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ELASTIC STABILITY AND EQUILIBRIUM CONFIGURATION OF EARTH 
POINTING SATELLITES WITH LONG APPENDAGES 

by 

F.R. Vigneron and T. Garrett 

ABSTRACT 

The elastic stability of the booms on a gravity 
gradient stabilized Alouette type satellite is in-
vestigated to determine the critical lengths above 
which the booms will take on large  deflect  ions  un-
der the influence of the gravitational and centri-
fugal force fields. If the booms are not struc-
turally damaged by the large deflections, the sat-
ellite may take up one of several stable configura-
tions. A criterion involving the boom lengths is 
derived for the stability of the gravity gradient 
orientation for zero boom deflections. The deri-
vation includes the flexibility of the booms. 

1. INTRODUCTION 

The two most commonly used methods for passively stabilizing the attitude 
of a satellite in a circular, near-earth orbit are spin stabilization and gra-
Vity gradient stabilization. These methods are shown in Figure 1 for an Alou-
ette type satellite fitted with four long and flexible  sounder antennas (>30 
ft.) along the principal axes x and y. 

If spin stabilization is to be used, the satellite is given an angular 
velocity about the z-axis during the launch sequence. As a result of its angu-
lar momentum, the satellite will maintain a fixed attitude relative to inertial 
space during an orbit. Over a period of days the attitude will change in a 
slow and predictable manner due to the influence of gravity, magnetic, aero-
dynamic and solar forces. This is the type of stabilization that has been em-
ployed on the Canadian satellites, Alouettes I and II, and ISIS I*. 

* International Satellites for Ionospheric Studies, joint Canada and United 
States program. 
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Fig. 1. Passive attitude stabilization methods 

for Alouette type satellites. 
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Gravity gradient stabilization could also be employed on these satellites 
to obtain a predictable attitude history, provided the orbit is circular. With 
this type of attitude stabilization, the satellite is not rotated about the z-
axis, but another spar or gravity gradient boom is added along this axis. If 
the booms may be considered rigid, a fixed attitude relative to the local hori-
zontal can be maintained by an appropriate choice of boom lengths. For an Alou-
ette type satellite, the suggested attitude is for the gravity gradient boom to 
be coincident with the radius vector from the centre of the earth, the x-sounder 
antennas tangent with the orbit trajectory and the y-antennas perpendicular to 
the orbit plane as shown in Figure 1. This attitude of the satellite will be 
referred to as the rigid body equilibrium orientation. 

However the booms are not rigid, but are flexible members which can be 
distorted by small forces and internal temperature gradients. Distortion of the 
booms may change the attitude of the satellite and as a result may negate any 
advantages inherent in this method of stabilization. 

The following derives limits on the validity of assuming a gravity gradi-
ent stabilized Alouette type satellite to be a rigid body, when the only forces 
are due to gravity and centrifugal acceleration. Possible equilibrium config-
urations are suggested for the satellite when it can no longer be considered 
rigid. Consideration is also given to other factors which may affect the equili-
brium shape of the satellite. 

2. DISCUSSION OF THE SATELLITE EQUILIBRIUM 

As shown in the Appendix, the following external forces act on each unit 
mass particle of a continuum in a circular orbit and in equilibrium under the 
influence of gravity and centrifugal forces. 

x =  
y = p 	y  

Z = 3p 2  z 	. 

Where X, Y and Z are, respectively, the forces in the x, y and z directions 
shown in Figure 2; p is the mass density of the Continuum and SZ is the orbital 
angular velocity. At equilibrium these forces are balanced by equal and op-
posite internal reaction forces which are generated through distortion of the 
body. For an Alouette type satellite which can be assumed to be rigid, the 
equilibrium orientation will be such that the forces X, Y and Z on the booms 
will be zero (i.e., the booms will be aligned along the three axes x, y and 
z). 

Now consider the satellite in Figure 3 with the booms distorted from the 
principal axes. The forces of equations (1) are shown in magnitude and 
direction. 

The forces on the gravity gradient boom tend to restore it to the z-axis. 
Consequently, this boom is in stable equilibrium when it is straight and aligned 
along the z-axis. 

(1) 
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Fig. 2. Rotating, orbit referenced coordinate system. 

The forces on the y set of booms are shown in Figure 3, and in Figure 
4 (a) and (b). As a result of the direction of the force components and their 
dependence on the spatial coordinates y and z, these booms may be subjected to 
a condition of elastic instability. This situation has an analog in the prob-
lem of a long slender column as formulated by Euler l . For a given set of orbi-
tal and boom parameters a critical length, 2, , will exist. When the boom 

Cr 

length, 2,, is less than 2, r  , the internal resisting bending moments are suf-
c 

ficient to ensure that the boom remains straight. When 2, >  L 	the straight cr 
boom is in a state of unstable equilibrium and will buckle elastically. With 
the onset of elastic buckling in the y - z plane, two stable equilibrium con-
figurations are possible. These are shown schematically in Figure 4 (a) and 
(13). 

The forces on the x set of booms are depicted in Figure 3, and in Figure 
5 (a) and (b). Here again, the situation is analogous to that of the y set. 

In the preceding qualitative discussion, it was assumed that the booms 
exhibit elastic stability behaviour when loaded. The Alouette satellite em-
ploys  'STEM'*  antennas, which form tubes of open section when deployed as shown 

* STEM--STORED TUBULAR EXTENDIBLE MEMBER, manufactured by Spar Aerospace 
Products Ltd., Toronto, Ontario. 
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in Figure 6. Buckling tests were performed to observe the behaviour of beryl-
lium copper STEMs when subjected to column loads. The method of testing is 
shown schematically in Figure 7. The results confirm the underlying hypothesis 
that the booms do exhibit an elastic instability behaviour. The bending stiff-
ness,  El, of the STEM tubes was found to be 11 lb-ft 2 , which agrees reasonably 
well with the calculated value of 15.5 lb-ft 2  for a closed tube. 

Since elastic buckling is characterized by a sudden large distortion of 
the booms, it is important to define the bounds of stability. In the following 
sections, the elastic stability of the booms is investigated analytically. 

3pà 2z 

enay  3p,a 2z 

I  b e • i ■ 

Fig. 3. Forces on deflected satellite booms. 
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(b) 

Fig. 4. Stable satellite orientations for large deflections 

of the y and z booms. 



(o ) 

Fig. 5. Stable Satellite orientations for large deflections 

of the x and z booms. 

7 
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Fig. 6. STEM boom. 

Fig. 7.  Buckling test of a STEM boom. 
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3. ELASTIC STABILITY OF THE BOOMS 

From small deflection theory the differential equations for the shape of 
a boom are 2  

dT 
c-177  + Y = 0 

d 2K ez  d 	dz 
El 	— (T 	- Z - EI 	 - 0 

dy 4 	dy 	dy) 	 dy 2  

where y is the coordinate along the undeflected axis of the boom, z is the 
deflection, Y and Z are the body forces in the y and z directions, respectively, 
El  is the section modulus, T is the internal tension and KT  is the thermal curva- 

ture of the boom. Also, the constitutive equation, which relates the geometric 
and thermal curvatures and the internal moments in the boom, is 

d 2Z M 
- - - K (y) dy 2 	EI 	T 

where M is the internal moment. 

In determining the elastic stability of the booms, the thermal and in-
herent boom curvatures will be neglected. A qualitative discussion of the effect 
of these curvatures will be given later. 

3.1 ELASTIC STABILITY OF THE Y BOOMS 

Consider the y set of booms as depicted in Figure 4. Here, Y = - 42y, 
Z = 34 2 z. Equation (2) may be integrated immediately to yield 

T = 	(e - y 2 )   (5) 

for the tension in a boom of length  9. Assume that the thermal curvature is 
zero along the length of the boom. Equation (3) then becomes, 

L 	 1 
EIz"" + [p 	( 92  - 

y 2) z t] 	 . 0  
2 

where the superscript primes denote differentiation with respect to the co-
ordinate y. 

Introducing the non-dimensional variables E = y/9, and N = z/ 9  into equa-
tion (6) yields 

N"" + b 	[(1 - c 2 ) 	- 3N} = 0 

(2) 

(3) 

(4) 

(6) 

(7)  

In the absence of thermal curvature (i.e., kT  = 0) the geometric and static 

boundary conditions for the booms as shown in Figure 3 are, respectively, 
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N(0) - N'(0) - 0 

N"(1) = N"'(1) = 0 	. 

Equation (7) with boundary conditions (9) defines an eigenvalue problem. 
The first eigenvalue, which will be denoted as b,  will supply the critical cr 
stability condition, in accordance with the theory of buckling. Equation (7) 
is not readily solvable in terms of known functions, but an approximate solu-
tion may be obtained by transforming the equation into a variational problem 
and then employing the Ritz method 3 ' 4 . The transformation to a variational 
probLem is accomplished by multiplying the equation by N and integrating over 
the length of the boom to obtain 

fN  [N'''' + b [
4  (1 - e 2 )

1 
 - 3N 1]d€ = 0.   (10) 

If the term in N'''' is integrated by parts twice and the term in N' once, the 
result is 

11) 	/ 
(N") 2  - b [1 	

2 
- (N') 2  + 3N1) de = 0. 
, 

	  (11) 

In physical meaning equation (11) represents the principle of 'conservation of 
potential energy' during buckling. The first term is the strain energy of the 
boom and the second the potential energy or work of the conservative force field 
of equation (1). 

In the present problem a trial function 

N = ale 2  + a2e 3 

shall be selected in accordance with the procedure of the Ritz method. Construc -
ting the minimization of 11) leads to 

12N" 	 b -111/ de = 0 âam 	 âam 	 am 	am 

where m = 1,2. 

Performing the integrations and algebraic manipulations yields 

(9) 

(12) 

(13) 

/ 

(4 - .867b)al + (6 - .75b) a2 = 0 

(6 - .75b)al + (12 - .686b)a2 = 0 	 (14) 

Hence, for a non-trivial solution, the determinant of equations (14) must equal 
zero. Expanding the determinant and solving for the two roots for b gives 

bl = 2.967 and b2 = 127.3. 

Then, 	 b 	= b = 2.967.   (15) cr 
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Alternately, the critical condition may be written (for the y set of booms) 
as 

EI )1/4 = 1.314 (-2-- • 
Cr 

Y 

In general the Ritz method gives a first eigenvalue which is one to two per 
cent high. 

3.2 ELASTIC STABILITY OF THE X BOOMS 

For the x set of booms which are subjected to the forces X = 0 and Z = 
3P 2 z, equations (2) and (3) reduce to 

N'''' - 3bN = 0   (17) 

in terms of the non-dimensional variables E = x/ 2. and N = z/9,. The boundary 
conditions are 

N(0) = N'(0) = N"(1) = N"'(1) - 0.   (18) 

Equations (17) and (18) are again the formulation of an eigenvalue problem. In 
this case the exact value of b may be obtained as cr 

b 	= 4.12*.   (19) 3  
Cr 

The critical length•for the x set of booms is then 

crx 
= 1.425 ( EI-) 14

•  
 (20) 

e2   

4. THE STABILITY OF THE RIGID BODY EQUILIBRIUM ORIENTATION 

The stability of the rigid body equilibrium orientation shown in Figure 1 
is dependent on the relative lengths of the booms. To determine the stability 
conditions, the satellite is given a small angular displacement P. about an axis 
as shown in Figure 8. With this satellite orientation the forces on the y and 
z booms produce moments My and Mz , respectively, on the satellite. The moment 

M tends to increase the angular displacement and the moment Mz tends to de-

crease the angular displacement. The equilibrium orientation of the satellite 
in the undeflected shape will be stable for small angular displacements about 
the x-axes if M > M . In terms of the boom curvatures the stability condition 

,Y is 	 z  

IN' 	> 2 IN;'(0)1.   (21) 

(16) 

ee The corresponding Ritz technique gives a value of 4.16, when a trial function 
N = alc 2  + a2c 3  is assumed. 
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Fig. 8. Moments on the satellite body resulting 

from a smei rotation about the x-axis. 

The curvatures N"(0) and N"(0) may be calculated as follows. The 
Y 

equation of the y boom, as given previously is 

1 N' ' ' ' + b 1[4  (1 - E 2 )N'] -  3N1  = O. 

The boundary conditions, as shown in Figure 8, are 

N(0) - N"(1) = N"'(1) = 0 ; N'(0) = 8.   (22) 

Equation (7) cannot be solved readily in terms of known functions, but for 
b < 1 a perturbation technique may be employed. Assume a solution of the form 

N = No + bN1 + b 2N2 +   (23) 

The expansion may be expected to converge rapidly for small values of b. Sub-
stitution of equation (23) into equation (7), yields 

1 N"" + b[N'''' + — (1 -E 2 )N" - EN -  3N] 
 o 	 1 	2 	 o 	o 	o 

+ 
 bI

N'"'  + 4  (1 - c 2 )N" - EN -  3N]  
2 2 1 1 1 

(7) 

= 0.   (24) + b 3 	 



(25a)  

(25b)  

(30)  

(31)  

(32)  

(33)  
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For arbitrary values of b, each coefficient of b must vanish independently. 
This requirement provides the following set of equations which enable N0,N1,.. 
...to be calculated successively: 

N'" ' = 0 

N"" + 	(1 - E 2 ) N" - EN' - 3N
o 

= 0. 
2 	 0 

The solution of equation (25a) chosen to satisfy the boundary conditions is 

No = 8E.   (26) 

Substitution of equation (26) into (25b), yields a differential equation for N 1 . 
The boundary conditions of the problem are satisfied by No; therefore, N1 must 
satisfy zero boundary conditions, i.e., 

N (0) = N'(0) = N"(1) = N"'(1) = 0. 
1 	3 	1 

The solution of N1 with these boundary conditions is 

Ni = (8130)(e 5  - 100 + 20E 2 ).   (27) 

The solution for N using the first two terms of the series is 
Y 

N = 8]c + (b/30)(6 5  - 106 3  + 206 2 )].   (28) 
Y 

This equation is valid for b < 0.1. The boom curvature, N"(0), is obtained 
Y by differentiation of equation-  (28) as 

4 N"(0) = — 8b . 
Y 	3 y 

The equation of position of the z booms is derived from equations (2) 
and (3) with 

Y = - (DS2 2 y and Z = 3pS2 2 z 

El  SILL/ 	3 ,.2  

dz 	pà 6  lx - Y ) 	+ 3ffi-2 2 	+ (DSZ 2 y = 0. dz 2 	dz 

In the non-dimensional variables N = y/2, and e = zn the above equation 
becomes 

3 N'"' - 	(1 - 6 2 ) N" + 31216N' + bN = 0. 

The boundary conditions are identical to equation (22). The solution of 
equation (31) may be obtained in a manner similar to the above solution of 
equation (7). The deflection Nz  becomes 

N z 	
(3 [E - — (6 5  - 10E 3  + 206 2 )]  

30 
which gives the curvature N"(0) as z 	 4  

N" (0) = - 

(29) 
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From equations (21) (29) and (33), it is found that the equilibrium 
orientation of the satellite in the undeflected shape will be stable for 

b z >2b    (34) 
Y 

or in terms of the boom lengths 

z 
> 1.19 2, . 

Y 

In a similar manner the stability criteria for small rotations about the 
y and x axes are found to be 

z > 1.19 2,x 

>   (37) x 	y 

respectively. The combined stability criterion is then 

z 
> 1.19 2,x > 1.19 SG .   (38) 

Y 

This result does not differ significantly from the following stability 
criterion for a completely rigid satellite 

z > 1.26 2,x > 1.26 2, Y 

(i.e., the satellite will then be stable in accordance with the results of 
Ref. 5). 

5. OTHER FACTORS INFLUENCING BOOM SHAPE 

In addition to the gravity and centrifugal forces other factors may in-
fluence the shape of the booms. In this section some of these will be analyzed 
for the y set of booms for boom lengths below 2„ cr . 

5.1 THE EFFECT OF THERMAL OR INHERENT CURVATURE 

Consider the y set of booms. If they have an inherent curvature, or are 
subject to solar heating, they will be deflected. Assume that the induced 
curvature is a constant (KT)  along the length of the boom2 . Equation (4) then 
gives the boundary conditiôn at y = 

d2z(2,)  - K dy 2  

since, at y = 2, the internal moment M is zero. Equation (40) in non-dimensio
nform is 

N"(1) =  K.    (41) 

(35)  

(36) 

and 

(39) 

(40) 



(44) 

(45) 

(47) 

(48) 

The additional boundary conditions in non-dimensional form are 

N(0) = N'(0) = N'"(1) = 0.   (42) 

The equation of position of the boom is deduced from equations (2) and (3) with 

d 2 K /dy 2  = 0, and is therefore identical to equation (7) 

N'''' +- 1 b (1 - £ 2 ) N" - bEN T  - 3bN = 0. 

A perturbation solution of equation (43) with the boundary conditions 

(41) and (42) gives 
,2 	b  

	

N = K 	+ — (2E 6  - 5E 4  - 20E 3  + 60E 2 )]. 

	

T 	2 	240 

The deflection at the tip of the boom is then 

11 	37 
N (1) = 	17  + 	b).  

5.2 THE EFFECT OF A SMALL SLOPE 

As a characteristic of the mechanical design, the booms may extend from 

the satellite with a small slope 8. The boundary conditions are then 

N(0) = N"(1) = N"'(1) = 0; N'(0) = 8.   (46) 

A perturbation solution of equation (43) with these boundary conditions 

gives the boom shape as 

6 	5 
N = 	[E 	(E - 10E 3 	20E 2 )] 

30 

and the tip deflection as 

11 N(1) = 8(1 + 	b). 

5.3 THE EFFECT OF A SMALL DISPLACEMENT 

If the axis of the antenna set is displaced from the mass centre of the 

satellite, the boundary conditions are then 

	

N'(0) = N"(1) = N"'(1) = 0; N(0) = S.   (49) 

The solution of equation (43) with these boundary conditions is 

	

N = S [1 + /2-(E - 4e 3  + 6e 2 )]   (50) 
8 	- 

and the tip deflection is 

3 
N(1) = S (1 + -8- b).   (51) 

(43) 
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Since equation (7) is linear the various solutions of the boom shape given in 
equations (28), (44), (47), and (50) for small values of b may be superimposed. 

The preceding analyses apply to the y set of booms. Similar results may 
be easily obtained for the x set of booms. The tip deflections for the x booms 
will be smaller, as is evident by comparing the force systems of Figures 4 and 5. 

If 2, >  9. 	(elastic instability) the booms will undergo large deflections. 
Cr 

In this instance the use of large deflection theory is required in order to pre-
dict the boom shape 3 ' 6 . 

6. DISCUSSION 

In the preceding analyses, it has been assumed that the booms are closed 
tubes whereas the STEMs are actually open overlapped tubes. Tubes of overlap 
construction have a lower 'effective' bending stiffness than closed tubes of 
equal diameter, because of the possibility of bending-torsion interactions. 
Also the idealized boundary conditions utilized in the analyses are not likely 
to be found in practice. Hence, the critical lengths predicted herein are sub-
ject to some error, and are most likely optimistic values. 

By combining equations (16) and (A-11), the formula for the critical 
lengths may be written in the form, 

, 
Z 	EJ- ) 1  R31   (52) 
cr 	pGM 

This equation indicates that the calculated critical lengths will reflect un-
certainties in the above discussed bending stiffness, only in proportion to the 
one-fourth power of El.  Hence the theory developed in this report is expected 
to give meaningful numerical results. 

It is evident also, from equation (52) that the lengths at which the dis-

tortion due to gravity is significant decrease in proportion to the three-quar-

ters power of the orbit radius Ro. 

7. APPLICATION OF THE RESULTS TO EXISTING SATELLITE BOOMS 

Properties of STEMs of 1/2 inch diameter beryllium copper (BeCu) and 
1 inch diameter steel material (presently utilized on Alouette and ISIS satel-
lites) are listed in Table 1. 

The critical lengths of BeCu booms projected in the x and y directions, 
respectively, are as obtained from equations (20) and (16), 

= 625 ft 2, 	= 576 ft. 
cr 	 Cr y 

These values apply to a circular orbit at 1000 Km. The corresponding lengths 
of steel antennas are, 

= 915 ft 2, 	= 845 ft. 
Cr 	 cr 

Y 
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These results are included in Figure 9, which shows the calculated values of 
b versus boom length. 

TABLE 1 
Boom Parameters 

BeCu 	Steel 

Mass, slugs/ft 	.000449 	.00212 
Tape width, inches 	2.0 	 4.0 
Thickness, inches 	.0020 	.005 
Diameter, inches 	.500 	1.0 
E, lb/in2 	 18.5 x 10 6 	30 x 10 6  
El average, lb-ft 2  15.5 	 351 
K ft-1 	 .002 	.0064 

T 

CIRCULAR ORBIT AT 1000 Km  

Fig. 9. Parameter b versus boom length. 

STEMs on the present design of ionospheric sounding satellites are of the 
order of 100 ft in length, for which b - < .01. Thus these booms are not likely 
to be subjected to buckling instabilities, or appreciable deformation effects 
as described in Section 5. 

The influence of the orbit radius on the critical length for the y booms 
is shown in Figure 10. 
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Fig. 10. Orbit radius versus critical length of the y booms. 
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8. CONCLUSIONS 

The sounder antennas of a gravity-stabilized Alouette type satellite can 
exhibit elastic instability in the form of boom buckling under the influence 
of gravity and centrifugal forces. 

The critical length above which a sounder boom will exhibit elastic in-
stability is proportional to 

1 EI 	4.1 Ra 3/4 
pGM 

i.e., the boom properties, the gravitational constant and the orbit radius. 

For BeCu STEMs employed on present designs of Alouette satellites, an 
approximate estimate of the critical length is found to be 575 ft for a circular 
orbit at 1000 Km. 

For an Alouette type satellite which is gravity gradient stabilized and 
which has booms with lengths below the critical, the rigid body equilibrium 
orientation is stable if £

z 
> 1.19£ > 1.19£ . 

Y 

For lengths above the critical, large boom deflections will occur. If 
the booms are not structurally damaged by the large deflections, the satellite 
may take up one of several stable configurations. 

When small deflection theory applies the boom equilibrium shape may be 
readily determined, provided its curvature and non-zero boundary conditions 
at the root are known. 
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APPENDIX 

FORCES OF DEFORMATION 

This appendix evaluates the forces of deformation due to gravity and 
centrifugal acceleration that act on a mass particle mi  of a flexible continuum 

of total mass M in a circular orbit. The continuum is in the gravity gradient 
equilibrium orientation which is obtained when the body maintains a fixed orien-
tation relative to the rotating, orbit referenced coordinate system shown in 
Figure 2. 

First some results will be developed for the flexible continuum when it 
is not in the gravity gradient equilibrium orientation. Newton's Second Law 
states that: 
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d 2 R. 
F. =---E 

mi d t (A-1) 

where F. is the force external to the particle, t is time and R. is the position 

vector measured from an inertial frame. For this problem a non-rotating frame 
with origin at the centre of the earth is sufficient. Fi  may be divided into 

thetwocomponentsm.£,the gravity force and f i , the internal force exerted by 

the surrounding continuum. Further, if mi  is referenced to the x y z coordinate 

system rotating with speed  2  equation (A-1) may be written as 

m K. =f + 	- m. [2S2xit +ÙxR + S-2x(itxR   (A-2) 

where the superscript dots denote partial differentiation with respect to time. 

Consider the gravitational force per unit mass 

= - GMRi/R1   (A-3) 

where GM is the gravitational constant for the earth. Denoting Ro as the vector 
to the centre of mass of the continuum and r 1  as a vector from the centre of - mass to a mass particle, then 

(A-4) R = R m  + r . --1 

Substitution in equation (A-3) gives 

GM (R0 + r i ) 
- 	1R °  + r i l 3 	• (A-5) 



R = Rafe (A-10) 

= 	GM)1/2  
R 03  

	 (A-11) 

r. = xi + yj + zk 

R = R k 

	

GM (R + r.) 	 GM (R + r.) 

	

-0 -1 	 -m --1 

	

-g- - - [x 2  + y 2  + (R + z) 2 ] 312 2z 	r. )3/2  1 
R 3  (1 + — + — 

o 	R 	R2  

	

o 	o 

As r
i << Ro, equation (A-6) may be approximated by 

GM  1 n 	3z , 
= 	R o 3 	

r.) 
— 

in which terms of order r 2 /R 0 and higher have been neglected. 

Substitution of equation (A-7) in equation (A-2) gives 

3z 
 1 	
[2-4-  

--- 0 	-1 	i R3 	R -0 	
o 

+ 20xi + e2xR +Px(0xR) + 20xr - -1 

+ x r. + x (0 x 	. 

Let 

and 

then 

(A-6)  

(A-7)  

(A-8)  

Asstuningthatin.(t), then summing over the total mass of the body yields 

io = - 	+ 20 	1.2 + 	x et 	R + Sjx(Slx .R0) R3 	x  

since 

îf =im.z =îm1-1r.  =Zm;  --îm1-i  ï = 0. -1 	 1-i  

Equation (A-9) describes the well known Keplerian elliptical orbit. For 
investigation of gravity gradient satellites, the circular orbit solution, 

(A-9) 

where Ro and Q are constants, will be utilized. 

Equations (A-9), (A-10) and (A-11) are well known results for an orbiting 
mass point. The preceding development shows that they also apply approximately 
for a flexible satellite, provided the satellite's dimensions are small compared 
to the orbit radius. It should also be noted that the effects of the oblateness 
of the earth are ignored in this presentation. 
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The above results will now be used to determine the gravitational and 
centrifugal forces of deformation acting on the continuum, when it is in the 
gravity gradient equilibrium orientation. Substitution of equations (A-10) 
and (A-11) into equation (A-8) and applying the condition that the satellite 
achieves the gravity gradient equilibrium orientation when r = 	= 0 yields -1 -1 

f = mi U2 ( - 3z1°  + r ) + x (Ç x  r.)]. -1 	 R o 	-1 	— 

Expanding in component form leads to 

= m.S.1 2  (3/1 - 3z 

	 (A-12) 

	 (A-13) 

which gives the components of the force exerted by the surrounding continuum 
onthemassparticlem..The negative of f. is the resultant force of deforma-i 

d may be inter-

preted as a force field referenced to the orbit fixed coordinate system7 . The 
force field components x, y, z are then 

x=  0 

Y 	p&y 

= 3e2 z 

where p is the density of the continuum. 

(1) 








