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THE 	USE 	AND 	PROPERTIES 	OF 

WINDOW 	FUNCTIONS 	IN 	SPECTRUM 	ANALYSIS 

by 

A.W.R. Gilchrist 

ABSTRACT 

This report is a handbook on spectrum windows. 
The subject is introduced by a discussion of the 
fundamentals of spectrum analysis, which shows 
how the four kinds of window arise in the practical 
estimation of spectra. The modern direct method of 
computation using sampled data and the DFT is em-
phasized, and it is shown that the effects of dis-
crete analysis on the computed spectrum can be 
described completely by the appropriate spectrum 

. window. Exact closed-form expressions are derived 
for the spectrum windows corresponding to most of 
the functions that have been proposed for use as 
data windows; the cases of continuous and discrete 
analysis are treated separately for each function. 
Some of these results are not available elsewhere. 
The characteristics of the spectrum windows are 
also presented in graphical form. 

1. INTRODUCTION 

The standard work on power-spectrum analysis (Ref. 1), which was 
published in 1959, deals almost exclusively with the indirect method, in which 
the power spectrum is obtained through the autocovariance. The autocovariance 
is computed from the signal values. The Fourier transform of a modified 
version of the autocovariance gives the estimate of the power spectrum. In 
recent years the indirect method has been almost completely superseded by the 
direct method of analysis, in which the Fourier transformation is performed 
upon the (modified) signal amplitudes themselves. The squared modulus of the 
transform gives the estimate of the power spectrum. Each of these methods 
involves modification, in the one case of the autocovariance, and in the other 
of the signal. The nature and effect of these modifications is the subject of 
this report. 

1 
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The change from the indirect to the direct technique has come about as 
a consequence of the introduction of the Fast Fourier Transform (FFT) (Ref. 2), 
an algorithm for computing the Discrete Fourier Transform (DFT) with great 
efficiency. As its name implies, the DFT is adapted to the use of sampled data 
and digital computation. The direct method in current practice is therefore a 
digital one, although either analog or digital computation could be used with 
either the direct or the indirect method. This report covers both methods of 
analysis and both types of computation, but its primary concern is with 
current practice: the direct method and digital computation. 

We now introduce some of the nomenclature of the subject, and describe 
in general terms the modifications carried out on the signal or on the auto-
covariance. If we denote either function by z(t), and its modified version by 
zmod (t), the modification can be described by a function g(t) such that 

zmod (t) = g(t) • z(t). 

This modification is called "windowing" z(t), and g(t) is the "window" function. 
The names arise from the analogy in which we consider t as a spatial coordinate, 
and z(t) as the distribution of intensity of a light source; % then, if g(t) 
represents the transparency of a window through which the source is viewed, 
zmod (t) gives the observed distribution of intensity. 

In the case of the indirect method, z(t) is the autocovariance, and 
g(t) is called the autocovariance window or the lag window.. Let the Fourier 
transforms of g(t), z(t), and zmod(t)  be denoted G(f), Z(f), and Zmod (f). 

According to the outline of the method given above, Zmod(f)  is the estimate 

of the power spectrum; from the properties of Fourier transforms we can write 

Zmod (f) = G(f) * Z(f) 

where * denotes convolution. G(f) is called the power-spectrum window corre-
sponding to the lag window g(t). It is obviously important to know how the 
choice of a particular lag window affects the spectral estimates, and con-
versely to be able to select a lag window that leads to estimates having 
desirable properties. These matters are dealt with in subsequent sections. 

When the direct method is used, z(t) represents the signal, and g(t) is 
referred to as the data window. Z(f) is the Fourier transform of the signal; 
it is also called the complex amplitude spectrum of the signal. G(f)  is the 
amplitude-spectrum window. It is shown in Section 2 that the use of a data 
window imposes a window H(f) on the power spectrum, and the relation between 
H(f) and g(t) is derived. Thus three windows are involved in power-spectrum 
analysis by the direct method, but they are not applied separately, or in 
cascade; if g(t) is regarded as basic, G(f) represents the effect of g(t) in 
the transform plane, and H(f) represents the effect of g(t) on the power 
spectrum. If the direct method is used to obtain the autocovariance, a fourth 
window comes into play: the lag window corresponding to the data window used. 
The relation of this lag window to g(t) is also given in Section 2. Again, 
the lag window is not applied as a separate operation; it arises as a conse-
quence of having applied g(t). 



3 

In Sections 3 and 4 the functions G(f) and H(f) are derived for the 
various functions g(t) that have been proposed for use as data windows or lag 
windows. In each case the characteristics are determined for both continuous 
data (and analog computation), and discrete or sampled data (and digital 
computation). 

2. FUNDAMENTALS OF SPECTRUM ANALYSIS 

In this section the important concepts of power-spectrum analysis are 
reviewed. The first subsection introduces the notion of the true autocovariance 
and the true power spectrum of a signal. To relate it to current methods of 
analysis, the power spectrum is expressed directly in terms of the signal, 
rather than indirectly through the autocovariance. For observed signals that 
are random, and, at least conceptually, of infinite duration, the true power 
spectrum cannot be determined, since infinitely long records would be required. 
Approximations that can be measured are discussed in Section 2.2, which shows 
how the various kinds of windows arise in spectrum analysis. It is shown in 
Section 2.3 that the effect of using sampled data and the DFT can be described 
by a modification of the window functions that apply to continuous data. The 
properties of the spectrum windows corresponding to specific data windows are 
examined in subsequent sections, for both the continuous and discrete cases. 

2.1 THE POWER SPECTRUM OF A SIGNAL 

Suppose that the signal x(t) is real and infinitely long, and has a 
mean value of zero. In order to define the power spectrum of x(t) we first 
consider an associated function, the autocovariance C(i), which is the average 
of the product of x(t) with a displaced version of itself: 

1 

	

C(T) = lim 	x(t) • x(t + T) dt. 

	

T->00 	0 

Equation (1) implies a further restriction on the signal: since C(T) is written 
as a function of T alone, the function defined on the right-hand side must be 
independent of the choice of origin. This condition requires that the signal 
have a kind of temporal homogeneity that is known as (wide-sense) stationarity. 

Equation (1) can be written in the alternative form: 

CO 

C(T) = lim 	y(t) y(t + T) dt , 
1 

where 

y(t) = W0(t)x(t)   (3) 

and 

(1)  

(2) 

1 ,0<t< T 
W 0 (t) = 

0 , otherwise. 
(4) 



1 S(f) = lim 	IY(01 2  
T-÷co 

r- 
L.)7(0 exp {-2Trift} dt 

CO 

-CO 

(9)  

(10)  

2 

f: x(t) exp {-2Trift} dt .1 = 1 im y, 
-+.00 

2 

(11) 
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We now introduce the Fourier transform Y(f) of the modified signal y(t), 
for which the following pair of relations hold: 

00 

Y(f) = 	y(t) exp {-2Trift} dt,   (5) 

Y(t) = Y(f) exp {2itift} df .   (6) 
-œ 

C(T) can be expressed in terms of Y(f) as follows: 

1 
C(T) = jim 	y(t)  J 	Y(f) exp {27rif(t + T)} df dt 

T-r00 L  

1 = lim y Y(f) exp {271- ifT} I 	y(t) exp {27rift} dt df 
-co 	 œ J_ T-.00  

co 

= IlM 	f 	Y(f) Y(-f) exp {2rifT} df 

= lim
1  f 	11(0 2  1 exp {2TrifT} df. 

T-)00 	_m 

Equation (7) is in the form of the relation between the autocovariance and 
the power spectrum S(f) given by the Wiener-Khinchin theorem (Ref. 3): 

C(T) = f S(f) exp {2TrifT} df   (8) 
_co 

From Eqns. (7) and (8) we obtain the formal identity: 

.1 
= lim 

T-4.00 

CO 

(7) 

Equation (11) defines the true power spectrum of the signal x(t) directly in 
terms of the signal values. Equations (8) and (11) are together equivalent to 
Eqn. (1), and give the true autocovariance of the signal. Note that neither 
S(f) nor C(T) is determinable for an observed signal, since the definitions 
imply that the observation time must be infinite. Analysis of finite records 
can yield only approximations at best, even for stationary signals. The value 
of such analysis depends upon our knowledge of the nature and quality of the 
approximation imposed by the record length and, possibly, by the method of 
analysis. We now turn to a consideration of these matters. 



2.2 PRACTICAL ESTIMATION OF THE POWER SPECTRUM 

It would appear, at first glance, that the function 
2 

5 

1 P(f) = -- 
T' 

x(t) • exp 	 dt (12) 

should provide a reasonable approximation to the power spectrum S(f), as defined 
in Eqn. (11), when the signal x(t) is stationary. This function is known as the 
periodogram. When x(t) is a random signal, P(f) provides spectrum estimates of 
notoriously poor statistical stability, however long the duration T' of the sig-
nal. The stability can be improved if the available section of the signal is 
divided into several subsections of length T and the average of the periodograms 
is used as the spectrum estimate. A more extensive class of estimates can be 
obtained if the values of x(t) on the interval [ 0,T] are given arbitrary weight-
ings--i.e., if x(t) is multiplied by a data window W

n (t). The function  W(t) is 

defined arbitrarily on the interval [0,T], and is zero outside this interval; 
the subscript n denotes the particular function chosen. We therefore take the 
following function as our approximation to the true power spectrum: 

2 

	

Sn (f) = Ave 
1- 	W (t) • x(t) • exp {-27rift} dt 

	

T 	n   (13) 

where Ave denotes the averaging of several periodograms, as described above. It 
may be considered as a statistical average over a finite ensemble, or as a finite 
time average. If the average is over the periodograms computed from K contiguous 
segments of the signal, each of length T, and the first segment starts at t = t o' 
the explicit form of Eqn. (13) is: 

K-1 
S
n (f) = 	Y 

K k=0  W
n 

{t - (t o  + kT)} • x(t) • 
I 21 

Il  

LT  
• exp {-21-rift} dt 

The effects of the weighting function will be examined later. 

It should be noted that Eqn. (13) differs in an essential way from Eqn. 
(10), even if the averaging is supposed to be over an infinite ensemble, and 
W(t) is replaced by the unit weighting function W o (t). According to Eqn. (13) 

the signal is analyzed in sections of fixed length T, while Eqn. (10) represents 
analysis of unlimited sections of the signal. 

The approximation S
n
(f) to the power spectrum corresponds to an approxi-

mation  C(T) 'to the autocovariance function: 

- 
Cn (T) = Ave 7 I 	W(t) • x(t) Wn (t + T) • x(t + T) dt. 

1 

C(T) is the Fourier transform of S
n (f). If the operation denoted by Ave were 

over an infinite ensemble (or a record of infinite duration), the right-hand 

CO 

(14) 
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side of Eqn. (14) would give the expected value of the estimator C(T), which 

is denoted by E[Cn (T)]. In this case Eqn. (14) may be written: 

E[Cn (T)] = D(T) 
	C(T),   (15) 

where C(T) is the true autocovariance function defined by Eqn. (1), and 
c.c 

D(i) = — I 	W (t) • Wn (t + T) dt. 1 
T 	n 

-CO 

Dn (T) is the autocovariance or lag window corresponding to the data window 

Wn (t). 

The same assumption (that Ave denotes averaging over an infinite ensemble) 
applied to Eqn. (13) gives the expected value of S n (f). The result 

is: 

E[Sn
(f)] = V (f) * S(f),   (17) 

where S(f) is the true power spectrum,  V (f) is the Fourier transform of D(T) 

and * denotes convolution. Vn (f) can be expressed as: 

V(f) = 	1Wn (f)1 2 . 

n
(f) is the amplitude-spectrum window corresponding to the data window  

i.e., the Fourier transform of Wn
(t). The function u(f) is the power-spectrum 

window corresponding to the data window Wn
(t). 

Equation (17) shows that the estimates of the power spectrum given by 
Sn (f) have an expected value equal to the convolution of the true power spectrum 

with the window function Vn (f). The scatter of the estimates about the expected 

value is determined by the number of segments of the signal used to form the 
average specified in Eqn. (13). It is usual to take the distribution of Sn (f) 

to be chi-squared, with 2K degrees of freedom, where K is the number of indepen-
dent signal segments used. This assumption is exact when the distribution of the 
signal amplitudes is Gaussian. On this basis, the standard deviation of the 
estimate Sn

(f) is (1/)i) times its expected value, given by Eqn. (17). The 

scatter of the estimates can therefore be made arbitrarily small if a sufficient 
number of segments is used to form the average, provided, of course, that the 
signal remains stationary over the period covered by the analysis. 

We have thus succeeded in describing, in general analytical form, the 
nature of the approximation involved in our estimate of the power spectrum. It 
remains to describe in specific terms the estimates obtained with a given data 
window, and to consider the inverse question: the design of the data window to 
obtain estimates having desirable properties. Some answers to these questions 
are provided in later sections. 

It is worth pointing out that averaging is an essential part of the defin-
itions of the estimators even when the signals are deterministic. The estimate 

(16) 

(18) 



(22) 

(23)  
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of the power spectrum of such a signal, obtained in accordance with Eqn. (13) 
except for the omission of averaging, is not, in general, equal to the convolu-
tion of the true power spectrum with the window Vn (f). This is illustrated in 
Appendix A. 

2.3 THE INFLUENCE OF SAMPLING AND DISCRETE ANALYSIS 

The Fourier transform of a continuous signal x(t) is defined by 
co 

X 0 (f) = f 	x(t) exp {-2Trift} dt.   (19) 

In the previous sections we have been led to consider the integral between 
finite limits: 

X(f) = 	x(t) exp 1-27ift} dt, 

and have seen how, for a stationary signal, the autocorrelation function and 
the power spectrum derived from Eqn. (20) can be related to the true functions 
that would be obtained from a signal of infinite duration. The 'true' trans-
form (in the same sense) of a random signal is neither measurable nor meaning-
ful, since X(f) is not a statistical average, but describes exactly the partic- 
ular member of the ensemble (or section of the signal) from which it is derived. 
If  W0 (t) is a function having the value unity on the interval [0,T] and zero 

elsewhere, Eqn. (20) can be written in the alternative form: 
co 

X(f) =x(t) • W 0 (t) • exp {-21-rift} dt. 
—œ 

When digital computation techniques are to be used the signal must be 
sampled. Suppose that N samples are taken, at t = nAt, n = 0, 1, ..., N-1, 
where the inter-sample period At is equal to T/N. The sampling theorem 4  shows 
that these samples represent the continuous signal exactly, provided that the 
Signal  has no component of frequency greater than fmax

, and that the sampling 
rate satisfies the relation: 

N — f
max — 2T 

The samples may be used to approximate X(f) as follows: 
N-1 

X(f) = At î x(nAt) exp {-27rifnAt} . 
n=0 

Equation (23) defines X(f) as a continuous function of f. Let xn denote 

x(nt,t), and {xn } the sequence of sample values; similarly, let Xk denote  
where f

k 
is a given frequency. For any N distinct frequencies f k' Eqn. (23) 

yields N linear equations in the N variables xn . If the rank of the matrix 

of coefficients (the exponentials) is N, the finite sequence {Xk } uniquely 

determines the sequence {xn }, and vice versa. It follows that these N values 

(20) 

(21) 



(31) 
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completely determine the continuous function X(f). It is shown below that 

this condition is satisfied if we choose: 

--<k< 	
2

(N-1) (24) 

1 Af = 	. 

In terms of these discrete frequencies, Eqn. (23) becomes 
N-I T r 

Xk = 	xn exp 	
. 

n=o 

(25)  

(26)  

Equation (26) is the standard form for the Discrete Fourier Transform (DFT), 
except for the factor T which is usually dropped; this is equivalent to 
measuring time in units of T and frequency in units of 1/T. It should be noted 
that Xk' defined by Eqn. (26), is periodic, of period N. 

The DFT can be written in a form analogous to Eqn. (21): 

k = 	
x(t) W(t) exp {-21Tiftl dt, f = k  

-CO 

where the sampled-data window  W(t) is defined by: 

W(t) = W 0 (t) Comb(t) ,   (28) 

At 	 At 

	

1, 	--1---<t<T- 
0 
	

= 

	

0, 	otherwise 

00 

Comb(t) = At î 	(S(t - nAt).   (30) 
n=-00 

Equation (27) exhibits the relationship between the DFT and the Fourier trans-
form for continuous functions. 

Although we have derived the DFT as an approximation to the ordinary 
Fourier transform, it may be considered as a transform in its own right. In 
particular, the inverse transform exists. Consider the function 

N-1 
1 r - 

yn = T- 	Xk  exp {2Trik 
k=o 

(27) 

and 

(29) 

N-I 1 
= - T 

k=0 

T N7,1 

L  
x 	 171} 

£•=o  
exp {27Tik 

N-1 	N-1 
_ 1 7 x£ 	exp {I-2Trik (2"-n)  \ - N j =o 



1 
N7,1 

 xn = 	
xk  exp {2nik 

k=0 

Hence 
(32) 

N-I 
= 	x£  N 6(9, - n) 

2,=0 

= x . 

9 

Equation (32) gives the inverse transform corresponding to the DFT defined by 
Eqn. (26). The existence of the inverse implies, and is implied by, the non-
singularity of the matrix of coefficients of {xn }, as was asserted above. Note 

that although Eqn. (32) yields the correct values of xn for n = 0,1,..., N-1, 

the values of xn are not zero outside this 
range, but repeat cyclically with 

Equations (21) and (27) show that the effect of using discrete data in 
spectrum analysis is completely described by substituting the data window 
W(t) for the continuous-data window W o (t). It is evident that a similar des-
cription holds if sampling is applied to an arbitrarily weighted signal. 
Equation (18) of the previous section shows how the use of a data window affects 
the measured power spectrum; the effect is given in terms of Wn (f), the ampli- 

tude-spectrum window corresponding to  W(0; W(t) and Wn (0 form 
a Fourier- 

transform pair. Since the data windows of Eqns. (21) and (27) are different, 
so are the corresponding amplitude-spectrum and power-spectrum windows. The 
Fourier-transform pairs considered in Section 3 are therefore treated separately 
for the cases of continuous data (and analog computation), and sampled data 
(and digital computation). It should be remembered, despite the obvious dif-
ferences between the data windows, that Eqn. (27) was derived as an approxima-
tion to Eqn. (21); we therefore expect similarities between corresponding 
frequency-domain windows for continuous and sampled data. The extent to which 
this expectation is realized will be seen in Section 3. 

3. SPECIFIC WINDOW PAIRS 

In this section most of the functions that are commonly used as data 
windows or lag windows, as well as a few others, are defined, and their trans-
forms--the corresponding complex amplitude-spectrum window or the power-spec-
trum window--are derived. In each case results are given for both continuous 
and discrete methods of analysis. Since there is no need (in this section) to 
distinguish between data windows and lag windows, or between amplitude-spectrum 
windows and power-spectrum windows, the functions of time are referred to as 
data windows, and their transforms as spectrum windows. 

Data windows are denoted by  W(t) or W 1 (t); the subscript is a serial 

number to identify the function concerned, and the dash indicates that sampling 
is used. The spectrum windows corresponding to these data windows are written 
with script capitals:  W(f) or W(f). 

period N. 
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A second system of notation has been found useful, and is employed in 
parallel with the first. Data windows can often be described as the product 
of two or more simpler functions. For example, in Section 3.1 we have W(t) = 

Box(t) • Comb(t). These simpler functions recur as factors of several data-
window functions. The product form can be shortened slightly by running to-
gether the names of the factor functions: Boxcomb(t) = Box(t) • Comb(t). In 
this example, Boxcomb(t) is simply an alternative designation for Wo (t). The 

transform of one of the factor functions or their products is denoted by the 
descriptive name, prefixed by F as part of the name. Thus Fboxcomb(f) is a 
descriptive synonym for Wo (f). 

3.1 THE RECTANGULAR DATA WINDOW 

3.1.1 Continuous Data 

The rectangular window for continuous data is defined by: 

	

1, 	T <t<T+ T 
1 — — 	1 

W o 	= Box(t) = 

	

I. 0, 	otherwise. 

When a function x(t) is multiplied by Box(t) the product function is zero every-
where except on the interval of length T starting at t = T 1 , and on this interval 

it is identical to x(t). Box(t) is therefore the analytical representation of 
finite duration. 

Let X(f), Fbox(f), and X(f) denote the transforms of x(t), Box(t), and 
{x(t) • Box(t)}, respectively. The relation between X(f) and X(f) is given by 
the theorem that the transform of a product is the convolution of the transforms; 

X(f) = X(f) * Fbox(f) 

(33) 

=fc°  
—co 

X(f') Fbox(f - f') df'.   (34) 

According to Eqn. (34), X(f) is derived from X(f) by distributing each element 
of the latter over all frequencies, and superimposing these distorted elements. 
The elements are distributed according to the shape of Fbox(f), translated along 
the frequency axis so that it is centred on the element in question. If X(f) 
is to reproduce X(f) exactly, Fbox(f) must be a delta function, for then X(f) = 
X(f) * d(f) = X(f). However this is impossible, since 6(f) is the transform of 
a unit function of infinite extent: in other words, we can determine the exact 
transform of x(t) only if we know the values of x(t) for all t. At best, there-
fore, X(f) can be only a reasonably close approximation to X(f). This will be 
so if Fbox(f) approximates a delta function--it should have a high, narrow peak 
at f = 0 and be as small as possible elsewhere. Let us see how close to this 
specification Fbox(f) actually is. 
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(35)  

(36)  

(37)  

(38)  

00 - 
Fbox(f) = 	Box(t) exp {-2uift} dt 

fT+T 
1 exp {-2uift} dt 

{ 
ufT 

} 
W 0 (f) = Fbox(f) = T

sin TrfT  exp {-iuf (T + 2T 1 )}. 

Equation (36) gives the spectrum window corresponding to the data window W o (t). 

These windows are illustrated in Figure 1. We recognize the exponential in 
Eqn. (36) as the frequency-domain representation of a translation in the time 
domain; this factor would vanish if the data window were centred on t = 0: i.e., 

if T 1  = -T/2. Fbox(f) has the shape of the curve (sin x)/x. It does indeed 
have a peak at f = 0, which becomes higher and narrower as T increases; its 
height is T and its width 1/T (the 'width' used here is half the distance be-
tween the points, closest to f = 0, at which Fbox(f) becomes zero). So far it 
seems that Fbox(f) is a fairly good approximation to the ideal delta function. 
However Fbox(f) has many secondary peaks, or sidelobes; the function oscillates, 
passing through zero at frequency intervals of 1/T. The sidelobes are smaller 
than the main lobe, and decrease as l/f, according to Eqn. (36) but they are 
still undesirably large. The largest ones, centred on f = ±3/2T, have a height 
about 21 per cent of that of the main lobe. While increasing the duration of 

the signal makes the main lobe higher and narrower, it does not change the 
relative heights of the sidelobes; the (sin x)/x pattern, however, is compressed 
along the frequency axis, so that the first sidelobe occurs closer to f = 0, and 
the height of the sidelobe at any fixed non-zero frequency does become smaller. 

3.1.2 Sampled Data 

The rectangular window for sampled data is defined by: 

W(t) = Box(t) • Comb(t) , 

where Box(t) is defined by Eqn. (33), and 

Comb(t) = At 	d(t - nAt). 
n—co 

At is the inter-sample period, T/N, and N is the number of samples. Comb(t) 

represents the sampling process: when a function x(t) is multiplied by Comb(t), 

and integrated with respect to t, the result is a time series representing the 
values of the function at the points t = 0, ±At, ±2At, etc. The delta functions 
in Eqn. (38) are given the weights At to make the integral of x(t) • Comb(t) 
approximate the integral of x(t). In our use of Comb(t) the integration occurs 
in the process of Fourier transformation, and we consider the product 
x(t) • Comb(t) as representing the sampled version of x(t). Multiplication of 
Comb(t) by Box(t) results in a finite sum of delta functions. In the notation 
described at the beginning of Section 3, the product function is denoted 
Boxcomb(t). 

The spectrum window Wo (f), or Fboxcomb(f), corresponding to the data 

window W(t) can be found by transforming the finite sum of delta functions 

T
1  
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Fbox(f') • Fcomb(f - f') • df' . .1°3  
—co 

(39) 

(41)  

(42)  

represented by Boxcomb(t). The alternative procedure of convolving Fbox(f) 
and Fcomb(f) is adopted here in order to exhibit separately the effects of 
finite duration and of sampling. 

Fboxcomb(f) = Fbox(f) * Ecomb(f) 

_13 

Fbox(f) is given by Eqn. (36), and its effect has already been considered. 
CO 

Fcomb(f)  
k=-00 

Fcomb(f) is the sum of an infinite number of delta functions, spaced at twice 
the Nyquist frequency, N/2T. The sampled function x(t) • Comb(t) has a spec-
trum given by the convolution with Fcomb(f) of the spectrum X(f) of the con-
tinuous function x(t). The effect of convolution with a comb of delta functions 
is very simple: each component of X(f), of frequency f, appears in the computed 
spectrum combined additively with all those components of X(f) whose frequencies 
are displaced from f by an integral multiple of twice the Nyquist frequency. 
This superposition of the components of the continuous spectrum is called 
aliassing. Note that aliassing implies that the computed spectrum is periodic; 
its period is twice the Nyquist frequency, and the period - N/2T < f < N/2T is 
called the fundamental period, or the principal alias. 

The aliassed spectrum computed from sampled data thus bears little rela-
tion, in general, to the true spectrum. However, if the signal is known to 
contain no frequencies greater than f o , and the sampling rate is chosen to make 
the Nyquist frequency greater than or equal to f o , no problem arises. The fun-
damental period of the aliassed spectrum is then the same as the true spectrum 
within this range, while the latter is known to be zero for greater frequencies. 
An alternative to adjusting the sampling rate is to filter the signal before 
sampling, to remove any components of frequencies greater than the fixed Nyquist 
frequency. In this case the fundamental period of the aliassed spectrum gives 
a correct analysis of the low-frequency components of the original signal. 

Returning to the derivation of the spectrum window, we obtain from 
Eqns. (36), (39), and (40): 

co 	sin n(f - 
Fboxcomb(f) = T 	

At  

k=-c 	u(f - At 

exp -in(f --)(T +  2T 1 ) . At 
• 	.. --)T  

This expression is reduced to closed form in Appendix B. The result is: 

T [sin ufT exp 1-iuf(T + 2T )1. Fboxcomb(f) - nfT 	 1 
sin — N 

It is shown in Appendix B that T 1  = T; — ft/2, where T1 is the location of the 

first sample point. Fboxcomb(f), or Wo (f), is the spectrum window that results 

from the use of the rectangular data window with sampled data. 

(40) 
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Fboxcomb(f) combines the features of Fbox(f) and Fcomb(f). Like Fcomb(f), 
Fboxcomb(f) is periodic, with period N/T. The spectrum of the sampled, time-
limited function fx(t) • Boxcomb(t)1 is therefore an aliassed version of the 
continuous spectrum. Each component of the spectrum is also spread in frequency, 
an effect similar to that of Fbox(f). This similarity is quantitative as well 
as qualitative, for it is easy to see that for small values of (fT/N) the ex-
pression on the right of Eqn. (42) reduces to that given for Fbox(f) in Eqn. (36). 
The approximation involved is quite good over about half of the frequency range 
(the fundamental period) of the spectrum, so that the main lobe and about half 
of the sidelobes--the largest ones--of Fboxcomb(f) almost coincide with those of 
Fbox(f). Fboxcomb(f) therefore varies as l/f over the most important part of 
its range, but decreases less rapidly over the outer parts of the range. 

There is one case in which this window behaves like a perfect filter: if 
the signal consists of one or several sine waves, of frequencies f.  =  

where m. is an integer less than or equal to N/2, then the computed spectrum is 

exact at f = 	, and is precisely zero at every other frequency (within the 

fundamental period) for which the DFT yields the spectrum. Since the latter 
frequencies are also integral multiples of 1/T, this conclusion follows from 
Eqn. (42). It will be noted that the sine waves specified are those whose 
periodsdividethesignaldurationTexactly--infact,m.times. 

The frequency of any signal can be written (m ± c)/T, where m is an inte-
ger and c < 1/2. In the special cases just considered, E = O. As c increases two 
effects are observed: the value given by the DFT for f = m/T, which is the maxi-
mum of the spectrum, decreases; simultaneously the other values, which represent 
sidelobes, increase. This spreading of the spectrum is greatest when E = 1/2. 
Now it is shown in Section 2 that the spectrum_of a sampled signal is a contin-
uous function. The DFT gives only the values X(k/T), where k is an integer, but 
this is a limitation imposed merely by the computational technique. It is pos-
sible to compute the spectrum for intermediate frequencies. One method for 
doing so is to translate the signal frequencies by an application of the shift 
theorem, and then transform the modified signal in the usual way. The frequency-
shift is achieved by multiplying the nth signal sample by exp {-21Tic 0 n/N}; the 

transform of the modified sequence is k((k + E 0 )/T). This method, used with 

E = 0 and 1/2, yields 2N values of the spectrum spaced at intervals of 1/(2T). 

The four values c o = - 1/4, 0, 1/4, 1/2 give the spectrum for 4N frequencies 

at a spacing of 1/(4T). The transform for c o  = 0 is, of course, that of the 

unmodified signal. If the signal is a sinusoid of arbitrary but known fre-
quency (m + c)/T, the choice c o  = E makes the shifted frequency of the signal 

coincide with an analysis frequency in the positive half of the spectrum, but 
not simultaneously in the negative half. Provided m is large enough, the in-
fluence of the negative frequency component on the positive half of the spec-
trum may be neglected, and, for positive frequencies, the characteristics of 
the spectrum approximate those for the case E = O. 

In most practical situations the frequency of the signal is not known 
beforehand, but the technique described above can be used to ensure that, 
whatever the frequency, it is arbitrarily close to one of the analysis fre-
quencies. The reduction in the peak output indicated by Eqn. (42) for signals 



(44) otherwise, 

whose frequency is not an analysis frequency can therefore be avoided. In 
general, however, this method does not give any reduction in sidelobe levels, 
and the volume of computation is increased by a factor rather greater than the 
number of values of e o  employed. A similar result can be obtained, at a simi-
lar cost, by the method of the following section. 

3.2 THE FRACTIONAL-WIDTH RECTANGULAR WINDOW 

3.2.1 Continuous Data 

The fractional-width rectangular data window is identical to the standard 
rectangular window (with the appropriate value of T) when the signal is continu-
ous. The window warrants special consideration only when sampling techniques 
are used. 

3.2.2 Sampled Data 

The DFT is almost always computed nowadays by means of the efficient FFT 
algorithm, which relies on the factorization of N, the size of the data block. 
In most FFT programs, N is restricted to powers of two. However, when the 
number of data samples available is M, and M is not a power of two, the FFT 
algorithm can still be used. The procedure is to adjoin K zeros to the data 
sequence, so that N = M + K is a power of two; this augmented sequence is then 
transformed. The effect on the spectrum is obviously the same as if N, rather 
than M, data samples had been available, and had been transformed after modifi-
cation by a special data window. This window, the fractional-width rectangular 
data window, is a function having the value unity for the first M samples, and 
zero for the remainder. The discrete frequencies at which the FFT gives the 
values of the transform remain spaced at Af = 1/T = 1/(N At), and the frequency 
coverage of the transform, which depends only on the sampling rate (1/At), also 
remains the saine as in the transformation of the full N data points with a full-
width rectangular data window. What does not remain the same is the spectrum 
window; the change, although mathematically trivial, is important in practice. 

The fractional-width rectangular data window is defined by: 

W(t) = Box (0 • Comb(t), (4 3) 

where At 	MT At 
- — < t < — - 2 — — N 	2 

Box i (t) = 

and Comb(t) is given by Eqn. (38). W1 (0 'transmits' M data samples, the first 

of which occurs at t = 0; the inter-sample period is At. The data window can 
be written: 

M-1 
W(t) =  At 	S(t - nAt), 

n=0 
(45) 
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and the spectrum window is the transform of this: 
M-I 

W(f) = At 	S(t - nAt) exp {-2uift} dt, 
-00 	n=0 

M-I 
= At 	exp {-2uif nAt} 

n= 0  

(46) 

■•1, 

(uMfl  sin 	) sin 
 e

lI) N 
L_  

exp {-i (M-1)fT  
u 	N 

j (47) 

Equation (47) gives the spectrum window for this case. It may be compared with 
the spectrum window Wo (f), to which it reduces when M = N and T 1  = - At/2 (the 

appropriate value of T 1  when the first sample is taken at t = 0). It is 
periodic, with the samé period  (NIT) as Wo (f). If we replace the sine functions 

in the denominators of Eqns. (42) and (47) by their arguments, we obtain: 

which shows that  Q(f) is, approximately, a scaled and stretched version of the 

spectrum window corresponding to the full-width rectangular data window. The 
stretch factor is N/M. Thus, in particular, the main lobe is widened by this 
factor; its width, defined as half the interval between the first zeros of 
W(f), is (N/MT), or (1/MAt). As remarked earlier, the spacing of adjacent 

frequencies in the DFT remains unchanged when the fractional-width data window 
is used; this spacing, (1/NAt), is the same as the lobe width of Wo (f); it is 

not the same as the lobe width of  

There is a close connection between the technique of 'filling up with 
zeros' and the interpolation technique discussed at the end of Section 3.1.2. 
Using the latter technique with two values of E, E l  = 0 and c 2  = 1/2, we can com- 

pute two M-point DFT's: X 1 (k/T I ) and X1 ((k + 1/2) 1T 1 ), where k = 0,1,...,M-1, and 
- 

T 1  = MAt. The results can be interleaved to obtain a single spectrum, X 1  (k/T 2 ), 

where k = 0,1,...,(2M-1), and T 2  = 2T 1 . The related 'filling up with zeros' 

procedure is to adjoin M zeros to the original sequence of M samples, and per- 
form a single 2M-point DFT to obtain the spectrum X2 (k/T 2 ), k = 0,1,...,(2M-1). 

- 
The spectrum window for X,1  is given by Eqn. (42) with N replaced by M, and T by 

T 1 . The spectrum window for X 2  is given by Eqn. (47) with N replaced by 2M, and 

T by T 2 (= 2T 1 ). Making the substitutions, we find that the windows are identical. 

It follows that X 1  and X 2 are identical. 



(50)  
(51)  

(52)  

(53)  

(54)  
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3.3 THE TRIANGULAR WINDOW 

3.3.1 Continuous Data 

The triangular data window, which applies a linear taper to the data, is 
defined as follows: 

- T 1 ), 	T1 < t < T 

	

- 1 	2 

W2(t) = 
- 
2
- (t - T - T), 	T 1 	

t < T 1 	T 2 — —  

otherwise.   (49) 

We shall consider, for simplicity, the triangular window centred on t = 0 
(T 1  = - T/2), which is shown in Figure 2(a). Unlike the rectangular window, 

W2 (t) is continuous everywhere; its first derivative, however, is discontinuous, 

as shown in Figure 2(b). The second derivative of W2 (t) can be represented by 

delta functions in the way indicated in Figure 2(c). In general, if the mth  
derivative is discontinuous, the (m + 1) th  derivative will require delta func-
tions in its representation. There is an important general rule connecting 
the roll-off characteristic of the spectrum window with the order of the deri-
vative of the data window in which discontinuities first appear. In order to 
determine this rule we shall compute the spectrum window corresponding to W2 (t) 

in an indirect way, starting from the derivative involving delta functions. Let 

0 

L {V(t)}. V(t) = d { 14 2(t)} , 	U(t) =  dt 

Then 

U(t) = —

2 [d(t + —

T ) - 2d(t) + cS(t - 
2 

Let U(f) denote the transform of U(t): 
co 

U(f) = —2 .1. 	[d(t + —2
) ..2d(t) + 6(t - —I )] exp {-27rift} dt , 

2 

8 . 2{Trfl =-7 sin  

We can now write U(t) as aninverse transform: 

8 r- 
u(t) = - - j2

[exp {27rift}]df . 

Note that the right side of Eqn. (54) is a function of t, which occurs only in 
the second bracket. The integral of this expression with respect to t is: 

V(t) = - 	 f_w  [si.n 2    exp {27ift}] df. (55) 
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(56) 

Integrating a second time gives W2 (t): 
2 co 

W2 (t) = — 	 [sin
2TrfT

)1 I { 
1  exp {2rift} 	df. 

2 	2rif 

The transform of W 2 (0 can be written down by inspection of Eqn. (56): 2 

sin — (71-f ) 2  

L 
This is the spectrum window corresponding to the triangular data window centred 
on t = O. It will be observed that this function is non-negative. An applica- 
tion of the shift theorem yields the spectrum window for an arbitrarily located 
data window: 	 —,2 

W 2 (f) = (57) 

w2( , ) = 

(rfT 
sin -7-)  

exp {-2rifT 1 } .   (58) 

A graph of W 2 (f) is presented in Figure 2(d). 

Equation (58) shows that the spectrum window has a 1/f 2  roll-off. If we 
examine Eqns. (54), (55), and (56) the source of the (1/f 2 ) factor is evident. 
The factor multiplying the kernel in Eqn. (54) is U(f). In Eqn. (55), as a 
result of an integration, it is {1/(2rif)}U(f). In Eqn. (56), derived from 
Eqn. (54) by two integrations, the factor is {1/(2rif)} 2  • U(f), which is equal 
to W 2 (f). Each integration of a derivative involving delta functions, or a 

lower order derivative, introduces a (1/f) factor in the spectrum window. We 
(-m+1) 

are thus led to expect a roll-off as f 	i 	th f the m  order derivative of the 
data window is discontinuous. For the rectangular window m = 0, and the spec-
trum window exhibits a (l/f) factor, in accordance with the rule. The cosine-
bell window, to be considered later, is discontinuous in the second derivative, 

and its spectrum window has a (1/f 3 ) factor, as we should have predicted. In 

qualitative terms the rule is: the smoother the data window, the faster the 

roll-off. 

Turning now to other features of the spectrum window, we observe that the 
main lobe is wider than that of W o (f). The first zeros occur at f = ±2/T, so 

that the lobe width, measured as half the separation of the first zeros, is 

twice that of W o (f). However this is a crude criterion, and it overstates the 

relative lobe-widths in the present comparison. The widening of the main lobe 
that we have found in this case is an example of another general rule: the 
faster the roll-off, the wider the main lobe. The magnitude of W 2 (f) is plotted 

in Figure 2(d), from which it can be seen that the height of the first sidelobe, 
which is the largest, is about 5  per cent of the height of the main lobe. The 
corresponding figure for  W 0 (f) is 21 per cent. 
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3.3.2 Sampled Data 

The effect of sampling on the spectrum window will be computed for the 
triangular data window of span T, centred on t = T/2. The continuous data 
window, W2 (t), is given by Eqn. (49) with T 1  = 0; the alternative name Tri(t) 

is given to this function. The window for sampled data is: 

Tricomb(t) = Tri(t) • Comb(t) .   (59) 

Since Tri(t) is zero outside the range 0 < t < T, Eqn. (59) represents a finite 
comb of delta functions, weighted according to the values of Tri(t) within this 
range. The spectrum window  £U(f) is Ftricomb(f), the transform of Tricomb(t): 

Ftricomb(f) = 

p-1 
2 	 N-I 

t - 	(t-T) ,5(t - nAt)  exp {-2uift} dt, 
(60) n=0 n=0 1.1=.7 

N N-I' 
= 2T 7ï l  n exp {-2uif nft} - y (n-N) exp {-2uif nAt} 1 • i n= 	 .. 

N 2 [ n=o 	
N 

 
2 

The summations in Eqn. (61) are of the forms: 

K+L-1 
î xn  = xK  (1 - 	/ (1 - X) , 

n=K 

nxn = xK K-(K - 1)x - (K + L)xL  + (K + L - 1)x
L+1  1 (1 - x) 2 . 

n=K 

Making use of these results, we obtain: 

K+L-i L-I 

(61) 

(62) 

(63) 

Equation (64) gives the spectrum window corresponding to the triangular window 
for sampled data. The changes, as compared with the case of continuous data, 
are similar to those noted for the rectangular window. W;(f) is periodic with 

period N/T. It reduces to W2 (f) for small values of (fT/N), and, to a good 

approximation; W 2 (f) and  W(f) are identical over a large part of the funda-

mental period of the latter. Within this range, therefore,  W(f) exhibits a 

1/f 2  roll-off, but it falls off more slowly as (fT/N) approaches 1/2. 
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3.4 THE COSINE-BELL (NANNING) WINDOW 

3.4.1 Continuous Data 

The cosine-bell window, which is associated with the name of the Austrian 
physicist van Hann (to use it is to 'harm' the data), is defined by: 

T, 
cos 2  IlL (t - T 2  - 7)1, 	T 2  <t<T 2  + T T 	 - -  

W 3 (t) = 

, 	otherwise.   (65) 

The function in the first part of this definition has the shape of cos 2 (t), the 
period T, and ranges in value between zero and unity;t = T 2  is the location of 

one of its minima. This function, unrestricted as to its region of definition, 
is given the descriptive name Bell(t). Bell(t) may be written in the following 
alternative forms: 

1 	 2TBell(t) = —
2 

[1 - cos {—
T 

(t - T 2 ) 	$ 

- T 	 T 

	

Ll 	1 	 2 	 tl 	1 	 2 	 t ) = - - -- exp { -2Tri --) exp { 2'rri 7 - -27 exp { 2Tri ,-F} exp { -2'rri —T  

	

2 	4 	 T 

	 (67-) 

The transform of Bell(t) is: 
T 	 T 

1 	1 	1 	 2 
Fbell(f) = [-

2 
 d(f) - -

/7 
d(f - 7) exp 1 -2ui =LI - 1  6(f + 1-) exp { 2ui ---11. T 	4 	T 	 T 

	 (68) 

W 3 (t) can be expressed in terms of Bell(t) and Box(t), where Box(t) is as 

defined in Eqn. (33) with T 1  = T 2 : 

W 3 (t) = Bell(t) • Box(t) .   (69) 

Its transform is: 

W 3 (f) = Fbell(f) * Fbox(f), 

= Fbellbox(f).   (71) 

Performing the convolution, we obtain: 

- _ 	 r 	 „ 	is 	 . 2 1 	1 	„ . 1, 

exp T 	.   (72) 
T 2 

Fbox(f) is given by Eqn. (36). Equation (72) can be reduced to the form: 

Fbellbox(f) = Fbox(f) • G(f;a) ,   (73) 

0 

(66) 

(70) 
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(74) where 	G(f;a) = 1 

2
- [{x 2  (1 - cos a) - 1} + i{x sin a}]/(x 2  - 1 ) 

and 
x = fT , 	a = 2Tr(T 2  - T 1 )/T. 

As noted earlier, the equivalence of Eqns. (65) and (69) requires T 1  = T 2 , or 

= 0, and with this simplification Fbellbox(f), or W 3 (f), can be expressed: 

	

w  (f\ 	
L 

. 	r 
L

sin TrfT1  r 
 - 

1  

exp { - iuf (T + 2T 2 )1 .   (75) 

	

3 \ / 	2 	TrfT J I 	(fT) 2  
W 3 (f) is plotted in Figure 3. Equation (75) gives the spectrum window corres-
ponding to the cosine-bell data window for the case where the data are contin-
uous. T 2 is zero for the data window symmetrically located on the interval 

[0,T]. 

It can be seen from Eqn. (75) that W 3  (f) decreases as (1/f 3 ) for fT >> 1. 

This characteristic, and its connection with the smoothness of W 3 (0, was noted 

in Section 3.3.1. The first zeros of W 3 (f) occur at t = ±2/T, so that the main 

lobe is wider than that of W o (f); it is also slightly wider than the main lobe 

of W 2 (f), although the latter has the same first zeros. The height of the first, 

and largest, sidelobe is less than three per cent of that of the main lobe, and, 
as we have seen, the remaining sidelobes decrease rapidly. In comparison with 
the rectangular window, the cosine-bell data window therefore offers much better 
control of the mutual interference of well-separated spectrum components, at the 
expense of greater interference between closely-spaced components--those sepa- 
rated by less than the width of the main lobe. 

3.4.2 Sampled Data 

When sampling is used, the cosine-bell data window can be written: 

W(t) = Bell(t) • Box(t) • Comb(t) , 
3 

= Bellboxcomb(t) ,   ( 77) 

where the factor functions are as defined previously. The corresponding spec-
trum window is: 

W'(f) = Fbellboxcomb(f) . 
3 

Since we have already found Fbellbox(f), we could, in principle, compute 
CO(f) as: 

3 

W(f) = Fbellbox(f) * Fcomb(f) , 
3 

but it is easier to combine the factors of W 3  (t) in a different order, which 
gives 

(0'3 (f) = Fbell(f) * Fboxcomb(f) .   ( 79) 

(76) 

(78) 



F- 

1 .0 

0.9  

O. 8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.I  

0 

r‘ 
I 	\ 
1 	% 

	

I 	
1 

IN 
1 ‘ 

% 1 fee.% \ /..‘\  

/#%\ I 	1 	i% 

24 

0 
ci•- 

 o 

3 	4 	5 	6 	7 	8 	9 	10 f T 
1 	I 	1 	1  

Fig. 3. Spectrum window corresponding to cosine-bell data window. 



n •n 11. 

(80) 

2(sin 2 8-sin 2 x) 
(82) 

2 [1 117-1 sine  ] 
(83)  

(84)  
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The two functions on the right of Eqn. (79) are given in Eqns. (68) and (42). 
The convolution is easy in this case, and the result is analogous to that of 
Eqn. (72) for continuous data: 

	

1 	 1 	 1 W 	- Fboxcomb(f) 	Fboxcomb(f -) • exp { -27ri 

	

3
(f) = 
 2 	 4 

. T 
- Fboxcomb (f + 7) • exp pul 2 1 

Equation (80), after some manipulation, yields the following expression: 

W(f) = Fboxcomb(f) • H(f; a,13),   (81) 
3 

H(f;a,) = Ucos8sin 2x(cosa-cos8) + sin 2 8cos 2x} - i{sina • sin8 • sinx • cosx}] 

and 

where where 

ufT X  = a = 271- (T -T )/T, 	3 = 7  . 
2 	1 

We now consider the values of T 1  and T 2 .  Let T = mft/2, and T = nit/2, 
 1 	 2 

where m and n are real numbers. To simplify the discussion, let the N sample 
points be located at t = 0, 	 (N-Mt; according to the observation 
following Eqn. (42), this choice makes m = -1. Two values of n are of interest, 
corresponding to two ways of applying the cosine-bell window: 

(a) Bell(t) is symmetrical on the interval (0,T); this 
choice makes n = 0, a = 1£. 

(b) Bell(t) is symmetrical with respect to the N sample 
points; this gives n = -1, a = 0. 

In case (a) we have: 

H(f;8,(3) - 
cosx • exp {-ix)  

and, correspondingly, 

sin ufT  
ufT) 1 	

sin  ( 

sin (i11) 

T 
W;('' r\  = 2N exp {-iufT} . 

In case (b) we have: 

[sin 2 8-(1-cos8)sin 2 x] H(f;°,8) = 
2[sin 2 8-sin 2 x] 

(85) 
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and, correspondingly, 

ufT1' 	
sin(112 T 	sin ufT  (0(f) - 	 1 	Ç sin -w 

 - 

2N 	- 3 	 2N 	. lu 
— I 	N 	sinr • N) — — L5' 

— 	 sin (1  

- 1 

. (N-1 exp 1- 17 	 fT 

(86) 

Equations (84) and (86) give the spectrum windows corresponding to the two ways 
of applying the cosine-bell window to sampled data. 

When (ft/N) << 1, both expressions for W(f) reduce to W (f), the spec- 
3 	 3 

trum window for continuous data, as given by Eqn. (75) with the appropriate 
values of T 2. Both functions are periodic, with period N/T, and have conjugate 

symmetry about f = 0. At large values of f (i.e., f 	N/2T) W(f) falls off , 	3 

more rapidly than W 3 (f) in case (a), while the opposite is true in case (b). 
This difference should normally be of little significance, since the values of 
both functions are very small in the region concerned. 

A conclusion of some practical importance can be drawn from the form of 
the spectrum window given in Eqn. (80). The spectrum of a sampled signal is 
computed by means of the DFT, which yields the values of the spectrum at fre-
quencies that are integral multiples of (1/T). When the rectangular data win-
dow is used, the value computed for the frequency f = k/T is the convolution 
of the true spectrum with Fboxcomb(k/T). When the cosine-bell data window is 
used as prescribed for case (a), for which T 2  = 0, the value of the spectrum 

at f = kT is the convolution of the true spectrum with W'3 (k/T), as given by 

Eqn. (80) with T 2  = 0. The equation shows that this is identical to the weighted 

sum of the values obtained at f = (k-1)/T, k/T, and (k+1)/T with the rectangular 
data window; the weights are (-1/4), 1/2, -1/4. 	Hence the cosine-bell data 
window can be applied in the time domain, by modifying the signal samples 
according to the weights Bell (nft), or in the frequency domain, by forming the 
indicated weighted sum of the spectrum values obtained from unmodified samples. 
The computational advantage appears to lie with the frequency-domain technique, 
since, because of the values of the weights, the weighted sums can be computed 
without multiplications. 

3.5 THE HAMMING WINDOW 

3.5.1 Continuous Data 

The Hamming window is a modification of the cosine-bell window named 
after R.W. Hamming. It is defined by: 

(21T , 

W, (t) = 
, otherwise.   (87) 0 
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Equation (87) can  be written in the following alternative forms: 

W4 (t) = [0.50 11 - cos - 	(t-T 2 	
2u )1 + 0.04 i 1 + cos 	(t-T 2 ))] • BOX(t;T ) 2 e 

(87a) 

271. 	 271.  = [0.50 {1 - cos 1-7- (t-T 2 )1 + 0.04 {1 - cos 	(t-(T 2  + 7))
)
] 

• Box (t;T 2 ). 

(87b) 

In these equations we exhibit explicitly the parameter of Box(t), which denotes 
the lower limit of the region in which Box(t) is non-zero. This parameter has 
previously been denoted by T 1 . Equations (87a) and (87b) are equivalent to 

Eqn. (87) only if T 1  is equal to the parameter T 2  of the cosine functions. It 

can be seen by reference to Eqn. (87h) and Section 3.4.1 that W 4 (t) may be ex-

pressed in terms of W 3 (t), as follows: 

W (t) = W (t;T 2 ; T 2 ) 4
-  0.08 W (t; T

2 
 T 

4 	 3 	2 	z 

The parameter lists for the functions on the right-hand side of this equation 
give, in order: the argument, the parameter of Box(t), and the parameter of 
Bell (t).  

The transform of W 3  (t; T 2  T 2 )  is given by Eqn. (75). Since this equa- 

tion applies only when the parameters are equal, it cannot be used to obtain 
the transform of W 3  (t; T 2  • T 2 	T 1 2). The latter can be obtained from Eqns. '  

(73) and (74), which give: 

W 3 (f; T 2 ; T 2  +I) = W 3 (f; T 2 ; T 2 ) • 11 — 2(fT) 2 1 . 

Dropping the parameters, we can now write down the transform of W4 (t): 

W (f) = W 3 (f) • [1 + 0.08 {1 - 2(fT) 2 }].   (90) 4 

4  

	

[ 
 ufT 	- (fT) 2  

	

sin u 	
1

fT] 	- 	
(frr 

27 '— ' 2 ] 
= 0.54T 	 exp {-irf(T + 2T 2 )}, 1  

(91) 

which, apart from the scale factor, differs from W 3 (f) only in the numerator 

of the second bracket (compare Eqn, (75)). Graphs of W (t) and W (f) are 
4 	 4 

presented in Figure 4. 

W4  (f) has the same zeros  as'  3 (f), plus an additional one given by 

1 - (4/27)(fT) 2  = 0: i.e., at f = 2.598/T. The first and second zeros of 

(88) 

(89) 
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W 3 (f) occur at f = 2/T and 3/T. The additional zero of W 4 (0 occurs between 

these, and so exerts its principal effect in the region where the sidelobes 
of W 3 (f) are largest. The effect is to reduce the height of the largest side- 

lobes to less than one per cent of the height of the main lobe. For comparison, 
the first sidelobe of W 3 (f) has a height of about 2-1/2 per cent of that of the 
main lobe. 

This improvement is not achieved without penalty: the sidelobes remote 
from the main lobe are larger than in W 3 (f). While the latter window was 

shown to have a 1/f 3  roll-off, Eqn. (91) shows that the Hamming window has a 
much smaller rate of decrease, which is proportional to 1/f. This difference 
is greater than one might, perhaps, have anticipated, since the Hamming and 
cosine-bell data windows are very much alike. However, the zero-order deriva-
tive of W4 (t) - i.e., W4 (t) itself--is discontinuous, and according to the rule 

given in Section 3.3.1 such functions lead to a 1/f roll-off. The roll-off 
characteristics of both windows are in accordance with the rule, and could have 
been predicted without the aid of Eqns. (75) and (91). 

3.5.2 Sampled Data 

The spectrum window for the case of discrete data is derived by the method 
of Section 3.4.2, which leads to a result similar to Eqn. (80): 

1 
U(f) = 0.54 W(f) - 0.23 W'o (f - 	exp 1-2Tri 

4 	 0 	 T 

T 2 
- 0.23 Wo (f + 	exp 2Tri T

- 1 I 

This result, incidentally, implies that 'hamming' can be applied in the fre-
quency domain, exactly as described for the cosine-bell window in Section 3.4.2, 
but using the weights (-0.23, 0.54, -0.23) instead of (-0.25, 0.50, -0.25). 

Equation (92) can be written 

W'(f) = W(f) • K(f;a,3) 
4 

where 
(K 1  - iK2 ) 

K(f;aM = (sin2 I3 - sin 2x) ' 

K 1  = 0.46 cosa cosiB sin
2x - 0.54 cos 2 13 sin 2 x + 0.54 sin 2 13 cos 2 x , 

K2 = 0.46 sina sini3 sinx cosx, 

and a, 3, x are as defined in Section 3.4.2. When the data window is applied 
symmetrically with respect to the sample points, a is zero, and the spectrum 
window is: 

(92 ) 



N-1 exp I 	--) fT  

(95) 

sin  MI )  1 2  
1 

sin ( 11 sin ( 11 

sin ufT  

sin (Lai 
= 0.54 
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W(f) reduces to W 4 (f), with the appropriate time-shift exponential, when 4 

(7fT/N) << 1 and (u/N) << 1, which are valid approximations over the most im-
portant part of the period of (04 (f)--the region of the main lobe and the larger 

sidelobes. Equation (95) may also be compared with the corresponding result 
for the cosine-bell window (Eqn. (86)). Apart from the scale factor, the two 
expressions differ only in the numerical factor multiplying cos(u/N); it should 
be noted that cos(7/N) is very close to unity for the usual values of N. 

3.6 GENERALIZED COSINE - BELL WINDOW 

3.6.1 Continuous Data 

A data window proposed by Bingham, Godfrey, and Tukey 5 , can be described 
as a rectangular window, with short half-cosine bells added at each end. On 
the basis of the roll-off rule given in Section 3.3.1, this window would be ex-
pected to have the desirable sidelobe-suppression feature of the cosine-bell 
window, without the strong emphasis that the latter window places on the mid-
range sample values (and their possible errors). These considerations apply 
however small we make the ratio of the span of the half-cosine bells to the 
total span of the window. However, as this ratio is made smaller, the window 
becomes more like the rectangular data window, and its corresponding spectrum 
window would be expected to resemble  W 0 (f) more and more closely. We shall 

see how these two apparently conflicting expectations are reconciled. 

Reference 5 proposes a span ratio of 1/5. In the following definition 
the reciprocal of this ratio, m, is treated as a parameter that can assume 
any positive integral value. 

(2m-1)T  1— < t < ' 	2m 	— 2m 

W s (t) 1  = 	 - cos (2rmt/T)], 	0 < 
2 — — 

t 	T 	(2m-1)T  < 
2m' 	2m 	

t 	T  

It is a straightforward matter to calculate W 5 (f), the associated spectrum 

window, directly from this definition. An alternative method that makes use 
of previous results may also be used. Note that the cosine bell function in 
the definition above has the period T/m, so that there are m complete periods 
in the interval [0,T]. Since the cosine bell has the shape cos 2 (t), we may 
exploit the fact that cos 2 (t) + sin 2 (t) = 1 to represent the constant part 
of  W 5 (t) as the sum of two cosine bells: 

nfinearmi.. 0 	 otherwise.   (96) 



1, 	0 < t < T 

Box (t) = 

0 , 	otherwise 0 , 	otherwise.   (98) 
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11 
W 5 	= El - cos 2umt1.  Box (0 + [1 - cos

22m• (t - Ill] • Box (t), T 	2m 	2 

(97) 
where 

and 
(2m-1)T  

Box 2 (t) = 	

1 , 	t < 	2m  

The transforms of these functions can be written down at once from the results 
of Sections 3.1 and 3.4. The transform of Bell(t), modified to have the period 
T/m, is given by Eqn. (68) with the substitution of T/m for T. For the first 
cosine-bell function in Eqn. (97) T 2  = 0, and for the second T 2  = T/2m. The 

transform of Box i (t) is given by Eqn. (36) with T 1  = 0, and the transform of 

Box 2 (0 by the same equation with T replaced by (m-1)T/m, and T 1  = T/2m. 

Carrying out the algebra, we obtain the transform of the first term of W 5 (t): 

(I) 	T r sin ufT1  [i M (0 	
1  

- exp {-iufT} , 	 (100) 5 	2 L ufT j 	1 - ( 1m11 2  

' 
and for the second term: 

0 , 	otherwise. 0 , 	otherwise.   (99) 

w (2)
(f) = (rir

_ 1)T 	sin u(21111fT 

5 	
1  

2m 
Tr  ( 11-211) f T 	1  f-f r  2 	exP 	C171  + 	fT  m 

[sin 	[ 1  
2 	ufT 	 ifT12 	exp {-iufT} . 

%In 

The sum of these terms is the spectrum window: 

Esin 	 Trf ( 2m-1 )l[ 
2m-1 W 5 (f) - 	Ti 	( 2m-21m 	cos ( 72mer  )][i (f92]  exp {-iufT} . 

ufT 2m 

(101) 

(102) 

Graphs of this function for m = 2 and 4 are presented in Figures 5(a) and 5(b). 

When m = 1, W 5 (f) reduces to W 3 (f), as given by Eqn. (75); W 5 (t) is then 

the standard cosine-bell. When m = co, W 5 (t) becomes W o (t), and W 5 (f) reduces 

to W o (f) ' as it should. 
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Fig. 5.(a) Spectrum window corresponding to generalized 

cosine-bell data window (m = 2). 
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W(f) has two sets of zeros, given by f = (2r+1).m/T, and f = 2rm/(2m-1)T, 

r = 1,2,...; r = 0 does not correspond to a zero in either set. The first zeros 
are those at f = ±2m/(2m-1)T. The width of the main lobe therefore decreases 
rapidly with increase of m, from the value (specified as half the interval be-
tween the first zeros) of 2/T when m = 1, toward a limiting value of 1/T. 

The rate of decrease of the size of the sidelobes is determined by the 
fourth bracket and the 1/f factor of the second bracket in Eqn. (102). The 
function {1 - (fT/m) 2 } decreases from unity at f = 0 to zero at f = m/T (which 
is also a zerb of the third bracket), and becomes large and negative at higher 
frequencies. At frequencies less than m/T the window function therefore de-
creases essentially as 1/f, while at greater frequencies the asymptotic rate 
of decrease is 1/f 3 . 

The characteristics noted represent the resolution of the apparent con-
flict discussed in the first paragraph of this section. 

3.6.2 Sampled Data 

The spectrum window for the case of discrete data, r5 (f), is the convolu- 

tion of W 5 (f) with Fcomb(f). An expression for W(f) based on this convolution 5 
is given in Reference 6, where the expression is left in the form of an infinite 
summation To avoid the difficulties of this approach we proceed as follows: 

W;(t) = Bell i (t)Boxcomb i (t) + Bell 2 (t)Boxcomb 2 (t) .   (103) 

The Bell
i
(t) functions are given by Eqn. (66) with T replaced by T/m; T 2  is 

zeroforBell 1 (t)andT/2mforBell 2 (0.Boxcomb i (OrepresentsBox.(t ) . 
1 

Comb(t); Comb(t) is given by Eqn. (38), and Box i (t) by Eqn. (33) with 

T 1  = -At/2; Box 2 (t) is defined as follows: 

1  , 	,T _ At \< t  < (2m-1)T 	At 

1  0 , • 
-2m 2 i  — — 2m 

otherwise. 

2 

Box 2 (0 is the appropriate function, when the data are discrete, for selecting 

the region in which the continuous data window described by Eqn. (96) has the 
value unity. This statement is based on the argument presented in Appendix B, 
and involves the assumption that the point t = T/2m is a sample point. Our 
results will therefore be subject to the restriction that N/2m must be an in-
teger; other assumptions would lead to other analytical expressions for the 
spectrum window. We may note, in passing, that an approximate analysis of 
this data window, employing a different technique, is presented in Reference 7; 
although not noted in the article, the analysis is subject to exactly the same 
restriction as that found in the present case. 

Box (t) = 
2 

0 , 	otherwise. (104) 



35 

The transforms of the functions on the right side of Eqn. (103) can be 
derived from previous results by making appropriate changes in the parameters. 
Each of the two terms yields an expression similar to that in Eqn. (80); these 
can be simplified and combined to give: 

-1 

exp {-iufT} . 

,(105) 

This is the spectrum window corresponding to the sampled data window applied 
symmetrically on the interval (0,T), under the condition that N/2m is an 
integer. 

It can easily be verified that (.05 (f), as given by Eqn. (105), reduces to 

W 5  (f) for (fT/N) << 1. The data window  W(t) becomes the standard cosine-bell  5 

window when m = 1, and, correspondingly, Eqn. (105) reduces to Eqn. (84). The 
largest possible value of m is N/2, which makes the time interval covered by 
the half cosine-bell equal to the inter-sample period. The data window function 
is then zero for the sample at t = 0, and unity (rectangular) for the remaining 
(N-1) samples. In this case Eqn. (105) becomes: 

[ sin{ 
(N-1)ufT1  

W(f) = 	 exp {-iufT}, 	m = N/2 . 
5 	

sin (

N 

This is the spectrum window for the fractional-width rectangular data window 
that spans N-1 samples and is centred on t = T/2. Thus the expression of 
Eqn. (105) checks exactly with known results in these three limiting cases. 

W"(f) is periodic, with period N/T (when N/2m is an integer), and it s 
possesses conjugate symmetry about f = 0. We have already noted that the in-
fluence of sampling is small when  fT/N1 << 1. The approximation is quite 
good over about half of the fundamental period, so that the characteristics 
of (0(f) in the region where its values are significant are substantially s 
those of W (f). For larger values of  fT/N1 it can be shown that sampling 

increases the roll-off rate. 

4. POWER - SPECTRUM WINDOWS 

No distinction was made in Section 3 between transform pairs representing 
data windows and amplitude-spectrum windows, or lag windows and power-spectrum 
windows. The term 'data window' was used for either kind of time function, and 
'spectrum window' for either frequency function. In this section the distinc-
tions are once again observed. 

According to Eqn. (18), the power-spectrum window  V ( f ) corresponding to 

the data window  W(t) is 1W(f) 2 /T, where Wn (0 is the transform of Wn (t). 

W5 (f) = 
[sin if 

tan 

	2m-1  1 ufJ]  

(-- 

(1 2m /  
ufT) ) [cos ( Trfl [ 2m 1 

sin 12] 

sin ("2") 
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The definition shows that Vn (f) cannot be negative. The estimate of the power 

spectrum given by the direct method, as expressed in Eqn. (13), approximates 
the convolution of Vn (f) with the true power spectrum of the signal. Since the 

true power spectrum is intrinsically non-negative, it is apparent that no nega-
tive power estimates can occur in the power spectrum computed by the direct 
method. This is not true, in general, of the results obtained by the indirect 
method. If  W(t) is used as a lag window, the power-spectrum window is Wn

(f), 

and almost all of the frequency-domain functions derived in Section 3 exhibit 
negative values; the triangular window centred on t = 0 is an exception. The 
occurrence of negative lobes in Wn

(0 does not necessarily mean that the com- 

puted power-spectrum will include negative estimates. Negative estimates are 
not likely to arise if the true spectrum is smooth and slowly varying, but they 
are common when the spectrum is sharply peaked, or when strong line components 
are present. 

When the indirect method is used, the statistical stability of the com-
puted power spectrum depends on the form of the lag window. Although the win-
dows  W(t) of Section 3 could be used as lag windows, they would not give stable 

estimates. To achieve good stability, the computed power spectrum must be 
smoothed quite heavily. This could be done by forming weighted moving averages 
of the estimates; heavy smoothing corresponds to averaging over many adjacent 
estimates. Such averaging is most efficiently done in the lag domain, since 
long moving averages in the frequency domain correspond to windows of small 
span in the lag domain. The windows  W(t) of Section 3 are not short--with the 

exception of Wl (t) they cover the entire span of the data. The treatment of 

W (t) shows how the windows Wn (t) can be modified to yield useful lag windows; 

for this application the windows must also, of course, be centred on t = 0. If 
the span of the lag window is reduced from T to T', the major features of the 
resulting power-spectrum window are well approximated by stretching  W(f) along 

the frequency axis in the ratio (T/T'), as indicated in Section 3.2.2. The fre- 
quency interval between the first zeros of the stretched version of Wn (f), divi- 

ded by (l/T), is a measure of the length of the equivalent moving average applied 
to the power spectrum. Hence for good stability (T/T I ) should be fairly large, 
of the order of 10. A thorough discussion of the stability of estimates of the 
power spectrum obtained by the indirect method is given in Reference 1. 

When the direct method is used with a segmented signal, as outlined in 
Section 2.2, the stability of the power-spectrum estimates is achieved by aver-
aging in time, rather than in frequency, and it is not a function of the window 
to provide stability. 

The power-spectrum windows corresponding to the data windows of Section 3 
are shown in Figures 6 to 11. The differences in frequency resolution (the 
width of the main lobe), in the size of the largest sidelobes, and in the rate 
of roll-off are apparent. The figures are drawn for the case of continuous 
data, since it was shown in Section 3 that, within the fundamental period, 
sampling has an appreciable effect only in the tails of the spectrum window. 
It should be remembered, however, that when sampling is used the power-spectrum 
window repeats periodically at frequencies beyond the Nyquist frequency. 
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APPENDIX 	A 

THE ROLE OF AVERAGING IN THE DEFINITION OF THE 
POWER-SPECTRUM WINDOW 

The estimator S
n
(f) for the power spectrum was defined in Section 2.2 

as the average of a finite number of periodograms, and it was shown that, as 
this number is increased, Sn

(f) becomes arbitrarily close to the convolution 

of the true power spectrum with the power-spectrum window Vn (f). It might be 

thought that averaging is required only to smooth out fluctuations due to the 
randomness of the signal, and consequently that the results of Section 2.2 
hold, without averaging, when the signal is deterministic. This is not true, 
as is shown by the following example. 

Suppose that the signal x(t) = cos (2uf 0 t + 04) is sampled at S samples/ 

sec, and that N samples are analyzed by means of the DFT with a rectangular 
data window. In terms of the time index n and the frequency index c o , defined 

by t = n/S, f 0 = Sc o /N (0 o 
is not, in general, an integer), the signal can be 

written: 
( 2ra o n 

x(nLt) = cos 	+ 	. 

Using the amplitude-spectrum window (Eqn. (42)) corresponding to the rectangular 
data window, we can write the transform of the signal as follows: 

X(c) = 
I sin u(c o -0")  I 

(ao-a) 	exp  (ici) • exp {ir(a o - a) (N - 1)/N} 

[sin  T 	7 (0 o+C) 

' 2N 	(00+0) 	exp  (-ici) • exp {-iu(a o 
+ a) (N - 1)/N) , 

sin u    (A2) 

= z (G) 	Z 2
(0) .   (A3) 

If we talçe the squared modulus of the transform and divide by T, the 
result is an estimate of the power spectrum identical to S o (f), as defined by 

Eqn. (13), except for the omission of the averaging operation. This estimate 
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(Al) 

sin r 

is: 



(A4) 

(A5) 

(A6) 

(A7) 

2 

V 0 (a) 
f, \  = T 	[  sin Tra  

0 n ., N2  sin (1 N2  Lsin 
(A8) 
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1 S 00 (a) = 	IZ i (G) 	Z 2 (G)I 2  

1 
=• {IZ (0 )V 	IZ 2  (G)I 2 	2IZ (a)I • 1Z 2 (0. ) I cos ((I) 	- 	)} 1 	 1 	2 

where 
(4)1 	cp2) 

	[ t a 
 + 	( N-Ni) (a0 	a) 	{ 	() (a0  + a)  1] 

= 2 {a + îr  1 N-1 1 	j N ' G o 

We now compute the right-hand side of Eqn. (17), for comparison with S oo (a). 
The power-spectrum window  V 0  (a) corresponding to the rectangular data window 

is: 

The true power spectrum of the signal is: 

S(a) = - {cS(c - a o ) + cS(a + a o )) , 4 

and the convolution of S(a) with V o (a), which is denoted by S o (f), can be written: 

(A9 ) 

S 0  (a){Iz(a)2 + 1z 2 (0)1 2 } • (A10) 

Comparing Eqns. (A5) and (A10), we see that S (a) is not the same as  S 0 (o)  oo 
unless one or more of the factors of the cross term in S (a) is zero, which oo 
is so only in special cases. This demonstrates by counter-example that the 
concept of the power-spectrum window is not valid if averaging is not used. 

Suppose the power spectrum of the saine signal is estimated in accordance 
with Eqn. (13), by averaging over a large number of segments of the signal. 
If the length T of the segment is not an integral multiple of the period of 
the signal, the phase a will vary from segment to segment. The cross term 
in Eqn. (AS) will then average zero, because of the effect of the varying 
phase on the factor cos ((1) 1  - cp 2 ) •  These phase variations do not occur if T 
is a multiple of the signal period, but then, as shown in Eqn. (A2), z (a) and 
z 2 (a)  are zero except for a  = Ita , and the cross term vanishes even without 

averaging. Thus Eqn. (17) correctly describes the power spectrum of this sig-
nal when averaging is used. 
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The need for averaging, demonstrated above for a sinusoidal signal, arises 
from the inequality (cf Eqns. (A5) and (A10)): 

lEzi1 2 	Elzi 1 2    (A11) 

whichholds,apartfromspecialcases,foranysetofcomponentsz=not just 

the pair forming a sinusoid. 



APPENDIX 	B 

A CLOSED-FORM EXPRESSION FOR FboxCOmb(f) 

Equation (41) gives the spectrum window corresponding to the rectangular 
window for sampled data in the form: 

00 [sin 	(f - 1-)T At 	 Fboxcomb(f) = T 	 exp 	(f - 	(T + 2T 1 ) I . 
k=_œ 	u (f - 	7 I-)T 

( 41 ) 

This expression can be simplified by the use of the following identities and 
definitions: 

At = — 
N 

sin 11-r f - 	T 	= (-1) kN sin TrfT , At 

exp 1 -1.7 (f - q (T + 2T 1 ) 	= (-1) kN exp {-iuf(T + 2T 1 )} • exp {i2uNkT I /T}, At 

= 

(3 = 271- 1\I 

We obtain the result: 

sin ufT 	 1 Fboxcomb(f) = [T 	
uf  T 	

exp {-iuf (T + 2T 1 ) }] r k=  7 	_,, exp (ikB)] . L _03 

	 (B1) 

The first bracketted factor in Eqn. (B1) is Fbox(f), as given by Eqn. (36), so 
that the second bracketted factor represents the effects of sampling. 

We shall consider first the case where the N samples are taken at 
t = 0, At, ..., (N-1)At. It is necessary to distinguish between T 1 , the 

starting point of the interval of length T from which the samples are taken, 
and the location of the first sample, which we shall denote by T i'. If the 

sampled interval is written -Eft < t < T-cAt, where 0 < E < 1, then T 1  = -cAt, 

and T 1  = O. The reason for introducing E iS to ensure that the first sample 

at t = 0 is included in the interval, and that the (N +  ,)th  sample at t = NAt 
is not. The expression on the right-hand side of Eqn. (B1) depends on c 
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(B3)  

(B4)  
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through T 1  in the first bracket and (3 in the second. In the final form of the 

equation this dependence must vanish, since obviously Boxcomb(t) is unaffected 
by changes in e within the specified limits. 

For the case under consideration, Eqn. (B1) becomes: 

00 
Sin  ufT  Fboxcomb(f) = [T ' nfT 	

exp / infT (1 	2e  )}] 	y 	1  ex P  {-2uike} . N 	k= L'co 1-ka  
	(B2) 

It is shown later that 

1-1-ka 
exp {-2uike} - 	727 	

(- ) a 	

exp {iu(1-20/a} ,   (B13) 
sin k=-00 

rfT 

	 exp {iufT(1-20/N} , ufT sin — N 

and hence: 

	

T 	sin ufT  

	

Fboxcomb(f) - N 	 exp 	-2uif ( 2--1\+-\1 1  
(9 	

- T) 
sin  

Note that this expression for Fboxcomb(f) does not involve e. The exponential 
factor in Eqn. (B4) has been written in a form that exhibits the time shift to 

which it corresponds: a shift to the right of t 1  = 
1-N11 T. t 1  is the inter- 2 N 

val between the origin and the mid-point of the array of N sample points. The 
exponential would vanish if Fboxcomb(f) were modified to represent a shift of 
(-t 1  ) in the time domain--i.e., if the sample points were symmetrically located 

with respect to the origin. In this case Eqn. (B4) becomes: 

T r  sin ufT 1 Fboxcomb(f) = (B5) 
N  [sin Lull 

We can now deal with the general case, where the first sample point is 
at t = T t , by applying the appropriate time-shift exponential to the right-hand 1 
side of Eqn. (B5). The mid-point of the array of N sample points is at 

1 N-1 t = (T' + - — T), and this is the magnitude of the shift required. Hence, in 
2 N 

general: 

, 	T [  sin ufT  
Fboxcomb(f) - 	

7fT 	
exp / -iuf )T + 2T1 I . 

	 (B6) 

Equation (B6) can also be written in the form: 

T 	sin ufT  [ 
Fboxcomb(f) - 	 exp {-iuf(T + 2T )} 

N 	

, 
N 	sin  InfT 

1  
(42) 
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where T 1  = T e  — ft/2. Since t = T e  is the location of the first sample point, 

this form shows that the time interval of length T from which the N samples 
are taken must be regarded as starting ft/2 to the left of the first sample 
point, and ending the same amount to the right of the last one. Thus, although 
E does not appear explicitly in the final equation, it is uniquely determined 
by the result; its value is E = 1/2. Equation (42) is the desired equivalent, 
in closed form, of Eqn. (41). 

Summation of the Series 

The even function f(x), defined on the interval -Tr < x < Tr by the 
equation: 

f(x) = cos ax, 

can be expanded in a Fourier cosine series, as follows: 
a o 	

. 
f(x) = ---+ Y 

n1 
an cos nx. 2 = 

The coefficients are: 

2  rT  an = 7  I cos ax cos nx dx , 
o  

= (-1) n 2 	a  
sin ua. 7 a 2 — n 2 

Hence, 
CO 

2a sin Ta 	1 1) n cos nx  
cos ax - 	 + î 	1

( 1)
n 	] .   (B7) 

T 	2a 2 

	

n=1 	a 2 — n 2 

Equation (B7) is valid for lx1 <  T.  Similarly, or by differentiating Eqn. (B7) 
term by term, we find: 

2a sin ua  a sin ax = 	
[ n=1 

Y (-1) n n sin nx 
iT 	 a 2 — n 2  ] 

(B8) 

Substituting (u-x) for x in Eqns. (B7) and (B8), we obtain: 

I  ua  cos {a(u-x)} = [1 + 2 y a 2 cos nx] 
sin  ua ) 	 a 2 — n 2 

n=1 

na sin nx  ua  sin {a(r-x)} = [ 2 Y ( sin na ) 	 a 2 — n 2 
n=1 

which can be combined to give: 

(B9) 

	 (310) 

. 
I  Ta r a2 cos nx - i na sin nx  

, exp 	 1 	2, 
t sin  ua ) 	

{ia(r-x)1 - 	+ 2 	
a 2 — n 2 

n=1 	 (B11) 
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Co  
= 	î -a..-%77  exp {-inx} .   (B12) 

n=-00 

Equations (B9) tu (B12) are valid for 0 < x < 2u. With the substitutions 
a = 1/a, and 2us = x, Eqn. (B12) becomes:-  — 

I  IL 	I Co  
a, 

exp {i(1- 2e)/a} = 	î 1 14a  exp {-2uil(E} . 
sin (IL) 	 k=-oo 
V ' 

Equation (B13) gives the sum of the series in Eqn. (B2). 

(B13) 
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