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NOTATION 

s(.) 	composite input signal 

z(.) 	composite output signal 

complex version of z 

w
o 	 system centre frequency 

x(.) 	inphase signal component 

Y(*) 	quadrature signal component 

g(.) 	complex amplifier characteristic 

f(.) 	amplifier phase characteristic 

time 

autocorrelation time shift 

h(x,y) 	two dimensional complex nonlinearity 

H(Y,) 	two dimensional Fourier transform of h(x,y) 

A th 
t 

	
user signal amplitude 

6 (*)
th 

user signal phase 2. 

total number of users 

Jv
th order Bessel function 

I
v

th 
order modified Bessel function 

ak 	k
th 

complex Fourier-Bessel series expansion coefficient 

k
th 

positive zero of 

composite input signal amplitude 

Rz (.) 	autocorrelation function of z 

th user angle modulation 2. 

(*) 	input signal autocorrelation function amplitude 

A(.) 	input signal autocorrelation function phase 

tth user channel frequency shift 



INTERMODULATION 	ANALYSIS 	WITH 

FOURIER-BESSEL 	EXPANSIONS 

by 

J.L. Pearce 

ABSTRACT 

In any frequency-division-multiple-access (FDMA) 
satellite communications system the control of inter-
modulation noise must be considered if all signals 
are amplified by a single nonlinear power amplifier 
in the satellite transponder. 

The subject of this report is the use of Fourier-
Bessel series expansion models in the prediction of 
the intermodulation performance of both travelling-
wave-tube (TWT) amplifiers and solid state class C, 
UHF amplifiers. Both theoretical and experimental 
results are described and compared. 

It is shown that in the case of the solid state 
amplifiers a dynamic characteristic measurement 
technique must be used before reliable predictions 
can be achieved. A simple intermodulation noise 
reduction scheme is described for use with high-
power-efficiency-class-C solid state amplifiers. 
It is demonstrated that a signal-to-intermodulation 
noise power ratio improvement of 10 dB can be 
achieved with a minimal decrease in prime power 
efficiency. 

I. INTRODUCTION 

Prime electrical power is an expensive commodity onboard a satellite. 
For this reason the final power amplifier of the communication transponder 
is usually operated in a power-efficient but nonlinear mode. If the satel- 
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lite is part of an FDMA (frequency-division multiple-access) communication 
system, intermodulation noise can be of sufficient strength so as to degrade 
normal channel operation. To avoid channel degradation it is necessary either 
to use a linear satellite transponder or to control the operation of a non-
linear transponder so as to reduce the effect of the intermodulation noise to 
an acceptable level. 

A preliminary indication of the significance of the intermodulation 
noise can be obtained if it is assumed its effect is to augment the background 
system noise level. A system with a nonlinear amplifier, and hence inter-
modulation noise, will require a greater satellite output signal power level 
than if a linear amplifier is used if the same final signal-to-noise power 
ratio is to be maintained at the ground receive station. This does not 
necessarily mean that more satellite prime power is required since, for 
example, a nonlinear class-C amplifier is generally considerably more 
efficient than a class-A linear amplifier. The change in prime power 
requirements is plotted in Figure 1 as a function of the ratio of signal-to-
intermodulation ratio and required signal-to-noise ratio, with amplifier 
efficiency ratio as a parameter. From the curve for p 	1 (both amplifiers 
have the same prime power-efficiency), it is evident that if the signal-to-
intermodulation ratio exceeds the required signal-to-noise ratio by 10 dB, 
the excess prime power requirement is less than 0.5 dB. When it is realized 
that the power efficiency of a nonlinear amplifier is usually greater (e.g., 
p = 0.4) than that of a linear amplifier, it is evident that a potential 
saving in amplifier prime power requirement exists. The reduction achievable 
depends upon the relative power levels of the system noise and intermodulation 
noise. In order to select a set of acceptable operating parameters for a 
nonlinear amplifier it is necessary to be able to predict intermodulation 
noise levels for specific amplifiers. 

Figure I. Satellite Prime Power Requirements 
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In this report it is assumed the nonlinear amplifiers under considera-
tion are memoryless, exhibit a nonlinear amplitude transfer characteristic 
and convert any amplitude modulation into a phase modulation (AM-PM conversion) 
in a nonlinear fashion. These amplifiers are modeled by a complex Fourier-
Bessel series expansion. Mathematical relationships are then developed to 
permit the prediction of the required intermodulation noise levels. A 
dynamic experimental measurement technique is described to measure the 
characteristics of solid state UHF amplifiers. 

Finally, predicted and measured intermodulation levels are discussed 
and compared for various amplifiers. This technique is dynamic in the sense 
that the power of the inserted test signal is automatically swept over the 
range of values of interest. 

The work presented in this report permits the prediction of inter-
modulation levels when many modulated signals are amplified by a single 
nonlinear amplifier. Specific results are presented for combinations of 
digital PSK and FSK signals, sinusoids and combinations of signals with a 
constant power spectrum over a specified frequency range. 

1.1 BACKGROUND 

Most of the intermodulation analysis to date is based upon the nonlinear 
transform analysis technique originated by Rice [1] and subsequently 
described by Davenport and Root [2]. The notable exceptions to this technique 
are the use of a power series to model the nonlinear characteristic as used 
by Eric [3], a Fourier series model as used by Berman and Podraczky [4] and 
an error-function model, described by Baum [5] and used by Pawula et al. [6] 
and Pawula [7]. The analysis in this report makes use of the transform 
analysis technique. 

A number of the published papers consider the input signal to be a 
sum of sinusoids plus additive gaussian noise. In particular, Davenport [8] 
considers a single sinusoid plus noise, Jones [9] considers two sinusoids 
plus noise and Shaft [10] considers an unspecified number of sinusoids plus 
noise. All of these authors make use of the transform analysis technique 
and model the nonlinear amplifier by an amplitude hard limiter. Two serious 
shortcomings of the above papers are that they do not consider the phase 
conversion of any amplitude modulation (AM-PM conversion) on the input signal 
and they are insensitive to particular device characteristics. Notwithstand-
ing these shortcomings, these papers contain an excellent documentation of 
the nonlinear amplification effects for one to four sinusoids. 

Shimbo [11] in his analysis considers the effects of AM-PM conversion 
and suggests the use of various series expansions to represent the nonlinear 
amplifier characteristics. Although his results are directly applicable to 
the analysis of sinusoidal inputs it is not obvious how a general input 
signal should be handled. Shimbo does present experimental results for the 
two carrier input situation which agree very well with his predicted inter-
modulation distortion levels. 

A conceptually good model of a general bandpass nonlinearity is 
presented by Kaye, George and Eric [12] in their quadrature model. Their 
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analysis considers both an amplitude nonlinearity and AM-PM conversion. They 
suggest the use of a Fourier-Bessel series expansion to represent the in-phase 
and quadrature envelope nonlinear characteristics. As they illustrate, use of 
this type of an expansion leads to a very simple relationship between the 
envelope characteristic of the device and its instantaneous voltage nonlinear 
characteristic. A similar type of series expansion will be used in this 
report since it greatly simplifies the analysis. The analysis used by Kaye 
et al. [12] is generally applicable where the total input signal is approxi-
mately gaussian in nature and has a power spectral density which is symmetrical 
about the carrier frequency. The gaussian analysis presented in this report 
supplies a different point of view from Kaye's analysis as well as removes 
the constraint of symmetry about the carrier frequency. Kaye et al. [12] 
supply an estimate of the signal-to-interference ratio at the centre of the 
bandpass when the input power spectral density is constant across the band-
pass. Their analysis is extendable to other spectral shapes but it is felt 
that the more general result presented in this report is no more difficult to 
implement on a digital computer. 

The work of Shimbo [11] has been extended to make use of the Fourier-
Bessel series expansion model first suggested by Kaye et al. [12]. This 
extension is reported in a report by Fuenjalida, Shimbo and Cook [13]. The 
sinusoidal intermodulation analysis presented in Section 2 of this report is 
similar to that of Fuenjalida et al. [3]. Unfortunately this analysis 
approach suffers from a rapidly increasing computing time requirement as the 
number of input signals increases. To avoid this problem the analysis 
approach of Section 3 was devised. In this work the composite input signal 
is assumed to be normally distributed while having a general power spectral 
shape. The Fast-Fourier Transform algorithm (FFT) is utilized to produce 
computation times which are essentially independent of the number of 
individual input signals (if the frequency resolution is allowed to vary). 
This analysis technique, unlike the FFT analysis of Loo [14], permits the 
direct prediction of intermodulation and signal terms and is not a simulation 
type of technique. 

The development of section 2 is presented for the sake of completeness 
of the report. The reader who is familiar with the work of Fuenjalida et 
al. [13] should proceed to section 3. The reader who wishes to avoid the 
mathematical details should proceed to section 4. 

2. SINUSOIDAL INTERMODULATION ANALYSIS 

One conventional technique of system analysis is to examine the 
performance of a system when it is required to transmit a sum of independent 
sinusoids. In this section, equations are developed for the prediction of 
signal and intermodulation noise power levels at the output a nonlinear 
amplifier. 

The analysis of this section is of limited value when large numbers of 
signals (greater than 10) are under consideration since computing time 
becomes excessive. For this situation the analysis of Section 3 should be 
used. 
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2.1 INTERMOD PREDICTION FOR SINUSOIDS 

In general, the composite, narrowband, bandpass signal at the input to 
a satellite's nonlinear power amplifier will consist of the sum of the signals 
from individual users as well as additive noise. The results presented in 
this report will be for the noiseless case. This composite signal may be 
represented by 

s(t) = r(t) cos {w
o t + 6(01 	

(2.1) 

Or 

s(t) = x(t) cos w t - y(t) sin w t 	 (2.2) 

Most wideband satellite transponder amplifiers, such as solid state UHF 
amplifiers, will cause the envelope of the input signal to be modified in a 
nonlinear fashion as well as convert any amplitude modulation into a phase 
modulation (AM-PM conversion). This nonlinear transfer characteristic can be 
represented mathematically by expressing the amplifier's output signal as 

z(t) = g{r(t)} cos {wo t + 6(t) + f[r(t)]) 	 (2.3) 

Or 

z(t) = g{r(01 cos {f[r(0]} coslw
o
t + 6(t)1 

- glr(01 sin{f[r(0]1 sin{w t + 0(01 o 

where 

(2.4) 

g{r} = the amplifier's nonlinear amplitude conversion characteristic 

f{r} = the amplifier's nonlinear AM-PM conversion characteristic 

Equation (2.4) is a mathematical description of the quadrature model suggested 
by Kaye et al. [12]. 

In contrast to the approach used by Kaye et al. [12] a complex signal 
notation is now introduced. This notation will expedite the analysis to 
follow. Thus, 

s(t) = [x(t) + jy(t)] exp jw o
t 	 (2.5) 

and 

g(r) = g(r) expj [f(r)] 	 (2.7) 
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where 

s(t) = Refs(t)} 	 (2.8) 

Re{a} = real part of "a" 	 (2.9) 

The amplifier's nonlinear transfer characteristic is represented in complex 
notation by equation (2.7). 

The reader may easily verify that 

z(t) = Re{z(t)} 	 (2.10) 

given that 

i(t) - g(r) 	(t) 

oror if equations (2.5) and (2.11) are combined 

xi:1y  
z(t) = g(lx+jy1) x x+jy 

expjw
o
t 

(2.11) 

(2.12) 

Equation (2.12) is an expression for the complex version of the nonlinear 
amplifier's output signal. 

At this point it is convenient to introduce the transform nonlinear 
analysis technique of Rice [1] and Davenport and Root [2] by defining the 
two-dimensional complex nonlinearity 

h(x,y) = 	 x Fx4-1/ 
x+jy 

It now follows directly that 
00 

h(x,y) - 	1  - 	f/ H(y,C) exp fjy x(t) + jy(t)} dycl 
(270 2  

-CO 

where 

CO 

H(1,E,) = hri{la+jbl} 	 exp -{jya + jb} dadb 
a+jb 

-CO 

(2.13) 

(2.14) 

(2.15) 

Here it is assumed all integrals exist and are convergent. If not, it is 
assumed that the nonlinearity, -§(r) can be modified by the use of a window 
function so that existance and convergence are not a problem. The function 

as defined in equation (2.15) is a two-dimensional Fourier transform 
of the complex nonlinearity i(r) while equation (2.14) is the corresponding 
inverse transform. An expression for the amplifier output signal follows 
directly from equations (2.12), (2.13) and (2.14) as 



0 2, = w t + m (t) (2.21) 

-00 (2.22) 

CO 

z(t) - 
1 expjw

o t 	11(y,0 exp{jyx(t) + jCy(t)} dye 
4 2  

-CO 
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(2.16) 

Examine now the signal components x(t) and y(t), defined implicitly by 
equations (2.5) and (2.6). If it is assumed the individual user component 
signals can be represented by 

{A cos(wo
t + 6 2,  ) 	: 	£ = 1,2,3,...,N} 	 (2.17) 

N = total number of input signals 

then it follows directly that 

(2.18) x(t) = 	A
2, 

cos 6 £ 
£=1 

Y(t) = 	A9, 	0 9, 
Z=1 L  

For sinusoidal user signals 

6
£ 
 = Wt 

(2.19) 

(2.20) 

where the user carrier frequency is given by (w
o 
+ w). For angle-modulated 

signals 

A combination of equations (2.18) and (2.19) with equation (2.16) yields the 
following expression 

CO 

1 z(t) = — expjwo
t 	f H(y ,) H exp{jyAtcose£  + jCA 9,sin0 9).  dydC 

47r 2 	 9.=1 

where the symbol H is used to indicate a multiple product. Trigonometry can 
now be used to express the exponential term in the form 

1 exp jA9,ly+jC1 sin E 9 . 1- arc tan()] 	 (2.23) 

This expression (2.23) can be expanded using Jacobi's expansion (see A.17, 
Appendix A) so that the complex output signal can be expressed as 



Co  

	

N 	00 

	

z(t) - 1 expjw
o
t )(f. 11(Y,) H 	E 	J 

n
(A£ 1y+j1)exljn[ i  + 

471-2 	 £=1 n= -00  
- Co  

arc tan (1
)] 
 dycl 
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(2.24) 

The expression in equation (2.24) consists of a product of summations, the 
order of which can be reversed if the single summation is replaced by N nested 
summations of product  ternis. If at the same time equation (2.15) is substitu-
ted for H(y,) the output signal expression reduces to 

Co  
i(t) = 

	

	expjw
o
to E 

4u 2  Co  £=1 	n£ 
J (A2. ly+gl) exp j E 1140 £  + arc tanq 

£=1 

, 	1 

-CO 

— a+jb)  
g(la+jbl) Fa+jbl exp {-jya - _gb} dycl dadb 

CO 

(2.25) 

The symbol 	E 	is used to represent the nested summations, one for each value 
n =-°° 

of "Z". 

At this point in the analysis it is useful to convert to a polar 
co-ordinate systems through the following transformations 

a = p cos n 	 c = 	cos 
(2.26) 

b = p sin n 	 = sin 

thus 

ya +  b = Œ  {cosn  sine  + sinn cos13} 

= pa sin{n + 13 } 	 (2.27) 

and hence 

ï(t) = 	expjw t 	exlj E n£ 0
£
th(j)(  H aJ (A a) exlj 	n£ RI n 472 	o nz=_. 	 £=1 

o -7r 

X  pi(p) expj{n-pla sin(n+)} dndUadp 	 (2.28) 



expjwot n  
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00 Tr 

II
j 	
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Although it may appear on the surface this expression is more complex than 
previous versions, this is not the case. It is now possible by the use of 
Bessers integral (see equation A.1, Appendix A) to perform the integration 
with respect to the angular variable n to get 

-Tr 

expj(

Z n£-)Idclpda 
£=1 

(2.29) 

Examine now the integration with respect to (3. The above expression gives a 
zero value for 7(0 in all cases except when 

(2.30) Z n = 1 
2,=1 

in which case the expression in equation (2.29) reduces to 

CO 

z(t) = expjwot Z exp j Z n 	
if H aJ 

2 	 nz  (Aza)J1 (Aza)pg(p) dadp (2.31) 

o 

This expression can be reduced to a simple form if the nonlinear 
amplifier is modeled by a Fourier-Bessel series expansion, that is, 

g(p) = 	ak JV (St
k
p) 

k=1 

where 

— 
a
k 

= complex coefficients 

(2.32) 

k = the positive 
zeros of  J(x)  arranged in order of ascending 

magnitude 

The coefficients ak  can be expressed as an integral of a product function of 
and Jv fflk0 [15] although this approach will not be used. It is 

interesting to observe that expansions similar to equation (2.32) have proved 
useful in studies of heat conduction and mechanical vibration [15]. 

The expression for the output signal, z(t) becomes 



oo 

z(t) = expjw t 	E 	exp 
n =-c° 

jneV 
Z=1 I 

 pJ
1 
 (ap) E 7a.-1(J

v
ffl
k
p)dpda 

k=1 

CO - 

H J 	(A,04) 
£=1 n£ 

oo 
co 
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(2.33) 

If the constraint 	= 1 is applied to the series expansion of equation (2.32), 
the integrals in equation (2.33) can be put into the form of Hankers 
repeated integral which can be evaluated by equation (A.7) in Appendix A. 
Equation (2.33) reduces to 

z(t) = exp(jw
o
t) 	exp j 	n o e £ 	ak  H J (a,,A2, ) 

Z=1 	k=1 	2,=1 nZ nt=-00 
(2.34) 

The reader must recall at this stage that the summation with respect to nj  is 
a nested summation. 

It is instructive to pause a moment to study equation (2.34). The 
reader will observe that 

1. the "nonlinear terms" are separated from the signal modulation 
terms, 

2. the expression of equation (2.34) is valid for all angle-modulated 
signal types where 

O(t) = wtt + p(t) 	 (2.35) 

where 

w£ = user frequency shift from the reference frequency of w
o 

p 	= the user's angle modulation 

For sinusoids it is assumed there is no modulation and hence 11 £ (t) = 	= 
initial phase of the carrier. 

The frequency of any particular component is given by 

w 	• 
 

2  = 1,2,...,N) = w + E net  (nt . 
Z=1 

while the power contained in this component is given by 

(2.36) 

2 

1,2,...,N) = 1  E a 	II  J(  St. A ) 
K 

k=1 	2 =1 n 2, 
(2.37) 
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The i y th signal component is obtained for ni  = 1 and n£  = 0 :  i 	i. From 
equations (2.36) and (2.37) it is possible to determine the signal and 
intermodulation power levels on any frequency of interest for the specific 
amplifier represented by the coefficient set {-à-k  : k = 1, 2....}. 

A computer implementation of this analysis technique will be discussed 
in a later section. 

2.2 ANGLE-MODULATED SIGNALS 

Consider for a moment the situation when the carriers are modulated. 
The autocorrelation function of the complex output signal is 

—* — 
R(T) = E{z (t)z(t+T)} 

where: E[x] denotes an ensemble average of x 

The autocorrelation of Z(t), or the real output signal is 

1 — 
R
z
(T) = - Re{R(T)} 

(2.38) 

(2.39) 

These last two equations assume the process z(t) is at least wide-sense 
stationary. If the user modulation, given by equation (2.35) is substituted 
into equation (2.34) it is possible to express the autocorrelation function 
of equation (2.38) as 

œ 

r((T) = 	Z Ea HJ 
n =-0c. k=lki=1 n z  (OkA) expj w

° 
 +EnwT 
 £=1 9" 

X  H E[exp jnz  {pz (t+T) - p£ (01] 	 (2.40) 
9,=1 

This expression is essentially the same as that presented by Shimbo [ 11] and 
Fuenzalida [13]. Although this is a relatively simple expression there are 
two significant difficulties with its use. Firstly, the number of permissible 
sets of {1.1 : t = 1, 2....N1 values becomes excessively large very quickly as 
the number 2'of carriers N increases (and hence the computation time increase 
rapidly). Secondly, the ensemble average indicated in equation (2.40) is 
often not readily available although a similar average has been investigated 
for binary FSK signals by Wittke [16] in his studies of power spectra. 

In order to avoid these difficulties the analysis of Section 3 might 
be used. This analysis assumes that the individual carriers are approximately 
power balanced and that they are present in sufficient numbers that the 
composite signal may be modeled by a gaussian process. No assumption is made 
concerning the individual user power spectral shapes. 
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3. GAUSSIAN INTERMODULATION ANALYSIS 

As noted previously the analysis of Section 2 results in a rapidly 
increasing computation time as the number of carriers increases. A practical 
limit on the number of carriers appears to be of the order of ten. 

In most satellite communication systems using FDMA an attempt is usually 
made to keep the uplink signal powers approximately equal among the various 
users. If the number of uplink signals is in excess of ten it is reasonable 
to assume the central limit theorem can be applied and the composite satellite 
input signal modeled by a gaussian stochastic process. The analysis which 
follows makes this assumption and results in computer programs for which the 
execution times are essentially independent of the number of carriers. An 
additional advantage is that the input signal power spectral shape is allowed 
to be completely general. 

3.1 DEVELOPMENT 

The notation of Section 2 will be continued in this section. Thus, 
with reference to equation (2.38), the complex output autocorrelation 
function is 

= Efz * (t)z(t+T)1 	 (3.1) 

where the autocorrelation function of the amplifier output signal is 

1 — R(T) = 	Re{R(i)} 

For notational simplicity define 

(3.2) 

- 

z (t ) = z(t ) 1 
(3.3) 

z
2
(0 = z(t+T) 

If equations (2.12) and (3.1) are combined it is evident that 

(x 1 -iY 1 ) 1  Ï(T) = expjw T 	2 + iY 2 	
1 
x2+ Y2 } 
(x2T2), x*{Ix

l -iY 1 11  l x 1 -iy 1 II 	(3.4) 0  

This expression is a cross-correlation of the signals at the output of the 
two nonlinearities -g(s 2 ) and r(s ) as observed by Pawula [7]. 

Once again the nonlinear analysis technique of Rice [1] and Davenport 
and Root [2] can be applied as in Section 2. With reference to the defining 
equations (2.13) and (2.15) for H(y,) let 



H 1 (Y2 eC2) = H(Y22) (3.5) 

13 

This redefinition of H(y,E) is used for clarity in the following development. 

In a similar fashion the two-dimensional Fourier Transform of the 
complex conjugate of equation (2.13) can be defined as H 2 (y,E). A combination 

of equations (3.4), (2.13) and (2.14) results in the following expression for 
the complex autocorrelation function: 

1 4  

(2u) 
expjw0TII/TH 1 (122 )H2 (y11 ) 

Exp{jy1x 1  + jqy i  + jy2x 2  + jF, 2y2 }] dy 1 dy2dE 1dE2 	(3.6) 

Yl, X 2, Y2 be M(Y1, 	Y2, Let the joint characteristic function of x l , 
Equation (3.6) can now be written as 

CO 

iR(T) - 	1  4 exPiw  
(2u) 

	'1' '2 	1 	2 Y 	) dY dY 	cg  (3.7)  

Evaluation of equation (3.7) is the subject of this section. 

Consider for the moment the transform expression of equation (2.15) and 

in particular convert the rectilinear co-ordinates (a, b) and (y,E) into the 

polar co-ordinates (p,n) and (048) respectively by the transformations 

a = p cos n 	b = p sin n 

y = a cos 8 	= a sin 8 
(3.8) 

Let 1.4(048) be H i (y,E) with the independent variables expressed as polar co-
ordinates. It now follows directly from equation (2.15) that 

co ir 

H 1p (a1'1 ) = f(p1g(p 1
)expj{n

1
-a

1
p
1 cos(n11) }  dn 1 dp 1 	 (3.9) 

OLTT 

The integration with respect to n can be performed by an application of the 
general form of Bessel's integral given by equation (A.4) in Appendix A. The 
result is that 

H (a
2

,(32 ) = -2uj 
13. 

f 
exp fj(32 } pi(p imi (Œ2p2 )dp2 	 (3.10) 

_ 
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By a similar development, making use of equation (A.5) instead of 
equation (A.4), it can be shown that 

CO 

-* 
H
2p

(a
l'

8.
1 ) = -2pj exp{- j 1 }  [ p 1 g (p 1

)J
1
(a

1
p
1
)dp

1 

0 

(3.11) 

Return now to the general expression of equation (3.7). This expression 
can be converted into a polar co-ordinate form by the basic transformations of 
equation (3.8) and allowing the joint characteristic function, in polar form, 
to be represented by  M(Œ, 	a2, (32). If this conversion is performed and 
the simplifications of equations (3.10) and (3.11) introduced the complex 
autocorrelation function reduces to 

co 	u 

= — 	1  2 expjw
oIfOrexp{j(132-13 1 )} a

1 a2 Mp (al'l' a2' i32 )d13
1
dr3

2 (2u) 
0— Jr  

CO 	 CO 

	

ir 	
_ 

x 	p
1
J
1
(a

1
p
1

)--g-* (p
1
)dp

1 	
p
2
J
1
(a

2
p
2
)g(p

2
)dp

2
da

1
da

2 

	

0 	 0 

(3.12) 

At this point in the development it is necessary to digress and consider 
the joint characteristic function in more detail. Since the composite input 
signal is the result of a summation of many individual user signals, it is 
reasonable to make the assumption that the composite signal tends to exhibit 
gaussian statistical characteristics. With this assumption it is possible to 
write the characteristic function, as given by Davenport and Root [2], in the 
form 

exP 	 +  y  E[X]  + CI E[371] + 	E[y] 

+ 2)( 1)( 2  E[x1x 2 ] + 2 12  E[y 1 y 2 ] 

+ 2y12  E[x1y2 ] + 2y21  E[y 1x 2
]] 	

(3.13)  

To obtain an expression for the expected values within the exponential 
it is necessary to examine in detail a general bandpass process as described 
by equations (2.2) and (2.5). The signal represented in equation (2.5) is 
an analytic signal possessing only positive frequencies provided the band-
width of the modulation is less than the carrier frequency. This condition 
exists in all practical satellite transponders. Since -§(t) is a single-side-
band signal it is possible to use an analytic signal representation as given 
by Schwartz, Bennett and Stein [17] as 

s(t) = s(t) + j(t) 	 (3.14) 



where s(t) is the signal defined by Equation (2.1) and â(t) is the Hilbert 
Transform of this signal. 
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It now follows directly from equations (2.5) and (3.14) that 

x(t) + jy(t) = [s(t) + jâ(t)] expf-jw o tl 

which reduce to the two equations 

(3.15) 

x(t) = s(t) cos wo t + “t) sin w
o
t 	 (3.16) 

y(t) = “t) cos w
o
t - s(t) sin w

o
t 	 (3.17) 

From these two equations and making use of the Hilbert Transform relationship 
given by Franks [18] it is evident that 

E[x
1
x
2
] = R(T) cos  W

o
T 	R(T) sin W

o
1 	 (3.18) 

E[y1y 2 ] = E[x1x 2 ] 	 (3.19) 

E[x 1
y
2
] = R(T) cos wo r - R(r) 

sin w
o 	

(3.20) 

E[x 2y 1 ] = - E[x 1y 2 ] 	 (3.21) 

when we define R(T) by the equation 

R(T) = E[s(t)s(t + T)] 	 (3.22) 

- and R(T) as the Hilbert Transform of R(T). 

The expectations of Equations (3.18) through (3.21) can now be substi-
tuted into the joint characteristic function of equation (3.13) to give 

1 = exp 1- - fr(o)[y 2  + y 2  + 2  
2 	1 	2 

+ 2[R(T)cos wo T + R(T) sin woTll 1 
 y_y
2 
 + F F ] 
 '1'2 

+ 2[1Î(T) cos Wo T - R(T) sin woT][y 1 F., 2  - y 2F 1 ] (3.23) 

An application of the rectilinear tO" polar co-ordinate conversion, expressions 
(3.8), reduces this joint characteristic function to 

= exp - 1 	moL2 	2] 
MP(a1

,8
1
,a

2
,8

2
) 	 -2--  

	

1 	2 

+ 2a
1
a
2
[R(T)cos w

o
T 	R(T)Sin W

o
TICOS(13

1
- f3

2
) 

+ 2a
1
a
2
[R(T)cos w

o
T - R(T)sin w

o
Ilsin( -8 ) 	 (3.24) 

2 1 



(3.29) 

(3.30) 
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Since the input signal s(t) is a bandpass signal it is evident that the 
autocorrelation of this signal can be represented in the form 

R(T) =(T)cos WT + 	(T)sin W
o
T 	 (3.25) 

O Y 

It should be noticed at this point that this general representation must be 
used since R(T) is the autocorrelation of the composite signal and as a 
result the power spectral density corresponding to R(T) may not be symmetrical 
about the centre frequency wo . From equation (3.25) it follows that 

R(T) = x (T)sin Wo T - 	(T)cosT 	 (3.26) 
Y 	o  

where it has been assumed (P
x
(T) and (I) (T) are narrowband quantities as 

Y compared to wo . 

Introduction of equations (3.25) and (3.26) into equation (3.24) 
results in the following expression for the joint characteristic function. 

MP(o,111 ,Œ2 '13 2 ) = exp [- 
	+ Œ 2 ] 

2 	x 	1 	2 

+ 2Œ1(1 2 [(Px (T)cos(81-(3 2 ) + (Py (T)sin(,- 2 )]] (3.27) 

The composite input autocorrelation function of equation (3.25) can now be 
expressed in the form 

R(T) = “T)cos  L T  + A(T) 
= (i)x (T)cos Wo

T + cl) (T)sin w
o
T 	 (3.28) 

Y 

by defining 

and 

) 1/2  
(P(T) = k(T) 	q)2(T) 

Y 

(I) (T) 

A(T) = arc tan - 

Incorporation of these two definitions into equation (3.27) gives the follow-
ing expression for the polar co-ordinate version of the joint characteristic 
function 

	

MP(0411 ,c(2 ,(3. 2 ) = exp [- 1 	(o)[ 
	+ a 2 ] + 2a1

a2 
cp(T)cos 1-(3 2

] + A(T)]] 

	

2 	1 	2 

(3.31) 

Return now to the original problem of determining the output auto-
correlation function and substitute the characteristic function of equation 
(3.31) into the general expression of equation (3.12). After the appropriate 
terms are grouped together the autocorrelation function of equation (3.12) can 
be expressed as 
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expjw
o
T jOra

1
a
2 

exp 

0 

R(T) (1,( c )r a 2 
2 	"" 1 	2 

1  
2 

(2u) 

2uj exp - j13 1  exp + j13 1  exp jA(T)J 1 (j04 1 (1211)(T))d3 2  (3.35) 

= exp j[wo 	
A(T)] Ara, 1 a

2 
exp 4,  (0) [al ŒP Il(ctiot2q, ( T)) 

TT 
X ff expj [13 2 - (3 1  exP {OE1(12.  

-TF  

P(T)cosU. 1- 2  + A(T)]}] d 1 d13 2  

co 

f p 1 J 1 (a1 p 1 )i*(p 1 )dp 1 f p2J (a2 p 2 )g(p 2 )dp 2da1da 2 
o 	 - o  

(3.32) 

The integration with respect to (3 1  and 132 can now be performed by making 
use of equation (A.5) in Appendix A and noticing that 

ffexp i[ 2 1 1P j{ala2  jcP(T)cos[ i-(3 2  + A(T)]} d13 1 (1 2 

 -u 

(3.33) 

=f exp - j13 1 / 

-u 	 -u  
[

exp 1 2 -041 (12jcP(T)cosP 2 -ffli  + A(T))1 dR1d13 2  (3.34) 

= (27)
2 
 j exp[jA(T)] J

1
(ja

1
a
2
(P(T)) (3.36) 

Conversion of the Bessel function ,J1 to a modified Bessel function I I  through 
an application of formula (A.14), allows us to write the complex autocorrela-
tion function of equation (3.32) in the form 

o 
op 

CO f  x 	prli  (ai pi )
—
g

* 
(p i ) dp i  f p 2 Ji  (a2 p 2 )g (p 2 )dp 2da i da2  (3.37) 

At this point in the development it is possible to make use of the 
Bessel Function relationship, given by equation (A.6) in Appendix A by 
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letting p = 1, a = al l/2(1)(T) and 	= 1. If this relationship is used the 
expression for the autocorrelation function given in equation (3.37) reduces 
to 

CO 

ii(T) = expj[co 	
f

oT + A(T)] 	2texp-t 

0 

2 
Go  

jrexp

a2 
- UP(o)-(1)(1)] J 1 

 (tot/4(T)) 

0 

2 

xjPJ
1
(ap) --g(p)dpda 

0 

dt 	 (3.38) 

At first it may seem that the introduction of another integration variable, 

t, is a retrograde step but it does lead to an evaluation of the integrals 
in equation (3.38) 

As was discussed in Section (2), the nonlinear characteristic gG) will 
be represented by the complex Fourier-Bessel series expansion of equation 
(2.32) with V = 1. 

Consider now the integral within the magnitude signs in expression 
(3.38) and substitute into this expression the series expression (2.32) 

oo 	 co 

,2 
clexp - 	[(1)(o)-11)(T)] J i (toiA/24)(,),.)(  pJ 1 (ap)g. (p ) dpda 

co 
co 

= 	a
k
faexp 	UP(o) - (1)(q)] J

1 
 (taV2cp(T)) 

k=1 
0 

CO 

xf pJ 1 (ap) J i fflkp)dadp 	 (3.39) 

0 

The integrals on the right-hand side of equation (3.39) are in the form of 
the inversion Hankel's repeated integral, given by equation (A.9) in 
Appendix A. From equations (A.10) and (A.11) of Appendix A it is obvious 

that the convergence condition required for the evaluation of Hankel's 
repeated integral, given by equation (A.7) is satisfied by the right-hand 
side of equation (3.39) and thus the autocorrelation function of equation 
(3.38) becomes 



CO 

-R- (T) = exp
o
T 	A(T) 	E -a-  a o  exp 

t=1 m=1 m  
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1 (Q 2 1_ Q 2 )  
2 m V (flo) - 

CO 

xie 2t exp-t 2  J1  S-22, t V2 ,1)(T) J 1  Stilit /215(T) dt 

0 

(3.40) 

Another use of relationship (A.6) in Appendix A simplifies this expression to 
give the result 

iR(T) = exp j{w
o
T 	A(T)}  E 	E a a exp 	2-  (1)(o)ffl 2  + 	 (1)(T) 

£=1 M=1 M 	
m 1£ M 

(3.41) 

Examine for the moment the quanity within the summation signs. With 
the exception of the -a-jai* term the expression is symmetrical in m and Z. 
Consider arranging each term in this double summation as a point in a square 
matrix in which m is the column number and t is the row number. The terms on 
the principal diagonal are certainly real since m = t. For each off-diagonal 
term given by amaz* there is another term a*a . It is easy to demonstrate m t 
that (a a 2.) = ata . This means that the double summation in equation (3.41) 

i 
m 	 im 

results n a real term and hence the autocorrelation function of the output 
signal can be expressed as 

c° aa
2, 	1 R(T) = cos(w

o
T 	A(T)) 	 m 	exp /-- (1)(o) 	+ 	 J 

m 	m 
Z=1 m=1 

(3.42) 

It is interesting to observe that this expression is similar in structure to 
the equivalent expression (equation (33)) derived by Pawula [7] for an error-
function limiter with quadratic AM-PM conversion. 

Following the analysis technique used by Pawula [7] at this point this 
output autocorrelation function can be separated into an undistorted replica 
of the input autocorrelation function (except for a scaling factor) and the 
intermodulation distortion autocorrelation. This separation is obtained by 
a use of the series expansion for I 1 (x) given by Equation (A.12) given in 
Appendix A. The desired signal output term is then 

— --* 
a
m
a 

Rs (T) = (P(T)COS(W T 	A(T)) 
4 

QM exp 	—1  (h(o) 
2 	

(Q2 	Q2) 
% 

œ 

£=1 m=1 	
t 

The intermodulation distortion term can now be written as 

CO 	 CO co 	œ 

(3.43) 
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c° 	cc ama, 	, 
RD (T) = cos(w

o
T 	A(T))  E 	E 	2 	 exp - 	(1)(o) 	+ 

2,=1 m=1 

[ 	

S-2 0 Q 	] 
x 	I {S-2 Q (1)(T)} - -L'=-1-2  cp(T) 

1 2, m 	 2 
(3.44) 

An application of the Fast Fourier Transform (FFT) algorithm to the 
expression obtained in equation (3.44) will give the power spectral density 
of the intermodulation distortion. This can be normalized to the output 
signal level by calculating the amplifier gain from equation (3.43). 

3.2 DISCUSSION 

Since the computation time required to perform a FFT computation is 
independent of the actual signal shape the computation procedure outlined 
above is generally independent of the number of individual user signals. 
This of course assumes the total bandwidth is fixed or that the frequency 
resolution is allowed to vary. The penalty paid is that the composite 
signal must exhibit gaussian properties. 

An examination of equation (3.43) shows that the analysis technique in 
this section must be used only when weak signal suppression is not significant. 
The approach of this section does permit computations to be made when the 
exact analysis of Section (2) becomes too expensive due to excessive 
computation time. 

Although it is possible to write an integral expression for the 
coefficients of the Bessel-Fourier Series expanison (see Watson [15]), it is 
more efficient to determine the coefficients through the use of a curve 
fitting technique. This approach will most likely lead to a more accurate 
curve fit for a finite series expansion and also permit the parameters {4. 1 
to be general. The curve fitting can be efficiently performed by the use of 
a pattern search technique described by Wilde and Beightler [19] and a mean-
squared-error index of performance. 

Before the curve fitting operation it is usually benefical to normalize 
the actual amplifier characteristic so that "saturation" occurs when p 	1. 
The curve fit is then usually performed over some finite region R in which 
the amplifier saturates when p 	1. 

It was observed by Kaye, George and Eric [13] that in order to obtain 
a good curve fit over some region of interest R and avoid the problem of 
zeros of the expansion terms at the boundary of thi_s region R, it is necessary 
to perform the curve fit over an extended region RI , An analysis of a normal 
distribution function shows that there is less than a 1% probability of the 
signal peak power exceeding a level 9 dB greater than the mean signal power. 
Conversion of this to a voltage amplitude scale shows that, if R' = 3R and 
the mean signal power at the output to the transponder is at the limit of 
the range of interest, then there is less than a 1% probability that signal 
peaks will occur outside of this region. Thus, if R represents the maximum 
voltage of interest the curve fit should be performed over a region R' where 
R' 	3R. 
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It has also been determined that the Bessel function zeros'k' can be 
approximated by 

with no significant effect on the quality of representation of the amplifier 
characteristics. If the approximation of equation (3.45) is used, the co-
efficients of the Fourier-Bessel series expansion become the coefficients of 
a Fourier-sine expansion of the amplifier's instantaneous voltage transfer 
function. 

Notice that equations (3.43) and (3.44) permit the individual user 
signals to be either modulated signals or sinusoidal carriers. The auto-
correlation function (P(T) can be determined analytically or by a FFT opera-
tion on the signal power spectrum, which ever is more convenient. In the 
evaluation of these two expressions it is evident that the double summation 
need only be performed over one half of the matrix of terms because the 
complex conjugate of the summation performed in this manner is identical to 
equation (3.44). 

Lastly, it is interesting to observe that it is possible to start with 
the equation for the characteristic function of a gaussian process, assume 
sinusoidal user signals and the analysis of this section results in the final 
equations of Section 2. Thus, even though a gaussian composite signal is 
assumed, the more general equations of Section 2 result. This development 
is contained in Appendix B. 

4. PREDICTION OF INTERMODULATION NOISE 

The purpose of this section is to describe some results of the use of 
the analysis of Sections 2 and 3. Before doing this the computer programs 
which have been developed will be briefly described. 

4.1 COMPUTER PROGRAMS 

Computer programs have been developed to perform the following: 

1. model an amplifier by a complex Fourier-Bessel series expansion, 
(as per equation (2.32)) 

2. perform a sinusoidal intermodulation noise analysis as per the 
approach of Section 2, (equation (2.36) & (2.37)) 

3. perform a gaussian intermodulation analysis for the following 
signal types: (equation (3.43) & (3.44)) 

(a) gaussian spectral shape, 

(b) sum of regions of constant power spectral density, 

(c) sum of sinusoids, 

(d) sum of binary modulated PSK and/or FSK signals. 
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The first two programs will be discussed in Section 5. It suffices to 
say at this point that up to and including a 20-term complex Fourier-Bessel 
series expansion can be generated by the first program while the second 
program can be useful in the analysis of up to approximately ten carriers. 
The exact computer time is a function of the number of terms in the expansion. 

The third program is in reality several programs. There is a main 
nonlinear analysis subroutine which is common to all of the programs. The 
difference being that programs use different signal spectrum generation 
subroutines. To check the operation of the computer programs and the 
analysis approach, outlined in Section 3, an erf function amplifier character-
istic was analysed for signals with a gaussian and rectangular power spectral 
shapes. The results are shown in Figures 2 to 4. 

In Figure 2 the signal-to-intermod (S/IM) ratio at the centre of the 
band is plotted against the input signal power backoff. The amplifier 
modeled has an instantaneous voltage characteristic given by 

Z = erf(3x) 	 (4.1) 

where 

x = Acose 	 (4.2) 

Appropriate scaling of values has been performed so that a comparison can be 
made with the work of Pawula et al. [6] and the analysis of Kaye et al. [12]. 
As shown in Figure 2, agreement is very good for both the rectangular and 
gaussian spectrally-shaped signals. It is interesting to notice also that an 
analysis of 50 carriers by program 3(c) yields results for the worst S/IM 
ratio (shown in Figure 2) which are in complete agreement with predictions 
from program 3(b) for a rectangular spectral region. This is as would be 
expected. For reference purposes the two-carrier-3rd-order S/IM ratio is 
plotted in Figure 2. 

From Figure 3 it is evident that excellent agreement exists between 
the predictions of Kaye et al. [12] and output signal backoff values calcula-
ted by the programs described herein. 

The final graph, Figure 4 illustrates the power spectral densities at 
the amplifier's output for the two signal types. In both cases the input is 
backed off 10 dB (which corresponds to a 3 dB output backoff). The gaussian 
shaped power spectra agree with curves published by Pawula et al. [6]. 

Thus, the main nonlinear analysis subroutine, implementing the analysis 
of Section 3, results in predictions which are consistent with the work of 
previous researchers. 

4.2 TWT AMPLIFIERS 

Performance predictions are presented in this section for a Hughes 
1177 1103 travelling-wave-tube amplifier. The purpose of the graphs of this 
section is to permit the reader to compare the performance characteristics of 
TWT amplifiers and class C, solid state amplifiers to be discussed in Section 
5. 
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Figure 2. Signal-to-Noise Power Spectral Density Ratio 
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Figure 3. Signal-to-Intermod Ratio Versus Output Backoff 
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Figure 4. Power Spectra 

The transfer characteristics of this amplifier are shown in Figure 5. 
These graphs should be compared with those in Figures 18 and 19. Points of 

interest are: 

1. the TWT amplifier saturates on output power as opposed to the 
C2M60 amplifier which does not, 

2. the NT amplifier approximates a linear amplifier for large input-

backoff values, 

3. the phase characteristic is smoother for the TWT, 

4. the amplifier gain is considerably greater than that of a single-

stage UHF transistor amplifier. 

The next graph, Figure 6, illustrates the two-carrier intermodulation 
performance of this amplifier. 	The measured performance values are from 

Eric [3]. Eric shows similar agreement between prediction and measurement. 

The multiple carrier intermodulation performance is presented in 
Figure 7. It is assumed all carriers are at the same power level and are 

located adjacent one with a constant spacing. The worst signal-to-

intermodulation ratio occurs at the centre of the band. Notice that the 
intermodulation noise continues to decrease with increasing input signal 

backoff, that is, the amplifier approximates a linear amplifier at large 

backoff values. 
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Because of the saturating power transfer characteristic for the TWT, 
the output signal backoff curve saturates. The maximum output signal power 
is achieved at an input drive of approximately - 5 dBm. 

As is typical of TWT amplifiers, weak signals can be suppressed by 
strong signals. The severity of this problem is shown in Figure 8. The 
situation modeled might represent a CW jamming signal trying to gain control 
of the transponder. To avoid the possibility of significant signal suppres-
sion it is necessary to operate the amplifier with an input signal level of 
less than - 15 dBm. 

Similar results are presented in the next section for a C2M60 solid 
state UHF amplifier. 

5. SOLID STATE AMPLIFIERS 

Before the equations of Section 2 and 3 can be used it is necessary to 
experimentally measure the nonlinear characteristics of the amplifiers under 
consideration. The amplifiers of primary concern in this report are solid 
state UHF power amplifiers of the type which might be'considered for use in 
a UHF satellite transponder. 
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In this section, a dynamic characteristic measurement technique, as 
well as, the degree of agreement between measured and predicted two and four 
carrier intermodulation distortion is discussed. It is demonstrated that 
when solid state UHF amplifiers are under consideration, a dynamic character-
istic measurement test must be performed. 

5.1 MEASUREMENT TECHNIQUES 

The technique conventionally used to measure the transfer characteristic 
of an amplifier is to insert a sinusoid of a given power level and then record 

the output power level and the phase relationship of the output sinusoid to 
the input sinusoid. The input power level is stepped to another value and 
thus a complete transfer characteristic can be determined. This technique 

will be referred to as a static measurement. 

A static characteristic of a C2M60 transistor amplifier can be 
measured and the analytical analysis of Section 2 performed. The predicted 
two-carrier, third-order intermodulation distortion is presented in Figure 9 
by the curve labelled "static model". A comparison of this curve with the 
illustrated measured third-order intermodulation levels, shows a discrepancy 
of up to 4.5 dB in the best operating region for this amplifier. Notwith-
standing this discrepancy, the predicted curve does show an increase in 
intermodulation distortion at high input power levels due to a saturating 
effect as well as a high distortion level at low drive levels due to the 
class-C amplifier "turn-on" characteristic. It is suggested that the 
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discrepancy of 4.5 dB (around the optimum operating region) is a result of a 
heating effect within the amplifier; that is, the single sinusoid test signal 
at high input power levels causes the operating temperature of the amplifier, 
and hence its characteristics, to change. This is in contrast to a travelling-
wave-tube type of amplifier which tends to maintain its operating temperature, 
regardless of the input signal power. 

In order to test this hypothesis the dynamic characteristic measurement 
technique of Figure 10 was devised. The basic idea is to insert a pulsed 
amplitude-modulated signal of a low duty cycle into the test amplifier and 
then with the aid of a network analyzer compare the input signal at any 
instant in time, with the output signal to determine the amplifier gain and 
phase shift. The pulse shape used was an amplitude ramp. The "Z" axis 
bright-up pulse permits a marker to be positioned on the gain and phase 
characteristic displayed on the network analyzer. This pulse is also used to 
trigger a peak power reading meter which can be connected to either  I 	12. 
Thus the displayed characteristics can be calibrated. Use of this measurement 
arrangement and a low duty cycle amplitude-modulated signal permits a cool 
dynamic model of the amplifier to be determined. 

Figure 9. 3rd Order-Two-Carrier Intermodulation Level 
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Figure 10. Dynamic Measurement 

The subsequent predicted third-order two-carrier signal-to-intermodula-
tion distortion ratio is illustrated in Figure 9. Examination of this curve 
shows that there has been a significant improvement in the shape of the curve 
although it still appears to be displaced approximately 0.5 dB to the right 
of the experimentally measured data points. 

Since it appears that the amplifier's characteristic is sensitive to 
temperature it was decided to try to measure the characteristics with the 
amplifier amplifying a signal at approximately the optimum operating power 

level. To measure the characteristic dynamically with an actual input signal 
is difficult since it would require very careful control of the duty cycle 
and modulation index of the test signal. In order to avoid these difficulties 
the following approach was used. With reference to Figure 10, a high-powered 
sinusoid from generator G1  was inserted into the amplifier and allowed to 
remain there until the test amplifier's temperature has stablized at which 
time the dynamic test signal from generator G2 was switched to. The switching 
was performed with a coaxial relay switch so that from the thermal point of 
view, the switching time can be ignored. As the temperature of the amplifier 
cooled, changes in the characteristics could be observed on the network 
analyzer. This change in the gain and phase characteristics was recorded 
photographically with the aid of a time exposure as illustrated in Figure 11. 
From these graphs it is possible to develop a "hot dynamic model" for the 
amplifier which results in the third-order two-carrier-intermodulation 
performance prediction represented by the hot dynamic model in Figure 9. This 
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curve is within 0.25 dB of the measured performance. This is within the 
tolerance of errors and can be corrected for by a change in the normalization 
constant used by the amplifier modeling program. Thus, the corrected dynamic 
model results. As illustrated in Figure 9, there is very good agreement 
between measurement and predictions based upon this model. 

Figure 11. Dynamic Characteristic 
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The agreement for 5th and 7th-order components is illustrated in Figure 
12. Superimposed on this graph is the 3rd-order intermodulation performance. 
Notice that over the operating region of 37 dBm to 40 dBm the 5th-order 
intermodulation components are dominant. The minimum two-carrier, carrier-to-
intermod ratio curve is shown in Figure 13 and illustrates this region of 
5th-order intermodulation dominance. The output power spectrum at a 39 dBm 
input drive level has the appearance shown in Figure 14. This phenomenon of 
lower 3rd-order components is not observed with class-A travelling-wave-tube 
amplifiers. It is suggested that this phenomenon is a result of the inter-
action of a saturating nonlinearity with the class-C "turn-on" region 
nonlinearity. 

Thus, based upon a two-sinusoidal-carrier analysis, the dynamic method 
of characteristic measurement appears to result in a mathematical model which 
yields predicted performance in close agreement with measured performance. 
The measurement and modeling process will be now discussed in more detail. 

• PREDICTED VALUES 
• MEASURED 5 th ORDER RATIO 
• MEASURED 7th ORDER RATIO 

7th ORDER INTERMOD RATIO • 
35—.  

o 

o 
o 
wcr 25 —+ 

0 e— 

oz 

5 th ORDER INTERMOD 
RATIO 

C2M60 
\dt • 

/ 
/ 	 \ 

3 rd ORDER INTERMOD RATIO 

15 
30 	32 	34 	36 	38 	40 

TOTAL INPUT SIGNAL POWER (dBm) 

Figure 12. 5th and 7th Order IM Performance 

42 



5th ORDER 
DOMINANT C2M60 

is 25— 
v 
o 

rc 
o —  0 

w —  
F— z 
o 

20— z 
U) 	_ 
cr 
Fr cc 	— 
4:c 

15 

3rd ORDER 
DOMINANT 

3 rd ORDER 
DOMINANT 

1 	t 	I 	I 	n  
30 	32 	34 	36 	38 	40 	42 

TOTAL INPUT SIGNAL POWER (d8m) 

Figure 13. Minimum Signal-to-Intermod Ratio 



bogiaggelldWimap 411, 

1 
I 

I 	I 
I 	I 

PREDICTED SPECTRUM 

0 0 0 0 0 
0 0 0 0 0 
Cr) 	0 	_ 	(NJ 	re) 
o 	 d  d d si 	d 	o 0) 	0 	 o 	o ro C\J 	r0 	 ro 	ro 

FREQUENCY (MHz) 

30
0.

4
0
0
-  

40- 

30 

_J 
LIJ 
> 20— 
w 

C2M60 

TOTAL INPUT SIGNAL POWER ...39 dBm 

I 	I 
I 	I 

i 
I 

I—  I 
o  
co 

cv 29
9.

7
0
0
-  

MEASURED SPECTRUM/ 

33 

26 

28 

(dB) 

30 

—32 

• SIGNAL LEVELS — -4_6 dB RELATIVE TO SINGLE 
CARRIER FULL POWER OUTPUT LEVEL 

• 39 dBm INPUT DRIVE LEVEL 

Figure 14. Two Carrier IM Spectrum 



34 

5.2 DYNAMIC MODELING TECHNIQUE 

For the experimental arrangement illustrated in Figure 10, a list of 
the equipment used is contained in Appendix C. 

The actual test amplifier is shown in Figures 15 to 17. The mounting 
shown was one of convenience with no attempt made to design an efficient 
package for the transistor. As shown in Photo 15, amplifier cooling was 
supplied by air cooling fins. 

Figure 15. Test Amplifier Cooling 
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Figure 16. Component Arrangement 
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Figure 17. Test Amplifier Reverse Side 
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The basic idea of the dynamic measurement procedure is that an 
amplitude modulated signal is used to vary the instantaneous input signal 

power supplied to the test amplifier. The output signal is compared to the 
input signal and the gain and phase shift versus input signal power are 
displayed on a network analyzer. The actual power transfer characteristic 
is measured with the aid of the triggerable peak-power-reading meter. The 
"Z" axis bright-up pulse indicates to the experimenter where on the amplifier's 
characteristic a measurement is being made. Either the input or the output 
instantaneous power is measured depending upon whether the meter M is 
connected to either  I  or 12. Since this power meter will measure only the 

power level at its terminals, it is necessary to calibrate the experimental 
arrangement in order that the power at the test amplifier's terminals can be 
determined. This calibration can be performed by removing the test amplifier 
and inserting another precision power meter at the test amplifier's location. 
Power readings can be made at both the test amplifier's location, as well as, 

at the peak power reading meter's location. Two calibration factors are thus 
determined: 

1. the first relating the power reading at 1 
to the amplifier's input 

signal power (42.7 dB), 

2. the second relating the power measured at 1 2 
to the amplifier's 

output power (43.0 dB). 

At this point it must be emphasized that extreme care must be taken in 
determining these numbers since an error as small as 0.25 dB will shift 
the amplifier's apparent transfer characteristic. 

An amplifier's cold dynamic power transfer characteristic can now be 
measured with the aid of the peak-reading power meter. At the same time the 

input power axis of the displayed gain-phase characteristics can be calibrated. 
The signal phase shift at any particular input power drive level can then be 

measured with the use of the network analyzer. The cold dynamic transfer 
characteristic for the C2M60 amplifier, measured in this manner, is presented 

in Table 1. 

These characteristics have been used to generate a complex Fourier-

Bessel series expansion cold dynamic model for the C2M60 amplifier and the 
appropriate intermodulation distortion predictions of Figure 9. To obtain 

a hot dynamic model it is necessary to examine Figure 11 to determine, at 

each operating point, the change in the amplifier's gain and phase shift 

characterisitcs. Corrections can then be made to the values in Table 1 to 

obtain a hot dynamic model for the amplifier. The corrected dynamic model of 

Figure 9 is achieved by correcting the input power normalization factor (for 
the computer programs) to allow for the 0.25 dB shift required for the hot 
dynamic model. Thus, with this corrected model, a useful Fourier-Bessel 
series expansion model has been obtained for the C2M60 amplifier. 

The actual input data for the computer programs are in units of watts 
and degrees. The data points are scaled from graphs of the amplifier's 
transfer characteristics, as illustrated in Figures 18 and 19. In order to 
ensure that a good characteristic fit is obtained it is necessary to supply 
the computer program with data at more input power levels than are normally 



INPUT POWER 
dBm 

OUTPUT POWER 
dBm 

PHASE SHIFT 
Degrees 

TABLE 1. 

C2M60 

Cold Dynamic Characteristic 

43.0 	 49.0 	 24 

42.6 	 48.8 	 24.5 

41.9 	 48.4 	 25.1 

41.4 	 48.2 	 25.3 

41.0 	 48.0 	 25.4 

40.0 	 47.4 	 25.1 

38.9 	 46.6 	 23.7 

37.6 	 45.3 	 21.2 

36.1 	 43.2 	 17.6 

35.1 	 41.9 	 15.8 

33.7 	 39.4 	 12.8 

32.6 	 37.2 	 11.2 

31.7 	 35.4 	 6.0 

30.8 	 33.6 

measured experimentally. It has been found that additional extrapolated 
data points are required at both the high and low-power drive levels. The 

dynamic measurements have an advantage over static measurement because of the 
extended measurement region (as illustrated in Figures 18 and 19). This is 

due to the use of a low duty test signal and hence a cooler amplifier 
operating temperature. The reader should observe from Figure 18 that 
unlike TWT amplifiers, the C2M60 solid state UHF amplifier does not saturate 
on output power but only exhibits a saturating tendency. It has been 
observed with this and other solid state amplifiers (CM75-28, CM75-28R, XB50, 
V410) that the transistor is destroyed before true saturation occurs. 

The computer program does not model the power and phase characteristics 

directly but generates an inphase and a quadrature, root-mean-square voltage 
characteristics and then fits a Fourier-Bessel series expansion to each of 
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these curves. Both of the curves are normalized to input and output power 
levels supplied by the user. The in-phase coefficients are the real parts 
of the complex coefficients. The degree of agreement between the predicted 
(from the expansion) and the measured in-phase and quadrature characteristics 
indicates the quality of the curve fitting operations. This agreement is 
demonstrated in Figure 20. The root-mean-square error on the curve fit is 
usually at least 50 dB below the output power normalization level specified 
by the user. 

From the in-phase and quadrature characteristics it is possible to 
reconstruct the power and phase characteristics of the amplifier (as shown in 
Figure 21). Care must be taken in the reconstruction of the phase character-
istic at low angles and drive levels since small errors in the component 
characteristics are magnified through the use of an inverse tangent formula. 

The behaviour of the series expansion model over a 60 dB input power 
range is illustrated in Figure 22. It is generally advisable to examine a 
graph similar to Figure 22 to ensure the stability of the series expansion 
in regions immediately exterior to the range of power values of interest. 
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5.3 MULTICARRIER INTERMODULATION PERFORMANCE 

Up to four carrier intermodulation distortion measurements can be 
performed by the use of the equipment of Figure 23 in the arrangement of 
Figure 10. The output power spectrum was observed with a spectrum analyzer. 
The equipment used is listed in Appendix C. 

The results of the two-carrier measurements have been presented in 
Figures 9 to 14. Four-carrier measurements have been made and are compared 
with predictions in Figures 24 and 25. The measured and predicted output 
power spectra for the C2M60 amplifier with a 37 dBm input drive are illustra-
ted in Figure 24. It is observed once again that the intermodulation 
components close to the carrier frequencies are lower than components further 
away in frequency. A second observation of interest is that the inner two 
carriers have the highest predicted signal-to-intermodulation distortion 
power ratio. This is contrary to what is normally achieved with a class-A 
power saturating amplifier. 

A view of intermodulation performance versus input signal drive level 
is presented in Figure 25. The first sideband components refer to the 
components adjacent to the carrier frequencies band at 299.950 and 300.200 
MHz. The signal-to-intermod ratio used in these graphs is the power ratio of 
a single carrier to intermodulation distortion level. The signal-to-sideband 
intermod ratio is the only performance indication which can be readily 
measured experimentally. From the top graph of Figure 25 it is seen that the 
agreement between prediction and measurement is good. In any communications 
system application it is actually the signal-to-intermod ratio, on the carrier 
frequencies which is of interest. These ratios are presented in the lower 
graph of Figure 25. Notice that there are two operating points at which all 
carriers have the same signal-to-intermod ratio. 

To complete the set of measurements on this amplifier the two and 
single-carrier prime power efficiency and single-carrier bandwidth were 
measured. These curves are presented in Figures 26 and 27 respectively. 

The dynamic measurement technique described in this section has been 
used by Harrison and Moody [20] to predict intermodulation levels for both 
class-C and class-L (a low intermod mode) amplifiers. Their degree of 
agreement between measurement and predictions is similar to the agreement 
shown in this report. 

Figure 23. Four Carrier Equipment 
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5.4 UHF SOLID STATE AMPLIFIERS - CLASS C 

A class C amplifier has two very important advantages over a linear 
class A amplifier (TWTs): 

1. the prime power efficiency is considerably greater (typically 
50-60% versus 10-20%), 

2. no prime power is consumed by the amplifier when no signal is 
present. Solid State UHF amplifiers, of the type discussed in 
this report are intended for use as Class C amplifiers. 

The transfer characteristics, two and four-carrier S/IM performance 
have been already presented for a C2M60 transistor class C amplifier. The 
multiple carrier S/IM performance curves for this same amplifier are presented 
in Figure 28 (this is the dual of Figure 7 for the TWT). In contrast to the 
TWT it is evident that, from a S/IM performance point of view, there is a 
definite optimum operating point for the transistor amplifier. This point 
is in the vicinity of 38 dBm input signal drive. In addition, the output 
signal power montonically increases with input drive and does not have an 
optimum input drive for peak output signal power as does the TWT. One very 
important observation from Figure 28 is that the S/IM performance deteriorates 
as the transistor is backed-off from a 37 dBm drive level. Thus, it will be 
necessary if a signal is present to ensure that the input drive to the power 
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amplifier stage is sufficient so that acceptable S/IM performance is achieved. 
This is not a problem with a TWT amplifier which backs off into a linear 
amplifier. This matter is of prime importance in any FDMA demand assignment 
satellite communication system since the number of individual input signals 
continually varies. 

From the curves of Figure 29 the degree of weak signal suppression to 
be expected with this type of amplifier is indicated. A comparison with 
Figure 8 shows the suppression to be less severe than with the previous TWT 
amplifier. In addition, at low input signal drive levels, the weaker signals 
gain more than their fair share of the output signal power, that is, signal 
enhancement occurs. It is interesting to observe that little or no suppres-
sion occurs in the optimum operating region of minimum intermodulation noise 
(i.e., 37 - 39 dBm drive). This latter point could be quite important in 
anti-jamming considerations of satellite communication systems. Thus, the 
region of best S/IM performance and high output signal power level is also 
the operating region where little or no weak-signal suppression occurs. 
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The remaining graphs in this section are output signal and intermodula-
tion noise power spectra for the C2M60 amplifier operating at an input signal 
drive level of 39 dBm. The situation considered for Figure 30 is a block of 
twenty modulated signals. The power spectra for the channel with the worst 
S/IM performance is illustrated in this figure for the following three binary 
modulation cases: 

1. frequency-shift-keying (FSK) with a deviation ratio of 0.7 (H = 0.7), 

2. FSK, H = 0.5 (this is often referred to as fast FSK (FFSK), 

3. anti-polar phase shift keying (PSK). 

The power spectra of the various signals are generated and then the 
composite spectrum transformed into an autocorrelation function by use of a 
Fast Fourier transform subroutine. 

Notice that the detailed intermodulation noise spectral shape is 
dependent upon the specific modulation technique used. Only the FSK, H = 0.7 
gives rise to intermodulation noise which is relatively constant across the 
band. Reference back to Figure 28 shows the intermodulation noise level is 
slightly lower when modulated signals are considered. 
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For Figure 31 it was assumed the signal was a block of uniformly 
spaced carriers. Thus, intermodulation noise consists of carriers at all 
frequency shifts which are multiples of the spacing frequency. The spectrum 
illustrated is the envelope of the powers of the various sinusoidal components. 
This type of an analysis is identical to that used previously to generate 
the multiple-carrier S/IM performance curves. 

The next sequence of three graphs, Figures 32 to 34, illustrates the 
S/IM performance behaviour when the individual carriers must be separated 
into two separate bands. The total overall bandwidth occupied by the two 
signal bands is identical to that used in Figure 31. Notice that as the two 
separate bands have a decreasing individual bandwidth the "ripple" on the 
intermodulation noise increases until the two bands are sufficiently narrow 
that a two sinusoid analysis would accurately model the situation. Certainly 
at this point the gaussian assumption of Section 3 should be queried. 

To illustrate the capability of the computer programs to analyze signals 
which are not symmetrical about a centre reference frequency, the example of 
Figure 35 is presented. In this example there are three nonuniformly spaced 
bands of carriers. As would be expected, the intermodulation noise is 
nonsymmetric. Notice as well that there is "ripple" on the intermodulation 
noise as a result of the separate bands of carriers. 
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A second example of nonsymmetrical spectrum type of signal is presented 
in Figure 36. In this case there are 85 carriers which constitute the main 
traffic through the transponder and a few high and low-powered signals. The 
nonsymmetrical intermodulation noise spectrum of Figure 36 results. A plot 
of the worst channel S/IM ratio versus the number of high-powered users is 
presented in Figure 37. The high-power channels have an excellent S/IM 
ratio; the normal and low-powered channels have approximately the same 
performance if there are 10 or fewer high-powered carriers. 

The possible signal frequency assignments are countless and hence each 
particular case must be considered separately. 

5.5 UHF SOLID STATE AMPLIFIERS - CLASS L 

Various attempts have been made to improve the S/IM performance of 
nonlinear amplifiers. One approach currently being investigated by Welti [22] 
for use in the proposed INTELSAT V satellite TWTs is a feed forward compensa-
tion technique suggested by Seidal [23]. It is possible that such a technique 
might also be used with the UHF solid-state amplifiers discussed in this 
report. 

A much simpler approach has been examined by Harrison and Moody [20] at 
RCA. They suggest that by introducing a slight amount of bias, as well as 
retuning the amplifier input and output filters, it is possible to signifi-
cantly reduce the intermodulation noise level. For convenience, they have 
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called this mode of operation class "L" ("L" for low intermod). Preliminary 
work at CRC indicates that: 

1. There is a definite bias value which minimizes the intermodulation 
noise without significantly changing the class C power efficiency 
of the amplifier. 

2. There is only a trivial amount of power consumed by the amplifier 
when no signal is present. 

3. The most significant adjustment parameter appears to be bias. The 
input and output filters do not necessarily have to be retuned. 

The amount of improvement which can be expected is illustrated in 
Figures 38 to 40 for Harrison's CM75-28R transistor amplifier. The class C 
and class L performance of this amplifier is illustrated in Figure 38 and 39 
respectively. From these two figures the performance improvement curves of 
Figure 40 have been generated. The penalty in prime—power efficiency refers 
to the change in efficiency percentage points. 

No significant improvement can be expected, using this technique if 
excessive input signal drive levels are used (in excess of 40 dBm). From 
Figure 39 it is evident that the input signal drive should be of the order of 
37 to 38 dBm if intermodulation noise is to be minimized. In this operating 
region an S/IM performance improvement of 9 to 11 dB can be expected with 

CM75-28R  
CLASS • C' 

A 
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Figure 38. CM 75-28R Class-C Performance 
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only a 4 to 5 percentage point decrease in prime power efficiency. The 
amplifier's output signal power would then be of the order of 44 to 45 dB. 

Although this technique of intermodulation noise reduction shows 
promise, it remains to develop an amplifier which can be used in an actual 
satellite transponder. 

6. CONCLUDING REMARKS 

The analysis presented in this report permits the prediction of signal 
and intermodulation noise at the output of actual TWT and solid-state class C 
UHF amplifiers. The analysis is intended for use in the study of the 
performance of FDMA satellite communication systems. The signals may be 
either sinusoidal carriers or modulated carriers of arbitrary power spectral 
shape. 

For the situation where the composite signal is approximately gaussian 
in nature (i.e., there is a large number of individual users) an analysis 
technique which greatly reduces computation time is described. The analysis 
techniques have been applied in the performance study of TWT and solid-state 
UHF amplifiers. In the case of the solid-state amplifiers it is shown that a 
dynamic characteristic measurement technique must be used if reliable 
predictions are to be achieved. 

The performance of a simple intermodulation noise reduction technique 
for solid-state UHF amplifiers is described. Useful improvements in signal 
to intermodulation noise ratios of 10 dB can be achieved while the amplifier 
efficiency is maintained within five percentage points of the equivalent 
class C amplifier. 
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APPENDIX 	A 

Bessel Function Relationships 

This appendix contains a summary of the basic Bessel function relation-
ships used in the main development. 

From Watson [18], p. 20, equation (5) Bessel's integral may be written 
as 
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Since (3 is an arbitrary constant the limits of integration can be set by 
allowing a3 +8 = -7, to obtain the resulting relationship 
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By a similar development it can be shown that 
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A particular case of Weber's second exponential integral is given by 
Watson [18], p. 395, equation (1) as 
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provided R(v) > -1 and iarg pi < u/4. This relationship is used in the text 
with v = 1 and p = 1. 

Watson [18], p. 456, equation (1) presents an evaluation of Hankel's 
repeated integral as 

CO 	 OD 

uduf F(R)Jv (uR)Jv (ur)RdR = 	(F(r+o) + F(r-o)} 

0 	0 
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f F(R) /i dR 
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(A.7)  

(A.8) 

exists and is absolutely convergent; and the order of the Bessel functions is 
such that v > - 1/2. The inversion of Hankers repeated integral is given as 

co 	 oo 	 oo 

jr- udu jr.  F(R)J (uR)J (ur)RdR = lim J. F(R) 
v 	v 	 x  

0 	0 	 0 

subject to the same constraints on v and F(R). 

Another relationship which is used in the main development is Hankel's 
generalization of Weber's first exponential integral given by Watson [18], 
p. 393, equation (2) as 
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To secure convergence of the integral in (A.10) at the origin it is necessary 
that 

R(p+v) > 0 
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A useful series expansion for the modified Bessel function is given by 
Watson [18], p. 77, equation (2) as 

m=0 m! F(v+m+1) 

The modified Bessel function is related to the Bessel function of the 
first kind by the following formula given by Abramowitz and Stegun [24], 
p. 375, equation (9.6.3) 
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)u 
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For v = n, an integer the formula reduces to 
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From p. 14 of Watson [15], Jacobi's expansion is given as 
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APPENDIX 	B 

Gaussian Sinusoid Development 

It has been shown in Section 3 (equation 3.12) that the autocorrelation 
function of -i-- (t) can be expressed as 
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where the range of integration for (31 , (3 2  is from - 7 to 7 and 0 to c° 
for all other integration variables. The other quantities of interest in 
this expression are defined as follows: 
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The objective of this appendix is to simplify equation (B.1) when the 
composite input signal consists of a sum of independent sinusoids. 

For the moment consider the evaluation of just the joint characteristic 
function in equation (B.1). It has been shown in Section 3 (equation 3.27) 
that when there is a large number of users accessing the satellite, the joint 
characteristic function can be expressed as 
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given that the autocorrelation function of the composite input signal is 
represented by 
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Because of the assumed independence of the individual signals at the amplifier's 
input, equation (B.6) can also be written as 
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R 	 th.(T) is the autocorrelation function of the signal from the i 	user. In 1 
the analysis presented here it is assumed the system noise can be ignored. 

From equations (B.6) to (B.8) it is evident that 
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Substitution of equations (B.9) and (B.10) into the general expression of 
equation (B.5) gives the joint characteristic function as 
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At this point in the development it is possible to make use of an 
approximation given by Campbell [21] to write an approximation of equation 
(B.11) as 
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This approximation has also been used by Shimbo [11] in his work. 

At this point it is necessary to restrict the development to the 
situation where the composite input signal is a sum of sinusoids. In this 
situation 
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It is now possible to make use of a Bessel function expansion given by 
Watson [15] as 
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This product of a summation can be expressed as a sum of each of the 
individual product terms as shown in the following shortened form: 
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It is implicit in this expression that each mi  goes through the allowed range 
of values and the various product terms summed. The expression in equation 
(B.17) can be simplified further and the joint characteristic function 
expressed as 

M
p
(a

l'
8
1
,a

2'
8
2
) = 	( =1 exp {j 	 exp {j 	m

i
(8

1
-8

2
)1 

m
i
=-0D 	 i=1 	 i=1 

x H J 	(a A )J 	(a A ) 
i=1 m i 	1 i mi 	

2 i (B.18) 



IMO = E Im I 
i=1 

(B.21) 
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This expression for the characteristic function can now be substituted 
into equation (B.1) and the integration with respect to 81 and performed. 
If just the terms containing either 81 

or 82 are considered the two integrals 
of interest can be written as 

Tr 	 TF f exp j Z 	 (1(3 f exp 
i=l 	1 	2 

Tr 	 Tr  

j 	- 	m )13 clr3 
i 2 	1 

i=1 
(B.19) 

It is evident that both of these integrals are zero except when 

E m. = 1 	 (B.20) 
1=1 

in which case expression (B.19) has the value (271) 2 .  This constraint should 
not be confused with the order of a particular intermodulation component which 
is defined by: 

Incorporation of equation (B.18), the constraints of equation (B.20) 
and the evaluation of the integrals (B.19) into equation (B.1) simplifies the 
autocorrelation function of 7(t) to 
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At this point in the development it is useful to model the nonlinear 
amplifier by a Bessel-Fourier series expansion defined by 

CO 

g(p) = E a
k
J
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{S2
k
lo} 	 (B.23) 

k=1 

where 

a
k 

are complex coefficients 

k = 1,2,...} denoting either the set of positive zeros of J 1 (x) or 
(2k - 1)7r depending upon which series expansion is 
desired. 



(B.25) 

y(t) = Re[z(t)] 

the autocorrelation function of the output signal is 
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If this series expansion is substituted for g(p) in equation (B.22), the 

resulting Hankel's repeated integral can be evaluated as discussed in 
Appendix A. The resulting autocorrelation function is 

2 
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R(T) = 	E 	expjwT+Emw.T 
m.._. 	 i=1 . 1 

1  

E al,  H J 	A,} 
k=1 	i 	m  =1 i k  

(B.24) 

If it is recalled at this point that the composite output signal from the 
amplifier is defined as 

From equation (B.25) it is evident that the magnitude of a frequency 
component defined by the set {mi : 1,2,...N} is given by the magnitude of 

M(m : i = 1,2,...,N) = 	ak 	J 	{StkAi } 
k=1 	i=1 mi 

These various frequency components add together on a power basis. 

(B.26) 

In the evaluation of a magnitude given in equation (B.26) it is 
necessary to evaluate a Bessel function value for each mi  term. This 
evaluation can be very time consuming on a digital computer. Fortunately, 
the computation can be simplified if the approximation given by Campbell [21] 
is applied to those terms for which mi  = O. Define 

{m} = {m 	m = O. i = 1,2,...,N} 
o i 	i 	' 

{M} = fin : mi; 
i = 1,2,...,N} 

Equation (29) can now be simplified to 
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(B.28) 

Equations (B.25) to (B.28) form the basis for a sinusoidal intermodula-
tion analysis. These equations are the same as the equations developed in 
Section 2. 
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HP 8640B signal generator 

Singer SG-1000 generator with external modulation capability 

Damon voltage-controlled crystal oscillators, type 6805 WXA 

WG RT-1 variable attenuator 

AMP 	 MPD model LWA 055-4, 4-watt linear amplifier followed by a 
1 KW linear RF power amplifier MCL model D10092 

Teleonic TBP 3-section bandpass filter, centre frequency 
300 MHz bandwidth 30 MHz 

KK
2 	

Narda Microline 3020A - 20 dB coupler 

Microwave Associates G-3323-S circulator, 100 W 

Pacific Measurements Incorporated peak reading power meter, 
type 1018 

PS 	 HP222A pulse stretcher 

HC 	 HP8411A harmonic frequency converter 

NA 	 HP8410A network analyzer with a type 8412A phase-magnitude 
display unit 

1 1 1 2 	
Anzac "Iso-T" TU-50, 200 - 400 MHz 

PG 	 HP8005 pulse generator 

MX 	 HP10514A mixer 

SC 	 Olektron Power Combiner B-HJ-404X 

SA 	 HP8555A Spectrum analyzer 
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