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THE BAYESIAN RECEIVER FOR
INTERFERING DIGITAL SIGNALS.

by

R.R. Bowen

ABSTRACT B

The Bayesian decision procedure to. determine
the digits - of an infinite m-ary digit. sequence
that have been transmitted synchronously at a
high rate over a known noisy dispersive linear
communications channel is derived. This decision
procedure is optimum whenever a digit-by-digit
modulation procedure is-used and the significant
intersymbol interference at the receiver input
is between a finite number -of digits. .

This result is then applied to the case in.
which the additive noise is white and Gaussian.
The receiver that carries out the Bayesian
decision procedure is deseribed. This receiver
can be simplified if pulse amplitude modulation
is used. The receiver for binary pulse
amplitude modulated digits is described in more
detail, and its performance is compared with
that of the linear equalizer and the decision
feedback equalizer,. two suboptimum receivers.

1. INTRODUCTION

Increasing use is being made of noisy dispersive .channels. for the trans-
mission of digital information at high rates. A widely used modulation _
technique is to represent the message as a sequence of m-ary diglts, to. choose
a distinctive pulse to represent each of the m possible digits, and to
transmit a sequence of these pulses at a regular rate over. the channel..
(Examples of this type of modulation are m-ary .pulse amplitude modulatlon
and m-ary frequency-shift keying.) To use the channel eff1c1ently, the data
is sent so rapidly. that intersymbol interference between several sucqesglve-
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pulses occurs at the receiver input. The receiver must recover the original
digit sequence with a very small probability of error in the presence of both
this intersymbol interference and additive noise.

The receiver that does this in such a way that the average risk
associated with making a decision about a digit is minimized, that is, the 2
Bayesian receiver, is described in this paper, and its performance is given.
This performance is compared with that of several suboptimum receivers and
with the performance that would be possible if there were no intersymbol
interference,

Several suboptimum receivers for the task outlined above have been
described, Among these are the optimum linear receivers'™" and the decision
feedback equalizer®. A distinction must be made at this point between two
related problems: the detection of digits of an infinite sequence, and the
detection of digits of a finite sequence of specified length. If the digit
sequence is treated as a finite one the signal representing the complete
message is received before any part of that message is determined. The
optimum linear receiver for detecting such a sequence has been described by
Tuftsl, and by Aaron and Tufts?. However, the statistically optimum receiver
for detecting a finite sequence is nonlinear. It has been described by
Bowen6’7, and by Abend, Harley, Fritchman and Gumacos®.

A different but related problem is the detection of the digits of an -
infinite sequence, or a sequence that is too long for the above receivers to
be feasible. The optimum linear, time-invariant receiver for the detection
of digits of an infinite sequence was described by George® and by Berger and
Tufts*. As in the finite sequence case, however, the statistically optimum
receiver is nonlinear. Austin® has shown that the recelver that uses previous Y
deecisions to coherently cancel the intersymbol interference performs better
than the optimum linear receiver. Hancock and Quincy9 have described the
receiyer that uses a restricted amount of signal to minimize the average risk
when the digit alphabet is binary. However, it will be shown here that, in
general, the correct use of a larger ‘amount of receiver signal reduces the
average risk. Gonsalves!® has described the maximum likelihood receiver that
uses the received signal over an arbitrarily large time interval, but this
derivation is restricted to those cases in which the intersymbol interference
is between adjacent digits only, and ‘in which the digits are binary. A method
of extending these results to the detection of m-ary digits and to combat
more complex intersymbol interference was suggested, but the proposed method
is suboptimum,

In this report the optimum method of detecting digits of an infinite
sequence is extended to include digits from an m~ary alphabet, and to combat
intersymbol interference between any finite number of comnsecutive digits.
The results apply whenever a digit~by-digit modulation technique is used. The
receiver is optimum for any digit loss matrix specified by the user, and for d
any known a priori probability distribution.

A mathematical description of the problem is given in the next section., Y
The Bayesian decision procedure is then derived and discussed in Section 3,
Synthesis of the Bayesian receiver when the noise is white and Gaussian is
described in Section 4 for any digit-by-digit modulation procedure, and then




in a s1mpler form for the detection of pulse amplitude modulated d1g1ts
(This synthesis method can also be used to mechanize the Bayesian receiver .
for a finite digit- sequence. ®) The performance of the receiver for binary
pulse amplitude modulated digits is then described, and compared with that
of several suboptimum receivers.

A more detailed description of the Bayesian recelver and of its
performance can be found in the author's Ph.D, thesis’. The present report
was completed for p0551ble publication in March, 1970. Since that timeé, a
derivation of the Bayesian decision procedure, very similar to that in-
section 3 of this report, has been reported by Abend and Fritchman'®. . How- i
ever there are significant differences between the implementation discussed
in section 4 and that described in reference 16, It is shown that several |
filters, matched to portions of the received isolated pulse, should be used }
rather than the single sharp cutoff filter that is suggested in reference 16.

2. MATHEMATICAL DESCRIPTION OF PROBLEM

The message is assumed to be an infinite sequence of independent m-ary
digits from an ergodic random process. A digit is transmitted every T seconds.
B(j) represents the digit that is transmitted at time t = jT, It is one of m
d1g1ts b i=1,,2,..., m. The receiver makes the decision B(j) about B(j)

B(J) is also one of the m digits. {b }.

If B(j) = bk’ the pulse sk(T), one of m pulses of the set
{s (t); 1 =1, 2,...,m; T > 0} is. transmitted in the interval jT < t <(FH+K+L)T.
‘The one-to-one mapplng between {b i= l,2,...,m} and {si(T); i=1,2,.,.,m},

‘and the members of {si(T)}, are assumed to be known at the receiver, but mno

other assumptions are made about the modulator. Most nonlinear modulators, as
well as the linear pulse amplitude modulator, can be described by this model.
The channel is represented by a linear time-invariant filter, with known
impulse response c(t), followed by a source of additive noise n(t). It is
assumed that n(t) is an element of an ergodic random process, that its stat-
istical properties are known, and that it is statistically 1ndependent in
different baud 1ntervals kT < t < (k+1)T.

The received waveform x(t) in the interval jT < t < (G+L)T is
.x(t) = kio qi(j-—k) (t ‘—’ (J~1()T) + n(t) ...:..(l)
where . )
q, (1) = 5, (Mxc(D), i=1,2,...,m veenn(2)

In equation (1) i is a random function of the time index j-k, determined by
the message digit sequence. It is now assumed, to make the problem tractable,
that each of the m pulses qi(T) is zero outside the interval 0 < T < (K+1)T



for some finite positive integer K. (This assumption, or approximation, can
be made as accurate as desired by choosing a K sufficiently large. It will
be seen that K is a parameter of the Bayesian receiver.) Equation (1) then
becomes
K
x(t) = ¥ q.
k=0

(J k) (t - (J"'k)T) + n(t) ‘ ---..(3)

In the interval jT < t < (§+1)T, x(t) is dependent on the digits B(j),...,
B(j-K), and on n(t) In the next baud interval it is dependent on B(j+1),
vv.» B(j-K+1), and on n(t). It has been shown'! that the receiver "noiseless"
signal

A
r(t) = x(t) - n(t) voneo (4)
. : . K+1
is the output of a Markov source with m states., Properties of a Markov
random process are used to derive the Bayesian decision rule to determine
B(j). The received signal x(t) over a baud interval jT < t < (j+1)T can be
- >

represented by the vector X(j), where the components of X(j) are the
coefficients of some expansion of x(t). Equation (4) can be replaced by the
vector equation

X(3) = R(G) + N(j). e (5)

x(t) over a larger interval r,T t < r,T can be represented by the vector

ht
A

> > >
V(rl’rz) {X(rl),...,X(rz-l)}. N ()]

It is required that the receiver use.x(t) over some specified interval
r,T<t<r,T tomake a final decision about B(j). (Sequential decision rules,

in which r, and/or r_  are functions of the received signal, are not comsidered,)

2
The receiver can be described by a decision rule or function D that maps all
possible received 31gna1 vectors V(rl, ,) onto a set of m possible decisions

{bi}. The average risk taken when this decision rule is used is

—)- .
p(r,,r,,D) = z Ne )[b 1 JL{b D(v)}p[le(J) b,] av veeno (7)
i=1 5 .
v
where PB(j)[bi] = P[b ] is the a priori probability that B(j) = b,
> ~
L{bi,D(V)} = L{i,k} is the loss suffered when B(j) = b, and D(V) 4 B(j) = by

> >

and p[V]B(j) = bi] is the probability density function of V(r,,r,), given
p's

that B(j) = bi' The decision rule D(V) that minimizes (7) is the Bayesian

decision rule, and the device that carries out that decision rule, or its
equivalent, is the Bayesian receiver., The decision rule is derived in the
next section. The receiver is allowed to observe x(t) over the interval




-0 < .t < (JHKAMH1)T before making the decision 'B(j): M 1s any non-negative

integer, and becomes a parameter of the Bayesian recelver.

3. THE BAYESIAN DECISION PROCEDURE

. N }
The decision procedure D(V) that minimizes p is derived here in a form
that can be mechanized with a reallzable fixed-sized machine. At time

= (j+KHM+1)T the receiver must use V(—w, J+K+M+1) to make the dec1sion B(J)
If the recelver were to make the observatlon V(—w, J+K+M+1) and use a dec181on

rule such that D(V) ‘the risk taken in making this decision would be

k’

L{i,k}p[g(—W,j+K+M+1)IB(j),= b, 1P[b,]

_i=1 : ’
Tj(k) = — —" A ¢:))

N
p [V (=0, J+KAM+1) |B(]) = b, 1P[b,]

YR

L

.t ™8

i
(There is such a risk TJ(Q) associated with making each of the dec1sions
B(J) 2, %= 1, 2,...,m ) Blackwell and Girshick (12, pp. 175-176) have shown
that (7) is m1n1m1zed when B(J) = k if Tj(k) is the smallest risk of the set
{T (8); & = 1,2,...,m}, Thus the Bayesian receiver must determine these m
a posterlori risks, or m terms equlvalent to them, each time 1t makes a

~decision.

The denominator of (8) is independent of k, and so T, (k) can be
replaced by ‘ J

A W ,
vy(k) = 3 L{l,k}p[ (=0, J+K+M+1)|B(J) b, ]P[b ] ceees (9)
i=1 - .

The a priori probabilities {P[b ]} are known, and the losses {L{i, k}} are
specified by the communlcatlon llnk user, and so the dec181on problem becomes
that of calculating the m probability demsity values p[V(—m, 3+K+M+1)|B(J) = b ],

i= 1,2,...,m. Calculatlon of these quantities can be simplified by using the
fact that the "noiseless'" received signal in any one baud interval

AT < t < (&+1)T is determined by the (Kt+l1) digits B(2),...,B(8-K), and in the
next baud interval by the digits B(&+l),...,B(2-K+1). Thus r(t) may be thought

of as coming from one of mK'+l Markov states A(R), where

A & s, 30D, .LLBERY L (10)




The occurrences of these states are, of course, mutually exclusive events,
and one must occur, Sso

p[V(=o, J+KAE1) |BG) = b, ]

m(K—l—l)
-
=3 p[V (=2, JHRAMH1) [A(GHK) = a ] *P[A(3+K) = allB(j) = b,]
2=1
ll'll(ll)
Thus the problem of determining the probability density values
R ,
p[V (-, j+K+M+1)]B(j) = bi] can be made one of calculating the terms
->
p[V (~, j+K+M+1)|A(j+K) = 82]’ 2 = 1,2,...,mK+l. Because A(j+K) is a Markov
state, this calculation can be made easier by factoring
>
pLV (-, j+K+M+l)|A(j+K) = ag] into the two terms
- ->
pLV(-e, JHKH1) [AGGHR) = a,]+p[V(I+RHL, JHRAERD) [AGHK) = a ] .....(12)

Neither of these factors can be calculated directly. However, each pf them
can be further expanded to a form that can be calculated, as shown in
Appendix A,

The first term can be expanded in the following way:

pIV(-0, J+H1)[AGHK) = a,]

o (L) .
= p[X(G+K) |[A(G+K) = 32]0{ T P[A(J4K) = aglA(j+K~l) =3 ]
n=1 n
p[3(~m,j+K)lA(j+K—1) = an]'P[A(j+K~l) = an]} (....(13)

This expansion is over all the possible states that could occur in the
interval (j+K-1)T < t < (j+K)T. It is done so that the term

L]
o)

P[XGHK) |AGHK) = a(]

> -
= RXGHO - By e (16)

. ->
can be isolated, (R, is the vector representation of the noiseless received

L
signal when A(j+K) = 32') This term, or a term proportional to it, can be

determined directly from the input waveform x(t) and knowledge of the
statistical properties of the additive noise.




v

.that A(G+K) =

The terms P[A(j+K) = 21A(J+K_l) a ] and P[A(G+K-1) = a ] depend
only on the digit a priori probabllltles {P[b 1} and the method of indexing
the Markov states, The terms p[V(—w,J+K)|A(J+Kr1) = an] are the same as the

term p[V(—w j+K+1)|A(J+K) = a except for a shift in the timing index.

o
Moreover, these terms are used to determine B(j 1), and so a recursive
detection algorlthm can be used, enabling one to use the received signal over
the infinite time interval -« < t < (j+K+1)T in an optimum way with a finite
receiver of fixed size.

The other term of equation (12) can be expanded in a similar way. To do
this, let us define a digit sequencé

C (j+K+1, J+K+M+1) {B(J+K+M),...,B(J+K+1)} ? vee.. (15)

There are mM such sequences. A(j+K) and C(j+K+1, j+KiM+l) specify the
noiseless received signal r(t) in the interval (J+K+1)T < t < (J+K+M+1)T Thus

->
p[V(E+RHL, JHRRED) [AGHK) = a)]
. M .
= % { T p[XGHH) [A(G+HR+) = a_]IP[C(J+RHL, JHRAED) = c,]
i=1 k=1

veena (16)

where the condition that A(j+Kt+k) = a is consistent with the conditions
a, and that C(J+K+l, JHRMHD) =

Thus both terms in equation (12) can be evaluated from terms of the
form p[g(j+K+k)|A(j+K+k) = a ] and from the a priori probabilities of the
'dlgits and digit sequences, Equatlons (13) and (16), which show this, are
derlved in Appendix A.

The Bayesian decision procedure to use x(t) over the interval
~0 < t < (jHKHMH1)T to determine B(j), then, is to:

"1. Determine the mK+1 terms p[X(j+K+M)]A(j+K+M) = ai], i=1,2,.0., .
‘mK+1, from x(t) in the last interval (F+KR)T SJt 5_(j+K+M¥1)T;
(Similar quantities that were determined in the previous M baud

intervals are also used, but they are available from evaluation of

B(j_l)s B(j—Z),..., B(j_M)-)

o . S
2. Calculate the o terns {p[V (=, FH+R+1)|A(I+K) = an]} from the




.
mK+l terms {p[V(-o, j+K)]A(j+K—1) = ak]} and the mK+l terms

-
{p[X(j+K)[A(j+K) = an]}, as shown in equation (13).

N
3. Calculate the niHL terms {p[V (-, j+KHM+1)|A(G+K) = an]} from the

resulﬁs of Step 2 and the MmK+1 terms

K+1

-5
{p[X (F+K+K) |A (JHKAK) = als 4= 1,2,..0m 5 k=1,2,...,1},

-5
4. Calculate the m probabilities {p[V(-e, j+KHH+1)|B(j) = bi]} from
the results of Step 3 and equation (11).

5. Calculate the m a posteriori risks T(k), or Y(k), from the results
of Step 4 and equation (9).

6. Set B(j) equal to the digit with the smallest a posteriori risk,

In the next baud interval, (G+KRM+1)T < t < (j+KM+2)T, the above six
steps are repeated with incremented time indices to determine B(j+1). Thus
the sequence {B(j)} is detected sequentially with an algorithm that uses x(t)
from t > ~© to (K+M+1)T seconds after it i1s sent and MT seconds after the
waveform representing that digit is received. No other algorithm could use
the same signal to determine B(j) with a lower average risk.

4. THE BAYESIAN RECEIVER

The Bayesian receiver, the device that carries out the above algorithm,
is realizable and has a fixed finite size., The first part of this receiver is
>
N + R
used to determine the mK+l terms p[X(j+K+M)]A(j+K+M) = ai], i= l,2,...,mK 1
This part of the receiver is very dependent on the detailed characteristics
of the channel, i.e,, on the shape of the pulses {qi(T)} and on the statistilcal

properties of the additive noise. The second part of the receiver uses these
quantities to estimate B(j) as specified in Steps 2 to 6 of the above algorithm,
It is specified by the parameters m, K, and M, the losses L{i,k}, and the

digit a priori probabilities P[bi]’ i=1,2,...,m, but is independent of the

detailed characteristics of the channel, Note that the first part of this
recelver is the same as the first part of the Bayesian receiver for a finite

>
65758511 That receiver determines the NmK+1 terms {p[X(i)]A(i) = aj],

i=1,2,,..,N; j = 1,2,...,mK+1}, where N is the length of the sequence,

and then calculates the(sequence {B(3)} with a different but similar algorithm,

digit sequence

Special purpose digital computer techniques can be used to synthesize

the second part of the receiver. A memory with at least (M+3)mK+1 data

locations is required, and the amount of calculation required to determine




(RHEEL)

"“a digit is proportional to m (This contrasts with an amount:-

proportional to m2K+l when x(t) in the restrlcted interval jT <t < (J+K+1)T

is used to determine B(j), as explained in B(j). ®) This calculation must either
be done in one baud interval or be divided into sequentlal steps that require

a baud interval or less each, because a new estimate B(J) must be made every
T seconds.. If the. .algorithm is divided into N such portions, the final
decision about a dlglt is made. (K+M+N+1)T seconds after transmlssion of . the
signal representing that digit is started,

The first part of the receiver cannot be described in detail until the
channel and the modulator are specified explicitly. It determines the quantities
> > A

{pE[X(j) - Ri]’ i= 1,...,mK+1}, and so its form depends on the statistical
characteristics of the noise. The example examined here is that in which the
noise.is a sample of a white Gaussian process with an autocorrelation

function N _§(t). The first part of the receiver is described for any modulation
" procedure, and then is simplified for the case in which pulse amplitude
modulation is used. Finally, the complete receiver for binary pulse amplitude
modulation 1s specified for the case in which minimum probablllty of diglt
error is the performance criterion. :

4.1 Bayesian Receiver when the Additive Noise is Gaussian
. . > > :
In this case pﬁ[x(k) - Ri] can be written in the form

SL/;_ L eXP{"‘%‘ X (k) - ﬁi)’ ¢n~1 X (k) - ﬁi)} cenes (17)
(2ﬂ) |¢n|'
< exp {if(k) ¢n—l Ki - %—ﬁi” ¢n—1 Ri}
= L ' (t+kT (t)d L ' 2 ()de}
= exp {N x (t+k )ri t - 2N ri t
o} Q | ° 4
(T E,
= exp %g { J x(t+kT)ri(t)dt - —%} é zy (k) _ fﬂ"'(;s)

where ¢n is the correlation matrix of the components of ﬁ,z is the number of
> > . C > T
terms in N, and X~ is the transpose of X. The factors in (17) that are

K+1
independent of the state index i can be ignored, because all m = such terms
have the same factors, and so their omission multlplles each a posteriori

risk f (j) by the same factor, and so cannot change B(J) i is the known
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energy in the pulse ri(T) over the interval 0 < t < T, zi(k) can be determined

by processing the input x(t) with the nonlinear circuit shown in Figure 1,

Ei

2N,
' FILTER WITH A aPLEn AT P
x(ha —»| IMPULSE RESPONSE —p| SAMPLER »| NONLINEARITY | | . (1)
hi(7) + t=(k+ 1) T y=e '
i

Fig. 1, Nonlinear Circuit for ithMarkov State

The filter impulse response hi(T) is

- < T <
hi(T) ri(T ) , 0<T <T

=0 , otherwige eers. (19)

that is, the filter is "matched" to ri(T). The Bayesian decision procedure
specifies that the weighted sum of mKterms such as zi(k) be evaluated, (The

weights are dependent on x(t) in other baud intervals.) This sum of
exponentials, with the input signal part of the exponents, eliminates the
possibility that there may be a linear realization of the Bayesian receiver,

The above realization, requiring mK+l matched filters and nonlinear
circuits such as that shown in Figure 1, can be simplified by utilizing the

‘fact that although there are mK+1 possible waveforms ri(T), and each is
composed of K+l baud length portions of the pulses qi(T), there are altogether
only m(K+1l) baud length pulses. Thus the filter matched to ri(T) can be made

by combining the outputs of filters matched to these baud length pulses, in
much the same way that this combining is done in the channel and modulator.
Let

fjl k(T) = qg(kT—T) , 0<T<T

]
=0 , otherwise eeees (20)
for £ =1,2,...,m and k = 1,2,..., (K+1). Then
m K+l

h,(t) = £ % ec(Q,k,i)f
t 2=1 k=1

Q,k(T) eeren (21)

where ¢(2,k,1) is unity when A(j) = ay is such that B(j+l-k) = bg’ and is

zero otherwise. Thus only m(X+l) filters are necessary, rather than mK+1

filters.

"




The nonlinear circuit shown in Figure 2 utilizes:the above relationship
to determine the mK+1 terms {zn(j)} from x(t) over the interval jT < t < (j+1)T.

The output of the m(K+l) filters is sampled at time (j+1)T. These samples are
then multiplied by the appropriate term c(%,k,n), the products are summed,
the blas -E /2N is added, and the sum is passed through the nonlinear memory-

less device with an input—output relationship y e®, The output of this .o
circuit is z Gy, T , : : o o

! ! ST S

fl'l(r) 'l’z(l’) fI,KH(') f2'|(r) #3 K41(¥)

<L
M

SAMPLER SAMPLER SAMPLER 1 SAMPLER SAMPLER

cli,l,n) c(1,2,n) c(l'.K+I,n) - cl2,1,n) c(m K+1,n)

-

)
™
=

N X

’I( ‘

NONLINEARITY
y=e*

Z,(K)
Fig. 2., Alternate form of Bayesian Receiver,

'
17 7
4
7

[4
!

2N, .

The outputs~{z (3)} could be obtained with mK+1 parallel circuits, or

sequentially with the circuit shown in Figure 2, -or in some series-parallel
combination. Or, if the baud interval T is sufficiently long, the m(K+l)
filter outputs could be sampled at t = (j*+1)T and these samples processed in
a general purpose digital computer. ‘ ' ' .

4.2 Bayesian Recelver for Pulse Amplitude Modu1ated Digits when the
Additive N01se is Gauss1an
. When pulse amplitude modulatioh is used thg transmitted pulses are

si(t—jT) =,bi_s(t—jT),‘ i=1,2,...,m, veee.(22)

and so the received isolated pulses are

qi(t—jT) = -f S(t-JT)iC(T) b q(t-3jT) eeeea (23)
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The receiver filter impulse responses {f, . (T)} become

2,k

fSL,k(T) = b, q(kT-1t) , 0<TX<LT .....(24)

=0 , otherwise,

There are only (K+1) separate impulse responses, rather than m(K+1) in the
more . general case, Let us define a set of impulse responses {u (1)
k =1,2,...,K+1} by the relation

w (1) = q(kT-T) , 0<TZLT
= ( , otherwise,. veraa(25)
Then
K+1
h (1) = ] d(k,n)u, (1) ceeea(26)
k=1

where d(k,n) is equal to the value of B(j+1-k) when A(j) = a . A circuit that
can be used to determine zn(j) in the P.,A.M. case 1s shown in Figure 3. The
outputs of the K+l filters at the sampling time t = (j+1)T can either be used
in mK+l ponlinear memoryless clrcuits to determine zn(j), n= l,2,...,mK+l or
they can be used to determine the zn(j) sequentially by supplying the
appropriate values of the weights d(k,n) and the blases —En/ZNO, as in the

more general case.

-1
% (1) o—{N N ( f

P i ! }
u(r) u,lr) uklt) Uy, ()
SAMPLER SAMPLER SAMPLER SAMPLER
d(1,n)—» d(2,n) d(K,n) d(K+1,n)
£ f—
3 — En_
(¢ 2N,
) 7
NONLINEARITY
y=e"

Zp (k)
Fig. 3. Alternate form of Bayesian Receiver for Amplitude Mpdulated Digits

o
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4.3 Receiver that Minimizés the Digit Error Probability of Binary Pulse
Amplitude Modulated Digits when the Additive Noise is Gaussian

In the above two examples, circuits that could be used to evaluate terms
proportional to p[X(j)lA(j) = an] were described. It was assumed that these

values would be used in a special purpose computer. to carry out the decision
algorithm that was described in Section ‘3. A more specific example is considered
here, in which the message is a sequence of independent binary digits that are
either +1 or -1 with equal probability, and the transmitted pulses are either
either +s(T) or —S(T) As in the previous examples, the additive noise is
assumed to be white and Gaussian. In this example the receiver is to minimize
the digit error probability. This implies that

1, i#k

I

L{i,k}
=0 , i=k e (27)

E ’ > ' .
If M is set equal to zero, i.e., V(=©, j+K+1) is used to determine B(j), then
it is sufficient for the receiver to calculate a quantity proportional to

2(K+l)
> .
AG) = ) b,z (FHK) P[AGGHK) = a |V (==, +K) ] el (28)
n=1
where A(j+K) = a_ is such that B(j) = 1, and then to set B(j) = +1 if

A(J) > 0 and —l if A(J) < 0. The receiver is shown in Flgure 4, (Control.

""“‘[} ~ Sl }
[ uir) uz(r) Uy(r) Uy 4 (¥)
|sAMm£Rl ISAMHER' |§AMH£RI |§AMM£R|

c(l.n)-é c(a.ni—é C(K.n)»é c(xu.m—-%
7

n
[*— 2N,
7 I
Y.
: Yc-P[A(h.K).anlv(_.,’.j+K+|)]
NON LINEARITY ACCUMULATOR -

LU LS CLIPPER A

yre 2K 1ERMs |

STATE PROBABILITY C(K+Lm

UP-DATE CIRCUIT

PlAU+K) = ap | V (-0, j+K]]

"Fig._4 Bayesian Receiver for Binary Pque»AmpZitude Modulated Digitsy M = 0.

01rcu1try that must feed the correct terms to the multlpllers so that each
K+l
of the’ 2 Markov ‘states is con51dered is not shown.) The State.probablllty

up—date" block converts the 2 kel terms
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2 (JHOPIAGH) = a [V(-w, 34K)]
= C°P[A(j+K) = an|$(-w, §4R+1) ]

that were used to determine B(j) to the a priori probabilities

PIA(§+K+1) = ailg(—w, JHR+1) ]

=%y om0 e (GHOPIAGH) = a_|V(-, 34K)] veer.(29)

n=1

to be used to determine B(j+1). The weighting factors m(i,n) are
m(i,n) = C™leP[A(j+K+1) = aiIA(j+K) = a]
1 .1
='2—C OrO 00000(30)

where

c= ) z_(3+K) *P[A(J+K) = an|$(—w, 3HK) 1 cee..(31)

(This factor C arises because the factors that were independent of the state
index were eliminated in equation (18). The performance of the receiver is
independent of the value of C that is used, except that if no normalization
were done the receiver would saturate or overflow after a few digits were
processed.)

If M> 0, i.e., if it is decided to use x(t) also in the interval
(JHKH1)T < t < (jHK+M+1I)T to determine B(j), then the receiver must be
modified after the exponential circuit. The terms {zn(j+K+i); n = 1,2,...,2K+1;
i=0,1,...,M} must be stored in a buffer memory that is up-dated in each
baud interval. The a priori probability calculation is done in the same way
as when M = 0, In addition, the terms {z (j+K+1); n=1,2 ...,2K+1 i=1,
2,...,M }are used to calculate 2K SE terms proportional to p[?(j+K+l,J+KﬁM+1)
'A(j+K) = a ], as shown in equation (16). These terms are multiplied by the

correspondlng value of b °z (J+K) P[A(G+K) = nW(—w, j+K)] and the resulting

2K+1 terms are summed to determlne A .

It is evident that the Bayesian receiver is quite complex, The reason
for this is that every possible combination of digits that can influence the
recelved signal at any One t1me is con51dered each time a digit estimate is

+1
made. The receiver complex1fy is proportlonal to mK for this reason, althpugh

no more than me (K+1) filters are required. As well, if M > 0 a calculation

with a complexity proportional to mM is necessary for each state, and so the

M+K+1
overall complexity of the calculation is proportional to m . Also, a
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buffer memory with at least (M+3) locations is necessary for each state, and

so the memory must have (M.-I-3)mK+1 locatidns,

This receiver is much more complex than suboptimum receivers such as
the optimum linear receiver®, or the decision feedback equalizers, that have
been proposed to do the same task, The performance of the Bayesian receiver
will be examined in the next section, and compared with the performance of
these suboptimum receivers.

5. PERFORMANCE OF THE BAYESIAN RECEIVER

In principle, the performance of the Bayesian receiver, or any other 
receiver, is given by equation (7) for any given set of digit a priori -
probabilities, losses L{i,j} , and probability density functions '

..)-
plV|B(j) = b, ], i =1,2,...,m. Unfortunately, this average risk is very

difficult to evaluate because the receiver is complex and nonlinear, and. also
because the input signal over the 1nterval —0 < t < (jHKHMH1)T is used to
determine B(j). Hancock and- Quincy® have evaluated the error probability when
independent binary digits are transmitted, when the additive noise is white
and Gaussian, and when the signal that is used is restricted to that in the
interval jT < t < (j+K+1)T. This method has been generalized to determine the
digit error probability when x(t) over the larger interval (j-1)T < t <
(4+KHH+1)T is used to determine B(j)’. However, the number of 1ntegrals that

M+
must be evaluated in this computation is proportional to m(K+L M 1), and the

dimensionality of each integral is also m(K+L+M+1). No solution is available

in closed form when L = ©, the case of interest here.

"Because of these computational difficulties, the receiver performance
was measured by simulating the transmitter, channel, and receiver on a general
purpose digital computer. The system simulated was that in which the message
digits were binary, pulse amplitude modulation was used, the noise was white
and Gaussian, and the receiver delay parameter M was 0, 1, 2, or 3. (The
Baye51an receiver for this situation is shown in Flgure 4.) Several representative
pulse shapes q(T) were used. Among these were the time-constrained pulse

q(t) =A , 0<TX<LP
= 0. , otherwise A ;T"'(32)
aqd the unconstrained pulse
q(t) = Ate™ XY, 1> 0 | e (33)

The simulation was done in such a way that the normal difficulties associated
with representing continuous signals, continuous filters, and white Gaussian
noise on a digital computer were avoided. This method is described in Appendix
B. The linear equalizer and the decision feedback equalizer were also simulated
in a similar way, as described in Appendix C, for comparison purposes.
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The performance of the Bayesian receiver when q(T) is a rectangular
pulse two baud intevvals long is shown in Figure 5. The measured error
~N

probability P[e] is shown as a function of the pulse energy to noise power
spectral density ratio

§~'= %— J q2 (1) dr. veen.(38)
(0] 00

The error function lower bound,
1
Ple] = 0.5 {1 - erf(8/24 )7} , vev..(35)

the error probability that could be achieved if there were no intersymbol

interference, is also shown. The performance of the Bayesian receiver improved
each time M was iIncreased, that is, each time more signal outside the interval
JjT < t < (J+2)T was used. At high values of E/NO there is a 0.5 dB improvement

when M is increased from 2 to 3. Note that no digit B(k) influences the signal
in both the interval jT < t < (j+2)T and also (j+4)T < t < (j+5)T, and yet a
significant improvement can be obtained by using this signal correctly. This
result verifies the conclusion reached in Section 3, that in general any
increase in the amount of signal x(t) that is used correctly will improve the
receiver performance, even though q(T) is strictly time constrained.

The performance of. other receivers in the same situation is shown in
Figure 6. The performance of the decision feedback equalizer with 13 forward
taps is very similar to that of the Bayesian receiver with M = 0, but 1.8 dB
poorer than that of the Bayesian receiver with M = 3. The performance of the
linear equalizer is much poorer in this situation. It "bottoms'" at an error
probability that 1s determined by the number of taps in the delay line. The
matched filter, the optimum linear receiver with only one tap, bottoms at an
error probability of 0.22., The 5 tap linear equalizer bottomed at an error
probability of about 8 x 10~3,

The performance of the receivers when q(T) is ATe_T;<with T=1, is
shown in Figure 7. Note that when q(T) is not time constrained the value of K
is not specified. At E/No,equal to 12.0 dB it was found that no improvement

could be achieved by increasing K beyond 6. (At higher signal-to-noise ratios
it is expected that a larger value of K should be used to take advantage of
the energy in q(T) at T > 7T.) It was also found that in this case the
Bayesian receiver with M = 0 performed as well as the ones with M > 0.

At low error probabilities the decision feedback equalizer requires
about 1.6 dB more signal strength than the Bayesian receiver to achieve the

same error probability, and the linear equalizer requires an additional 4.0 dB
of signal.
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PROBABILITY OF DIGIT ERROR

NO INTERFERENCE
LOWER BOUND

qir)=A,0< T <2T
=0,7>2T

10 l | | T T !
40 60 80 100 120 140 160
E/No, dB

Fig. 5. Performance of Bayesian Receivers with Different Delays when
q(t) is a 2-baud length rectangular pulse

The amount of "excess' signal strength required by a specific receiver
to achieve a specified error probability, that is, the amount of signal 'in
excess of that required when there is no intersymbol interference, is,: of
course, a function of the data transmission rate. The amount of excess "signal

strehgth to achieve a 1073 digit error probability when q(T) is Ate OT is
shown in Figure 8 as a function of the data transmission rate R. (R is
proportional to T~ ! for any channel. For the channel with impulse response

ATe at it was defined to be 1/aT.) As shown, the excess signal strength
required by the Bayesian receiver increases by approximately 4 dB for each
octave increase in R at high data rates. At high data rates the decision
feedback equalizer requires about 2 dB more signal strength than the Bayesian
receiver, independent of the data rate. In contrast, the linear equalizer
requires a 9 dB increase to achieve the same error probability when the rate

is doubled. Thus a substantial improvement can be obtained by using the Bayesian
or decision feedback receiver, rather than the linear equalizer, at very high
data rates.
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0.3

e
0.1 ‘\
MATCHED FILTER

§ 2| TAP LINEAR EQUALIZER
& 03—
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8 310 13+2 TAP DECISION
Q FEEDBACK EQUALIZER
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1072 BAYESIAN RECEIVER, M=3

qlr)=A,0€ < 2T O INTERFERENCE
4 =0,7>2T LOWER BOUND
3xI10 ™
-4 ‘
10 | ] | T  E—
40 60 80 100 120 140. 160

E/No ’ dB

Fig. 6. Comparison of Receiver Performances

The ‘dotted curves in Figure 8 show the performance of the Bayesian
receiver, and the decision feedback equalizer, when the data rate is increased
without increasing the size of the receiver. (Note that both receivers are
designed on the assumption that q(T) was strictly time constrained.) When
the energy in the unconsidered "tail" of the pulse becomes significant, these
receivers no longer operate effectively. However, this can be corrected in
the Bayesian receiver case by increasing K, and in the decision feedback
equalizer case by increasing the number of feedback taps.

The performance curves shown in Figures 5, 6, and 7 are all translations
of the error function curve, described by equation (35), at low error rates,
(An exception is the performance curve when the receiver bottoms.) These
performance curves can be described at low error rates by the empirical
expression




P[é] = 0.5 {1 - erf{n(R)E/ZNO}%}
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where N(R), the efficiency of the modem, is always between zero and one.
10 loglo(n(R))_1 is shown in Figure 8 for each of the three simulated

. . - . -QT
-receivers when q(T) is ATe

PROBABILITY OF DIGIT ERROR

as a function of 10 1ogldR.'

1.0—
03
| \‘MATCHED FILTER
0.1 -
ELINEAR EQUALIZER
0.3
Ol
3| NO INTERFERENCE DECISION
3xlo LOWER BOUND FEEDBACK
EQUALIZER
Io"'3_.. Q(T) = AT e-r : :
T=1.0 BAYESIAN
) RECEIVER
3x1074
lo™4 I I I I — q
20 40 60 80 100 120 140 160
E/No, dB :

Fig. 7. Comparison

of Receiver Performances
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21 q(7) = Ape™0T
!
@ T=10 l D.FE. WITH
@ 18- Ple] =107 / 8 FEEDBACK TAPS :
< |
=
2 15— ll !
& LINEAR EQUALIZER i BAYESIAN RECEIVER
e | WITH K=8
n 12~ /!,
- ,/ I .
a /
/ 1
& 9-
. \\_m__
@ 6- BAYESIAN RECEIVER
$
1 3
DECISION FEEDBACK EQUALIZER
0 T T T T 1
5 -4 -3 -2 4 0 | 2 3 4 5
10 LOG o (I/a)

Fig. 8. Comparison of Receiver Performances at Different
Data Transmission Rates

6. CONCLUSIONS

The receiver that detects a member of the sequence of m—ary digits with
minimum average risk in the presence' of both additive noise and intersymbol
interference from K adjacent digits has been described. This receiver is quite

complex, because it considers mK+1 possible digit sequences in each baud
interval. Computer simulation studies show that the performance of the receiver
is considerably better than that of the transversal equalizer, the optimum
linear receiver. A significant practical result is that the decision feedback
equalizer, a receiver that is no more complex than the transversal equalizer,
performs much better than the linear equalizer and almost as well as the
Bayesian receiver at very high data rates.
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APPENDIX A
To carry out the Bayesian decision procedure the probabilities
p[%(—w, JHRAMFL) |A(GHR) = az]; L = 1,2,,..,mKﬁl, must be evaluated. This can
be made easier by using the fact that t

p[V (-, J+KAH1)|AHK)]-P[A(IHK) ]

p[V(~w0, F4RH1), V(IHCHD, JHRHE1), A(JHK)]

i

p[V(-e0, JHRFL) |V (IHRHL, J4RAEFL), A(IHR) ]
¢ p[V(EHRFL, F+RAED) |AGGHK) P [A(I4K) ] e (37)

-—)—
However, given A(j+K), V(j+Kt+l, j+K+M+l) provides no further information
>
about V(-e«, j+K+1), and so

p[V(mo, 4KHF1)|V(I+RFL, JHRHMHD), A(GHK)]

= p[V(-o, MR+ |AGH)] ..., (38)

Equation (12) follows directly from this result.

w

Equation (38) can be expanded by considering all the mK+l possible states
A(j+K-1) in the previous interval.

PIV(-w, J+H) [AGIH)]-PIAGHO = a,]
K+1
m >
= ) [V, 14141, A(GHR) = a), A(+R=1) = a_]
n=1
K+1
m > >
= I plV(=, 34K, X(EHK), AGHK) = ay, A(I#K-1) = a_]
n=1
oy _
=} pIXGHR) [V (-, 34K), A(IHK) = a,, AGGH-1) = a ]
n=1

p[V(~», §4K)|A(§+K) = ag» AGHK-1) = a 1'P[AG#K-1) = a_|A(HK) = a)]- ‘

"PIACIHR) = a] vee..(39)
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The properties of a Markov source can be used to simplify this expression.

PIXGHO [V, 3410, AGHO = ap, AQHK-L) = a,]
= pIX(5+0) AGHO = a1 t0)
iﬁdepéndent of n;-and - | o
pIV(-o, 4K) [A(JHK) = a,, A(J+K-1) = a_]
- p[%(—W,Vj+K)|A(j+K—i) = a] | cered (A1)

because B(j+K) does not contribute to x(t) before t = (J+K)T. Equation (13)
follows immediately when (40) and (41) are used in (39).

The term p[%(j+K+1, j+K+M+l)|A(j+K) = az] can also be expanded, in this
case by considering all possible sequences C(j+K+1, J+Ki+M+1) that could be
transmitted in the interval (J+K+1)T < t < (J+K+M+I)T.

PIV(IHAT, A1) [AGH) = a,]*P[AGH) = a]
M
= Z p[%{j+K+l, FHRAMF1), A(JHK) = a)s C(j+K+1, JHKIMF1) = ci]
i=1
M
m —+ . . —+ Ky . Ky -
= ) p[XEFHKHL) ;... X(JHAN) |AGHR) = ag, C(JHRHL, JHRHMHL) = el
i=1 -
-P[C(j+K+1; JHRHM+1) = cilA(j+K) = az]-P[A(j+K) = az] . (42)
Since the digits {B(j)} are statistically independent,
P[C(IHR+L, jHRMH+1) = ci]A(j+K) = a)]
= P[C(jH+K+1, FHKAM+1) = ci] veeea (43)

Also, given A(j+K) and C(j+K+1, F+K+M+1), or {B(R); & = j,...,J+K+M+1}, the
knowledge about any one member of the sequence {%(j+K+k); k=1,2,...,M} is

not improved by knowledge of the other members. Thus
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+. > '
PIXIHRAL) oo , XGHA) |A(GHR) = a,, C(j+R+1, JHRAMEL) = ¢

2? i]

M | ,
= T p[X(HRH) |A(IHRHE) = 2, oo (44)

k=1 ‘
where A(j+K+k) = a is the digits {B(j+k),...,B(j+k+K)} when A(j+K) = a, and .
C(j+K+1, j+R+MFL) = c;+ Bquation (16) is obtained by substituting (44) and
(43) into (42). :
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APPENDIX B

- The Baye31an recelver may- be thought of as consisting of two partsvu
~ The flrst part fillters the input signal-x(t) in (K+1) parallel fllters
{u (T) q(iT-1); 1 = O 1 LK}, and produces K+1 .samples

(1 k) N"é J x(T+kT)q (1T+r)dT, -1 = 0,1,...,K weee (45)
. e R - - R o

at the end of each baud interval. The second part of -the receiver is a digital
computer that uses these samples {y(i,k)} to estimate the digits {B(j)}. This
part of the receiver can be simulated easily on a general purpose digital
computer, since there is no need to do real-time simulation.

Generation of the samples {y(i,k)} on a digital computer is more
difficult, because they are outputs of a continuous system. One of the problems
that must be investigated by simulation is the choice of the parameter K when
q(t) is not strictly time limited. This is done by setting q(T) equal to zero
after T = (L+1)T, where L > K. The input x(t) in the interval kT < t < (k+1)T
is then

L
x(KT+T) = ) B(k-2)q(AT+T) + n(kT+t) , 0 < T <T .....(46)
2=0

On substituting (46) into (45),

T L
y(,k) = [ q(iT+t){ ) B(k-2)q(AT+T)} dT
o} 2=0
T
+ J q(iT+T)n (kT+T)dT
(o}
- Z B(-0Q, L) + n, (k) el (A7)
=0
where
A (T
Q(i,k) = f q(iT+T)q (AT+T)dT ee...(48)
o}

The output noise samples {ni(k)} are Gaussian random variables that

are statistically independent in different baud intervals, and have correlation

" coefficients

E[ni(k)nj(k)] . NOQ(i,k) e (49)
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These samples {ni(k); i=20,...,K} are generated by first generating
K+1 independent Gaussian noise samples by the "direct method" that is described
by Muller!®, and then converting these samples to K+l properly correlated
samples with a linear transformation that was described by Marsaglia?“. With
these samples generated, the outputs {y(i,k)} can be calculated from equation
(47), and used as specified by the Bayesian algorithm. The only approximation
that is necessary in this simulation is that q(T) is zero for T > (IL+1)T. In
the tests described here, L < 23 and K < 8.

te

w
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APPENDIX C

: The transversal equalizer and.the decision feedback. equalizer were

'simulated to compare their performances with that of the Bayesian receiver.
These equalizers filter the signal x(t) with a filter matched to q(T). Let
-y(3j) equal the. output of this filter at.t = jT. The linear equalizer makes

the estimate B(j-N-L) = +1.if
- 2N

z(3) = )
i=0

y(G-i)a@@) >0 . . (50)

or -1 if z(j) < 0. Similarly, the decision feedback equalizer makes the
estimate B(j-L-M) = +1 if
L

M
Y oyG-i)e(i) - )
i=0 2=1

v(§) B(§-L-M-2) £ (2)

| v

o L (51)
or -1 if v(j) < 0.

The matched filter output y(j) is

(L+1)T
y(3) = J x((j-L-1)T+1)q(T)dT
0
2L+1
= ] BG-OE@ +a () .. (52)
k=0
where f(L+1+1i) = f(L+1-1)
(L+1)T
= f q(Tt)q(T+iT)dT
0
A . .
= ¢q(1) ; i=0,1,...,L ... (53)

The filter output noise sequence {...no(j—l),no(j),no(j+l),...} is a sequence

of Gaussian random variables with zero mean and a correlation function

¢n(iT) =N, ¢q(i) ..... (54)

This sequence can be generated from a sequence of independent Gaussian random

samples {ni(k)}. If the fourier transform of ¢q(i) is a rational function,
15

then no(j)'can be generated with a baud-rate digital filter"” that is
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described by the equation _

I N
n, () = ) d@) -+ n, (G + ] e(mn_(j-n) vee..(55)
i o)
i=0 . n=1
If @n(w) is not a rational.function, then a more closely spaced digital filter
can be used to produce an output“sequence with an arbitrarily élose correlation
function. Equations (52) and either (51) or (50) are then used to calculate

the receiver output sequence.
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