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RECEPTION OF MULTIPLEXED PAM SIGNALS 
OVER MULTIPLE CHANNEL AND DIVERSITY SYSTEMS 

by 

A.R. Kaye and D.A. George 

ABSTRACT 

It is well known that the optimum receiver for 
pulse-amplitude-modulated (PAM) signals transmitted 
over a single channel consists of a cascade of con-
tinuous and transversal filters. This report shows 
that an extended structure of this type is also op-
timum for the completely general case of M multi- 
plexed PAM signals transmitted over random time and 
frequency dispersive, multi-channel systems with I 
inputs and N outputs, where each output is subjected 
tb arbitrarily correlated additive noise. The ran-
dom channels may also be arbitrarily correlated. In 
general, the receiver consists of MN continuous fil-
ters and M tapped delay lines with M 2  sets of taps. 
An adaptive version is also described. The results 
include as special cases the situations considered 
by Gonsalves and Tufts 8 , Shnidman 8  and Kaye 8 . Also 
included as special cases are new results for diver-
sity systems, multi-input systems such as multipair 
cables and multiple terminal systems such as multiple 
access repeaters in which co-channel interference 
occurs. 

1. INTRODUCTION 

It has been known for some time that the linear, least mean square re-
ceiving filter for pulse-amplitude-modulated  (PAN) signals through a time-dis-
persive linear communication channel 1 ' 2  is composed of a continuous filter, 
matched to a single received pulse, followed by a transversal filter, as shown 
in Figure 1. This allows minimization of the combined effects of additive noise 
and intersymbol interference and gives the least mean square error for each 
pulse separately. More recently Kaye 3 ' 4  has shown that a continuous linear 
filter followed by a transversal filter is also the optimum format for the 
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reception of PAN  signals transmitted through linear channels which are both 
randomly time-variant and time-dispersive. In that case an estimate of the 
channel response was assumed to be available and the channel was assumed to 
have wide-sense stationary statistics. Gonsalves and Tufts 8  studied the par-
ticular case of a randomly selected channel. Their paper formulated the prob-
lem in the frequency domain, suggested a numerical method of solution for the 
frequency response of the receiver and carried out the solution for a class of 
random phase and delay problems, but did not discuss any general structures for 
the receiver. 

Fig. 1. Optimum receiver for PAM over a time -dispersive channel. 

The work of Kaye 3 ' 4  also included multiplex operation in which a linear 
combination of M  PAN  signals are transmitted through a single, linear, exactly 
known or randomly time-variant channel. The receiver consists of a bank of 
M continuous filters, each followed by a tapped delay line. Taps are taken 
from each delay line to each of M summers which are sampled for the estimates 
of each transmitted message signal. Thus M2  sets of taps are required. Using 
a different optimization criterion, Shnidman 8  has obtained an identical form 
of receiver for the exactly known case, although the tap values are different. 
Shnidman minimized the squared error averaged over all the transmitted signals 
but added the additional constraint of zero intersymbol interference and cross-
talk at the receiver output. Shnidman also first pointed out that intersymbol 
interference and crosstalk between multiplexed signals are essentially identi-
cal phenomena. 

All the work referred to above is concerned with transmission over a 

single channel. The objective of this report is to present the general form 

of the receiver when both multiple channels, which may be randomly time variant, 
and multiplex transmissions are used. The previous work, summarized above, 
was limited to special cases of the results of this report. Diversity systems, 

in which there are more channel outputs than inputs, are a special case which 

is presented here for the first time. Another special case, for which the 
results given here are also new, is the problem of co-channel interference in 
multiple terminal systems in which each receiving terminal is required to de-
tect only one of many transmitted signals. 

The general form of the communications system treated is shown in Figure 
2. M message sequences 

k6 km
6(t - kT), m = 1,...,M 
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are transmitted and from these a linear pulse amplitude modulator forms a total 
of I inputs to the channel, which has N outputs all subject to arbitrarily cor-
related additive noise. All forms of multiplexed, diversity or multiple chan-
nel systems are included in this format. For instance a multipair cable, in 
which there may be linear crosstalk between channels in addition to time dis-
persion, is a case where N = I > 1. Another example is a diversity system in 
which I = 1 and N > I, with an arbitrary number of multiplexed signals M. In 
general the receiver is required to estimate all M of the transmitted message 
sequences. However, in some multiple terminal systems, such as multiple access 
radio repeaters (including satellites) or where terminals are distributed along 
a multiple or single channel transmission line such as multipair or coaxial 
cable, each receiver is required to estimate only one, or some number L < M, of 
the sequences. The undesired sequences then cause co-channel interference. 
This is a special case of the general result and will be dealt with in Section 4; 
up to that point we shall discuss the receiver which estimates all M sequences. 
The receiver minimizes the mean square estimation error on all sequences simul-
taneously, subject to the constraint that the receiver be linear. That is we 
minimize 

em  = E{(0 	— &km ) 2 1, m = 1,...,M.   (1) 

Fig. 2. GeneraZ form of the communication system. 

The optimum receiver is shown to consist of a bank of M continuous fil-
ters at each of the N outputs of the channel, followed by a sampled data filter 
containing M tapped delay lines and M summers with cross-connecting taps. Thus 
there are MN continuous filters, M delay lines and summers and M 2  sets of taps. 
The structure for M = 2, N = 3 is shown in Figure 3. From an extrapolation of 
the earlier results for single channels it might have been expected that MN 
delay lines, one for each continuous filter, and hence M 2 N sets of taps, would 
be required. The result that only M delay lines, one for each message sequence, 
are necessary is therefore somewhat surprising and of considerable practical 
Importanc e . 

Section 2 of the report describes the system model and defines the various 
functions and parameters needed to express the results. In Section 3 the gen-
eral solution of the problem is presented. A proof of the solution is included 
in Appendix A which also includes an analysis and synthesis of the receiver 
eampled data filter in Z-transform terminology. Appendix B develops a proper-
tY of the covariance function of the channel output; this property is required 
in the proof in Appendix A. Section 4 shows how the general solution may be 
ePecialized to deal with specific system configurations, in particular: single 
Channe l multiplex, diversity systems and multichannel systems. Some numerical 
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results for signalling, using a single sequence, over a random multipath chan-
nel, are described in Appendix C. An adaptive version of the general receiver 
structure is described in Section 5 and additional analysis of this is given 
in Appendix D. 

W2(t) 

wet) 

W 1 (t ) 

Fig. 3. Optimum receiver for two multiplexed signals 

and a third order diversity or three channel system. 

2. THE SYSTEM MODEL 

We are concerned with the transmission of M sequences 

k kmd(t - kT), m = 1,...,M 

by means of a set of PAN multiplex signals of the form 

sm (t) = îkekmpm (t - kT), m = 1,...,M   (2) 

over a random channel with I inputs and N outputs. 

In stating the results it is only necessary to consider the response 
produced at each output of the channel by each input signal  s(t). Thus, at 
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this stage, it is not necessary to know whether the M signals are added before 
transmission over a channel with a single input and single or multiple (diver-
sity) outputs, or whether they each drive a separate input (14 pair cable) or, 
indeed, any combination of these. Only in applying the results to a particular 
situation is it necessary to consider the specific system used in order to 
evaluate the functions defined below. 

The noise-free response, at the n
th output of the channel, to the com- 

ponent 6
km

pm (t - kT) of the transmitted 
signal is denoted by km

z 	(t). It is  kmn 
assumed that zkmn(t)  is the result of the interaction of the signal component 

with a linear channel, whose time varying weighting function is drawn from a 
wide-sense stationary ensemble with non-zero mean. This non-zero mean corres- 
ponds to the assumption that an estimate zmn(t  - kT) of the response zkmn (0 is 

available at the receiver. Thus 

zkmn (t) =  mn 
(t - kT) + Zkmn 

where Zkmn (t) is of the form 

Zkmn (t) 	fw  à (t,a) pm (t - kT - a)da -co mn 

and a
mn

(t,a) is a random weighting function. The total random, signal depend-
_ 

y(t) = -kmn(t). 

The covariance function of this component and the corresponding component at 

the  th output is denoted by 

Rn2,
(t

'
5) = Efy

n 	
y(s)I, n = 1,...,N, 	2.  = 1,...,N   (5) 

At each output there may also be an additive noise component nn (t), n = 1,...,N, 

and these are related by the covariance functions 

tP me (t,$) = E{n n (t) n2.(s)), n = 1,...,N,  2. = 1,...,N. 

The total signal at the nth channel output is therefore 

r  wn
(t) = 	rM zkm=1 6kmMn

(t - kT) + yn (t) + nn (t). 

The message sequences may have arbitrary correlation: 

Ele ige km 1 = cCl j . 	(8) 

A special case occurs when the sequences are white and uncorrelated with each 
other; in this case 

eq = 6 k-j 	m-q k-j . 
 

ant component of the nth output signal is then 

(4) 

(9) 
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Many systems operating over time-variant channels transmit a test or 
reference signal together with the information bearing signal. Such a signal 
might be used to form the signal estimates used here. This use is not consid-
ered directly, but the presence of a reference signal results in greater random 
disturbances at the receiver due to its interaction with the random channel and 
the system model described can be modified very simply to take account of this. 
If an estimate of the response of the channel to a signal component, such as 
pm (t), is available then the response to a reference signal can also be esti-. 

rn 	=(t) + n 	
n = 1,...,N. 

The portion rn (0 can be subtracted at the receiver leaving only the random 

component to interfere with message estimation. Thus, when a reference signal 
is used, it is only necessary to redefine the set of covariance functions (5) 
as 

Rnj (t,$) = Elfy n (t) + -in (t)1[57 2, (s) + -i' £ (s)11. 

3. GENERAL SOLUTION 

It is shown in Appendix A that the estimate of O.., with the least mean j 
square criterion defined in (1), can be written in the form 

= 7 7M 	aiN 	f k [t - (k + j)Tiw (t)dt. ji 	LkLm=1 km n=1 	mn 

Thus M filters, with impulse responses kmn (-t), m = 1,...,M, at each output 

operate on the received signals wn (t), n = 1,...,N. The outputs of the mth 

filters at each of the N channel outputs are summed and used as the input to a 

delay line tapped at multiples of T seconds delay. To estimate the i th message 
sequence IO 1, taps are taken from each delay line leading to the i th  summer. 

This summer is sampled at intervals of T seconds and the outputs at these times 

are the estimates of the i th message sequence. The receiver structure for two 
multiplexed signals with third order diversity is shown in Figure 3. 

The weighting functions kmn (-t), m = 1,...,M, n = 1,...,N, of the con-

tinuous filters, where kmn
(-t) is the m

th filter at the nth output, are defined 

by M sets of N simultaneous Fredholm integral equations: 

mated. Thus at the n
th 

output there is a reference signal  r(t) which can be 

expressed as the sum of an estimate Fn (t) and a random part .i- n (t): 

(10) 

mn 	
_N= 	 IR (t,$) + 11.)nz (t,$)Ikm9, (s) ds   (11) 

_co 	11£ 



CmP  = YN 	YM f k 	(s - 'T)(s - vT)ds k-j 	.11=1 vti=1 k-v 	pn 	 zqn  

where 
(13) 

	

cmp 	vN 	roe  

	

k-j 	Ln=1 	kpn (s - jT) 	
(s - kT) ds. 

mn 

where 
(15) 
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n = 1,...,N, m = 1,...,M. Thus the solution of the mth set of N equations 

determines the mth filters at each of the N outputs*. 

The tap gains in the sampled data filter are determined by M sets of 

simultaneous algebraic equations. The set of all taps leading to the i th sum- 
mer is determined by 

= a i  + 	CmP 	, 
km 	j p=1 k-j JP 

m = 1,...,M, k = 0, ± 1, ± 2,... 

(12) 

m = 1,...,M, p = 1,...,M. This is an infinite set of equations, reflecting the 
theoretically infinite length of the delay lines. A solution of these equations, 
using Z-transforms, is given in Appendix A. Constraining the set to a suitable 
finite number of taps on each delay line produces a good approximation. In the 
simpler case of white, uncorrelated sequences substitution of (9) in (12) and 
(13) gives: 

dd  = a 1  +  rrM 	CmP a.,  m-i k 	km 	j p=1 k-j jp 

m = 1,...,M, k = 0, ± 1, ± 2... 

(14) 

th 
The minimized estimation error on the 

. 	sequence is shown in Appendix A 
to be 

e. = a . 1 	01 

and, since the sequences have unit variance, this is the error per unit variance. 

4. SPECIAL CASES 

4.1 SINGLE CHANNEL MULTIPLEX 

In a single channel multiplex system we have, referring to Figure 2, 
I = N = 1, M > 1. Since N = 1 we can write (5) and (6) as 

	

Rn£ (t,$) = R(t,$)   (16) 

	

(t,$) = 1P(t,$).   (17) 

* In general Fredholm equations can be solved only by numerical means and this 
is frequently accomplished by converting the kernel to a matrix by means of 
an integration formula 9  . 	Using a similar method a set of simultaneous 
equations results in a partitioned matrix. 



w (t) 
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The receiver consists of a bank of M filters km (t) related to the M estimated 

pulse shapes 7
M
(t) by a single set of Fredholm equations: 

7m  (t) = fm  [R(t,$) + 11)(t,$)1km (s) ds   (18) 

m = 1,...,m. There are M delay lines and M2  sets of taps, defined by (12) with 
(13) modified to be: 

CmP  = 	
1 	

fm  k (s - jT) 7 (s -  VT) ds.   (19) 

This is the result previously stated in a less specific notation by Kaye 3 . 
The receiver structure for M = 2 is shown in Figure 4. 

Fig. 4. Optimum receiver for two  multiplexed signals 
over a single output channel. 

A subcase is the situation when the channel is exactly known, so that 
R(t,$) = 0, and if the additive noise is white, with spectral density No, then 
(18) becomes 	 7m (t) 

km 	- 	 No 
	 (20) 



(23) 

(24) 
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Thus we have a bank of filters matched to the M exactly known received pulse 
shapes. This corresponds to the case considered by Shnidman 5  although, as was 
pointed out in the introduction, Shnidman used a different optimization criter-
ion. The difference between the two results lies in the details of the sampled 
data filter. 

A further subcase is the situation when only a single message sequence 
(M = 1) is transmitted. Clearly the receiver consists of a single filter and 
a single delay line. Some numerical examples of this problem are solved in 
Appendix C for a random multipath channel. 

4.2 DIVERSITY 

For simplicity we shall consider the case of a single message sequence 
M = 1. The method of transmission (value of I) is unimportant; only the num- 
ber of outputs, N, affects the receiver structure. We have a set of N estima-
ted pulse shapes 7(t), one at each output, and a set of covariance functions 

as defined in (5) and (6). The receiver has one continuous filter at each 
channel output, defined by 

(t) = 	fœ 1 	[R
112,

(t,$) +
n£ (t,$)]k(s) ds  

 (21) x= _00 

n = 1,...,N. The outputs of these filters are summed and sampled, as shown 
in Figure 5, and used to drive a single tapped delay line. Since there is only 
a single message sequence {0 10, (8) becomes: 

	

Ei8.8 t 	.   (22) 

	

j k = J 	(i) k-j 

A single set of taps, leading to a single summer, has gains determined by 

n15 = a + 	C 	.a k 	k 	j k-j j 

where 
vN 	 pco C k-j 	Ln=1 	(11 k-v j kn (s - jT)(s - 

 VT) ds. 
-co 

If the random disturbances in the paths from the transmitter to each 
diversity output are uncorreleted then (21) becomes a set of independent Fred-
holm equations. The relationship of this result with more conventional diver-
sity combining can be seen by assuming each path to be exactly known with 
additive white noise of spectral density Nn at the nth  output. In this case 
we see from (21) that 

kn (t) - 
n
(t) 

(25) 

so that we have a matched filter at each outpu which scales each diversity 
output before summing according to the ratio {E

n
/N

n }, where 

r - 2 E = n 	j _ n 



kii(t) 	It1 (-11) 

Vie) 	 k (-t) 

wpi tt) ken 

1 0 

Fig. 5. Optimum receiver for a single message signal 

and nth order diversity. 

4.3 MULTICHANNEL SYSTEMS 

In this section we consider the multichannel situation typified by a 
multipair cable with crosstalk between pairs. Such a cable would not be time 
varying, except possibly at a very low rate, but, if the transfer and cross-
talk functions are not exactly known, might still be random in the sense of 
being randomly selected. 

It has already been pointed out, in Section 2, that the number of inputs 
and the way in which the various message signals are divided between them is 
of no consequence in determining the general form of the receiver. Thus a 
multipair cable with crosstalk can be regarded as a special diversity system 
in which the number of channel outputs, that is the number of wire pairs, equ9l5 

 the number of message signals, i.e., N = M. Because of crosstalk, each output 
will carry information about each transmitted signal and this can be used rathee 

 than being regarded simply as a nuisance. The equations defining the various 
filters and tap gains are those given in Section 3. The receiver structure, 
for the case of a three-pair cable, is as shown in Figure 3. 

As an additional illustration of the nature of the receiver it is worth 
considering the case of exactly known channels. For simplicity we shall also 
assume white, uncorrelated sequences, and white additive noise with spectral 
density Nn  at the nth output. If the channels are exactly known the filter 

responses are given by 

kmn 	- 7
inn(t)  
N
n 

	 (26) 



1.1 

Thus the filters are matched to the exactly known pulse shapes, arriving at 
each output from each input. The coefficients in the tap gain equations (12) 
are: 

_mp 	yN 	1 	o — ck-j 	m.1  N r  z_n (s - jT) 7,1111(s - kT) ds. 
n - P  

Bearing in mind that the mth  filters at all N outputs are summed, we see that 
mp C 	is the total covariance of the responses to the mth and p th message se- k-j 
quences, summed over all channel outputs. 

4.4 INTERFERENCE IN MULTIPLE TERMINAL SYSTEMS 

Multiple terminal systems, in which each receiver is required to estimate 
only L (< M) of the M transmitted sequences, were introduced in Section 1. Al-
though the general theory developed in Section 2 assumes M synchronous trans-
missions, it is useful, particularly in multiple terminal systems, to consider 
the asynchronous case as well and these two situations are dealt with in this 
section. 

If the various transmissions are synchronized, then synchronous, but un-
correlated, crosstalk from undesired signals occurs at each receiving terminal. 
This situation is identical to the single channel multiplex problem discussed 
in Section 1 except that each receiver estimates only L < M message sequences. 
The optimum receiver then consists of M filters and M delay lines but only L 
summers and the tap gains are determined by (19) and (12). Such a structure 
is shown in Figui. e 6, for L = 1. In practice, filters and delay lines would 
be provided only for those signals which interfere significantly with the de-
sired signals. The structure applies, of course, only when estimates of all 
of the received pulse shapes exist, or can be obtained, at the receiver. When 
no estimates of pulse shapes, other than those of the desired signals, are 
available, the synchronous interference can be treated only as non-stationary 
additive noise. The optimum receiver then has only L filters and delay lines 
and the filters are determined by (18) for m = 1,...,L where the desired se-
quences are {0 km'  m = 1,...,L and where R(t,$) includes 

the autocovariance 
function of the synchronous interference. 

In non-synchronous systems the optimum receiver again has L filters and 
delay lines, with the filter determined by (18), but the crosstalk now causes 
stationary additive interference which is included in the function 11)(t,$) in-
stead of in R(t,$) as in the synchronous case. 

5. ADAPTIVE STRATEGIES 

So far in this report we have been concerned with presenting optimum 
receiver structures based on the existence of an estimate of the received 
pulse shapes. A common feature of all these structures is that they contain 
tapped delay lines which are used to combat intersymbol interference and cross-
talk. For the special case of the transmission of a single message over a 
single, randomly selected or slowly time varying channel, substantial literature 

(27) 
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Fig. 7. Formation of the error signal in an adaptive receiver. 
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exists on methods of making the tapped delay line adaptive. The techniques 
involved have been summarized and discussed in the tutorial paper by Proakis 
and Miller 6  who also provide an extensive bibliography. When the transmitted 
signal is quantized rather than continuous PAM, the most successful techniques 
depend on the fact that the derivative of mean square error with respect to a 
tap gain is proportional to the correlation between the signal at the tap and 
an error signal derived from the output of the receiver. This concept is just 
as applicable to the multi-delay line structures for crosstalk described here. 
TobesPecific,ffweformallerrorsignalE.(t) from the ith receiver output 

as shown in Figure 7, we have 

De. 
	. 	E{c i (jT) ukm (jT)) 
Da l  km 

where u (jT) is the signal at the kth tap of the mth delay line at t = jT and km 
the expectation is independent of j because of the stationariness of the system. 
The right hand side of this equation can be determined by taking a time average 
of [E.(jT) u (jT)] and the adaptive procedure is started by setting up the 

km 
receiver with the centre tap on each delay line (ali'  i = 1,...,M) set to unity 

o 
and all others to zero. It is shown in Appendix D that a steepest descent 
convergence to minimum error is then obtained by incrementing each tap in 
accordance with the sign of the derivative of the error with respect to the 

tap gain. Thus akm is incremented according to the sign of De i  /Dakm
i . A simu-

lation of such a' system for three pairs of a multipair cable has recently been 
carried out successfully by Harrison 7 . 

6. CONCLUSIONS 

It has been shown that an expanded version of the well known continuous 
filter-tapped delay line structure applies to a completely general  PAN  system 
employing multiplex, diversity and multichannel operation simultaneously. With 
M message signals and N total channel outputs the receiver contains MN contin-
uous filters, M delay lines, L summers and ML sets of taps where L of the M 
sequences are to be estimated. This is independent of the number of channel 
inputs so that a multichannel system, such as a multipair cable, may be 
regarded as a type of diversity system. 

Adaptive strategies similar to those used for single-message, single-
channel systems may be used. 
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APPENDIX A 

DISCUSSION OF THE GENERAL SOLUTION 

Since the message sequences and the channels are wide-sense stationary 
we can concentrate on the estimation of one element, say the Oth element, of a 
sequence. Thus we wish to estimate 8 	i = 1,...,M by a linear estimator of 
the form 

15 

oe  6 	= 	,=1 f 	h ,i ( oi 	 s) w , (s) ds. 9 	9 	9 

By the principle of orthogonality* this must satisfy the equation 

Ei(8 0i  - ê oi ) wn (t)I = 0, n = 1,...,N. 

Substituting (A.1) and (7) in (A.2) and using (8) gives 

îkCI  4)1 711111 (t - kT) = 	fm  Rw  (t,$) hl(s) ds X-1 _op  nk 

where 

Rn(t,$) = Elwn (t) w(s)1 

Y Ym 	 (s - vT) i (t - kT) 
Jm=1 '-v ‘-q=1 k-v q9„ 	 mn  

+ Rust (t,$) + 4) 119, (t,$) 

from (7), (8), (5) and (6). 

(A.1)  

(A.2)  

(A.3)  

(A.4) 

We shall now make the assumption that the solution of (A.3) for the 

various h(s) can be written in the form 

M 	i 	 (A.5) h(s) =
p=1 

ak(s - Sr)
jp 

where the functions k (s), p = 1,...,M, 	= 1,...,N, are defined by the 
P£ 

following set of simultaneous Fredholm integral equations 

zpn (t) = 	
fw 	 + 4)12.(t,$)] kpz (s) ds.   (A.6) 

This assumption may be justified by substituting (A.5), (A.6) and (A.4) in 
(A.3) and showing that it leads to a consistent set of equations for the 

* Papoulis, A. 'Probability, Random Variables and Stochastic Processes', 
McGraw-Hill Book Co., New York, 1965. 
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factors a,  p = 1,...,M, i = 1,...,M, j = 0, ± 1, ± 2,... . The results of 
jP 

Appendix B are also required. Carrying out this substitution leads to 

mi— - kT) = y ym 	zm cm') ai  7 ( -j -p=i k m=1 k-j jp mn - kT) 

r rM 	i 
+ L. 	_ a. -z-  (t - jT), n = 1,...,N. 

I P -1  JP Pn 
	 (A.7) 

where 
CmP  = 	YM 	celq  fœ  k (s - jT)-2,(s  -  VT)  ds. 	 (A.8)* 
k-j 	Z 	 (4 =1 q=1 v k-v 	P 9,  

Now by changing the dummy indexes Ln the last sum of (A.7) from j to k and from 
p to m it becomes possible to equate coefficients of 7'ron (t - kT) for m = 1,...,M, 

n = 1,...,N, k = 0, ± 1, ± 2,... . We note first that the result is independent 

of n, thus the factors aLl  are defined as the solutions of the following set of 

algebraic equations: 

mi  = aim 	j + 	CmPk-j 	' m = 1,...M, k = 0, ± 1, ± 2... k 	p=1 	jp 
(A.9) 

Although this is an infinite set of equations it is clear that there is exactly 
one equation per unknown. An alternative expression of the set of equations, 
using Z-transform notation, is given later. 

To obtain the full expression for Â oi  we substitute (A.5) in (A.1), 

changing the dummy index j to k as in (A.9), to give 

Â 	= 	a i  Ylvi 	fœ  k (s - kT) w(s) ds.   (A.10) oi 	k p=1 kp Z=1 	p£ 

Now, because of the stationariness of the message sequence, the estimate  

will be obtained from the same filter at time t = jT compared with t = 0 for 
O  . 	Thus 01. 

= 	ai  YN  
ji 	k p1 kp 	

foe  k 	r(s - (k + DTI w£ (s) ds. 	 (A.11) 
= 	Q.1 	L 

This is the desired result (10) except for changes in the dummy variables which 
have been made in (10) in order, for the sake of clarity, to use the same vari-
ables as in Figure 2. 

* To see that the right hand side of (A.8) is in fact a function of (k - j) 
observe that the integral is a function of (j - v) and the product of this 

mq with 
(I)k-v 

is summed over the infinite range of v. 



The mean square estimation error for the i
th  sequence is 

ei  = E 1(0 0i  - 6 0i )I 
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= E  (e oi 	6 oi )e oil 

=  1-  E 	oi  I • 

Now substituting from (A.10) for és oi  and using (7) and (8), gives 

from 	(1) 

	 (A.12) 

e. = 1  - 1 	k 	1 kp 
M a 	

=1  m=i 	f 

	

i vN 	 i co - kT) 7(s - jT) ds. 
p= 	L£ 	Lj 4)7  

But by the general property of cross-correlation functions 

c im i)  , mi 

and, by the definition (A.8), 

Î cp in.1  fen  k (s - kT) 	- jT) ds = C-k
ip

mi £=1 m 	j =1 	-3 _op  p£ 

so that 
e. = 1 - 	ai  CiP  . k p=1 kp -k 

(A.13) 

Now the member of the set of equations (A.9) for which m = i and k = 0 is: 

r rM 	ip i 
Yo = 1  = ai  + L. 	C 	a 	. 

ai 	3 p=1 -j jp 

Comparing (A.13) with (A.14) shows that 

ei = a oi 

(A.14) 

(A.15) 

Z-Transform Representation 

Useful insight into the meaning of (A.9) can be obtained by using Z-trans-
form techniques*. 

We first express (A.9) in slightly different form: 

mp 
= Î 

i mi 	M 
p=1 ( p-mj-k + Ck-j  la 	' (A.16) 

k = 0, i 1, ± 2... 

* See, for instance, 'Analysis of Linear, Time Invariant Systems', W.M. Brown, 
McGraw-Hill Book Co. Inc., New York, 1963. 
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(b) 

Fig. Al. Synthesis of the discrete filter. 

(a)Discrete filter equivalent of equation (A.13) 
(b)Flow graph representation of the filter B(z). 



X (z) = 	BP q (z) Y (z). 
p=1 

(A.21) 

Defining the following Z-transforms*: 

mi (z) = Z 

Am (z) = Z (a i  ) mk 

Cm  (z) = Z (Cr) 

allows (A.16) to be expressed as 

(Dmi (z)  = 	 + CmP (z)] A i (z), m = 1,...M 

	

p=1 	p-m  

 714 
 =D(Z) A (z), m =  

	

Lp=1 	 i = 1,...M 

where 

DmP(z) = p-m + CmP
(z), m = 1,...M 

p = 1,...M. 
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(A.17) 

(A.18) 

At this point is is convenient to consider an equation closely related to 
(A.17): 

DmP (z) B(z) = O 	m = 1,...M 
p=1 q = 1,...M. (A.19) 

(The relation between the two equations will be discussed later.) We shall 
rely, in our development, on an interpretation of (A.19) in terms of the linear, 
discrete system shown in Figure A.1(a). The discrete filter D has, as its in-
puts, a set of sequences {xkm}  with Z-transforms Xm

(z), m = 1,...M. Its outputs 

are the sequences {ykp 1 with transforms Yp
(z), p = 1,...M, related to the inputs 

by: 

Y (z) = Îlvi 	D
2,13  (z) X£ (z) ' 

p = 1,...M.   (A.20) 
P 	Z=1 

A second filter, B, is cascaded with D and is determined, according to (A.19) 
so that the overall system reproduces the inputs exactly: thus 

Thus (A.19) requires that B be the inverse of D, where D is determined by the 
parameters of our channel as in (A.12). A signal flow-graph of a synthesis of 
B is shown in Figure A.1(b) for M = 3. It is not immediately obvious that this 
is, in fact, a foim which satisfies (A.19) but this can be seen by expanding 
the identity: 	 - 1  

X (z) - 	FDPP (z) X (z)1. 
P D(z) L 	P 	j 

* The Z-transform of a sequence a is defined as 

A(z) = îk a k z
k . 
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Thus 

and setting 
Ai(z) =

M 	B
pq (z) 0

qi (z) 
q=i (A.24) 

X (z) = 	1 	U
M D(z) X(z) - 	D4 (z) X (z)]. 

D(z) 	Z=1  

But, from (A.20) this is 

1  X (z) -  D(z) [Y (z) - 
	

D(z) X 9,  (z)] 
P  

and, substituting for D£p (z) from (A.12) 

X (z) =
1 	[Y (z) 	C(z) X32  (z)].   (A.22) 

1 + CPP (z) 	P  

But this is precisely the equation which specifies the action of the filter 
shown in Figure A.1(b) so that we see that this filter does, in fact, reproduce 
the system inputs X (z) given the filter inputs Y (z). 

Having solved (A.19) by means of a synthesis of the filter B, it is now 
necessary to show that this solution is relevent to the main problem, represen-
ted by (A.17). First we see that if the data sequences {0 km } are white and 

uncorrelated, 0mi(Z) = m-i' 
then (A.17) and (A.19) are identical. This in 

this case the filter B is the optimum sampled data filter for the receiver and 

Ai (z) = BP i (z). 

In the general case we note that multiplying (A.19) by O(z), q =  
i = 1,...M, and summing over q yields (A.17). Thus 

mp. . rM 	pq ) qi 	r 
D (z) 	B (z 0 (z) = M 	qi 0 (z) d

m-q Lp=1 	 (1=1 	 fel  
mi 

(z) 

	 (A.23) 

gives (A.17). Now 
two filters, B and 

and the i th output 
as B. 

the right hand side of (A.24) corresponds to a cascade of 
0, where is a filter whose response between the qth input 

is ei (z). (I) can be synthesized in exactly the same way 

The Z-transform analysis shows that the sampled data filter in the re-
ceiver can be regarded as a cascade of two filters, one determined solely by 
the channel and one determined solely by the correlation of the data sequences. 
A synthesis of both filters has been described which does not require inversion 

of any of the functions describing the channel or sequence correlation. Unfor-
tunately both filters, when synthesized this way, involve non-causal feedback 
and so are unrealizable. They do, however, offer insight into the nature of 
the receiver. 



APPENDIX B 

A PERIODIC PROPERTY OF THE OUTPUT COVARIANCE FUNCTION 

In this Appendix we prove a theorem on the periodicity of the covariance 
functions R112,(t's)  and a corollary required 

for the derivation in Appendix A. 

Theorem 
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	 (B.1) 

	 (B.2) 

R
n£

(t - kT, s - kT) = R 112, (t ' s) ' all k 

q) 112, (t - kT, s - kT) = 1P n2,(t,$), all k. 

Proof 

From (4) and (3b) we have 

Y(t)  = 	rt1=1 o  jm - jmn (t)  n  

00 

	

=
m 	

O 	f 	(t,a) pm (t - jT - a) da.   (B.3) 

	

j m 	j =1 m _. mn 

Hence, substituting from (B.3) and (8) in (5), 

IW foe 

-W -W 

R(ts) = Z. îl4  3 m=1 eq  v q=1 j-v 
Elâmn (t,a) a ci2, (s,c5)1 pm (t - jT - a) 

• p (s - vT - a) da da. 

	 (B.4) 

But, since the channel is taken to be wide-sense stationary, the covariance 
function in the integrand of (B.4) is periodic: 

E Eâmn (t - kT,Œ) a (s - kT,G)I = EI mn (t,a) â (s,a)), 
all k. 

Thus replacing t and s by (t - kT) and (s 	kT) in the right hand side of (B.4) 
does not affect its value since the sums are over the infinite range (-co,m) for 
the indexes j and v. This proves the result (B.1). 

The proof of (B.2) is trivial since the additive noise is taken to be 
stationary. 

(B. 5 ) 
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Coronary 

If, as in (14), k(t) is defined by 

"Inn 	
= 	f• R (t,$) + 11, 112, (t,$)] kna (s) ds £=1 	n£ 

- co 

i
"Ian

(t - kT) = 	fœ  F

• 

R (t,$) + q) 111 (t,$)1kmz (s - kT) ds. 
£ 	-Co 	n£ 

then 

(B.6)  

(B.7) 

Proof from (B.6) 

(t - kT) = 	fco 1

• 

11_,,(t - kT,$) + 4) 119., (t - kT,sq km(S) ds. 
mn x, 	-Co  

	(B.8) 

By a change in the dummy variable of integration we then have 

7inn (t - kT) = 	[Rni (t - kT, s - kT) 
-oo 

+ 	- kT, s - kT)]km2, (s - kT) ds. 

(B.9) 

Substituting (B.1) and (B.2) in (B.9) gives the desired result, (B.7). 



and 

s(t) = . 1(.. e kp(t - kT) 

E pi ed = 

(C.5) 

(C.6) 

APPENDIX C 

RESULTS FOR MULTIPATH CHANNELS 

As an example to illustrate the performance of an optimum receiver, single-
sequence signalling (M = 1), in a multipath situation, is considered. The chan-
nel is considered to consist of two discrete, uncorrelated, non-selective paths. 
The combination of the two paths, of course, renders the channel selective in a 
randomly time varying manner. The impulse response of such a channel is repre-
sented by 

a(t,a) = c l (t) cS(a) + c 2 (t) d(a - A)   (C.1) 

where c (t) and  c(t) are the time-variant attenuations of each path and A  is 
2 

the delay difference. Each path has a non-zero mean, or estimated, value so 
that, with the assumption of wide sense stationary statistics, 

c 	= c +   (C.2) 
1 	1 

where C 1  (t) is a random variable and c 1  is the mean value of c (t); the proper- 

ties of the second path are similarly defined. C l (t) and -C 2 (0 are assumed to 

have identical Gaussian-shaped autocorrelation functions 

	

X(T) = exp - 
1- 	1) 2 .   (C.3) 

	

2 	T 

is a measure of the decorrelation time of the channel with respect to the 

signalling interval. The random components C 1 (t) and C 2 (t) of the two paths 

may have different variances, (15 21  y 2  and G 22  y 2  where 

23 

0
22 = 1 
1 	2 

and, since the paths are uncorrelated, the total variance is y 2 . 

(C. 4) 

We shall consider the case of a single white transmitted sequence, so 
that the transmitted signal is 



2_  r 
g  - E

t 
(C.11) 

2 
n  

= 2 Y 
	 (C.12) 
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The pulse shape chosen is a raised cosine pulse 

	

E t 	 2nt 

	

p(t) = -V2— 	+ cos 	- — < T < --T- 
3T 	 T 	2 — — 2 

= 0 elsewhere   (C.7) 

where E t is the energy in a single pulse. With these definitions the estimate 

of the received waveform is 

(C.8) z(t) = c i p(t) + c 2p(t - 

and the energy in this waveform is 

Er = f -Z2 (t) dt. (C.9) 

In a time-variant, exactly known channel with an impulse response identical to 
the estimated response of the present channel the signal-to-noise ratio at the 
receiver would be the ratio E /N . This ratio therefore provides a basis for 

r 0 

assessing the effect of the randomness of the channel. Some algebra, starting 
with (B.4) shows that the autocovariance function of the channel output, with 
additive noise is 

R(t,$) = 	x(t - 	4 [J5(t - kT) p(s - kT) 

+ 0 2 p(t -  A  - kT) p(s -  A  - kT)] 	 
2 

	 (C.10) 

In (C.10) it is clear that y 2  is a measure of the ratio of random energy re-
ceived to transmitted energy. A similar measure for the ratio of deterministic 
energy received to transmitted energy is 

The two quantities y 2  and g 2  can be combined to give a quality factor for the 

channel estimate: 

Thus a large value of n implies a good estimate of the channel (and only minor 

random time variance) and a small value of n indicates a poor estimate. The 
additive noise is assumed to be white, with spectral density N o . Results will 

be plotted as a function of the ratio of the energy Er  in the expected or 

estimated received pulse to the noise spectral density N o . 

Even for such an apparently simple channel as the one just described it 

is clear that a considerable number of parameters is required to specify it and 

several examples are discussed below to illustrate the effects of the various 

channel parameters on system performance. 



OPTIMUM RECEIVER 
A=2T/3 

32 40 
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The first example is a case in which one path has such a low variance that 
it is almost deterministic or specular, while the other path is entirely random. 
Thus c1 ' = 1, c = 0 G 2  = 0.05 and 0 2  = 0.95. The total variance of the channel 

2 	1 	 2 

is fairly high, giving a quality factor n = 2, and the channel is varying at 
rates comparable to the signalling rate, C = 1. There is therefore no determin-
istic intersymbol interference but the random signal due to one pulse in the 
transmitted sequence will overlap with the deterministic signal due to another. 
For this reason the tapped delay line portion of the receiver degenerates to a 
single tap or multiplier. The receiver therefore consists only of the filter 
k(- t). Figure C.1 shows the performance of the optimum receiver and a simple 
matched filter. The results are plotted for path delay differences of 2T/3 and 
5T/6. It is clear that in each case the optimum receiver achieves significant 
improvement in performance over the matched filter. The reason for this is that 
the covariance function of the random channel output, R(t,r) is time dependent 
and the optimum receiver concentrates on the time intervals when it is small. 

1.0-7 

0.6- 

O.4__  
o 
•cc 

> 0.2H 

LU 
cr 

G- 	0.1-1 

o cr 
cr 

LLI 0.06H 

et z 0.04—{ 
o 

MATCHED FILTER 
A = 5T/6 

-OPTIMUM RECEIVER 
A =5T/6 

MATCHED FILTER 
A= 2T/3 

1 
8 	16 	24 

Er /No  (dB) 

Fig. C.1. Performance for a multipath channel with one almost specular path 
(C i  - 1, (7 	0.0 5 ) 	d ohc random path (C 2  = 0, (5 2  - 0.95) with n = 2. 

0.01 
0 



1 -1 
3T 2T 

o 

26 

This is well illustrated by Figure C.2(b) which shows the impulse response of 
the optimum receiver for A = 21/3, compared with that of the matched filter, 
which is just the inverse of the averaged received pulse shape, shown in Figure 
C.2(a). The negative excursions of the impulse response indicate that the re-
ceiver uses the correlation properties of the multiplicative noise to minimize 
the effect by averaging over the signalling interval. The reason for the higher 
error when the delay difference is 5T/6 is that, in this case, the random recep-
tion from one pulse is very nearly in synchronism with the deterministic recep-
tion from the next. The effect is akin to the well known fact that intersymbol 
interference in a multipath situation is most severe when the delay difference 
is almost equal to a signalling interval. 

1 
0 

1--  
2T 	 3T 

(b) 

Fig. C.2. Impulse response of a matched filter (a) and the optimum 
receiver filter (h) for the conditions of Fig. C.1 at high signal-- 
to-noise ratio and a path delay difference  A = 2T/3. 

Figure C.3 shows some results for a channel that causes deterministic 
as well as random intersymbol interference. The channel is slowly time varying 

= 0.1), with large variance (n = 2) equally divided between the paths, and 
a path separation of 5T/6. Curves 1 and 2, respectively, show the performance 
of the optimum receiver and the receiver designed for intersymbol interference 
and additive noise alone* on the basis of the estimated channel response. The 
deterministic energy per pulse from the second path is one quarter of that from 
the first (c 2  /c 1  = 0.5). The difference in performance is not so great as in 

the previous case because there is no time interval in which the instanteous 
ratio of deterministic energy to random energy is large. However, the optimum 
receiver is able to cope with unequal division of the deterministic energy 

* This is the optimum receiver for the exactly known channel as described by 
George' and Tufts2. 
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between the two path responses while the suboptimum receiver is not. This fact 
is illustrated by observing that, when the deterministic energy is equally 
divided, the performance of the optimum receiver is almost unchanged while the 
suboptimum receiver is able to do better than before as illustrated by Curve 3. 

zu 
 

0.6- 

'z 

0- 0.4 - 
cr 
o cr 

ct 
< 0.3- 
o 
m 
(r) 

0.2 
0 	4 	8 	12 	16 

Er /No  (dB) 
20 	24 	28 

Fig. C.3. Performance for a multipath channel with two paths of equal variance 
(0 2 = G2 = 0.5, n = 2) and separation A = 5T/6. 

2 

Curve 1: The optimum receiver when C 2/C 1  = 0.5 and when C 2/C 1  — 1 

Curve 2: The receiver of George and Tufts when C 2/C 1  — 0.5 

Curve 3: The'receiver of George and Tufts when C 2/C 1  = 1. 

Figure C.4 shows the effect of different path delay differences. The other 
parameters are the same as those just specified for Figure C.3 but with Er /N o  = 

20 dB. Curve 1 shows the performance of the optimum receiver and Curve 2 that 
of the suboptimum receiver previously mentioned. The deterioration in perfor-
mance as the delay difference approaches the signalling interval is clearly 
shown. 
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T/3 	 2T/3 
PATH DELAY DIFFERENCE 

Fig. C.4. Performance for the channel of Figure C.3 

with C 2/C 1 = 0.5 as a function of delay difference 

at Er/N o  = 20 dB. 

Curve 1: The optimum receiver 
Curve 2: The receiver of George and Tufts. 

The curves shown have been for fairly bad channels, n small. Naturally 
as n gets larger and the channel becomes almost time invariant and exactly 
known the optimum receiver converges to the receiver for intersymbol interfer-
ence and additive noise alone and they have converging performance. 

0 T 
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The effect of more rapidly varying random components of the channel (large 
) is to spread the random energy over a wider bandwidth so that, for a fixed 

variance, the mean square error decreases. For 	< 0.1 the channel can be 
regarded as time invariant and the mean square error is almost independent of 

• 



e. = E 1 E 2. (jT) (D.4) 

âe. 
- 2E Ic i (jT) ukm (jT)) 1 

km âa 
(D.5) 

APPENDIX D 

AUTOMATIC ADJUSTMENT OF TAPS 

In this Appendix it is assumed that the continuous filters in the receiver 
are predetermined but that the tap gains are to be adjusted automatically. It 
will be shown that the partial derivative of the error of the estimate of each 
transmitted message with respect to each tap gain can be obtained from measure-
ments made at the receiver output. 

Let uk (j T.)  be the signal at the kth tap of the mth delay line at t = jT: m 
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u (jT) = IN 	fœ  k 	- (k + j)T] w
n 	dt. km 	n=1 	mn -co 

Then, from (10), we have: 

(D.1) 

Now let 

0 	= 	M1Z 	au(jT). ji 	k m=1 km km 

c i (iT) = 6.. - C... 31. 

(D.2) 

(D.3) 

Assuming that the receiver makes no errors, Ei (jT) can be obtained from the 

receiver output as shown in Figure 6. Experience has shown that an adaptive 
algorithm based on this assumption will not be seriously affected provided the 
error rate is better than one in ten. Now the mean square error 

is independent of j because of the stationariness of the message sequence and 
the channel. Substituting in (D.4) from (D.2) and (D.3) and differentiating 

with respect to a i  gives 
km 

which is again independent of j for the same reasons as for (D.4). An approxi- 

mation to âe./âa i  can be obtained by measuring a time average of the form 
1 km 

- 	2 ÎJ 
ei  = -7 ._ E. UT) u (jT) 3-1 a. 	km 

(D.6) 

and measurements of this type can be used to increment or decrement the taps. 








