per cent of existing R&D expenditures, depending on the region. Companies were then allowed in 1978 to deduct an additional 50 per cent of that amount by which R&D expenditures exceeded the average of those incurred in the preceding three year period, (thus automatically excluding any significant incentive and benefits to small companies to <u>start</u> their own R&D) because a three year average of nothing is still nothing. Finally in 1978 there was an indefinite extension of the R&D investment tax credit and an increase to 10 or 20 per cent depending on the region and 25 per cent for small Canadian controlled businesses.

Although it is extremely difficult to get evidence on this point, it seems that a main effect of the government tax incentive measures in the form of R&D write-offs is to encourage firms to substitute and report advertising and marketing expenditures for those of R&D, and this decision to fund R&D is thus based more on managers adversion to paying taxes than to any commitment to innovation. In site visits by the author to six large Canadian companies, whose increased R&D tax write-offs in the last fiscal year totalled just under \$22 million, it was found that all collectively had an increased R&D budget of just under \$5 million.

Now the above-described tax measures were enacted largely to stimulate the amount of R&D done in Canada. But, as we have seen, we must not merely increase the amount of R&D done in Canada or even the amount of R&D done in Canada by Canadians. We must increase its applicability. We are interested in increasing R&D of which the results are marketable on a world scale. One of the first things we must do is to utilize our tax structure to create a better climate for entrepreneurs and innovators in Canada. Innovating, the creation, physical production, and utilization of new products and processes, involves a great deal of risk and requires a great amount of risk capital for any firm, especially for high technology firms, We simply do not now have the vast pool of "floating" venture capital which the U.S. does and it must be built up.

(6) Encourage more <u>adoptive</u> R&D. New technology is internationally available immediately. Both American and Japanese firms, as is well known, frequently will copy, modify, and sell one another's products, and multinationals in Canada frequently modify U.S. technology for Canadian conditions. What we are suggesting is that Canadian companies be "legally encouraged" to adopt, modify, and where feasible sell this technology and its products in world markets.

(7) Make funds available to encourage the incorporation of microprocessors into existing Canadian products.

(8) Start an aggressive recruitment program using media techniques to move to Canada persons who have necessary high technology and managerial skills in the areas of systems electronics and microprocessors. Many countries do this and there is no reason why Canada should not. Mitel, for example, has a think tank located at Lake Tahoe in California, whose purpose is recruitment of computer talent from the Santa Clara Valley.

(9) Incorporate awareness of existing information technology such as stand-alone floppy disc-based equipment and video disc into the present regulatory discussions of information industries. U.S. companies such as MCA and RCA are about to begin releasing video disc based programs in Canada. They will be sold like books, are completely unregulated and will render irrelevant many of the present regulatory arguments about cable, pay T.V., and telidon-like retrieval systems.

(10) A number of studies predicting vast labour displacement effects resulting from the industrial uses of microprocessors have advocated the immediate initiation of worker retraining programs. We agree with this proposal and further believe that it is an appropriate time to use the funding lever to try to upgrade parts of the Canadian university system. Just as the colonial students in Martinique in the nineteenth century would study "les grands philosophes" of France instead of learning practical development techniques appropriate to that era, in the Canadian university system in such critical and relevant subjects as communications research, it is not unusual to find students in ignorance and contempt of computer developments studying the Frankfort school of German sociology or French structuralism.

APPENDIX I

STI Channels for Small, Medium and Large Companies

Libraries - 39% of the respondents in small companies do not use libraries as a source of STI, as compared with nonuser rates of 31% and 14% respectively for respondents in medium and large companies. Of all respondents who weekly use the library, 58% are members of large companies, and at the monthly rate, 57% are members of large companies.

Trade Associations - 24% of the respondents in small companies do not use this channel as an STI source, as compared with non-user rates of 17% and 9% for respondents in medium and large companies. Of those who use trade associations several times per week, member of large companies comprise 59%.

Seminars-Conventions-Exhibits - 16% of the respondents in small companies do not use this channel as an STI source, as compared with non-user rates of 7% and 5% respectively for respondents in medium and large companies; of those who use seminars, conventions and exhibits several times per month, respondents in large companies comprise 43% of the population (as compared with 27% for respondents in small companies).

Company Sales Forces - 31% of the respondents in small companies do not use company sales force as an STI source, as compared with a non-user of 23% for respondents in both medium and large companies. Of all weekly users of sales force, respondents in small companies comprise 43% of all users.

Suppliers - 11% of the respondents in small companies do not use suppliers as an STI source, as compared with non-user rates of 13% and 24% for respondents in medium and large companies respectively. Of all weekly users of suppliers as an STI source, respondents in small companies constitute 52% of all users.

Clients - 29% of the respondents in small companies do not use this channel as compared with non-user rates of 27% and 37% for respondents in medium and large companies.

Governmental Agencies - 18% of the respondents in small companies do not use governmental agencies as an STI source as compared with non-user rates of 26% and 17% respectively for medium and large companies. Of all weekly users of governmental agencies, respondents in large companies constitute 68%

Commercial Information Services - 69% of the respondents in small companies do not use commercial information services as an STI source, as compared with non-user rates of 56% and 38% for medium and large companies. Of the respondents in small and medium sized companies using this channel, the most frequent interval of use is several times per year. Research Organizations and Consultants - 53% of the respondents in small companies do not use this channel as an STI source, as compared with non-user rates of 41% and 26% for medium and large companies. Only 11% of the respondents in small companies use this channel once per month or more often. The most frequent interval of use for all three sized companies is several times per year.

Experts, Colleagues and Associates - Only 13% of the respondents in small companies do not use this channel for STI, as compared with non-user rates of 8% and 3% for medium and large companies. The most frequently cited interval of use of this channel for all companies is several times per week.

Magazines - 12% of the respondents in small companies do not use magazines as an STI source as compared with non-user rates of 8% and 3% for medium and large companies.

Newspapers - 32% of the respondents in small companies do not use this channel for STI, as compared with non-user rates of 30% and 18% for medium and large companies.

The actual weekly, monthly and yearly rates of users of each channel for small, medium and large sized companies are presented in Appendix VII.

APPENDIX II

STI Channels for Multinational and Domestic Canadian Companies

Libraries - 34% of respondents in Canadian companies do not use libraries as a source of STI as compared to a non-user rate of 23% and 19% for respondents in foreign owned and Canadian owned multinationals respectively. 14% of the respondents in Canadian companies use libraries and an STI source at least on a per week as compared with a weekly usage rate of 26% for respondents in Canadian owned multinationals and 21% for respondents in foreign owned multinationals.

Trade Associations - 20% of the respondents in Canadian companies do not use trade associations as an STI source, as compared to a non-user rate of 14% and 9% for respondents in foreign owned and Canadian owned multinationals respectively. The largest weekly use of trade associations is for respondents in foreign owned multinationals followed by respondents in Canadian owned multinationals.

Seminars-Conventions-Exhibits - 12% of respondents in Canadian companies do not use seminars, conventions and exhibits as a source of STI, as compared to a non-user rate of 7% and 8% for respondents in foreign owned and Canadian owned multinationals respectively. Large foreign owned multinationals use seminars and conventions more often than large Canadian companies, and medium sized foreign owned multinationals use this channel more often than medium sized Canadian companies. If we examine the monthly rate of use, we see that 12% of the respondents in foreign owned and Canadian owned multinationals use this channel, as compared with 57% of the respondents in Canadian companies.

Company Sales Force - 33% of respondents in Canadian companies do not use company sales force as a source of STI, as compared with a non-user rate of 19% and 20% for foreign owned and Canadian owned multinationals respectively. But of all companies which use sales force for STI at the rate of at least several times per week, respondents in Canadian companies comprise most of the population (49%).

Suppliers - 16% of respondents in Canadian companies do not use suppliers as a source of STI as compared with a non-user rate of 15% and 20% for respondents in foreign owned and Canadian owned multinationals, but again of those companies who weekly or monthly use suppliers for STI, users in Canadian companies comprise more than 50% of all users at this rate.

Clients-Customers - 29% of the respondents in Canadian companies do not use clients and customers as STI sources as compared with non-user rates of 34% and 33% for respondents in foreign owned and Canadian owned multinationals, but of the weekly and monthly users of this channel, Canadian companies comprise the majority. Government Agencies - 21% of the respondents in Canadian companies do not use governmental agencies for STI as compared with a non-user rate of 20% and 19% for respondents in foreign owned and Canadian owned multinationals. But of the weekly or monthly use of this channel, respondents in Canadian companies comprise the highest percentage of users.

Commercial Information Services - This channel is used by few. 61% of the respondents in Canadian companies surveyed do not use commercial information services for STI as compared with a non-user rate of 49% and 47% for respondents in foreign owned and Canadian owned multinationals respectively. Only 7% of the respondents in Canadian companies used this channel weekly, as compared with 12% of the foreign owned multinational respondents and 16% of the Canadian owned multinational respondents.

Research Organizations or Consultants - Research Organizations are used by almost no one in Canada as an STI source; 47% of the respondents in Canadian companies do not use this channel as compared with a 38% and a 17% non-use rate for respondents in foreign owned and Canadian owned multinationals respectively. The mean frequency of use for this channel was several times per year for all types of companies.

Experts, Colleagues and Associates - This was the most frequently cited channel for respondents in all type of companies. Only 11% of the Canadian companies' respondents did not use this channel as an STI source, as compared with 6% non-users among the foreign owned multinationals and 3% non-users among the Canadian owned multinationals. But respondents in Canadian companies use experts, colleagues and associates less often than respondents in other types of companies.

Magazines - 9% of the respondents in Canadian companies do not use this channel as compared with a non-user rate of 6% and 5% for respondents in foreign owned and Canadian owned multinationals respectively.

Newspapers - 28% of respondents in Canadian companies do not use newspapers for STI as compared with a 26% and a 20% nonuser rate for respondents in foreign owned and Canadian owned multinationals respectively.

The detailed weekly, monthly and yearly rates of uses of each channel for the three types of companies are presented in Appendix VI.

APPENDIX III

Selection of the Population

Listings of Canadian companies were first provided to MOSST from the trade associations and professional societies listed below.

> Association of Consulting Engineers Business Council of National Issues Canadian Construction Association Canadian Gas Association Canadian Institute of Chartered Accountants Canadian Institute of Mining & Metallurgy Canadian Manufacturers Association Canadian Medical Association Chemical Producers Association Informatics Institute of Canada Pharmaceutical Manufacturers Association of Canada Purchasing Management Association of Canada

A random selection of companies was then done to conform to the sample design and provide regional representation. The proposed sample design, done on contract for MOSST, involved national representation of business establishments in six industry groups: communications, construction, manufacturing, mining, public utilities, and services.

The 1975 contribution of these sectors to the Gross Domestic Product was first calculated (see column 1 of Table IV) and then normalized to 100% (column 2). Column 3 is the sectoral breakdown of the total survey mailing, and column 4 gives the number of returns and percentage of total returns. The percentage of total returns for any sector at most (in the case of communications) deviates by 4.1% from that sector's normalized contribution to the GDP.

TABLE IV

Companies	Contribution to 1975 GDP (%)	Normalized Contribution to 1975 GDP (%)	Numbers of Questionnaires Mailed	Number & Percent of Total Returns
Communications	2.5	5.3	270	45 (9.4%)
Construction	7.5	16.0	761	68 (14.2%)
Manufacturing	21.4	45.0	1831	214 (44.8%)
Mining	4.3	9.0	414	37 (7.7%)
Public Utilities	2.7	5.7	198	35 (7.4%)
Services	9.0	19.0	507	79 (16.5%)
TOTAL	47.48	100.0%	3981	489 100%

3

Selection of the Population

- 29 -

APPENDIX IV

Definitions of Foreign Owned, Foreign Controlled and Multinational Enterprises

The definition of a multinational corporation, or multinational enterprise, is really quite difficult. It is really necessary to define the size of the firm, to determine in how many countries the firm has operations and the nature of such operations. If any subsidiary has separate corporate setups does it qualify? What is the nature of management control the parent company exercises? What percentage of shares should the parent own? Should operations in a foreign country involve manufacturing facilities or does merely a sales office qualify?

For the most part, Statistics Canada collects data on foreign owned or foreign controlled corporations rather than on multinational corporations. In the CALURA data a distinction is made between the concepts of "degree of ownership" and "control". According to the CALURA (1974) any corporation is considered to be foreign controlled if 50% or more of its voting rights are known to be held outside Canada or are held by Canadian corporations which are themselves foreign controlled, and the country of control of a Canadian corporation is ascribed to the foreign country in which a majority of the voting rights are held or where the majority of the voting rights are held or where the majority of the voting right of the Canadian parent company or companies are held. Control is assigned to Canada in the CALURA data in those cases "where the holding of over 50% of the voting rights is distributed among non-associated shareholders in two or more different countries, and where the voting rights held in Canada constitute the largest single holding reported by any country".

Now adherence to this convention may lead to a company's reclassification as CALURA notes (foreign or domestically controlled) as a result of minor stock exchanges. If a stock transaction results in the transfer of ownership of the majority of shares from one country to another, the corporation would be reclassified in terms of control. To avoid such rapid swings resulting from stock transactions occuring at the margin, in the CALURA data corporations are reclassified only "when changes in ownership of the voting rights are substantial or do in fact appear to alter the potential or effective control over the management of the country". As noted by CALURA, there are certainly many cases which do not fall within the definitions of control as described above. If for example, share ownerships are diffused throughout several countries, essential control may be exercised even if the controlling interest is much less than 50% of all corporate voting rights, and there are, of course, other means besides voting rights for exercising such control, such as licencing, franchise agreements and monopolistic marketing practice.

Now under the concept of "ownership", the CALURA data classifies each corporation according to the percentage of its voting rights "which are owned by non-residents either directly or through other Canadian corporations, and the whole of the corporation is assigned to this particular degree of foreign control".

In contrast to CALURA, in the Canadian Balance of International Payments (1961-62), companies making portfolio investments (as opposed to direct investments) are not treated as foreign controlled irrespective of their ownership, since portfolio investment allegedly does not result in any significant degree of control over Canadian industry. The main difference however, between the CALURA and Balance of Payments data is as follows: "Foreign ownership as used in the DBS report refers to the proportionate share of non-residents in the capital (at book value) of a corporate or group of corporations. Capital as used in the series covers "long-term debt and equity (including retained earnings) employed in Canada." CALURA data, in other words, deals with each corporation as an entity, assigning ownership of the entire corporation according to percentage of voting shares, while in the Balance of Payments data only the part of the capital (including long term debt) employed in Canada which is owned by non-Canadians is assigned as non-resident owned.

With respect to the concept of foreign control, the DBS series includes a small number of companies as "non-resident controlled", in which control is exercised without major ownership, and also excludes some companies for which major ownership resides with non-residents but in which control is exercised by residents. A reconciliation of the CALURA and DBS data on foreign controlled companies is thus not possible.

The Foreign Investment Review Agency (1976) of the Department of Industry, Trade and Commerce is more directly concerned with a definition of the multinational corporation or multinational enterprise. Citing Vernon, they view the multinational enterprise as "...simply a cluster of corporations of diverse nationality joined together by ties of common ownership and responsive to a common management strategy". It is this fact of common management strategy and the ability to integrate economic activities simultaneously on several national markets which leads us to suspect that the multinationals STI channels differ from domestic companies in any country.

APPENDIX-V

SOURCE LIST FOR CLASSIFICATION OF COMPANIES

Who Owns Whom 1976/1977 United Kingdom Who Owns Whom North America 1976/1977 Corporate Affiliations 1977 Moody's Industrial Manual 1976 The Financial Post Corporation Service Cards The Stock Exchange Official Year Book 1976/1977 The Financial Post Survey of Mines 1977 1977 Canadian Trade Index Scott's Quebec Industrial Directory Canadian Key Business Directory 1977 Ontario Subsidiaries of Foreign Manufacturing Companies

EXPLANATORY NOTE TO APPENDICES

The following data tables (Appendices VII and VIII) consist of Statistical Package for the Social Sciences (SPSS) cross tabulations run on the Xerox Sigma Nine computer of Carleton University.

Company sizes in these tables were made to correspond to current categories used by the Department of Industry, Trade and Commerce. Small companies have 0 - 100 members. Medium companies have 101 - 500 members, and large companies have 501 members or more. The original frequency of use categories for any information channel were collapsed for purposes of analysis in the following manner. "Daily" or "About once a week" became "several times per week". "2-3 times per month" and "once a month" became "several times per month", and "once in 2-3 months" or "less often" became "several times per year".

In these cross tabulations, the first number in any square is the absolute count of respondents answering a question in a certain way; the second number is the row percentage of respondents answering a question in a certain way, the third number is the column percentage of respondents thus answering, and the last number is the percentage of the total response which that square comprises. Under "row total" and "column total", the second number is the percentage of the total (row or column) which that part of the population comprises.

APPENDIX .VI PROGRAM BREAKDOWN

*** SIGHA SPSS ---- RELEASE 7.0 +++

CRITERION VAR. LIBUSE EXTENT-USE OF LIBRARIES AS STI CHANNEL BROKEN DOWN BY MULTITYP TYPE-CONTROL OF ORGANIZATION BY OLDSIZE RECODED & CULLAPSED SIZE

VARIABLE	CODE	VALUE LABEL	SUH SUH	HEAN	STD DEV	STD ERR	Ņ	
FOR ENTIRE POPULATION		· · · · · ·	1567+0000	3+6106	2+2029	+1057	-4341	•.
PULTITYP	1	FOR+OWND MULTINAT	477+0000	3+4317	1 • 9783	+1678 1	1391	
OLDSIZE	1	SMALL	90.0205	+ •0909	2+0681	• 4 4 0 9 1	125	
CLOSIZE	2	MEDIUM	139+0000	3.4750	2.0253	• 3202 1	+01	
OLDSIZE	Э	LARGE	248.0000	3.5508	1+9100	+2177 t	771	
MULTITYP	· 2 ·	CANADIAN COMPANY	863+0000	3.9050	2.3189	•1560 (2211	
CLOSIZE	1	SMALL	522+0000	4+1760	2.3660	+2116 1	1251	
BLDSIZE	2	MEDIUN	241.0000	3+9508	2+5318	•2858 t	611	
eldsize	3	LARGE	100.0000	2.8571	2.0457	.3458 (351	
PULTITYP	3	CANOWND MULTINAT	227+0000	3.0575	2+1347	•2482	741	
OLDSIZE	1	SMALL	47+0000	5+2222	2+1082	•7027 (9)	
OLDSIZE	2	MEDIUM	59.0000	5.3636	2+3355	+7042 1	11)	
GLDSIZE	3	LARGE	121.0000	2+2407	1+4133	•1923 (54)	

TOTAL CASES - 468

HISSING CASES @ 34 BR 7+3 PCT.

1 ω 4 ∎

∙ः स	•	•	•			. •	•	• •	•			•		
	• •	•						•			-	• •		
	 		R	. <u></u> .	 		 			 			· · · · · · · · · · · · · · · · · · ·	

*** BIOHA SPSS **** RELEASE 7.0 ***

a Ann

CRITERION VAR. TRADEUSE BROKEN DOWN BY MULTITYP BY OLDSIZE	TYPE-	F TRADE ASSOCIATIONS		ATIONS			• • • • •
VARIABLE	CODE	VALUE LABEL	SUM	MEAN	STD DEV	STO ERR	N
FOR ENTIRE POPULATION	•		1350+0000	3 • 1776	1 • 7955	•0868 (428)
NULTITYP	1	FOR.OWND MULTINAT	430+0000	3+0282	1+7298	•1452 (1421
OLDSIZE	1	SHALL	76+0000	3+4545	2.0639	• • • • 0 0 1	SS1
OLDSIZE	5	MEDIUN	126+0000	3 • 1500	1+7179	•2716 1	401
OLDSIZE	3	LARGE	228+0000	2+8500	1+6312	•1824 1	801
MULTITYP	2	CANADIAN COMPANY	728+0000	3.4019	1+9178	•1311 . (2141
OLDSIZE	1	SHALL	443+0000	3.6311	1+9591	+1774 t	1551 ,
OLDSIZE	2	MEDIUM	198+0000	3+3000	1+9511		631
OLDSIZE	3	LARGE	87+0000	2.7188	1+5290	•2703 (321
HULTITYP	3	CANOWND MULTINAT	202.0000	2+8056	1+4403	•1697 I	721
CLDSIZE	1	STALL	34+0000	4+2500	2+3146	- 8183 (81
OLDSIZE	2	MEDIUM	22+0000	2.2000	•6325	+2000 1	10)
GLDSIZE	3	LARGE	146+0000	2+7037	1.2683	+1726 1	

•

TOTAL CASES . 468 MISSING CASES . 40 OR 8.5 PCT.

> | ա Մ

.

•

		•.	••••	
RÎPTION OF SÛBPJPUL ONS-Exhibits Tion	ATIONS		• • • • • •	
SUM	MEAN	STD DEV	STD ERR	N
1*20+0000	3+2794	1+2+65	•0599	(433)
448+0000	3+1549	1+1191	•0939	(142)
77+0000	3 • 6667	1+6833	• 3673	(21)
127.0000	3•0238	•9997	•15+3	1 423
244+0000	3.0886	•9633	+108+	1 791 -
1	DNS-EXHIBITS TION SUM 1+20.0000 +48.0000 77.0000 127.0000	DNS-EXHIBITS TION SUM MEAN 1+20.0000 3.2794 +48.0000 3.1549 77.0000 3.6667 127.0000 3.0238	RIPTION OF SUBPOPULATIONS	RIPTION OF SUBPOPULATIONS

NULTITYP		CANADIAN COMPANY	737+0000	3 • 3963	1+3297	•0903	£ .	2171
OLDSIZE	-	SMALL	434+0000	3+5285	1+4617	+1318	i	1231
GLDSIZE	-	MEDIUN	191.0000	3.2373	1.2083	+1573	(591
OLDSIZE	3	LARGE	112.0000	3•2000	+9641	•1630	. 1	351
HULTITYP	Э	CANEWND MULTINAT	235.0000	3 • 1757	1+2091	•1406	ť	741
BLDSIZE		SMALL	+1+0000	4+1000	2+02+8	•6403	t	10)
OLDSIZE	2	MEDIUM	35.0000	3.1818	1.3280	++00+	1	11)
OLDSIZE	3	LARGE	159+0000	3.0000	•8987	•1234	_(531

Ł ω σ

TOTAL CASES = 468 MIBSING CASES = 35 CR 7.5 PCT.

٠

. :

•

*** SIGMA SPSS ---- RELEASE 7.0 ***

	USE CF COMPANY SALES FORCE FOR STI	* * • • • • • • • •	
BROKEN DOWN BY MULTITYP	TYPE-CONTROL OF ORGANIZATION RECODED & COLLAPSED SIZE	<i>.</i>	

VARIABLE	CODE	VALUE LABEL	SUM	MEAN	STO DEV	STD ERR	N
FOR ENTIRE POPULATION			1322+0000	3•3050	2•2990	•1149 (4001
MULTITYP	1	FOR+OWND MULTINAT	415+0000	2 • 9856	2+1400	•1815 t	1391
OLDSIZE	1	SMALL	54+0000	2.5714	2+0142	+4395 [21)
OLDSIZE	<u> </u>	MEDIUH	120+0000	2+8571	1+99+8	•3078 · 1	421
OLDSIZE	3	LARGE	241+0000	3 - 17 1 1	2+2532	•2585 t	761
MULTITYP	ż	CANADIAN COMPANY	701+0000	3+6134	2+4768	•1778 t	194)
OLDSIZE	1	SMALL	420.0000	3 • 68 4 2	2 • 5 3 9 3	+2378 (1141
OLDSIZE	2	MEDIUM	179+0200	3+4423	2+3962	•3353 1	521
OLDSIZE	3	LARGE	102.0000	3+6429	2+4376	•4607 (281
NULTITYP	3	CANGWND MULTINAT	206+0000	3.0746	1+9719	•2409 (671
OLDSIZE	1	SMALL	21+0000	2+6250	1 • 9955	+7055 (81
GLDSIZE	2	MEDIUM	30+0500	2.7273	2+1950	+6618 (11)
BLDS17F	3	LARGE	155.0000	3.2292	1+9378	•2797 (481

.

.

Υ.

TOTAL CASES - 468

HISSING CASES = 68 OR 14.5 PCT.

.

.

1. 1. .

....

-37-

## SIGMA SPSS ====					¥ 48	
÷.	•					
	DESCRI	IPTION OF SUBPOPUL	ATIONS			
ITERION VAR. SUPPUSE OKEN DOWN BY MULTITYP By CLDSIZE	USE CF SUPPLIERS FOR STI TYPE-CONTROL OF ORGANIZATI RECODED & CULLAPSED SIZE	TQN		-	. . .	
RIABLE	CODE VALUE LABEL	SUN	HEAN	STO DEV	STD ERR	N
R ENTIRE POPULATION		1297+0000	3+0808	1+8805	+0917 (+21
LTITYP	. I FOR+OHND MULTINAT	428+0000	3.1014	1+7769	•1513 (138
OLDSIZE	1 SMALL	60.0000	2.8571	1+558+	•3401	21
OLDSIZE	2 MEDIUM	115.0000	2.8750	1•4882	•2353 (
GLDSIZE	3 LARGE	253+0303	3.2857.	1+9592	•5533 1	77
LTITYP	2 CANADIAN COMPANY	631+0000	2+9905	1+8948	•1304 t	211
GLCSIZE	1 SMALL	328 • 0000	2+7107	1+72+5	•1568 t	151
OLDSIZE	2 MEDIUN	180.0000	3+1034	1+9257	•2529_1	58
OLDSIZE	3 LARGE	123.0000	3.8438	2.2159	•3917 (32
ILTITYP	3 CANDWND MULTINAT	238+0000	3.3056	2+0324	•2395 {	72
OLDSIZE	1 SHALL	18+0000	1.5000	•7888	•2495 (10
OLDSIZE	2 MEDIUM	27.0000	2.7000	1.7029	•5385 (10
GLDSIZE	3 - LARGE	193.0000	3.7115	2.1082	16262•	52
TOTAL CASES - 468			-			
	0R 10.0 PCT.		·	-	-	
	·	•				
					· · · · · · · · · · · · · · · · · · ·	
	•					
			•	•		
						•
		-				
•	· ·					

Antonia antoni Antonia antonia

(Call

C.S.S.

•

TYPE	SPSS RELEAS	3E 7 • 0 ###				•	
R ENTIRE POPULATION 1508+0000 3-7606 2-2853 1141 1 LTITYP 1 FOR-ONND MULTINAT 514+0000 3-8939 2-3711 -2064 1 SIZE 1 SHAL 59-0000 3-1053 2-2084 -5067 1 SIZE 2 HEDIUH 147-0300 3-6550 2-1530 -3404 1 SIZE 3 LARGE 308.000 4-2132 2-4962 -2915 1 LTITYP 2 CANADIAN COHPANY 738.0000 3-6535 2-2502 -1583 1 SIZE 1 SHALL 431.0000 3-7788 2-2589 -2106 1 SIZE 2 HEDIUH 196+0000 3-6236 2-1624 -3764 1 SIZE 2 ARGE 111+0000 3-626 2-1624 -3764 1 LTITYP 3 CANCM-D HULTINAT 256+0000 3-8209 2-2356 -2731 1 SIZE 1 SHAL 37+0000 3-1820 2-3310 -3330 1	R. CLIUSE USE BY HULTITYP TYPE	CF CLIEI.TS-CUSTOMERS F	CR STI	ATIONS		• • • • • •	* • • •
R ENTIRE POPULATION 1508-0000 3-7606 2-2853 11+1 1 LTITYP 1 FOR-DWND HULTINAT 514-0003 3-8939 2-3711 -2064 1 SIZE 1 SMAL 59-0000 3-1053 2-2084 -5067 1 SIZE 2 HED10H 147-0300 3-6750 2-1530 -3404 1 SIZE 3 LARGE 308.000 -2152 2-4902 -2915 1 SIZE 3 LARGE 131.0000 3-6535 2-2502 -1553 1 SIZE 1 SHALL 431.0000 3-6736 2-1520 -2154 -2164 1 SIZE 1 SHALL 431.0000 3-6235 2-2502 -1553 1 SIZE 2 HED10H 156-0000 3-6236 2-1624 -3764 1 LTITYP 3 CANCH-D HULTINAT 256-0000 3-8209 2-2356 -2731 1 SIZE 1 SHALL 37-0000 4-1111 2-2048 -7349 1	CODE	E VALUE LABEL	SUM	MEAN	STD DEV	STD ERR	• • • • •
SIZE 1 SHALL 59.000 3.1053 2.2084 .5067 I SIZE 2 MEDIUM 147.0300 3.6750 2.1530 .304 I SIZE 3 LARGE 308.0300 4.2192 2.4902 .2915 I LTITYF 2 CANADIAN COMPANY 738.0000 3.6535 2.2502 .1583 I SIZE 1 SKALL 431.0003 3.7778 2.2589 .2106 I SIZE 2 HEDIUM 196.0003 3.6236 2.1624 .3745 I SIZE 3 LARGE 111.0003 3.3636 2.1624 .3764 I LTITYF 3 CANCMAD MULTINAT 256.0000 3.8209 2.2356 .2731 I SIZE 1 SHALL 37.0000 4.1111 2.2048 .7349 I SIZE 3 LARGE 193.0000 3.8329 2.3310 .3330 I SIZE 3 LARGE 193.0000 3.9388 2.3310 .3330 I <th></th> <th></th> <th>1508+0000</th> <th></th> <th>2+2853</th> <th></th> <th>401</th>			1508+0000		2+2853		401
SIZE 2 HÉDIUM 147.0000 3.6750 2.1530 .3A34 1 SIZE 3 LARGE 308.0000 4.2192 2.4902 .2915 1 LTITYP 2 CANADIAN CÖHPANY 738.0000 3.6535 2.2502 .1583 1 SIZE 1 SMALL 431.0000 3.7478 2.2589 .2106 1 SIZE 2 MEDIUM 196.0000 3.6236 2.1624 .3142 1 SIZE 3 LARGE 111.0000 3.6366 2.1624 .3764 1 SIZE 3 CANCHUD HULTINAT 256.0000 3.8209 2.2356 .2731 1 SIZE 1 SMALL 37.0000 4.111 .2048 .7349 1 SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 1 SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .3330 .3330 .3330 .3330 .3330 .3330 .3330 .3330 .3330 .3330 .3330 <td>1</td> <td></td> <td>514+0000</td> <td>3.8939</td> <td></td> <td></td> <td>132</td>	1		514+0000	3.8939			132
SIZE 2 MÉDIUM 147.0000 3.6750 2.1530 .3434 f SIZE 3 LARGE 308.0000 4.2192 2.4902 .2915 f TITYP 2 CANADIÃN CÖMPANY 738.0000 3.6535 2.2502 .1583 f SIZE 1 SMALL 431.0000 3.7478 2.2589 .2106 f SIZE 2 MEDIUM 196.0000 3.6236 2.1624 .3142 f SIZE 3 LARGE 111.0000 3.3636 2.1624 .3764 f SIZE 3 LARGE 111.0000 3.8209 2.2356 .2731 f SIZE 3 LARGE 197.0000 4.1111 2.2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2162 .2731 f .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088 .2088	1	SHALL	59.0000		2+2084	•5067	19
TITYP 2 CANADIAN CÖHPANY 738.0000 3.6535 2.2502 .1583 1 SIZE 1 SKALL 431.0000 3.7478 2.2589 .2106 1 SIZE 2 HEDIUM 196.0000 3.6296 2.3091 .3142 1 SIZE 3 LANGE 111.0000 3.6296 2.3091 .3142 1 SIZE 3 LANGE 111.0000 3.6296 2.3091 .3142 1 SIZE 3 LANGE 111.0000 3.6296 2.2356 .2731 1 SIZE 1 SKALL 37.0000 4.1111 2.2048 .7349 1 SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 1 SIZE 3 LARGE 193.0000 3.9388 2.3310 .3330 .3330 SIZE 3 LARGE 193.0000 3.9388 2.3310 .3330 .3330 SIMG CASES = 67 0R 14-3 PCT-	—	-					40
SIZE 1 SMALL 431.0000 3.7478 2.2589 +2106 1 SIZE 2 MEDIUM 196.0000 3.6296 2.3091 .3142 1 SIZE 3 LARGE 111.0000 3.6296 2.162* .3764 1 TITYP 3 CANCHND MULTINAT 256.0000 3.8209 2.2356 .2731 1 SIZE 1 SMALL 37.0000 4.1111 2.2048 .7249 1 SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 1 SIZE 2 MEDIUM 26.0000 3.9388 2.3310 .3330 1 TOTAL CASES = 465	Э	LARGE	308+0000	4.2192	2.4902	•2915 (73
SIZE 1 SMALL 431.0000 3.7478 2.2589 .2106 1 SIZE 2 MEDIUM 196.0000 3.6296 2.3091 .3142 1 SIZE 3 LARGE 111.0000 3.6296 2.3091 .3142 1 TITYP 3 CANCHND MULTINAT 256.0000 3.8209 2.2356 .2731 1 SIZE 1 SMALL 37.0000 4.1111 2.2048 .7249 1 SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 1 SIZE 2 MEDIUM 26.0000 3.9388 2.3310 .3330 1 (07AL CASES = 465 .67 0R 14.3 PCT.	2	CANADIAN COMPANY	738+0000	3.6535	2+2502	•1583 (202
SIZE 2 HEDIUM 196.0000 3.6236 2.3091 .31*2 1 SIZE 3 LARGE 111.0000 3.3636 2.162* .376* 1 TITYP 3 CANCHND MULTINAT 256.0000 3.8209 2.2356 .2731 1 SIZE 1 SHALL 37.0000 *.111 2.2048 .7349 1 SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 1 SIZE 2 MEDIUM 26.0000 3.9388 2.3310 .3330 1 OTAL CASES = 468	1						115
TITYP 3 CANCHIND MULTINAT 256.0000 3.8209 2.2356 .2731 1 SIZE 1 SMALL 37.0000 4.1111 2.2048 .7749 1 SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 1 SIZE 3 LARGE 193.0000 3.9388 2.3310 .3330 1 GTAL CASES = 468	2						54
SIZE 1 SMALL 37.0000 4.1111 2.2048 .7349 (SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 (SIZE 3 LARGE 193.0000 3.9388 2.3310 .3330 (OTAL CASES = 468	3	LARGE	111+0000		2+1624	• 3764 1	33
SIZE 1 SMALL 37.0000 4.1111 2.2048 .7349 (SIZE 2 MEDIUM 26.0000 2.8889 1.6159 .5386 (SIZE 3 LARGE 193.0000 3.9388 2.3310 .3330 (OTAL CASES = 468	3	CANCHND MULTINAT	256+0000	3.8209	2+2356	•2731 (67
SIZE 2 HED IUM 26.0000 2.8889 1.6159 .5386 1 SIZE 3 LARGE 193.0000 3.9388 2.3310 .3330 1 OTAL CASES = 468							. 9
SIZE	,						9
SSING CASES 67 OR14+3 PCT+							
SSING CASES 67 OR14+3 PCT+	\$ 20 468		· .				
		4•3 PCT•	•••••				
			•				
					·		
							•
		· · ·			•		• •
~-						• • • •	
							· •
		an a				······································	
~-		•			·		
·				•••••••••••••••••••••••••••••••••••••••			
-	·		u				
						•	
	· •			· .			
•						•	
	•						

•

#33 SIGNA SPSS	RELEASE	7•0 ###				•	
			TION OF SUBPUPUL	ATIONS			
RITERION VAR. GOVUSE Roken Down by Multity Gy Size		F GOVT AGENCIES FOR ST CONTROL OF ORGANIZATIO				• • •	
				· · · · · · · · · · · · · · · · · · ·			
ANITOLE	CODE	VALUE LABEL	SUM	MEAN	STD DEV	STD ERR	N
OR ENTIRE POPULATION			1457+0000	3•4202	1.8935	•0917 1	426
ULTITYP	1	FCR+0WND MULTINAT	482+0000	3+5182	1+8515	•1582 (137
SIZE	1	SMALL	58.0000	2.9000	1+1192	<u>•2503 (</u>	20
	2	MEDIUM	150+0000	3.7500	1 • 9579	• 3096 1	40
SIZE	3	LARGE	274+0000	3+5584	1.9296	•2199 (77
ULTITY	ż	CANADIAN COMPANY	748+0000	3.4470	1.9096	•1296 (217
SIZE	1	SHALL	455+0000	3+4032	1.8030	•1619 \$	124
SIZE	2		226+0000	3+7049	2+0++1	•2617	61
SIZE	3	LARGE	100+0000	3+1250	2+0439	•3613 1	32
TULTITYP	3	CANCINNO MULTINAT	227.0000	3.1528	1.9258	2270 1	72
SIZE		SHALL	41+0000	4.1000	2+02+8	•6403 1	10
SIZE	2	MEDIUM	42+0000	3.8182	2+5620	•7725 1	11
SIZE	3	LARGE	144.0000	2 • 8235	1.6817	•2355 (51
	8			••••			
ISSING CASES -	2 OR 9	0 PCT.				• · ·	
						· · · · · · · · · · · · · · · · · · ·	
•						·	
•• ••••••••••••••••••••••••••••••••••••	···· ······			- · - · · · · · · · · · ·	• • - • • •		
				•			
	فماموارية فيقتان والتعريق بالمتعاد						•
				······································			
		· · ·	·				
		•					
					•		
		•					

SIGHA SPSS ---- RELEASE 7.0

•

CRITERION VAR. COMMUSE USE OF COMMERCIAL INFO SERVICES FOR STI BROKEN DOWN BY HULTITYP TYPE-CONTROL OF ORGANIZATION BY SIZE

DI DILL

CODE VALUE LABEL MEAN STD DEV STD ERR VARIABLE 2+4294 •1230 3901 4.8103 FOR ENTIRE POPULATION 1876+0000 2+4704 FOR. OWND MULTINAT +2184 1281 4+4141 565+0000 MULTITYP 1 2+4290 .5300 5+0000 211 SMALL 105+0000 SIZE 1 2.4763 2 4+9189 +4071 371 MEDIUM 182.0000 SIZE 2+4255 •2899 701 LARGE 278.0000 3.9714 SIZE 3 1014.0000 2.3100 +1654 1951 CANADIAN COMPANY 5.2000 2 PULTITYP .2008 634+0000 5.6607 2.1247 1121 SMALL SIZE 1 4.9615 2.3595 • 3272 521 2 MEDIUM 258+0000 SIZE 2.4074 +4324 31) LARGE 122+0000 3.9355 3**512**€ 3 4+4328 2.5419 .3105 671 3 297.0000 MULTITYP CANCHND MULTINAT 6.0000 1+8516 +6547 81 1 48+0000 SMALL SIZE 101 56.0000 5+6000 2.2706 .7180 S SIZE MEDIUM 2.5447 •3635 491 193.0000 3.9388 3 LARGE SIZE

41-

TOTAL CASES = 468 MIBSING CASES = 78 CR 16*

78 6R 16+7 PCT+

.

•

RIABLE	CODE	VALUE LABEL	SUM	MEAN	STO DEV	STO ERR	N
R ENTIRE POPULATION		· ···· ··· ··· ···	1758+0000	4+3731	2+1456	•1070 (402
ILTITYP -	1	FOR.OWND MULTINAT	555.0000	4.3023	2 • 1 • 19	•1586 (129
SIZE	1	SMALL	104.0000	5.2000	2.3306	•5211 1	20
SIZE	2	MEDIUM	152.0000	4+3429	2+27+4	+3845 (3
SIZE	3	LARGE	299.0000	4+0405	1 • 9324	+2304 [74
	2	CANADIAN COMPANY	976+0000	4+7610	2+1617	•1510 (205
SIZE	1	SMALL	571+0000	5.0088	2+1840	+2045 (114
SIZE	2	MEDIUH	268+0000	֥6207	2+1178	+2781 (51
SIZE	э	LARGE	137+0000	4+1515	2+3785	+3618 I	3:
LTITYP	3	CANOWND HULTINAT	227.0000	3.3382	1.7330	•2102 (61
SIZE	1	SHALL	37.0000	3.7000	2+3594	•7461 (10
SIZE	2	MEDIUN	39+0000	4.3333	2+0000	•6667 (ġ
SIZE	3	LARGE	151.0000	3.0816	1+4838	•2120 t	4

•

.

.

						•		
RITERION VAR. EXPUSE Roken Down by Multityp By Size	EXPER	RTS,COLLEAGUES & ASSOCI	PTION OF SUBPOPUL IATES FOR STI In	ATIONS				• •
ARIABLE	ĊÓDE	VALUE LABEL	SUM	MEAN	STD DEV	STD ERR	•• • 	
OR ENTIRE POPULATION			883+0000	2+0825	1•6229		t	42
ULTITYP	1	FCR+OWND MULTINAT	260.0000	1 • 8571	1 • • • 621	•1236		14
SIZE	1	SMALL	53.0000	2+4091	2+0156	+4297	1	2
SIZE	S	HEDIUN	67+0000	1+7632	1+4225	•2308	<u>,</u>	
SIZE	3	LARGE	140.0000	1 • 7500	1 • 2779	+1429	t	8
ÚLTITYP	5 .	CANADIAN COMPANY	501+0000	2.3744	1 • 8354	•1264		21
BIZE	1	SHALL	301+0000	2+5294	1+9390	•1777	1	- 11
SIZE	2	HEDIUN	135+0000	2.3276	1.7710	•2325	ì	5
SIZE	3	LARGE	65.0000	1+9118	1+5049	•2581	1	у Э
	Э	CANCHND MULTINAT	122.0000	1.6712	1.0008	•1171		7
ULTITYP		SHALL	16+0000	1+7778	•8333	•2778		
SIZE	· 1			2.1000	1.9120	•60+6		1
	2	MEDIUM	21.0000					

,

1997 24

1.00

-43

· 200 j

10.0

***	SIGHA	SPS5	***	RELEASE	7•0	法法官
-----	-------	------	-----	---------	-----	-----

- - - - DESCRIPTION OF SUBPOPULATIONS -2.2.2 USE OF MAGAZINES FOR STI CRITERION VAR. MAGUSE BROKEN DOWN BY MULTITYP TYPE-CONTROL OF ORGANIZATION BY SIZE

TVARIABLE	CODE	VALUE LABEL	SUM	MEAN	STD DEV	STD ERR		N
FOR ENTIRE POPULATION			881+0000	2+0394	1+5640	•0753	C	4321
FULTITYP	. 1	FOR+OWND MULTINAT	286+0000	2-01+1	1.4634	•1228	C.	142)
SIZE	1	SMALL	57+0000	2.5909	1+9188	+ + 0 9 1	(221
SIZE	2	MEDIUN	83.0000	2.0750	1.5752	•2491	1	401
. SIZE	3	LARGE	146+0000	1+8250	1+2198	•1364	t	801
MULTITYP	2	CANADIAN COMPANY	*64+0000	2•1+81	1.7026	•1158	ŧ	216)
SIZE	1	SMALL	274.0000	2.2276	1+8457	+1664	C	1231
SIZE	2	MEDIUM	126.0000	2+1356	1+6343	•2158	{	591
SIZE .	3	LARGE	64+0000	1.8824	1+2251	•2101	(341
· NULTITYP	3	CANDWND HULTINAT	131+0000	1+7703	1+2880	+1497	¢	741
" SIZE	1	SMALL	26+0000	2.6000	1+6465	•5207	(10)
SIZE	2	MEDIUM	23.0000	2.0909	1.7581	+5301	t	11)
SIZE	3	LARGE	82.0000	1+5+72	1.0297	+1414	(531

TOTAL CASES -MISSING CASES .

468

36 6R 7.7 PCT.

44-

SIGMA SPSS RELEASE 7.0 ### . • • • • -- - DESCRIPTION OF SUBPOPULATIONS -..... - -NEW OF HENSPAPERS FOR STI CRITERION VAR. NEWSUSE BROKEN DOWN BY MULTITYP TYPE-CONTROL OF ORGANIZATION BY SIZE MEAN CODE VALUE LABEL STD DEV SUM STD ERR VARIABLE

<u> </u>	· · · · · · · ·	1120+0000	2•8718	2.5074	•1270	t	3901
1	FCR+0WND MULTINAT	350 • 0000	2 • 8226	2+5055	• 22 * 7	t	1241
1	SMALL	53+0000	2.7895	2.3706	•5+39	<u> </u>	191
2	MÉDIUM	134.0000	3.8286	2+8438	++807	f	35)
3	LARGE	163+0000	2+3286	2+22+5	•2659	t	701
	CANADIAN COMPANY	601+0000	3.0201	2+5721	•1823	£	1991
1	SHALL	368+0000	3+2281	2+6++2	•2*77	L	1141
2	MEDIUM	136+0000	2+6154	2+4825	+3443		521
3	LARGE	97.0000	2+9394	2+4487	• + 263	t	331
3	CANOWND HULTINAT	169+0000	2+5224	2+3118	•2824	i	671
1	SMALL	42+0000	4+6667	2 7839	•9280	C	91
2	MEDIUM	26.0000	2 . 3636	2.3779	•7170	t	11)
3	LARGE	101-0000	2 • 1 4 8 9	2.0106	•2933	t	471
	1 2 3 2 1 2 3 3 3 1 2 3	1 SMALL 2 MEDIUM 3 LARGE 2 CANADIAN COMPANY 1 SMALL 2 MEDIUM 3 LARGE 3 CANOWND MULTINAT 1 SMALL 2 MEDIUM	1 FCR.0WND MULTINAT 350.0000 1 SMALL 53.0000 2 MEDIUM 134.0000 3 LARGE 163.0000 2 CANADIAN COMPANY 601.0000 1 SMALL 368.0000 2 MEDIUM 136.0000 3 LARGE 97.0000 3 LARGE 97.0000 3 CANOWND MULTINAT 169.0000 1 SMALL 42.0000 2 MEDIUM 26.0000	1 FCR.0WND MULTINAT 350.0000 2.8226 1 SMALL 53.0000 2.7895 2 MEDIUM 134.0000 3.8286 3 LARGE 163.0000 2.3286 2 CANADIAN COMPANY 601.0000 3.0201 1 SMALL 368.0000 3.2281 2 MEDIUM 136.0000 2.6154 3 LARGE 97.0000 2.9394 3 CANOWND MULTINAT 169.0000 2.5224 1 SMALL 42.0000 4.6667 2 MEDIUM 26.0000 2.3636	1 FCR.0WND MULTINAT 350.0000 2.8226 2.5022 1 SMALL 53.0000 2.7895 2.3706 2 MEDIUM 134.0000 3.8286 2.8438 3 LARGE 163.0000 2.3286 2.5721 2 CANADIAN COMPANY 601.0000 3.0201 2.5721 1 SMALL 368.0000 3.2281 2.6442 2 MEDIUM 136.0000 2.9394 2.4825 3 LARGE 97.0000 2.9394 2.4487 3 CANOWND MULTINAT 169.0000 2.5224 2.3118 1 SMALL 42.0000 4.6667 2.7839 2 MEDIUM 26.0000 2.3636 2.3779	1 FCR.OWND MULTINAT 350.0000 2.8226 2.5022 .2247 1 SMALL 53.0000 2.7895 2.3706 .5439 2 MEDIUM 134.0000 3.8286 2.8438 .4807 3 LARGE 163.0000 2.3286 2.2245 .2659 2 CANADIAN COMPANY 601.0000 3.0201 2.5721 .1823 1 SMALL 368.0000 3.2281 2.6442 .2477 2 MEDIUM 136.0000 2.9394 2.4825 .3443 3 LARGE 97.0000 2.9394 2.4487 .4263 3 CANOWND MULTINAT 169.0000 2.5224 2.3118 .2824 1 SMALL 42.0000 4.6667 2.7839 .9280 2 MEDIUM 26.0000 2.3636 2.3779 .7170	1 FCR • 0 + ND MULTINAT 350 • 0000 2 • 8226 2 • 5022 • 22 * 7 1 1 SMALL 53 • 0000 2 • 7895 2 • 3706 • 5 * 39 1 2 MEDIUM 134 • 0000 3 • 8286 2 • 8 * 38 • 4807 1 3 LARGE 163 • 0000 2 • 3286 2 • 22 * 5 • 2659 1 2 CANADIAN COMPANY 601 • 0000 3 • 0201 2 • 5721 • 1823 1 1 SMALL 368 • 0300 3 • 2281 2 • 64 * 2 • 2 * 77 1 2 MEDIUH 136 • 0000 2 • 6154 2 • 4825 · 3 * 43 1 3 LARGE 97 • 0000 2 • 9394 2 • 4 * 87 • 4 263 1 3 CANØWND MULTINAT 169 • 0000 2 • 5224 2 • 3118 • 2824 1 1 SMALL 42 • 0000 4 • 6667 2 • 7839 • 9280 1 2 MEDIUM 26 • 0000 2 • 3636 2 • 3779 • 7170 1

•

-45-

TOTAL CASES -

468 78 BR 16+7 PCT+ FISSING CASES -

APPENUIX VIL UKUSSIABULATIUNS OF COMPANY TYPE VS. FREQUENCE OF OSE OF STI CHANNELS ### SIGMA SPSS ---- RELEASE 7.0 +++ SASSTGASGASPARARA CROSSTABULATION OF ARCARTAGOGGEBBBBBBBBB HULTITYP TYPE-CONTROL OF CRGANIZATION BY LIBUSE EXTENT-USE OF LIBRARIES AS STI CHANNEL ******* LIBUSE COUNT I ROW PCT ISEVERAL SEVERAL SEVERAL DOESNT ROW COL PCT ITIMES WK TIMES MO TIMES YR USE TOTAL TÔT PCÎ I I I 2 I 3 I 7 I <u>1 I 14 I 34 I 63 I 33 I 144</u> FOR+OWND HULTINA I 9+72 I 23+61 I 43+75 I 22+92 I 32+43 I 21+21 I 38.20 I 37.95 I 26+83 I I 3+15 I 7+66 I 14+19 I 7+43 I 2 I 32 I 38 I 78 I 75 I 223 CANADIAN COMPANY I 14.35 I 17.64 I 34.98 I 33.63 I 50.23 I 48+48 I 42.70 I 46.99 I 60.98 I I 7+21 I 8+56 I 17+57 I 16+89 I *!~~~~~!~~~~~!~~~~! 20 I 17 I 25 I 15 I 77 3 I CANONNO MULTINAT I 25-97 I 22-08 I 32-47 I 19-48 I 17-34 I 4+50 I 3+83 I 5+63 I. 3+38 I COLUMN 66 89 166 123 444 TOTAL 14.86 20.05 37.39 27.70 100.00

	REL	LEASE 7+0	***						•	
		- 	i			····				
# # # # # # # # # # MULTITYP TYPE # # # # # # # # #	E-CONTROL	OF SRGANI	IZATION		BY	TRADEUSE	USE OF TRAD	DE ASSUCIATI	SNS FOR ST	I
	TRADEUSE								•	
COUNT I Row PCT I Col PCT I	I ISEVERAL ITIMES WK	SEVERAL TIMES MO	SEVERAL TIMES YR	DOESNT	ROW TOTAL					
MULTITYPI	[]			1	Ī					· ·
FOR.OWND HULTINA I	I13 I I8•84 I I39•39 I	I51 I 34.69 I 36.69	I 62 1	I 21_1 I 14•29 I 29•17	I147. I 33.56 I					
-I 2 I <u>Camadian Company</u> I	I 12 1 I 12 1 I 5+56 I	I 66 I I 3G.56 I	1 94 1 1 43+52 1	I 44 1 I 20+37 1	1 I 216 I_ 49+32					
I -1	1 2+74 1 11	1 15.07	I 48+45 1 I 21+46 1	I 10.05 1	I I					
CANOWND MULTINAT I	I 10+67 I I24+24]	1 29.33 1 1_15.83_1		1 9•33 1 I9•72 1	1 17•12 I					
-I COLUMN	I] 33	· 139	1 6+68 1	·I) 72	I 438	•				~
								-		
•		• • • • • • • •		· • • • •				••• ••• • • •		
		•				·				
	۰.									
								•		

•

COUNT ROW PCT	ISEVERAL	SEVERAL	SEVERAL	DOFSNT	Rox	,				
COL PCT	ITIMES WK	TIMES NO I 21	TIMES YR I 3	USE I 71	TOTAL		·····	· <u> </u>	<u> </u>	
1 FOR-OWND MULTINA	I 1 I •68 I 33•33 I •23	I 17 1 I 11.64 1 I 44.74 1 I 3.85 1	I118 I 80+82 I 32+87 I 26+70	I10_J I 6+85 J I 23+81 J I 2+26 J	146 33+03					
CANADIAN COHPANY	I 33+33 1 I 33+33 1	I 12 1 I <u>5.48</u> 1 I 31.58 1 I 2.71 1	I 180 I 82•19 I 50•14 I 40•72	I 26 1 I11•87 1 I 61•90 1 I 5•88 1	219 49+55			****		
3 CANONNO MULTINAT	<u>1 33.33</u> I .23]	I 9 1 I 11.69 1 I 23.68 1 I 2.04 1	I 61 I 79+22 I 16+99 I 13+80	I 6 I I 7•79 I I <u>14</u> •29 I I 1•36 I	77 17+42					
-	I	1	359	 1 مح	442					
					a <u>an hannan kanna</u> kanna			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
									,	
						•	······································			
										•
•									<u></u>	-

•

•

			n Adamati									
+++ SIGMA SPSS		I FASE 7.0										
+++ alour 2622	8 AF									•	•	
						· ·		• • • • •		· · · · · · ·		
HULTITYP TYP	PE-CONTROL	OF URGAN	IZATION		BY	SALESUSE	USE O	F COMPAN	Y SALES	FCRCE FOF	t sti	
* * * * * * * * *					* * * * *	* * * * *		* * * *	* * * 4		· .	
COUNT								<u></u>	· · · · · · · · · · · · ·			
ROW PCT	ISEVERAL ITIMES WK	SEVERAL	SEVERAL	DOESNT	ROW							
TOT PCT	I 1	1 2	I 3	17	I .		··· · · · ·	•••• ·	•••			
HULTITYP	· I 38 .											
FOR . CHND MULTINA		I 31.25	I 22+92	I 19+44	I 35.12							
·	1 9+27	I 10.98	I 8+05	I 6•83	I			·····	 .	· · · · · · · · · · · · · · · · · · ·		
2	I I 45	Ī 41	I 42	I 65	I 196						. •	
CANADIAN COMPANY	<u> </u>									•		•
	I 11+71											
3	I 11	1 55	I 23	I 14	I 70	·· ·· -			· · ·			
	I_11+34	1_20.37_	I_23.47	I13•08	I							
	I 2+68		1	1	1							•
COLUMN	97 23•66	108	98 23+90	107	410 100+00		· • · •·•			· · · · · · · · · · · · ·		
	23.00			. 20 20								
			=						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
•					· · ·							
		, ,										
· · · · · · · · · · · · · · · · · · ·		•			• • <u>-</u> - • • • • • • • • • • • • • • • • • •			<u></u>				
	· .			- <i>p</i> t						\sim		,
			· · · · · · · · · · · · · · · · · · ·					<u></u>		- •		· · ·
						·		•		•	•	1
												44 9 1
											•	
· · ·	•		0		•							
			-								•	

						•	
### SIGHA SPSS						·· ?.	
	54 A.		-		•••		
* * * * * * * * * * HULTITYP TYP 5 * * * * * * * *	# # # # # E-CONTROL # # # # #	• • • • • • • • • • • • •	C R 0 9 IZATION + + + + +	5 S T A 8	ULAT BY ****	I O N O F *******************************	
COL PCT	ISEVERAL	TIMES MC	TIMES YR	USE	TOTAL	· · · · · · · · · · · · · · · · · · ·	
MULTITYP							
	I 9+86 I 22+95 I 3+26	I 34.65) I 10.23)	I 36+47 (I 14+42 (I 30•56 I 5•12	I I		
	I 36	I 67 3	I 75	I 35	1 213		
	I 59+02 I 8+37	I 52.76 I 15.58	1 44• <u>1</u> 2 I 17•44	I 48+61 I 8+14	I I		
	Ī 11	I 16	I 33	I 15	I 75		

_12.60_1__19.41_1__20.83 1 18.03 1 i 2.56 i 3.72 i 7+67 I 3+49 I 61 1+•19 127 29,53 170 39•53 72 430 16+74 100+00 COLUMN Total

•

-50-

ı I		A ANDER S		ASE			i fitan						
•	MULT	4 4 4 4 4 11779 Type	PE-CONTROL	OF ORBANI	IZATION		ULAT		115E AI		STOMERS FOR S	• • • • •	
-			CLIUSE			······································						•	
·		ROW PCT COL PCT TOT.PCT	ISEVERAL ITIMES WK	TIMES MU	TIMES YR 1 31	DOESNT USE I 7 I	TOTAL	· ·	•••••	· · ·	_		
<u>.</u>		MULTINA	I 20 I 14•71 I 37+04	I 28 1 I 28 1 I _ 20.59 I I _ 29.47 1	I 30+88 I I 31+82 I	I 46 I I 33.82 I I 35.66 I I 11.22 I	136 33•17						
	CANADIAN	2 N COMPANY	I 28 I 13.73 I 51.85	I 48 I I 23.53 I I 50.53 I	I 68 I I 33•33 I I 51•52 I	I 11022 I I 60 I I 29.41 I I 46.51 I I 14.63 I	1 204 (49+76_		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	CANDUND	3 HULTINAT	I 6 I 8+57 I 11+11	1 19 1 1 19 1 1 27.14 1 1 20.03 1	I 22 I I 31•43 I I 16•67 I	I 14-03 I I 23 I I 32-86 I I17-83 I I 5-61 I	70 17•07					•	·
:	• . •	COLUMN	·I	1 **** -*-*1 95	II 132	1 5•61 1 I1 129 31•46	410		···				
-													
										· · · · · · · · · · · · · · · · · · ·		•	
:							······						
	•	•		•		i i					· .		·
	· · ·		· ·			•				•			- 51-
.•			•	Ø								•	

Ł

	and and a state of the state of				•••••	 •••	. 				
ata sigha spss	•••• <u>85</u> 1	LEASE 7.0	***			-		·	•	· .	(
	• •	- 2	. t								
* * * * * * * * * * HULTITYP TYPE * * * * * * * *	E-CONTROL # + + +	# # # # # ØF Ørgani # # # # #	ZATION * * * * * *	* * * * *	BY * * * * *	GUVUSE + # # # #	USE OF GO # # # # #		* * * * * * S F3R STI *	6 4 4 4	.
COUNT 1 Row PCT 1 Col PCT 1 Tot PCT 1	I Iseveral Itimes wk I 1	SEVERAL TIMES MO I 2 I	SEVERAL TIMES YR 3	DØESNT USE I 7 I	ROW Total .						
MULTITYP	*****	I58_1 I58_1		I	ľ						
FOR+OWND MULTINA 1 1	I 4•96 I 24•14 I 1•61	I 19.86 I	55+32 36+97 17+93	I 19•86 1 I 32•18 1 I 6•44 I	1 32+41 1						
2 I CANADIAN COMPANY I	14 [6+39_] [48+28	1 55 1	105 47+95 49+76	I 45 <u>I</u> I <u>20</u> •55_I I 51•72 I	219 [5 <u>0</u> +34 [
-1 3 1 Canownd Hultinat 1 1	1C+67 27+59	I 33.33 I I 33.15 I	28 37+33 13+27	I 14 I I 18+67 I I 16+39 I	75 17+24	•					
-1 COLUMN	[] 29	I 5.75 I II 108 24.83	211	I==== <u>1</u> 87	435	· • • •					
				- 6	· · · ·					·····	
					•						
	-									•	
			· · ·								
• •		·	•								1 5 2
		, 50 50									

. .

					II . DII .		-			
					· · ·			· .		
*** BIGMA SPSS	REI	LEASE 7.0	***				•	• •	· .	
	•	-		•		··· · · · ······	· - · · · - ·			
A A A A A A A A MULTITYP TYPE	-CONTROL	OF ORGANI	ZATION		8Y (0 N 0 F + + + Commuse use 0F co + + + + + + + + + +	MHERCIAL	THE SERVICES	FOR STI	- -
· · · · · · · · ·		•								
COUNT Row Pct 1 Col Pct 1	I ISEVERAL ITIMES WK	SEVERAL TIMES MO	SEVERAL TIMES YR	DOESNT	TOTAL			· · · · · · ·		
HULTITYP			[I					•
FOR. GUND MULTINA	12•12 39•02 1 4•01	1 17•42 1 41•82 1 5•76	23+48 35+63	I 46+97 I 28+70 I 15+54	I I					
CANADIAN COMPANY	I 14 I 7+11	I 19 I 19 I 9 .64 I 34.55	1 43 [21+83	I 121 I 61+42	I 197 I49+37			· · · · · · · · · · · · · · · · · · ·		
3	I 3+51 I I 11	I 4.76 I I 13	I 10+78 I I 13	1 30+33 I I 33	I I I 70			· · · · · · · · · · · · · · · · · · ·	·	-
	I26+83_ I 2+76	I23.64 I3.25 I3.25	I14•94. I3+26	I15•28 I 8•27	I	· · · · · · · · · · · · · · · · · · ·	-	•	<u></u>	
COLUMN	41	- 55 13.78	87	216	399			· · · · · · · · · · · · · · · · · · ·		
	••• •·· •• ·	· · · · · · · · · · · · · · · · · · ·		·····	···· ·					
	•									
							·			I
•			•				1			ι β
	•		• 		•	2				

*** SIGMA SPSS						• • • •
* * * * * * * * * MULTITYP TYF * * * * * * *	 	OF CRGAN	C R O : Ization	8 S T A B	BY	ION OF **********************************
	RSHUSE				•	
COUNT RCW PCT COL PCT TOT PCT	I ISEVERAL ITIMES WK I 1	SEVERAL TIMES HO I 2	SEVERAL TIMES YR I 3	DOESNT USE I 7	TOTAL .	······································
R+ONNO MULTINA	I 5+22 I 38+89 I 1+70	I 10 I 7.46 I 26.32 I 2.43	I66_ I 49•25 I 33•67 I 16•02	I51 I 38+36 I 31+88 I 12+38	134 32+52	
NADIAN COMPANY	I 2+42 I 2+42 I 27-78 I 1+21	I 17 I 8.21 I 44.74 I 44.74 I 4.13	I 58 I 42•51 I 44•90 I 21•36	I 97 I 46•86 I 60•63 I 23•54	[207 [50+24 [
JANOHND MULTINAT	\$ 33.33	I 11 1 I 15.49 I 28.95	I 42 I 59+15 I 21-42	I 12 I 16•90	71 17•23	•
COLUMN		38	196	160	L _ 412 .	
					-	
			· ·			
	· ·			n, -, , , , , , , , , , , , , , , , , ,		
•	•					
	•					

•
•
•
-55
-55 -

								_	
₽₽# SIGHA SPSS		LEASE 7.0						~ 9	
* * * * * * * * * NULTITYP TYP: * 6 * * * * * * *	* * * * * E+CONTROL * * * *	* * * * * * 6f Crgan: * * * * *	C R 0 : ZATION + + + + +	S S T A B # # # # #	BY * * * * *	I O N O F ## MAGUSE USE OF # # # # # # # # #	MAGAZINES FOR * * * * * * * *	STI . . 1 %	
COUNT Row Pct 	I Iseveral Itimes wk I 1	SEVERAL TIMES MO I 2	SEVERAL TIMES YR 3	DOESNT USE I 7	RON Total I	··· · · · · · · · · · · · · · · · · ·		- · • • • • • • •	
FOR.CHND MULTINA	I63. I 43•15 I 30•88 I 14•29	I56 J I38.36 J	13 12+33 31+58 4+08	I9_ I6•16 I _27•27 I2•34	I146_ I 33•11 I I	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
CANADIAN COMPANY	I 98 I44.95 I 48.04 I 22.22	I 70 1	13+76 13+76 52+63 6+80	I 20 I 9 • 17 I 60 • 61 I 4 • 54	I 218 I 49+43 . I I			· · ·	
CANOWNO MULTINAT	I 43 I 55+84 I_21+08_ I 9+75	I 21 I 27+27 I 14-29	9 11+69 115+79 2+04	I 4 I 5+19 I 12+12 I +91	I 77 I 17•46 I				
. COLUMN	204.		57	33	441	· · · · · · · · · · · · · · · · · · ·			·
				.	·			a	
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			
									 თ

ter der				states (786 7 0		-							
			· · ·											,
*** SI	3MA SPS S	RE	LEASE 7.0	***				•			•		÷ .	
		•		·	 .		- · ····							
* * * * KUL'	* * * * * TITYP TYP	E-CONTROL		ZATION		8Y	NEWSUS	ช F + E NEN ช	# # # #	APERS F	# # # # #	• • • • •'	# #	.
• • • •	* * * * *	• • •	••••		₩ ₩ ₩ ₩ ₩ 		* * * *	* * * *	* * * *	· # # #	¥ •			:
	COUNT Row Pct Col Pct	I ISEVERAL	SEVERAL TIMES MO	SEVERAL TIMES YR	DOESNT	ROW TOTAL		· •	• • •• ••	• • ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	
MULTITY	••••••	1			I I33	I								•
FOR . OWN	D MULTINA	I 51+94 I 32+84 I 16+75	I 11.63 I 30.00 I 3.75	10+85 33+33 3+50	1 25•58 1 31•73 1 8•25	I 32+25 I .				· · · · · · · · · · · · · · · · · · ·	· · ·			
	2	1 98	I 26 1	1 20	1 57	I 201				•				
CANAUIA		I 48+04 I 24+50	I 52.00 1 I 6.50	47+62	I 54+81 I 14+25	I I								
•		I I 39	I 9	[[8	I====== I 14	I I 70						. <u></u>		•
CANGUND		I 19•12	I 18.00	19.05	I_13+46	1		•		{		÷		
			I 2.25		1	1					•			
	COLUHN Total	- 51+00	12.50	10.50	104 26+00	100+00						. <u> </u>	•	
		· · ·		· · · · · · · · · · · · · · · · · · ·										
<u>``</u>			, 	· · · · · · · · · · · · · · · · · · ·					·		· · · · · · · · · · · · · · · · · · ·			
		<u> </u>							÷				· ·	<u>.</u>
										,		4.		
-	•	•	. *	•		•					•	. .		
		•	,			•					·			
					•		· .							

• •	• •	•						:				
- 	٨	PPENDIX	VTILCROSS	STABULAT	TONS OF	COMPANY	SIZE VS. F	REQUENCY	OF USE O	F STI CHAN	NELS	
## # 510	MA SPSS	•••• REL	EASE 7.0	***					• . •	- •		•
۰,		-		•								
* * * * OLDS		ODED & COL	LAPSED SI	ZE		ULATI BY	LIBUSE EX			* * * * * * * 9 AS STT CHA		-
* • • •	* * * * *	LIBUSE		* * * * *	• • • • •		• • • • • •	• • • • • •	• • • •	. •	• • • • • • • • • • •	
	COL PCT Tot Pct	I Iseveral Itimes wk	TIMES HO	TIMES YR 3 1	USE	TOTAL						
DLDBIZE	1	I 17 1	1. 191	59 1	61 1	156						
SHALL		<u>I 10</u> 90] I 23994] I 3979]	21.35 1	35+54 1 13+17 1	50+30 1 13+62 1					<u> </u>		
MEDIUN	2	I 13 I 11+30 I 18+31	19 1 16.52 1	47 1 40+87 1	36 1 31•30 1	115 25.67			· · · · · · · · · · · · · · · · · · ·			 í
			4.24	10+49	8+04 1	l		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
LARGE	3	I 41 I 23+16 I 57+75 I 9+15	51 28.81 57.30 11.38	60 33.90 36.14 13.39	25 1 1 20+49 20-49	177 39•51	•			· _ · · · · · · ·		
	COLUMN TOTAL	I 71	89 19+87	166	122	L. •*448			• • • • • • • • • • • •	•		
						•					•	
<u></u>											,	
•• ···	•• ••	• •• •••							• • • • • • • • • • • • • • • • • • •		· ·····	••••
	<u> </u>		<u></u>	. <u></u>						•		
		······		<u></u>								
												L U U
•				•							•	Ĩ
	٠	. ,		,		:						
							.					

	*** \$1(BMA 5959	REI	LEASE 7.0	***					:			• •2 •	•		
ـر		· · ·										·				
,		SIZE REC	0DED & CO	LLAPSED SI	ZE	5 S T A U * # # # #	BY	TRADEUSI	DF USE D	F TRADE	ASSOC	LATIONS	F34 8	TI	•	
•	• • • •	• • • • •	TRADEUSE	• • • • •	• • • • •	• • .• · · ·		· · · · ·	· · · ·	+ <u>.</u> + + +	• • •	Ŧ	· · ·	· · · ·		
		COUNT ROW PCT	I ISEVERAL	SEVERAL	SEVERAL	DOESNT	RON							····		
		TOT PCT	ITIMES WK	1 5 1	្រៃ 3 1	I 7	1									
•	OLDSIZE	1		I 37 1	71	1 37	I 152									
	SMALL .		I 20+59		36+60	I 51•39	I						······	····		
			1 1+58 I	[======]]=======	Ī									
	MEDIUM	2	I. 6+14	I 38.60 I	38+60	I 16+67									•	
	, <u>, , , , , , , , , , , , , , , , , , </u>		1 1.58	I <u>30.77</u> I 9. 93 I	9.93	I 4+29	I								••••••••••••••••••••••••••••••••••••••	
•	• • • •••	3	05 1	I 62 I	(79)	I 16	I 177	•••								
· :	LARGE			I 43.36 1	40.72	1 22.55	I		•							
	<u> </u>	e	<u>1 4.51</u> 1	I		Innesses	1 I 443		•	<u></u>			•			anderson Generation
•	• •···	TOTAL	7+67	32.28	43•79	16•25	100+00				• · · · · · · · · · · · · · · · · · · ·					
i	-	•		·	*										•	
		<u></u>														
						. 			· , •			••••••••••••••••••••••••••••••••••••••				
-				<u></u>											•	
>					······································							· · · · ·				
												·				
			•	•												1 . U1
		•			-						•			•		ي ا
			• *		8							· ·				
				•			• •	*		_	*			•		-

SIGMA 9PS\$ ---- RELEASE 7+0 +++

• • •

tac

• •

. . . .

•		_	SEMUSE					
	COL P	CT I	ISEVERAL ITIMES NK	SEVERAL TIMES MO	TIMES YR	USE	TOTAL	
IZE	TOT P	CT 1	1 1	I 2 1	I 3 I	I	L .	
<u>.</u>		1	I 0 I •00	I 10 I 6.49	1 119 1 77•27	I 25 1 I 16+23 1	[154 [34+38	
			I +00	1 27.03 I 2.23	1 26.56	I 5+58	I	
UM		2	I 2 I 1•72 I 66•67	Ī 11 3	I 95 I 81•90 I_25•96	I 8 I 6•90 I_19•35	I 116 I 25.89 I	
E -		3_	I 1 I 56 I 33-33	I 16 I 8.99 I 43.24	I 152 I 85+39 I 41+53	I 9 I 5+06 I 21+43	I I 178 I 39+73	· · · · · · · · · · · · · · · · · · ·
	COLU	JMN IAL	I 3 •67	1	366 81+70	1 42 9+38	I 448 100+00	· · · · · · · · · · · · · · · · · · ·
	.•							•
				<u> </u>				•
	· ·		· · · -		·- ·	_ · - ·	·	
• • • •		.						· · · · · · · · · · · · · · · · · · ·
·								•
								· · · · · · · · · · · · · · · · · · ·

• *	•						·						
GLDS	IZE REC	0nf0 👗 CH	LAPSED S	176	5 S T A B # # # # #	AY.	I O N O Salesuse	HCC AC	# # # # # COMPANY S # # # # #	ALCO Cen			
•	COUNT	SALESUSE										·	
LDSIZE	COL PCT TOT PCT	ITIMES WK I 1	TIMES HO I 21	TINES YR I 3	DOESNT USE I 7 1	TOTAL	· <u>-</u> ·		•			· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
MALL	1	I 41 I_28+67_ I 42+71	I 28 I19,58 I25,45	I 30 I 20+98 I 29+70	I 44 1 I 44 1 I 30+77 1 I 40+74 1	143 34+46			<u></u>				
EDIUM	- 2	I 9+88 I I 26	I 6.75 I	l 7.23 [l 24	1 10•60 1 1	109	·						
	· •	I27•08_ I 6•27 I	I30.91]] I 8.19] I=======]	(23+76 [5+78 [I 22+94 j I23+15,1 I 6+02 j I1	· · · · · · · · · · · · · · · · · · ·					<u></u>	· · · · · · · · · · · · · · · · · · ·	· ·
ARGE	3	I 29 I 17•79	I 48 1 I 29.45 1	47	1· 39 1 1 23•93 1 1 36•11 1 1 _ 9•40 1	163 39.28	·····						
· , 	COLUMN	1 96	[===*===] 110	101	108 26+02	415					•		
						· ·							•
· • • • •	····	•			• .		- •, • ·	• •• •• -•• ••• •					
	· · · · · · · · · · · · · · · · · ·												
		-					*****			· · · · · · · · · · · · · · · · · · ·			
													i
										. •			C F I

4## SIGMA SPSS ---- RELEASE 7.0 +++

-

......

2 •				· · · · · · · · · · · · · · · · · · ·			
		4 4 4 4'4 SOED & COL					I O N O F + + + + + + + + + + + + + + + + + +
. OLUS 	145 NEC 4 4 4 4 4	- + + + + 4	F # # # # #	* * * * *		* * * * *	
		SUPPUSE					
	COUNT	1					
	RON PCT	ISEVERAL ITIMES WK	SEVERAL TIMES MO	SEVERAL TIMES YR	DOESNT	ROW TOTAL	
• • • • • • • • •	TOT PCT	I 11	[2]	31	[7]	Ι	
OLDSIZE	1	I 33]	. 48 1	55 1	L 16 1	I 152	
SHALL .		I 21.71 I 52.38	31.58 1		[10+53])	<u>1 34.86</u>	
			11 61 1	12.61 1	1 3.47	•	
· -		[[==== ₌ ===) r 39 1	 **	[[1K	I I 112	
MEDIUM		1 12+50	[34+85]	[39+59]	I 13+39)	I 25+69	
		I 3·51	29.77 1 1 8.94 1	25+88	I20+83 I3+44	I I	
	-	[[+==+		[I I 473	
LARGE	3	I 16 I 9•30	I 25.58	41+28	I 23+84	1 172 I 39+45	
-		I 25+40 I I 3+67	33.59	t 41+76 j	I 56+94 (1 .	
· ·	e	1	[[1	
	COLUMN	63	131 30.05	170 38•99	72 16•51	436 100+00	
	· • · · ·						
							•
• • • • • • • •		· · · · · · · · · · · · · · · · · · ·					
			•				
						·	
• .							•
				•			
	•			-		•	
		· · ·		0			
his			-				
						····· ··· ···	

• **

a +

*** 810	MA SPSS	**** .RE	LEASE 7.0	***								
•												
OLDS		ODED & CO	LLAPSED SI	IZE	- , -	BY	CLIUSE	USE OF	CLIENTS-CUS	TOMERS FOR) P
	COUNT	CLIUSE								• •		
	ROW PCT COL PCT TOT PCT	ISEVERAL ITIMES WK I 1	SEVERAL TIMES MO I 2	TIMES YR I 31	USE I 7	TÖTAL. I .			. .			
DLDBIZE	1	I 21 I_14+69	I 28 I I 19.58 I I 29.47 I	I 52 I I36+36 I	I 42 I 29•37	I 143 I34+54_				-		
	2	I 5+07 I I 12	I 6+76 1 I====================================	I 12+56] I======= I 38]	I 10+14 I I 29	I I I 107		-				
1EDIUM	<u></u>	I	I 26.17 I 29.47 I 6.76	I 28.36 I 9.18	1_,22•,14 1	I I						·
ARGE	. 3	I 21 I 12+80 I 38+89	1 39 1 23.78 1 41.05 1 9.42	I 44 I 26+83 I 32+84	1 60 1 36+59, 1 45+80	I 164 I 39.61 I	•					
	COLUMN	·I54	Innation	I	I 131	I 414				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-
_							· · · · · · · · · · · · · · · · · · ·					•
• ,			·	•	·	•						

• • •

•

63

• •

: ### BIGHA SPSS ##### RELEASE 7+0 ###

				the second se	
* * * * * * * *	* * * * *	* # # # # * * * C R 6 S	STABULATI	6 N 6 F + + + + +	* * * * * * * * * * * *
ELDSIZE	RECODED	& COLLAPSED SIZE	BY - I	GOVUSE USE OF GOVT	AGENCIES FOR STI
	* * * * *	* * * * * * * * * * * * *	* * * * * * * * *	* * * * * * * * * * * *	(♣ ♣ ♣ ♣) (♣ ♣ ♣)

4 - - -

OGVUSE

	COUNT	OGVUSE					
	ROW PCT COL PCT Tot PCT	ISEVERAL ITIMES WK I 1	TIMES HO I 21	TIMES YR I 3	DOESNT USE I 7 I	TŪTAL.	
OLDBIZE Bhall	1	1 6 13+90	I 37 1 I 24.03 1	84 54•55	I 27 1 I 27 1 I 17+53 1 I 31+40 1	154 35+00	
	-	1 1+36	I 8.41	19+09	I 6+14 1 I======]	t	
nediun 		I 3+48 I <u>12+90</u> I +91	I 27.83 I 28.83 I 7.27	42.61 23.11 11.14	I 26+09 I I_3++88 I I 6+82 I	26+14 [
LARGE		I· 21 I 12•28 I 67•74	I 42 I 24.56 I 37.84	[79 [46+20 [37+26	I 29 1 I 16+96 1 I 33+72 1 I 6+59 1	171 38+86	• • • •
-	- COLUMN	1	[=====] 111	212]!	[•
	•						
··· ·	· · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • •				
				<u>``</u>			
•		•••••• • •	•	:	• 1	Ē	• • •
	•			•			
- -			· •	it Bint			and that the same that that and that

++ CHE GH. CHEPSSON, ... CHELEASEN, ... CHERE, CHERE

**************************************	ABUL	ATIONO	F	* * * * * * * * * *
OLDSIZE RECODED & COLLAPSED SIZE		BY COMMUSE	USE OF COMMERCIAL	INFO SERVICES FOR STI

		COMMUSE	·							
	COL PCT	I ISEVERAL ITIMES WK I I	TIMES MO	TIMES YR	USE	TOTAL				
OLDSIZE Small	1	I 5+67 I 18+60 I 1+98	1 8 I 5.67 I 14.04 I 1.98	I 28 I 19•86 I 31•82 I 6•93	I 97 I 68+79 I 44+91 I 24+01	I 141 I 141 I 34+90 I I				
HEDIUN	2	I 8 I 7+77 I 18+60 I 1+98	I 16 I 15.53 I 28.07	1 21 1 20•39 1 _23•86	I 58 I 56+31 I_26+85	I 103 I 25.50 I				
LARGE		I	I 20.63 I 57.89	I 39 I 24+38 I 44+32	I 61 I 33•13 I 28•24	I I 160 I 39•60 I				
	COLUMN	43	1 57	88	216		·		3	
		-						• •		
•			•			· .				
		,		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				•

.... SIGHA SPSS RELEASE 7.0 +++

.

•

1

. •

·											•	
* * * *		* * * * *	* * * * *	CRO	SSTAB	ULAT	ION O	F # # 4		* * * * * 4		
\$ \$ \$ 4 \$	A A A A A	* * * * * I	LLAPSED SI # # # # # #	* * * * * *		8Y * * ± ± ±	NSHUSE	USEOF RS	SRCH ORGNI	S OR CONSUL	THTS FOR ST	1
			· •							· • ·	·	· •••
	COUNT											•
•	ROW PCT	ISEVERAL	SEVERAL	SEVERAL	DOESNT	ROW						
	TOT PCT .	I I I KK	ITUFS HO	TIMES YR	USE	TOTAL I						
GLDSIZE	******]	[=====]]		1		•• ••	· •• ••			
•	1 1	I 71	I 10 I	1 51 1	I 76	I 144		·				
- SMALL		1 35.00	1 25.00 1	I _ 35+42_1 I _ 26+15_1	1 52.78	I34.53_			.			
	1	1 1+68 1	I 2.40 1	1 15+53 1	1 18•23	I						
•	+]	I	I-===]	I	I	I		•				
MEDIUM		I 51 I 4+721		I 51 I I 48+11 I	I 43						•	
		1 25.00	1_17.50	1 48+11 1 126+15_1	- +0+57 126+54	1 CO142 I						
		1 1.50 1	I 1.68 I	1 12.23 1	1 10+31	1						
•		I		[======] I 93 I		I I. 167						
LARGE	···· ·· ·· · · · · · · · · · · · · · ·	1 4•79 1	13.77 I	1 93 1 I 55+69 I	+3	1. 107. I 40+05		*****				····
	1	I 40+00 1	1 57.50 1	I 47+69 I	I 26+54	I	:					
		I 1.92 1	1 5.52	1 22.30 1	10+31	I						
•		20	• 40	II 195	162	417					•	
	TOTAL	4+80	9.59	46+76	38.85	100+00						
• • ·				·								
•												
•	•											
Ì												
•	•••••				na n .	•• -	•••					
•	·								•			
• •												
•					•							
_												
		-		•								
•								•		·		
. •			•	•		•			·			1
		•									•	6-
,		•••		o		·						E
						-	. 1005 .					

•

· · · · · · ·

•

### 810MA 3P55	RELEASE 7.0	### -					

•

٠.

	COUNT	EXPUSE I					
	ROW PCT	ISEVERAL ITIMES WK I 1	TIMES MO	TIMES YR	USE		
OLDSIZE		I 61 I 40+67	I 34	I I 36	I 19	I I 150	
		1 27+48 1 13+90	1 33.33 1 7.74	I 44+44 I 8+20	I.55+88 I 4+33	I I	•
· MEDIUM	2	I 55 I 5C+00	I 28 I 25.45	I 18	I 9 I 8+18	I 110 I 25.06	
-		I 12+53 I 106	1	[=======	1	I .	
LARGE		I 59+22 I 47+75 I 24+15	I 22.35 I 39.22 I 9.11	I 15.08 I 33.33 I 6.15	I 3+35 I 17+65 I1+37	I 40.77 I I	
			102		34	\$39	

-67-

·	- , ™ % 4-	() - 	• .	·	~				•	
CLDS	IZE REC	ODED & CO	* * * * * * LLAPSED S * * * * *	I ZE		BY	LON OF ** Haguse Use of * * * * * * * * *	MAGAZINES FOR 8		* *
	COUNT	MAGUSE '				•				
	COL PCT TOT PCT	ITIMES HK I 1	SEVERAL TIMES MO I 2	TIMES YR	USE I 71	TOTAL I			-	
LDSIZE	1	I 64 I 41+29	1 52 1 33.55 1 35.37	21 13•55	I 13 I 11+61	155 34.75	·····			•
-		1 14+35	I 11.66	I 4+71	I: 4+04 Iwaaawawa				ی کاری بود اور در باره اور باره در اور برا	•
EDIUM		I 42+98 I 23+22 I 10+99	I 37.72 I 29.25 I 9.64	I 11•40 I 23•21 I 2•91	I 7•89 I 28•13 I 2•02	25.56 I				
ARGE	3	I 98 I 55+37	I 29.38	l 22 I 12+43	I 5 I 2•82	177 . 139+69				
	•	1 21+97 Teensone	I 35.37 <u>I 11.66</u> <u>I 147</u>	<u>1 4.93</u>	<u>1 1•12</u>	! [
	TOTAL	47+31	32.96_		_ 7•17	100.00	····			- ·
			•							
	•									
		<u></u>		<u></u>						
		•								
				·						

		•			
### SIGMA SPSS -	RELEASE 7.0	+++	·		
	•	• •		•	

0LD9 * * * *	8IZE * * *	REC	:0DED) & C(+ + +	.0LL	.APS + +	ED 1	51Z# # #	<u>}</u> **	# 1	* #	¥	* 1	* *	* *	שר B שייי	ť * 1	NE4 * *	SUS # #	iE ≠ ≠	N #	EW #	0F 4 4	NE	'WS' #	PAF #	₽ER ¥ #	S F	TOR #	ST.	'I	,					. :.	
				WSLSE	1					•																												
		JNT																																 				
									EVERA						RU																							
				⊓Es Wi 1								E				AL					•																	
GLDSIZE			-	-			-												• •• •					· - ·· ·	•• • • • •	·• ••	-		••			- • ·		 -				
		1	1		-			-	1	_	-			-		14	2											·										
SMALL		•	ĩ′	-					_10+5		-			_		-																						-
•						-			35 • 7							·																						
									3•7			_	_	_																			·	·				
			-		-					-	-			-																				 				
		S																																,	•.	•		
MEDIUM			-						8.8																													
		<u>-</u>			-		· · ·		16•6 1•7																	-								 				·
·								-	/+1 ======		-	•		-																		·			·			
·		3	1	93	-		18			-	-			-		16	0																					ن
LARGE			T 1						12.5																									 				-
									47+6			27.		_			•	·													·	·					·	
والمراجع المتحد والمراجع والتناب			_ <u>ī_</u> ē	23.05	s_1:	4	4.46	<u> </u>		95_1	1																							 				
			-																		:													•				
		LUMN		208	-				4																													
	· 10	DTAL	7	51+49	1 .	10	2.13	1	10•4	÷0	. 7	25.	·99		100	3+01	0									_					.			 				-• -•

- 44.0

** **

.

.

-69-

References

Allen, T.J. 1977. <u>Managing the Flow of Technology</u>. New York: MIT Press.

Corporations and Labour Unions Returns Act, Report for 1974 Part I - Corporations. Statistics Canada, Catalogue 61-210 Annual.

Globerman, S., "New Technology Adoption in the Canadian Paper Industry," Industrial Organization Review, Vol. 4, 1976.

"Technological Diffusion in the Canadian Tool and Die Industry," The Review of Economics and Statistics Vol. LVII, No. 4, Nov., 1975.

"Technological Diffusion in the Canadian Carpet Industry," Research Policy 4 (1975).

Machlup, F., <u>The Production and Distribution of Knowledge</u> in the U.S. <u>Economy</u> (1962) Princeton: Princeton University Press.

Mansfield, E. et al., Research and Development in the Modern Corporation (1970) New York: MacMiblan.

Porat, M., <u>Defining on Information Sector in the U.S. Economy</u>, (1974) Institute for Communication Research, Stanford University, Stanford, Calif.

Notes on Some Definitions of the Multinational Enterprise March 1976. Foreign Investment Division, Office of Economics, Department of Industry, Trade and Commerce.

OECD: Science Resources Newsletter, No. 2, Spring, 1977.

OECD: Policies for the Stimulation of Industrial Innovation, Country Reports, Vol. II-I. (1978), Paris.

Report of the Senate Special Committee on Science Policy, A Science Policy for Canada, Vol. 2, 1972.

Roberts, E.B., and Wainer, H.A. 1971. Some characteristics of technical entrepreneurs. IEEE Transactions on Engineering Management, EM-18, 3.

Rogers, E., Rogers R., Wills, R., The Diffusion of the Impact Innovations (1976). Palo Alto: Applied Communication Research.

Shapero, A. 1967. Preliminary analysis of inter-specialty mobility of technical professional manpower resources. National Science Foundation. Standard Industrial Classification Manual, Statistics Canada, Catalogue 12-501.

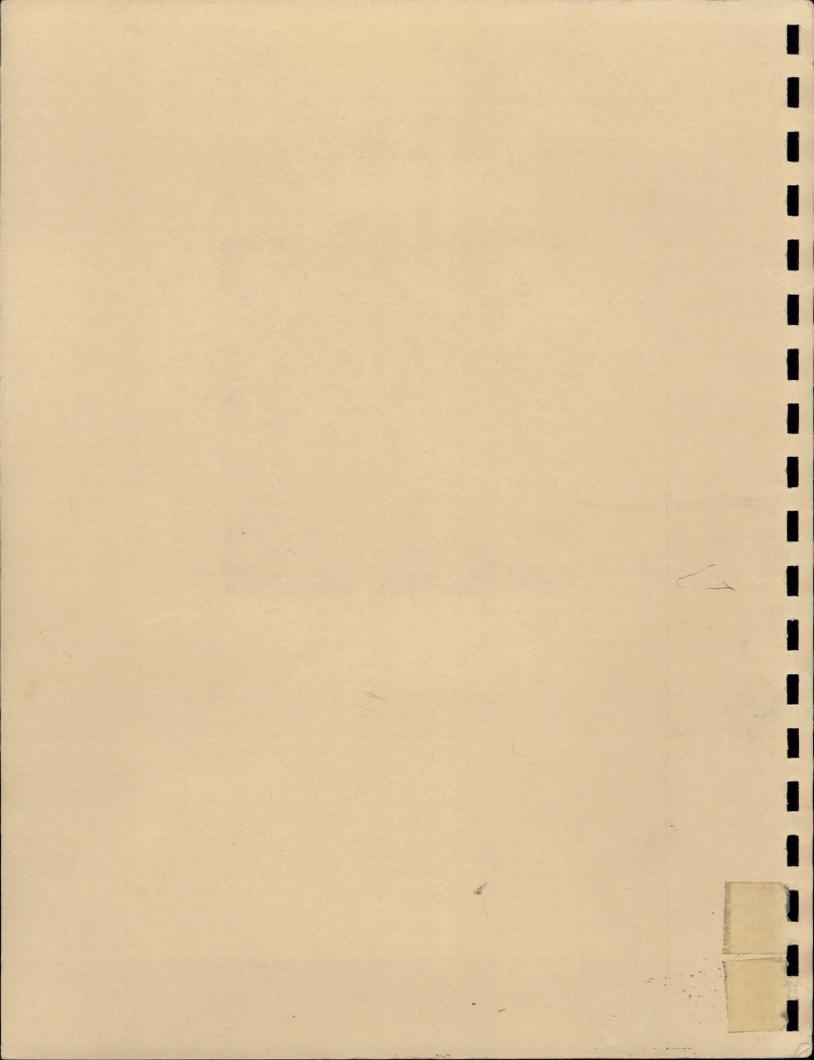
The Canadian Balance of International Payments 1961-62. Statistics Canada, Catalogue 67-201

Wills, R., (ed.) <u>Directory of Scientific and Technological</u> <u>Capabilities in Canadian Industry</u>, (1978), Ottawa: Ministry Of State for Science and Technology.

· . · . .

1124

QUEEN P 91 .C655 G76 1979 v. Wills, Russel M. Research, development and co



GROUPE ASSOCIE MONTREAL - McGILL POUR L'ETUDE DE L'AVENIR. -- GAMMA Information Society Project: Phase I / GAMMA Projet: Société informatisée: Phase I.

Se L'missie

P	
91	
C655	
G76	
1979	
#6	

	Dat	e Due	
B 80 11 1	1981		
MAY 1	8 1983 1983		
JUL 2 9			
OCT 3	1985		
MAR 24	1988		
DEC 29	1988		
-	10 - 2. P. 1	1 Contraction	
	State of the		
	T		
	1-1-1-		
	1		
	-		
	THE R.		
FORM 109	1.1		

