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STABIL ITY 	OF 	A 	DUAL 	SPIN 

SATELLITE 	WITH 	TWO 	DAMPERS 

IN 	CIRCULAR 	ORBIT 

by 

F.R. Vigneron 

ABSTRACT 

The motion of a dual spin satellite 
in circular orbit is studied to determine 
the effect of gravitational torques and 
damping when the spin vector is approx-
imately normal to the orbit plane. Sta-
bility results are assessed by the Floquet 
method for selected cases to show that 
gravitational torques are important when 
spin rates are low. Solutions are obtained 
analytically for high spin cases using the 
method of averaging to demonstrate the 
effect of gravitational torque and damping 
on both rotor and despun platform. For the 
high spin cases, stability criteria are 
identical with criteria previously derived 
for a freely spinning untorqued dual spin 
satellite. 

1. INTRODUCTION 

The mechanics of dual spin satellites has received a great deal of 
attention in the recent literature because of the immediate application to 
spin stabilized, communications satellites in synchronous orbit. A satellite 
composed of a rotor, a platform and one or more dampers is the configuration 
usually studied because it has the 'important features found in live applica-
tions. Extensive study of the motion of this configuration in 'free space' 
conditions (i.e., when all external torques are absent) has resulted in 
valuable insight regarding the role of the rotor and dampers on platform 
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stability and pointing (much of the progress is documented 1-7 ). 

For the study of satellite stability in orbit, it would seem important 
to consider gravity torques (in addition to flexibility and damping), as it 
is not obvious at first sight (at least to this writer), that they may be 
ignored. For example, one notes that in studies of stability of spinning 
symmetric completely rigid bodies, the effect of gravity profoundly alters 
the 'maximum moment of inertial rule' obtained for free space conditions 8-12. 
Also 'resonance lines' of parametric excitation arise as a result of gravity 

4 torques 13 , 1 . 

Equilibrium and stability studies of dual spin satellites in synchronous 
orbit accounting for gravity torques have been published 11-21. In most cases 
it was assumed that damping was absent or was not included explicitly. The 
equivalence of the dual and single-body problems has been established 15,20,21 

and this enables one to draw on many of the results established for single 
rigid bodies. In recent work resonance bands of parametric excitation are 
also explored for completely rigid dual spin satellites 20 ' 21 . 

In this report a dual spin satellite composed of a platform, a rotor, 
a platform damper, and a rotor damper will be studied from a slightly 
different viewpoint with intent to determine how gravity torques and damping 
influence the motion when the spin vector is approximately normal to the orbit 
plane. The motion equations will be linearized at the outset and hence 
conclusions drawn concerning stability will refer to 'infinitesimal stability'. 
Stability will be assessed by application of Floquet theory for some cases. 
The equations will be solved by the Method of Averaging of references 21 - 24 
for the 'high spin' case, and analytical stability criteria will be obtained. 

2. EQUATIONS OF MOTION 

Consider a dual-spin satellite composed of a platform which contains a 
pendulum type damper and a rotor which contains an internal damper, as shown 
in Figure 1. The axes (0'x'y'z') are assigned to the body so that when the 
damper springs are in their unstretched state, the axis O'z' is a common 
principal axis of the two bodies (the nominal axis of rotation). The point 0' 
coincides with the mass center of the composite body and the axes O'x' and 
O'y' are principal axes fixed on the platform. In this study, it will be 
assumed that both rotor and platform are symmetric about the O'z' axis. The 
rotor rotates with respect to the platform about the O'z' axis with angle 
and the rotation rate is maintained by supplying a torque with an internal 
motor. The platform damper, which is in static equilibrium with its mass on 
the O'z' axis, is located a distance 'a' from the mass center 0', and is 
constrained to oscillate in the O'x' direction. The rotor damper consists of 
a sphere in a cavity located at 0', and is constrained to oscillate about an 
axis transverse to the rotor, as shown in Figure 1. An additional set of 
axes (Oxyz) are assigned to be parallel to the (0'x'y'z') body fixed axes, so 
that 0 coincides with the instantaneous mass center of the configuration as 
the platform damper oscillates. 
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Figure 1 

The satellite is in a circular earth orbit of radius R and orbital 
rate S-2. The satellite axes (Oxyz) are referenced to orbital axes (0 A A A ) —1 —2 
by a set of Euler angles (q), 6, 0 generated by the right hand rotation scheme, 

i) II) about A 	leading to axes (0  B1 , B2 , B) 

ii) 0 about B 	leading to axes (0
r 
Ç Ç) 

iii) (P about C3'  leading to axes (Oxyz). — 
The rotation is shown schematically in Figure 2. 
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B 

Figure 2 

Equations of motion for this satellite may be derived by application 
of momentum laws, or by variational principles. Since the development of 
motion equations for similar configurations has been reported elsewhere, 1,2,15 

 

much of the derivation will be bypassed, and equations of interest will be 
quoted directly. 	detailed development of these and other motion equations 
for satellites of interest in the Canadian Telesat program is reported in 
reference 25.) 

The equilibrium solution of interest is the one that corresponds to 
pure rotation of the satellite about axis 0 A

-3 
(and hence about (0'z')), with 

the platform pointing at the earth, i.e., 

(1) x 	y 

= constant 

where (w x  , Wy  w)  are component absolute angular velocities about the (Oxyz)  z 
axes, and X  and 13 are the linear and angular deflections of the platform and 
rotor dampers, respectively. Accordingly, the motion equations may be 
linearized in these variables. 



(6) 

(7) 

(8) 

(9) 

(10)  
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Three equations arising from application of the momentum laws for the 
total system about 0 are, 

• • • A w - maxw - maxw - I 8 sin y - I y cos y + (C - A )w w o x 	z 	z 	s 	 s 	 o 	o y z 

+ C
R
yw

y 
- (I s (3,  cos y + max) 	=0  

• - 	 • • 
A w + I 8 cos y - I 8y sin y + ma. - (C o - A

0 xz )ww - maw 2 x 0 y 	s 	 s 	 z 

	

- I i'Sw sin y - Cyw
x 

= 12 2  [(A o - C 0 )0 + max]   (3) s z 	 R  
. - 

	

C w + CRy = 0.   (4) oz  

The equation of motion for the rotor is 

CR  (wz  + y) = - cy + Tm (t) 

where cy is a friction torque in the motor bearing assembly, and Tm (t) is a 

torque supplied by the motor, and will be designed to maintain y constant in 
in this instance. 

Kinematical relations relating w , w , and w to the Euler angles and 
x y 	z  

their rates of change are, in linearized form, 

Ô = w - 4 
Y 

11)  =w x + S-20 

ci) = w
z 

- 

The equations of motion for the platform and rotor dampers are, 

m(1 - p) .;( + maeo
y 
+ maw z  wx  + 	+ UF - m(w2  + 2Q 2 )(1 - Oh( = 0  

• • 	 • 	 • 
I 8 - I yw cos y - I w sin y - I yw sin y + I w cos y 
s S  x 	 s x 	 s y 	 s y 

+ -E-2 8 + -F2 8 = 0 

where m is the mass of the platform dampers, p is the ratio of m to the total 
satellite mass, I s  is the inertia of the spherical damper, Fl  and c 2  are the 

damping constants of the dampers, and VI  and k 2  are the spring constants of 

the dampers. 

Equations (4), (5) and (8) possess a 'steady state' solution 

w = S2; y = y
o
t ; 	= 0 

(2) 

(5) 

(1 1) 
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(where 'j( 0  is a constant), when the torque Tm (t) is designed to overcome fric-

tion, to damp out relative oscillations between platform and rotor, and to make 
the platform point towards the earth (i.e., to make (I) = 0) (for example, T 	= 

. 	 m 
cy o  + T 1  sin (I) + T 2 11), where T 1  and T 2  are constants, will achieve the required 

result). 

Equation (11) may now be substituted into equations (2), (3), (6), (7), 
and (10), and the result expressed in the dimensionless form, 

W' + 	+ Ja) W - 2RV-  113' sin y -  1(3' (a  + 1) cos y = 0 
Y 

W' - 	+ Ja) W + R(U' - 	+ I8" cos y -  113'  (0, + 1) sin y 
Y 	 x  

	

+ 3A0 = 0   (13) 

	

(1 - p)U' + c 1 C 1  + 1( 1  + w + Wx  - 30 = 0   (14) 

3t 	C.
2 
	k 2 (3  - aWx cos y - W' sin y - aW sin y + W' cos y = 

X 	 Y 	 Y 
	 (15) 

	

0' = W -   (16) 
Y 

= Wx 	6 
	(17) 

where T = Sft, the primes denote differentiation with respect to T, and 

y = ŒT 

W = W /ç 	W  =w /  

	

X 	x 	Y 	Y 

= (C 0  - A 0 )/A 0  , 	J = CR/A 0  , 

	

I = I s /A 0 	 R = ma 2 /A 0 

	

c l  = -c-1 /mS2 	, c 2  = 	, 

k 1  = 	- 3(1 - p)}/m0 2  , k2  = U.2 /I s S-2 2 . 

Note that a, > 0 by definition, i.e., if a < 0 one must invert the definition 
of 'platform' and 'rotor'. 

It is found helpful to reduce the above set further by substitution of 
(16) and (17) into (12) to (15), to obtain, 

+ (A + Ja)i + (4 + Ja - 1)0' =   (18a) 

(9 ) 

(12) 
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- (A + Jet - 1)1P' + 0" + (4A + Ja) 0 = cA 2    (18b) 

(1 - p ) " + 	+ k l  = - 6" - 211)' + 40 	(19a) 

e + c 2 8' + k2 8 = a(IP' - 0) cos y + (11)" - 6') sin y 

+ a(0' + 1P) sin y - (6" + 1P') cos y, 

	 (19b) 
where 

-1 A I  = c 	{2RY + I8" sin y + I(a + 1)8' cos yl 

A 2 = E-1  {RK" 	-  113"  cos y + I(a + 1)8' sin y}. 

In equations (18) a 'small parameter', c, has been introduced (in rather an 
artificial way) as an aid to the analyses in later sections. 

3. SOLUTION OF EQUATIONS (18) WHEN THE DAMPERS ARE ABSENT 

When the dampers are absent, R = I = 0, which implies A I  = A 2  = O. Under 
these conditions, equations (18) become linear equations with constant coeffi-
cients, and may be solved in closed form. These  saine  equations have been in-
vestigated 15,21  ; however, it proves worthwhile to study them again from a 
slightly different viewpoint. 

The solution of equations (18) (when A l = A 2 = ()) iS  

= A cos p i T + B sin p i T + C cos pi  + D sin p 2 T 	(20a) 

O  =KAaiopT - KBcospT+ K2 C sin p 2T-K2D cos p 2 T 

	 (20b) 

where A, B, C, and D are arbitrary constants, K1  and K2 are given by either 
one of two expressions, 

Ki  = -(-pl +  A  + Ja)/p i (A + Ja - 1) = - p i (A + Ja - 1)/(-pl + 4A + Ja) 

i = 1, 2   (21) 

and p 2  and p 2  are the two roots of 2 
p 4  - {(A + Jot) 2  + 3P + 1} p 2 	(A + Ja)(4A + Ja) = O. 

Infinitesimal stability is determined by the sign of pl (i = 1,2), i.e., 
> 0 indicates stability, and p?.< 0 instability. The complete properties 
— 

of equation (22) in this regard may be summarized in chart form by plotting 
Ja vs A as is done in Figure 3. The chart is equivalent to Figure 3, 15 , but 
is more suitable in this analysis because it arises in a natural way from the 
equations, and the regions of instability fall within a finite region of the 
chart, namely Pal<4. 

(22) 
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4. STUDY OF STABILITY BY FLOQUET ANALYSIS 

Equations (12) to (17) may be easily rearranged into the form, 

Az' = Bz -- 
where z is an 8-dimensional column matrix 

z = {11), 0 , W 	W 	 f3'}
T 

X y 

and A and B are eight-by-eight matrix functions, periodic with period (2u/a). - 
Stability of the solutions of the equations may be determined using Floquet 
theory programmed appropriately for digital computation (an account of this 
procedure is given in several recent papers, e.g., references 6, 15). 

The method as applied to equation (23) gives some meaningful and inter-
esting results. It is found convenient to retain the background grid of 
Figure 3 for displaying them, denoting a stable point by a '0' and an unstable 
point by an 'X'. 

Stability was assessed first for check cases with R and I set equal to 
zero. Agreement with the chart of Figure 3 was found. 

The sequence of Figures 3, 4, and 5, show that the effect of increasing 
the flexibility of the springs is to destroy stability. A notable exception 
is the point (0.3, -1.), where the increase of flexibility has rendered an 
unstable point stable. 

Figures 6 and 7 show the effect of introducing platform damping and rotor 
damping to the configuration of Figure 5. In both cases, the effect is seen to 
be small but destabilizing (there is not sufficient evidence to conclude that 
damping is always destabilizing, however). 

4.1 DISCUSSION 

The above results demonstrate that consistent, unambiguous results are 
obtainable by the Floquet method in this problem, at least when 1111<1°. How-
ever, in current applications (such as Telesat or Intelsat) JU is very large-- 
of the order of 2 x 10 5 . As a consequence, both very large and very small 
numbers are generated in the numerical computation process, and one becomes 
justifiably suspicious of the validity of the computed results under these 
conditions. 

As well, it is evident above that the method is not well suited for 
obtaining a concise statement regarding stability in this problem, because of 
the large number'of parameters involved. 

The above considerations motivate one to turn to other analytical methods. 
A promising choice which will be pursued is the Method of Averaging. 
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5. SOLUTION BY THE METHOD OF AVERAGING 

5.1 TRANSFORMATION OF EQUATIONS (18) and (19) 

The parameters R and I are very small in practice. Upon recognizing this, 
equations (18) and (19) may be transformed to a form suitable application of the 
formal Method of Averaging of references 22 - 24. The 'small parameter', c, 
artificially introduced in equation (18) as an aid to applying this method, is 
indeed small when R and I are small with respect to unity. 

The new variables A(T), B(T), C(T) and D(T) will be introduced to replace 
0, 1P, and their first derivatives by a transformation motivated by equation (20); 

	

= A cos p i T + B sin p i T + C cos p 2 T + D sin p 2 T   (24a) 

	

= -Ap i  sin p i T + Bp i  cos p i T - Cp 2  sin p 2 T + Dp 2  cos p 2 T   (24b) 

(24c) 0 =KAsinp 1  T-K 1 Bcosp 1 T+ K2 C sin p 2 T - K2D cos p 2 T 1  

0 1  = K 1 Ap 1 cos p i T + K i Bp, sin p i T + k 2p 2 C cos p 2 T + K2 p 2D sin p 2 T. 

	 (24d) 

Differentiation of equation (24a) and use of (24b) results in 

A' cos p i T + B' sin p i T + C I  cos p 2 T + D' sin p 2 T = 0.   (25a) 

Similarly, equation (14c) and (14d) yield, 

K A' sin p T - K B I  cos p 1  + K2 C' sin p 2 T - K2D' cos p 2 T = 0. 	 (25b) 

Substitution of equations (24) into (18) yields, 

- ID I A' sin piT 	P1 13 ' cos piT - p 2 C' sin p2T + p2D' cos p2T = EA, 

	 (25c) 

K i p I A' cos p iT + K i p I B' sin p i T + K2 p 2 C' cos p 2 T + K2 p 2D' sin p 2T = EA 2 . 

	 (25d) 

The above equations (25) may be written in matrix form, and then solved alge-
braically by Cramer's Rule for A', B', C', and D', to obtain (after a lengthy 
but straightforward calculation), 

A' {(p 2 K22  - p 1 K1 K 2 ) A i  sin p i T + (p 1 K 2  - p 2 K 1 ) A 2  cos p i T} 

B' = 

	

	{-(p 2 K2 - p I K I K2 ) A l cos p i T + (p 1 K2  - p 2 K 1 ) A 2 sin p i T} 2 

C' = -= “p 1  K 2  - p2KIK2)  A l sin p 2 T - (p1K2 - p2K1)  A 2 cos p 2 T/  1 

D' = 	 - p 2 1( 1 1(2 ) A i  cos p i T - (1) 1 1(2  - p 2 K 1 ) A 2  sin p 2 T1 

(26a) 

(26b) 

(26c) 

(26d) 
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where 	E = K I K2 	
,2) _ 	, (K2 	K2) = (, K  _ p K ) (p K - p K ). r2 	e l e 2 	1 	2 	e l 1 	2 2 	1 2 	2 1 

Combining equations (24) with equations (19) yields, after some reduction, 

+ c i Z' +  k 1  = 	- 2p 1  + 4) (- A sin p i T + B cos p l i- ) 

+  (p 	2p 2  + 4) (C sin p 2 T - D cos p 2 T) - 

	 (27a) 

3 " + c 2 I3' + k 2 13 = (p 1  - 1) (p l  + a) {- A sin (p 1  + cx)T + B cos (p l  + ot)T} 

+ (P 2  + 1) (p 2  - a) {C sin (p 2  - C)T - D cos (p 2  - c)T} 

+ «A i  sin y - A 2  cos y).   (27b) 

Equations (26) and (27) are exact, in the sense that they are derived 
from (18) and (19) with no approximations. 

5.2 THE METHOD OF AVERAGING 

At this point it becomes evident that equations (26) and (27) may be 
cast into the form 

	 (28a) 
	 (28b) 

x' =  L  X(x,y) 
Y' = Yo (x,Y) 	EY 1 (x,Y) 

where x and y are 4-dimensional column vectors 

x = {A, B, C, D} T  Y = {E, $, 	
T ,

(P} T . 

Solutions of equations (28) have been found and established by the formal 
Method of Averaging in references 22, 23, and 24. Approximate solutions valid 
to any desired degree of accuracy may be obtained. Briefly, one seeks a 
solution of the form, 

Co  x  = 	kk ▪L  L U  
n=1 
00 

Y 
= 

▪ 	

e kvk 

n=1 

(29a) 

(29b) 

where  i and 57 are the 'averaged' solutions, and u
k and  vk are time-varying 

functions. The functions 7, y  uk and v
k are obtained by solving differential 

equations constructed by formal procedures outlined in reference 22, and are 
usually easier to solve than the original equations (28). To obtain a solution 
valid to a 'first approximation', (i.e., x = 7, y = 7), one first solves 
equations (28) with E = 0, to obtain a solution 

x = constant =   (30a) 

y = (x,T)   (30b) 



(33a) 

(33b) 

(33c) 

	 (33d) 
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and then constructs the equations for 7 and y, 

T-er 
di =  l 	f im 1 — 	 EX[, (7,t)] dt 
dT 	T->00 T 

5T =  ()7,T) 

	 (31a) 

	 (31b) 

5.3 THE FIRST APPROXIMATION SOLUTION 
FOR THE HIGH SPIN CASE 

Although the solution of equations (26) and (27) by the method outlined 
above is straightforward in principle, it requires a great deal of effort. To 
make the solution tractable, the 'high spin' approximation, which implies that 
Ja is large, will be introduced. 

One may verify that the roots of equation (22) are obtained from the 
expansion, 

2 	Oa) 2 L A 2 + 3A - 1 
2 

0002  } + 0 	 P - 	[11 + 2A + ,A2 + 1i\ 2+ 1 } - {1 + 2  + 
Ja 	(Ja) 	 Ja 

When Ja is large, p l  and p 2  are then given approximately by 

p 	 /, \ 2 2 
= 1, 	p = 	

2 . 
1 	 2 

Hence, for high spin, all roots are real (indicating rigid body stability). 
For the transformation equations (24), p 1  and p 2 will be taken to be the 

positive roots 

= 1 , p 2  = Ja.   (32) 

Substitutionofthesevaluesintok.and E.-  of expressions (21) and (26) yields 

K 1 	' = - 1 	K 2  = 1, 	
= _ J22 ,  

and equations (26) become, 

A' = • {- A sin p T - A cos p T} Jet 	1 	 2 

B' = • {A cos p T - A 2 sin p T} ja, 

E r  sin  CI  = 	1-11 sin p 2 T 	A 2 cos p 2 T} Ja  

D' = {A cos p T 	A sin p 2T}. ja 	1 	 2 	2 

The Method of Averaging as outlined in the preceding section will now 
be applied directly to equations (33) and (27) (without transforming to the 
form of (28)) to obtain a 'first approximation' solution. The equations for 
the solution corresponding to equations (30) are 

A' = 0 , 	= 0 , 	C' = D' = 0 ,   (34) 



together with equations (27). Substitution of (32) and the solution to the 
above equations (namely A = const., etc.) into equation (27), leads to the 
solution <> and <ID, (i.e., the <> denote average values). 
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<> = (1), [- A sin (T — gb i ) 	B cos (T - 11) 1 )] 

+ Z 1  [C sin (JaT - ( I ) - D cos (JaT 	1 )] 

<> = Z 2  [C sin {(Ja - a)T - C 2 ) - D cos {(Ja - c)T - 2 }], 

where 

4, 1 =  3/{(k 1  - 1) 2  + c}-4  

Z 1  = {(Ja) 2  + 2Ja + 4}/{(k1 	 1 
 - J2a2)2 	(c jc02}-2 

Z 2 = (Ja + 1)(Ja - a)/[{k 2  - (ja  _ a)2 }2 	{ c2 (ja  _ 04) }2i2 

(35a) 

(35h) 

tan q5, 1  = 	- 1) 

tan C 1 = c 1 Ja/(k 1  - J 2 01 2 ) 

tan (1) 2  = C 2 (1 -I-  a)/{k 2  - (1 + (X) 2 }  

tan C 2 = c 2 	- 01)/{k 2 — (Ja - a) 2 } 

and 1 - p = 1. Substitution of equations (35) into (33) and "averaging" as 
is indicated in equation (31a) results in (after lengthy but straightforward 
calculation) the following differential equations. 

‹A'› = all <A>  - a21 <B>  

<B'> = a21 <A> + a 11 <B> 

< C '>  =  d11 < C > 	d2I <D>  

<D'>  = d21 <C > 	dll <D>  

where 

	 (36a) 

	 (36b) 

	 (36c) 

	 (36d) 

a 11 = -9c 1 R/[21Jal{(k 1  - 1) 2  + c)- ] 

a21 = 3R(k 1 	1)/[21Jc41{(k 1 - 1)2 -I- c 1 }2]  



= <> ,  13  = <ID . (38b) 

d 11 = 
c R{(JŒ) 2  1- 2Ja + 4} 2  c 2 Ia (s1 — 1) 3 (Ja 4- 1) 2  

2[(k1 _ J 22)2 	( c1J0) 2 ,  

	

j 	2J[{k2 _OE20 _ 0212 	{ c2c4 (J _1)}2] 
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R{(Ja) 2  +  2JŒ  + 4}(k 1  - J
2(12) 

d 21 -  
2j,r(u _ T2 a2)2 	 uk  _ (12(J _ 1) 2}2 	{c 

2 	
_ 1) }2] 

2  

and the < > denotes averaged value. 

Equations (36) are readily solved to give 

<A>  . ealiT  {A0  cos an T - B o  sin a21 T} 	 (37a) 

	

<B>  . ealiT  IA  sin a21 T + B 0  cos a21 T}   (37h) 0  

<C> = adilT 

	

{C cos d T — D sin d 21 T}   (37c) 0 	21 	0 

	

<D> = a
dilT  {c 0  sin d 21 T + D o  cos d 21 T}   (37d) 

In accordance with previous discussion, a first approximation solution is, 

	

A = <A> , B = <B> , C = <C> , D = <D> ,   (38a) 

ia(J - 1) 2(ja  + 1)2 {1(2 	a
2( J 

 _ 1)2} 

The above solution may be expected to be valid whenever the right hand 
sides of equations (33) are 'small', which is true when R and I are 
sufficiently small. Inaccuracy may arise when the dampers are excited at 
'near resonance' conditions, in which case X  and 13 (and consequently the right 
hand sides of (33) ) are large. 

The solution accuracy may be improved at the expense of laborious but 
straightforward calculation by invoking the theory for the higher order 
approximations, as outlined in references 22 - 24. 

5.4 COMPARISON WITH RESULTS OF OTHER WORK 

The free spin of a dual spin satellite (i.e., the problem posed herein, 
but with gravity torque absent) has been previously studied by the author 7  by 
the Method of Averaging. The results of that analysis for high spin are found 
to be embodied exactly in equations (36c) and (36d). The appearance of 
equations (36a) and (36b) thus stems from gravity torques. 

The validity of the Method of Averaging solution for this class of 
problems is demonstrated in reference 7, where analytical and numerically-
obtained solutions are compared. 
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5.5 STABILITY CRITERIA 

The analytical stability criteria deduced from equations (37) are 
a 11 <0 ' d11 <O. 

Since J, cx, c l , and c 2  are always positive, it follows that a ll , and the 

first term of d 11 are less than zero. If rotor damping is present, and if 

J < 1 d can be made greater than zero. The stability criterion then becomes 

d 11 < 0 implies stability. d 11 > 0 implies instability. 

From the above discussion, it is noted that A and B are always bounded, 
the platform damping is always stabilizing, and the rotor damping is 
stabilizing if and only if J > 1 (i.e., CR/A o  > 1), in the high spin case. 

6. DISCUSSION 

In this work the linearized equations have been dealt with, and hence 
conclusions regarding stability must be interpreted in the sense of 
'infinitesimal stability', i.e., stability is indicated, but not guaranteed. 
Results obtained by the Method of Averaging may be interpreted in the same 
light as those given by the 'exact' Floquet analysis in this regard since the 
method is well established and its validity has been demonstrated for this 
class of problems in reference 7. It is noted in Section 4 than when R, I, and 
(1/Ja) are small (as they are for dual spin communications satellites), 
inaccuracies arise in computation of Floquet exponents which jeopardize the 
validity of stability results obtained by that method. In contrast, the method 
of averaging solution may be expected to approach the true solution with 
increasing accuracy as R, I, and (1/Ja) tend to smaller values. 

The analytical results obtained herein as the first approximation 
solution of the linearized equations are exactly what one could obtain by a 
similar first approximation treatment of the corresponding non-linear equations. 
Resonance lines of parametric excitation (which are not displayed in this work, 
but are important in some instances) have invariably been constructed from 
solutions of the linearized equations 13, 14 ,  20 ,  21 and could be generated in 
a 'second approximation' treatment along the lines set out in this report (it 
is possible that they may also be generated from a somewhat revised first 
approximation treatment). This extension of the analysis remains for future 
investigation. 

(39 ) 
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7. CONCLUDING REMARKS 

The following general observations and conclusions may be made. 

The results of Sections 3 and 4 show that gravity torques are an 
important consideration when spin rates are low (i.e., when Pal < about 10). 

For high spin cases (i.e., when Ja is large), the stability criterion 
obtained are identical with those obtained by the analysis of a freely 
spinning untorqued satellite (namely J > 1 for stability). The gravity effects 
are present in the final solution, but do not contribute to stability criteria. 

The Method of Averaging as developed herein appears to be well suited 
for the class of spin problems where the damper masses are small and the spin 
is large. 
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NOMENCLATURE 

O'x'y'z' - axes fixed on principal axes of undeformed 
satellite. 

Oxyz - axes which move so that 0 is on the mass center 
at all times. 

M - total mass. 
11), e, cp, — Euler orientation angles. 

w
x
, w

y, 
wz , - angular velocity components resolved in (Oxyz). 

X - deflection of platform damper. 
- angular deflection of rotor damper. 

A o  - transverse moment of inertia of whole satellite 
when undeformed. 

C o  - spin axis moment of inertia of whole satellite 
when undeformed. 

CR - 
spin axis moment of inertia of the rotor 
(including damper). 

C - spin axis moment of inertia of the platform 
(including damper). 

I - moment of inertia of the spherical damper. 

m - mass of platform damper. 
a - distance from mass center of satellite to m. 

t, superscript dot - time. 
y - angle of turn of the rotor with respect to the 

platform. 
c - damping constant of the motor - bearing assembly. 

Tm (t) - control 
torque supplied by internal motor. 

T 1 , T 2  - torque parameters of T
m
(t). 

- c - damping constant of platform damper. 1 
c 2  - damping constant of rotor damper. 

- spring constant of platform damper. 

17 2 - spring constant of rotor damper. 

- angular frequency of circular orbit. 
y o  - angular speed of rotor with respect to the 

platform. 
T, superscript primes - Qt, dimensionless time 

W
x 

- w
x
Q, dimensionless angular rate. 

W
Y  - 

w/0, dimensionless angular rate. 
Y 

- x/a, dimensionless displacement of platform 
damper. 

- (C 0  - A 0 )/A 0  

J - CR/A 0 
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a - 

Ja - dimensionless angular momentum of rotor 
R - ma 2 /A o 
I - I s /As  

- 
C 1  - c 1 /re 

C 2  - C 2 /I g 
k 1 	{rc, - 3(1 - 01/e 2  

k -
2
/I

s 2 
A I , A 2  - perturbation function due to dampers. 

- small parameter 
A, B, C, D, - dimensionless variables, functions of T 

P9 P19 P2 - resonant frequencies 

K 1' K 2 - constants 

E - value of determinant 
A, B, z - matrix functions — 

x, y, X, Y, (x,t), uk , vk - variables used in describing Method of Averaging 
(P 2 , 	2 	phase lag angles of damper responses 

(D i , Z 1 , Z 2  - magnification factors of damper deflections 

a 119 d 119 - stability parameters 

a219 d219 - coning frequencies 








