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THE 	BAYESIAN 	RECEIVER 	FOR 

INTERFERING 	DIGITAL 	SIGNALS 

by 

R.R. Bowen 

ABSTRACT 

The Bayesian decision procedure to determine 
the digits of an infinite m-ary digit sequence 
that have been transmitted synchronously at a 
high rate over a known noisy dispersive linear 
communications channel is derived. This decision 
procedure is optimum whenever a digit-by-digit 
modulation procedure is used and the significant 
intersymbol interference at the receiver input 
is between a finite number of digits. 

This result is then applied to the case in 
which the additive noise is white and Gaussian. 
The receiver that carries out the Bayesian 
decision procedure is described. This receiver 
can be simplified if pulse amplitude modulation 
is used. The receiver for binary pulse 
amplitude modulated digits is described in more 
detail, and its performance is compared with 

that of the linear equalizer and the decision 
feedback equalizer, two suboptimum receivers. 

I. INTRODUCTION 

Increasing use is being made of noisy dispersive channels for the trans-

mission of digital information at high rates. A widely used modulation 

technique is to represent the message as a sequence of m-ary digits,,to choose 

a distinctive pulse to represent each of the m possible digits, and to 

transmit a sequence of these pulses at a regular rate over,  the channel. 
(Examples of this type of modulation are m-ary,pulse amplitude modulation 
and m-ary frequency-shift keying.) To use the channel efficiently, the data 

is sent so rapidly that intersymbol interference between several successive 
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pulses occurs at the receiver input. The receiver must recover the original 
digit sequence with a very small probability of error in the presence of both 
this intersymbol interference and additive noise. 

The receiver that does this in such a way that the average risk 
associated with making a decision about a digit is minimized, that is, the 
Bayesian receiver, is described in this paper, and its performance is given. 
This performance is compared with that of several suboptimum receivers and 
with the performance that would be possible if there were no intersymbol 
interference. 

Several suboptimum receivers for the task outlined above have been 
described, Among these are the optimum linear receivers 1-4  and the decision 
feedback equalizer 5 . A distinction, must  be made at this point between two 
related problems: the detection of digits of an infinite sequence, and the 
detection of digits of a finite sequence of specified length. If the digit 
sequence is treated as a finite one the signal representing the complete 
message is received before any part of that message is determined. The 
optimum linear receiver for detecting such a sequence has been described by 
Tufts', and by Aaron and Tufts 2 . However, the statistically optimum receiver 
for detecting a finite sequence is nonlinear. It has been described by 
Boweh 5 ' 7 , and by Abend, Harley, Fritchman and Gumacos ° . 

A different but related problem is the detection of the digits of an 
infinite sequence, or a sequence that is too long for the above receivers to 
be feasible. The optimum linear, time-invariant receiver for the detection 
of digits of an infinite sequence was described by George 3  and by Berger and 
Tufts'. As in the finite sequence case, however, the statistically optimum 
receiver is nonlinear. Austin 5  has shown that the receiver that uses previous 
decisions to coherently cancel the intersymbol interference performs better 
than the optimum linear receiver. Hancock and Quincy °  have described the 
receiyer that uses a restricted amount of signal to minimize the average risk 
when the digit alphabet is binary. However, it will be shown here that, in 
general, the correct use of a larger amount of receiver signal reduces the 
average risk. Gonsalves l°  has described the maximum likelihood receiver that 
uses the received signal over an arbitrarily large time interval, but this 
derivation is restricted to those cases in which the intersymbol interference 
is between adjacent digits only, and in which the digits are binary. A method 
of extending these results to the detection of m-ary digits and to combat 
more complex intersymbol interference was suggested, but the proposed method 
is suboptimum. 

In this report the optimum method of detecting digits of an infinite 
sequence is extended to include digits from an m-ary alphabet, and to combat 
intersymbol interference between any finite number of consecutive digits. 
The results apply whenever a digit-by-digit modulation technique is used. The 
receiver is optimum for any digit loss matrix specified by the user, and for 
any known a priori probability distribution. 

A mathematical description of the problem is given in the next section. 
The Bayesian decision procedure is then derived and discussed in Section 3. 
Synthesis of the Bayesian receiver when the noise is white and Gaussian is 
described in Section 4 for any digit-by-digit modulation procedure, and then 
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in a simpler form for the detection of pulse amplitude modulated digits. 

(This synthesis method can also, be used to mechanize the Bayesian receiver 

for a finite digit sequence. 6-8 ) The performance of the receiver for binary 

pulse amplitude modulated digits is then described, and compared with thât 

of several suboptimum receivers. 

A more detailed description of the Bayesian receiver and of its 

performance can be found in the author's Ph.D. thesis 7 . The present report 

was completed for possible publication in March, 1970. Since that timé, a 

derivation of the Bayesian decision procedure, very similar to that in 

section 3 of this report, has been reported by Abend and Fritchman16 . How-

ever there are significant differences between the implementation discussed 

in section 4 and that described in reference 16. It is shown that several 

filters, matched to portions of the received isolated pulse, should be used 

rather,than the single sharp cutoff filter that is suggested in reference 16. 

2. MATHEMATICAL DESCRIPTION OF PROBLEM 

The message is assumed to be an infinite sequence of independent m-ary 

digits from an ergodic random process. A digit is transmitted every. T seconds. 

B(j) represents the digit that is . transmitted at time t = jT, It is one of m 

digits b 	i = l„2,..., m. The receiver makes the decision B(j) about B(j) 
^ 
B(j) is also one of the m digits lbi

1. 

If B(j) = b
k' 

the pulse s
k
(T), one of m pulses of the set 

{s
i
(T); i = 1,2,...,m; T > 0 }  is transmitted in the interval jT < t <(j+K+1)T. 

Theone-to-onemappingbetween1101)i landfs.(T); i = 1,2,-0111, 

and the members of { s
i
(T)}, are assumed to be known at the receiver, but no 

other assumptions are made about the modulator. Most nonlinear modulators, as 

well as the linear pulse amplitude modulator, can be described by this model. 

The channel is represented by a linear time-invariant filter, with known 

impulse response c(T), followed by a source of additive noise n(t). It is 

assumed that n(t) is an element of an ergodic random process, that its stat-

istical properties are known, and that it is statistically independent in 

different baud intervals kT < t < (k+1)T. 

The received waveform x(t) in the interval jT < t < (j+1)T is 

CO 

x(t) =q.(j-k) (t - (j-k)T) + n(t) 
i  

k=0 

where 

	 ( 1) 

q (T) = s
i 
 (T)*c(T), 	i = 1,2,...,m   (2) 

i  

In equation (1) i is a random function of the time index j-k, determined by 

the message digit sequence. It is now assumed, to make the problem tractable, 

that each of the m pulses q i
(T) is zero outside the interval 0 < T < (1(41)T ___ 
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for some finite positive integer K. (This assumption, or approximation, can 
be made as accurate as desired by choosing a K sufficiently large. It will 
be seen that K is a parameter of the Bayesian receiver.) Equation (1) then 
becomes 

x(t) = Ecli(j-k) (t 	(j-k)T) + n(t) 
k=0 

In the interval jT < t < (j+1)T, x(t) is dependent on the digits B(j),„., 
B(j-K), and on n(07 In the next baud interval it is dependent on B(j+1), 

B(j-K+1), and on n(t). It has been shownll  that the receiver "noiseless" 
signal 

r(t) = x(t) 	11(t) 

is the output of a Markov source with m
K+1 

states. Properties of a Markov 
random process are used to derive the Bayesian decision rule to determine 

B(j). The received signal x(t) over a baud interval jT < t < (j+1)T can be 
-4 

represented by the vector X(j), where the components of X(j) are the 
coefficients of some expansion of x(t). Equation (4) can be replaced by the 
vector equation 

X(j) = R(j) + N(j). 

x(t) over a larger interval ri T < t < r 2T can be represented by the vector 

A V(rr 2 ) = {X(r 	f • • , ) 	X(r 
2
-1)1.   (6) 

It is required that the receiver use x(t) over some specified interval 
rT<t<rTto makeafinal decision about B(j). (Sequential decision rules, - 2 

in which r 1  and/or r 2 are functions of the received signal, are not considered.) 

The receiver can be described by a decision rule or, function D that maps all 

possible received signal vectors V(r 1 ,r 2 ) onto a set of m possible decisions 

{b
i
} . The average risk taken when this decision rule is used is 

o(r i ,r z ,W=E13Bw rip i q,{1).0)(V)}p[VIB(j) =bi] dV 
4 	4 

i=1 
7(>-1 

where P
(i) 

 [b ] = P[b] is the a priori probability that B(j) = b 

L{b,D(V)} = L{i,k} is the loss suffered when B(j) = b and D(V) = B(j) = b
k' 

and p[VIB(j) =  b.] is the probability density function of V(r 1 ,r 2 ), given 

that B(j) = b
i

. The decision rule D(V) that minimizes (7) is the Bayesian 

decision rule, and the device that carries out that decision rule, or its 
equivalent, is the Bayesian receiver. The decision rule is derived in the 
next  section. The receiver is allowed to observe x(t) over the interval 

(3)  

(4) 

(5)  

(7) 
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A 
t <- - (j+K+M+1)T before making the decision'B(j): M is any non-negatiVe• 

integer, and becomes a parameter of the Bayesian receiver. 

3. THE BAYESIAN DECISION PROCEDURE 

The decision procedure D(V) that minimizes p is derived here in a form 
that can be mechanized with a realizable fixed-sized machine. At time 

t = (j+K+M+1)T the receiver must use V(-03, j+K+M+1) to make the decision B(j). 

If the receiver were to make the observation V(-co, j+K+M+1) and use a decision 

rule such that D(V) - b k, .the - risk taken in making this decision would be 

E L{i,k}P[V(-0°,j+K+M+1)1B(j) = bi]P[b i] 

- 
i=1  

m 
E p[V(-00,j+K+M+1)IB(j) = 

i=1 

(There is such a risk T (£) associated with making each of the decisions 

B(j) = by  L.  = 1,2,...,m.) Blackwell and Girshick (12, pp. 175-176) have shown 

that (7) is minimized when B (j ) = b
k 
if T(k) is the smallest risk of the set 

= 1,2,...,m}. Thus the Bayesian receiver must determine these m 

a posteriori risks, or m terms equivalent to them, each time it makes a 

decision. 

The denominator of (8) is independent of k, and so T (k) can be 

replaced by 	• 

A m  
y(k) - 	j+K+M+1)IB(j) = bi]P[bi] 

i= 1 

Theaprioriprobabilities{P[b.]}are known, and the losses {Lii,k}l are 
1 

specified by the communication link user, and so the decision problem becomes 
•-›- 

that of calculating the m probability density values p[V(-co, j+K+M+1)IB(i) = b i], 

i = 1,2,...,m. Calculation of these quantities can be simplified by using the 

fact that the "noiseless" received signal in any one baud interval 

< t < (Z+1)T is determined by the (K+1) digits B(L.),...,B(2.-K), and in the 

next baud interval by the digits B(2.+1),...,B(2,-K+1). Thus r(t) may be thought 

of as coming from one of m
K+1 

Markov states A(ft), where 

A 

—co < 

(8)  

(9) 

A(ft) 	{BM, BU-1),...,B(9,-K)} •   (10) 



= p±[X(j+K) 	R , 	  (14) 
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The occurrences of these states are, (:)f course, mutually exclusive events, 
and one must occur, so 

p[V(-m, j+K+M+1)IB(j) = b i] 

m (R+1) 
-4- 

p[V(-m, j+K+M+1)IA(j+K) = a x].P[A(j+K) = a IBM = bi] 
£=1 

(11) 

Thus the problem of determining the probability density values 

p {(œ, j+K+M+1)IB(j) = b i] can be made one of calculating the terms 

P[V(-', j+K71-14+ 1 )1A(j+K) = ai], £ = 1,2,...,m
K+1

. Because A(j+K) is a Markov 

state, this calculation can be made easier by factoring 
4 

p{(_œ, j+K+M+1)IA(j+K) = ai]  into the two terms 

p(_œ, j+K+1)IA(j+K) = a 2).p[V(j+K+1, j+K+M+1)IA(j+K) =  a9) 	 (12) 

Neither of .these factors can be calculated directly. However, each pf them 
can be further expanded to a form that can be calculated, as shown in 
Appendix A. 

The first term can be expanded in the following way: 

p[(-c, j+K+1)IA(j+K) =  ai]  

m (K+1) 
-4- 

= p[X(j+K)IA(j+K) = a2)-{ E 	P[A(j+K) = a2, IA(j+K-1) = an  
n=1 

p[V(-m,j+K)IA(j+K-1) = ani.P[A(j+K-1) = anD 	. 	 (13) 

This expansion is over all the possible states that could occur in the 
interval (j+K-1)T < t < (j+K)T. It is done so that the term 

p [X (j+K) I A (j+K) = au) 

can be isolated, (R is the vector representation of the noiseless received 

signal when A(j+K) 	a
£'

) This term, or a term proportional to it, can be 

determined directly from the input waveform x(t) and knowledge of the 
statistical properties of the additive noise. 
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The terms P[A(j+K) = a IA(j+K-1) = a ] and P[A(j+K-1) = a
n

] depend 

only on the digit a priori probabilities {P[b
i
]} and the method of indexing 

the Markov states, The terms p[V(-00,j+K)IA(j+K-1) = a
n
] are the same as the 

term p[V(-00, j+K+1)1A(j+K) = a i], except for a shift in the timing index. 

Moreover, these terms are used to determine B(j-1), and so a recursive 

detection algorithm can be used, enabling one to use the received signal over 

the infinite time interval -co < t < (j+K+1)T in an optimum way with a finite 
receiver of fixed size. 

The other term of equation (12) can be expanded in a similar way. To do 

this, let us define a digit sequence 

A r. C(j+K+1, j+K7F-M+1) = 113 (j+K7FM),...,B(j+K+1)} 

There are m
m 

such sequences. A(j+K) and C(j+K+1, j+K+M+1) specify the 
noiseless received signal r(t) in the interval (j+K+1)T < t < (j+K+M+1)T. Thus 

p[V(j+K+1, j+K+M+1)IA(j+K) = 

. 	M 
m m 

=E{Hp[X(j+K+k)IA(j+K+k) = anDP[C(j+K+1, j+K+M+1) = c i ] 
i=1 k=1 

(16) 

where the condition that A(j+K+k) = an  is consistent with the conditions 

that A(j+K) = a and that C(j+K+1, j+K+M+1) = c.. 

Thus both terms in equation (12) can be evaluated from terms of the 

form pIX(j+K+k)IA(j+K+k) = a
n
] and from the a priori probabilities of the 

digits and digit sequences. Equations (13) and (16), which show this, are 
derived in Appendix A. 

The Bayesian decision procedure to use x(t) over the interval 
-co < t < (j+K+M+1)T to determine B(j), then, is to: 

I.Determinethe elq termsreu+mivo lmillffl,0„...a.
]

1_ , 	= 1,2,..., 
1 

K+1 
m 	, from x(t) in the last interval (j+K+M)T < t < (j+K+M+1)T. 
(Similar quantities that were determined in the previous M baud 
intervals are also used, but they are available from evaluation of 

B(j-1), B(j-2),..., B(j-M).) 

2. Calculate the m
K+1 
 terms lp[V(-co, j+K+1)IA(j+K) = a

n
]} from the 

(15) 
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m
(+1 

terms fp[V(-°o,  j+K)IA(j+K-1) = a
k 

and the m
K+1 

terms 

Ip[X(j+K)1A(j+K) = al», as shown in equation (13). 

3. Calculate the m
K+1 

terms Ip[v(-.), j+KA-14+1)1A(j+K) = a
n

]1 from the 

results of Step 2 and the Mm
K+1 

terms 

Ip[X(j+K+k)1A(j+K+10=a.]; i = 1,2,...,m
K+1

; k = 1,2,...,MI. 

4. Calculate the m probabilities {p[V(-co, j+K+M+1)IB(j) = bill from 

the results of Step 3 and equation (11). 

5. Calculate the m a posteriori risks T(k), or y(k), from the results 
of Step 4 and equation (9). 

^ 
6. Set B(j) equal to the digit with the smallest a posteriori risk. 

In the next baud interval, (j+K+M+1)T < t < (j+K+M+2)T, the above six 
steps q.re repeated with incremented time indices to determine B(j+1). Thus 
the sequence {BM} is detected sequentially with an algorithm that uses x(t) 
from t + -co to (K+M+1)T seconds after it is sent and MT seconds after the 
waveform representing that digit is received. No other algorithm could use 
the same signal to determine B(j) with a lower average risk. 

4. THE BAYESIAN RECEIVER 

The Bayesian receiver, the device that carries out the above algorithm, 
is realizable and has a fixed finite size. The first part of this receiver is 

usedtodeterminethejl-Itermsp[X(j+K+M)1A(j+K+M)=a.],i = K+1 
i 

This part of the receiver is very dependent on the detailed characteristics 
of the channel, i.e., on the shape of the pulses {qi (T)} and on the statistical 

properties of the additive noise. The second part of the receiver uses these 
quantities to estimate B(j) as specified in Steps 2 to 6 of the above algorithm. 
It is specified by the parameters m, K, and M, the losses L1i,k1, and the 
digit a priori probabilities P[b il, i = 1,2,...,m, but is independent of the 

detailed characteristics of the channel .  Note that the first part of this 
receiver is the same as the first part of the Bayesian receiver for a finite 

digit sequence 6 ' 7 ' 8 ' 11 . That receiver determines the Nm
K+1 

terms Ip[X(i)1A(i) =  a.] , 

 = 1,2,...,N; j = 1,2,...,m
K+1

}, where N is the length of the sequence, 

and then calculates the sequence fB(i)} with a different but similar algorithm, 

Special purpose digital computer techniques can be used to synthesize 

the second part of the receiver. A memory with at least (M+3)m
K+1 

data 
locations is required, and the amount of calculation required to determine 
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à .digit is proportional to m • . . (This contrasts with. an  amount. 	. 

proportional to m
2K+1 

when  x(t)  in the  restritted interval jT <.t <' (j+K+1)T 
is used to determine B(j), as explained in B(j). 8 ) This calcuratiOn must either 
be done in one baud interval or be divided into Sequential steps that require 

a baud interval or less each, because a new estimate B(j) must be made every 
T seconds. If the,algorithm is divided into N such portions, the final 
decision about a digit is made (K+M+N+1)T seconds after transmission of the 
signal representing that digit is started. 

The first part of the receiver cannot be described in detail until the 
channel and the modulator are specified explicitly. It determines the quantities 

= 1,...,m
K+1

}, and so its form depends on the statistical 

characteristics of the noise. The example examined here is that in which the 
noise is a sample of a white Gaussian process with an autocorrelation 
function N06(T). The first part of the receiver is described for any modulation 
procedure, and then is simplified for the case in which pulse amplitude 
modulation is used. Finally, the complete receiver for binary pulse amplitude 
modulation is specified for the case in which minimum probability of digit 
error is the performance criterion. 

4.1 Bayesian Receiver when the Additive Noise is Gaussian 

Inthiscasep41X(10-R.can be written in the form 
1]  

pee(k) - 

	

1 	 1-± 	 -1->- 

	

, ,, 	
r 
,2  • expt- 7  oc (k) - i'ii r* cj)n 	(X(k) - - 12. -i )} 	 (17) 

(27r) /21(1)  
n 

cc exp {:i(k) cl) - 1  R>.  . - -1--  -e-.-1 R . } 
n 	1  2i n 	1 

1 
= exp 	x(t+kT)ri (t)dt 	IT  r 2 (t)dtl 

2N No 0  
0 0  

E. 	A  
= exp 	{  J  x(t+kT)r i (t)dt - -12;} 	z. (k)   (18) 

o 

where cl)
n 

is the correlation matrix of the components of e,J, is the number of 
9, 

terms in N, and X is the transpose of X. The factors in (17) that are 

independent of the state index i can be ignored, because all m
K+1 

such terms 

have the same factors, and so their omission multiplies each a posteriori 

riskTi Mbythesamefactor,andsocannotchangeBM.E.is the known 
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t.(k+I)T 

NONLNEAMTY 
y . e x 4-0Zi(k) 1--111.4 

FILTER WITH 

IMPULSE RESPONSE 

hi(r) 

't (t)  

10 

energy in the pulse r
i

(T) over the interval 0 < t < T. z(k) can be determined - 

by processing the input x(t) with the nonlinear circuit shown in Figure 1. 

E 

2N. 

th. 
Fig. 1, Nonlinear Circuit for 2 Markov State 

The filter impulse response hi (T) is 

h. (T)  = r.(T-T) , O<T< T 
1 	1 

= 	otherwise 

that is, the filter is "matched" to r (T). The Bayesian decision procedure 

specifies that the weighted sum of m
K
terms such as z(k) be evaluated. (The 

weights are dependent on x(t) in other baud intervals.) This sum of 
exponentials, with the input signal part of the exponents, eliminates the 
possibility that there may be a linear realization of the Bayesian receiver. 

The above realization, requiring m
K+1 

matched filters and nonlinear 
circuits such as that shown in Figure 1, can be simplified by utilizing the 

fact that although there are m
K+1 

possible waveforms r (T), and each is 

composed of K+1 baud length portions of the pulses qi (T), there are altogether 

only m(K+1) baud length pulses. Thus the filter matched to r (T) can be made 

by combining the outputs of filters matched to these baud length pulses, in 
much the same way that this combining is done in the channel and modulator. 
Let 

f (T) = q(kT-T) , O<T< T 

= 0 	, otherwise 	(20) 

for P  = 1,2,...,m and k = 1,2,...,(K+1). Then 

(19 ) 

m K+1 
h.(T) =  Z 	c(9,,k,i)f (T) 

1 £=1 k=1 
	 (21) 

where c(2,,k,i) is unity when  A(j) = a i  is such that B(j+l-k) = by  and is 

zero otherwise. Thus only m(K+1) filters are necessary, rather than mK+1  
filters. 



NONLINEARITY 

" e 

. The nonlinear circuit shown in Figure 2 utilizes the above relationship 

to determine the m
K+1 

terms {z
n
(j)} from x(t) over the interval jT < t < (j+1)T. - 

The  output of the m(K+1) filters is sampled at time (j+1)T. These samples are 
then multiplied by the appropriate term c(R,,k,n), the products are summed, 
the bias -E

n
/2N

0 
is added, and the sum is passed through the nonlinear memory-

less device with an input-output relationship y = ex . The output of this ' 
circuit is z

n
(j). 

Z nOd 

Fig. 2, Atternate form of Bayesian Receiver. 

The outputs {z (j)} could be obtained with m
K+1 

parallel circuits, or 
n 

sequentially with the circuit shown in Figure 2, -or in some series-parallel 
combination. Or, if the baud interval T is sufficiently long, the m(K+1) 
filter outputs could be sampled at t = (j+1)T and these samples processed in 
a general purpose digital computer. 

4.2 Bayesian Receiver for Pulse Amplitude Modulated Digits when the 
Additive Noise is Gaussian 

When pulse amplitude modulation is used the transmitted pulses are 

s.(t-jT) = b s(t-jT), 	i = 1,2,...,m,   (22) 

and so the received isolated pulses are 

à 
qi (t-jT) = b i  S (t-jT)*c(T) - b i  q(t-jT) (23) 



Then 
K+1 

hn (T) = 

	

	d(k,n)uk (T) 
k=1 

	 (26) 

x(t) 

-En 

2N. 

12 

The receiver filter impulse responses {fst,k (T)} become 

f Q,k(T) = b q(kT-T) , O<T< T 

= 0 	, otherwise, 

There are only (K+1) separate impulse responses, rather than m(K+1) in the 
more general case. Let us define a set of impulse responses {uk (T); 
k = 1,2,...,K+1 }  by the relation 

uk (T) = q(k.T.-;T) , O<T< T 

= 0 	, otherwise. 	..... (25) 

(24) 

where d(k,n) is equal to the value of B(j+l-k) when A(j) = an . A circuit that 

can be used to determine  z(j) in the P.A.M. case is shown in Figure 3. The 

outputs of the K+1 filters at the sampling time t = (j+1)T can either be used 
+1 

in m
K 

  nonlinear memoryless circuits to determine z
n
(j), n = 1,2,...,m

K+1
, or 

they can be used to determine the  z(j) sequentially by supplying the 

appropriate values of the weights d(k,n) and the biases  -E/2N
, 
as in the 

more general case. 

Z(k) 

Fig. 3. Alternate form of Bayesian Receiver  for Amplitude Môdulated Digits 



where A(j+K) = an  is such that B(j) = b i , and then to set B(j) = +1 if 

Â(j) '> 0 and -1 if X(j)  <O. The receiver is shown in Figure 4. (Control 

- C.P[A(J4-K)• on I V( -0 11+Ki'l)] 

En 

ACCUMULATOR Fel 	 
CLIPPER i-----• el( 1) 

	  NON LINEARITY 
-1 	re  x 2K+I  TERMS 2K+I  TERMS 

C(41,n) 

P [A(J+K) • on I 3:1 ( -0, J+ K 

s4. 	Fig. 4. Bayesian Receiver fôr 'Binary Pulse Amplitude Modulated Digits; M =  O.  

STATE PROBABILITY 
UP-DATE CIRCUIT 

4  

SAMF'LER 

C(2,n 

SAMPLER 

C(I,n) 
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4.3 Receiver that Minimizes the Digit Error Probability of Binary Pulse 
Amplitude Modulated Digits when the Additive Noise is Gaussian 

In the above two examples, circuits that could be used to evaluate terms 

proportional to  p[3(j)A(j) = a
n

] were described. It was assumed that these 

values would be used in a special purpose computer to carry out the decision 
algorithm that was described in Section 3. A more specific example is considered 
here, in which the message is a sequence of independent binary digits that are 
either +1 or -1 with equal probability, and the transmitted pulses are either 
either +s(T) or -s(T). As in thé previous examples, the additive noise is 
assumed to be white and Gaussian. In this example the receiver is to minimize 
the digit error probability. This implies that 

L{i,k} = 1 , i 	k 

=0  , i = k   (27) 

If M is set equal to zero, i.e., V(-00, j+K+1) is used to determine B(j), then 
it is sufficient for the receiver to calculate a quantity proportional to 

2
(K+1) 

À(i) = î 	bzn
(j+K)P[A(j+K) = a

n 	
j+K)] 	(28) 

n=1 

circuitry that must feed the correct terms to the multipliers so that each 

of the 2
K+1 
 Markov states is considered is not shown.) The "state probability 

K+1 
up-date" block converts the 2 

	
terms 



2
K+1 

C = 	z (j+K).13 [A(j+K) = arA-00, j+K)] 
n=1 n  

where 

(31) 
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zn (j+K).11A(j+K) = an 0- (-09, j+K)] 

= C°P[A(j+K) = an r?i(-00, j+K+1)] 

that were used to determine B(j) to the a priori probabilities 

P[A(j+K+1) = 	j+K+1)] 

2
K+1 

m(i n).z (j+K).13 [A(j+K) = 0 
= 	

(-00, j+K)] 
/ 	' 	n 

n=1 

to be used to determine B(j+1). The weighting factors m(i,n) are 

m(i,n) = C -1 -13 [A(j+K+1) = ai lA(j+K) = an ] 

= 	C 1 	0 

(29)  

(30)  

(This factor C arises because the factors that were independent of the state 
index were eliminated in equation (18). The performance of the receiver is 
independent of the value of C that is used, except that if no normalization 
were dqne the receiver would saturate or overflow after a few digits were 
processed.) 

If M > 0, i.e., if it is decided to use x(t) also in the interval 
(j+K+1)T < t < (j+K+M+1)T to determine B(j), then the receiver must be 

modified after the exponential circuit. The terms {zn (j+K+i); n = 1,2,...,2 K+1 ; 

i = 0,1,...,M} must be stored in a buffer memory that is up-dated in each 
baud interval. The a priori probability calculation is done in the same way 

as when M = 0. In addition, the terms {z (j+K+i); n = 1,2, ... ,2K+1 ; 	= 1,  
n 

2,...,M }are used to calculate 2K+1  terms proportional to p[V(j+K+1,j+K+M+1) 

I A(j+K) =  a], as shown in equation (16). These terms are multiplied by the n 
corresponding value of b i .zn (j+K)-P[A(j+K) = an IV(-co, j+K)] and the resulting 

2
K+1 

terms are summed to determine 1(j). 

It is evident that the Bayesian receiver is quite complex, The reason 
for this is that every possible combination of digits that can influence the 
received signal at any one time is considered each time a digit estimate is 

made. The receiver complexitSr is proeortional to m
K+1 

for this reason, although 
no more than m.(K+1) filters are required. As well, if M > 0 a calculation 

with a complexity proportional to m is necessary for each state, and so the 

overall complexity of the calculation is proportional to 
mM+K+1. 

 Also, a  
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buffer Memory with at least (M+3) locations is neCessary for each state, and 

so the memory must have (14+3)m
K+1 

locations. 

This receiver is much more complex than suboptimum receivers such as 
the optimum linear receiver 3 , or the decision feedback equalizer 5 , that have 
been proposed to do the same task. The performance of the Bayesian receiver 
will be examined in the next section, and compared with the performance of 
these suboptimum receivers. 

5. PERFORMANCE OF THE BAYESIAN RECEIVER 

In principle, the performance of the Bayesian receiver, or any other 
receiver, is given by equation (7) for any given set of digit a priori 
probabilities, losses L{i,j} , and probability density functions 

P[VIB(j) = b.], i = 1,2,...,m. Unfortunately, this average risk is very 

difficult to evaluate because the receiver is complex and nonlinear, and also 
because the input signal over the interval -00 < t < (j+K+M+1)T is used to 
determine B(j). Hancock and Quincy 3  have evaluated the error probability when 
independent binary digits are transmitted, when the additive noise is white 
and Gaussian, and when the signal that is used is restricted to that in the 
interval jT < t < (j+K+1)T. This method has been generalized to determine the 
digit error probability when x(t) over the larger interval (j-L)T < t < 
(j+K+M+1)T is used to determine B(j) 7 . However, the number of inteirals that 

(K
, must be evaluated in this computation is proportional to m 

+L+M+1) 
 and the  

dimensionality of each integral is also 
m(K+L+M+1). 

 No solution is available 

•in closed form when L co, the case of interest here. 

Because of these computational difficulties, the receiver performance 
was measured by simulating the transmitter, channel, and receiver on a general 
purpose digital computer. The system simulated was that in which the message 
digits were binary, pulse amplitude modulation was used, the noise was white 
and Gaussian, and the receiver delay parameter M was 0, 1, 2, or 3. (The 
Bayesian receiver for this situation is shown in Figure 4.) Several representative 
pulse shapes q(T) were used. Among these were the time-constrained pulse 

q(T) =A ,O<T< P 

=  O.  , otherwise 	(32) 

and the unconstrained pulse 

q(T) = ATe
-04T 

, T >   ( 33) 

The simulation was done in such a way that the normal difficulties associated 

with representing continuous signals, continuous filters, and white Gaussian 

noise on a digital computer were avoided. This method is described in Appendix 

B. The linear equalizer and the decision feedback equalizer were also simulated 
in a similar way, as described in Appendix C, for comparison purposes. 



(34) 

(35)  
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The performance of the Bayesian receiver when q(T) is a rectangular 
pulse two baud intevals long is shown in Figure 5. The measured error 

probability P[E] is shown as a function of the pulse energy to noise power 
spectral density ratio 

co 

E = 1 r 

N N
j e 

dT. 

0 	0 

The error function lower bound, 

4, P[E] = 0.5 {1 - erf(E/2N ) - s , 
0 

the error probability that could be achieved if there were no intersymbol 
interference, is also shown. The performance of the Bayesian receiver improved 
each time M was increased, that is, each time more signal outside the interval 
jT < t < (j+2)T was used. At high values of E/No  there is a 0.5 dB improvement 

when M is increased from 2 to 3. Note that no digit B(k) influences the signal 
in both the interval jT < t < (j+2)T and also (j+4)T < t < (j+5)T, and yet a 
significant improvement can be obtained by using this—signal correctly. This 
result verifies the conclusion reached in Section 3, that in general any 
increase in the amount of signal x(t) that is used correctly will improve the 
receiver performance, even though q(T) is strictly time constrained. 

The performance of other receivers in the same situation is shown in 
Figure 6. The performance of the decision feedback equalizer with 13 forward 
taps is very similar to that of the Bayesian receiver with M = 0, but 1.8 dB 
poorer than that of the Bayesian receiver with M = 3. The performance of the 
linear equalizer is much poorer in this situation. It "bottoms" at an error 
probability that is determined by the number of taps in the delay line. The 
matched filter, the optimum linear receiver with only one tap, bottoms at an 
error probability of 0.22. The 5 tap linear equalizer bottomed at an error 
probability of about 8 x 10-3 . 

The performance of the receivers when q(T) is ATe
-T 
 , with T = 1, is 

shown in Figure 7. Note that when q(T) is not time constrained the value of K 
is not specified. At E/N equal to 12.0 dB it was found that no improvement 

could be achieved by increasing K beyond 6.  (At  higher signal-to-noise ratios 
it is expected that a larger value of K should be used to take advantage of 
the energy in q(T) at T > 7T.) It was also found that in this case the 
Bayesian receiver with M = 0 performed as well as the ones with M > 0. 

At low error probabilities the decision feedback equalizer requires 
about 1.6 dB more signal strength than the Bayesian receiver to achieve the 
same error probability, and the linear equalizer requires an additional 4.0 dB 
of signal. 

o 
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4.0 	6.0 	8.0 	10.0 	12.0 	14.0 
E/No, dB 

Fig. 5. Performance of Bayesian Receivers with Different Delays when 

q(T) is a 2-baud length rectangular pulse 

The amount of "excess" signal strength required by a specific receiver 

to achieve a specified error probability, that is, the amount of signal in 

excess of that required when there is no intersymbol interference, is, of 

course, a function of the data transmission rate. The amount of excess signal 

strength to achieve a 10-3  digit error probability when q(T) is ATe
-ŒT 

is 

shown in Figure 8 as a function of the data transmission rate R. (R is 
proportional to  T 1 	any channel. For the channel with impulse response 

ATe
-ŒT 

it was defined to be 1/(1T.) As shown, the excess signal strength 

required by the Bayesian receiver increases by approximately 4 dB for each 

octave increase in R at high data rates. At high data rates the decision 

feedback equalizer requires about 2 dB more signal strength than the Bayesian 

receiver, independent of the data rate. In contrast, the linear equalizer 

requires a 9 dB increase to achieve the same error probability when the rate 
is doubled. Thus a substantial improvement can be obtained by using the Bayesian 

or decision feedback receiver, rather than the linear equalizer, at very high 

data rates. 

16.0 
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\ \ 	V— BAYESIAN RECEIVER, M 
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1\-MATCHED FILTER 
21 TAP LINEAR EQUALIZER 
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FEEDBACK EQUALIZER 

o 
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o 
ci  

4.0 	6.0 	8.0 	10.0 	12.0 	14.0 	16.(5 
E/NQ , dB  

Fig. 6. Comparison of Receiver Performances 

The dotted curves in Figure 8 show the performance of the Bayesian 
receiver, and the decision feedback equalizer, when the data rate is increased 
without increasing the size of the receiver. (Note that both receivers are 
designed on the assumption that q(T) was strictly time constrained.) When 
the energy in the unconsidered "tail" of the pulse becomes significant, these 
receivers no longer operate effectively. However, this can be corrected in 
the Bayesian receiver case by increasing K, and in the decision feedback 
equalizer case by increasing the number of feedback taps. 

The performance curves shown in Figures 5, 6, and 7 are all translations 
of the error function curve, described by equation (35), at low error rates, 
(An exception is the performance curve when the receiver bottoms.) These 
performance curves can be described at low error rates by the empirical 
expression 
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13 [E] = 0.5 11 - erf{ri(R)E/2N}
1/21  

o 
	 (36) 

where n(R), the efficiency of the modem, is always between zero and one. 
10 1og 10 (n(R))° 1  is shown in Figure 8 for each of the three simulated 

receivers when q(T) is kre
-OLT 

as a function of 10 log ioR. 

Fig. 7. Comparison of Receiver Performances 
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, . 	q(r) =  Are  

T. 1.0 
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Fig. 8. Çomparison of Receiver Performances at Different 
Data Transmission Rates 

6. CONCLUSIONS 

The receiver that detects a member of the sequence of m-ary digits with 
minimum average risk in the presence of both additive noise and intersymbol 
interference from K adjacent digits has been described. This receiver is quite 

complex, because it considers m
K+1 

possible digit sequences in each baud 
interval. Computer simulation studies show that the performance of the receiver 
is considerably better than that of the transversal equalizer, the optimum 
linear receiver. A significant practical result is that the decision feedback 
equalizer, a receiver that is no more complex than the transversal equalizer, 
performs much better than the linear equalizer and almost as well as the 
Bayesian receiver at very high data rates. 
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APPENDIX A 

To carry out the Bayesian decision procedure the probabilities 

pr\/(-00, j+K+M+1)IA(j+K) = ai ]; 	= 1,2„.. ,e1-1 , must be evaluated. This çan 

be made easier by using the fact that 

priY(-co, j+K+M+1)1A(j+K)].114(j+K)1 

= p0- (-co, j+K+1), --\/(j+K+1, j+K+M+1), A(j+K)] 
o  

= p0- (-co, j+K+1)1(j+K+1, j+K+M+1), A(j+K)]. 

• pN>i(j+K+1, j+K+M+1)IA(j+K)].P[A(j+K)] 	(37) 

However, given A(j+K), -i>i(j+K+1, j+K+M+1) provides no further information 

about .k/(-02, j+K+1), and so 

prlY(-co, j+K+1)I(j+K+1, j+K+M+1), A(j+K)] 

= pr?i(-03, j+K+1)IA(j+K)] 	(38) 

Equation (12) follows directly from this result. 

Equation (38) can be expanded by considering all the mK+1  possible states 
A(j+K-1) in the previous interval. 

p[(-00, j+K+1)1A(j+K)]-11A(j+K) = at ] 

m
K+1 

= 	13 0. (-00 , j+K+1), A(j+K) = a 	A(i+K-1) = an ] 
n=1 

K+1 

= 	pr?i(-co, j+K), i(j+K), A(j+K) = at , A(j+K-1)  =a n] 
n=1 

m
K+1 

= 	p[1- (j+K)I -V(-co, j+K), A(j+K) = a
X' 

A(
j
+K-1) = a

n
]. 

n=1 

.143- (-00, j+K)IA(j+K) = at , A(j+K-1) = an]•P[A(j+K-1) = an IA(j+K) = at ]. 

.P[A(j+K) = at ]   (39) 
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The properties of a Markov source can be used to simplify this expression. 

Pli(1 -1-1()1(7',:j+K), A(j+K) = , az , A(j+K-1) = an ] 

= pr3t(j+K)1A(j+K) = a z ]   (40) 

indep'endent of n, 'and  • 

j+K)IA(j+K) = az , A(j+K-1) = an ] 

=p [(_œ,  j+K)IA(j+K-1) = an ]   (41) 

because B(j+K) does not contribute to x(t) before t = (j+K)T. Equation (13) 
follows immediately when (40) and (41) are used in (39). 

The term p0"(j+K+1, j+K+M+1)IA(j+K) = au, ]  can also be expanded, in this 

case by considering all possible sequences C(j+K+1, j+K+M+1) that could be 

transmitted in the interval (j+K+1)T < t < (j+K+M+1)T. 

pr(j+K+1, j+K+M+1)IA(j+K) = a z]•P[A(j+K) = az ] 

mM 

= 	pr\r(j+K+1, j+K+M+1), A(j+K) = a z , C(j+K+1, j+K+M+1) = ci ] 
i=1 

mM 

= 	p[1(j+K+1),...,1(j+K+M)IA(j+K) =  an, ,  C(j+K+1, j+K+M+1) = c i ]. 
i=1 	 " 

•P[C(j+K+1, j+K+M+1) = ci lA(j+K) = az].P[A(j+K) = az ] 	 (42) 

Since the digits 1B(j)1 are statistically independent, 

P[C(j+K+1, j+K+M+1) = ci lA(j+K) = az] 

= P[C(j+K+1, j+K+M+1) = ci ]   (43) 

Also, given A(j+K) and C(j+K+1, j+K+M+1), or {B(Q);  9  = j,...,j+K+M+1}, the 

knowledge about any one member of the sequence (X(j+K+k); k = 1,2,...,M1 is 

not improved by knowledge of the other members. Thus 
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13[5(i-FerFl),....1 4-K71-11)1A(j+K)= a,  C(j+K-1-1, il-K+14+1) 	ci ] 

H 14(,j 1-K71-k)14(i+K+k) 	gnI 
k=1 

where A(j-I-K74-k) = a n  is the digits fb(j+k),...03(j+k+K)} when A(ii-K) = a i  and . 

Ç(j+K+1, j+K+M-1-1) = ci . Equction (16) is obts,ined by substituting (44) and 

(43) into (42). 

(44) 



(46)  

(47)  

(48)  
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. 	, . 	- _ 	. 	. 	. 	. 
* • The Ba3iésian 'receiver- may•bp thought  of as  consisting•of tw6 parts., . 

The firat•part filters the input signal.x(t) in (K+1) parallel filters. , 
tà.(T) - = . q(iT-T) . ; i = 0,1,....,K},  and  'produces K+1..ssmplés 

• 1.• 

, rT 
y(i,k) = N-

o 
j x(T+kT)q(iT+T)dT, i = 0,1,...,K   (45) 

at the end of each baud interval. The second part of the receiver is a digital 
computer that uses these samples {y(i,k)} to estimate the digits {B(j)}. This 
part of the receiver can be simulated easily on a general purpose digital 
computer, since there is no need to do real-time simulation. 

Generation of the samples {y(i,k)} on a digital computer is more 
difficult, because they are outputs of a continuous system. One of the problems 
that must be investigated by simulation is the choice of the parameter K when 
q(T) is not strictly time limited. This is done by setting q(T) equal to zero 
after T = (L+1)T, where L > K. The input x(t) in the interval kT < t < (K+1)T 
is then 

x(kT+T) = 	B(k-£)q(£T+T) + n(kT+T) , O<T< T 
£=0 

On substituting (46) into (45), 

y(i,k) = 	q(iT+T){ 	B(k-2,)q(2,T+T)1 dT 
o  £=0 

+  J  q(iT+T)n(kT+T)dT o 

= 	B(k-£)Q(i,£) + ni (k) 
£=0 

where 

A 
Q(i,k) =f q(iT+T)q(£T+T)dT 

0 

The output noise samples {ni (k)} are Gaussian random variables that 

are statistically independent in different baud intervals, and have correlation 

coefficients 

E[ni (k)ni (k)] = N0Q(i,k)   (49) 
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These samples {n.(k); i = 0,...,K} are generated by first generating 

K+1 independent Gaussian noise samples by the "direct method" that is described 

by Muller's, and then converting these samples to K+1 properly correlated 

samples with a linear transformation that was described by Marsaglie. With 

these samples generated, the outputs {y(i,k)} can be calculated from equation 

(47), and used as specified by the Bayesian algorithm. The only approximation 

that is necessary in this simulation is that q(T) is zero for T > (L+1)T. In 

the tests described here, L < 23 and K < 8. 



' 	2N 
z(j) = 	y(j-i)a(i) > 0 

i=0 
	 (50) 

APPENDIX C 

, • • The transversal equalizer  and the  decision feedback.equalizer were 
simulated to compare their  performances  with that of the Bayesian receiver. 
These equalizers filter the signal x(t) with a filter matched to q(T). Let 
-y(j) equal the output of this filter at t = jT. The linear equalizer makes 

the estimate B(j-N-L) =  +1 if 	, 
• 
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or -1 if z(j) < 0. Similarly, the decision feedback equalizer makes the 

estimate B(j-L-M) = +1 if 

L „ 
v(j) = Y y(j-i)c(i) - Y B(j-L-M- 9)f(9) 

i=0 	£=1 

	 (51) > 

or -1 if v(j) < 0. 

The matched filter output y(j) is 

f(L+1)T 
y(j) = 	x((j-L-1)T+T)q(T)dT 

0 

2L+1 
= 	B(j-k)f(k) + n (j) 

k=0 

where 	 f(L+1+i) = f(L+1-i) 

f(L+1)T 
q(T)q(T+iT)dT 

0 

	 (52) 

A 
=1:1(i) ; 	i = 0,1,...,L   (53) 

The filter output noise sequence {...n 
0 
 (j-1),n 

 0 
 (j),n 

0
(j+1),...1 is a sequence 

of Gaussian random variables with zero mean and a correlation function 

(Pn (iT) = No  (pc, (1)   (54) 

This sequence can be generated from a sequence of independent Gaussian random 

samples {a.(k)}. If the fourier transform of (1) (i) is a rational function, 

then n 
0
(j) can be generated with a baud-rate digital filter 15  that is 
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described by the equation 

I 	N 
n 
o 
 (j) = ï d(i) • n.(j+i) + î e(n)n 

o
(j-n) 

i  
i=0 	n=1 

If
n
(w) is not a rational function, then a more closely spaced digital filter• 

can be used to produce an output sequence with an arbitrarily close correlation 

function. Equations (52) and either (51) or (50) are then used to calculate 

the receiver output sequence. 

(55) 
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