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ANALYSIS 	OF 	IMPEDANCE 	PROFILES 	AND 

STRUCTURAL RETURN LOSS OF 
HIGH QUALITY 	COAXIAL 	CABLES 

by 

D.W. Rice 

ABSTRACT 

Transmission-line theory is applied to the 
calculation of the transmission and reflection 
errors which occur in a transmission line that 
has small impedance discontinuities along its 
length. The discontinuities are typical of 
those arising in coaxial cables as a result of 
the manufacturing process. Errors arising from 
mismatches in the source and terminating impe-
dances are also calculated. The results indicate 
that errors in phase up to several degrees are 
possible in the CRC High Frequency Direction 
Finding array, due to such imperfections. 

The solution to the inverse problem of comp-
uting the transmission line impedance profile 
from measurements of the reflection characteristics 
of the line is also outlined, and some restrictions 
which apply when the reflection properties are 
measured with swept-frequency equipment are derived. 

INTRODUCTION 

High quality coaxial cable systems may be tested in either the fre-
quency or the time domain. The older method involves measuring, in the fre-
quency domain, the impedance or the voltage standing wave ratio(VSWR) at the 
cable input, and interpreting departures from the ideal in terms of signals 
reflected back to the source from the various inhomogeneities along the 
cable. However, this method gives no information about the distance along 
the cable of the various imperfections causing the reflections. More 
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recently, time domain testing has become possible with the introduction of 
time domain reflectometers (TDR's) 1,2 . In TDR testing a voltage step function 
is introduced at the cable input, and an oscilloscope is used to observe the 
nature of the signals reflected back to the input, much like a radar. 

This report reviews some well-known transmission-line theory, and 
applies it to the case in which the transmission line may be considered to 
consist of segments of uniform characteristic impedance, with discontinuous 
steps in impedance at the segment boundaries. This cable model is shown to 
represent adequately many of the important characteristics of the coaxial 
cable used in the CRC High Frequency Direction Finding antenna array. Small 
series inductive or shunt capacitive discontinuities are neglected, because 
their effects are negligible in the frequency range of interest, 2-30 MHz. 
This calculation of frequency domain properties from a known impedance profile 
is made directly via transmission line equations, and a computer program has 
been written to perform the calculation for a wide variety of situations. 
The results are in good agreement with experimental measurements. 

The report also reviews the Fourier transform relation between time and 
frequency domain coaxial cable properties, and shows how the impedance profile 
of a cable may be computed via a Fourier transform from frequency domain measure-
ments. 

The motivation for this report was the observation that many of the co-
axial cables supplied for the High Frequency Direction Finding antenna array 
had occasional impedance discontinuities or steps of the order of 0.5 ohms, 
and it was necessary to assess the magnitude and nature of errors contributed 
by these anomalies. A second application is the assessment of phase errors 
due to the fact that neither the antenna elements nor the receivers used in 
the system have internal impedances perfectly matched to the cable character-
istic impedance. The analysis may also be of interest to those in the cable 
television industry, where many of the problems are similar. 

LIST OF SYMBOLS 

The following symbols are used in this report: 

velocity of light 

f(t) 	step function response 

f e (t) 	impulse response 

f(t) 	step function response calculated from swept frequency 
measurements 

f'(0 impulse response calculated from swept frequency meas-
urements 

h(t) 	total response 1 + f(t) 
/7717 

current 

cable electrical length 
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SRL 	structural return loss 

frequency sweep rate 

time 

Tr 	
rise time 

V 	voltage 

VI 	voltage travelling in -z direction 

V2 	voltage travelling in +z direction 

V20 	amplitude of voltage travelling in +z direction 

V 	generator voltage 

VSWR 	voltage standing wave ratio 

cable shunt admittance per unit length 

cable series impedance per unit length 

impedance 

Zo 	transmission line characteristic impedance 

Zg 	generator impedance 

ZL 	load or terminating impedance 

distance along cable from origin 

a 	attenuation constant 

phase constant 2u/wavelength 

Y 	complex propagation constant a + iS 
Dirac delta function 

(1) 	phase angle 

4)1 	phase of voltage after travelling down the cable and 
back again 

4)2 	phase of the downgoing signal at the origin z = 0 

complex voltage reflection coefficient 

p
L 	complex voltage reflection coefficient of ZL 

Ps 	
swept frequency complex voltage reflection coefficient 

w 	angular frequency in radians/sec 

w
a 	

upper limit of a swept frequency measurement 

WO 	initial angular frequency of swept frequency measurement. 



	

) 1ZL 
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THE REFLECTION COEFFICIENT 

Following Weeks 3 , the reflection coefficient as measured at the input 
of a uniform cable which is terminated in an arbitrary impedance may be cal-
culated with reference to Figure 1. At any point on a uniform transmission 
line, the voltage may be considered as the sum of two voltages travelling in 
opposite directions, 

V(z) = v i e ." + v 2 e-Y z . 
z =0 	 zL 

(1) 

Fig.1. Uniform transmission line with arbitrary source and load impedances. 

The time dependent,factor  e t  is considered to be absorbed into the constants 

VI and V2. Thus VieYz  represents a wave travelling in the -z direction, and 
-yz V 2 e 	represents a wave travelling in the +z direction. y is the complex 

propagation constant, 

Y  = (VZ) 2  =  a  + 

where  Y  is the shunt admittance per unit length, Z is the series impedance 
per length, a is the attenuation constant, and 13 = 2u/wavelength is the phase 
constant. 

The current is given by 

(2) 

I (z) = - 

1 dV 
Z dz 

(3) 

From the boundary condition that the ratio V/I at z = L must equal the term-
inating impedance ZL , it is readily shown that 

1 + VI e 2YL 
 ZL 	V2 

Zo 1 - VI  e 2'L 
V2 

(4) 



(5) 

(8) 

(9) 
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where Z o  = 	= (- z) 1/2 , the characteristic impedance of the cable. 

The voltage reflection coefficient of the load pL  may then be defined 
as 

-

_ Y1 e zYL 	 yL 
= p (0)e 2  

 V2 

where p(0) is the reflection coefficient at the input end of the cable. 
Equation (5) gives the ratio of reflected-to-incident voltage at the termin-
ation, in terms of the same ratio p(0) measured at the input end of the line, 
and the length of the line L. 

From equations (4) and (5), the usual expression for the reflection co-
efficient in terms of the impedances is given by 

Z - Zo 
= L 	Z + Z o  

This equation for the reflection coefficient is quite general and may 
be applied anywhere along the cable, i.e., if ZL  is reinterpreted as the ac- 

tual impedance at a point (the impedance one would measure with a bridge at 
that point) and Zo is the characteristic impedance of the cable, then the re-
flection coefficient at that point is given by equation (6). 

Another quantity of interest is the voltage standing wave ratio or VSWR, 
which is given by 

1 + Ip(0) 1  
VSWR - 1 - Ip(0)1 

IMPEDANCE AND VOLTAGE TRANSFORMATIONS 

Taking the ratio V/I at z = 0 (using equations (1) and (3), and using 
the fact that, from equations (5) and (6), 

Z 	Zo 
e L 	- 2Y1,  

V2 	Z L + Zo 
 

it is readily shown that 

ZL cosb yL + Zo sinh yL 
Z(0) = Zo Z o  cosh yL + ZL  sinh yL 

This relates the impedance Z(0) at the input of a length L of cable to the 
terminating impedance Z L  at its other end. 

(6) 

(7) 



V(L)  
V(0) - 

(1 + pL)e-YL  

-2 -yL 1 + p e 

	 (10) 

V 	= 1 Z(0) - Zo  
V 	8 Z(0) + Zo 

	 (12) 
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In a similar manner, the ratio of the voltage at the load (z = L) to 
that at the input (z = 0) is given by 

THE RETURN LOSS 

The return loss, or structural return loss as it is sometimes called 
(because it is related to the structure in the impedance profile of a cable) 
is defined by 

SRL = -20 loglp(0)1 dB.   (11) 

The frequency domain quantities that are most frequently measured are 
the VSWR and the return loss. However, in both of these the phase information 
is lost or discarded, and only relatively crude estimates àf the nature and 
location of cable faults can be inferred from the variation of these quanti-
ties with frequency. However, they do serve as good indicators of overall 
cable quality. 

A very useful bridge circuit for the measurement of reflection coeffic-
ient (and therefore the return loss) is shown in Figure 2. Normally, the gen-
erator impedance and all of the bridge impedances Z are made equal to the 
characteristic impedance Zo of the cable. Then it can be shown that the vol-
tage measured by the bridge voltmeter is given by 

or by equation (6) 

p(0) = 8 
V 
 -- ,   (13) 
Vg  

i.e., the unbalance voltage V measured by the bridge is proportional to the 
reflection coefficient p(0) of the impedance Z(0), which is the impedance 
seen looking into the coaxial cable attached to the bridge terminals. It 
should be noted that the bridge presents a source of impedance Zo to the un-
known load Z(0); and, when Z(0) = Zo, the impedance seen looking into the 
bridge input terminals is also Zo. If the bridge voltage V is measured in 
both amplitude and phase, then the complex reflection coefficient can be mea-
sured as a function of frequency. Since the generator, with internal impe-
dance Zo, would develop a voltage V /2 across a matched load, the insertion 

loss of the bridge is a factor of 4, or 12 dB. 

By using matched precision resistors, return loss bridges can be made 

with a balance of about 40 dB. However, by using broadband transformer 



UNKNOWN IMPEDANCE 
(CABLE IMPEDANCE Z(0) 

AT z.0) 

GENERATOR BRIDGE 

Z( 0) 

techniques, bridges with a balance of 55 dB over the frequency range 4 to 
300 MHz can be manufactured.* 
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Fig.2. Return loss bridge equivalent circuit. Normally Z = Zo, the charac-
teristic impedance of the cable to be measured. 

CALCULATION OF RETURN LOSS FROM THE IMPEDANCE PROFILE 

Equations (9) and (10) may be used as the basis for the calculation of 
the return loss and input-to-output phase error of a cable if its impedance 
profile is known. The cable may be regarded as a series of segments, each 
with a constant impedance, and with a discontinuous step in impedance at the 
segment boundaries. The load impedance is first transformed to the other end 
of the last segment by equation (9), that impedance is then used as a load 
impedance for the next segment, etc., until the impedance has been transformed 
all the way back to the input. The reflection coefficient and return loss can 
then be calculated by equations (6) and (11). The voltage developed across 
the load impedance can then be calculated by repeated application of equation 
(10), using as a starting point the voltage V(0) at the cable input, where 

V Z(0) 
V(0) -     (14) Z + Z(0) ' 

where V is the eenerator voltage, Z is the generator impedance, and Z(0) is 

the impedance looking into the cable, computed earlier 
cation of equation (9). 

The above procedures are the basis of a computer program which has been 

* The Jerrold Corporation 

by the repeated appli- 
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written in FORTRAN IV, and which is listed in Appendix A. The program computes 
the follawing quantities: 

a) 	the magnitude of the return loss for an arbitrary terminating impedance, 

h) 	the transmission loss, 

c) the transmission amplitude and phase errors, relative to a matched, per-
fect cable of the same length, and 

d) the return signal phase error, for an open-circuited termination. 

The return signal phase error for a short-circuit termination is the same as 
for an open-circuit termination except for a change in sign. (Measurements of 
the return signal phase for open and short-circuited terminations can be used 
to obtain the precise lengths of cables provided the approximate length is 
known well enough that the 21T ambiguity can be removed. More details are given 
in Appendix B.) 

Figure 3 shows an X-Y chart recording of the TDR trace for a 354 meter 
length of one-half inch diameter foamed dielectric cable, type AL1250P man-
ufactured by Canada Wire and Cable Ltd. The steps in impedance are believed 
to be caused by pauses in the cable manufacturing process. Provided the impe-
dance steps are small enough that multiple reflections may be neglected, the 
steps in the TDR trace may be interpreted directly as changes in the charac-
teristic impedance of the cable. However, the general slope of the TDR trace 
between impedance steps should not be similarly interpreted; this feature is 
attributable to distortion of the test pulse by frequency-dependent losses of 

TOR TRACE 

IDEALIZED IMPEDANCE PROFILE 

[I\ 
50 OHM 
TERMINATION 

49-1 END OF CABLE 

100 	 ZOO 

DISTANCE ALONG CABLE, METERS 

300 

Fig. 3. Time domain reflectometer trace of a 354 meter cable, and the idealized 
impedance profile derived from the TDR trace. 
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various kinds in the cable 2 . With this proviso, the idealized impedance profile 
of the cable is shown in the lower part of Figure 3. This interpretation was 
confirmed by comparisons of the cable characteristic impedance at each end 
with known impedance standards. 

Figure 4 shows the measured return loss for the cable of Figure 3, along 
with the return loss computed on the basis of the idealized profile for the 
cable. The good general agreement between the predominant features of the 
return loss curves obtained by the two methods provides confidence that the 
phase errors which are computed from the model (but are not readily measurable) 
will also be representative of the real phase errors, at least in a worst—case 
or statistical sense. The return loss agreement is better in detail at the 
lower end of the frequency range, where small errors in the positions of the 
various impedance steps are less important to the computations. 

COMPUTED RETURN LOSS 

O 40—. 

teJ 

a a 	 1 •M 	 I 
I 	

• 	

I 	 1 	 r" 	' 	I 
10 	 15 	 20 	 25 	 30 

FREQUENCY MHz 

Fig.4. Comparison of measured and computed return loss, for the cable of 
Figure 3. 

50 
0 
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The slightly higher overall measured return loss can be attributed to a 
number of possible causes: 

(a) in deriving the impedance profile of Figure 3 from the TDR measurements, 
no correction was made for cable attenuation, 

(b) small but numerous impedance variations, too small to be resolved with 
a TDR, contribute to the total reflected signal, 

(c) errors in the return loss bridge itself may cause a slightly pessimistic 
return loss measurement. 

For the magnitudes of cable imperfections of this example, the input-to-
output phase error is less than 0.1 0 . However, the return phase error for 
open and short-circuited terminations amounts to several degrees, although 
their average is always negligibly small. Further details are given in Appendix 
B. 

CALCULATION OF THE IMPEDANCE PROFILE 
FROM THE REFLECTION COEFFICIENT 

Given measurements of the reflection coefficient over a range of fre-
quencies at a cable input, it is possible to calculate the step-function 
response of the cable, that is, the response as seen by a Time Domain Reflecto-
meter . As mentioned earlier, the step function response is very nearly equal 
to the impedance profile of the cable, provided the impedance discontinuities 
are small enough that multiple reflections may be neglected. 

From linear system theory, the impulse response of a system is the 

Fourier transform of the reflection coefficient, or 

f' (t)  = 	p(w)ei t  
-Go 	

dw, 
27r  

where f'(t) is the impulse response, and p(w) is the reflection coefficient 
at the cable input. As well, the step function response is the integral of 

the time impulse response, or 

f(t) = fo t  f'(t) dt,   (16) 

where f(t) is the step function response. Finally, the total response h(t) 
observed by a TDR is the sum of the incident step and the response, or 

h(t) = 1 + f(t).   (17) 

For example, for the uniform cable with mismatched load impedance ZL , 
as shown in Figure 1, the reflection coefficient is: 

p(w) = pLe
-2yL 

where pi,  is given by equation (6). 

(15) 

(18) 
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(19)  

(20) 

(21) 

in _p dp  

this way is 
a result of 
10-90 per 

(23) 

The impulse response then is 

1 ,w, 	-2yL iwt, f t (t) = --i-pe 	e 2u 	L 

or 

2L  
1 	-2aL sin wA (t - c)  f'(t) = 7,7  pLe 	 • t - 2L 

In the limit as
a 	, 

f'(t) = p e-2aL 6(t - 
-a12.. 

), 

2L where 6(t - — ) is the Dirac delta function. 

This means that the system impulse response is a delta function, delayed 
by the two-way propagation time 2L/c, and reduced  in amplitude from the inci-
dent impulse by the reflection coefficient of the load pL' and the two-way 

Then, by equation (16), the step response is 

attenuation of the cable e
-2a

1' 

f(t) = 

2L 

e - 2 01  r t. sin wa  (t - c ) 
J

o 
  dt. p u L 	 21, 

t — --- 
c 

	 (22) 

z 
 This can be expressed in terms of the sine integral Si(z) = f 	s

o 
which is tabulated in reference 4. The step response obtained in 
shown in Figure 5. The response has undershoot and overshoot, as 
the finite bandwidth 2wa  over which the measurement is made. The 
cent rise time of the step is 

2.8 T - 	. wa 

This may be taken as the time resolution of the method. For example, if 
w
a = 30 MHz, Tr = .015 

microseconds. 
27 

This theoretical development ûsed two simplifying assumptions. First, 
the attenuation constant a has been assumed to be independent of frequency, 
which of course it is not, and second, the reflection coefficient has been 
assumed to be independent of frequency. However, digital implementation of 
the Fourier transform of (measured) p(w) would remove both of these limitations. 
In addition, the data could be 'windowed' thereby reducing the undershoot and 
overshoot in the computed step response, with some sacrifice in the rise time. 
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IDEAL RESPONSE—,  

FINITE BANDWIDTH RESPONSE-4> 

-61r 	-41T 	'-Z 7r 	 Zr 	âr 	Isr 	Zr 
NORMALIZED TIME Waft-Lek) 

Fig.5. The step-function response to an impedance discontinuity, obtained by 
Fourier transformation and integration of the reflection coefficient. 

Normally, real data are taken for positive frequencies only, whereas 
the limits on the integral (19) are from -wa to +wa . However, for real time 

functions, the spectrum is such that p( -w) = p*(w), i.e., the negative part 
of the spectrum is the complex conjugate of the positive one. The digital 
Fourier transform thus can be implemented using measurements of the positive 
spectrum only. 

CALCULATION OF THE IMPEDANCE PROFILE 
FROM SWEPT FREQUENCY MEASUREMENTS 

The foregoing discrete Fourier transform analysis requires measurements 
of the reflection coefficient p(w) at a series of fixed frequencies across 
the bandwidth wa . However, it is more convenient to make measurements on a 
swept frequency basis, and this method is planned for the periodic testing of 
the cables in the High Frequency Direction Finding Array. In this case, the 
result is somewhat different. Consider in Figure 1 that the down-going voltage 
V2 is a constant amplitude, linear frequency ramp. Then at z = 0, 

i(Wo 	2nSt)t 
V2 = V20 e 

O  

(24) 



(28) 

(29) 

(30) 

If s  (01 = If(t)1 	 (31) 
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where V20 is the amplitude, wo the initial radian frequency, and s the frequency 
sweep rate. After time t, the accumulated phase of the signal V2 iS 

(P2(t) 	rt (w0 + 2ust)dt = wot + ust 2 . 	 (25) 

The signal after propagation down the cable and back has a phase 

2L 
t - 

= I 	c
2L 	 2L 2 

(04 	2ust)dt = wo(t - 	) + us(t - 	) . 

	 (26) 

The phase difference (PI - (1)2 is then 

L 2L 
= - (C1) - 2Trà — ) — c 	c 

where w = wo + 2ust is the instantaneous radian frequency of the input signal 

V2, and w - 2rs 7 is the average frequency of the signal propagating down the 
cable and back tC the source. The ratio V1/V 2  of the returned to the down-
going signal is 

L, 2L 
Y1 _ 	_2 0J, -i(w - 2us 	) ps  (W) = 	- pLe 	e 

where the subscript s refers to a swept frequency measurement. 
Using equations (18) and (2) 

p(w) = P(w)e
1ns(2L/c)2. 

Taking the Fourier transform of (28) and then integrating, one obtains 

f
s 	

= ein5(2L/c)2 f(t), 

where f(t) is the 'step-function response' obtained from the swept frequency 
measurement of the reflection coefficient, p(w). 

(27) 

The quantity fs (t) is not the 
because it is complex. However for 

1s(aL )
2 is small enough that the rea 

true time domain step-function response 
reasonable sweep rates and cable lengths, 

1 part of f5 (t) dominates. In any case, 

unity magnitude, 
- 

since the exponetial e
ius(2L/c)2 haà 

i.e., the magnitude of f5 (t) is the same as the magnitude of the step response 
f(t). 



(32)  

(33)  
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If the Fourier transform of  p5 (w) is implemented using the positive part 
of the spectrum only, and assuming that the negative spectrum is the complex 
conjugate of the positive one, then 

w 
1 	f o 	 1 	

a 
f l it\ = 	 fw\e iwtdw 	f 	iwt  w , s \ 	2n 	-wa •/s‘ 	+ -2-77 	ps (w)e 	d 

or 

wa 
p
s
*
(w)e-iwtdw + s (w)e

iwt dw. f' (t)  - 27  _ 1 	f 	 1 
411 

For example, for a uniform cable of length L and load reflection coeffi-
cient pL , the reflection coefficient  p(w) at the cable input, as measured on a 
swept frequency basis, is given by equation (28). Putting this in equation 
(33), one obtains; 

2L Lin w - c  f;(t) 	PL 	[c. )s  rs(21) n  e 	 a  
t 	2L 

21, 1 - cos wa (t - — 
c  -Ein Trs(11\2  c ) 	t 	2L 	I] 

and the step function is the integral of equation (34), 

Pr 	 t - 
fs (t) = 	e-2OEL  [os rs(1[11 

sin  w 

t - --- 
a ( 	c ) 

 TI 	 2L 

- o 

(34) 

	

ft 	 2L 1 - cos W t -(--) a 
- 	Tr sp)1 r c  d] 1 

	

L 10 	t 	2L 	 (35) 

The first integral in equation (35) can be expressed in terms of the sine 

ingegral Si(z) = 	sin p  I 	dp, while the second integral can be expressed in 

terms of the modified cosine integral Cin(z) = z 1 - cos p  dp. Both of 

these are tabulated in Reference 4. However, for reasonable sweep rates s 
and cable lengths L, equation (35) can be simplified as follows: for 

2L wa —c < 13,000, the cosine integral has a value less than 10. Thus for 
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(36) 

(37) 

(38) 

7S(  ii2L 2 
< .001, the second term may be neglected with less than one per 

cent error. Equation (35) then reduces to 

2L 
P 	

-2ŒL  t sin wa (t fs 	= L e 	f
o 	

c 	dt, _ 
2L1 - --c  I  

which is the saine as equation (22). 

Thus, the step function response may be obtained to an accuracy of one 
percent or better, by Fourier transformation and integration of the reflection 
coefficient measured on a swept frequency basis, provided 

Trs [ 	< 	.001, 

and 

w 	< 13,000 . a c 

For example, for a cable of L = 1000 meters, the inequalities are sat-
isfied for sweep rates s less than 10 MHz/sec, and swept bandwidths  t a  less 
than 300 MHz. 	 271 

SUMMARY 

Some well-known transmission-line theory has been reviewed and applied 
to the calculation of the frequency domain properties (reflection coefficient, 
return loss, and phase error) of a coaxial cable from the cable impedance 
profile. This analysis is useful in assessing the phase errors which small 
impedance discontinuities and mismatched terminating impedances will cause in 
the CRC High Frequency Direction Finding system. A computer program to perform 
this calculation, together with some examples of calculated results, are in-
cluded in Appendices A and B. 

The solution to the inverse problem of calculating the impedance profile 
from measurements of the complex reflection coefficient at the cable input 
terminals has also been outlined. The method involves a Fourier Transform of 
the frequency-domain reflection coefficient measurements to obtain the time 
domain impulse response of the cable, followed by an integration to obtain the 
step-function response. The restrictions which apply when the reflection co-
efficient is measured using a swept frequency signal source were derived. 
This analysis will have application in the swept-frequency cable testing program 
which is being implemented for the CRC High Frequency Direction Finding array, 
to monitor long term variations ,  in.cable length due to seasonal temperature 
changes or other effects. 
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APPENDIX A 

The Return Loss Computer Program 

The computer program listed below is based on equations (9) and (10) of 
this report. The program as written can handle calculations for cables com-
posed of up to 20 segments; this could be increased if desired by enlarging 
the size of the necessary arrays in the program. In single precision on the 
XDS Sigma 7 computer, round-off error gives a residual return loss of about 
120 dB for a uniform, matched cable of 20 segments, however, the program is 
written such that calculated return losses greater than 100 dB are arbitrarily 
set to 100 dB. 

At the end of the listing is a sample of the line printer output. 
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VARIABLE 

ZO(0) 
EL(J) 

ZO ( J) 

ZO(N+1) 

PROGRAM 'CABLE' TO COMPUTE THE RETURN LOSS, TRANSMISSION 
LOSS, AND PHASE SHIFT ERROR .OF A TRANSMISSION LINE 
COMPOSED OF ARBITRARY LENGTH SEGMENTS OF ARBITRARY 
CHARACTERISTIC IMPEDANCE. 

18 
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C  

EXAMPLE OF INPUT DATA REQUIRED: 
N=3, 	 Z0(0)=50.0 
EL( 1)=10.0, Z0(1)=51.0 
EL(2)=20.0, ZO(2)=52.0 
EL(3)=10.0, ZO(3)=S3.0 

ZO(4)=S0.0 
F=1.0,30.0,1.0 * 

UP TO 20 SEGMENTS MAY BE SPECIFIED. - 
IF DATA IS INPUT FROM A DISC FILE, THE FILE SHOULD BE 
CREATED WITH CR OFF. 

THE  INPUT VARIABLES HAVE THE FOLLOWING MEANINGS: 

TYPE 	MEANING 
INTEGER 	NUMBER OF SEGMENTS IN CABLE 
REAL 	SOURCE IMPEDANCE, OHMS 
REAL 	THE ELECTRICAL LENGTH OF THE 

J-TH SEGMENT, METERS 
HEAL 	THE CHARACTERISTIC IMPEDANCE OF 

THE J-TH SEGMENT, OHMS 
REAL 	THE TERMINATING IMPEDANCE, OHMS 
REAL ARRAY REPEAT TRIPLE SPECIFYING INITIAL, 

FINAL, AND STEP INTERVAL FOR THE 
FREQUENCIES AT WHICH COMPUTATIONS 
ARE REQUIRED, MHZ 

THE VALUE 0.816 IS ASSUMED FOR THE PROPAGATION VELOCITY FACTOR. 
THE ATTENUATION FAC1OR IS 0.26 DB/I00 FT. AT 10 MHZ, 
AND VARIES AS (FREQUENCY)**0.53 (WHICH FITS THE PUBLISHED 
ATTENUATION CHARACTERISTIC OF 1/2 INCH ALUCEL AL1250P). 

COMPLEX Z(0:21),V(20),VSTD,ZP,RHO(3),RHOP,ZTCPLX 
DIMENSION ZO(0:21),EL(20),F(3),ZT(3),ROANG(2) 
NAME LIST N,ZO,EL,F 
DATA VP,P1/0.816,3.141592653/ 
CALL EOFSET(101S) 

1 	INPUT(105) 
ELTOT=0.0 
DO 40 J=1,N 

40 	ELTOT=ELTOT+EL(J) 
WRITE(108,30) N,ELTOT,Z0(0),ZO(N+1),(J,EL(j),ZO(J),J=1,N) 

30 	FORMAT(1H1,3X,I2,1X,'SEGMENT CABLE OF ',F7.2,1X, 
C'METERS TOTAL ELECTRICAL LENGTH', 
C//4X,'SOURCE IMPEDANCE',IX,G.3,'OHMS, LOAD IMPEDANCE 1 , 
C1X,G.3,'OHMS', 



C//4X , 'SEGMENT',4X,'ELECTRICAL',3X,'IMPEDANCE', 
C/15X,'LENGTH, M',6X,'OHMS', 
C/20(/6X,I2,7X,F8.2,5X,F7.2)) 
WRITE(108,31) 

31 	FORMAT(//3X,'FREG',4X,'KETURN',3X,'TRANSMISSION', 
C5X,'TRANSMISSION ERROR',4X,'RETURN PHASE ,  
C/4X,IMHZ',2(3X,'LOSS, DB'),5X,'MAG, DB 1 ,3K, 
C'PHA, DEGREES',3X,'ERROR, DEG 1 /59X,'(OUTPUT OC)') 

REPEAT 100, FOR EF=CF(1),F(2),F(3)) 
FREQ=EF*1.0E6 
XLOSS=0.26*(EF/10.0)**0.53 

COMPUTE RETURN SIGNAL FOR OPEN AND TERMINATED CABLES 

ZT(1)=1.0E20 
?.T(2) =:0(N+1) 
DO 52 K=1,2 
Z(N+1)=CMPLX(ZT(K),00) 
DO 50 J=N,1,-1 
CALL ZTSFRM(L(J+1),ZO(J),FREQ,EL(J),VP,XLOSS,Z(J)) 

50 	CONTINUE 
RHO(K)=(Z(1)-10(0))/(Z(1)+ZO(0)) 

52 	CONTINUE 
ROMAG=CABS(RHO(2)) 
IF(ROMAG-1.0E-5) 20,20,21 

20 	RETL=100.0 
GO TO 22.  

21 	RETL=-20.0*LOG10(ROMAG) 
22 	CONTINUE 	. 

COMPUTE REFLECTION FROM PERFECT OPEN-CIRCUITED CABLE 

?.TCPLX=CMPLX(ZT(1),0.0) 
CALL ZTSFRM(ZTCPLX,50.0,FRE,ELTOT,VP,XLOSS,ZP) 
RHOP=CZP-Z0(0))/(ZP+LO(0)) 
ROPRE=REAL(RHOP) 
ROPIM=AIMAG(RHOP) 
ROPANG=180.0/PI*ATAN(ROPIM,ROPRE) 
RHORE=REAL(RHO(1)) 
RHOIM=AIMAG(RHO(1)) 

COMPUTE RETURN PHASE Er<KOK 

53 	ROANG(1)=180.0/PI*AlAN(RHOIM,RHORE)-ROFANG 

COMPUTE VOLTAGE AT LOAD END OF CABLE, COMPARE WITH RE`, ULT 
FOR PERFECT CABLE 

•V(1)=2.0*?.(1)/(Z(1)+Lo(ô)) 
V(1)=VOLTAGE  AI CABLE INPUT 

TRANSFORM V(1) TO OUTPUT END OF CABLE 
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LA 
LO 

FL 
VP 
XLOSS 

CMPLX 
REAL 
REAL 
REAL 
REAL 
REAL 

51 

10 
100 
101 

DO 51 J=1,N 
CALL VTSFMCV(J),Z(J+1),ZO(J),Fi'Œi:JeEL(J),VP,XLOSS,V(J+1)) 
CONTINUE 

COMPUTE PHASE SHIFT AND ATTENUATION OF A 'PEtFECT' CABLE 

CALL VÏSFrffl(1.0,0.0),(50.0,0.0),50.0,FEG,ELTOT,VP,XLOSS,VSTD) 
VSTDM=CABS(VSTD) 
VSTFMF=REAL(VSTD) 
VSTDIM=AIMAGCVSTD) 
ANGSTD=180.0/PI*ATAN(VSIDIM,VSTDtkE) 
VMAG=CABS(V(N+1)) 
3;:F= .:-OEAL(V(N+1)) 
VIM=AIMAGCV(N+1)) 
ANGV=180.0/PI*ATAN(VI1,V .rtE) 

ANGE=ANGV-ANGSTD 
3F=VMAG/VSTDM 
VEi'-:=20.0*LOGIO(VEX) 

TLOSS=1.0/VMAG 
TLOSS=20.0*LOG10(TLOSS) 

WRITE(108,10) EF,RETL,TLOSS,VERR,AAGERR,ROAMG(1) 
FORMAT(1K,F6.3,2X,F8.2,2X,F9.2,5X,F8.2,5X,F7.2,3X,F9.2) 
CONTINUE 
STOP 
END 

SUBROUTINE ZTSFRM(LA,ZO,F,EL,VP,XLOSS,LB) 
'ZISFRM' COMPUTES THE IMPEDANCE LB SEEN AT ONE END OF A 
TRANSMISSION LINE WHEN THE LINE IS TERMINATED AT THE OTHER 
END BY AN IMPEDANCE LA. 

THE INPUT VARIABLES ARE: 

20 
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VARIARLE 	TYPE MEANING 

TERMINATING IMPEDANCE, OHMS 
LINE CHARACTERISTIC IMPEDANCE, OHMS 
FREWUENCY, HERTZ 
LINE ELECTRICAL LENGTH, METERS 
PROPAGATION VELOCITY FACTOR 
LINE ATTENUATION CONSTANT, DB/100 FT 

THE OUTPUT VARIABLE IS: 

CMPLX 	IRE  COMPUTED LINE INPUT IMPEDANCE,OHMS 

COMPLEX ZA,ZB,GAMMAL,LAN 
DATA PI,CLT/3.141592653,2.9979 2 5E 8 / 
C0NST=20.0*30.4799*0.43429 45  
BETA=2.0*PI*F/CLT 
ALPHA=XLOSS*VP/CONST 

ZB 
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GAMMAL=CMPLMALPHA,BETA)*EL 
ZAN=ZA/Z0 
Z3=Z0*(ZAN*CCOSH(GA1MAL)+CSIMH(GA11AL)) 

C/(CCOSH(GAMMAL)+ZAN*CSINH(GAMMAL)) 
TU N 

END 

SUBKOUTINE VTSFKM(VA,C1- ,ZO,F,EL,VP,XLOSS,V2) 

	

' C 	'VISFKM' COMPUTES THE VOLTAGE VB AT ONE END OF A TKANSMISSION 

	

C 	LINE, GIVEN THE VOLTAGE VA AT THE OTHEK END. 
C 

	

C 	THE INPUT VA .KIABLES AKE: 
C 

	

C 	VAKIRLE 	KEAL 	MEANING 
C 

	

C 	VA 	 CMPLX 	INPUT VOLTAGE, VOLTS 

	

C 	• T 	 CMPLX 	TEKMINATING IMPEDANCE 

	

C 	 .E,AL 	LINE CHAACTEKISTIC IMPEDANCE, OHMS 

	

C 	F 	 NEAL 	FKEWUENCY, HEKTZ 

	

C 	FL 	 'K'EAL 	LINE ELECTKICAL LENGTH, METEKS 

	

C 	VP 	 KEAL 	PKOHAGATION VELOCITY FACTOK 

	

iC 	XLOSS 	• -cEAL 	LINE ATTENUATION CONSTANT, DB/100 FT 
! c 

	

c 	THE OUTPUT VA::IABLE IS: 1 c  

	

C 	VF3 	 CMPLX 	VOLTAGE AT OTHEK END OF LINE, VOLTS 
C 

DATA PI,CLT/3.141592653,2.997925ES/ 
COMPLEX VA,VB,ZT,KHO,GAMMAL,GAMMAL2 
CONST=20.0*30.4799*0.4342945 
KHO=CZT-CMPLX(Z0,0.0))/(LT+CMPLX(Z0,0.0)) 
BETA=2.0*PI*F/CLT 
ALPHA=XLOSS*VP/CONST 
GAMMAL=-CMPLX(ALPHA,BETA)*EL 
GAMMAL2=2.0*GAMMAL 
VB=VA*(CEXP(GAMMAL)*(1.0+KHO)) 

C/(1.0+KHO*CEXP(GAMMAL2)) 
KETUA 
END 



FRE 	RETURN 	TRANSMISSION 
MHZ 	LOSS, DB 	LOSS, DB 

2.000 
4.000 
6.000 
8.000 
10.000 
12.000 
14.000 
16.000 
18.000 
20.000 
22.000 
24.000 
26.000 
28.000 
30.000 

27.75 
35.16 
27.72 
28.50 
29.98 
30.50 
31.07 
30.96 
30.73 
30.10 
28.86 
28.09 
36.16 
28.22 
53.17 

.13 

.17 

.22 

.25 

.28 

.31 

.34 

.36 

.38 

.41 

.43 

.45 

.46 

.49 

.50 

EXAMPLE OF PROGRAM OUTPUT: 

3 SEGMENT CA9LE OF 	40.00 METERS TOTAL ELECTRICAL LENGTH 

SOURCE IMPEDANCE 50.0 OHMS, LOAD IMPEDANCE 50.0 OHMS 

SEGMENT 	ELECTRICAL 	IMPEDANCE 
LENGTH, M 	OHMS 

1 	 10.00 	51.00 
2 	 20.00 	52.00 
3 	 10.00 	53.00 
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TRANSMISSION ERROR 	RETURN PHA5 

	

MAG, DB 	PHA, DEGREES 	ERROR, DEG 
(OUTPUT OC) 

	

•-.01 	 ••.01 	 1.26 

	

-.00 	-.01 	 .49 

	

-.01 	 1.05 

	

••.01 	 .•.00 

	

.03 	.•1.93 

	

.•.01 	 .69 
.03 

2.64 
.01 

	

(,00 	 .03 	 1.93 

	

.•.01 	 .00 	 .04 
.01 

	

.01 	 -.44 	. 

	

••.01 	 .01 	-1.32 

	

••.00 	 .08 



APPENDIX 	B 

Typical Phase Errors for Various Cable and Termination Imperfections 

The HFDF array utilizes cables in two matched sets; one set is approx-
imately 170 meters long (electrically), and the other is approximately 750 
meters long. To make valid phase comparisons between signals transmitted over 
the two different cable lengths, it is necessary to know these precise lengths. 
One way to make the required length measurement is to open- or short-circuit 
one end of the cable and to measure, at the other end of the cable, the phase 
of the reflected signal with respect to a signal source at the cable input, 
using the return loss bridge of Figure 2. This measures the two-way phase 
length of the cable. Since the cables are many wavelengths long, the length 
must be approximately known from a separate measurement (e.g., by a pulse re-
flection technique) to remove the 27 ambiguity. ' 

If there are imperfections in the cable which cause reflections back to 
the source in addition to the desired one from the open- or short-circuited 
end, then the resultant phase of the total reflected signal may be in error. 
Some examples of the phase error in the return signal, computed for an open 
circuited cable of 170 meters length with 1 ohm impedance discontinuities at 
various locations, are shown in Figure Bi.  

It can be shown that the return signal phase error in a short-circuited 
cable is identical to that in an open-circuited cable except for a reversal 
of sign. Thus the effect of errors caused by such cable imperfections can be 
overcome by taking the average of an open-circuit and a short-circuit measure-
ment. 

Figure B2 shows the computed return signal phase error for the same 
circumstances as in Figure Bi,  except that the cable length is 750 meters 
rather than 170 meters. The results are similar except that the longer cable 
produces a more rapid variation of phase error with frequency, and the effects 

of cable attenuation are more pronounced. 

It can be verified that cable imperfections such as those of Figures Bi  
and B2 do not produce a significant error in the phase of a signal transmitted 

from one end of the cable to the other, provided the cable is properly term-
inated at both ends. However, the impedances of the antenna elements in the 
HFDF array are such that VSWR's up to 5:1 may be produced, while the receivers 
may result in VSWR's up to 1.4:1. These worst-case mismatches may cause sig-
nificant phase errors, even in perfect cables, due to multiple reflections of 
the signal from the mismatches at the cable ends. Figure B3 shows the computed 
phase errors, as a function of frequency, for cables of 170 and 750 meters 
length, and with source and load mismatches corresponding to VSWR's of 5:1 
and 1.4:1, respectively. These are errors in a perfect cable, with respect 
to the correct value when source and load are properly matched to the cable 
characteristic impedance. 
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Fig.B1. Computed return phase error for various cable impedance discontinuities; 
cable terminal end open circuited; cable length 170 meters. 
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Fig.B3. Computed input-to-output phase errors, for cables with mismatched 
source and load. Source VSWR 5:1; load VSWR 1.4:1. (A) Cable of 
170 meters length, (B) Cable of 750 meters length. 

For cables matched in length and with identical (but mismatched) term-
inating impedances, the phase errors would be the same in all cables and hence 
of no consequence in the comparison of the phase of the signal from one antenna 
to another. However, in comparing the signals from two antennas via two dif-
ferent lengths, phase errors of 10 0  peak at the low frequency end due to mis-
matched source and terminating impedances, are possible. The phase error is 
reduced at higher frequencies, particularly in the longer cable because of 
cable attenuation. 

All of the computations in this report assume cable characteristics 
corresponding to Canada Wire and Cable Alucell AL1250P. These are: 

• nominal characteristic impedance 50 ohms 

• velocity factor of propagation 0.816 
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attenuation 0.26 dB/100 feet of physical length at 10 MHz, and 
varying with frequency raised to the power 0.53. 

Cable lengths quoted are electrical length i.e., physical length divided 
by 0.816. 








