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CALCULATION OF EVANESCENT-WAVE GAIN IN THE 

TEom  AND TMom  MODES OF AN OPTICAL FIBRE 

by 

A. Watanabe, K.O. Hill and D. Mintz 

ABSTRACT 

In this report we extend our previous pertur-
bation-theory treatment of evanescent-wave gain in 
dielectric slabs to the case of a cylindrical 
dielectric waveguide, or optical fibre. The general 
formalism for treating evanescent-wave gain due to 
an active cladding material is developed, and 
detailed calculations of the gain coefficient ratio 
are presented for the TE om  and TM om  modes of the 

active optical fibre. 

I. INTRODUCTION 

Several types of waveguiding structures are known which can support the 
propagation of a finite number of bound electromagnetic modes. Two such 
structures are the dielectric slab and the optical fibre. In both structures 
the electromagnetic field associated with the bound modes extends beyond the 
central region; that part of the field which penetrates into the surrounding 
medium is termed evanescent. We have shown experimentally that when the 
surrounding medium is an active material with gain, then a signal propagating 
in a bound mode of the structure can exhibit gain l . In other work we have 
also observed laser action by evanescent-wave gain in an optical waveguide 
device 2 ' 5 ' 4 . 

In a previous paper we used first-order perturbation theory to treat 
the effects caused by a surrounding medium with gain on the bound modes of a 
dielectric slab 5 , and derived formulae for the amplification of the bound 
modes by evanescent-wave interaction with the surrounding medium. In a sub-
sequent work we treated evanescent-wave gain in a dielectric slab waveguide 
when the active material in the cladding layer was optically pumped by the 
evanescent field of the pump beam propagating in one of the bound modes of 
the structure 5 . In this paper we extend the earlier calculations on planar 
waveguides to active cylindrical dielectric waveguides, or active optical 
fibres. 
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2. THE BOUND MODES OF A PASSIVE OPTICAL FIBRE 

Consider the case of a cylindrical waveguide with the z axis in the 
direction of propagation, core radius a, dielectric constant e l  and E 2 of the 
core and cladding regions, respectively, and a relative permeability of one. 
The spatial variation of e in the plane normal to the direction of propaga-
tion is shown in Figure 1. For a plane wave in the z direction the electric 
and magnetic fields can be written in cylindrical coordinates (p,(1),z) as 
E(pMexp(ikzz-iwt) and B(pMexp(ikzz-iwt), where the values of the angular 
frequency w and the z-direction propagation constant kz  are both real and 
positive. The electric field satisfies the equation 

(V2  EW V -I- 	E = 0, 

E = E for p < a — 

= E 2 for p > a, 

and E 2 < 

The magnetic field also satisfies the equation 

(V2  + e(- 	= O. c2 

The Laplacian operator in cylindrical coordinates is given by 

D2 	 1 	D 2 4.  D2 

V 2  = irf77 	âp 777 	7C7r7 • 

Let (3, $ and 2 be the unit vectors along the 3 axes of the cylindrical 
coordinate system. Then 

D cp 	y, 

Dp 	p, 

and all other derivatives of the unit vectors are zero. Thus the equations 
for the derivatives of the individual components of the electric field vector 
E = (E p ,  E ,  E Z  ) become y 

D 2 	D 2 E 	DE„ 

	

(1) 	E 
7er 
 El   + 2 	-

o s 	p(P s 	4 
	(5) 

and 
(D 2 EA, 	) 	aEd,  

Ee - q2 	- 2 Bi  p • (6) 



a 
Fig. 1. The spatial variation of the dielectric constant e(P) 
for an optical fibre whose axis is in the z direction. e l  and 
£ 2 are the dielectric constants of the core and cladding regions, 
respectively. The diameter of the core is 2a. 
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(7) 

(8) 

(9) 
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With the use of equation (5) and (6), equation (1) can be written as 

2 Ep  1 DEp 	1 [2 	
0  › 

	 (Ew DEt. 	 2 	k2) E 0 = 0  
a2 p —P 	+ 7 11) 	

2 m) 	E + --c-2- 	z 	, 

2 E(1) 	1 âE45 	1 	B 24 	Ep 	 (cw2 
fD 2 p  	p 2 	 2  B (1) 	I 	 k2  z ) E = 0 , (I) 

D 2 Ez4_  1 DE _L  1 [D 2E1 (Ew 2 	2  
E —27 	 = 0, 

DP 2 	7 	7 -57— 	c 	z z 

for the components along the p, (I) and z axes, respectively. Equations (7) and 
(8) both contain E and E 	therefore are not easily solvable. On the other 
hand equation (9) contains only  E 	is readily solved. We assume a solution 
of the form 

Ez  = Ez (p) E z ((1)) exp(ik zz - iwt).   (10) 

Equation (9) becomes 

2 Ez ( p ) 	DEz (p) 	(a02 	 1 	( 2 Ez(P) P 2 
k2 ) E (P)] - c 2 E (p) 	âp 2 	P 	P 	 z 	z 	E(p) 

	 (11) 

In order to separate variables we let +X be the constant of separation, 
so that 

â 2 Ez((p )  
-1-XE z ((I)) = 	----T--  • 	(12) 4 

Because our space is symmetric in (I), the (I) dependence should be symmetric in 
the interval 0 < (I) < 2n. Thus the solution of equation (12) will have the 
form 	 — 

Ez (4)) = cos(n(I) + 11) 11 ) ,   (13) 

and 

where X = n 2 , n = 0,1,2,.... and tl) is the phase constant. We define 
propagation constants y and 13 by n  

el ti)2 
y 2 = --y-  k2  , 

= k2  - 
2 	C 2  • 

	 (14) 

	 (15) 



(16) 

â2 
E (p) + p2 z  

E(p)  
+ (Y 2 

P 
n 2  - 	E (p) = 0 
p 2 	z 

< a for 

and 

+ 112) E (p) = 0 for p > a. p 2 	z  
â2 1 E (p) + 

âp 2  z 
DE(p)  

ap 	
(32 

	 (17) 

(E
P
,E

(1)
,0) - 

-1 

( 

2 	
) 

W  

1,2 
--e7 

C 
) iW(2 X V

t
B
z

)] 
[Vt 

- k2 

-1 [ (9B 

 
z) 	icw 2  

V — + 	(z V
t
E
z
]

, zi 	t 	az 

(20) 
w 2 

(B ,B ,0) = 
P 

For y and 8 real and positive we get propagation of energy inside the wave-
guide and no transverse flow of energy outside. 

The differential equations for the p dependence of Ez  become 

5 

Equation (16) is a Bessel equation of order n and equation (17) is a modified 
Bessel equation of order n. The solutions of these equations are restricted 
by the requirement that they be finite at p = 0 and p = co and that the field 
is localized to the vicinity of the waveguide core. The solutions have the 
form 

A
nJn (YP) for p < a 

Ez = cos(rep +11)n
)exp(ikz z- iwt) 

B
n
K
n
(8p) for p > a, 

where A
n and Bn are constants ' 

Jn 
is a Bessel function and Kn is a modified 

Bessel function of the second kind. 

From a similar derivation for the magnetic field components it can be 

shown that B z has the 
form 

CnJn (YP) for p < a 

Bz 
= cos(ncl) + tp')exp(ik z

z - iwt) 

DnKn (P) 
for  p>  a, 

where Cn and Dn 
are constants. 

The components of the fields perpendicular to Ez  and Bz can be read from 
the following equations 7 : 

(18) 

(19)  
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where 

V
t
=v-z- âz 

v 	(a 1 â 	a) 
âp' p âp' âz 

Thus the equations for the components of the field become 8  

) -1  ( 	âEz 	iw 913z (EL) 2 E = —  k2  ik — + — — 
P 	c 2 	 z âp 	p  a ' 

	

) -1  (ikz  âEz 	âB z  

	

(7°
2 	2 E = 	k I) 	C 2 	z 	-----P --Ft" 

2 ) -1 

	

(

2 	H z 	EW 1 nz 

	

B = — 	k 	( 
âB

Lk —.  

	

c2 	 Z ap 	c p aq) 

)-1 ( 	1  aBz 	cw  âEz ) (cw2 
ik  = 	2 	 Z P 	Y 

B1) 	c 	z 

The solutions for the field components are given by 

E z  = AnJn (yp)cos(ncl) + 11) 11)exp(ikzz - iwt), 

ikz  
E 	 J (yp)cos(e + 11)11 ) 
p 	ny n 

niw - B 	J (yp)sin(n(1) + 	exp(ikz z - iwt), n y p n 

(21)  

(22)  

[ 	

ik,n 
E = -A -4i- 

nyp 
 J (yp)sin(e + j) n )(1) 	 n 

- BJ' (yp)cos(n(1) + 1p') lexp(ik
z
z - iwt), 

n y n 

B z  = BnJn (yp)cos(ncl) + lp:)exp(ikz z - iwt), 

-- 
ik 	, 	

' B = B 	• J 	(yp)cos(ncl) + 1P) 
p 	nyn 	 n 

ic wn 
+ A 	J (yp)sin(e + 	exp(ikz z - iwt), n cypn 

..(23) 



py î 3n ( Yp)sin(n(1) + 11):1 ) 

ielw  1 + A
n c2y 

J
n
(yp)cos(e + 11)11)1 exp(ikzz - iwt), 

ikzn 

]

+ Dn  t K 1 (4)cos(ncp + exp(ikz z - iwt), 	 (24) 
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B 	[Bn  

(23) 

for 0 < p < a and 

Ez  = CnKn (p)cos(n(1) + 11)n)exp(ikzz - iwt), 

ik z 1 „ E = -C 	K (IDP)nos(n(1) + 11)n ) 
P 	n 	n 

+ Dn  
niW 	 Il  

 Kn (P)s1n(n(1) + 11)n)J exp(ik
z z - iwt), 

ikzn 
E = IC -(4)sin(ncl)  + 11)11 ) (1) 	n (3 2 p n 

for 

B z  = DnKn (3p)cos(0 + t1):1)exp(ikz z - iwt), 

ikz   
B = 1D ---K

,
(f3P)cos(nct) + 

P 	n 	n 

ic2wn 
- Dnc  2 	2 p K (P)sin(n(1) 

+ 1)1)1 exp(ik z - iwt), (3n 

ikzn 
B = 	--7- K (13p)cos(ncl) + 11/ exp(ik z z - iwt), (1) 	 n 

P > a. We have written 

J:, (Y° 	( Dyp) jn (YP)  

Kn (P.P) - fflp)  Kn (.P). 
(25) 



(26) 

(27) 

(30) 
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The boundary conditions at the core-cladding interface (p = a) require 
the continuity of the normal components of B and D and the tangential 
components of E and H, where 

B = p H , 

throughout space and 

D = EH — 

E = E for p < a 1 	— 

= E 2 for p > a. 

From the continuity of the tangential components of E at the boundary and 
making use of equation (20) we obtain 

AnJn (ya) = CnKn (8a), 

w 
-A 	J (ya) - B..1 . (Ya) = C — K (8a) + D — K (8a), 
n y2 a n 	n y n 	n 8 2a n 	n 8 n 

and from the continuity of the tangential components of B we obtain 

BnJn (ya) = Dn
Kn (8a), 

....1(29) 
ikzn 	 iE 1W 	 kzn v  in 	E W 

C  -B 	J (8a) + An c2y  Jn (ya) n ay n 	 = Dn. a8 2 	 *-1.1"a" 

3. UNPERTURBED SOLUTIONS FOR THE TEom  AND TMom  MODES 

In an optical fibre of cylindrical geometry the 
hybrid HE ll  and HE21  modes and the TE 01  and TM01  mode 
magnetic field components of the TE om  and Tom  modes 

spatial distribution, since they have no cl) dependence 
equations (7) and (8) for E and E

(I 
 are uncoupled and 

P 	) 

D 2 E, 	I DE, 	„2 	1  

Dp 	p Dp 	c 2 	p 2  	+ -- + .̀-2--- - — - k 2  E = 0, 
(  

	

z 	p 

( 

D 24 	1 DEcp 	sw 2 	1 	2  
Dp2 + p 	â p  + c 2 7 - kz  Ecp = 0 , 

2 Ez 	1 Ez 	Ew2 	k 	E = 0. 
( 

-7(7. 4. 7  	57  + 
\ c2 	

z z   

The components of B also satisfy equations of the form of equation (36). 
These are Bessel's—equations or modified Bessel's equations for (Ew 2 /c 2  - K 2

z ) 
positive or negative, respectively. 

.1...(28) 
ikzn 	 k n , 2 

low-order modes are the 
s e . The electric and 
have a relatively simple 

. In this case, 
the equations become 



(31) P  < a, 

(32) 

(33)  
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By the use of equations (23) and (24) and substituting for n, 1P '  and 1P 
we can write down the solutions for the TE om  and Thom  modes. From thé boundialry 
conditions at p = a it can be shown 8  that 

1 1P.' - iPn 	-72-T • 

The solution for the TE om mode 
is obtained by taking n = 0,

n = u/2 and 

= 0 make E
z 

= O. Therefore for the TE OM mode 

iw 
E = B 	( (1) 	0 y 	YP)exP(ikz z - iwt) for p < a, 

iw - „ = -D o  -- 1%. (10P)exp(ikz
z - iwt) for p > a, 

E = E = 0 
p 	z 

B = B 0  J 0  (YP)expakzz - iwt) for 
z  
= D0K0(8p)exp(ikzz - iwt) for p > a, 

ikz  
B = -B 0 	(YP)exp(ikz z - iwt) for p < 

 y 

ikz 
= D o  -7-3 -  Ki(I3P)exp(ikzz - iwt) for p > a, 

and 

The boundary conditions for the TE om  mode are obtained from equations (28) and 

D o  
J 1  (ya) = - 13 K 1  ffla) y  

B o J o (ya) = D o K o (a), 

where we have made use of the relationships 

J '0 (YP) = - -1 1 (YP) 

K lo (p) = -K I (Pe). 

a, 

(29) to be 



the two 
Pa, 1  

6 2 ) l wa/c, 
J 1 (ya)/1J 0 (ya) 
Thus for an 

(35) 

(36) 
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By eliminating B o  and D o  from equation (32) we obtain the following 
transcendental equations for y and P.: 

w 2 
2 	2 

= (c 1 	e 2 )  

(34) 
J i (ya) 	K 1  (13a) 

YJ o (Ya) 	13K 0 (13a) 0.  

The solution of these transcendental equations leads to a discrete set of 
eigenvalues ym  and 13m . The corresponding eigenfunctions are obtained sub- 
stituting these values into equation (31). Now the TE 01  is not the lowest- 

order mode and has a cut-off frequency. We examine the behaviour of 
terms J i (ya)/yJ o (ya) and K 1 (13a)/13K 0 (13a) of equation (34) with ya and 

respectively. The maximum value of ya for a real value of 13  is (e l  - 
so that K (Pa)/PK 0 (Pa) is real only for ya < (c, - 6 2 ) 1/2  wa/c. Also 
is positive only for ya > 2.405, which is the first zero of J o (ya). 
eigenvalue to exist, we must have 

2.405c  w > 	 • 
€ 2 )a  

A similar derivation can be carried out for the Thom  mode by taking n = 0, 

n 
= 0, and 1Pn = u/2 to make B z = 0. Therefore for the 

TMom  mode 

ikz  
E = -A 0  --- J 1  (yp) exp(ik z z - iwt) for p < a, y  

ikz = C o 	K 1  (Pp)exp(ikz z - iwt) for p > a, 

E = A J (yp)exp(ikz - iwt) for p < a 
z 	00 	 z  

= C o  K 0  (Pp)exp(ik z z - iwt) for p > a, 

Ec  . 0 p,  

iciw = -A 0 c2y  - J 1  (yp)exp(ikzz - iwt) for p < a, B40   

ie2w = C0 c2 13 
 K (Pp)exp(ik zz - iwt) for p > a 

B
p 

- B z = 0. 



A0 J 0 (ya) = C 0K 0 (8a) 

-A 	J (ya) = C 	2  
0 y 	 0 13 

The transcendental equations are 

(37) 

K (U). 

(38) 

(40)  

(41)  

The boundary conditions lead to the following equations: 

11 

2 
2 	,s2 _ y + 	- (E 1  - E ) 2 c 

	

(Ya) 	C 	K ,  (13a)  + 0 

	

yJ o (ya) 	E 1  e0 (Ra) 

4. EVANESCENT-WAVE AMPLIFICATION 

In order to account for the effects of a surrounding medium with gain on 
the bound modes of the optical fibre we follow the method that we developed 
previously for treating evanescent-wave gain in a dielectric slab s . We add a 
small imaginary component to the dielectric constant of the cladding region, 
so that 

E 2 (P) = E(p) 	E ';(P).   (39) 

The p variation of the real part of the dielectric constant is identical to 
that used for the passive waveguide case. 

To solve for the effects of this small imaginary component on the modes 
of the fibre we use first-order perturbation theory. Perturbation theory 9  
requires a complete set of orthogonal functions. The solutions of any wave 
equation form such a set of orthogonal functions ll . A comparison of equation 
(9) with the Schrodinger wave equation shows that  k 2  is the eigenvalue and 

CW 2 /C 2  plays the role of the potential. Thus the unperturbed solutions for 
the z components of fields as given in equations (18) and (19) are good 
eigenfunctions for use in calculating the values of the perturbed ei8envalues. 
The perturbed values of the eigenvalues of the nth mode can be found b  from 

,2 
k 	-k2 	= 6 , 
z;n 	z;n 	n 

where 

* 	" 	W 2 
6 = <1Pn liE 2 (p) 	1 11)n >, 

where 11)n is one of the 
unperturbed field components for the nth mode. The z 

dependence of the amplitude of these components is given by 

exp[-i kz;n
z] = exp 	kz;n 	

+ 611  ) z] 
2k 	 ..... (42) 

z;n 
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II ( it) ) 

7 2 

1)  
Fig. 2. The p variation of the imaginary part of the dielectric 
constant of the active fibre with constant gain in the cladding 

region. 

Fig. 3. The p variation of the imaginary part of the dielectric 
constant of the evanescent-wave pumped active optical fibre. 



(43) 

(44) 
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Thus as a result of the interaction of the evanescent waves with the medium, 

the n th mode gains intensity as it propagates down the fibre in direct 
proportion to the quantity 

exp 	—11- 1. k
z;n 

The gain coefficient of the nth  mode is therefore 

[71. n 
k
z;n 

We say that amplification takes place via evanescent-wave interaction, because 
the entire contribution to dn 

comes from the interaction of the evanescent 
field with the active medium surrounding the core of the fibre. 

5. AMPLIFICATION IN THE TE 	AND TM 	MODES OM 	OM 

In order to illustrate the effect of evanescent-wave amplification in 
optical fibres we treat in detail amplification in the TE om modes. In 

Section 3 we derived expressions for the eigenvalues and eigenfunctions for 
the unperturbed TE modes. We now examine the perturbation caused by a om 
cladding region with gain, following the method outlined in Section 4. The 
p variation of the real part of the dielectric constant is identical to that 
used in the passive case and is as shown in Figure 1. The p variation of the 
imaginary part of the dielectric constant is shown in Figure 2; it has a 
value of zero within the core and a constant value in the constant. Thus we 
are assuming a cladding with uniform gain. 

For the case of evanescent -wave pumping, i.e., when the pump beam 
propagates in one of the bound modes of the optical fibre, the imaginary part 
of the dielectric constant will decrease exponentially with distance into the 
cladding, as shown in Figure 3. Also there will be a (1) dependence in the field 
components if the pump mode is propagating in a mode other than the TE om  or 

Thom  modes. The effects arising in this case will be qualitatively similar to 

the case for uniform gain in the cladding, but will be somewhat more complex. 
We leave considerations of evanescent-wave pumping to a future work and limit 
our present considerations to the case of uniform gain in the cladding. 

We make the assumption that the perturbation is small and that only 
first-order perturbations need to be considered. In almost all practical 
cases the gain is not large enough to make a significant perturbation in 
distances of the order of a wavelength 5 . Thus first-order perturbation theory 
is adequate for the treatment. 

Since mode conversion will occur, the perturbed eigenfunctions will be 
given by a linear combination of the unperturbed eigenfunctions. Thus the 
gain in one of the unperturbed modes is somewhat lower than the total gain 
experienced by a wave propagating in that mode. We treat these mode-conversion 
processes as losses, as far as that particular mode is concerned, and 
calculate the net gain in one of the unperturbed TE om modes. 

(ln = 



(48) 

(49) 
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From an examination of equation (31) it can be seen that it is necessary 
to treat only one of the field components. The gain values for the other 
components follow immediately from equation (31). We carry through our treat-
ment for Eq) , which has only a p dependence for the TE om  modes. We derive an 
expression for E in the normalized modal form6  by assuming that 

(I)  
.00 

E*E pdp = 1 
(1) (I) 

a 	. 
= 	

(
- 	B*J* (yp)exp[-ik z z + iwt] (.4-1!) B 0  J 1  (yp)exp[ikzz - iwt]pdp y 	o 1 	 y  

0 

iW 
(1 ) D*K* (Sp)exp[ikzz + iwt] (- --) D o  K (Sp)exp[ikzz-iwt]pdp. o  

a 

(45) 

Making use of equation (32) to relate B o  and D o  and the values of y and S 
from the solution of equation (38) we obtain 

D 2 - 	 2  
0 	 21(..(Sa)K  (Sal ' a 2 w 2 	+ _1 ) [2p,\ 	u 	1  

y 2 	p.2 	''- o \
f,
Pa , 	 Sa 

From equations (41) and (31) 

" 2 foe  W 
7

2  2 2 	 E W 
= ( -2- 	(S p) i --,r- pdp d

m   u 	m 
a 'm 

ic ut0 2  „ s 2 
	 w DqV2fR \ 	

2K,(13 a)K (S 
m 	om 

a) 
c2 	(320-0.pma, + 	

i 	
2 

(3 
 ma 	

K2( 1  13ma) I -ar  
(47) 

2 	 2 
Substitute for D o from equation (46) and for ym from equation (38). Therefore 

" 2 iE W  = 	2 (1 - E )(1 - G ), 

where we have simplified the expression by writing 

Em 
) w  (e l-e2 c 2  

K2 (6 a) 
1-1-1  K o

1 (Sma) 
Gm - 	  

	

2 K1(ma) 	. 
1 + Sma Ko (Sma) 

(46) 
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(50) 

(52) 

(53) 

The value for the gain is found directly from equation (44), so that 
" 2 

E W 
c 2 

= k — (1 - Em)(1 - Gm). 
m  

Z;M 

On the other hand the gain coefficient for a wave propagating in bulk-
material identical to the cladding material is given by 

k E _ 2 2 

2 

where 

w k 2 = —c E 2 

Thus the gain-coefficient ratio (G.C.R.), which is the ratio of the gain 
coefficient in the cladding region of the optical fibre to the gain coefficient 
in the same material in bulk form, is given by 

am 	k2  
(G.C.R.) = - ---- 

m a 	k z;m 

for the TE om mode. 

(1 - E)(1 - Gm) ,   (51) 

From a comparison of the equations (31) and (36) it can be seen that the 
gain-coefficient ratio is given by equation (51) for the Thom  mode, as well. 

6. NUMERICAL RESULTS 

In order to see more clearly the behaviour of the gain-coefficient ratio 
as defined by equation (51), we calculate the gain-coefficient ratio as a 
function of mode number for some multimode fibres. These results are as shown 
in Figure 4 for three cases. The fibres have a core radius of 15 pm and a 
refractive index of 1.5. The refractive index of the cladding is lower than 
that of the core by An = 0.003, 0.01 and 0.03, to give fibres supporting 3, 
5 and 9 modes, respectively, at a wavelength of 1 pm. We note that the higher 
order modes tend to have larger values of the gain-coefficient ratio. 

From an examination of the form of the transcendental equations (38), 
it can be seen that the higher ordcr modes have larger values of ya than do 
the lower-order modes. The maximum value of ya is given when 8a = 0 by 

(ya) - = (E 1 - E 2 )
½ 
 wa  max 	 c • 

From equation (49), we see that Em  = 0 for 8a = 0 and 

lim G = 0 
m  



k2 (G.C.R.) 
m,f3a=0 	k 

Z;111 

(54) 

III 	J 	1 	.1; 
I 	2 	3 	4 	5 	6 	7 	8 	9 

MODE NUMBER 

Fig. 4. The gain-coefficient ratio plotted against mode number m 
for the TEom  modes of three active optical fibres at a wavelength 
of 1 gm. The fibres have a core radius of 15 pm and a core 
refractive index of 1.5. The refractive index of the cladding is 
lower than that of the core by An = 0.003, 0.01, and 0.03  for the 
three examples shown in the figure by the symbols x, and 0, 
respectively. 

Thus 

which has a limiting value of unity. We see that the limiting value given by 
equation (54) is independent of a and of (6 1 -E 2 ). Thus for any slab mode 
which is limitingly close to cut-off, the G.C.R. has a value of unity, since 
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the evanescent field of the mode penetrates uniformly into the entire medium 
surrounding the slab. Figure 5 shows the variation of the G.C.R. against (3a 
for the case of a fibre with a 15 gm diameter and a core refractive index of 
1.50. Curves are shown for three cases, with a refractive-index difference of 
0.003, 0.01 and 0.03 indicated by a, b and c, respectively. The value of the 
refractive-index difference affects only the factor ErE2  in the denominator 
of the expression for E as given in equation (49). It can be seen from 
Figure 5 the G.C.R. is irillot very sensitive to the value of ErE 2  for small 
values of (3a, i.e., for modes near cut-off. At cut-off (f3a = 0) the G.C.R. 
has a value of unity for any fibre, independent of the refractive-index 
difference or the fibre diameter. Thus a value of the G.C.R. close to unity 
can be obtained for any active fibre by fine tuning the value of Er E 2  to 
bring the highest-order propagating mode close to cut-off. 

0 
F 4 
« 

g 

3 . 

4 	 B 	 10 
se 

Fig. 5. The gain-coefficient ratio plotted against 13a for the TEom  
modes of a fibre with a core radius of 15 pm and core refractive 
index of 1.5. The refractive index of the cladding is lower than 
that of the core by 0.003, 01 .01 and 0.03 for the three curves 
marked a, b and c, respectively. 
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7. SUMMARY 

We have used first-order perturbation theory to treat evanescent-wave 
gain due to an active cladding material on an optical fibre. Detailed 
calculations of the gain in the TE om  and Thom  modes of the fibre have been 
carried out and some numerical results have been presented for the gain- 
coefficient ratio. These results show that for modes close to cut-off the 
evanescent-wave gain is nearly equal to the gain attainable in the bulk 
material. 

For the cases of the TE andand TM modes for m > 0 and for the hybrid 
nm 

modes HE
nm 

and EH there is a (1) dependence and normalization must be nm 
carried out over both p and (1) variables. Also equations (7) and (8) for the 
p and (1) independence of the field components are coupled. Nevertheless the 
method we have outlined here for treating evanescent-wave gain in the cladding 
region of an optical fibre are still applicable. These cases are more complex 
to treat, and do not fall within the scope of this present work. 
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