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NOMENCLATURE 

a 	 distance from boom centerline to pallet center of mass 

b,b' 	 width, and 'effective width', of blanket 

Bp functional defined in Eq. (33) 

distance from boom centerline to blanket centerline 

EI EI
2 	 bending stiffness' of the boom 

torsion control line force (one line) 

column matrix of applied force components 

force associated with array tensioning spring assembly 

gravitational constant (32.2 ft/sec 2 ) 

G 	 matrix of solar array internal forces, Eq. (36) 

HP functional defined in Eq. (34) 

krl 	 boom root stiffness, out-of-plane 

kr2 

h 

I
z 

I ,I 	I 
Px py, pz 

JG 

JP  

k3 

boom root stiffness, in-plane 

£ 1 - £2 (Figure 1) 

moment of inertia of blanket, inboard pallet, and tip 
pallet, about Oz axis 

moments of inertia of the tip pallet about the pallet 
center of mass 

torsional stiffness constant of boom 

functional defined in Eq. (35) 

spring constant at blanket-tip pallet connection 



Oxyz 

O'x'y'z' 

p () 

qn 

u 1  (t) ' 
 etc. 

- 

u 

k2 equivalent spring constant of the inboard pallet and 
elevator arm assembly 

stiffness matrix relating to solar array, Eq. (32) 

£
1 	

length of boom 

£
2 	

length of blanket 

ml 	
mass of tip pallet 

m
2 	 mass of the inboard pallet 

mass matrix of array, Eq. (39) 

order of series expansions, Eqs. (25a) - (25d) Nu ,Nv ,N,Na  

(Nu+Nv+Nc+Na-2), the order of discretization of the total 
structure 

reference frames associated with the solar array (Figure 1) 

column matrix of functions 

variable describing motion about equilibrium shape, Eq. 
(50) 

variable describing characteristic mode shapes of solar 
array, Eq. (54) 

QP 	 functional defined in Eq. (42) 

time 

T
o 	

net blanket tension 

u(x,t) 	 out-of-plane deformation function for boom (Figure 2) 

time varying elements of series expansion for u(x,t) 

matrix, Eq. (26) 

vi 



b 

CT 

(x',t) 

- (t) etc. 1 

Ti(t) 

v(x,t) 

v (t) etc. 1 

forcing function for out-of-plane excitation 

in-plane deformation function for boom (Figure 2) 

time varying elements of series expansion for v(x,t) 

matrix, Eq. (25) 

V(t) 	 forcing function for in-plane excitation 

V 	 potential energy of solar array 

w(x'y',t) 	 deflection of the blanket, out-of-plane 

defined in Eq. (29) 

defined in Eq. (44) 

z
o 	 matrix relating to static equilibrium shape (Eq. 52) 

a(x,t) 	 torsional deformation of blanket about its centerline 
(Figure 3) 

— „ 
a (t) etc. 1 	'  time varying elements of series expansion for a(x:t) 

-  

cc Matrix, Eq. (25) 

(3(t) 	 angular in-plane rotation of blanket about parking spring 
pivotal point (Figure 3) 

deformation of the blanket in the Ox direction 

extension of torsion control device 

extension of array tensioning spring 

out-of-plane deformation of blanket centerline (Figure 3) 

time varying elements of series expansion for (xt) 

matrix, Eq. (25) 

defined in Eq. (45) 

vii 



w 

k* 	 damping coefficient of the kth mode 

k 	
modal coordinate function for the kth mode 

A(0,A 1 (0, etc. 	spatial deformation functions, Eqs. (25), (27) 

vM,v 1 (0, etc. 	spatial deformation functions, Eqs. (23), (27) 

x(t) 	 motion of base of elevator arm assembly in Oy direction 

dummy integration variable, x/ 2,
1' 

x'/£
2 

.7.1)  functional defined in Eq. (41) 

II 	 constant matrix, Eq. (46) 

p 1 	
mass per foot of boom 

mass per foot of blanket P2 

a 	 twist angle of boom tip 

a
o 	

forcing function for torsional excitation 

etc. 	spatial deformation function sets, Eqs. (27), (29) 

Y,Y 1 (0, etc. 	spatial deformation function sets, Eq. (29) 

defined in Eq. (47) 

characteristic frequencies of solar array, Eq. (54) 

viii 



A STRUCTURAL DYNAMICS MODEL FOR FLEXIBLE SOLAR ARRAYS OF THE 

COMMUNICATIONS TECHNOLOGY SATELLITE 

by 

F. Vigneron 

ABSTRACT 

A mathematical model, which describes the 
structural mechanics of flexible solar arrays of 
the Communications Technology Satellite (CTS) in 
a ground test configuration, is developed using 
variational principles and continuum mechanics 
methods. Modes and frequencies for an array with 
CTS parameters are calculated for the one-g test 
state, and compared to corresponding ones for the 
zero-g on-orbit state. Calculated results are 
compared with ground test data; good agreement is 
noted for the major structural frequencies and 
modes. The model does not predict certain 
observed higher frequency membrane-like blanket 
modes attributable to non-uniform tension 
distribution in the solar array blanket. Also 
the test results show that modal frequencies may 
be excited by subharmonic excitation; this 
feature would necessitate a non-linear vibrational 
model, and is not accounted for in the mathematical 
model. Alternate mathematical models based on 
finite element and continuum mechanics methods, 
which were developed for the design phase of the 
CTS program, are discussed in the light of test 
data and modeling of this report. 

1 
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1. INTRODUCTION 

This report presents a mathematical model of the structural mechanics 
of the solar arrays of the Communications Technology Satellite (CTS) 1 . The 
model describes the behaviour of an array in its fully deployed state, with 
particular attention given to vibrational excitation in ground test config-
uration (i.e., under one-g environment, in vacuum). 

The modeling was originally developed in January, 1973, about six 
months prior to solar array testing in CRC's 10' x 30' vacuum chamber 
facility 2 , 3 , and the results served as a guide for planning the test work. 
Subsequent to the testing, modifications were made in the original modeling 
to reflect certain minor mechanisms and interactions which came to light 
during testing. 

The modeling presented herein thus incorporates the knowledge gained 
in testing. It adequately describes the major structural mechanics features 
observed in the ground testing. Minor shortcomings of the modeling are 
noted and discussed. Structural dynamics models of the CTS array which were 
derived during the design phase of the CTS program in the period 1970 - 72 4-7  
are also discussed. 

2. MODELING OF COMPONENTS 

The CTS deployable solar array, a fold-up flat-pack type, is designed 
to be stowed during the spacecraft launch phase and deployed while the space-
craft is in orbit'. The array in its deployed state is, from an analysis 
point of view, composed of six subcomponents depicted in Figure 1: the boom 
and actuator, the blanket, the inboard pallet and elevator arms, the tip 
pallet, the array tensioning spring, and the torsion control lines. The 
boom and actuator provides the basic energy and force for the deployment 
process, and induces a final tensioned state. The total assemblage is 
described herein with respect to coordinate systems Oxyz and O'x'y'z', also 
depicted in Figure 1. The parameters associated with solar arrays of the 
CTS Program are listed in Table 1. 

2.1 BOOM 

The boom is modeled as a beam with elastic properties conforming to 
those expressed through the potential, 

jr  (E,1 u2 +  El v2 ) dx + 2 — JG (a - 
 2 	 xx 	2 xx  

0 

(1) 

The coordinates of the boom are depicted in Figure 2. It is assumed that the 
boom centerline is inextensible. 
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TORSION CONTROL DEVICE-1 

INBOARD PALLET/ 
ELEVATOR ARMS BLANKET 

z 	 z 

ARRAY TENSIONING SPRING 
BOOM AND ACTUATOR 

Figure 1. Solar Array Assembly 

Figure 2. Coordinates Specifying Boom and Tip  Pa/let  Deformation 
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Table 1. Solar Array Parameters 

Parameter 	 Array No. 1* 	 Array No. 2** 

2, 1 	(ft) 	 20.75 	 23.79  

2,2 	(ft) 	 18.0 	 21.33  

	

b 	(ft) 	 4.0 	 4.30  

p
1 	

(slug/ft) 	 0.00208 	 0.006052  

p
2 	

(slug/ft) 	 0.00472 	 0.0204  

m1 	(slug) 	 0.249 	 0.267 

m2 	
(slug) 	 0.14 	 0.0914  

I 	(slug-ft
2 ) 	 0.2314 	 0.41 

px 
I 	(slug-ft 2 ) 	 0.0149 	 0.0195 
PY 

I 	(slug-ft
2
) 0 . 41  0.231 pz 

	

e 	(ft) 	 0.2 	 0.2  

	

a 	(ft) 	 0.479 	 0.563  

k
rl (lb-ft/rad) 	 1100 

kr2 (lb-ft/rad) 	 2200 

*** 
k 2 	(lb-ft) 	 864. 	 200 - 1500 	(1200 	) 

*** 
k 3 (lb-ft) 	 œ 	 100 - 1000 	(100 	) 

*** 
fa 	( lb) 	 1.0 	 2. 	- 	5. 	(2. 	) 

EI 1 	(lb-ft
2 ) 	 2320. 

EI 2 	(lb-ft
2

) 	 2640. 
*** 

JG 	(lb-ft
2 ) 	 0. 	 0 -20 	(19.8 	) 

	

g 	(ft/sec 2
) 	 32.2 	 32.2 

*** 

	

f
o 	

(lb) 	 0.20 	- 0.75 	(0.20 	) 
*** 

	

b' 	(ft) 	 4.0 	 3. 	- 	4.3 	(3.5 	) 

a dummy array made at CRC, with low quality hardware and manufacturing techniques. 

an array consisting of the CTS Preliminary Model Blanket (manufactured by AEG-TeleFunken) 
and the CTS Developmental Model Support Assembly (manufactured by SPAR Aerospace Co. 
Ltd.) 

Value used to compute results shown in Table 2. 
*** 
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2.2 BLANKET 

The blanket of the CTS solar array, which consists of solar cell 
modules, instrumentation wiring, and bus bar wiring mounted on a kapton-
fiberglass substrate, is modeled as a homogeneous membrane in which fibers 
are inextensible in the longitudinal direction. 

Deformation in the out-of-plane (0'z') direction is assumed to be 
representable via, 

w(x;y;t) = «x;t) + y'a(x;t) ; 	 (2) 

that is, a translational deformation, (x:t) of the blanket centerline, and a 
torsional deformation a(x;t), about the blanket centerline. The functions 
and a are illustrated in Figure 3. 

It is assumed that in-plane (Oy) deformation (warping) of the membrane 
is negligible compared to in-plane deformation incurred as a result of flexi-
bility of the inboard pallet and elevator arms assembly. The blanket 
displacement in the in-plane direction is defined by specifying x(t) and (3(t) 
(Figure 3). Deformation of the points in the blanket in the Ox direction, 
eb(x;y;t), (due to foreshortening effects of the (inextensible) fibers, which 
accompany  r , a, and (3), is given approximately (see for example, Ref. 10) by, 

Y 

E
b
(x;y:t) = -  y'-(h + x')(3 2

/2 -7J1 	{C(x;t) + ya(x;t)} 2dy 

0 

The membrane strain energy associated with deformations of the type 
described above is approximately invariant. 

(3) 

C(x 1 ,t) 

Figure 3. Coordinates Specifying Blanket Deformation 
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Blankets associated with the CTS program are expected to experience a 
state of non-uniform tension in ground test and on-orbit conditions, as a 
result of: (a) tolerances and shrinkage of various components of the blanket 
during manufacture; (b) manufacturing tolerances on curvature of inboard and 
tip pallets; (c) detail and assembly procedure of the blanket-to-tip pallet 
and blanket-to-base pallet connections; (d) slight flexibility of pallets; 
(e) variations in thickness and elastic modulus between cell regions, wiring 
areas, and kapton backing; (f) differential thermal expansions between various 
regions of the blanket, in ground, on-orbit sunlight, and on-orbit eclipse 
environments; (g) variation of tension distribution with twist (i.e., with 
ot(x 1 )) in accordance with the non-linear phenomenon known as 'the shortening 
effect". The variation in longitudinal tension in the y' direction has a 
particularly significant influence on the torsional stiffness of the blanket 
and pallets combination. For example one may easily visualize two extreme 
cases: first, the torsional stiffness vanishes when the blanket longitudinal 
tension is concentrated along the centerline of the blanket, y'=0; and second, 
a maximum resistance to torsion occurs when the blanket longitudinal tension 
is concentrated at the two edges of the blanket, y'=±b/2. In principle, it 
is possible to model this mechanism; studies using the finite element method 9  
and other techniques have established an understanding of the role that 
factors (d) - (g) play. However, for the present CTS design, it does not 
appear practical to model in detail for purposes of prediction, because 
factors (a) - (e), (and in particular, (a) - (c)), are not measurable or 
controlled to the degree required to justify an elaborate model. The net 
effect of factors (a) - (g) will be accounted for herein approximately, via 
the concept of "effective width b", where 0<b'<b. The necessity of calcula-
ting the tension distribution is avoided as a result of this conceptual 
approximation in combination with the assumption that the longitudinal fibers 
of the blanket are inextensible. The torsional stiffness ranges over the two 
extremes cited above, in accordance with the available domain of b! The 
choice of b' is then a matter of engineering judgement, and may be decided 
upon on the basis of sensitivity studies, separate restricted analyses, and 
available test and manufacturing information. 

2.3 INBOARD PALLET AND ELEVATOR ARMS 

The inboard pallet and elevator arms form a truss-like structure having 
resistance to distortion in the in-plane (Oy) direction. The strain energy 
associated with deformation of this component has the form 

1 
 k/ 

 7  

The parameter, k2 , for the CTS array, is derived by direct measurement in a 
bench-test setup. 

2.4 TIP PALLET 

The tip pallet is assumed to be rigid. It is assumed to connect to the 
boom in a manner such that a right angle is maintained between the boom 
centerline, and the line on the pallet which joins the boom,connection point 

(4) 
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and the pallet center of mass (Figure 2). The connection between the tip 
pallet and blanket is assumed to have in-plane flexibility, as is consistent 
with a strain energy, 

1 7 k3  (vx  ( r t) - Ut)}
2 

The contribution of Eqn. (5) is included for the purpose of accounting for 
the net effect of boom end local flexibility, tip pallet flexibility, and in-
plane local warping of the blanket at the blanket-tip pallet connection. A 
quantitative value for k3 is not readily deduced by direct measurement; the 
choice is a matter of engineering judgement, and in CTS application is 
decided upon to a large extent by matching calculations and array vibration 
results of Ref. 3. The pallet center of mass is assumed to lie on a line 
joining the centerline of the blanket and the boom. The principal axes of 
the pallet are assumed parallel to Oxyz when the solar array is underformed. 

The pallet is assumed to connect to the blanket over the effective 
width, b: as discussed in section 2.2. 

2.5 ARRAY TENSIONING SPRING 

The array tensioning spring is assumed to be a constant force spring 
device, connecting and acting between the pallet and the boom (Figure 1). 
The spring is activated (removed from its stops) by the deployment action of 
the boom in the latter stage of the solar array deployment process. The 
work associated with this mechanism is 

f
a 

The constant, fa , for the CTS array is derived by direct measurements. 

2.6 TORSION CONTROL DEVICE 

The torsion control device, which consists of negator springs and two 
lines connecting the tip-pallet edges with the inboard pallet, is modeled as 
a constant tension device. It will also be assumed that the lines coincide 
with the contours of the blanket edges under all circumstances. The net 
work done by the device when deformation occurs is, 

(5) 

(6) 

The constant, f
o

, is derived in the CTS program by direct measurement. 
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3. CONFIGURATION AND METHOD OF GROUND TEST 

The ground test configuration 2 " is depicted in Figure 4. The array is 
suspended inside CRC's 10' x 30' vacuum chamber with the Ox axis parallel 
with the earth's gravitational field vector. The array is excited with a 
hydraulic actuator, which can induce motion in three ways: 

(a) out-of-plane excitation - oscillating translation of the boom and 
elevation arm base points along the Oz direction, i.e., a forced 
boundary condition imposed on u(x,t) and w(x;y;t), 

u(0,t) = w(0,y;t) = U(t); u x (0,t) = 0; 	 (8) 

(b) in-plane excitation - oscillatory translation of the base of the 
boom and elevation arms along the Oy direction; i.e. a forced 
boundary condition is imposed on v(x,t), 

v(0,t) = V(t); v (0,t) = 0, 	 (9a) 

and a corresponding motion x(t) (Figure 3), of 

x(t) = V(t) 

(c) torsional excitation - oscillatory rotation of the boom base about 
the Ox line; i.e. a forced boundary condition is imposed on the 
boom, 

(9b) 

(10a) a = 
 

and a corresponding motion, x(t) (Figure 3), of 

x(t) = - e 00 (0 . (10b) 

4. POTENTIAL ENERGY, KINETIC ENERGY, AND CONSTRAINT EQUATIONS 

4.1 CONSTRAINTS AMONG VARIABLES 

The variables cited to describe the array component motions in the 
preceeding sections, namely {u(x,t), v(x,t), a(t), (xt), a(x:t), 8(t),  Ca ,  
E, X(t), U(t), v(t), ao (t)},are not independent. The following relationships, 
approximated to linear order, exist among them. 

£ 18(t) + e{a(2 2'
t) - a(0,01 = v(2, t) - V() 	 (11) 
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Figure 4. Ground Test Configuration 
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u(2 1  , ,t) = 

= a(t) 

a(0,t) = o(t) 

x(t) = V(t) - e a(t) 

Deformations  (xt) and a(x:t) of the blanket result in a decrease in 
the distance between the (rigid) tip pallet and the (rigid) inboard pallet, 
approximately by the amount 

£ 	 £2 1 7  [7jr {cx  + w/2)axl 2dx + 	- (b72)ax 1 2dx1 . 

0 	 0 

The above expression, together with similar ones which describe foreshortening 
associated with the boom, may be utilized to obtain, 

£ _fo  1 1 jr 	2 	 1 
= 9,

1
(3
2/2 + 	

2 
— 	+ (b' 2 /4) a2 ldx - 	(u2 + v2)dx 2  
2 	x 	 x 	x 

0 

-eu
x 

 (£ 1 ,t) + e(a - ao)(3 

Eq. (16) is valid to quadratic order of approximation in the variables which 

define the deformation. 

The amount that the torsion control lines are extended off of their internal 
reels when blanket deformation occurs is ET , and is found by direct consider-

ation of the kinematics of foreshortening, to be (provided that blanket is 
under tension), 

£2 
E 	I. 
T 	2 	{(b 2 - b' 2 ) a2 /4 dx} 

The relation between blanket tension , f 0 , and f a' is (provided that the 

boom is deployed sufficient to ensure that the array tensioning spring is 
operative) 

f
a 
 - T

o 
 + 2fo

-m1 g 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Jo  

(18) 



11 

Since fa and fo  are constant and determined during design and manufacture by 
the choice of negator springs, it follows that T o  is constant and determined 
by choice of hardware components. 

4.2 POTENTIAL ENERGY 

The work (negative potential energy) done by gravity on the boom, 
incurred as elements of the boom foreshorten upwards with deformation (see 
for example, Ref. 8), is given by 

Similarly when the blanket deforms, points in it rise vertically due to 
foreshortening in accordance with Eq. (3). The corresponding work (negative 
potential) done by gravitational forces is, 

X  £
2 1 P g fo 	(h + x')82 dx' - 	p2g.): 2 	2 

x + (b
2 /12)a2X1 dx' dx 	(20) 2 2 

The center of mass of the tip pallet moves vertically with deformation, 
incurring work (negative potential), 

£1 9 

f 
- 	 Nr mi g {-I 	(u; + c)dx + a u(£ x 1 ,0 - a (a - a ) 

o 	

+ cl 	 (21) 

Similarly the inboard pallet experiences the following work with deformation; 

- m2g h 8
2 /2 • 

The potential energy of the array is comprised of the summation of contribu-
tions of Eqs. (1), (4 - 7), and (19 - 22). Combining these equations, 
together with Eqs. (11 - 14), (16), and (17), results in,. 

£ 1  1 	 1 	 ,2 
(EI u 2 	+ EI 2v

2
xx)dx + 2

- JG l f  a(9, 2
,t) - 

z., 	- 	1 xx 	 1 
0 

+ {k2  + m2gh + (fa + 	
+ p2£2 g (£2+ 2h)182 

£ 
1 	 2 + 7 3  {v 	1 	- 8}

2 
+- 2  (f  a  + m1 	

2 
g) f {Sc  + (b' 2 /4)a2 } dx x  

n 0 

(22) 



(23)  

(24) 
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x 
jr x 	 jr0  2 fo  1 	 1 	 2 

7 Pig 	
(u2 + v2) dx' dx +— 	 {Sc  + (b2 /12)a

2 } dx' dx 
x 	x 	 2 P2g  

.4 JO 

i 

- a f0 
1 

f 	(u2 + v2 ) dx + {rn 1  g (e - a) + fae } {a( 2' 0 9, 	- ot(0,t)M 
x 	x 

 

9. 2 
- {rn 1  g (e - a) + fa uxl' 	+ fo f {(b2 - b' 2 )c(2 /4} dx 

4.3 KINETIC ENERGY 

The kinetic energy of the boom, blanket, tip pallet, and inboard 
pallet, may be derived in the form, 

t, 	 t 
r 	 2 f .2 	2 	.2 

T = 	p i 	(u + v ) dx + p2 	+ (b /12)a } dx 

0 	 0 

1 	.2 	1 	.2 	 1 	 2 	.2 + 7 I z 	+ -2- m iu (21 ,0 + apy  + m i (e - a) } ux  (91 ,t) 

- + 1 {I 	+ m,(e - a) 2  }a2  (9,2 ,t) + m1 9- 1 (e  - a) 	& ( 2 ,t ) 
px 

+ [m1 2, 1  + p2 9,2  {h + (9-212)}  + m2h] {v(t) - e ao (t)} à 

+ m1  (e - a) {V(t) - eao (01 &(2,2, t) 

+ 1 (m1  + p22 + m2) {(t) - 
ea

o
(0} 2 

where 

I z = m1
9-2 
1 + p2 9- 2 {h + ( 9-

2
/2)} 2 + m2h

2 + Ipz + 
p 2 9, 2 9- 2 /12)  + (b

2 /12)1. 

, 

0 



5. DISCRETIZATION 

5.1 SERIES EXPANSIONS AND DISCRETE VARIABLES 

The potentials and constraints of the previous section, expressed in 
terms of continuum coordinates, may be discretized via the assumption that 
each variable is representable by a series, the individual terms of which 
are products composed of a time-varying function and an assumed shape 
function. Specifically, the assumed composition of functions is, 

13 

u(x,t) = U(t) + OT  

v(x,t) = V(t) + vT 

= U(t) + YT «-e 

a(x T ,t) = o (t)  + AT  

(25a) 

(25h) 

(25c) 

(25d) 

The above expressions are chosen in such a manner as to satisfy identically 
the boundary conditions cited in Eqs. (8 - 10). The functions  ii, 17, 17, and Tx 
are column matrices with scalar time-varying elements, of order Nu' Nv , N, and N ; a 

..._ 
u = [u 1 	u2 (0, 	uN (t)] 

and so forth. The functions e, v, Y, and Aare column matrices with spatially 
dependent (known) elements of order N

u
, Nv , N, and N o. ;  a 

T 
= [ 0  (0, 2 (0, .... 0N (0] • 1 

and so forth. The variable 	defined on the interval [0,1], substitutes for 
xii 1, or  x'/i2 as appropriate. Derivatives of the 

elements are have the forms, 

(26) 

(27) 

dO 1 ()/dx = (de /d ) (cg/dx) 

d2 1  0 ()/dx = 	/£2 • 

and so forth. The function.  sets are assumed to be complete sets which 
satisfy, 

0(0 ) = eé0) - v(0) = v (0) = 0 

Y(0) = A(0) = 0 , 

in accordance with Eqs. (8) and (9). 

(28a) 

(28h) 

(29a) 

(29h) 
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The time dependent variables may be further cast into matrix form, 

77 1 	s1T . 

5.2 POTENTIAL ENERGY 

Substitution of Eq. (25) into Eq. (23), and further reduction to express 
the final result in terms of variable Z, leads to V in the form, 

1 T V = —2  Z KZ - G
T
Z . 

In Eq. (31), K is a matrix of order (N + N + N + N + 1)
2
, composed of 

subelements with format, 	 u 	v 	C  

K 	K
uO uu 	uv 

K 
yC vu 	vv 	 va 	\TS 

K
Cu 	 K 

	

Cv 	 a 

	

auav 	oC 	au 	ce 

K
f3.11 	

K
f3v 	

K 	K
(304 	

K
(3(3 

(30) 

(31) 

The non-zero subelements of K are, 

3 	(I) 
K 	= (EI 1 /9, 1

)B + p l g H
o 

- (f
a

/9,
1
) J

o 
uu 

K 	=  (El /9,
3
)B

0
+pgH

y
- (fa /9„ 1 ) J

v + (k /9,2 )v (1) \) (1)
vv 	2 1 	1 	 3 1 

K = {(fa 
+ m

1g)} + p2g CC 

K 	= JGA(1)A
T (1)/9„ 1 

+ {(f
a + m1 g)13

12 J /42,
2
} + {p 2gb

2 
H/12} + fo (b

2 
- b'

2 )J
a/29,2 au 

K 	k2 + k3 + m2gh + (fa 
+ m 1 g) 	

+ h) + p9,g {(9.2 + 2h)/21 

K 	= K
T = - k

3 
\)(1)/2,

1 vf3 	(3v 
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(33)  

(34)  

(35)  

(36)  

(37)  

K = K
T 

= {m
1 
 g (e - a) + f

a 
el A(1) , 

af3 	.0t  

where the functionals B, H, and J are defined as, 

1 
T 

Bp = f p
g  pg 

 cg 

0 

1 

HP= jr )( p pT 
dV cg 

JP = 

10 	

T 
1:$ po cg 

The matrix, G, of order (N
u 
+ N

v 
+ N + N

a 
+1) x 1, has format 

TTT 
G = [GT

u' 
G
T
v , G

V 
Ga' Gi3.

]T 
 ' 

and non-zero elements 

G
u 

= {m
1
g (e - a) + f

a
e }  0(On1 . 

5.3 KINETIC ENERGY 

Substitution of Eqs. (25) into Eq. (24), and condensation of the result 
yields, 

1 • T 	• 	T •  T =—Z MZ-FZ+T(t) , 2 	 1 

where Ti(t) is a time-varying function, M is a matrix of order 
(Nu  + Nv  + isi + Na + 1) 2  whose subelements have a format similar to K of Eqn. 
(32). The non-zero elements are 

-4) m
uu 

= p 1 £ 1z + m 1  (1)(1) 0
T
(1) + [{Ipy 

+ m
1 

(e - a)
2

} e (1) 0
T
(1)/£

2
] 

1 

0 0 0 JO 

(38) 
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M = p2 9,20 

_ Mact = (p22b2  /12)nA  + {Ipx + m1 (e - a)
2 } A(1) AT (1) 

M  =1  
z 

M 	= MT ci. =  m1 2, 1 (e - a) A(1) . 

F is of format of Eq. (36), with elements 

F
u 

= - {p 1 2, 1 Q 	m1 (1)(1)} U(t) 

• F = - p 1 9., 1 Q V(t) 

Y • F = - p2 2, 2 Q U(t) 

2 	. 	• Fa 
= - [(p

2
9,
2  b

2 /12) QA +  {I pz+  m1 (e
- a) } A(1)] ao (t) 

• 
- m1 (e - a) (V - e ao) A(1) 

• 
F = m1 ;Z. 1 (e - a) a

o 	
+ [m + p 	{£ + 

2 /2
}  + m2h] 1 1 	2 2 	1  

• • 
{V(t) - e ao (01 

In Eqs. (39) and (40), the functionals E and Q are defined by, 

wP Pg) P 
(
) e 

o  

1 

QP  = 	P( )  e 

0 

(39) 

(40) 

(41) 

(42) 



(44)  

(45)  

11 (46) 
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5.4 CONSTRAINT RELATIONS 

The constraint relations expressed in Eqs. (13 - 15) of Section 4.1 are 
incorporated into the V and T of Eqns. (31) and (38). The remaining two 
relations, Eqns. (11) and (12), may be conveniently dealt with after discreti-
zation (via Eqns. (25)) when expressed as a coordinate transformation, 

Z = Hz , 	 (43) 

where z is a column matrix of order {Nu  + Nv  + 1\1 + Na  - 1} (i.e., of order N, 
the order of discretization of the total structure), 

-T -T =T -T T z = [u , V , 	, a ] 	' 

and 

= ffi (t), Z2 (t),.... -EN 	(0]
T 

-1 

H, a matrix of order {(N+2) x N}, is 

E 	0 	0 	0 

Ev 	0 	0 

0 

1141 	 1143 	0 

0 	0 	0 	EA 
 

62 	
n64 

IMB 

where  E,  E
v  , E 1 , and EA , are identity matrices of order Nu , Nv , N, 

and 
Na' and the 

remaining elements are, 

n41 =
T
(1)/Y 	(1) 

H
43 

- - Y (1)/YN (1) 

II  62 = 

II  64 
= - eA

T (1)/£ 1  

0 



(48) 

(49) 

(50) 

(51) 

(52) 

(53) 
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In the above, YN  (Z) is the last scalar element in y, and, 

=r 
N (1) = [Y 1  (1) Y 2  (1) N 	(1)] C-1 

6. EQUATIONS OF STATIC EQUILIBRIUM AND MOTION 

The formulation at this point is embodied in V and T of Eqs. (31) and 
(38), and the constraint relation, Eq. (43). Substitution of Eq. (43) into 
Eqs. (31) and (38) results in elimination of the constraint equation, and 
correspondingly, T and V in the form, 

1 T T V = -2- z {11 K Hlz - GTHz 

1 'T 	T 	 T T = z {H M Hlz - F Hz + T (t) 

We further consider z as composed of 

z(t) = zo  + q(t) , 

the sum of a static shape, z i„, and a time-varying component, q(t). Substitu-
tion of Eq. (50) into Eqs. (48) and (49), and of the result into Hamilton's 
Principle, 

f 2 
(T - V)dt = 0 

t l 

yields, to a linear order approximation, 

z o = (11
T K H) -1T G 

{IIT m n}4 	{TIT K 	nT; 

Thus the static shape may be calculated algebraically via Eqn. (52) and 
successive back-substitution through Eqs. (43), (30), and (25) (with U(t), 
V(t), c(t) taken equal to zero). 

(47) 
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Vibrational frequencies and mode shapes may be obtained after solving 
the characteristic equation derivable from Eq. (53), namely, 

{(HT  K H) - w12,1  (HT  m 	= o . 

K and M_are symmetrici it then follows that HTmu and HTKH are also symmetric 
{llimul.HT{HIm1T.HTmus.emn) . Consequently the eigenvalues of Eqn. (54) are 

real, and the eigenvectors, qn , are mutually orthogonal. 

Motion equations may be derived in terms of modal coordinates from 
Eq. (53) as follows. Assume a series decomposition for q: 

q=  E q
k 

n
k 	

, 
k=1 

where qk  are the eigenvectors corresponding to Eq. (54), and nk (t) are scalar 
coordinate functions. Substitution of Eq. (55) into Eq. (53), premultiplica-
tion by qi, use of the above cited orthogonality umperty, and the usual 
addition of 'modal damping', results in for the m" mode: 

u 	
w n 	w2 n 	(cIT 	.. 

F)/( T_T
m_ _ 

m 	mmm 	mm 	
m 	qmilllqm) 

Eq. (56) together with the implied back substitution through Eqs. (55), 
(43), (30), and (25), thus constitute a mathematical model which describes 
the array structural dynamics. In Eq. (56), all quantities are calculable, 
with the exception of the damping factors 41 . Estimates for 41 's for solar 
arrays, deduced from various test and analysis techniques, range from 0.001 
to 0.02. 

The modal functions, qk, and associated wk 's and Ck's (often referred 
to 'fixed base' or 'constrained' modes) also serve, for a particular array 

and spacecraft, as basic flexibility information and a first step in the 

analysis of spacecraft attitude dynamics. 

7. APPLICATION IN CTS PROGRAM 

7.1 CALCULATED FREQUENCIES AND MODE SHAPES 

Static shape and lower order modes and frequencies have been obtained 

from Eqns. (52) and (54) bY numerical means. The function sets chosen in 

Eqns. (25) were, 

(54) 

(55) 

(56) 



= g
2

, 
3

, 
4

1
T ; N = 3 

u 
 

=, 3 C4 T , 	I ;  NV =3  

11) = M,
23

,1
T 
	N=3  

A = M,
2

,
3
,1
T 

Na = 3  

Sample solutions corresponding to parameters representative of the CTS 
Array No. 2 (Table 1) are illustrated in Figures 5 - 12 for situations where 
g = 32.2, and g = O. The modes may be categorized in two classes; out-of-
plane (boom and blanket vibrate in the Oz direction), and torsion/in-plane 
(the boom and blanket vibrate in the plane normal to the line Oz, accompanied 
by torsional deformation of the blanket). The two categories arise because 
in the mathematical model there is no coupling between the equations embodying 
these two separate types of motion. 

7.2 COMPARISON OF NUMERICAL RESULTS WITH TEST DATA 

Two physical models of array have been tested at CRC's David Florida 
Laboratory facilities, a "CRC Built" array 2  (Array No. 1) and a "CTS Develop-
mental Model" array 3  (Array No. 2). Comparison of calculated and measured 
frequencies and mode shapes is given in Table 2 for sets of parameters listed 
in Table 1. The calculations shown do not exactly match the test results; 
however the residual disagreements are compensated for by the indeterminacy 
of some of the parameters shown in Table 1. The results demonstrate that the 
analytical model describes the major structural modes. 

The results given in Table 2 are those obtained after a certain amount 
of 'adjusting' of the parameter values to optimize the agreement between 
theory and test. One might well ask, "how well can one expect to estimate 
the behaviour using the modeling only, in the absence of test data?". The 
uncertainty in numerical estimates provided via the modeling stems from two 
sources; first, shortcomings in the analytical representation of the hardware; 
and second, uncertainty in the numerical values of the parameters (e.g. 
moments of inertia, EI,JG, etc.). In this instance, it is our experience 
that the second factor is the dominant one by a healthy margin. In advance 
of testing, and with h'= b,k 3  = co: the three lowest 'out-of-plane' frequencies 
were correctly predicted to within 5 - 10%; the first and second in-plane/ 
torsion frequencies were estimated to within 15% correctly; the third in-plane/ 
torsion frequency was correctly estimated to within 35%; fourth out-of-plane 
and fifth torsion/in-plane frequencies were estimated within a factor of two. 
The structural mechanism associated with h' was essential for more accurate 
modeling of frequencies which have a large component of edisting motion (the 
second and third in-plane/torsion frequencies in this instance); the structural 
mechanism associated with k 3 was required for accuràte description of modes in 
which the boom motion is the major component (fourth out-of-plane and fifth 
torsion/in-plane). 
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Table 2. Measured vs Calculated Results 

Array 	Type of Mode 
Measured 

Frequency (Hz) 

Measured damping 
coefficient 

(small ampl. / 
large ampl.) 

Calculated 
Frequency (Hz) 

Correspondence between 
calc. and measured mode 
shapes 

Array No. 1 	1st out-of-plane 	 0.26 

2nd out-of-plane 	 1.1 

1st torsion/in-plane 	0.33 

2nd torsion/in-plane 	0.48 

Membrane-type Blanket 	1.81, 
modes 	 1.88  

	

0.01 	 0.22 	 good 

not measured 	 1.3 	 good 

	

0.01 	 0.35 	 good 

	

0.005 	 0.42 	 measured results had a 
higher ratio of torsion vs 
in-plane bending than 
calculated 

not calculated 

Array No. 2 	1st out-of-plane 	 0.27 

2nd out-of-plane 	 0.74 

3rd out-of-plane 	 1.3 

4th out-of-plane 	 2.6 

1st torsion/in-plane 	0.35 

2nd torsion/in-plane 	0.44 

3rd torsion/in-plane 	0.84 

4th torsion/in-plane not detected 

5th torsion/in-plane 	2.6 
Membrane-type Blanket 0.9;1.17;1.45; 
modes (8) 	 1.65;1.92;2.; 

2.4;2.65 

0.004/0.01 	 0.27 	 good 

0.002/0.02 	 0.75 	 good 

not measured 	 1.5 	 good 

	

0.003 	 2.7 	 good 

0.003/0.01 	 0.33 	 good 

not measured 	 0.45 	 good 

0.002 	 1.0 	 good 

not measured 	 1.9 	 ---- 

	

0.003 	 3.1 	 good 

very low 	 not calculated 	 ---- 

* T.D. Harrison in Ref. 3 refers to a 'boom fundamental mode' a single mode which 'beats' in amplitude between in-
plane and out-of-plane directions. After discussions with T.D. Harrison, the author formed the conclusion that 
the 'boom fundamental' actually was two separate modes which were very close in frequency. 
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The data given in Table 2 shows that the modeling does not account for 
the 'blanket modes' the latter being those in which the blanket vibrates as a 
membrane, more or less independent of the rest of the array. Separate 
analytical investigation of the unaccounted-for membrane-type modes shows that 
they are precluded in the modeling as a result of the form of assumed deflec-
tion function, w(x:y;t) of Eqn. (2). Separate analyses by the author show 
that these modes may be attributed to non-uniform (static) tension distribu-
tion in the plane of the blanket. The membrane-type blanket modes tend to be 
high in frequency and of low vibrational energy in comparison to the prime 
structural modes for the CTS design, and do not appear to be of prime conse-
quence or concern from the viewpoint of attitude stabilization or structural 
design. The modeling of blanket modes appears tractable and easily handled 
via finite element techniques 9 . Accordingly, effort to update the version of 
the theory presented herein to incorporate the blanket modes does not appear 
justifiable. 

The test results also show that fundamental array modes may be excited 
substantially by excitation at frequencies which are fractions of the modal 
frequencies. The modeling herein does not account for this feature. This 
phenomenon, namely superharmonic vibration, is a well established one for 
simple systems", and may probably be accounted for in the present context 
via non-linearities in structural stiffness or damping 12 . This feature is of 
potential significance in spacecraft design; for example, an attitude control 
system design with bandpass frequency lower than the natural frequencies of 
structural vibration could interact with structural vibrations via the 
excitation of superharmonic frequencies. The investigation of this feature 
is left for future study. 

7.3 REMARKS ON PREDICTION OF ON-ORBIT ARRAY CHARACTERISTICS 

The course adopted in the CTS program with respect to prediction of the 
large flexible array structural characteristics is one in which: (a) an 
analytical model of the array behaviour is developed and verified by test 
under one-g (earth) conditions; (b) the model is then used to predict zero-g 
(on-orbit) conditions. 

One would expect the above approach to be a valid one when the modes, 
frequencies, and stress levels, at one-g and zero-g are of the same order of 
magnitude and qualitative feature. The calculations presented in Figures 5 - 
12, illustrate that this condition is met in the present case. A factor 
associated with the boom which has not been reflected in the above calcula-
tions is 'boom root flexibility', a structural mechanism characteristic of 
STEM and BISTEM deployment actuator and boom devices. The factor accounts 
for flexibility associated with ovalling of the boom in the region of its 
root, and root flexibility in guidance rollers and related deployment hard-
ware. The factor may be directly accounted for in the preceding development 
via appropriate definition of M I  and EI 2  as piecewise continuous functions 
of boom length. The CTS array under ground test is not particularly sensitive 
to this factor mainly because the stiffening influence of the one-g field 
tends to dominate and thus mask it. Numerical estimates show that, for the 
CTS array with boom root flexibility factors as indicated in Table 1, the 
influence is sufficiently small to be neglected. However, it would be prudent 
to account for this factor in extrapolations of this work to other applications. 
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7.4 COMMENTS ON ANALYSES OF REFS. 4 - 7 

Modeling of the CTS array under zero-g conditions via the finite 
element method is documented in Ref. 4. The work of Ref. 4 was performed in 
1970; since that time, the CTS array design has evolved and been modified to 
an extent where quantitive comparison of results with those herein is not 
meaningful. However qualitative agreement is evident. In particular one 
notes that the finite element method calculates the previously discussed 
membrane-like modes. 

Modeling presented in Ref. 5 - 7 is subject to the limitation that the 
membrane-type blanket modes are precluded as a result of assumptions made in 
modeling the blanket. Also in these works, the assumption is made that the 
offset, e, may be ignored (taken as zero), which results in the three charac-
teristic types of motion, namely twisting (torsion), out-of-plane and in-plane, 
being independent (uncoupled); this feature is not in agreement with the 
evidence of testing which indicates the twisting (torsion) and in-plane 
motions are coupled for the CTS array. The modeling presented in Ref. 5 
further ignores the possibility of in-plane deformation of any form - this 
is not in accord with the observed CTS array characteristic behaviour. The 
structural mechanisms associated with the parameters k2, b: and k3 are not 
included in the modeling of Refs. 5 and 7. The above variances result in the 
absence in the model, of "in-plane" modes and "torsion.-in plane motion 
coupling". The modeling of Refs. 5 and 7 does not account for the observed 
superharmonic vibration characteristics of CTS Array No. 2. 

8. CONCLUDING REMARKS 

The modeling as presented herein describes the major features of 

structural dynamics of the CTS array under one-g (earth) test conditions. 
The modeling does not account for higher frequency membrane-type vibrations 

and superharmonic vibrations, two features which are observed in testing. 

It is the author's view that the foregoing model may be extrapolated 
with confidence to predict the corresponding features of the structural 

dynamics of the CTS spacecraft in its on-orbit state. 

The modeling may also be expected to be valid for a range of solar 

arrays of the CTS class - that is, arrays composed of a single boom and a 

membrane-like blanket. 
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subharmonic excitation; this feature would necessitate a non-linear vibrational model, and is not accounted for 
in the mathematical model. Alternate mathematical models based on finite element and continuum mechanics 
methods, which were developed for the design phase of the CTS program, are discussed in the light of test data 
and modeling of this report. 

9. CITATION: 
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