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NOMENCLATURE 

- Eulerian attitude error angles, roll, pitch and yaw, respectivel: 

- Eulerian attitude angles with respect to the MASS set of axes 

- the projected attitude angles measured by the MASS 

(1) - longitude of the ground station relative to the nominal or 
average subsatellite point 

A - latitude of the ground station 

1 , d 2' 6 3 

cy V 61 
1' 	2' 	3  

- Eulerian angles 
craft axes 

of the MASS coordinates with respect to space- 

- Eulerian angles of the ground station antenna axes with respect 
to xE axes 

X 	- an earth centred set of axes 

RE - radius of the earth at the ground station 

R - synchronous radius 

Rst - radius at time t of an eccentric synchronous orbit 

r  -SG - a unit vector from the satellite to the ground station 

(PR - angle from ascending node to the perigee, in the orbit plane 

e - eccentricity of orbit 

f - true anomaly of spacecraft in its orbit 

M - mean anomaly of spacecraft in its orbit 

n' - orbital angle of satellite from ascending node, n' = (PR + f 

n - earth rate angle, n = 	+ M 

wE - spin rate of the earth 

t - time measured from ascending node epoch. 

iv 



To abbreviate 
CO for cos (6) and S 
such as O. Since th 

the following, we us 

sin (6.) and cos (6. 

denote sin (6'.) and 

NOTATION 

(y). denotes the transformation corresponding to a rotation from an old 

set of coordinates xOLD to a new set xNEW , a rotation of magnitude y°  and 
about axis i of the old set. The right-handed rule is the convention used to 
determine the sense of the rotation. Accordingly, an inertially fixed vector 
V
OLD in the old set of axes becomes V 	in the new representation, where — 	 —NEW 
V 	= (y) i — vOLD . The rotational transformations are defined in Appendix A. 

Unless otherwise defined, a vector is a column vector in three dimen-
sional Euclidean space. Accordingly, the rotational transformations are 3 x 3 
matrices. The components of a vector V are indicated by subscripts: 

V=  (V
1 ,  V2' V3 )

T 

the trigonometric functions we employ the notation 
6 for sin (0), for any angle represented by a Greek symbol 
e angles 6

l' 
6 2' 6 3 and 1  6' , 6' ' 6' appear frequently in 23 

e thefurtherabbreviationofS.andC.to  represent 

), respectively, for j = 1, 2 or 3. Similarly,  S and C! 

cos (S .), respectively. 

For further notational information, please refer to the Nomenclature. 



A MICROWAVE ATTITUDE SENSING SYSTEM 
FOR 

SATELLITES - ANGULAR RELATIONSHIPS 

by 

Rolf Mamen 

ABSTRACT 

A Microwave Attitude Sensing Subsystem (MASS) 
may be used to measure the attitude of a satellite 
relative to an incident polarized RF signal from 
a ground station. The desired attitude of a space-
craft, however, may be specified with respect to a 
set of axes other than those of the MASS. This 
report describes the development of relations be-
tween the angles measured by the MASS and the space-
craft attitude specified by the conventional roll, 
pitch and yaw angles. In order to preserve genera-
lity, the ground station position is arbitrary and 
the satellite is assumed to be in an inclined ec-
centric synchronous orbit. Exact relations are 
developed for the roll, pitch and yaw angles in 
terms of the MASS measured angles, and conversely, 
for the MASS measured angles in terms of roll, 
pitch and yaw. Furthermore, the difficult-to-
measure yaw angle is determined from roll and pitch 
plus any one of the MASS measured angles, for pseudo 
two-station yaw. The exact solutions are orbit 
dependent and lengthy, and various levels of approxi-
mations are suggested in order to simplify the 
solutions. 

I. INTRODUCTION 

The use of narrow-beam antennas aboard satellites requires accurate ori-
entation of the satellites and even more precise measurement of the orientation. 

1 



ASCENDING 
NODE 

ft  
SATELLITE 
NOMINAL 
POSITION 

/L-EQUATORIAL PLANE 

EARTH 

GROUND 
STATION 

f ORBIT 
PLANE 

x°' 
3 

Fig. la. Pictorial of satellite and ground station. 

2 

XE 

(1:0 ° ) 1 

*(180 0 ) 1  (n') 2  (1) 3  (-n) 2  

(q)2 (q)1  

01 x  
( 0 2)2 (63)3 	

xSC 

I 
6 2 ) 2 (6 1 ) 1 

LS 
*  (4) 1 ) 1 (4) 2 ) 2 (4)3) 	X

RF 

* Denotes additional parallel translation. 

Fig. lb. Rotational relations between coabdinate sets x. 



3 

Conventional sensors in the past have been basically one- or two-axis devices 
such as earth or sun sensors or star trackers, requiring a combination of two 
sensors in order to monitor the orientation of a satellite about the three 
conventional axes of roll, pitch and yaw. 

One feature of the MASS proposed for the Communications Technology 
Satellite (CTS) is that the one device could measure three-axis information 
which can be transformed into roll, pitch and yaw angles. Two of the angles 
could be monitored on a principle similar to that of an interferometer, while 
the third, rotation about the antenna boresight, could be measured along 
polarimeter or polarization rotation lines. Since the proposed beacon would 
not be located at the subsatelltte point, the measured angles would not cor-
respond to the desired roll, pitch and yaw. However, the transformation may 
be effected if the beacon and satellite positions are both known. Furthermore, 
the cross coupling of the roll, pitch and yaw angles into the MASS measured 
angles enables yaw to be estimated from roll and pitch plus one of the MASS 
measured angles, in the so-called 'pseudo two-station yaw' calculation. 

In this report the analyses are performed in full generality for any 
visible beacon location and satellite position, allowing the orbit to be both 
inclined and eccentric. After a definition of the pertinent coordinate systems 
and transformations, a solution of the desired roll, pitch and yaw error angles 
is found in terms of the MASS measured angles. For the purposes of error ana-
lysis and checking the results, the reciprocal solution of the MASS measured 
angles in terms of roll, pitch and yaw is also determined. A pair of rotational 
transformations required for these solutions is defined and found to be useful 
for directing both the beacon from the ground and the MASS antenna from the 
spacecraft. The dependence of these rotations on beacon and satellite position 
along with the dependence of the MASS measured angles on these rotations are 
shown to couple the orbital parameters into the MASS measured angles. Subse-
quently the same type of approach leads to a solution for yaw in terms of a 
MASS measured angle plus roll and pitch. Some other combinations of measure-
ments are discussed and finally, future work is outlined. 

2. COORDINATE SYSTEMS 

Figure 1 displays pictorially the approximate relative position of the 
CTS and Ottawa, as well as the earth based coordinate system xE. The origin 
of xE is at the earth's centre ;  the 1/ 2 axis is northerly along the earth's 
spin axis, the #3 axis is directed toward the nominal or average subsatellite 
point on the equator and the #1 axis completes the right-handed system. 

X
01 , originating at the spacecraft, is defined to have the #3 axis toward 

the earth's centre, the 1/ 2 axis along the southerly orbit normal and the #1 
complementing the right-handed system (and approximately along the satellite 
velocity vector). xul is translated from the earth's centre and rotated by 
(180 0 ) 1  (n') 2  (i) 3  (-n) 2  from xE. xSC,  originating at the spacecraft, has its 

axes along the physical axes of the spacecraft. The roll, pitch and yaw angles, 
xSC to be defined in detail later, indicate the attitude of 	with respect to  

x01 •  x0 , centred at the beacon is derived from xE by translation and then the 
rotation (1800)1. xLS, originating at the beacon, has the #3 axis directed away 
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from the actual satellite position, and is derived from X° by the rotation 

P2  0') 	xRP, originating at the satellite, is the set of coordinates 1 1 .  
forming the axes of the MASS and is defined to have the #3 axis directed at 
the beacon if the orbit inclination, eccentricity, station and attitude errors 
are all zero. xRF is derived from XSC by the rotation (d 2 ) 2 (6 1 ) 1' The MASS 

3. MASS-MEASURED ANGLES 

An approximation of the physical appearance of the MASS antenna and the 
relative orientation of xRF is displayed in Figure 2. The #3 axis lies along 
the antenna boresight and the #1 and #2 axes are parallel to the mode samplers. 

The 'interferometer' segment of the MASS measures the angles of incidence 
a and 13 of RF energy arriving at the 'horn' while the 'polarimeter' segment 
measures the effective rotation of the plane of polarization of the incident 
radiation. Thus if V denotes the direction of the beacon from the apex of the 
cone, observed in the  xRF frame, a is the angle from the boresight to the pro-
jection of V onto the plane defined by axes #1 and #3, while  13  is the angle 
from boresight to the projection of V onto the plane of axes #2 and #3. Al-
though the MASS electronics differ fundamentally from those of a pair of inter-
ferometers, the MASS measured angles a and 13 are identical to those that would 
be indicated by interferometers placed along the 1/ 1 and 1/ 2 axis, respectively. 

The 'polarimeter' provides an indication of the rotation of a plane of 
polarization of the beacon signal. The rotation is measured in the plane de-
fined by axes #1 and #2. The plane of polarization is defined by the vectors 
V and W, W I V, and the polarimeter is assumed to measure the angle y from the 
nominal position of W (at zero attitude and orbit errors) to the projection of 
the actual W into  the 	of axes #1 and #2. We may arbitrarily set the 
nominal direction of W to (0, 1, 0)T, and then, as shown in Figure 3, y is 
formed by axis #2 and—the component of W I axis #3. 

Figure 3 shows that a,  13  and y are in general not Eulerian angles' but 
projections. The Eulerian angles (1)3 , (1) 2  and (p i  are required for the analysis 

RF 
to follow and are shown in Figure 4 as the rotations from X

LS 
to  X, about 

axes 3, 2 and 1 in that order. This sequence of rotations, (y i  (4)2 ) 2  (G53) 3 , 

was chosen to be consistent with the order of the roll, pitch and yaw errors 
defined in reference 2. 

The relation between the measured angles (a,  13 , y) and the desired rota- 
tional angles ((P i , (P 2 , (1) 3 ) may be determined from the geometry of Figures 3 

- 
and 4. In xLS, 	E (0, 0, 1)T and arbitrarily we defined W E (0, 1, 0) T ....(1) 

The transformation from xLS to xRF is defined to be (y i  ((1)2 ) 2  (q) 3) 3 , 

so that the (P's in the RF frame are analogous to the roll, pitch and yaw error 
angles in the SC frame. Thus for V and W in xLS transforming to V and W in 
xRF, respectively, we see V = 	((1) 2 ) 2  (q5 3 ) 3  

and W = (q)d i  (q52) 2  ($3)31^11. 

xLS .  measured angles indicate the attitude of X RF  relative to 

(3) 
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1,2,3 ARE THE AXES OF X"  

Fig. 3. M4S2 measured angles. 

ES 	ff from x to  x. Fig. 4. Eulerian rotations ((y i  ((p 2) 2  «p 3  
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....(10) tan y = 	sq) 	
1 sq)2 sO

3 + C(1) 1  C(1) 3  

C(1)2  S(1) 3 	 C(1) 2 tan  

7 

From Figure 3 it is seen that: 

a = tan-1 V1 /V3 	 ....(4) 

-1 8 = tan 	-V2 /V3 	
....(5) 

-1 y - tan 	-W 1 /W2 . 	 ....(6) 

As mentioned earlier, the signs have been determined using the right hand rule. 

Substituting in the numerical values of ii and W and performing the opera-
tions indicated in (2) and (3) results in: 

V = -S 	1 and W = r C4)2 "3 	 1 (1)2 

[ 

S0 1  02 	 S(1 1  S(1)2  S(1)3  +  c 1  C(1)3 	 ....(7) 

C(P 1  CO2 	 C(1) 1  S(1)2  S(1)3  - 8(1) 1  C(1) 3  . 

Using these components, we find: 
Scp 2 	tan (1) 2  

tar a = - 01 02  - 	 
Orp i  

ScP 1  C(/) 2  
tan 8 = -  	(P I  C(1)2  

....(8) 

....(9) 

since for small (P's, C(1) 1 C(1) 3  >> SO I S(1) 2 8(1) 3 . 

For (1) 1  and (1) 2  small, a, 8 and y are approximately the negatives of  

(D i  and (1) 3 , respectively. For (P i  less than 0.45 ° , (C(1) 1 ) -1 < 1.0000308, 

C(1) 2 /Co 1  < 1.0000308, demonstrating the quality of the approximations. 

The solution of 11) 1-3  in terms of a, 8 and y is probably of greater in-

terest in the analyses to follow, and is: 

= -43 -1 

	

(1) 2  = tan 	(-4 1  tan a) 

-1 

	

= tan 	(-C8 tan a) 	 ....(12) 
-1 

	

0 3  = tan 	(-00 1  tan a/CO2 ) 

	

= tan 	(-Cf3 tan U/C(tan
1
(-Cii tan a))). ....(13) -1 	 - 

....(11) 
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(1) 2  and (1) 3  are of the order of 0.5 °  to 3.0 0  normally and are restricted to 

magnitudes less than 900  in Equations (11) to (13). 

4. THE TRANSFORMATION (6 2 ) 2  

xriF The transformation (6 2 ) 2  (60 1  serves two functions; it relates 	to  

xS  and nominally at least is the rotation from x°  to xLS . In the former 
capacity, (6 2 ) 2  (6 1 ) 1  defines the correct orientation of the MASS antenna with 

respect to the spacecraft, such that for zero attitude and position errors, a 
beam V from the beacon arrives coaxially with the MASS antenna. In the latter 
capacity, (6 2 ) 2  (60 1  serves to direct the beacon antenna toward the nominal 

position of the spacecraft. Iv both cases the plane of polarization is taken 
into account, since the plane is defined by two axes of xLS and xRF is parallel 
for zero attitude and position er ors. 

Since the MASS antenna is assumed to be fixed rigidly to the spacecraft 
rather than gimballed, the (6

2  ) 2 
 (6 ) relatin g  )(RF to  xSC is fixed, and those 1 1 

6 1 s are called 'the spacecraft  6's'. The ground station 6 1 s, on the other 
hand, must vary as the position of the satellite changes, in order that the 
beacon beam reaches the spacecraft. These d's will be denoted 61 and q, the 
ground station d's. 6 1  and 6 2  may be determined numerically as the rotations 
which cause axis #3 of xRF  to be coincident with V, a vector in the direction 
of the beacon from the spacecraft for zero position and attitude error. This 

vector may be defined first in x E as the unit vector rsG . The coordinates of 

the ground station are given by RG , where 

R = RE  (-4)) 2 (A)  
—G 

RE (ScPCÀ, SX, C(PCX) T ....(14) 

where (1) = relative longitude of the ground station with respect to the nominal 
or average subsatellite point, 

\ = latitude of the ground station 

RE  = radius of ground station (from the earth's centre). 

Similarly, the nominal coordinates of a satellite are given by Rs  where 

. = RS  (0,0,1) 	 ...(15)  

where R = radius of satellite orbit, synchronous radius. Then a unit vector 

from the satellite to the ground station is parallel to 



r 
 -SG 
= (R - 	- R 

-G -S -G -S ....(16) 

V = (6
2
)
2 

(6
1
)
1 

(180°)
1G ....(18) 

9 

SA 	 xk 	 ....(17) 

Rs /RE  

where k is a normalising constant such that irsG 1 = 1. For zero position errors, 

the transformation from x E to x 01 is (180 0 ) I , and for zero attitude errors, x 01 

SC 
is parallel to X . 

rsc = ScP CA 

S A 

CcpCX — 

11) CA 

x
RF is derived from XSC by (6

2
)
2 (6 1 ) l' so that in X

RF
, 

v = (1800) 1 1-sc • 	 ....(19) 

Therefore, 	scs 2 	] 	 ScPCA 

[S6
1
C6

2 	
. 	[-SA 	 1 xk 

C6 1 c6 2 	 -CcpCX + R iie_ 	 ....(20) s -E 

since for these conditions V = (0,0,1)
T

. 

For the case of CTS at 114 °W and a beacon at Ottawa, 11) = 38.11028 ° , 
A = 45.34889 ° , Rs /RE  = 6.62191 and 6 1  = 6.685 7 ° , 6 2  = 4.0602 ° . 	....(21) 

Obviously, for zero position error the 6''s are identical to the d's just 
calculated. For a satellite off nominal position because of orbit eccentricity 

or inclination or both, the ground station 6"s are determined as follows. FiG  

or 

remains the same, but Rs  becomes 

R = Rst (n) 2 ( - 1) 3 ( -T1') 2 
(0,0,1) ....(22) 

where R
st = satellite orbit radius at the current time t 

t = time measured from the epoch at which the satellite passes through 
the ascending node; t = time of perigee 

n = earth rate angle, n = WE  (t — t
p
) + (1)R, where w

E = earth's rotational 
rate, (I)R = a constant 

= angle through which xE has rotated since t = 0, plus offset at t = O. 

n• = orbit angle of satellite measured from the ascending node, 
= wE t if orbit is circular 

1  = orbit inclination from the earth's equatorial plane. 



Substituting this into Eqn. (16), we see 

rSG = 	Scb CÀ - (Ci Cn SP - dl  S n) Rst/RE 

SA - Si Sr  Rst /RE  

C(1) CÀ - (Ci Sn Si  + Cn CP) Rst /RE . 

xk 1 

10 

The form of Rst and n' 	n are described in Appendix B. Expanding Eqn. ( 22), 
Rst becomes 

R  =R  —sr 	su 
Ci .  Cn SP -  Ci  Snj 

Si SP 

Ci Sn SP + Cn CP . 

see 
In the frame xLS , in order to direct the third axis parallel to r G'  we —S 

= (0,0,1) T  = (6 1 ) 	(6') 	(180 ° ) 1  r 2 2 	1 1 	—SG ' 

so that 

....(25) 

sa  

sd' cd' 1 	2 

—co'1  Ca'  2 

Scp CA - (Ci Cn SP - CP Sr) Rst /RE  

SA - Si Si  Rst/RE 	 xk 

C(P CA - (Ci Sn SP + Cfl C11) Rst /RE  

where k 1 is a normalising constant. 

The dependence of di and d; on orbit inclination and eccentricity are of 

interest both for beacon aiming and for the solution of attitude from (1) 1 to (i) 

Taking the effects of inclination and eccentricity into account separately, 
Eqn. (26) produces variations of + 2.142 °  to - 2.161 °  from the nominal 6 1  and 

+ 0.015 °  to - 0.021 °  from the nominal  6 2 
for an inclination of 2.0 ° , and 

+ 0.0126 °  to - 0.0126 °  from 6 1 and + 0.2156 °  to - 0.2157 °  from 6
2 

for an ec- 

centricity of ± 0.2 ° . The conclusions to be drawn from these figures are r.hat 
the beacon must nod appreciably, predominantly up and down, and that it would 
be a poor approximation in an analysis to treat di and 6  as constants for 
inclined or eccentric orbits. 

The importance of 6, aq(l 6 ;  becomes obvious when one realizes that any 

variation in 6
1 

or 6
2 

for a stationary spacecraft causes an almost identical 

and oppositr2 variation in (P I  and (1)2' respectively, which would be interpreted 

as a change in attitude. Changes in the satellite position in xE may be caused 
by orbit eccentricity and inclination, and can cause the beacon to drift from 
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RF 
axis 3 of X , even though the roll, pitch and yaw remain zero. One may cal- 
culate the 6 1 and 6 2 to keep the beacon centred for any satellite position, 

and the difference of these 'desired' 6's from the nominal 6's shows up in 6, 

and 6 2 as apparent attitude change 
caused by position change. 

To solve for the 'desired' on-board 6's, calculate 4G  for the particular 

satellite position, from Equation (24), and with V in xRF , e 1 = e2 = 63 = 0, 

determine 6 1' 6 2 from 

V = (01) T  = (6 2 ) 2 (6 1 ) 1 (180° ) 1 (n') 2 (i) 3 ( -n) r 2 -SG ....(27) 

[ 6

2 	 r 1  (ci cn CI; +  Sn  Sis)  + r2  Ci Si + r3  (Ci Ci  Sn - Cn Si) 

S6
1 

C6
2 	= 	- r 1  Si Cn + r2 Ci - r3 Si Sn 

-C6 1 c6 2 	r 1  (Ci Cn SP - CP Sn) + r2  Si SP + r3  (Ci Sn SP +  Cri  C11) 

....(28) 

where -SG  r 	= (r 1' r2' r 3 ) T . 

X 	to xRF . An idea of the magnitude of the effect of satellite position on 
'desired' on-board Vs is given by solving Equation (28) for various combinations 
of i, e, fl and n'. Numel- ically, an inclination of 2.0 0  is seen to shift 61 by 
+ 0.142 °  to - 0.185 °  from the nominal 6.6857 ° , and 62 by + 0.230 °  to - 0.235 °  

from the nominal 4.060 ° ; an eccentricity causing ± 0.2 °  E-W drift varies 6 1  

by + 0.0126 °  to - 0.0126 °  from nominal, and 62  by + 0.0170 °  to - 0.0170 °  from 

the nominal. While these variations may appear small, in magnitude as well as 
proportion, they are significant because (p i  and (1)2  vary similarly and can dis- 

turb the roll and pitch angles by roughly the same amount. These variations 
reinforce the incentive to take the orbit parameter variation into account when 
solving for roll, pitch and yaw from the MASS measured angles, instead of 
assuming the transformation valid at the nominal satellite position will suffice. 
These solutions follow next, first the nominal and relatively simple transforma-
tion in order to 'get a feel' for the effects and then the exact solution, taking 
orbital parameter variations into account and making only one slight approxima-
tion. 

5. BASIC MASS RELATIONS 

Consider first the solution for 0 1 , 02  and 63 	' from (I) l (I)2 and (I)3  for a ' 
circular uninclined orbit. From Figure lb it is apparent that the  transforma- 

xRF - tions from xE to 	may be defined as either the 'upper' or the 'lower' path. 

Equation (27) is derived using the transformations (180 0 ) 1  (n') 2  (i) 3  ( -n) 2  
01 . 	SC 

from xE to x01 , ce )(0 ) 	) 1 	2 2 	3 3 



ar■ 

above but 
(Same matrix as 	CO2 	S6 1  56 2 	-cd i  S 

above but 
replacing 
0 with 0 

 replacing 
0 with 0 	

110. 	C6 1 	S6 1  

S6 2 	-S6 1 cd 2 	cd 1 cd 2 

I 0 

S6 2 	-S6 1 cd 2 	cd 1 cd 2 

cd 1 	sd 1  

....(31) 

12 

The translations may be ignored in this approach which concerns only vector 
differences or angles, neither of which is affected by parallel translation 
of coordinate frames. Accordingly we may equate the 'upper' and 'lower' trans-
formation paths, which, for circular uninclined orbits, gives: 

(0 2 ) 2  ( 0 3 ) 3  (180 0 ) 1  = ( (PO].  (4) 2 ) 2  (4) 3 ) 3  ( 6 2 ) 2  ( 6 1 ) 1  (180° ) 1  

....(29) 
Therefore, 

(6 1 ) 1 (62 ) 2 (6 3 ) 3 = (-6 1 ) 1 (-6 2 ) 2 ((1) 1 ) 1 (1) 2 ) 2 (1) 3 ) 3 (6 2 ) 2 (6 1 ) 1 
....(30) 

• 
C6 2  CO 3 	 CO2 S6 3 	 -S62 

SO 1 SO 2 CO 3 - ce 1 se 3 	ce 1 ce 3 + se 1 SO 2 se 3 	se 1 ce2 
ce 1 SO 2 CO 3 + se 1 se 3 	ce 1 SO 2 se 3 - se 1 CO 3 	CO 1 CO2 

[C.6

2 	0 	s 5
2 

sd 1 SO 2 	c6 1 	-s6 1 CO 2 • 

-C6 1 SO 2 	sd 1 	cd 1 CO 2 

If one employs the approximation 

	

CO. 	c(p i 	1, i = 1,..., 3 

	

and S6 i 	 1,..., 3  S 1 	= 1,..., 3 ....(32) 

where the angles are expressed in radians, and if one realizes 

SO 1 SO 2 sr 3 	CO 1 CO 3' Equation (31) reduces to: 

[1 	 0 3 

1 	

0 	S 2 	1 

6 62  - 	1 	 0 1 	= 	S 1 S 2 	C l 	-S 1 C 2 3 

02 + e13 	6 2 6 3 - 6 1 	

-16 2 

-c 1 S 2 S 1 	C 1 C 2 

1 

) 1 1) 2 	(1)3 	

:3 

(1)2 -I- 4) 1 1)3 	(1) 2 (I) 3 - 1 	-411 • [C°.S

',22 	S 

Cl 

1 S 2 

-S 1 C 2 	

-C 1  S 2  

4 	- 
S 1  

C 1 C2 	....(33) 

where Ci =  CO and S = S6 	i = 1, 2. From Eqn. (33) we may determine: 

2 	 2 6 1 	C2 	+ S 2  (1) 3  - C 1  S 2  fi.  (1)2  + C I  S 1  C2  S 2 	(1) 3  - S 1  (1)2 (1)3 
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....(34b) 2 	121 	12 	12 3 	1213 	12 2 3 

03 	S1 2 	1 	1 (1) + S (1)2 	c l  C2  <1) 3  + S 1  S 2 '2  ci) , 3  + C 1  S 2  1152  (1)3 . 	....(34c) 1 

Note that (pi  is a good rough indication of ei , since C. 	0.995 and S. 

0.1, j = 1 and 2. Furthermore an appreciable component of (1) 3  couples into both 

8 1  and 6 2 . Since c1) 3  may be an order of magnitude greater than c1) 1  or y2  under 

normal operation this component is significant. 

We next find the exact solution for 6 from ± and orbital parameters. The 
dependence of 6 1 and 6 2 on these parameters has already been demonstrated, and 

includes a sinusoidally varying factor of the inclination, so it is obviously 3 
necessary to use the exact expressions at this point in the solution. Subse-
quently simplifications will be considered and adopted if proven adequately ac-
curate. In the following derivation 6 1 and 6 2 remain fixed at the nominal values, 

but 6 and 6' depend on the orbital parameters and must be determined from 1 	2 
Equation (26). From the transformation equivalence of Figure lb, we find: 

((4 2 ) 2  G5 3 ) 3  ( 6 2 ) 1 (61) 1  (180 ° ) 1  

= (6 2 ) 2  (6 1 ) 1  (8 1 ) 1  (62 ) 2  (6 3 ) 3  ( 1 800 ) 1  (n') 2  (1) 3  (-n) 2 	—. (3 5) 

so 

(0 1 ) 1 (e2 ) 2 (0 3 ) 3 

.-.. (4 1 ) 1  (4 2 ) 2  ( cp 1 ) 1  (4)2 ) 2  (4)3 ) 3  (6 ) 2  (61) 1  (100 ° ) 1  (n) 2  (-i) 3  (-11 1 ) 2  (180 ° ) 1  

....(36) 

[  

CO2  SH -S02 	b7 b8 b9 	a7 a8 a9 -  

- 	_ 	se 1 ce2 = b4 	b5 	b6 • a4 	a5 	a6 

In Eqn. 37, the symbol - is used to represent a matrix element which is 
not of interest here. On the r.h.s. of Eqn. 37, the first matrix represents 
the transformation (-6 1 ) 1  (-6 2 ) 2  ((1) 1 ) 1  (c1) 2 ) 2  ((1) 3 ) 3 , while the second denotes 

(6 ) 2  (61) 1  (180 ° ) 1  (n) 2  (-1) 3  (-n') 2  (180 ° ) 1 . The elements ai, bi, i = 1,...,9, 

are defined as follows: 

bl = -c l  S 2  02  0.3  + S 1  (Sci) 1  5 cP2  03  - 01  S(1) 3) + C 1  C2  (C(1) 1  5 (P 2  03  + S(1) 1  S(1) 3 ) 

b2 = -c S 	Scp + S 	 + C C (C(I) Scl) S(1) - S(1) C(1) ) 
1 2 	2 	3 	1 	1 	3 	1 2 	1 	2 	3 	1 	3 

b3 = c l  S 2  s(1) 2  + S I  Sq), 02  + C /  C2  0 1  02 

- 	bl 	b2 	b3 	al 	a2 	a3 

	

J Lbl 	b2 	b3J Lal 	a2 	a3J .... (37) 



....(38a) 
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al = S 2  ' (Ci CCria + Sn 	+ S I1  C I2  Si CCri - C 1  ' C2  ' (Ci Cri Sn -  Cri  ST;) 
I 

a2 =  5 2 Si Cn - S
1 

C2 Ci - C 1 C2 Si Sn 

a3 = S t  (Sn a - Ci Cn SIti) - S t  C' Si Si; + C I  C '  (Ci Sn Si; + Cri a) 2 	 1 2 	 1 2 

a4 =-C T  Si dl - S '  (Ci a Sn - Cn Si;)  1 	 1 
1 

a5 = C Ci -S Si Sn 1 	1 

a6 = C' Si ST'l + S t  (Ci Sn 	+ Cn a) 1 	 1 

a7 = C' (Ci Cri a + Sn Si;)  - S t  S '  Si dl + C '  S '  (Ci a Sn -  Cri  S;1) 2 	 1 2 	 1 2 

a8 = C 2 Si Cri  + S
1 

S
2 

Ci + C
1 

S
2 

Si Sn 

T 	T  a9 = C 2  ' (6 Sn - Ci Cri  SI!)) + S' S '  Si 	- C1 2 
 S (Ci Sn Sn +  Cri  a). 1 2  

....(38b) 

After isolating the three top right-hand corner elements of the matrices 
of Eqn. (37), we find for the exact solution: 

....(40) 



a7 a4 al 
a8 a5 a2 
a9 a6 a3 
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Equations (39) to (41) are obviously sufficiently complicated that simpli-
fications would be at least desirable and probably imperative for implementation 
in an on-board processor. One method of analyzing the effect of candidate 
simplifications is to compute the difference between 6 calculated by (39) to 
(41) and the ê calculated using approximations, and trien to determine the sta-
tistics of the  difference for a large number of points in SP 1 , the space of 

e, 	f), where the latter four symbols denote inclination, eccentricity, 
orbital angle and true anomaly. This Monte Carlo type approach is useful, but 
requires random points in SPI that represent permitted and physically aUainable 
combinations of attitude and position. The variables must be limited and one 
problem becomes apparent - that of specifying the combinations of (I) which can 
arise for a satellite whose attitude (in 6) and orbit (station, i  and e) are 
limited a priori. To resolve this we may rewrite Eqn. (35) and solve for (ID. 

6. SOLUTION OF THE RF EULERIAN ANGLES cp i , y6 2 , (1) 3  

The transformation equivalence of Equation (35) is exact, and a reordering 
of the transformations produces: 

((1) 2 ) 2  (4) 3 ) 3  = (6 2 ) 2  (61)1 (O 1 ) 1  ( 02)2 (03 ) 3  (180 0 ) 1  (n') 2  (i) 3  (-n) 2  (180°) 1  

• (-6 P1 (-6 2 ) 2 • 	 ....(42) 

Note the similarity of Equation (42) to Equation (36); they decompose to groups 
of matrices which are either of the same form as, or the transpose of, the cor-
responding group in the other equation, thereby reducing the number of algebraic 
steps to be followed. Ignoring the unneeded terms, Equation (42) expands to: 

- C(1) 2  Sgb3  -Scp2  

ScP 1  Ccp2  

C 2 S I S 2 -C 1 S 2 

0 	c1 	1 
S 2 -S 1 C2 C I C2 

C62 C6
3 	

C62
S 0 3 	 -S6 2 

S 0
1 S6

2
C O 3-C6 1 S6 3 

C6 1 C6 3 	
S6

1
C O 2 

C6
1

S6
2
C6

3
+S6

1
S0

3 
C6 1 S 02 S 0 3-S6 1 C O 3 C 0 1 C O2 

From Equation (43), the pertinent terms are found to be: 

= al [C2C6 2C6 3  + S I S 2 (S6 I S0 2C6 3- C0 1 S6 3) - C I S 2 (C0 1 S6 2C6 3  + S0 1S03)] 

+ a2 [C2 C6
2
S 03 

+ S1S2C01CO3 - C1S2(C61S02S03 - S 0 1 C O 3 

+ a3 [-C2 S 02 + - S 1 S 2SO 1 CO 2 - C 1 S 2 C 0 1 CO 2] 	 ....(44) 

Scp
1 

= (04) ) -1  /al [C
1

(S6
1
SO

2
CO

3 
- C 0 1 S 03) + S1 (C6

1SO2CO3 
+ SO

1
SO

3
)] 

2 

+ a2 [C1 C01CO3 + S
1 

(C6
1

S 0
2

S6
3 
- S6 1 C6 3 )..] + a3 [C1S01CO2 + S 1 C6

1
C O2] 

 

. ..(45) 
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The factors al - a9 are again defined by Equation (38). 

7. PSEUDO TWO-STATION YAW CALCULATION 

In this approach, roll and pitch information from an earth sensor is used 
to replace angular information that would be available from a second MASS beacon, 
giving rise to the term 'pseudo two station' in the description. The offset of 
the MASS ground station from the subsatellite point introduces a coupling of 
the yaw error into the MASS Eulerian angles (1) 1 and/or (I) 2

. If the offset is in 

latitude only, one of the two 'interferometer' angles (I) 1 or (1) 2 measures a por-

tion of the yaw angle, while if the offset is in longitude, the remaining 'inter- 
ferometer' angle is affected. If the offset is both in latitude and longitude, 
yaw is coupled into both the 'interferometer' angles (P I  and 4)2 . The effects of 

the coupling may appear detrimental in that all three MASS angles must be 
measured to permit the solution for any or all of roll, pitch and yaw, in the 
absence of information from a second sensor. On the other hand, this coupling 
may be used to advantage if 11) 1 or I) 2 is measured and 6 and 6 2 are known, for 1 
the yaw may be determined from a combination of the three angles (4) 1 ,  6 1, 6 2 ) 

or ((;)2' 0
1, 

6 2). Indeed, other combinations of three of ( q) 1 ,  (I) 2' 0 l' 6 2 ) con-

tain the yaw information, but turn out to be less tractable algebraically. The 
use of cp

3 
is not considered initially, as it would not be available in a simple 

MASS lacking the 'polarimeter' portion. 

Several methods may be found to establish a relationship between 0 3  (yaw) 

and (6 l' 0 2' (I) 	(I) 2 ). For example, a vector defined originally in x
E may be 

transformed into xRF and the dependence of its final form on 0 and q) may be 
employed to isolate an equation containing the desired terms which may be re-
arranged to define 0 3  in terms of the remaining angles. Alternatively, the 

transformation equivalence of Equation (35) may be manipulated as follows: 

Equation (42) consists of nine 'elemental' equations, most of which in-
volve combinations of two or more MASS angles. Fortunately the top right-hand 
element is simply -S(1) 2 , the solution for which may be written as Equation (44) 
or alternatively: 

- S(1) 2 = SO 3 [al (-S1S2C61 - C1S2S61)  + a2 (C2 CO2 - C 1 S 2C 0 1 502 )j  
CO

3 
[al (C2C O2 + 51S2S01S62 - 

C1S2C61S02)  + a2 (5 1 S 2C 0 1 + C 1
S 2S 0 1 )] 

+ a3 [-C2S6 2 + S1S2SO1CO2 - C 1S 2 CO 1 CO2] ' 	 ....(47) 
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In Equation (47) the factors of S6 3  and CO3  have been collected to facili-

tate the understanding of the dependence of 63 on (1)2' 6 1 and 62 • As it is 

transcendental, Equation (47) must be solved iteratively for the numerical deter-
mination of 63 from (1)2' 6 1 and 62 . 

Similarly the relation between 63  and (1)l' 
6 1 and 62 may be found from 

Equation (45), provided that Equation (44) or (47) is substituted in fo- 
 

If a choice had to be made between Equation (47) and (45) for pseudo two-station 
yaw, the apparently simpler (47) would be preferred. Furthermore this choice 
would be reinforced if one considered the sensitivity of 6 3  to the accuracy of 

(P i  or cp2 plus 6 1 and 62 at least for the case of CTS with a ground station at 

Ottawa. 

If one approximates Se i  z1 0, CO. 	1, S(Pi 	C(Pi 	1, the transforma- 

tion equivalence of Equation (42) reduces to the following solutions: 

- (C 1 6 1 62  + S 1 62 ) al - (C 1 - S161)  a2 - (C161 + S 1 ) a3 6
3 

	

- C 1  al + S 1 6 1 al + S 1 62 a2 	 ....(48) 

(1)2  + al (C2  + S I S 2 6 1 62  - C 1 S 2 62 ) + a2 (S 1 S 2  + C I S 2 6 1 ) 

3 -   	al (S1S2 + C 1 S 2 6 1 ) + a2 (C1S262 - C2 ) 

a3 (- C 2 0 2 + S1S261 - C 1 S 2 ) 

al (S 1 S 2  + C 1 S 2 6 1 ) + a2 (C 1 S 2 62  - C2 ) 

- (I)
3 
+ 

61(C1S2 
a5 + S 1 S 2 a6 + S1S262 

a4) 

S
1
S2 a4 -C

2 
 a5 +01 C

1
S
2 
 a4 + 

02C1S2 
 a5 

6
2 

(- c
1
S 2 a4 - C 2 a6) + (C 2 a4 + S 1 S 2 a5 - C 1 S 2 a6) 

S
1
S
2 a4 - C2 

a5 + 1 C 1 S 2 
a4 + 62C1S2 a5 

where the factors al - a6 are as defined in Equation (38). 

e
3 

....(49) 

....(50) 

The denominators of these equations (48) - (50) are approximately 0.116, 
0.07 and -0.99 respectively, for a nominal orbit, so that measurement errors 
in the numerators are multiplied by the reciprocal of these numbers. On that 
basis, the order of preference becomes Equation (50), (49) and thirdly (48). 

8. CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER WORK 

The analysis contained in this report provides the basic relations neces-
sary for a functional on-board MASS. Both exact and approximate solutions have 
been found, so that the error of any of the approximations may be predicted from 
pre-launch computations. Accordingly, the on-board processor need not be de-
signed to handle the full and exact equations if the accuracy of the simplified 
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ones is proven to be adequate. An alternate approach to minimizing the size 
and complexity of the on-board processor is to perform some of the computations 
on the ground and transmit the results to the spacecraft. Both approaches will 
probably be necessary, for the exact solutions of roll, pitch and yaw would 
require an unwieldy and impractical processor if performed on-board, and early 
efforts at simplifying the equations proved inaccurate. 

Appendices A, B and C cover background material on rotational transforma-
tions and orbital parameters, and isolate the effects of the individual orbital 
parameters on the MASS measured angles. Appendix D describes some of the pos-
sible approximations to the equations, while in the other direction Appendix E 
extends the exact results to the case where (6 2 ) 2 (6 1 ) 1 and (6') (6') 

are 2 2 	1 1 
followed by (

(53)3' 
and (6') 3'  respectively. The 6

3 
and g may be either error 3  

angles in the antenna mountings, or deliberate and sizeable rotations of the 
antennas, or both. Thus a general or universally-applicable solution has been 
found, ntt only for roll, pitch and yaw from the MASS measured angles and 
vice-versa, but also for pseudo two-station yaw, requiring roll, pitch and 
any one of the MASS measured angles. The types of approximation suggested in 
Appendix D for the 6 3  = 0 case are equally valid in the 6 3  0 case, although 

the approximate solutions in the latter case will in general be more complex 
than in the former. 

Appendix F concludes this report with a description of the relations 
between the d

1 
and 6 2 of this report and the conventional antenna aiming angles 

of azimuth and elevation. 

The MASS analysis presented is a complete theoretical treatment of the 
topic, but a working MASS prototype would require further investigation, and 
several areas of research are suggested. The most immediate problem is the 
complexity of the exactsolutions;a sensitivity analysis must be conducted 
to optimize the accuracy and effectiveness of a weight and power limited on-
board processor utilizing approximations to the exact solutions. 

A less immediate but theoretically interesting avenue of research is to 
examine the relations between spacecraft attitude, MASS measured angles cp i  and 

(!) 2 and an angle of incidence of sunlight on the spacecraft. It appears 
possible 

to solve for yaw during two sizeable portions of the orbit, using a simple two-
axis MASS and an on-board sun sensor which could be required for other functions 
as well. 

A variant to this problem is to employ an angle to another satellite of 
known position instead of a sun angle, thereby enabling yaw sensing uninterrup-
tedly through the orbit. 

A third future research topic is to manipulate the dependence of the MASS 
solutions on orbit parameters, in order to solve for the orbit parameters from 
the MASS measured angles and the spacecraft attitude. 

A fourth area to examine is the correspondence between the MASS measured 
angles and attitude of the spacecraft specified in a way disregarding the con-
ventional roll, pitch and yaw angles. Instead of r911, pitch and yaw, the 
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restriction could be on more communications--significant parameters such as, 
for instance, deviations of an on-board antenna boresight from the intended 
target on earth and rotation of the spacecraft about the nominal boresight. 

A fifth interesting topic is the feasibility of employing one MASS an-
tenna and processor but two (widely separated) ground stations in a time shared 
mode to generate data from which both spacecraft attitude and position (and, 
by filtering, orbit) could be deduced. 

Thus, although the basic theoretical problems of the MASS have been 
solved, much remains to be done for a practical implementation and further 
theoretically interesting topics have been suggested. 

9. REFERENCES 

I. Goldstein, H. Classical mechanics. Addison-Wesley Press, p. 107, 1951. 

2. Attitude control subsystem specification of the CTS project. Document 
Ref. No. SS06-04, Issue B of 17 March 1972, p. 14. 

3. Nelson, W.C., and E.E. Loft. Space mechanics. Prentice Hall, 1962. 

4. Brouwer, D. and G.M. Clemence. Methods of celestial mechanics. Academic 
Press, 1961. 

5. Deutsch, Ralph. Orbital dynamics of space vehicles. Prentice Hall Space 
Technology Series, 1963. 

6. Ehricke, K.A. Space flight - Vol. II dynamics. D. Van Nostrand Publishing 
Co., 1962. 

7. McGraw Hillencyclopedia of science and technology. McGraw Hill, 1960. 



APPENDIX 	A 

ROTATIONAL TRANSFORMATIONS 

When a set of cartesian coordinates is rotated from one orientation in 
inertial space to another, the description of a fixed vector is transformed 
linearly in going from the old frame to the new. Assume that the rotation is 
about one of the axes of the old frame, and that the sense is defined according 
to the right-hand rule. For a rotation of 6 0  about axis i, a vector W in the 
new frame is derived from its description V in the old frame by the t7ansfor- 
rnationW=M.VwherethetransformationsMare defined by: — 

1 0 	0 	 CO 0 -S6 	 CO 	SO 0 

(6) = 0 CO 	S6 , (u)
2 
= 0 	1 0 	, (6)

3 
= -S6 CO  0 1 

0 -S6 CO 	 S6 0 CO 	 0 	0 	1 

....(1.1) 

A rotation about other than a principal axis may be decomposed into two or more 
ordered rotations about principal axes, and the above transformations applied 
in the same sequence. The sequence is important for rotations (unlike vector 
additions or translations), since the transformations are not commutative. The 
transformations are orthogonal and the elements may be shown to be direction 
cosines. 

Although the rotational transformation was explained for the case of a 
fixed vector and rotating coordinate frames, the same transformations are valid 
for fixed coordinates but rotating vector, the only difference being that now 
the sense of 6 will be reversed from above, that is, the negative of the rota-
tion from the old vector to the new, following the right-handed convention. 
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APPENDIX 	B 

ORBITAL PARAMETERS 

The position of the satellite affects 61 and q immediately and therefore 
the solution of 6 from and vice versa, as well as two-station yaw. Figure la 
illustrates the nominal position of a synchronous satellite relative to a ground 
station such as Ottawa, and Figure Bi  gives more details of the orbit in an 
inertial frame. 

Fig. Bi.  Equatorial and orbit planes. 

The orbit is assumed to be inclined with respect to the equatorial, eccentric 
and 'out of phase' by a steady state bias 0 in that the ascending node is 
shifted by  2  from the nominal longitude of the satellite, disregarding the 
effect of eccentricity. We define t to be zero at the instant the satellite 
passes through the ascending node. 

n' is the orbital angle of the satellite, measured from the 
ascending node to satellite at any time t. 

21 
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n is the rotation of x
E in the same time plus a constant. 

= wEt +  R  - wEtp,  where 
wE is the earth's 

spin rate, tp 
is the time of the perigee, and (PR is defined below. 

i denotes the inclination of the orbit plane with respect to 
the equatorial. 

et represents the angle from the ascending node line to the 
line of the apsides through the perigee. Figure B2 shows 
details of an eccentric orbit, with the earth located at 
the focus F2. 

Fig. B2. Eccentric orbit parameters. 

The letters a and b represent, respectively, the semi-major and semi-
minor axes and the true anomaly f is measured at F2, counterclockwise from the 
perigee to the satellite S. E is the eccentric anomaly and ae is half the dis-
tance from focus to focus, where e is the eccentricity of the orbit. In order 
to solve for 	and V it is necessary to know Rs  and n'. 

These may be deter- 
1 	2 	 — 

mined if the orbital parameters and t are known as follows: 

Rst - 	
....(52) 

1 + e cos f 

where p is the semi-latus rectum of the ellipse. 

Now 	 p = a (1 - e 2 ) 

and T = 211-  — u ' 

....(53) 

....(54) 
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for a complete orbit of period T. u is a constant. For a constant period, 'a' 
does not vary and must be synchronous radius for a synchronous orbit. Accord-
ingly, for e << 1, p a, and synchronous radius Rs  = a. 

Rs (1 - e
2 ) 

Therefore 	R 	= 	 R (1 - e cos f), for e << 1. 	....(55) 
st 	1 + e cos f 	s  

If M is the mean anomaly, M = wE (t -  t)  ....(56) 

where t = time at perigee, then 

f - M 	2e sin f -(from Ref. 4) 	 ....(57) 

Now 	 n' =  R + f 	 ....(58) 

and 	 n = (02 + M 	 ....(59) 

therefore 	 n' = n + 2e sin f . 	 ....(60) 

On some satellites, such as CTS, the position of the satellite is restricted to 

an inclination of < 2 °  and an apparent E - W drift of less than 0.2 ° . 
Accordingly, 

10 + 2e1 < 0.2 °  . 	 ....(61) 

In the equations developed earlier does not appear explicitly; it is in fact 

incorporated in the actual cl) or relative longitude of the ground station with 

respect to the subsatellite point. 
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are: 

APPENDI X 	C 

EFFECTS OF ORBITAL PARAMETERS ON MASS 

The three orbital parameters whose effects on the MASS are considered 

(a) inclination 

(h) eccentricity, and 

(c) constant longitudinal error 0 of satellite station. 

(a) Inclinat ,:on Alone 

The main effect of inclination on a synchronous orbit is to cause the 
satellite to trace a narrow and North-Southerly figure 8 with respect to an 
earth based observer. For an orbit inclination i, the northerly displacement 
of the satellite is given by sin -1  (sin i sin wt), and the lateral displacement 

cos wt  by (wt - 	-1  (    ) cos 	. Accordingly, a ground station antenna 
- sin2  wt sin2  i 

must nod, mainly up-down, to keep the satellite centered in its 'field of view'. 
In our case the main effect of a 2 °  inclination is that 6' varies little 2 

± 0.02 ° ) while 6 changes by approximately ± the magnitude of i, and with a 1 
period of about 24 hours. (S1 and cS in turn affect the transformations between 

6 and 1. 

At the spacecraft the effects of the inclination are to cause the ground 
station to appear to move, implying different 6 1 and 6 2 are required to keep 

the ground station centered in the MASS antenna field of view for 6 = 1. Since 
the 6 1 and 6 2 are fixed,

1 
and (I) 2 vary by approximately 

the values  of ± 0.15 °  

and ± 0.23 °  that 6 1 and 6 2' respectively, would vary if allowed to. There is a 

more marked effect on 
(lb3' 

which varies by close to the full amount of the in-

clination. Equation (46) reduces to 

....(62) (i) 3 	- C' C 2  Cri  i - S 2 Sn i 
1  

after applying several approximations. 

(b) Eccentricity Aîcniu 

By considering the variation of orbit radius and n' with respect to n 
it may be seen that to an earth based observer the satellite appears to move 
around a banana shaped locus centered on the nominal satellite point. Accord-
ingly, the ground station antenna must nod laterally by an angle slightly 
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greater than the E-W drift measured at the earth centre, while the vertical 
nodding is considerably less, about 7 per cent of the 62 angle for the case of 

CTS and Ottawa and an allowed E-W drift of 0.2 ° . 

At the spacecraft the ground station appears to rise and fall as the 
satellite radius varies, and appears to shift E-W as the satellite moves E-W 
from its nominal position. For the case of CTS, Ottawa and allowed E-W drift 
of 0.2 ° ' 6

1 would ideally vary by ± 0.0126 ° ' 6
2 
by ± 0.0169 ° . Again

'1 
and (I)

2 
vary instead, by close to the same amounts, and (1) 3  is essentially unaffected. 

(c) Station Error S-2 Alone 

6 1  is basically unaffected while 6' varies by slightly more than  Q.  For 2 
the case of CTS, Ottawa and S-2 of 0.2 ° , 6, would vary by less than one per cent 

of Q and 6 2 by less than 10 per cent of O. (I) 3 remains essentially unaffected. 

To sum up the main effects - 61 and cS vary sufficiently with inclination, 

eccentricity and S2 that they cannot be safely assumed to be constants in order 
to reduce the complexity of the solutions, and (1) 3  is biassed sinusoidally by 

almost the full value of the inclination. (1) 1 and (I) are affected by all three, 
2 

(a), (h) and (c), but for i < 2 ° , e < .00174 (rad), 0 < 0.2 ° , the effects of 
inclination are bounded by  about an .7rder of magnitude  above those of eccentri-
city or station error O. Note that if a substantial 6 3  (> 15 ° ) is introduced, 
the above is no longer numerically exact. 



APPENDIX 	D 

APPROXIMATIONS AND SIMPLIFICATIONS 

Since the exact solution of 0 fromI, 	from 6 and two-station yaw are 
too complicated for a rapid interpretation of the various cross couplings, an 
attempt at simplifying approximations would be in order. Some of the possibi-
lities are: 

(a) replacing 
CO.3' 

 C(t) by 1, S6 by 6. 	 3 ' 	 ' 

	

S(1). by (1). 	j = 1,...,3; 
j 	j 	3 	3  

(b) ignoring inclination, or eccentricity, or both (which means 61 
6' = 6 2'  and n' = n); 2  

(c) dropping second and higher order terms in 6 and (1) 	j =  

(d) replacing Ci by 1, Si by i (rads); 

(e) combinations of the above. 

The following equations result from applying approximation (d) above to 
the solution of 6 from using the transformation equivalence: 

( 4) 3 ) 3  (6p 2  (61) 1  (180 0 ) 1  

= (6 2 ) 2  (60 1  (6 1 ) 1  (02 ) 2  (03 ) 3  (180°) 1  (n') 2  (i) 3  (-n) 2 	....(63) 

Approximations: C(1) = 1, S(1) i  = (1), j = 1,...,3. 
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Observing that 

1 	0 3 
(6 1 ) 1 (62  ) 2  (0 3  ) 3  ,'=. 6 6 2  - 6 	1 + 6 1  62  e 3  e 02  1 

[ 

6 : +61 6: 62 03_ 01 	1 1 

for small 0 1' 0 2 0 3' 

....(64) 

the uncoupled solutions for 6 1 , 0 2  and 6 3  become: 

	

-e l  = 	[s 1  s 2  + c l  (fi.  (P2  - (1) 3 ) - C 2  S 1  ((P2 	(1) 3 )] • [g (Ci Cn  Si  -  C sn) 

- si S Si S  -  C S 	(- ci  S Si  - en 	+ [s, S 2  (1) 3  + c l  (1 + (p 1  (p 2  (1) 3 ) 

- c2  s l  ((P2  (1) 3  -  1 )] .[-C1 Si Si  + si (- ci  Sn S  - cn 

+ [-s 1  s 2  (1) 2  + C 1  (1) 1  - C2  S I] [s (ci cn  Si  - , di sn) 

+ et st Si Si  + et et (-ci sn Si  - en e1)] 	. 	 ....(65) 2 1 	1 2 
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62 = 	[C 2 + S2 ($2 	$ 1 (P3)] • [C (Ci Cn  Si  - Ci Sn) - S' S' si St!I 2 	 1 2 

+ C g (Ci Sn St1 + Cn 

	

	+ [C2  $3  + S 2  ($2  $3  - $ 1 )] • [-CI Si St!1 
, 

+ s' (-ci sn  si  - cn cn)] + [-C2  $2  + S 2] • [g (ci cn sn -cn sn) 

+ c' s' si sn + c' ce (-ci sn sn - cn 	 ....(66) 2 1 	 1 2 

03 15 s 2  0) 2  + 	(P 3 )]  [c 	cn + s; s; ci + cl s; Si sn] 

+ [c2  (1) 3  + s2  ((p2  (j) 3  - (P 1)] • [Ci Ci - Si Si Sn] 

+ [7C çt,2 2  + s 2 ].  [S' Si Cri  - C' S' Ci - C' C' Si SI' 2 	 2 	I 	1 	2 	 ....(67) 

Considerable simplifications result if 61 and q are taken to be 6 1  and 6 2 , 

respectively, and if n' is treated as n. Under these assumptions and taking 
trigonometric cancellations into account, the solutions become: 

6 = Si Sn + 4)
I 
FCI S 2 (Ci Cn Sn - Cn Sn) + C2 (Ci Sil + CM 1 

2 	2 
+ 4)2  [S 1  (Ci Cn Sn - Cn Sn) .] + 4) 3  [S 2  (ci sn +  Cri)  

+ c 1 c2 (ci cn sn - cri sn )]  + (I) 1 (1)2 [-c 1 c2 (cn sn = ci cn sn) 
2 	2 	 2 + C 1 S I S 2 Si Sn - C2 S 2  (ci sn + cn)] + gb 1 ,1) 3 [S I C2 (Ci Cri  Sn - cn sn) 1  

2 	2 
- S 2 C2  S2  Si Sn + C 1 C 2 	S (Ci Sn + Cn)] + 4)

2 
(1) 3 [ C I S I C2 Si Sn I  

	

2 	2 	 2 	 2 	2 
+ S 2 C (-Ci Sn -  Cri)]  +' 4)

I 
4) 2 4)3 [C 1 Si Sn + C 1 S 1 (Ci Sn + Cri)] 	....(68) I 	2- 

2 
62 = [i  Cri  Sn -  Cri  Sn] + 4) 1 [S2 C 1 Si Sn + S I  S 2  Ci Sn + S I  S2  C 2  ni 

	

2 	2 	 2 
+ 4) 2 [C 1 Ci Sn + C I  Cr  - S I  Si Sn] + 4)3 	[-C I  C2 	Si Sfl - S I  C2  Ci Sn - S. C 2  C 2  1  

2 	2 
+ $ 1 $ 3 [C2 	S 2 Ci Cri Sn - C 2 S 2 cn sn - s l 	Si Sn + C I 	(Ci Sn + Cn)] 

2 
+ (1) 2 (1) 3 [-S 2 C 1 Si Sn - S I  S 2  Ci Sn - S. S .1. 	2  

6 3  = Si Cn + (1) 1  [-C I  S 2  Ci + S I  S 2  Si Sn] + 4) 2  [S I  Ci + C 1  Si Sn] 

+ 4) 3  [C 1  C2  Ci - S I  C2  Si Sn] + 4)2  4) 3  [C 1  S 2  Ci - S I  S 2  Si Sn] 

+ (I) I 4) 3 [C 2 
S 2 Si Cn + 

Si  S
2  Ci + C I  S 22  Si Sn] 	 ....(70) 2 

For further reduction in complexity (and accuracy) the second and third order 
$-terms may be dropped. 

In order to give an idea of the relative magnitudes of these terms, ob-
serve that: (1) n is a clock term and varies regularly from 0 to 27 rads with 
about a 24 hr period, (2) the inclination '1' is to be limited to 2 °  so that 
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Ci = 0.999 390 827 

Si = 0.034 899 496 

1 =2o  

....(71) 

(3) the nominal d's for a ground station at Ottawa, using the NASA figures for 
earth and synchronous radii, become, 

: 00) : 

6
2 
= 6

'
685 685 543 ° 

 6
2 
= 4

'
060 249 050 °  

C
1 
 = 0.993 199 766 8 	 S

1 
 = 0.116 422 605 2 

C
2 
= 0.997 490 146 7 	 S

2 
= 0.070 805 417 76 . 

....(72) 

If second and higher order terms in are ignored and both i and e of the orbit 
are taken to be zero, the solutions for 0 reduce to: 

....(73) 0
1 
= C

2 
(1)

1 
+ S

2 
(1)
3 

....(74) 0
2 

= S
1 

S
2 

(1)
1 
+ C

1 
(I) 2 - S I  C2  4, 3  

0 3 -  -C 1  S 2  q) ].  + S I  (1) 2  + C 1  C 2  (1) 3 	 ....(75)  . 

These last equations demonstrate clearly the cross-coupling of the is in 
the 0 solutions. Accordingly, (I) 1 

serves as a good indication of 0
1 
and so on, 

but for an accurate reading of 0 1 , (P i  and (1) 3  must both be known. A similar 

statement may be made for 0 2  and 0 3 . These statements are reinforced because 

0
3 

(and therefore (1)
3
) has approximately seven times the tolerance of 0

1 
and 0 2 . 
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EXACT SOLUTIONS FOR THE CASE OF AN 
ADDITIONAL TRANSFORMATION (6 3 ) 3  

In the main body of the report there was the implicit 
combined rotation (62 ) 2  (6 1 ) 1  would specify the orientation 

assumption that the 
of the MASS antenna 

rotation 
(63)3 

about 

the antenna boresight is planned, there will, in practice, be some misalignment, 
or 6 3 	O. Furthermore, a large 6 3 (say, 45 0 ), may be desirable, for example, 

to minimize the electrical interference of the spacecraft forward platform. 
Accordingly, a possibly non-zero 6 3  and 6' should be incorporated in the analy- 3 
sis for complete generality. In the following, 6 3  and 6 are assumed to be 3 
known, either having been calculated to satisfy some criterion or having been 
measured on a working model of the MASS. 

A) Exact Solution of 0 from 15 Including 6 3 3  g 

Following the example of the derivation in the main body of the report, 
we concentrate on the transformations between the various pertinent sets of 
cooralnates. To distinguish from the 6 3  ignored derivation, we employ a super- 

script 2 for the coordinate sets xLS and x
RF , the xL52 and xRF2 now designating 

the axes of the line of sight and MASS R-F frames, respectively, following the 
6' and 6

3 
rotations. Thus the rotational sequences and pertinent frames become: 3 

with respect to the spacecraft axes. Even if no subsequent 

01 	 SC 
(180 ° ) 	(n') 2 (1) 3 (-n) 2 	x (GPI (0 2 ) 2 (03 )  3 

) (6 3 ) 3 (6 2 ) 2 (6 1 ) 1 

LS2 RF2 
X 	(4) 1 ) 1 (4)2 ) 2 (4)3 ) 3e,)! x

0 
(6') 	( 6 ') 	( 6 ') 3 3 	2 2 	1 1 

Equating the twb transformation paths from x
E 

to 
xRF2 , we see 

(6 3 ) 3 (6 2 ) 2 (6 1 ) 1 (60 1  (62 ) 2  (03 ) 3  (180°) 1  (n') 2  ( 1 )
3 (-n) 2  

= (4) 1  ) 1  (4) ) 	(4 3) ) 3  (6') 3  (6') 2  ( 6 ') 1  ( 180 0 ) 2 2 	3 	2 	1 	1 • ....(76) 
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Therefore (6 1 ) 1 02 ) 2 (63 ) 3 = ( -6 1 ) 1 ( -6 2 ) 2 ( -6 3 ) 3 (I) 1 ) 1 (q)2 ) 2 (q) 3 ) 3 

	

3 	2 2 

	

• (6') 	(6') 	0 , 1  ) 	(180 0 )

1 

(n) 2 (-i) 3 
(-n') 2 (180 ° )1 

3 	 1  

....(77) 

The last seven transformations are identical to the last seven of the 6 3 
= 0 

solution found in the main body of the report and are repeated here for 
convenience: 

(6') 	(6') 	(180 ° )
1 

(n) 2 (-i)
3 

(-n') 2 (180 ° )
1 
 = AT 	....(78) 

22 	11 

where 

A = [

a7 a4 al] 

a8 a5 	a2 

a9 	a6 	a3 ....(79) 

and where 
I  t 

al = S' (Ci Cn  Ci + Sn Sn) + S' C' Si Cn
I 
 -C C' (Ci Cr Sn - Cn Si) 

2 	 1 2 	 1 2 

a2 = S' Si Cn -S' C' Ci - C' C' Si Sr 2 	 1 2 	1 2 
t t I 

a3 = S' (Sn dl - Ci Cri  Sn) - S' C' Si Sn + C' C' (Ci Sn Si + Cri C1!1) 2 	 1 2 	 1 2 
1 t t t 

a4 = -C' Si Ci - S
1  (Ci Cri 

Sn - cri sn) 1  

a5 = C'1  Ci - S'1  Si Sn 	 ....(38b) 

t 	1 t 
a6 = C' Si Si + S' (Ci Sn Sn + Cn C1-1) 1 	 1 

t 	 t t t 	 t 
a7 = C' (Ci Cri  Cn + Sn Si) -S' S' Si Ci + C' S' (Ci Cn Sn - Cn Sn) 

2 	 1 2 	 1 2 

a8 = C' Si Cn + S'1  S' Ci + C' S' Si Sn 2 	2 	1 2 
t t 	

C l!))
1 

a9 = C' (Cr Sn - Ci Cn Si) + S' S' Si Sn
, 
 - C' S' (Ci Sn Sn + Cn 	• 2 	 1 2 	 1 2 

... Define D(6) = (6 3 ) 3  ( 6 2 ) 2  ( 6 1 ) 1 	 .(80)  

	

[ d7 

	d4 dl 

DO) = d8 d5 d2 

	

d9 	d6 d3 

where the terms dl to d9 are defined by 

dl = 
5 1 

S 3 - C l 
S 2 C 3 

d2 = C l S 2 S 3 + S I C 3 

d3 = C 1 C2 

d4 = S 1 S 2 C 3 + C l S 3 

....(81) 
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d5 = C
1 

C
3 

d6 = -S
1 

C
2 

d7 = C2 
C 3 

d8 = -C
2 

S
3 

d9 = S
2 ' 

For example, 	 d9( 5 ) = Sin 0
2
). 

Also, 	 (-6 1 ) 1 (-6 2 ) 2 (-6 3 ) 3 = DT(6) 	
....(83a) 

and 	 (Y1 (112 ) 2 (4) 3 ) 3 = DT(-4))  • 	
....(83b) 

Observing that 	 (q)3 ) 3  (6 ) 3  = (4)3 	6P3 	 ....(84) 

Eqn. (77) may be written 

DT  (-0) = DT (d) D T (-(1)') AT  

where cD denotes 11) 3  + 6'3 , while (PI = 	(1) = 4) 2 . 

Accordingly, the matrix multiplication may be performed to show: 

d9(-6) = d7(6) [.:17(-(P'1a9 + d8(-(1)')a6 + d9(-(P')a3] 

+ d8(S)  [d4(-V)a9  + d5(-11)')a6 + d6(-V)a3] 

+ d9 ( ) [d1(-4.')a9 + d2(-(P ')a6  + d3(-V)a3] 

d6(-6) = d4(5)  [d7( -4)')a9 + d8(-4')a6 + d9(-(r)a3] 

+ d5(6) [d4(-V)a9 + d5(-(P ')a6  + d6(-V)a3] 

+ d6 ( ) [d1(-(1)')a9 + d2(-.1)')a6 + d3(-.1)')a3] 

d8(-6) = d7(6) [117(-4')a8 + d8(-11)')a5 + d9(-(1)')a2] 

+ d8(d) [d4(-.1)')a8 + d5(-11)')a5 + d6(-(1) • )a2] 

+ d9(d) 	 + d2(-4')a5 + d3(-(p')a2]. 

....(85) 

....(86) 

....(87) 

....(88) 

These particular d(-0)  ternis  were singled out because of their simplicity; 

from Eqn. (82) we see that d9(-6), d6(-0) and d8(-6) are, respectively, -Sin 62 , 

Sin 6
1  Cos 6

2 
and Cos 0

2 
Sin 6

3' 
from which 6

2 
6
1' 

and 6 3 may be determined 

easily, and accurately for small 6's. Substituting Eqn. 82 into Eqns. 86, 87 

and 88, we see 

-SO 2  = a9 [C2  C3  02  43  - C2  S 3  (S(P 1  ScP 2  03  - cq 1  S(1) 3) 

	

+ S  (S 1 	+ 	S 2 	)1 
2 	1 	3 	1 	2 	3 j 

....( 8 9) 
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Equations (89) to (91) now specify the solutions of 6 2 , 0 1  and 63  in terms 

of the MASS measured angles (P I , (1) 2 , (1) 3 , the MASS antenna mounting rotations 

l' 62'3 and the satellite position dependent ground station antenna pointing 
angles dl, q, (Pr  the last three of which are used in Eqn. (38h) which defines 
the parameters al to a9. 

B) Exact Solution of from 1 Including 6 3, g 

Equation (85) may be manipulated to support: 

D
T (-4)) = D(d)DT (-0) A . 

Following the pattern of the previous section A), we find upon expansion that: 

-ScP 2  = al [C2  C 3  CO 2  CO 3  + (S 1  S 2  C3  + C I  S3) ( 50 1  SO 2  CO 3  - CO I  S0 3 ) 

+ (S
1 

S
3 

- C
l 

S
2 

C
3
) (S6

1 
se 3 + ce 1 SO 2 CO 3 )] 

+ a2 [C
2 

C
3 

CO 2 SO 3 + (S 1  S 2  C 3 
 +C

1  S 3
) CO 1  CO 3  + (S 1 

S
3 
- C

l 
S
2 

C
3
) 

• (ce 1 SO 2 se 3 — se 1 CO 3 )] 

+ a3 [-C
2 

C
3 

SO 2 
+ (S S C

1 2 3 +C 1  S 3 ) SO 1  CO 2  + (S
1  S 3 

 -C S
1 2  C 3

) C6
1  CO 2  ] 

....(92) 



and (I); = 4)3  +  S.  

Equations (92) to (94) (used with Eqn. (38b) again), define  

in terms of 01,  02 O3 	6 2' 6 3 and 	 , 6'1  6' '  6' ' Accordingly, these equations 2 	3 
may be used to calculate the angles the MASS should indicate for any specified 
combination of 6, 6 and 6'. 

C) Exact Solution  for  Pseudo Two -Station Yaw, Including 6 3, g 

Pseudo two-station yaw, for which the yaw angle is calculated from two 
normally earth-sensor measured angles (roll and pitch) and one angle from MASS. 
Theoretically, c1) 1 , (1) 2  or (1) 3  may be used, but ,19 2  is the choice under normal 

conditions. (1) 3  would produce the yaw estimate least sensitive to MASS angular 

measurement errors, but in the simplest MASS there would be no polarimeter or 
means of measuring (1) 3 . Of the two remaining MASS measured angles, (1)2  produces 

the least sensitivity to errors in (19 of the final yaw estimate. Equation (92) 
contains terms in 6 1 ,  62' 6 3 and (1)2 but no terms in (19 nor (I) 3. 

Accordingly, 
1 

this equation may be manipulated to isolate the 63-dependent terms, as follows: 

-S(1) 2  = C6 3  [al (C 2  C3  CO2  + (S I  S 2  C3  + C I  S 3 ) S6 1  SO2  + (S 1  S 3  - C I  S 2  C 3 ) CO I  SO 2  

+ a2 ((S 1  S 2  C3  + C 1  S 3 ) C6 1  - (S 1  S 3  - C I  S 2  C3 ) Sy] 

+ S6 3  [al (-(S 1  S 2  C3  + C I  S 3 ) CO I  + (S 1  S 3  - C I  S 2  C3 ) SO 1 ) 

+ a2 (C2 C 3 CO2 
+ (S 1 S 3 - C l S 2 C 3 ) C6 1 SO2 

+ a3 [-C2 

	

	3  C S6 2 
 + (S 1 S 2 C 3 + C l S 3 ) SO 1 

CO2 + (S 1 S 3 - C l S 2 C3 ) C6 1 CO2] 

....(95) 

This transcendental equation may be solved iteratively for 6 3 ; convergence may 

be expected to be rapid since 0 3  will normally be known beforehand to within a 

narrow tolerance. If one makes the approximation CO 3 	1, S63 zr. 6
3 in rads., 

Eqn. 95 ceases to be transcendental and may be written: 
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0 3 /  al[(_ S
I S 2 C 3 + C l  53 ) c6 1 + (s 1 s 3 - C

l S 2 C 3 ) s6 1)] 

+ a2 [C2 C 3 C62 + (S 1 S 3 - C l S 2 C 3 )  CO  SO2] 
-11 	-S02 

- [al  [c2  C3 CO2 + (S 1 S 2 C 3 + C
l 

S 3 ) S6 1 S62 + (S 1 S 3 - C
l 

S 2 C 3 ) C6 1 S6 2] 

+ a2  [(si  S 2 C 3 + C l S 3 ) CO 1 - (S 1 S 3 - C l S 2 C 3 ) SO 1 ]] 

- a3 [-C 2 C 3 SO 2 + (S 1 S 2 C 3 + C
l S 3 ) Se

l 
C6 2 + (S 1 S 3 - C l S 2 C 3 ) CO 1 CO 21• 

....(96) 



APPENDIX 	F 

Relations Between Azimuth, Elevation and the 
Rotations ( 2 ) 2  (y i  

Although the ground station antenna pointing angles defined by ( 2 ) 2  (61) 1  

are correct, it is desirable to redefine the pointing angles in terms of the 
more conventional azimuth (az) and elevation (el) angles, since the majority of 
antenna drives are with respect to az and el. Accordingly, we develop the re-
lations for az and el for arbitrarily located ground stations and satellite 
positions, the satellite assumed to be in an inclined eccentric synchronous 
orbit. The range, or satellite-ground station separation distance follows 
from the development, and these two steps are then used to demonstrate the 
relation between az and el and the (V) (V) developed in the report. 2 2 	1 1 

The terms azimuth and elevation require clarification, for at least three 
different definitions of azimuth above appear in the literature 3 , p. 231; 
s , p. 44;  6 ,  p. 22. For the following we define a plane PI passing through the 
ground station and orthogonal to the vector Rc  to the ground station from the 

centre of the earth, in the coordinate system xE . For a satellite situated at 
Rs , then R = R - R is the vector from the ground station to the satellite. -G 
If R' is the projection of R 	into the plane PI, we define the elevation of -GS 	 -GS 
the satellite to be the angle subtended by R and R' at R . Furthermore, if 

denotes a vector parallel to the spin axis of the earth and passing through 

the ground station, and It,; is its projection into Pl, we define the azimuth of 

the satellite to be the angle from R; to 	measured positive clockwise (i.e., 
to the East). 

A ground station whose position is described by RE , cl),  and X (as shown on 

p. 2), is located at the tip of the vector RG , 

R = RE2  (X) 	(0, 0, 1)
T . 	 ....(97) -G 	 1 

Similarly, in xE the position of the satellite is given by 

13,S = RST ( n ) 2 (- 0 3 (-n 1) 2 ( O ,  °, 1)T  • 	....(98) 

Accordingly, the vector from the ground station to the satellite is 

R -GS -€ -G ' 
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the range being 1/2„Gs l. 
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Fig. Fi.  Ground station antenna po-enting angles. 



....(102) 

....(103) 

....(104) 
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That is, !GS = RST (Ci cn sri 	sn) - REs(pcx 

RST Si  s
1!1 - REsx 

	

RsT (ci sn  Si  + cn a) - REcex 	. 	....(99) 

Next we consider a set of coordinates x
2 
with origin at 1.1G  and two axes 

in the plane P1 and the third axis parallel to R '  the set 
x2 being delived 

—G 
from xE by the rotations (-A) 1 (0 2 . Accordingly, axis #1 of x

2 is the local 

E vectol, axis #2 is the local N vector and axis #3 is along the local vertical. 

Thus the unit vector r  —GS  

(r 1' r2' r3 ) T 

2 in x acquires the description in x of 

r2 = —GS 

or 	r2 = C(Pr 1  - Scl5r 3 —GS  

CXr. 2 - SX(S# 1 + C(1)r 3 ) 

SXr2 + CX(S(Pr 1 + CcPr 3 ) 	. 

Observing the definition of ax and el, we may write 

(0, 1, 0) T = (el) 	(-az) r2 1 	3 —es 
2 

Therefore, 	—CS 
r = (az) 3 (-el) 1  (0" 1 0)

T 

Therefore,

[ S

az  Cal  [C i  - ScPr 3  

Caz Cel = 	CXr.2 - SX(S(Pr 1  + C(Pr3 ) 

S el 	
SXr2 + CX(S(Pr 1  + C(1)r 3 ) 

....(100) 

....(101) 

Note that although elevation is bounded by 0 and 90 ° , the azimuth may 
range from 0 to 360 ° . Accordingly, care must be taken when inverting the sine 
of the azimuth that the correct quadrant is assigned to the result. 

This derivation is easily adapted to other definitions of az and el. 
Relations to take the earth's oblateness into account have been developed else-
where 5  p. 48, and 7 , and will not be repeated here. 

If the ground station antenna angles V and V have already been deter- 1 	2 
mined, az and el need not be Lalculated from the components of r CS  as in — 
Eqn. (104), but may instead be found directly from 6' and 6' . r was found 1 
in Eqn. (25) to be 	

2 —CS 
 

r 	= (180 ° )  (4') (-6') (0, 0, 1) T —GS 	 1'l 	2 ' 2 	 ..  
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But 	 rGS  = - r 	 ....(106) 
- —SG 

and from Eqn. (100) 	 r CS = 	 -GS 
....(107) 

- 2 	1  

while from Eqn. (102), 	 r2  = (az) 3 (-el)
1 

(0, 1, 0)
T • 	....(108) 

—GS 

Therefore, 	 r 	= (-0
2 

(X)
1 

(az)
3 

(-el)
1 
 (0, 1, 

-GS  
....(109) 

From Eqns. (105), (106) and (109), we see 

-(180 ° ) 1  (-61) 1  (-6p 2  (0, 0, 1) T  = (-0 2  (X) 1  (az) 3  (-el), (0, 1, 

....(110) 

From Eqn. (110), we find 

(az)
3 (-el)

1  (0, 1, 0)
T 

= -(-X)
1 
(0 2 (180 0 )1 	1 

(-6')
1 
 (-6') (0, 0, 1)

T 
2 2 

....(111) 

Therefore 	S az  Cal 	 2 	12  
C(PS' 	+ Se'CI 

[ 

Caz Cel 	
= - CXS'C' - SX(ScPS' - Ce'C') 

1 2 	2 	1 2 

....(112) 
1 2 	2 	1 2 J 

. 
L 	1 2 	2 	1 2  

Thus az and el have been found in terms of 6' '  6' '  4) and X, and Eqn. (111) l 	2 
is easily manipulated to define 61 and 	in terms of az, el, (1) and X. 
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