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ON 	THE 	RESOLVABILITY 	OF 	SINUSOIDS 	OF 

NEARLY 	EQUAL 	FREQUENCY 

by 

R.V. Webber 

ABSTRACT 

The possibility of resolving two sinusoids has 
been investigated for the case where AfAT < 1 where 
Af is the difference in the frequencies of the two 
sinusoids and  iT is the time interval during which 
data may be taken. The chances of successful 
resolution is very dependent on the difference in 
the phase constant of the two sinusoids. The 
chances are best when the sinusoids are in phase 
and are worst when the sinusoids are out of phase. 
Noise makes resolution more difficult. The method 
of investigation consisted of drawing contours of 
the rms residual resulting from the fitting of two 
sinusoids, by least squares, to the data. With no 
noise in the data the procedure corresponds to find- 
ing the Fourier series which best fits the data. 
With noise in the data the series so found is an 
approximation only to the Fourier series for the 
data. 

1. INTRODUCTION 

This report deals with the resolution of two sinusoids of nearly equal 
frequency: that is, the decision as to whether there are two sinusoids in a 
signal or only one and the determination of the properties of each signal. 
he  bulk of the report is devoted to studying the difficulties with which 

any decision rule must deal. A possible decision rule is given at the end. 
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We first discuss how the problem arose and some of the restrictions 
under which the problem must be solved. We then show that the approach is a 
special case of a general Fourier analysis. The method of least squares best 
fit is then described. Following that we describe the surface in frequency 
space on which a search must be made for the frequencies which give the 
minimum rms residual. Contours of these surfaces are shown for the fitting 
of two sinusoids to both a one-sinusoid signal and a two-sinusoid signal. 
The effect on this surface of noise in the data is shown as well as the effect 
of varying the signal parameters. The parameters of the derived signals are 
discussed briefly, and finally, a possible way is described for deciding 
between a one-sinusoid signal and a two-sinusoid signal. 

The problem arises from a consideration of the resolution, in either 
range or direction, of two closely spaced radar targets when a swept FM 
sounder is to be used. Consider the range problem first. With one target, a 
swept frequency CW sounder generates, after demodulation, a sinusoid, 
Ae 1(2 ft 	cl) ) , whose frequency, f, is proportional to the range of the target. 
The amplitude, A, is proportional to the strength of the echo. The phase 
constant, (I), is unknown. With two targets the vector sum of two sinusoids is 
generated. The difference in the frequencies of the two sinusoids is propor-
tional to the difference in the ranges of the two targets. Thus, the problem 
of resolving the ranges of two closely spaced targets becomes the problem of 
resolving the frequencies of two sinusoids whose frequencies are nearly 
equal. Now consider the problem of resolution in direction of arrival. With 
a linear array of antennas and a swept frequency CW sounder, a single target 
generates, after demodulation, a spatial sinusoid Aei (2uf x + (1) 1 where x is 
distance along the array. The spatial frequency, fx , is given by fx  = (cos 
O )/  where 0 is the angle between the array axis and the target. Two targets 
generate the vector sum of two spatial sinusoids along the array. The differ-
ence in the spatial frequencies of the two sinusoids is proportional to the 
difference in the cosines of the angles of the two targets. Thus the problem 
of resolving the directions of two closely spaced targets becomes the problem 
of resolving two sinusoids whose spatial frequencies are nearly equal. For 
this application, "time" as used in this paper would be replaced by "distance 
along the array". 

Several workers have considered the general problem of resolving signals, 
usually in terms of resolving radar targets. Woodward l  and Seibert 2  discuss 
it in terms of ambiguity functions. Ksienski and McGhee 8 ' 4  investigated 
angular resolution beyond the Rayleigh limit. Nilsson 5  examined the optimum 
range resolution of radar signals. Gething 5  presented a method of resolving 
the elevation angles of several incoming signals. Other relevant rpers are 
those by Helstrom 7 , Buck and Gustincic 8  and Lichtenstein and Young . 

It is assumed that the data are digitized and complex, that is, each 
datum consists of an amplitude and a phase (or a real part and an imaginary 
part), and that the data has been recorded in a limited time interval. We 
shall try to resolve two sinusoids of small frequency separation. For 
illustration purposes we shall assume that the signal duration is one second 
and that the frequencies of the two sinusoids are separated by 0.2 Hertz. 
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2. SOME COMMENTS ON FOURIER ANALYSIS 

Consider first the classical discrete Fourier analysis. The discrete 
Fourier series which represents the sampled data, y(ti ), is 

N - 1 

i2nni  

y(t ) = E Zn
e 

n0  

where tj  = jàt is the time, N is the number of terms in the expansion and 
Zn  = Anei(Pn where An  and (Pn  are the amplitude and the phase constant of the n

th 

component. In the usual discrete Fourier analysis, the complex constants, 
Zn , are selected to make the series fit the data best in the sense of least 
squares". The number of terms, N, in the Fourier series is equal to the 
number of data and Zn  are then computed by the expression 

N 1 

Z = --E y(t
j
)e 

n N 

j = 0 

Using this expression each Zn  is found separately and independently of all 
other Zn . 

The frequency of the n
th component is 

f 
n L Nàt 

where L in seconds is the total time interval during which data are taken, 
and the frequency difference, àf, of any two successive components is the same 
as the resolution and is given by the expression 

Lf L = 1 	 (4) 

Thus, if we have only one second of data the usual discrete Fourier 
analysis will not resolve components whose frequencies are separated by less 
than one Hertz. 

Now let us turn our attention to a superesolution technique, and show 
its equivalence to the discrete Fourier analysis. If we have a Fourier 
series in which N, the number of terms, if greater than the number of data, 
the formalism can still be preserved by adding zeros to the data to bring 
the total number up to N, and hence increasing L and the resolution (decreas-
ing àf in Equation 4). However, there are now too many unknowns and 
restrictions (in this case the assumption that the amplitude of most of the 
terms is zero) must be introduced for a solution. Our objective is to be 

(1) 
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able to resolve two sinusoids for which the product àft is as low as 0.2 or 
perhaps even 0.1. The purpose of the present investigation is to learn the 
conditions under which we can hope to reach this goal. 

The approach is to fit sinusoids to the data by the method of least 
squares. We will consider only the cases where all the energy is confined to 
a band of about two Hertz. There may be only one sinusoid or there may be 
two sinusoids. For the present we assume that there is no noise in the data. 

The Fourier analysis is now much simplified. There are at most two 
non-zero A

n . 

We now find the two sinusoids 

S = A ei(2Hf t + (I) ) 
j 	j 

(7) 

Sk = Ak e
i(21If

k
t +

k
) 

which gives the least squares best fit to the data. Note that this can be 
done without knowing the value of N, and that since there is no noise in the 
data, the rms residue may be reduced to a value of zero. 

If there are two components they must be orthogonal in the interval L. 
Using Equation (3) we see that their indices nj , nk must be such that 

n 	f 

nk fk 

From Equation (8) we observe that the ratio of the frequencies of any 
two components of a Fourier series is a rational number. 

From Equation (8) and the relationship L =  Nit  we have 

N = _  nk  
f (At) 	f

k
(ft) 

We now know all the constants in Equation (1); that is, we know a 
Fourier series for the data. This series will be orthogonal in the interval 
Nft, but not, in general, in the interval during which data were taken. 

With noise in the data our procedure will not correspond strictly to a 
Fourier analysis. The noise introduces extra components so that the Fourier 
series must have more than two terms. Moreover, the terms we find will not 
be independent of the other terms since they are not fitted to the data 
throughout the whole interval of orthogonality. 

However, with a high signal to noise ratio, the extra terms will be 
small when compared with the signal sinusoids and the error which is intro- 

(8) 

(9) 



Z =  (Z, Z )
T 

1 	2 

(12) 
where 

(16)  

(17)  
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duced by neglecting the small terms will be insignificant. This error will 
increase as the signal to noise ratio decreases. 

3. LEAST SQUARES METHOD 

Let the data, yi , be sampled and let each datum be a complex number. 
For illustration purpoes we assume that we . have fifteen data. Let Si and S2 

be the sinusoids, Alei 2rf t + 11) o - ) and A2e1 (2rf 2 t + y502), which we are to 

fit to the data by the method of least squares. Let 

Q = 	Jy — s i  — s21 2  N 	j 

The problem is to find Si and S2 such that Q is a minimum. Note that Q is a 

function of A1, A2, (1) 01, CP029 f1, f2 and each of these must be treated as an 

independent variable in finding the minimum. The calculation of the minimum 

is done in two parts. 

First Q is minimized with respect to the set (Ai, A2, (POle 4 o2) for 
specified values of fi and f2. This is done algebraically by solving the 
linear complex matrix equation 

CZ = Y 	 (11) 

(10) 

CC  
11 12 

(13) 
CC  
2 1 22  

Y =  (Y 1 ,  Y ) T 
 2 

C 	= 	(X*X )
m - 1 (15) 

jk 	k 

m=  1 

Y = 	y (Mc)m 	1  m 

= 1 

ei2nf At 
Xj  

(14) 
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45 
Z = 

J 	J 

and the T in Equations (12) and (14) means "transpose". These equations are 
derived in Appendix A. 

Let Q' be this minimum in Q with respect to (A1, A2, (P01, (1)02) for 
specified values of fl and f 2 . It follows that a minimum in Q' = 	f2), 
or in Air, with respect to (f1, f2) coincides with a minimum in Q with respect 
to (A1, A2, (P01, (P02,  fi,  f2). 

Thus the second step is to minimize /11".7  with respect to (f1, f2). To 
find such a minimum the computer calculates values of Air  in the (f1, f2) 
plane and plots contours. In this work contour plots of Aiir were investigated 
near a minimum. The computer program would first search for a given contour 
along the 45 °  diagonal. If found, the contour would be traced. If not found 
on the 45 °  diagonal, a search for the contour was made along the 135 °  diagonal. 
The bil0 diagonals were searched because within the circle in which the contours 
were traced some contours crossed the 45 °  diagonal which did not cross the 135 °  
diagonal and some crossed the 135 °  diagonal which did not cross the 45 °  
diagonal. 

To simulate a signal the real and imaginary parts of a one-sinusoid 
signal or of the vector sum of a two-sinusoid signal were generated in the 
computer for each datum. The time t = 0 was taken to be the middle of the 
data interval. To simulate Gaussian noise, independent and random Gaussian 
numbers were generated such that the expected value was zero and the expected 
rms value was equal to the square root of the mean noise power, an . Separate 
random numbers were added to the real and the imaginary parts of each datum. 

The S/N ratio was found from the ratio of the amplitude of the largest 
component, which was always one, to an , i.e. 

S/N(dB) = -20 log 	a 
10 n 

4. CONTOURS FOR A ONE -SINUSOID SIGNAL 

For these contours the simulated signal contains one sinusoid, Sa , and 
noise when specified. Two sinusoids SI and S2 are fitted to the data, and 
the residual errors are studied. 

The region where contours are drawn is the semicircle above the 45 °  
diagonal as shown in Figure 1. The radius of the semicircle corresponds to 
0.3 Hz. This would correspond in operational terms to knowing that wave 
energy was confined to within 0.3 Hz of fa , and looking for two frequencies 
in this band. No contours are drawn below the diagonal since the diagram is 
symmetric in fl and f2. The frequency of the signal, fa , is represented by 
the two orthogonal dashed lines. This would be the objective of our search 
in an operational situation. 

(18) 

(19) 



fa 

fa 

fa 

Figure 1. Diagram showing semi-circle in which contours were traced for a one-sinusoid signal 

The numbers on the contours in the remaining figures are the height of 
the contour in dB with respect to the amplitude of the signal. The two 
orthogonal straight lines are fi = fa , f2 = fa . The contours for which a 
search was made were, in dB, -54, -46, -40, -30, -26, -20, -14, -10 and -8. 
For all plots for a one-sinusoid signal the amplitude of the signal was 
unity and the phase constant was zero. Other values of the phase constant 
yielded identical plots. 

4.1 NOISE FREE DATA 

In Figure 2 contours are plotted for a pure one-sinusoid signal which 
contains no noise. The height, ,r, of the contours with respect to the signal 
amplitude are given in dB by the expression 

dB = 20 log 1/7 
10  

If either fi or f2 equals fa  the rms-residual is zero. If the rms-residual 
is near zero then one, or both, of fi or f2 will be near fa . However, we 

7 
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cannot without additional checking use this characteristic to distinguish 
between a one-sinusoid signal and a two-sinusoid signal as can be seen by 
considering representative points. At points A, B and C of Figure 2 the 
amplitudes of the derived signals are as sketched in Figure 3, A, B and C 
respectively. These points are near the zero rms-residual lines and are 
representative of the end points of a search. At points A and C of Figure 2 
the amplitude which corresponds to the fitted frequency which is closest to 
fa  is large while the other is small. From this one might conclude that the 
signal was made up of a main component and possibly another small component. 
At point B however, the two fitted sinusoids have equal amplitudes from which 
one might conclude that the signal is made up of two sinusoids of equal 
amplitudes - which would be incorrect. 

4.2 EFFECT ON NOISE IN THE DATA 

The effect on the rms-residual contours of adding noise to the data is 
shown in Figures 4 to 6 where the S/N ratios are 50 dB, 40 dB and 30 dB 
respectively. As the S/N ratio decreases the lower contours are affected by 
noise but for the most part they hold their shape and position until they 
disappear entirely. 

Of the contours which were made to disappear by the noise, the highest 
was equal to, or about equal to, the rms amplitude of the noise itself. The 
rms-residual could be reduced only to within about 6 dB of the rms amplitude 
of the noise. 

Figures 7 and 8 give some idea of how much a contour varies in shape 
and position with different samples of noise in the data. For these figures 
the same contour was drawn 10 times. Each time the signal was the same but 
with a different set of noise samples. For Figure 7 the S/N ratio was 50 
dB. For Figure 8 the S/N ratio was 40 dB. All contours were confined to 
the shaded areas of the figures. 

4.3 EFFECT OF VARYING SIGNAL FREQUENCY 

Figure 9, 10 and 11 are for a signal with no noise but with the signal 
frequency varying linearly in time by 0.01 Hz sec 1 , 0.04 Hz sec-1  and 0.08 
Hz sec-1  respectively. The general effect is the same as having noise in the 
data; the higher variation in frequency corresponding to the lower signal-to-
noise ratio. 

5. CONTOURS FOR A TWO-SINUSOID SIGNAL 

For the two-sinusoid signal the area for which contours were drawn is a 
segment of a circle above the 45 °  diagonal centred on the two frequencies, 
fa, f in the simulated signal. This is illustrated in Figure 12. Presum-
ably, in an operational situation, a semicircle, centred on the centre of the 
frequency band would be used. The same contours were drawn as for the 
single-sinusoid signal. Unless otherwise stated Aa  = A = 1. 



Figure 2, Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. No noise in signal. 

fa 

(A)  

fa 

Î 
fi 	fa 

(B) 

f 2  

fa 
(C) 

Figure 3, Diagram showing possible relationships of f 1  and f2  to fa . The rms-residual is the same in all 
three cases. The lengths of the arrows represent amplitude. Cases A, B and C correspond to the points 

A, B and C of Figure 2. 

9 



Figure 4. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. SIN = 50 dB. 

1 0 

Figure 5. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. SIN = 40 dB. 



Figure 6. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. SNR = 30 dB. 

Figure 7. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. Cross -hatched areas 
show the extent to which contours 0.01 and 0.05 moved around as the noise samples were changed. 

SIN = 50 dB. 

11 



Figure 8. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. Cross-hatched area 
shows the extent to which contour 0.05 moved around as the noise samples were changed. SIN = 40 dB. 

12 

Figure 9. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. No noise. The signal 
frequency varied by 0.01 Hz sec'. 



Figure 10. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. No noise. I he signal 
frequency varied by 0.04 Hz sec-I . 

Figure 11. Rms-residual contours for fitting two sinusoids to a one-sinusoid signal. No noise. The signal 
frequency varied by 0.08 Hz sec-I . 

13 



Figure 12. Diagram showing semi-circle in which contours were traced for a two-sinusoid signal. 

The orthogonal axes in the following diagrams are fi = f a , f2 = 4. 

The fitting of a single sinusoid to the data will give a point on the line 

fi = f2, of Figure 12. To distinguish between a one-sinusoid signal and a 
two-sinusoid signal we must be able to distinguish between a point on the 
diagonal and a point off the diagonal. In an operational situation, contours 
would be plotted with the objective of finding the origin in Fire 13 and 

onward. More contours indicate steeper slopes of the surface 1/Q t  in (fi, f2) 

space and hence a greater probability of finding the minimum. 

5.1 NOISE FREE DATA - EFFECT ON CHANGING FREQUENCY SEPARATION AND PHASE 

Figure 13 shows the contours when f et  = 8.968 and g - fa  = 0.4 Hz for 

(Ps - (Pa  = 0 0 , 90 °  and 180 ° . The shape of the contours is very dependent on 

the phase difference, (PR -
(1. 

It would appear that the chances of resolving 
two sinusoids would be best when the two signal sinusoids are in phase since 

it is for this case that the point representing the signal is separated from 

the line fi = f2 (the flat side of the circle) by the largest number of 

contours. At 90 °  out of phase the chances would be less since some of the 

contours are open towards the 45 °  diagonal. At 180°  out of phase even more 
of the contours are open. The chances of resolving two sinusoids is poorest 
if they are 180 °  out of phase. Figure 14 is a similar plot for the same 
value of f2 but for fp, - fa  = 0.2 Hz. The contours are larger and the sur-

face is less steep. The point which represents the signal is less well 

14 
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separated from the diagonal; this makes resolution more difficult. For 

h - (P ot  = 180 0  even the -54 dB contour is open. One would have to go to 
lower contours to find one that is closed - perhaps to -60 dB or -70 dB. 

Figure 15 is again a similar plot for the same value of f at  but for 
f 	fa  = 0.1 Hz. Again the contours are larger and the surface flatter. 
For h - cpa  - 180 0  one would have to go to still lower contours to find one 
that is closed. 

There would be two possible ways to use these contours to aid in finding 
the approximate position of the center of the axis. 

1. To search the surface until the rms residual is below a certain 
contour level. One would then know that the point found would be 
inside that contour. Clearly this would only prove the existence 
of two sinusoids if the point found were on a closed contour, and 
would probably not give their properties very accurately. 

2. Draw rms-residual contours. One could then choose the "center" of 
the contour. This would give greater accuracy than method (1). 
Also contours which were not closed could be used. It would, how-
ever, be a more lengthy procedure than that of method (1). 

Of these two methods, either one could be used if the two signal 
sinusoids are in phase or even if they are 90 °  out of phase. With the two 
signal sinusoids 180 °  out of phase, however, method (1) would place such -
demands on the S/N ratio that it would be useless in most cases for Af < 0.2. 
There is therefore, little hope of resolving two sinusoids with AfAt < 0.2 if 
they are almost 180 °  out of phase. And this is with no noise in the data.  

It was found that the contours depended only on the difference between 
the signal frequencies and not on the absolute frequencies. 

Figure 13. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal.  I0- fa = 0.4 Hi; for 
/1, 8 and C 	- 	= 0°, 90°  and 180°  respectively. No noise. The loweq  t  °Mow s are at -54 dB. 
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Figure 14. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fe- la = 0.2 Hz; for 
A, B and C p - Ct a = e, 9e and 1800 respectively. No noise. The lowest contours are at -54 dB. 

Figure 15. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fe- fa = 0.1 Hz; for 
A, B and C (po - 	= e, 90°  and 18e respectively. No noise. The lowest contours in A and C are 
-54 dB; the lowest in B is -46 dB. Because of computer program failure the -54 dB contour was 

missed in B. 

5.2 EFFECT OF NOISE IN THE DATA 

Figures 16, 17, 18 and 19 show what happens to the contours for which 

4 - fa  = 0.2 Hz when the S/N ratio is 50 dB, 40 dB, 30 dB and 20 dB 
respectively. Again as the noise increases the lower contours disappear and 
the rms residual can be decreased only to within 6 dB of the rms amplitude of 

.the noise. At the same time the higher contours contract a little and some 
shifting of the contours is evident at the lower S/N ratios but, for the most 
part, these contours are not changed very much. 

In the figures thus far for two sinusoid signals each diagram corres-
ponds to one set of noise samples, one sample for each datum. To find the 
variation of the contours as the noise samples change the same contour was 
traced ten times; each time the S/N ratio was the same but the noise samples 
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were different. Figures 20 and 21 show the results for S/N ratios of 40 dB 
and 30 dB, respectively. At a high S/N ratio the location of the contours 
does not move much; as the S/N ratio decreases the curves move around more. 
We may note, however, that even at S/N = 30 dB when the two signal sinusoids 
are in phase or 90 °  out of phase, the "centers" of all the contours are within 
0.1 Hz of the point which corresponds to the signal. 

5.3 EFFECT OF VARYING FREQUENCY 

Figure 22 shows contours for no noise in the data but for both of the 
signal frequencies varying by 0.01 Hz sec 1 . The lower contours have 
disappeared. The effect is very similar to adding noise to the data. 

Figure 16. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fo- fa = 0.2 Hz; for 
A, B and C 0,3- 0a = 00, 90°  and 180°  respectively. SIN = 50 dB. Lowest contours are at -40 dB. 

Figure 17. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fo- fa  = 0.2 Hz; for 
A, B and C çbo- çba  = 00 , 90°  and 180°  respectively. SIN = 40 dB. Lowest contours are at -30 dB. 
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Figure 18. Rins-residual contours for fitting two sinusoids to a two-sinusoid signal. ffl- fa = 0.2 Hz; for 
A, B and C 00- 	= 00 , 90°  and 180°  respectively. SIN = 30 dB. Lowest contours are at -26 dB. 

Figure 19. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. f e- f a = 0.2 Hz; for 
A, B and C 00- 0a = e, 90°  and 180°  respecfively. SIN = 20 dB. Lowest contours A and B are at -14 dB. 

No contours found in C. 

Figure 20. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fe- fa = a2 Hz; for 
A, B and C yho - 

	

	 = 0° , 90°  and 180°  respectively. Cross-hatched area shows the extent to which a 
single contour, -26 dB, moved around. SIN = 40 dB. 
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Figure 21. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fo- fa = a2 Hz; for 
A, B and C 00- Oa = 00, 900  and 180°  respectively. SIN = 30 dB. The cross-hatched area shows the 

extent to which a single contour, -26 dB, moved around. 

Figure 22. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fp- f a = a2 Hz; for 
A, B and C 00 - Oa = 0°, 90°  and 180°  respectively. No noise. Both fa and fe vary by 0.01 Hz sec'. 

Lowest contour in A is -30 dB; in B -40 dB and in C -46 dB. 

5.4 EFFECT OF VARYING AMPLITUDE RATIO 

Figures 23 and 24 show contours for no noise in the data and for 
Aa  = 1.0 but for Ar3 = 0.5 and 0.25 respectively. The contours are stretched 
along the axis which correspond to the signal with the reduced amplitude. 
The lower the amplitude the greater is the stretching. Stretching corresponds 
to reducing the slope in the direction of the stretch. This makes resolution 
more difficult in that direction. 

5.5 ANALYSIS OF TWO SUCCESSIVE REALIZATIONS AT THE SAME TIME 

Two time-separated sets of measurement of a two sinusoid signal may be 
analyzed together in such a way that the rms residual of the two realizations 
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Figure 23. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fp- fa = 0.2 Hz; for 
A, B and C çbp- ,pa  = 00 , 90°  and 1800  respectively. No noise. A a = 1.0; A p= 0.5. Lowest contours 

are at -54 dB. 

Figure 24. Rms-residual contours for fitting two sinusoids to a two-sinusoid signal. fp- fa = a2 Hz; for 
A, B and C (pp- (pa = e, 9e and 180°  respectively. No noise. A a = 1.0; Ap= 0.25. Lowest contours 

are at -54 dB. 

is a minimum. The difference between the phase constants of the two sinusoids 

in the first realization will, in general, be different from that in the 

second. The result is identical to the result for a single realization whose 

difference in the phase constant is intermediate between the two which are 

processed. Since the maximum difference in the phase constants is 180 °  the 

difference in the phase constants of the equivalent single realization will, 

in general, be less than 180 ° . 

For example, two realizations were processed together, one for which 

- (Pa  = 0 °  the other for which, cP s  - cPct  = 90 ° . The contours which were 
obtained were identical to those which were obtained by processing a single 

realization for which cPf3 - (Pa  = 60 ° . 

Equations which relate the equivalent realization to the two realiza-

tions which are processed are derived in Appendix B. 
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By processing two realizations together we could hope to improve the 
resolvability of two sinusoids for it is much less likely that two realiza-
tions will both be near to 180 0  out of phase than it is that one will be. The 
equivalent single realization is, therefore, less likely to be near to 180 0  
out of phase than is a single realization. 

A disadvantage of processing two realizations together is that two data 
intervals are required. Thus the time is doubled and, for a given Af, AfAT 
is doubled where AT is the total time during which data are taken. This tends 
to nullify any advantage that might be gained since one of our main objectives 
is to keep MAT small. 

5.6 THE AMPLITUDES OF THE FITTED SINUSOIDS 

The derived amplitudes of the fitted sinusoids vary in a complex manner. 
They depend on (1) the relation of the frequencies of the fitted sinusoids to 
the frequencies of the signal sinusoids, (2) the difference between the phase 
constants of the signal sinusoids, (3) the height of the contour being 
followed and (4) the amount of noise in the data. 

Consider the case for which the amplitudes of the sinusoids in the 
simulated signal are equal and with no noise. For this case it was found 
that the amplitudes of the fitted sinusoids are practically always unequal. 
Sometimes the one and sometimes the other may be larger. Both may be smaller 
than the amplitudes of the signal sinusoids or both may be larger, by several 
hundred per cent, or one may be smaller and the other larger. However, they 
are always about equal on the 135 - 315 °  diagonal. On the 135 °  radius this 
corresponds to the relation between (f , f o , f , f ) as sketched in Figure 25a. a 	P 	1 	2 

fa 	fa 	 fa 	 fa 

/ 	1 	/ 	/  
i 
fi 	 f2 	 fl 	f2 

(a) 	 (b) 

Figure 25. 

Where f l  - fa  is negative and f2 - g is positive but both are of equal 
magnitude. On the 315 °  radius this corresponds to the relation shown in 
Figure 25b where f l  - fa  is posir tive and f2 - g is negative and, again, 
both are of equal magnitude. Of course, fewer contours exist on the 315 °  
radius than on the 135 °  radius. 

Noise in the data caused variations in the amplitudes of the fitted 
sinusoids but the general pattern of the results was unchanged. 
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5.7 THE PHASES OF THE FITTED SINUSOIDS 

5.7.1 Noiseless Data 

When the two signal sinusoids are in phase the two fitted sinusoids are 
always in phase with the signal sinusoids for the lower contours which are the 
important ones since a search presumably ends up on these. For higher contours 
the two fitted sinusoids may be in phase with the signal sinusoids or one may 
be in phase and the other out of phase. The shift from in phase to out of 
phase always occurs off the contour diagram. It is suggested that these higher 
contours have more than one branch and that for a given branch the fitted 
sinusoids are always in phase or are always out of phase. 

When the signal sinusoids are 90 0  out of phase, the phase difference 
between the fitted sinusoid varies from 47 °  to 170 °  for the higher contours 
where, again, there appears to be more than one branch to a contour. For the 
lower contours their phase difference is closer to 90 ° . 

When the signal sinusoids are 180 °  out of phase the fitted sinusoids 
are always in phase with them. 

5.7.2 Noisy Data 

Putting noise in the data, such that the S/N ratio was as low as 30 dB, 
had little effect on the phases of the fitted sinusoids when the signal 
sinusoids were either in phase or 180 °  out of phase. When the signal sinu-
soids were 90 °  out of phase, noise had some effect on the phases of the fitted 
sinusoids but the general pattern of the results was unchanged. 

6. DECISION RULE 

As discussed in Section 4.1 we cannot use the minimum rms residual 
alone to decide between a one-sinusoid signal and a two-sinusoid signal. A 
possible way of making this decision, on the basis of the work reported here, 
would be to draw the rms residual contour map and to compare it by eye with a 
typical one-sinusoid map and a typical two-sinusoid map as given in this 
paper. If the pattern appears to be similar to a two-sinusoid map then the 
Itcenter" of the contours can be estimated, again by eye. The vertical, or 
horizontal, distance of this "center" from the 45 °  diagonal will then give an 
estimate of the frequency separation between the two components of the signal. 

7. SUMMARY 

The possibility of resolving two sinusoids for which Aft,r << 1 has been 
investigated. Contours of constant rms-residual were generated by fitting, 
using the method of least squares, of two sinusoids to a one-sinusoid signal 
as well as to a two-sinusoid signal. From these contours it was concluded 
that the chances of the successful resolution of two sinusoids depends 
markedly on the difference of their phase constants. It should be easiest 
if they have the same phase constants and most difficult if their phase differ 
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by 180 0 . Noise eliminates the lower contours and hence decreases the 
precision. The rms-residual can be reduced nearly to the rms noise amplitude 
but no further. The effect of changing the ratio of the amplitudes of the 
signal sinusoids and of changing their frequencies was investigated. With no 
noise in the data our procedure corresponds to the finding of a Fourier 
series which fits the data. With noise in the data, however, the results 
correspond only approximately to the Fourier series for the data. 

A possible decision rule would be to draw contour maps of the rms-
residuals and to compare them with typical maps of a one-sinusoid signal and 
a two-sinusoid signal. 
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Let 

s (t ) = Z.X. 
j m 	J J 

(A5) m - 1 

APPENDIXA 

Derivation of Equations (11) to (18) of the Text 

S (t ) = A e
i(27rf

j
t
m 

+ (1)
oj

) 

m 

tin  = (m - 1)At; 	= 1, ---N) 

= ei2uf j At Xj  

Z = A.eoj 
J 

where A. , oj  (1) 	and fi  are the amplitude, the phase constant and the frequency, J  
respectively, of sinusoid  Si(t),  tm  is the time of datum m(m = 1, --- N), At 
is the time interval between successive, equally-spaced data and N is the 
number of data which were taken. 

From equations (Al) to (A4) we have 

(Al) 

(A2) 

(A3) 

(A4) 

Now let 

P = 	1Y - S (t ) - S (t )1 2  
m 	111 	2 	111  m = 1 

where ym  is the datum which was taken at time tm . 

We must find the value of Z and Z which make P a minimum. 
1 	2 

- S (t ) - S (t )][Y* - S*(t ) - S*(t )] 	(A7) 
m 	m 	2 m 	m 	m 	2 M 

M = 1 

N 

So P=  
m 1m -ZX

m- 1  -ZX m-i ][Y* - Z*(X*) m  - 1  - Z*(X*) m  - 1 ] 
i 1 	 2 2 	M 	1 	1 	 2 	2 =  

(A6) 

Now 

(A8) 
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(A9) Z  =Z 	+ 
1 	10 	1 

where Z 1 0  is the value of Z1 which makes P a minimum,  C1  is a small, real 
number and is an arbitrary complex number which is na a function  of C1 .  
Thus at the minimum value of P we have 

Let 

(BP 
-o  

Cl  = 0  

Now 

P = 	{[Y - Z 	X 1 111  - 1  -(1.11Xi m  - 1  - Z2X2m  - 1]  
m = 1 	m 	1,0 

x [y* - z* (x* ) m  - 1 ... (= 1 * ()(* ) M 	1 	Z2(X*)M 	li/ 
1,0 	1 	 1 	1 	 2 

(A10) 

(All) 

So 

M)  T= 	 - 1 [Y* - z* 	(X*) m  - 1  --(:1*(X*) m  - 1  - Z*(X*) m 	1 ] É 	 m 	1,0 	 1 	 2 2 1 m = 

, 
+ )1/4 (X*) m  - 1 [Ym - ZioXi m  - 1 	

m - 1 	
-

m - 1 
- Z2X2 	if 	(Al2) 

1 	1 

= 2R{* 	(X*) m  - 1 [Y - Z 	Xi m  - 1  - C1C1X1 m  - 1  - Z2X2m 	1 ]} 
m = 1 	1 	m 	1,0 

(A13) 

and 

OP 	
= 2Ril 	(X*

m - 1 
) [Y - Z 	Xi  - 1  - Z2X2m 	1 il . 0 	 m=l 	1 	 m 	1,0 

From equations (A10) and (A14) we have 

(A14) 

2R* 	(X*) m  - 1 [Y - Z 	X1
m - 1 

- Z2X2
m - 1

]} = 0 	(A15) 
m  = 	 m 	10 



(A18) Z2 = Z 	C-22 
2,0 

Now let 
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This latter equation is true for any value of E l . The only way that 
this can be so is for the following equation to be true. 

{(X*)
m - 1 Y

m 
-Z X m-1 -ZX m- 1 } = 0 

m = 1 	1  

or 

(X*Xl) m  - 1 (X*) m + z2 E (x*x2)m - 1= 	Y 	- 1 
 E 

1 1,0 m 	1 	 M = 1 	1 	 M = 1 . 

(A16) 

(A17) 

Equation (A17) is true for any value of Z 2 . 

and carry through the same procedure again. Equations which are similar to 
equations (A9) to (A17) will be obtained. The one corresponding to equation 
(A17) will be 

ZI 	(X*Xl) m  - 1  + Z 	(X*X2)m 1  = EY (X*) m  
m= l  2 	 2,0 m 	2 	 M 2 

Equation (A19) is true for any value of Z 1 . 

Now choose Z2 = Z 2 , 0  in equation (A17) and choose Z1 = Z 1 o 
(A18), and we have the two simultaneous equations 

Z 	CII 	Z 	C12 = 111 
1,0 	2,0 

Z 	C2I 	Z 	C22 = Y2 
1,0 	2,0 

where 

C= 	(XifX ) m  - 1  
jk m  = 1  j k 

- Y. = 	- 1  
m = 1 m 3  

-1  (A19). 

in equation 

(A20) 

(A21) 

(A22) 

Solving equations (A20) for Z 1 0  and Z2 , 0 will then give us the values 
of Zl and Z2 which makes P a minimum: 
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Equations (A20), (A21) and (A22) are the same as equations (11) to (18) 
of the text except that in the text they have been written in matrix form and, 
for convenience, the zeros have been dropped from the subscripts of Z. . 

],o 



(B1) 

(B2)  

(B3)  

(B4) 

(B5) 

(B6) 

APPENDIX 	B 

Derivation of Equations for Analyzing Two Realizations Together 

Let an odd number of data be taken at equal intervals of time, At. Let 
Lhe middle datum be at t = 0 so that 

t = mAt 

m = -M, - (M + 1), ... -1, 0, 1, 	M 

Let the signal be made up of the WO sinusoids 

S 	= A ei(2uf a
mAt + ) 

a,m 	a 

S 	=A e
i(2uf 8

mLt + (I) ) 
13,m 

Let an assumed test signal be made up of the two sinusoids 

i(2uf 1 mAt + cp i ) 
S 	= Ale 
I,m 

S 	= A2e
i(2uf2mt + 4 2) 

2,m 

Let 	S = (S 	+ S 	S 	S 	) 
m 	a,m POrl 	1,M 	2, 111  

then Is 12. 	i s  = 	12 . 

	

+ IS 	1 2 	2R{S 	S* I mi 	a,m 	 ,111 	 a,m f3,m 

A. I s 	12 	I s 	12 	2R1S 	S* 	1 
1 On 	2,m 	 1,m 2,m  

- 2R{S 	S* + S 	S* + S, S* + S 	S* 
a,m I,m 	a,m 2,m 	P,m 1,m 	P', 111  2,m} 

where the superscript * signifies the complex conjugate and R(x) means "real 
part of x". 

B = A e a 	 (B7) 
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Let 

G 	= e
i2u(f j - fk)mLt 	

(B8) 
jkm 



Now 

e
iem = 1 + 2 :E: cos me 

m = -M 	 m = 1 
(B10) 

A A2cos(q) (3  - (1)2)} (B12) 

then 
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I sm i2 . A2 	A2  

	

a 	P. Aî 	+ 2R{B BeG 	+ BIB*G 	 (B9) 
p ŒŒm 	212m  

- B B*G 	- B B*G 	- B,B*G, - B B*G } 
a  i aim 	a 2 a2M 	P I PIM 	13 2 (32M 

Let G
jk 

= 	Gjkm m = -M 

= 1 + 2 	cos2u(f
j 

- f
k
)At 

m = 1 
(B11) 

We note that Gjk is a real number. We may now write 

	

Is 1 2  = (2M + 1) (A 2 	A2 	Aî 	+ 2 G R(B B*) + GI2R(BIB*) 
m = -M m 	 a 	(3 	 e 	a (3. 	 2 

- G R(B B*) - G R(B B*) - G R(B B*) - G R(B B*) 
al 	a 1 	a2 	a 2 	(3 1 	(3  1 	13 2 	2 

or 

IS 1 2  = (2M + 1) (A 2  + A2  + Aî + 	+ 2{G
a(3

A
a
A

13
cos(q) - (1)) 

111  - N1 	 a 	e 	 a  

GI2A1A2cos(1 - (1) 2) 

-G AAcos(4) - (PI) -G AA2cos(I) - (1)2) -G AllIcos(cPe 	(1)1) al a 	a 	 a2 a 	 (31 s 

n -M 

Now we wish to find the realization, r, which is equivalent to the mean of 
the two realizations p and q, that is 
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2 (l 	I S' ) 	= (: 	S I 	+( 	I Sm ( :)) 
m = -M m  r 	m = -M 

m 
 p 	m = -M 	q 

From equations (B12) and (B13) we get 

(B13) 

	

{(A  2 	A  2 	2A 2 ) + (A 2  +A 2_  2A 2 ) 

	

ap 	aq 	ar 	ep 	13g 	8r 

	

+ (A 2 	A 2  — 2A 2 ) + (A 2 	A 2  — 2A 2 )1(2M + 1)1 

	

ip 	iq 	Ir 	2P 	2q 	2r 

+ 2G {A A cos(¢ 	- (I) ) + A A cos(¢ 	- (t  ) - 2A A cos(¢ 	--(t  )1 a8 ap 8p 	ap 	8P 	aq 8q 	ci 	8q 	ar 8r 	ar 	8r 

+ 2G {A A cos(¢ 	- ¢ ) + A A  cos(t) 	- ¢ ) - 2A A cos(¢ 	-(t  ) 1 
12 lp 2p 	1p 	2p 	1g 2Q 	1 Q 	2g 	Ir 2r 	Ir 	2r 

- 2G {A A cos(¢ 	- (t  ) + A A cos(¢ 	- (t  ) - 2A A cos(¢ 	- ¢ )1 
0,1 OLP 1P 	CIP 	1P 	0g lq 	0Q 	14 	ar ir 	ar 	Ir 

- 2G {A A  cos(t) 	- ¢ ) + A A cos(  ¢ 	- ¢ ) - 2A A cos(¢ 	- (t  )) 
0 2 0,13  2P 	al' 	2P 	aq 2g 	0g 	24:1 	ar 2r 	ar 	2r 

- 2G {A A cos(¢ 	- ¢ ) + A A cos(¢ 	- (t  ) - 2A, A  cos(t) , - (t  )1 81 	8P 1P 	8.1) 	1P 	(3q isq 	8q 	Ici 	pr Ir 	pr 	Ir 

- 2G {A A  cos(4) 	- ¢ ) + A A  cos(4) 	- ¢ ) - 2A, A  cos(4) , - ¢ )} 
P2 P.P 2P 	4 	2p 	f3g 2g 	rig 	2q 	Pr 2r 	pr 	2r 

= 0 	 (B14) 

The G's are functions of frequency only. Since equation (B14) must hold 
for all values of f . f 	f and f each expression in braces, { }, must be 
zero and we have 	al " 81 ' 1 	2 

 

	

2 (A  2 A. A 2 _FA 2 4. A 2) =A 2 1.. A 2 .4. A 2 	 i_ A Z A_ A 2 4. A 2 
ar 	8r 	Ir 	2r 	ap 	(31) 	aq 	111 	1P 	2 1' 	'g 	2g 

(B15) 

(816) 

(B17) 

(B18) 

2A A cos(¢ 	- ¢ ) = A A cos(4)- ¢ ) + A A cos(¢ 	- ¢, ) 
ar 8r 	ar 	8r 	ap 8p 	ap 	8p 	aq (3g 	cul 	Pg 

2A A cos(4) 	-4)  ) = A A cos(4) 	- ¢ ) + A A cos(4) 	- ¢ ) Ir 2r 	Ir 	2r 	ip 2p 	1 1' 	2p 	ig 2q 	lq 	2g 

2A A cos(4) 	-¢ ) = A A cos(4) 	- 	) + A A cos (a) 	- (1) ) ar Ir 	ar 	Ir 	aP 11) 	aP 	1P 	aq iq 	aq 	iq  
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2A A cos(q) 	- (I) ) = A A cos(g) 	- (I) ) + A A cos((1? 	- (I) 2 ) 	(B19) 
a Œr 2r 	r 	2r 	up 2p 	ap 	2p 	aq 2C1 	aq 	q 

2A r, A ir  cos4 r  - ( 1r  I) ) = A A cos(q) 	- (I) ) + A
Sq 

 A 
pi 

cos(
4 

 (1) 	- (1) iq ) 	( B20) 
p 	13 	 4 1P 	(313 	ip 	 1  

	

2Au.A2r c0s((l) r.  - (1) 2r ) = A4A2p cos((1)4  - (I) 2p ) + A ciA2ci c0s((1)4  - (1) 2q ) 	(B21) 

Now in the example mentioned in section V5 we assignEd the values. 

Aap = A13p = Aaq =A I3q = Aar =A 13.r. =1 	 (B22) 

In which case, by equation (B16), the cosine of the phase difference of 
the equivalent realization is equal to the mean of the cosines of the phase 
differences of the two realizations which are processed. This checks with 
the example for in that example 

(1) 	- ci) 	=00  
3 1:, 	ŒP 

(B23)  

— 	=900 (1) 13c1 	gbaci  

then from equation (B16) we have 

cos( (Par  — (P r3r ) = 11 
(B24)  

((1) 31. - (Par ) = 60 °  SO 
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