Communications Research Centre

IONOSPHERIC EFFECTS ON THE DOPPLER FREQUENCY SHIFT IN SARSAT PROPAGATION
by
D.B. MULDREW AND H.G. JAMES

DEPARTMENT OF COMMUNICATIONS

CANADA

IONOSPHERIC EFFECTS ON THE DOPPLER FREQUENCY SHIFT IN SARSAT PROPAGATION
by
D.B. Muldrew and H.G. James
(Radio and Radar Research Branch)

CAUTION

This information is furnished with the express understanding that: Proprietary and patent rights will be protected.

TABLE OF CONTENTS

ABSTRACT 1

1. INTRODUCTION 1
2. DOPPLER FREQUENCY CALCULATIONS 2
3. EXAMPLES OF IONOSPHERIC EFFECTS ON DOPPLER CURVES 2
3.1 Description of Model 2
3.2 Results of Computations 8
3.2.1 Figure 2 8
3.2.2 Figure 9
3.2.3 Figure 4 10
3.2.4 Figures 5a, 5b, 5c 10
3.2.5 Figure 6 10
4. CONCLUDING REMARKS 10
5. REFERENCES 14
APPENDIX I - Calculation of the Doppler Frequency 15
APPENDIX II - Program OSCDOP5
APPENDIX III - Computations

IONOSPHERIC EFFECTS ON THE DOPPLER FREQUENCY SHIFT IN SARSAT PROPAGATION

 byD.B. Muldrew and H.G. James

Abstract

The Doppler frequency shift of signals propagating from an Emergency Locator Transmitter (ELT) on a downed aircraft up to a transponder on a search and rescue satellite (SARSAT) and down to a central station is affected by the ionosphere. In this report ionospheric effects are estimated for a proof-of-concept SARSAT experiment using the AMSAT OSCAR-6 satellite. In this case, the down link is at 30 MHz and the daytime ionosphere with no horizontal gradients in electron density can change the Doppler frequency by a few hertz. Horizontal gradients of electron density can have more effect on the Doppler frequency than the vertical distribution of density since the negative vertical density gradient in the topside ionosphere tends to compensate the Doppler effect due to the positive gradient in the bottomside. In the late afternoon, evening and nighttime, large east-west troughs in the density distribution exist which can produce shifts of a few tens of hertz at 30 MHz . The Doppler frequency shift due to the ionosphere varies approximately inversely as the frequency. The results obtained here can be applied to the definition of an operational SARSAT system.

1. INTRODUCT ION

The Communications Research Centre is involved in a program called SARSAT (Search and Rescue Satellite) to locate downed aircraft. The program is funded by the Department of National Defence who have the responsibility for search and rescue in Canada.

By measuring the Doppler frequency shift of the signal from the aircraft's ELT (Emergency Locator Transmitter) after it has been received by a satellite and retransmitted on a different frequency to a central station [Lambert and Winter, 1977] the position of a downed aircraft can be located. Ignoring the effect of the ionosphere on the Doppler frequency will increase the error in estimating the location of the aircraft. This report examines the ionospheric effect in some detail.

The ionosphere has a small but significant effect on the Doppler frequency shift of a VHF signal propagating between a moving satellite and fixed ground station. The Doppler frequency shift, hereafter called 'Doppler", is the same whether the signal travels from the satellite to the ground or vice versa. Although the 30 MHz OSCAR 6 signal is transmitted from the satellite and received on the ground, for convenience in the derivations of this report, it will be assumed that the signal is transmitted from the ground and received at the satellite. The Doppler is given by

$$
\begin{equation*}
f_{D}=-\frac{1}{2 \pi} \underline{k} \cdot \underline{v}=-\frac{1}{2 \pi} k v \cos \lambda \tag{1.1}
\end{equation*}
$$

where k is the wave normal at the satellite of a VHF signal transmitted from the ground station and arriving at the satellite moving with velocity \underline{v} and λ is the angle between \underline{k} and \underline{v} at the satellite. For reception at the satellite, if \underline{k} has a component in the direction \underline{v}, f_{D} is taken to be negative. For a satellite at a height well above the F2-layer peak, the ionospheric effect on λ only need be considered. Here only the Doppler between the satellite and fixed station is considered; in the SARSAT case the Doppler between the ELT and satellite must be added.

In this report the computer programs that have been developed to calculate the ionospheric effect on the Doppler are presented and discussed. Calculations based on specific ionospheric models are also presented.

2. DOPPLER FREQUENCY CALCULATIONS

The mathematics required for the Doppler frequency calculations is presented in Appendix I. A listing of the main program and most of the subroutines and a sample calculation (corresponding to the solid curve in Figure 8) are presented in Appendices II and III. A flow chart of the main program is presented here. The relation of the subroutines to the main program is given in the chart.

3. EXAMPLES OF IONOSPHERIC EFFECTS ON DOPPLER CURVES

3.1 DESCRIPTION OF MODEL

Doppler frequency shifts have been calculated for a varlety of lonospheric density models and for three different OSCAR-6 orbits. One of the orbits passes almost vertically over the assumed 30 MHz ground receiver

Celestial-Coordinate Calculations
Calculate NSY (seconds from start of year)
Call ORBITX (satellite position determined at NSY in geographic coordinates)
Call TRANSFORM (This subroutine is in file RVAN2B. Transforms geographic coordinate of a satellite to celestial coordinates)

Call VCC (Calculates vector position of satellite in celestial coordinates)
Call TRANSFORM (Transforms geographic coordinates of station to celestial coordinates)

Call VCC (Calculates vector position of station in celestial coordinates)
Decrease time by $1 \mathbf{s e c}$.
Repeat above for new satellite position
Calculate the components of the satellite velocity vector relative to the station (V4) and of the station-satellite separation vector (V5).

Calculate FDG (No-lonosphere Doppler frequency for 30 MHz wave using celestial coordinates; vacuum wavelength $=3 \times 10^{5} \mathrm{~km} / \mathrm{sec} / 3 \times 10^{7} \mathrm{~Hz}=0.01 \mathrm{~km}$; ANGLE2 is in RVAN2B)

Ionospheric height $=\mathbf{2 0 0} \mathbf{k m}$ (This can be made an input variable)

Call IONCOOR (Calculates latitude and longitude of intersection of straight line between station and satellite with the ionosphere at its assumed height)

Call PLAS (Determines FN and DFNDSN from tabulated values of RLAT and FOF2 for a given latitude)

Calculate running sum of FN and DFNDSN for averaging.
Increase height by $\mathbf{2 5} \mathbf{~ k m}$

Height $>500 \mathrm{~km}$

at Ot tawa $\left(45.36^{\circ} \mathrm{N}, 75.88^{\circ} \mathrm{W}\right)$ whereas the other two have subsatellite tracks that pass within about 2000 km of the receiver, one to the east and the other to the west. Ephemeris data for the passes were calculated on the CRC computer, using NASA-supplied Brouwer mean orbital elements for the spacecraft in conjunction with the ISIS orbit package. Various orbital details are given in Table 1.

TABLE 1
OSCAR-6 Passes Used in Study

	Time Interval				
Date	Start	Stop	Closest GCD to Subsat. Point	Direction	Label
6 Jan/76	1620 UT	1644 UT	2280 km	Southbound	"West"
16 Jan/76	1403	1427	30	Southbound	"Overhead"
$16 \mathrm{Jan} / 76$	1210	1234	2240	Southbound	"East"

The tracks of the subsatellite points for the three passes, in relation to the location at Ottawa of the ground receiver are shown in Figure 1. OSCAR-6 is in a roughly circular orbit, and its height during these passes varies between 1448 and 1461 km . The orbit is retrograde with an inclination of approximately 110°, so that on these three north-to-south passes, the subsatellite track has a westward component of motion and makes an angle with the equator of about 70°. The first two lines in Table 1 correspond to passes during which CRC personnel carried out experimental ELT tests using a mobile transmitter and a receiver at Shirley Bay, whereas the "East" pass was not used for that purpose.

Ionospheric density distributions of various types have been modelled for the ray-tracing calculation of theoretical Doppler frequency shift on the satellite-to-ground 30 MHz signal. The ionosphere was approximated by a spherical layer 300 km thick lying between 200 and 500 km altitude. Within this layer the density could have horizontal gradients but no vertical gradients. In cases where the density varied along the ray path, the average density and horizontal gradient were obtained by averaging the values at each 25 km-height interval along the path. As explained in Appendix I, above 500 km and below 200 km altitude the waves propagate as in a vacuum and straight line rays are assumed.

Horizontal density gradients play an important role in determining ray paths and it was decided to include several values of density gradient in the Doppler calculations. The different models used are listed in Table 2. For Figure 2 a constant foF2 was used to evaluate the refractive index and a zero or east-west gradient was used to calculate the curvature of the ray path.

The difference in frequency between the Doppler shift, calculated with the ionosphere present and the free-space shift called the "ionospheric Doppler difference" is plotted as a function of the latitude of the OSCAR-6

Figure 1. Subsatellite tracks of three OSCAR-6 passes, on a geographical coordinate frame

TABLE 2
lonospheric Mode/s
Figure
Horizontal Gradient in foF2

Comments

28 MHz None, $0.001 \mathrm{MHz} / \mathrm{km}$ eastward,

3
Varies Varying north-south gradient

4

5a,b,c Varies Varying north-south gradient
Both foF2 and gradient scaled from ionograms recorded on an Ottawa ISIS II pass starting 75/004/1442 UT.

Both foF2 and gradient scaled from ionograms recorded on an Ottawa ISIS II pass starting 75/009/1557 UT.

Both foF2 and gradient derived from a hypothetical distribution composed of a deep ionospheric trough centred at Ottawa superposed on a constant southward gradient.

Constant eastward gradient of $0.0005 \mathrm{MHz} / \mathrm{km}$ is assumed. Both foF2 and north-south gradient are derived from ionograms recorded on an Ottawa ISIS II pass starting 75/003/1404 UT.
satellite (Figures 2 to 6). The difference frequency, although usually amounting to only several hertz in contrast to the total Doppler shift of a few hundreds of hertz, indicates the net effect of the ionosphere on the Doppler shift. The computer program starts calculating Doppler differences at 12 minutes before the instant of closest approach and proceeds at 50 -second intervals through a 24 -minute period. Near the beginning and the end of the pass, either the ionosphere reflects the rays or the satellite is out of range due to the earth's curvature and contact is no longer possible. The cutoff depends on the great circle separation of receiver and satellite and thus the latitude of cutoff is influenced by the longitude of the satellite. It will be seen that the low-latitude cutoff of the "west" pass is higher in latitude than that of the "east" pass.

3.2 RESULTS OF COMPUTATIONS

The models represent typical ionospheric conditions that a polarorbiting SARSAT is likely to encounter. The cases are discussed in sequence:

3.2.1 Figure 2

The no-horizontal gradient case, corresponding to the dotted curves in Figure 2, obviously illustrates the importance of vertical gradients only, and provides a baseline for comparison with the later cases. At high latitudes where the motion of the spacecraft has a component toward the receiver, the shift without an ionosphere is greater than with an ionosphere because the ionospheric refraction acts to make the wave normal less nearly parallel to the spacecraft velocity vector than in the free-space case resulting in a lower positive shift. The difference goes positive for algebraicly similar reasons on the southern half of the pass. Reversing the direction of satellite motion would result in a difference curve that is reflected about the latitude axis. At the extremities of the curves, the difference value tends to come back to zero. The reflection cutoff at the southern end of the passes occurs at a lower latitude on the east pass because the inclination of the satellite orbital trajectory is such as to allow the satellite to move farther south before the great-circle distance reaches the cutoff value.

To obtain an estimate of the systematic east-west gradient, Ottawa ground ionosonde values of foF2 were plotted as a function of local time using data from the first half of January 1976. The OSCAR-6 local solar time was about 09 hr for the three southbound passes studied. The ionosonde data implied that eastward plasma frequency gradients of the order of 1 $\mathrm{kHz} / \mathrm{km}$ existed in the ionosphere at 09 hr . Occasionally westward gradients of the same order of magnitude occured. Accordingly, the east-west gradient was set at plus and minus $0.001 \mathrm{MHz} / \mathrm{km}$ corresponding to the solid and broken curves respectively in Figure 2. For the 'East' pass, the amplitude of the ionospheric Doppler difference curve increases as the horizontal gradient changes from east to west. For the 'Overhead' pass there is no important dependence on the direction of the horizontal gradient. For the 'West' pass, the amplitude of the difference curve decreases as the gradient changes from east to west. The constant gradient experienced by the ray has the effect of bending the wave-normal directions away from the direction of the horizontal gradient. Otherwise there is no dramatic change from the no-gradient case.

Figure 2. Ionospheric Doppler difference as a function of geographic latitude for three OSCAR-6 passes. Cases with no horizontal gradient in foF2, with an eastward gradient in foF2, and with a westward foF2 gradient are presented.

3.2.2 Figure 3

The use of unsmoothed topside sounder data to model the north-south density distribution results in a more irregular Doppler curve. At the bottom of Figure 3 is the latitudinal profile of foF2 exhibiting strong southward gradients near Ottawa but a rather flatter distribution to the north and south. The Figure illustrates that a ray crosses a region of the ionosphere at a latitude intermediate between the receiver and the satellite. The result is that the large excursions of the Doppler difference are displaced in latitude with respect to the fluctuations in the foF2 profile that caused them. The letters spaced along the profile and the "West" difference curve just above it indicate the realtionship. For instance, the "A" ray transmitted by OSCAR-6 at 25.5° latitude crosses the 350 km height in the ionosphere at a latitude of 34° and a positive Doppler difference of 4.8 Hz is calculated. The sharp positive peaks in the Doppler curve at A, E and I are seen to be caused by large southward density gradients.

In all the sets of curves, it is seen that the variations on the overhead Doppler curve are smaller than on the other two passes. This is due to the fact that the ray has a longer ionospheric path under the influence of the gradients on the oblique paths to the east or west orbits than it does on overhead paths.

3.2.3 Figure 4

Abstract

The ISIS II sounder data reduce to a latitudinal profile of foF2 which has a modest southward gradient north of Ottawa and a reasonably deep depression to the south as plotted at the bottom of Figure 4. The comparatively large negative excursion of the Doppler difference around 35°. latitude arises from the refractive effects of the depression. The displacement in latitude of the Doppler excursion with respect to the depression due to the obliquity of rays is again observed.

3.2.4 Figures 5a, 5b, 5c

The implementation of a deep trough in the foF2 profile centred at Ottawa has a dramatic effect on the Doppler difference frequency. The overhead pass in Figure 5 b is plotted over the density profile, and the pairs of letters on the two curves show again that the largest effects correspond to rays that experience the largest north-south gradients while passing through the ionospheric layer. The depth of the trough (5 MHz) is representative of some of the deeper troughs observed by Muldrew (1965), and may be regarded as a typical upper limit. The total ionospheric Doppler difference of a few tens of hertz in Figures $5 a$ and $5 c$ is about as large as will ever be observed since the deep depression of foF2 was positioned at the most influential latitude: that of the receiver.

3.2.5 Figure 6

In the final example, a constant eastward gradient of $0.5 \mathrm{kHz} / \mathrm{km}$ was combined with foF2 and its southward gradient derived from the ISIS data profile at the bottom of the Figure 6. This leads to the solid curve in Figure 6. The central portion of the foF2 profile that acts on the Doppler curve is free of long scale systematic gradients but has small variations in foF2 which cause latitudinal fluctuations in the Doppler difference near Ottawa. The broken line was obtained by using the foF2 profile for the plasma frequency and setting all gradients to zero. Again, the results reveal that the small-scale gradients lead to differences of the order of a few hertz.

4. CONCLUDING REMARKS

Ionospheric refraction will typically cause systematic and random errors of a few hertz at 30 MHz if no horizontal gradients are assumed between an ELT and SARSAT and between SARSAT and Ottawa. Large density gradients including troughs, can exist in the F region and these will be responsible for the largest errors. Magnetically disturbed conditions occur occasionally and the main trough can then be centred near Ottawa; for the OSCAR-6 case errors of a few tens of hertz could result. For normal magnetic conditions, the main trough is north of Ottawa and errors of about 10 Hz for the OSCAR-6 case occur.

The plasma-frequency profile presented in Figure 6 applies to a local time of 0830 hrs . Irregularities in plasma frequency f_{N} and north-south variations in this figure are fairly typical for morning and early afternoon conditions; the magnitude of f_{N}, however, will vary throughout the day. The

Figure 3. Ionospheric Doppler difference curves for three OSCAR-6 passes and obtained from ISIS-/I data as a function of geographic latitude.

Figure 4. Ionospheric Doppler difference curves for three OSCAR-6 passes and obtained from ISIS-II data as a function of geographic latitude.

Figure 5. Ionospheric Doppler difference as a function of geographic latitude for three OSCAR-6 passes and hypothetical foF2 distribution as a function of geographic latitude.

Figure 6. lonospheric Doppler difference curves for three OSCAR-6 passes and obtained from ISIS-II data as a function of geographic latitude. The solid curve includes the effects of both the north-south and east-west gradients. The broken curve corresponds to the no-horizontal-gradient case.
main trough (Muldrew, 1965) is a regular feature of the ionosphere. It begins to form about 1500 hrs local time and becomes very pronounced from about $1700-2100 \mathrm{hrs}$. Between 2100 hrs and sunrise it is still present but is not so well defined. In the afternoon it moves southward and from about 1800 hrs to sunrise during normal magnetic activity it is located near 60° geomagnetic latitude or about 49° geographic latitude at the Ottawa longitude. During the night other troughs or rapid variations in f_{N} with latitude can occur throughout the high-latitude ionosphere.

In order to use these programs effectively for real-time ionospheric correction in the SARSAT system, a model of the required ionospheric parameters for North America would be required. This model would give critical F-layer frequencies and horizontal electron-density gradients, and perhaps effective F-layer thickness, as a function of longitude, latitude, local time, month, sunspot number and magnetic-activity index (Kp). It is hoped that such a model will be completed by mid 1978.

Doppler difference curves have been calculated at other frequencies than 30 MHz . The conditions corresponding to the solid curve in Figure 6 were applied to frequencies of $121.5,143$ and 406 MHz which are of interest in a SARSAT system. The shapes of the resulting difference curves remained unchanged but their amplitudes were lower by a factor of approximately the inverse ratio of the frequencies. For instance, the solid $30-\mathrm{MHz}$ curve in Figure 6 has a peak at 47° latitude of about 6.3 Hz , whereas the calculated $121.5-\mathrm{MHz}$ maximum at that latitude is 1.3 Hz .

5. REFERENCES

1. Lambert, J.D., and A.E. Winter, A Search and Rescue Satellite System (SARSAT) Experiment, IEEE Conference Publication 139, 351-355, 1976.
2. Muldrew, D.B., F-Layer Ionization Troughs Deduced from Alouette Data, J. Geophys. Res., 70, 2635, 1965.
3. Story, L.R.O., A Method to Interpret the Dispersion Curves of Whistlers, R.P.L. Report 23-4-1, p. 33, Defence Research Telecommunications Establishment, Ottawa, Canada, 1958.

APPENDIXI

CALCULATION OF THE DOPPLER FREQUENCY

APPENDIXI

Calculation of the Doppler Frequency

I. 1 NO-IONOSPHERE CASE

The geometry for the no-ionosphere case is shown in Figure I. 1 where the propagation is in a straight line from the ground station, assumed to be Ottawa ($45.36^{\circ},-75.88^{\circ}$), to the satellite at height h_{S} above the earth's surface. The earth is assumed to be spherical with radius $R=6371 \mathrm{~km}$. The angle subtended at the centre of the earth by the ground station and satellite is θ and Φ is the angle of incidence of the ray at the satellite.

The latitude θ_{s}, longitude ϕ_{S} and height of the satellite are obtained using orbit calculation programs and data supplied by NASA; the latitude θ_{0} and longitude ϕ_{0} of the station are given. For a right-handed, rectangular coordinate system ($x^{\prime}, y^{\prime}, z^{\prime}$) fixed in the earth with origin at the earth's center, z^{\prime} axis intersecting the north geographic pole and x^{\prime} axis intersecting 0° latitude, 0° longitude ($0^{\circ}, 0^{\circ}$), the satellite position is

Figure 1.1. Geometry for no-ionosphere case

$$
\begin{equation*}
\underline{P}_{s}=\left(R+h_{s}\right)\left(\underline{i}^{\prime} \cos \theta_{s} \cos \phi_{s}+\dot{j}^{\prime} \cos \theta_{s} \sin \phi_{s}+\underline{k}_{1}^{\prime} \sin \theta_{s}\right) \tag{I.1.1}
\end{equation*}
$$

Unit vectors in the x^{\prime}, y^{\prime} and z^{\prime} direction are i^{\prime}, j^{\prime} and $k^{\prime} ;$ the subscript 1 on $\frac{k}{f}$ is to distinguish this unit vector from the wave normal k^{\prime} which will be defined later. The position of the ground station is

$$
\begin{equation*}
\underline{p}_{0}=R\left(\underline{i}^{\prime} \cos \theta_{0} \cos \phi_{0}+\dot{j}^{\prime} \cos \theta_{0} \sin \phi_{0}+\underline{k}_{1}^{\prime} \sin \theta_{0}\right) \tag{I.1.2}
\end{equation*}
$$

Hence from $\left(\underline{P}_{0} \cdot \underline{P}_{s}\right) /\left|P_{0} P_{s}\right|$

$$
\begin{equation*}
\theta=\cos ^{-1}\left[\cos \theta_{s} \cos \theta_{0} \cos \left(\phi_{s}-\phi_{0}\right)+\sin \theta_{s} \sin \theta_{0}\right] \tag{1.1.3}
\end{equation*}
$$

where θ is chosen so that $0^{\circ} \leq \theta \leq \pi$
From Figure I.1, the distance S between the satellite and fixed station is given by

$$
\begin{equation*}
s^{2}=R^{2}+\left(R+h_{s}\right)^{2}-2 R(R+h) \cos \theta \tag{I.1.4}
\end{equation*}
$$

and hence Φ is obtained from

$$
\begin{equation*}
\sin \Phi=R \sin \theta / S \tag{I.1.5}
\end{equation*}
$$

If $\alpha=\pi-\Phi-\theta<\frac{\pi}{2}$, then the satellite is out of range of the station.
Equation 1.1 can be written

$$
\begin{equation*}
f_{D}=-\frac{1}{2 \pi}\left(k_{x} v_{x}+k_{y} v_{y}+k_{z} v_{z}\right) \tag{1.1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{k}=\underline{i} k_{x}+\dot{\underline{j}} k_{y}+\underline{k_{1}} k_{z} \tag{I.1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{v}=\underline{i} v_{x}+\dot{j} v_{y}+\underline{k}_{1} v_{z} \tag{I.1.8}
\end{equation*}
$$

The z axis is the vertical through the satellite and the x axis is in the horizontal plane and is directed away from the fixed station. The (x, y, z) coordinate system at any instant is assumed fixed with respect to the earth. Hence

$$
\begin{equation*}
f_{D}=-\frac{f}{c}\left(V_{x} \sin \Phi+V_{z} \cos \Phi\right) \tag{1.1.9}
\end{equation*}
$$

where f is the transmitter frequency and c is the free space velocity of light.

I. 2 SATELLITE VELOCITY

To check the accuracy of the calculations in the fixed-earth system using (I.1.6), the Doppler was calculated independently using celestial coordinates. In one case, it was found that errors of about 0.1° in specifying the latitude and/or longitude of the fixed station resulted in errors of up to about one hertz. Also, the satellite velocity was required to be defined carefully. Calculating the satellite velocity from two satellite positions one second apart and applying this to one of the positions rather than the average position could result in errors of about one hertz. The satellite velocity in (x, y, z) coordinates is calculated below.

Let the satellite position at a particular time be \underline{P}_{s} and at T seconds later be $\underline{P}_{s 1^{\circ}} \underline{P}_{s 1}$ can be obtained from (I.1.2) by changing the subscript s to
sl. Then

$$
\begin{equation*}
\underline{V}=\left(\underline{P}_{s 1}-\underline{P}_{s}\right) / T \tag{I.2.1}
\end{equation*}
$$

In ($x^{\prime}, y^{\prime}, z^{\prime}$) coordinates

$$
\begin{align*}
& V_{x}^{\prime}=\left[\left(R+h_{s l}\right) \cos \theta_{s 1} \cos \phi_{s l}-\left(R+h_{s}\right) \cos \theta_{s} \cos \phi_{s}\right] / T \\
& V_{y}^{\prime}=\left[\left(R+h_{s l}\right) \cos \theta_{s 1} \sin \phi_{s l}-\left(R+h_{s}\right) \cos \theta_{s} \sin \phi_{s}\right] / T \tag{I.2.2}\\
& V_{z}^{\prime}=\left[\left(R+h_{s l}\right) \sin \theta_{s l}-\left(R+h_{s}\right) \sin \theta_{s}\right] / T
\end{align*}
$$

To obtain \underline{V} in (x, y, z) coordinates, it can be seen from Figure I. 2 that

$$
\begin{equation*}
\underline{V}=V\left[\underline{1} \sin \alpha_{2} \sin \alpha_{3}+1 \sin \alpha_{2} \cos \alpha_{3}+\underline{k}_{1} \cos \alpha_{2}\right] \tag{I.2.3}
\end{equation*}
$$

Figure 1.2. Direction cosines of satellite velocity vector

The angle α_{2} between \underline{v} and the z axis is given by

$$
\begin{equation*}
\cos \alpha_{2}=\frac{\underline{V} \cdot\left(\frac{p_{s}+p_{s 1}}{p_{s}}\right)}{|\underline{V}|\left|\underline{p}_{s}+\underline{p}_{s 1}\right|} \tag{I.2.4}
\end{equation*}
$$

where $\frac{1}{2}\left(\underline{P}_{s}+\underline{p}_{s l}\right)$ is the average position of the satelifte.
To obtain α_{3} note that

$$
\begin{equation*}
V \cos \alpha_{1}=V \sin \alpha_{2} \cos \alpha_{3} \tag{I.2.5}
\end{equation*}
$$

and $\cos \alpha_{1}$ is given by

$$
\begin{equation*}
\cos \alpha_{1}=\frac{\underline{V} \cdot \underline{1}}{|\underline{V}|} \tag{1.2.6}
\end{equation*}
$$

\dot{j} is perpendicular to the plane containing the position vector of the fixed station and the average position vector of the satellite.

$$
\begin{align*}
& \dot{L}=\frac{\underline{p}_{0} x\left(\frac{p}{s}+\underline{p}_{-s 1}\right)}{\left|\underline{p}_{0} x\left(\underline{p}_{s}+\underline{p}_{s l}\right)\right|} \tag{I.2.7}\\
& \dot{j}=\frac{\underline{i}^{\prime} J_{x^{\prime}}+\underline{j}^{\prime} J_{y^{\prime}}+\underline{k}_{1}^{\prime} J_{z^{\prime}}}{\left[J_{x^{\prime}}{ }^{2}+J_{y^{\prime}}{ }^{2}+J_{z^{\prime}}{ }^{2}\right]^{\frac{1}{2}}} \tag{I.2.8}
\end{align*}
$$

where

$$
\begin{align*}
J_{x^{\prime}}= & \cos \theta_{0} \sin \phi_{0}\left[\left(R+h_{s}\right) \sin \theta_{s}+\left(R+h_{s 1}\right) \sin \theta_{s 1}\right] \\
& -\sin \theta_{0}\left[\left(R+h_{s}\right) \cos \theta_{s} \sin \phi_{s}+\left(R+h_{s 1}\right) \cos \theta_{s 1} \sin \phi_{s 1}\right] \\
J_{y^{\prime}}= & -\cos \theta_{0} \cos \phi_{0}\left[\left(R+h_{s}\right) \sin \theta_{s}+\left(R+h_{s 1}\right) \sin \theta_{s 1}\right] \tag{I.2.9}\\
& +\sin \theta_{0}\left[\left(R+h_{s}\right) \cos \theta_{s} \cos \phi_{s}+\left(R+h_{s 1}\right) \cos \theta_{s 1} \cos \phi_{s 1}\right] \\
J_{z^{\prime}}= & \cos \theta_{0} \cos \phi_{0}\left[\left(R+h_{s}\right) \cos \theta_{s} \sin \phi_{s}+\left(R+h_{s 1}\right) \cos \theta_{s 1} \sin \phi_{s 1}\right] \\
& -\cos \theta_{0} \sin \phi_{0}\left[\left(R+h_{s}\right) \cos \theta_{s} \cos \phi_{s}+\left(R+h_{s 1}\right) \cos \theta_{s 1} \cos \phi_{s 1}\right]
\end{align*}
$$

It now appears that V in (x, y, z) coordinates can be obtained from(1.2.3) but there is insufficient information above to obtain the sign of $\sin \alpha_{3}$. To accomplish this $\cos \alpha_{4}$ is obtained from

$$
\begin{equation*}
\cos \alpha_{4}=\frac{\underline{v} \cdot \underline{i}}{|\underline{v}|}=\frac{\underline{v} \cdot\left(\underline{\mathcal{L}} \times \underline{k}_{1}\right)}{|\underline{v}|} \tag{I.2.10}
\end{equation*}
$$

where \mathcal{L} is given by (I.2.9) and \underline{k}_{1} is

$$
\begin{equation*}
\underline{k}_{1}=\frac{\left(\underline{p}_{8}+\underline{p}_{-81}\right)}{\left|\underline{p}_{s}+\underline{p}_{s 1}\right|} \tag{I.2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \alpha_{3}=\left[1-\cos ^{2} \alpha_{3}\right]^{\frac{1}{2}} \frac{\cos \alpha_{4}}{\left|\cos \alpha_{4}\right|} \tag{I.2.12}
\end{equation*}
$$

I. 3 IONOSPHERE, NO HORIZONTAL GRADIENTS

For curved earth and an ionosphere composed of a spherically stratified thick layer, Snell's law can be stated

$$
\begin{equation*}
n(R+h) \sin \Phi=C O N S T \tag{I.3.1}
\end{equation*}
$$

where n and Φ are respectively the refractive index and angle between the wave normal and the vertical at distance $R+h$ from the centre of the earth. The refractive index above and below the layer is 1 and in the layer

$$
\begin{equation*}
n=n_{o}=\left[1-f_{N}^{2} / f^{2}\right]^{\frac{1}{2}} \tag{I.3.2}
\end{equation*}
$$

where f_{N} is the plasma frequency or critical frequency (foF2) of the slab and f is the ray frequency.

As illustrated in Figure I. 3 the ionosphere is approximated by a spherically thick layer with a constant plasma frequency between 200 and 500 km . The use of a more sophisticated model at the present time is not justified since any predicted value of f_{N} would not be sufficiently accurate. The 200 and 500 km values are based on experience from bottomside and topside ionograms. If a model ionosphere is capable of predicting better values for h_{1} and h_{2}, the program can easily be changed to accomodate these values.

From Figure I. 3 and (I.3.1)

$$
\begin{align*}
R \sin \Phi_{1} & =\left(R+h_{1}\right) \sin \Phi_{2}=n_{0}\left(R+h_{1}\right) \sin \Phi_{3}=n_{0}\left(R+h_{2}\right) \sin \Phi_{4} \tag{I.3.3}\\
& =\left(R+h_{2}\right) \sin \Phi_{5}=\left(R+h_{s}\right) \sin \Phi^{\prime}
\end{align*}
$$

Figure 1.3. Geometry for ionosphere case with no horizontal gradients

$$
\begin{align*}
\theta & =\theta_{1}+\theta_{2}+\theta_{3}=\left(\Phi_{1}-\Phi_{2}\right)+\left(\Phi_{3}-\Phi_{4}\right)+\left(\Phi_{5}-\Phi^{\prime}\right) \\
& =\left[\sin ^{-1}\left(\frac{R+h_{S}}{R} \sin \Phi^{\prime}\right)-\sin ^{-1}\left(\frac{R+h_{s}}{R+h_{1}} \sin \Phi^{\prime}\right)\right] \\
& +\left[\sin ^{-1}\left(\frac{R+h_{s}}{R+h_{1}} \frac{\sin \Phi^{\prime}}{n_{0}}\right)-\sin ^{-1}\left(\frac{R+h_{S}}{R+h_{2}} \frac{\sin \Phi^{\prime}}{n_{0}}\right)\right] \tag{I.3.4}\\
& +\left[\sin ^{-1}\left(\frac{R+h_{s}}{R+h_{2}} \sin \Phi^{\prime}\right)-\Phi^{\prime}\right]
\end{align*}
$$

To solve this implicit equation for Φ^{\prime} by iteration, define

$$
\begin{align*}
F \equiv & -\theta+\left[\sin ^{-1}\left(\frac{\mathrm{R}+\mathrm{h}_{\mathrm{s}}}{\mathrm{R}} \sin \Phi^{\prime}\right)-\sin ^{-1}\left(\frac{\mathrm{R}+\mathrm{h}_{\mathrm{s}}}{\mathrm{R}+\mathrm{h}_{1}} \sin \Phi^{\prime}\right)\right] \\
& +\left[\sin ^{-1}\left(\frac{\mathrm{R}+\mathrm{h}_{\mathrm{s}}}{\mathrm{R}+\mathrm{h}_{1}} \frac{\sin \Phi^{\prime}}{n_{0}}\right)-\sin ^{-1}\left(\frac{\mathrm{R}+\mathrm{h}_{\mathrm{s}}}{\mathrm{R}+\mathrm{h}_{2}} \frac{\sin \Phi^{\prime}}{n_{0}}\right)\right] \tag{I.3.5}\\
& +\left[\sin ^{-1}\left(\frac{\mathrm{R}+\mathrm{h}_{\mathrm{s}}}{\mathrm{R}+\mathrm{h}_{2}} \sin \Phi^{\prime}\right)-\sin ^{-1}\left(\sin \Phi^{\prime}\right)\right]
\end{align*}
$$

Then, using Newton's method

$$
\begin{gather*}
\frac{\partial F}{\partial\left(\sin \Phi^{\prime}\right)}=\left[\frac{\left(R+h_{s}\right) / R}{\left[1-\left(\frac{R+h_{s}}{R} \sin \Phi^{\prime}\right)^{2}\right]^{\frac{1}{2}}}-\frac{\left(R+h_{s}\right) /\left(R+h_{1}\right)}{\left[1-\left(\frac{R+h_{s}}{R+h_{1}} \sin \Phi^{\prime}\right)^{2}\right]^{\frac{1}{2}}}\right] \\
+[]+[] \tag{I.3.6}
\end{gather*}
$$

Initially a value of sin Φ^{\prime} is guessed and the values of F and $\partial F / \partial\left(\sin \Phi^{\prime}\right)$ are calculated. θ is obtained from (I.1.3). An improved value of sin Φ^{\prime} is obtained from

$$
\sin \Phi^{\prime}-F /\left[\frac{\partial F}{\partial\left(\sin \Phi^{\prime}\right)}\right]
$$

Using this improved value, F and $\partial F / \partial\left(\sin \Phi^{\prime}\right)$ are again calculated and the process repeated until sin Φ^{\prime} is obtained to the desired accuracy. Φ_{1} can be obtained from (I.3.4) and must be less than $\pi / 2$ for the satellite to be in range.

The wave vector at the satellite is then given by

$$
\begin{equation*}
\underline{k}=\underline{1} k \sin \Phi^{\prime}+\underline{k}_{1} k \cos \Phi^{\prime} \tag{I.3.7}
\end{equation*}
$$

and the Doppler frequency with no horizontal gradients is

$$
\begin{equation*}
\mathrm{f}_{\mathrm{DI}}=-\frac{\mathrm{f}}{\mathrm{c}}\left(\mathrm{~V}_{\mathrm{x}} \sin \Phi^{\prime}+\mathrm{V}_{\mathrm{z}} \cos \Phi^{\prime}\right) \tag{I.3.8}
\end{equation*}
$$

The Doppler obtained from (I.3.8) was verified using the alternate equation

$$
\begin{equation*}
f_{D I}=-\frac{f}{c} \frac{d}{d t} \int n d s \tag{I.3.9}
\end{equation*}
$$

where ds is an incremental length along the ray path which, in this case, is the 3 lines A, B and C (Figure I.3).

1.4 IONOSPHERE WITH HORIZONTAL GRADIENTS

To calculate the effect of horizontal gradients, it is now assumed that the ray in the no-horizontal-gradient case is a straight line from the station to the satellite. The deviation of the path from this straight line due to the horizontal gradient will then be calculated and this deviation applied, at the satellite, to the actual no-horizontal-gradient case illustrated in Figure 1.3 where the ray consists of 3 straight line sections.

If there is a horizontal gradient of electron density in the ionosphere, the portion of the ray in the ionosphere (see Figure I.3) will not be a straight line but will be curved away from the direction of the gradient. Note that the refraction due to the vertical gradient at h_{1} in Figure $I .3$ is almost completely compensated at h_{2} ($c f$. light passing through a pane of glass). This compensation does not occur with a horizontal gradient; hence a modest horizontal gradient can have a greater effect in total refraction on the ray than a large vertical gradient.

The radius of curvature R_{c} of the ray in the ionosphere, is given by another form of Sne11's law [Storey, 1958]

$$
\begin{equation*}
\frac{1}{R_{c}}=-\frac{1}{n}(\nabla n)_{\perp} \tag{I.4.1}
\end{equation*}
$$

where $(\nabla \square)_{\perp}$ is the refractive index gradient perpendicular to the ray. The gradient ∇n is assumed constant between h_{1} and h_{2} and in the program is obtained by finding the average gradient along the ray between h_{1} and h_{2}.

From (I.3.2), equation (I.4.1) can be written

$$
\begin{equation*}
\frac{1}{R_{c}}=\frac{1}{n_{o}^{2}} \frac{f_{N}}{f^{2}}\left(\nabla f_{N}\right)_{\perp} \tag{I.4.2}
\end{equation*}
$$

Consider the ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$) coordinate system with origin at the intersection of the ray with the height h_{I} of the layer centre. The $z^{\prime \prime}$ axis is vertically upward and $x^{\prime \prime}$ is in the vertical plane containing Ottawa and the satellite and is directed away from Ottawa. If ρ is the angle between the plasma frequency gradient ∇f_{N} and the $y^{\prime \prime}$ axis, from Figure 1.4

$$
\begin{equation*}
\nabla f_{N}=\left|\nabla f_{N}\right|\left[-\underline{i}^{\prime \prime} \sin \rho+\underline{j}^{\prime \prime} \cos \rho\right] \tag{I.4.3}
\end{equation*}
$$

Figure 1.4. Geometry at the midionosphere height h_{I}

Let the angle of incidence and the wave vector for the non-horizontal gradient case at height $h_{I}=\left(h_{1}+h_{2}\right) / 2$ be Φ_{I} and \underline{k}_{I}. The wave vector \underline{k}_{I} is then

$$
\begin{equation*}
\underline{k}_{I}=k_{I}\left(\underline{i}^{\prime \prime} \sin \Phi_{I}+\underline{k}_{1}^{\prime \prime} \cos \Phi_{I}\right) \tag{1.4.4}
\end{equation*}
$$

If δ is the angle between \underline{k}_{I} and ∇f_{N}, then the component of ∇f_{N} perpendicular to \underline{k}_{I} in the plane containing \underline{k}_{I} and ∇f_{N} is

$$
\begin{equation*}
\left(\nabla f_{N}\right)_{\perp}=\left|\nabla f_{N}\right| \sin \delta \tag{I.4.5}
\end{equation*}
$$

Taking the cross product of $\underline{k}_{\mathrm{I}}$ and $\nabla \mathrm{f}_{\mathrm{N}}$ gives

$$
\begin{equation*}
\underline{\varepsilon}_{1}\left(\nabla f_{N}\right)_{\perp}=|\nabla{\underset{f}{N}}|\left[\underline{i}^{\prime \prime} \cos \Phi_{I} \cos \rho-\underline{i}^{\prime \prime} \cos \Phi_{I} \sin \rho+\underline{k}_{1}^{\prime \prime} \sin \Phi_{I}\right] \tag{I.4.6}
\end{equation*}
$$

where \underline{E}_{1} is a unit vector perpendicular to $\underline{k}_{\mathrm{I}}$ and $\nabla \mathrm{f}_{\mathrm{N}}$. Hence

$$
\begin{equation*}
\left(\nabla f_{N}\right)_{\perp}=\left[1-\sin ^{2} \Phi_{I} \sin ^{2} \rho\right]^{\frac{1}{2}}\left|\nabla f_{N}\right| \tag{I.4.7}
\end{equation*}
$$

From (I.4.2)

$$
\begin{equation*}
\frac{1}{R_{c}}=\frac{1}{n^{2}} \frac{f_{N}}{f^{2}}\left[1-\sin ^{2} \Phi_{I} \sin ^{2} \rho\right]^{\frac{1}{2}}\left|\nabla f_{N}\right| \tag{I.4.8}
\end{equation*}
$$

The deviation of the ray α, due to the horizontal gradient will now be determined.

The ray path looking vertically downward on the Ottawa-satellite path is shown in Figure I.5. The straight line OS is for no horizontal gradients. The path with horizontal gradients is broken into three parts, A below the slab, B in the slab, and C above the slab ionosphere. A and C are straight lines, B has radius of curvature $R_{c} \cdot \alpha$ is very small so that to a good approximation the length of lines A, B and C can be obtained from Figure I. 3 as

$$
\begin{align*}
& A=R \sin \theta_{1} / \sin \Phi_{1} \\
& B=\left(R+h_{1}\right) \sin \theta_{2} / \sin \Phi_{4} \tag{I.4.9}\\
& C=\left(R+h_{2}\right) \sin \theta_{3} / \sin \Phi^{\prime}
\end{align*}
$$

where $\Phi_{1}, \Phi_{4}, \theta_{1}, \theta_{2}$ and θ_{3} can be obtained in terms of Φ^{\prime} from (1.3.3) and (I.3.4) and Φ^{\prime} can be obtained by iteration as discussed above. From Figure I.3,

$$
\begin{equation*}
\sin \Phi_{I}=\frac{\left(R+h_{s}\right) \sin \Phi^{\prime}}{n_{0}\left(R+h_{I}\right)} \tag{1.4.10}
\end{equation*}
$$

Figure 1-5. Plan view of ray-path deviation due to a horizontal gradient

For the triangle OIS in Figure I.5,

$$
\begin{equation*}
\frac{\sin \alpha}{\overline{O I}}=\frac{\sin \alpha}{A+\frac{1}{2} B}=\frac{\sin \gamma}{A+B+C} \tag{I.4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\pi-B / R_{c} \tag{I.4.12}
\end{equation*}
$$

In order to find the Doppler frequency it is necessary to determine k^{\prime} the wave vector of the VHF wave modified by the ionosphere with horizontal gradients. k^{\prime} can be obtained from α and the orientation of the plane containing the modified ray. The orientation of this plane is specified by μ, the angle between the vertical plane through Ottawa and the satellite and the plane containing the modified ray. The latter plane contains k (wave vector if no horizontal gradient) and k^{\prime}. Note that k is common to both planes and that ∇f_{N} is in the (k, k^{\prime}) plane. The unit vector ε_{1} is then normal to the (k, k^{\prime}) plane since it is being assumed that the ray in the no-horizontal-gradient case is a straight line. Note also that $j^{\prime \prime}$ in the ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$) coordinate system with origin at height h_{I} is parallel, and hence equal, to 1 in the (x, y, z) coordinate system with origin at the satellite. j is normal to the vertical plane, hence from (I.4.5) and (I.4.6)

$$
\begin{equation*}
\cos \mu=\underline{\varepsilon}_{1} \cdot \underline{j}=\underline{\varepsilon}_{1} \cdot \mathfrak{1}^{\prime \prime}=-\cos \Phi_{I} \sin \rho / \sin \delta \tag{I.4.13}
\end{equation*}
$$

μ and α are now known and k^{\prime} in (x, y, z) coordinates remains to be determined. In the (x, y, z) coordinate system at the satelifte

$$
\begin{equation*}
\cos \mu=\varepsilon_{0}\left|\dot{L} \cdot\left(\frac{k^{\prime} \times k}{k^{2} \sin \alpha}\right)\right| \tag{I.4.14}
\end{equation*}
$$

where $\varepsilon_{0}= \pm 1$ since at this point there is uncertainty in the sign of $\cos \mu$ and $\left|\underline{k} \underline{k}^{\prime}\right|=|\underline{k}|=k$. From (I.3.7) and setting $\underline{k}^{\prime}=1 k_{x}^{\prime}+j k_{y}^{\prime}+\underline{k}_{1} k_{z}^{\prime}$

$$
\begin{align*}
\underline{k}^{\prime} \times \underline{k} & =\left(\underline{i} k_{x}^{\prime}+1 k_{y}^{\prime}+\underline{k}_{1} k_{z}^{\prime}\right) x\left(\underline{1} k \sin \Phi^{\prime}+\underline{k}_{1} k \cos \Phi^{\prime}\right) \tag{I.4.15}\\
\left|\underline{k}^{\prime} \times \underline{k}\right|_{y} & =k\left[-k_{x}^{\prime} \cos \Phi^{\prime}+k_{z}^{\prime} \sin \Phi^{\prime}\right]
\end{align*}
$$

From (I.4.14) and (I.4.15)

$$
\begin{equation*}
\varepsilon_{0} k|\cos \mu| \sin \alpha=-k_{x}^{\prime} \cos \Phi^{\prime}+k_{z}^{\prime} \sin \Phi^{\prime} \tag{I.4.16}
\end{equation*}
$$

From the dot product of \underline{k} and \underline{k}^{\prime}

$$
\begin{equation*}
k^{2} \cos \alpha=\underline{k} \cdot \underline{k}^{\prime}=k_{x}^{\prime} k \sin \Phi^{\prime}+k_{z}^{\prime} k \cos \Phi^{\prime} \tag{I.4.17}
\end{equation*}
$$

Multiplying (I.4.16) by sin Φ^{\prime} and (I.4.17) by $\cos \Phi^{\prime}$ and adding gives

$$
\begin{equation*}
k_{z}^{\prime}=k\left[\varepsilon_{0}|\cos \mu| \sin \alpha \sin \Phi^{\prime}+\cos \alpha \cos \Phi^{\prime}\right] \tag{I.4.18}
\end{equation*}
$$

From (I.4.16)

$$
\begin{equation*}
k_{x}^{\prime}=k\left[\cos \alpha \sin \Phi^{\prime}-\varepsilon_{0}|\cos \mu| \sin \alpha \cos \Phi^{\prime}\right] \tag{I.4.19}
\end{equation*}
$$

Since $k^{\prime 2}=k_{x}^{\prime 2}+k_{y}^{\prime 2}+k_{z}^{\prime 2}$, then from (I.4.18) and (I.4.19)

$$
\begin{equation*}
k_{y}^{\prime}=\varepsilon_{2} k|\sin \mu \sin \alpha| \tag{1.4.20}
\end{equation*}
$$

where $\varepsilon_{2}= \pm 1$ since there is uncertainty in the sign of $k^{\prime} \cdot k^{\prime}$ is now determined in terms of $\mu, \alpha, \Phi^{\prime}, \varepsilon_{0}$ and ε_{2}.

To calculate μ from (I.4.13), Φ_{I} can be obtained from (I.4.10), δ can be obtained from (I.4.5) and (I.4.7) once ρ is known and ρ is determined as follows.

Suppose the east $\left(\nabla f_{N}\right)_{E}$ and south $\left(\nabla f_{N}\right)_{S}$ components of the plasmafrequency gradient are known. From Figure I.6, which shows the orientation of $\nabla \cdot f_{N}$ in the horizontal plane at height h_{I}

Figure 1.6. Relationship of the $\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)$ coordinate system to the east and south directions

$$
\begin{equation*}
\rho=g+\xi-\frac{\pi}{2} \tag{1.4.21}
\end{equation*}
$$

where

$$
\begin{equation*}
g=\tan ^{-1}\left[\left(\nabla f_{N}\right)_{E} /\left(\nabla f_{N}\right)_{S}\right] \tag{1.4.22}
\end{equation*}
$$

and ξ, the angle between south and the $x^{\prime \prime}$ axis at the height h_{I} is given by

$$
\begin{equation*}
\cos \xi=\frac{\underline{P}_{0} \times \underline{P}_{I}}{\mid \underline{P}_{0} \times P_{I} T} \cdot \frac{\underline{P}_{I}\left(0, \phi_{I}\right) \times \underline{P}_{I}\left({ }^{\theta} I, \phi_{I}\right)}{\mid \underline{P}_{I}\left(0, \phi_{I}\right) \times \underline{P}_{I}\left(\theta_{I}, \phi_{I}\right) T} \tag{I.4.23}
\end{equation*}
$$

Equation (1.4 .23) states that ξ is the angle between the normal to the vertical plane through the station and the (x ", $y^{\prime \prime}, z^{\prime \prime}$) origin and the normal to the vertical plane directed south through the ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$) origin. The position vector ${\underset{P}{0}}^{0}$ of the station in ($x^{\prime}, y^{\prime}, z^{\prime}$) coordinates is given by (I.1.2). The position vector ${\underset{I}{I}}\left(\theta_{I}, \phi_{I}\right)$ of the ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$) origin must now be found in ($x^{\prime}, y^{\prime}, z^{\prime}$) coordinates. From Figure I. 7

$$
\begin{equation*}
\underline{\mathrm{P}}_{\mathrm{I}}=\mathrm{r}_{3} \underline{\mathrm{P}}_{\mathrm{O}}+\mathrm{r}_{4} \underline{\mathrm{P}}_{\mathrm{B}} \tag{1.4.24}
\end{equation*}
$$

where

Figure I.7. Geometry for determining position vector \underline{P}_{I}

$$
\begin{equation*}
r_{4} \equiv \frac{r_{1}}{r_{1}+r_{2}}=\frac{\left(R+h_{I}\right) \sin \theta_{4}}{\left(R+h_{s}\right) \sin \theta} \tag{I.4.25}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{3} \equiv \frac{r_{2}}{r_{1}+r_{2}}=1-r_{4} \tag{I.4.26}
\end{equation*}
$$

θ is given by (I.1.3) and $\theta_{4}=\theta_{1}+\theta_{I}=\theta_{1}+\left(\Phi_{3}-\Phi_{I}\right)$ from Figure I. ${ }^{2}$. θ_{1} is given by the first square bracket of (I.3.4), Φ_{3} is given by the first term in the second square bracket of (I.3.4) and from (I.3.1) and Figure I.3, $\Phi_{I}=\sin ^{-1}\left[\left(R+h_{s}\right) /\left(R+h_{I}\right) \cdot \sin \Phi^{\prime} / n_{0}\right]$. If the latitude and longitude of the origin of the ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$) coordinate system are (θ_{I}, ϕ_{I}) then

$$
\begin{align*}
& \left(P_{I}\right)_{x^{\prime}}=\cos \theta_{I} \cos \phi_{I}=r_{3} \cos \theta_{0} \cos \phi_{0}+r_{4} \cos \theta_{S} \cos \phi_{S} \\
& \left(P_{I}\right)_{y^{\prime}}=\cos \theta_{I} \sin \phi_{I}=r_{3} \cos \theta_{0} \sin \phi_{0}+r_{4} \cos \theta_{S} \sin \phi_{s} \tag{I.4.27}\\
& \left(P_{I}\right)_{Z^{\prime}}=\sin \theta_{I}=r_{3} \sin \theta_{0}+r_{4} \sin \theta_{S}
\end{align*}
$$

and from (1.4.27)

$$
\begin{align*}
\theta_{I}= & \sin ^{-1}\left[r_{3} \sin \theta_{0}+r_{4} \sin \theta_{s}\right] \\
\phi_{I}= & \tan ^{-1}\left[\left(r_{3} \cos \theta_{0} \sin \phi_{0}+r_{4} \cos \theta_{s} \sin \phi_{s}\right) /\right. \tag{I.4.28}\\
& \left.\left(r_{3} \cos \theta_{0} \cos \phi_{0}+r_{4} \cos \theta_{s} \cos \phi_{s}\right)\right]
\end{align*}
$$

Hence ρ can be calculated from (I.4.21), (I.4.22), (I.4.23), and (I.4.28).
Returning to the calculation of \underline{k}^{\prime}, the values of α and Φ^{\prime} can be obtained from (I.4.11) and from the iteration process. The signs ε_{0} and ε_{2}
are determined as follows. are determined as follows.

Suppose $\mu=90^{\circ}$, then from (I.4.20)

$$
\begin{equation*}
k_{y}^{\prime}=\varepsilon_{2} k|\sin \alpha| \tag{I.4.29}
\end{equation*}
$$

Consider two positions of the satellite A and B as shown in Figure I.8. If ∇f_{N} has a component in the direction of $y^{\prime \prime}$, then $k_{y}^{\prime}<0$ and vice versa. Hence

$$
\begin{equation*}
\varepsilon_{2}=\frac{-\cos \rho}{|\cos \rho|} \tag{I.4.30}
\end{equation*}
$$

Suppose $\mu=0^{\circ}$ or 180° then the plane of the ray coincides with the vertical plane through Ottawa and the satellite. From (I.4.18) and (I.4.19)
and

$$
\begin{align*}
& k_{z}^{\prime}=k \cos \left(\Phi^{\prime}-\varepsilon_{0}|\alpha|\right) \tag{1.4.31}\\
& k_{x}^{\prime}=k \sin \left(\Phi^{\prime}-\varepsilon_{0}|\alpha|\right)
\end{align*}
$$

Figure 1.8. Illustration to indicate how ϵ_{2} can be obtained

If k has a component in the direction of ∇f_{N}, the refraction due to ∇f_{N} is such as to effectively decrease the value of Φ^{\prime} so that $\varepsilon_{0}=+1$. Similarily if k has a component opposite in direction to $\nabla f_{N}, \varepsilon_{o}=-1$. The component of \underline{k} in direction ∇f_{N} is

$$
\begin{equation*}
\frac{k \cdot \nabla f_{N}}{\left|\nabla f_{N}\right|}=k \cos \Phi^{\prime} \frac{\left(\nabla f_{N}\right) x}{\mid\left(\nabla f_{N}\right) T} \tag{I.4.32}
\end{equation*}
$$

$\cos \Phi^{\prime}$ is always positive so that

$$
\begin{equation*}
\varepsilon_{0}=\left(\nabla f_{N}\right)_{x} /\left|\left(\nabla f_{N}\right)_{x}\right| \tag{1.4.33}
\end{equation*}
$$

From Figure 1.6

$$
\begin{equation*}
\left(\nabla f_{N}\right)_{\mathbf{x}}=\left|\nabla f_{N}\right| \cos (\xi+g) \tag{I.4.34}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\varepsilon_{0}=\cos (\xi+g) /|\cos (\xi+g)| \tag{I.4.35}
\end{equation*}
$$

\underline{k}^{\prime} can now be calculated and hence the Doppler frequency with horizontal gradients is

$$
\begin{align*}
f_{D I G}= & -\frac{f}{c}\left[V_{x}\left(\cos \alpha \sin \Phi^{\prime}-\varepsilon_{0}|\cos \mu| \sin \alpha \cos \Phi^{\prime}\right)\right. \\
& +V_{y}\left(\varepsilon_{2}|\sin \alpha \sin \mu|\right) \tag{I.4.36}\\
& \left.+V_{z}\left(\cos \alpha \cos \Phi^{\prime}+\varepsilon_{0}|\cos \mu| \sin \alpha \sin \Phi^{\prime}\right)\right]
\end{align*}
$$

APPENDIXII

PROGRAM OSCDOP5

1.000 C	PROGFAM OSCDOP5
2.000 C	
3.000 C	OSCDOP5 CALCLLATES THE EFFECT OF THE IONOSPHERE ON THE DOPPLER
4.000 C	FREQUENCY OF SARSAT SIGNALS. BOTH VERTICAL AND HORIZONTAL ELECTRON
5.000 C	DENSITY GRADIENTS ARE CONSIDERED. THE IONOSPHERE IS ASSLMED TO BE A
6.000 C	SPHERICAL SLAB OF CONSTANT DENSITY FROM 200 TO 500 KM HEIGHT.
7.000 C	! SET F:4/OSCAR6.284201C
8.000 C	!SET F: 109/CALC3.284201C
9.000 C	!SET F:110/CALC2.284201G
10.000 C	!LINK BOSCDOP5,BINORB.2842012,FVAN2B.284201G;SATT.:SYS;TSL.:SYS
11.000 C	BINORB DOES THE ORBITAL CALCLLATIONS USING THE BROLWER MEAN
12.000 C	ORBITAL ELEMENTS IN OSCARG. CALC2 CONTAINS THE FOF2 VALUES
13.000 C	CORRESPONDING TO THE LATITUDES IN CALC3. FVAN2B IS FOR COORDINATE
14.000 C	TFANSFORMATIONS AND VECTOR OPERATIONS.
15.000 C	FOR OSCDOP4 AND ALL SUBROUTINES, INPUT AND OUTPUT LATS AND LONGS
16.600 C	ARE IN DEGREES. ALL OTHER ANGLES ARE IN RADIANS.
17.000	DIMENSION V1(3), V2 (3), V3 (3), V4 (3), V5(3), V6(3)
18.000	COMMON/COMFN/KLAT (500), FOF2(500), NR
19.000 C	READ IN LATS AND CORESPONDING FOF2 VALUES. LATS AND FOF2
20.000 C	VALUES ARE FROM RECORD \#NSTART TO \#NEND IN CALC2 AND CALC3.
21.00014	WFITE (108,98)
22.00098	FORMAT (1H1)
22.100	WFITE (108,89)
22.20089	FORMAT(33H READ IN O. (OR 1.) TO STOP(OR GO))
22.300	READ (105,4) STOPGEN;IF (STOPGEN<1.) STOP
23.000	WFITE $(108,77)$
24.00077	FORMAT (65H READ FNO,F15.5. FN OBTAINED FROM CALC2 AND CALC3 IF
25.000	1FN=O.)
26.000	READ (105,4)FNO
27.000	WFITE (105,78)
28.00078	FORMAT (18H READ DFNDSS,F15.5)
29.000	READ (105,4)DFNDSS
30.000	WFITE (108,99)
31.00099	FORMAT (18H READ DFNDSE, F 15.5)
32.000	READ $(105,4)$ DFNDSE
33.0004	FORMAT (F 15.5)
34.000	WFITE (108,93)
35.00093	FORMAT (26H READ NSTART AND NEND, 2I3)
36.000	READ (105,500)NSTART, NEND
37.000500	FORMAT (2I 3)
38.000	NR $=$ NEND-NSTART +1
39.000	CALL POSREC(109, NSTART-1)
40.000	CALL POSREC(110, NSTART-1)
41.000	DO 501 Jx 1 , NR
42.000	READ (109,503)RLAT(J)
43.000501	FEAD (110,504)FOF2(J)
44.000503	FORMAT (20X,F6.2)
45.000504	FORMAT(13X,F2.0)
46.000 C	SAT POSITION CALCLLATED 12 MIN BEFORE TO 12 MIN AFTER TIME
47.000 C	OF CLOSEST APPROACH. LYxYEAR, LDaDAY, LHzHOUR, MINzMINUTE
48.000 C	AND ISCAxSECOND OF CLOSEST APPROACH. DOPPLEF CALCLLATIONS ARE
49.000 C	ISTEP SECONDS APART.
50.000	PIx3.1415926536;PxPI/180.;Rx6371.

101.000
102.000
103.000
104.000
105.000
106.000
107.000
108.000
109.000
110.000 C
111.000
112.000
113.000
114.000
115.000
116.000
117.000
118.000
119.000
120.000
121.000
122.000
123.000
124.000
125.000
126.000
127.000
128.000
129.000
130.000
131.000 C
132.000
133.000
134.000
135.000
136.00 ,
137.000
138.000
139.000
140.000
141.000
142.000 C
143.000
144.000 C
145.000 C
146.000
147.000
148.000
149.000
150.000
151.000

CALL TRANSFORM(LY,H,0.,0.,T2, P2,NSY,V,TH2,PH2)
CALL VCC(V,TH2/P, PH2/P,V2)
CALL TRANSFORM (LY,6371.,0.,0.,T1,P1,NSY,V,TH1,PH1)
CALL VCC(V,TH1/P, PH $1 / \mathrm{P}, \mathrm{V} 1)$
REPEAT 10, FOR $\mathrm{I}=1,2,3$
V4(I) $=\mathrm{V} 3(\mathrm{I})-\mathrm{V} 2(\mathrm{I})-\mathrm{V} 6(\mathrm{I})+\mathrm{V} 1(\mathrm{I})$
10 V5(I) $=((\mathrm{V} 2(\mathrm{I})-\mathrm{V} 1(\mathrm{I}))+(\mathrm{V} 3(\mathrm{I})-\mathrm{V} 6(\mathrm{I}))) / 2$.
FELVaSQRT (V4 (1)**2+V4(2)**2+V4(3)**2)
FDGx-RELV*COS(ANGLE2(V4,V5)*P)/.01
C Calcllate average fn, g and dFndsn over ionospheric path.
HH $\mathrm{HHHMIN}=200$.
SLM1xSLM2x0.
HHMAX $=500$.
DO 20 II 1,100
CALL. IONCOOR (DLAT,DLONG,HH,HGT,TION,PION)
CALL PLAS (TION,HH,FN, DFNDSN)
SLM1xSLM1+FN
SUM2xSLM2+DFNDSN
$\mathrm{HH} \times \mathrm{HH}+25$.
IF (HH.GT. (HHMAX+0.1)) GO TO 21
CONTINUE
FNzSLM1/II
DFNSNxSUM2/II
IF (FNO.NE.O.) FNzF NO; DFNDSN=-DFNDSS
DFNDSSェ-DFNDSN
IF (DFNDSE.EQ.O..AND.DFNDSS.EQ.O.)GェO.;GO TO 25
$G=A T A N(D F N D E, D F N D S)$
$G D=G / P$
H x HGT
DFNDS x SORT (DFNDSE**2+DFNDSS**2)
CALCLLATE DOPPLER FREQUENCY IN EARTH COORDINATES.
FD x DI x FDIG $=D F D x D F D G=0$.
CALL SATV(TS, PS, TS1, PS1, 1., HS, HS1, VX, VY, VZ, TH, PO, TO)
DISTxR*TH
CALL DOP3(PO,TD,PS,TS,VX,VY,VZ,TH,FN,DFNDS,G,H,FD,FDI,
1FDIG, DFD, DFDG)
5 WRITE (108, 3)LY,LD, LH, MIN,LS, DLAT, DLONG, HGT, DIST, FN, DFNDS, GD, FDG 1,FD,FDI,FDIG, DFD, DFDG
3 FORMAT(I2, 3I3, I5,F6.1, 3F8.1,F7.1,F8.5,F6.0,4F7.1,2F6.1)
GO TO 14
END
SLBROCTINE VCC(VM,T,P,V)
CALCLLATES VECTOR V IN CELESTIAL COORDS USING ITS MODLLUS VM, CODECLINATION T AND RIGHT ASCENTION P.
DIMENSION V(3)
CALL $\operatorname{UVCC}(T, P, V)$
DO 2 I $=1,3$
$2 \mathrm{~V}(\mathrm{I})=\mathrm{VM} \mathrm{M}^{*}(\mathrm{I})$
RETURN
END
152.000 C
153.000
154.000 C
155.000
156.000 C
157.000 C
158.000
159.000
160.000
161.000
162.000
163.000
164.000
165.000
166.000
167.000
168.000
169.000
170.000
171.000
172.000
173.000
174.000
175.000
176.000
177.000
178.000
179.000
180.000
181.000
182.000
183.000 C
184.000
185.000 C
186.000 C
187.000
188.000
189.000
190.000
191.000
192.000
193.000
194.000
195.000
196.000
197.000
198.000
199.000 C

SUBROUTINE IONCOOR (DLAT, DLONG,H,H3,T3,P3)
CALCLLATES LAT AND LONG OF INTERSECTION OF STRAIGHT
LINE BETWEEN OTTAWA AND OSCARG WITH HEIGHT H IN IONOSPHERE.
(DLAT,DLONG)xSAT COORDS.
He HEIGHT IN IONOSPHERE.
H3xSAT HEIGHT.
(T3,P3) x GEOG. COORDS OF SUB IONOSPHERE HEIGHT
PI=3.1415926536; PxPI/180. ;Rx6371.
DLAT=DLAT*P
DLONGEDLONG*P
ST2xSIN (DLAT); CT2=COS (DLAT)
SP2xSIN (DLONG) ; CP2=COS (DLONG)
ST1xSIN (45.36*P);CT1mCOS (45.36*P)

SGSIN (GAM) ; CGxCOS (GAM)
Q*R/(R+H3)-CG
EPSxACOS (Q/SORT (SG*SG+Q*Q))
GAM $3 x$ PI-EPS-ASIN $((R+H 3) /(R+H) * S I N(E P S+G A M))$
SG3xSIN(GAM3)
R4: $(\mathrm{R}+\mathrm{H}) /(\mathrm{R}+\mathrm{H} 3)$)SG3/SG
R3=1.-R4
T3*ASIN(R3*ST1+R4*ST2)
P3zATAN((R3*CT1*SP1+R4*CT2*SP2) , (R3*CT1*CP1+R4*CT2*CP2))
P3xP3/P
T3 3 T3/P
DLATxDLAT/P
DLONG:DLONG/P
RETURN
END
SLBROUTINE PLAS(DLAT,H,FN,GRAD)
DETERMINES PLASMA FREQUENCY AND GRADIENT FROM TABLLATED VALUES
FOR A GIVEN LATITLDE.
COMMON/COMFN/FLAT (500) ,FOF2(500) ,NR
DO 10 J 2 , NR
IF(SIGN(1.,(RLAT(J)-DLAT)).EQ.SIGN(1.,(DLAT-RLAT(J-1)))) GO TO 15
CONTINUE
WRITE $(108,1) ;$ STOP
15 GRADs(FOF2(J)-FOF2(J-1))/(RLAT(J)-RLAT(J-1))
FNxFOF2(J-1)+GRAD*(DLAT-RLAT (J-1))
FNxFN/10.
GRADxGRAD/(H+6371.)/O.17453293
RETURN
FORMAT(17H LAT NOT IN RANGE)
END
200.000
201.000 C
202.000 C
203.000 C
204.000
205.000
206.000
207.000
208.000
209.000
210.000
211.000
212.000
213.000
214.000
215.000
216.000
217.000
218.000
219.000
220.000
221.000
222.000
223.000
224.000
225.000
226.000
227.000
228.000
229.000
230.000
231.000
232.000
233.000
234.000
235.000
236.000
237.000
238.000
239.000
240.000
241.000
242.000
243.000
244.000
245.000
246.000
247.000
248.000
249.000
250.000

SUBROUTINE SATV(TS, PS, TS $1, \mathrm{PS} 1, \mathrm{~T}, \mathrm{HS}, \mathrm{HS} 1, \mathrm{VX}, \mathrm{VY}, \mathrm{VZ}, \mathrm{TH}, \mathrm{PO}, \mathrm{TO})$
GIVEN THE SAT POSITION AT THE TIME OF INTEREST AND AT
AN INCREMENTAL TIME T LATER, SATV CALCLLATES SAT VEL IN XYZ COOFDS,
TH $=$ ANGLE BETWEEN SAT AND OTTAWA AT CENTRE OF EARTH.
PIx3.1415926536; PxPI/180.; Rx6371.
RPH x R +HS ; $\mathrm{FPH} 1 \leq \mathrm{R}+\mathrm{HS} 1$
TO $=45.36 * P ; P O=75.88 * P$
TSxTS*P; PSxPS*P; TS1xTS1*P; PS1xPS1*P
VOxRPH/T; V1xRPH1/T
CTOrCOS (TO) ; STO x SIN(TO)
CPOrCOS (PO); SPOxSIN(PO)
CTS $x \operatorname{COS}(T S) ; \operatorname{STS} x S I N(T S)$
CTS $1 \times$ COS (TS 1); STS $1 \mathrm{xSIN}(T S 1)$
CPS x COS (PS) ; SPS $x S I N(P S)$
CPS1xCOS (PS1); SPS $1=\mathrm{xSIN}(P S 1)$
VXP x V1*CTS 1*CPS 1-V0*CTS*CPS
VYP=V1*CTS1*SPS1-VO*CTS*SPS
VZPxV1*STS1-VO*STS
V $=S$ SRT (VXP *VXP +VYP *VYP+VZP*VZP)
PSPS 1X $=R$ PH* (CTS*CPS) + RPH1*CTS 1*CPS1
PSPS 1Y \approx RPH* ${ }^{*}$ CTS*SPS + RPH 1*CTS $1 * S P S 1$
PSPS 1Z $=$ RPH*STS+RPH1*STS 1

XPK $=P S P S 1 X / P S P S 1$
YPK $=P S P S 1 Y / P S P S 1$
ZPK x PSPS12/PSPS1
XPJ $=$ CTO*SPO*PSPS12-STO *PSPS $1 Y$
YPJ $x-C T O * C P O * P S P S ~ 1 Z+S T O * P S P S ~ 1 X ~$
ZPJ $=$ CTO*CPO*PSPS $1 Y-C T O * S P O * P S P S ~ 1 X ~$
PJ x SQRT (XPJ *XPJ + YPJ *YPJ $+2 P J * Z P J$)
XPJ x XPJ/PJ;YPJ $x Y P J / P J ; Z P J x Z P J / P J ~$
CA1x (VXP*XPJ+VYP*YPJ+VZP*ZPJ)/V
CA2ェ(VXP*PSPS 1X+VYP*PSPS1Y+VZP*PSPS 1Z)/(V*PSPS1)
SA2=SQRT (1.-CA2*CA2)
CA3xCA1/SA2
CA4xVXP* (YPJ*ZPK -ZPJ*YPK) +VYP* (-XPJ*ZPK $+Z P J * X P K)$
1+VZP*(XPJ *YPK-YPJ*XPK)
SA 3xSQRT (1-CA3*CA3)*CA4/ABS (CA4)
$V X=V * S A 2 * S A 3$
$V Y \pm V{ }^{*}$ SA2 $^{*} \mathrm{CA} 3$
$\mathrm{VZ*V}$ *CA2
CTHz (CTO*CPO*PSPS $1 \mathrm{X}+$ CTO*SPO*PSPS 1Y+STO*PSPS 12)/PSPS 1
TH $x A C O S$ (CTH)
TSxTS/P
PSxPS/P
TS1xTS1/P
PS1xPS1/P
POxPO/P
TOETO/P
RETURN
END
252.000
253.000
254.000 C 255.000
256.000 C
257.000
258.000
259.000
260.000
261.000
262.000
263.000
264.000
265.000
266.000
267.000
268.000
269.000
270.000
271.000
272.000
273.000
274.000
275.000
276.000
277.000
278.000
279.000
280.000
281.000 1
282.000
283.000
284.000 C
285.000 C
286.000
287.000
288.000
289.0001
290.000
291.000
292.000
293.000
294.000
295.000
296.000
297.000
298.000
299.000
300.000

C

SUBROUTINE DOP3(PO,TO, PS,TS,VX,VY,VZ,TH,FN,DFNDS, G,H, 1FD,FDI,FDIG, DFD, DFDG) PRGM DOP3 CALCLLATES THE DOPPLER EFFECT OF THE IONOSPHERE ON SIGNALS TRANSMITTED FROM A SATELLITE. CURVED EARTH AND A CURVED SLAB IONOSPHERE ARE ASSLMED.
PI*3. 1415926536
PS x PS"PI/180.
POェPO"PI/180.
PxPI/180.
TSxTS ${ }^{\text {P }}$
TOTO*P
SPOxSIN (PO); CPO COS (PO)
STO $=$ SIN (TO); CTO COS (TO)
STS=SIN (TS); CTS $=C O S(T S)$
SPS x SIN(PS);CPS x COS(PS)
R=6371.
FF=30.
$\mathrm{H} 1=200$.
$\mathrm{H} 2=500$.
RPH $=R+H$
RPH1=R+H1
RPH2 \approx R + H2
SPP=R/RPH*. 9999
C CALC OF DOPPKER WITH NO IONOSPHERE.
S=SCRT (R"R+RPH*RPH-2. *R*RPH ${ }^{*} \operatorname{COS}(T H)$)
SP $\because R / S{ }^{*} \operatorname{SIN}(T H)$
ALP=PI-TH-ASIN(SP)
PID2 $=P I$ /2.
IF (ALP.LT.PID2)WRITE $(108,11)$
11 FORMAT (4ZH SATELLITE OLT OF FANGE WITHOLT IONOSPHERE)
CPxSQRT (1.-SP*SP)
FDx-FF/3.EO5*1.EO6*(VX*SP+VZ*CP)
CALC OF PHI PRIMED (ANGLE OF INCIDENCE AT SAT) AND DOPPLER
DUE TO VERTICAL VARIATION OF ELECTRON DENSITY.
IZZ $=0$
GN =SQRT(1.-FN*FN/(FF*FF))
C1×RPH/R;C2xRPH/RPH1;C3*C2/GN;C4mRPH/RPH2;C5mC4/GN
1 D1』C1*SPP;D2xC2*SPP;D3=C3*SPP;D4xC4*SPP;D5=C5*SPP
IF (D3.GT.1..OR.D1.GT.1.)SPPxSPP*.999;GOTO 1
IF (D 1.GT. 1.)D 1ะ. 9999999
IF (D3.GT. 1.)D3z. 9999999
IF (D2.GT.1.)D2E. 9999999
IF(D4.GT.1.)D4 .9999999
IF (D5.GT.1.)D5 59999999
$I Z Z=I Z Z+1$
IF (IZZ.GT. 100)GO TO 5
F=-TH+ASIN (D1)-ASIN (D2) +ASIN (D3)-ASIN (D5) + ASIN (D4)-ASIN (SPP)
DFDSP $=C 1 / \operatorname{SQRT}\left(1 .-D 1 D^{-D} 1\right)-C 2 / \operatorname{SORT}\left(1 .-D 2^{*} D 2\right)+C 3 / \operatorname{SQRT}(1 .-D 3 D 3)$

301.000
302.000
303.000
304.000
305.000
306.000
307.000
308.000
309.000 i
310.0005
311.0007
312.0009
313.000
314.0006
315.000
316.000 C
317.000 C
318.000 C
319.000
320.000
321.000
322.000
323.000
324.000
325.000
326.000
327.000
328.000
329.000
330.000
331.000
332.000
333.000
334.000
335.000
336.000
337.000
338.000
339.000
340.000
341.000
341.600 C
341.700 C
342.000
343.000
344.000
345.000
346.000
347.000
348.000
349.000
350.000

DSPDF $=1 . / D F D S P$
SPP 1mSPP
SPP=SPP1-F*DSPDF
IF (ABS ((SPP-SPP1)/SPP).GT.1.E-06)GO TO 1
PHI $1 \times T H+\operatorname{ASIN}(D 2)-(\operatorname{ASIN}(D 3)-A S I N(D 5))-(A S I N(D 4)-A S I N(S P P))$
PD2xPI/2.
IF(PHI1.GT.PD2)GO TO 4
GO TO 6
WRITE $(108,7)$;RETURN
WRITE (108,9);RETURN
FORMAT (39H SATELLITE OUT OF RANGE WITH IONOSPHERE)
FORMAT (74H TELEMETRY REFLECTED, ITERATION FAILED, OR SAT OUT OF RAN
1GE WITH IONOSPHERE
CPP=SQRT(1.-SPP*SPP)
FDI $x-F F / 3 . E O)^{*} 1 . E O 6 *(S P P * V X+C P P * Z)$
CALC OF AL AND DOPPLER WITH HORIZONTAL
ELECTRON DENSITY GRADIENT PRESENT. AL IS THE
dEVIATION OF THE RAY DUE TO THE HORIZONTAL GRADIENT.
PA=ASIN(C2*SPP)
PBzASIN(C5*SPP)
PC=ASIN(SPP)
EA=ASIN(C1*SPP)-PA
EBzASIN(C3*SPP)-PB
EC=ASIN (C4*SPP)-PC
DA=R*SIN(EA)/SIN(PA)
DB x RPH1*SIN(EB)/SIN (PB)
DCzRPH2*SIN (EC)/SIN (PC)
SPI \approx RPH ${ }^{*}$ SPP/(0.5* (RPH1+RPH2)*GN)
CPI $=$ SQRT(1.-SPI*SPI)
$\mathrm{HI}=0.5^{*}(\mathrm{H} 1+\mathrm{H} 2)$
TS $x T S / P ; P S \pm P S / P$
CALL IONCOOR (TS, PS, HI, H, THII, PHII)
TS x TS ${ }^{*}$; PS $x P S$ "
THII x THII *P; PHII $=$ PHII*
ST3xSIN(THII);CT3xCOS(THII)
CP3=COS (PHII) ; SP3xSIN (PHII)
POXPIX $=$ CTO*SPO*ST3-STO*CT3*SP3
POXPIYェ-CTO *CPO*ST3+STO*CT3*CP3
POXPIZ $=$ CTO ${ }^{*}$ CP 3* ${ }^{*}\left(\mathrm{CPO}{ }^{*} \mathrm{SP} 3-S O^{*} \mathrm{CP} 3\right.$)
POXPI $=$ SQRT (POXPIX**2+POXPIY**2+POXPIZ**2)
XI×PI-ACOS ((SP3*POXPIX-CP3*POXPIY)/POXPI)
IF (PO.LT.-72.*P)OUTPUT THII, PHII, POXPIX, POXPIY,
1POXPIZ, POXPI, CTO, SPO, STO,CT3, SP3
$\mathrm{XI}=\mathrm{ABS}(\mathrm{XI}) *(\mathrm{PO}-\mathrm{PHII}) /(\mathrm{ABS}(\mathrm{PO}-\mathrm{PHII}))$
$R O=X I+G-P I / 2$.
RCEGN*GN*FF*FF/FN/DFNDS/SORT(1.-(SPI*SIN(RO))**2)
$G A M=P I-D B / R C$
SAL= (DA+0.5*DB)*SIN (GAM)/(DA+DB+DC)
CAL*SQRT (1.-SAL*SAL)
SDELESQRT (1.-(SPI*SIN(RO))**2)
CPP $=C O S(A S I N(S P P))$
CMUx-CPI*SIN(RO)/SDEL
350.000
351.000
352.000
354.000
355.000
356.000
357.000
358.000
359.000
360.000
361.000
362.000
363.000 C
364.000
365.000
366.000
367.000

CMUr-CPI*SIN(RO)/SDEL
SMU'zSQRT (1.-CMU*CMU)
EPS2m-SIGN(1., COS(RO))
EPS $1=\operatorname{COS}(X I+G) / A B S(C O S(X I+G))$
CONz-1. E06 ${ }^{\text {FFF }}$ /3. EOS
FDIGX1*CON**X*CAL*SPP
FDIGX2r-CON*VX*ES 1*ABS (CMU)*SAL*CPP
FDIGY $=C O N^{*}{ }^{*}{ }^{*}$ EPS2 ${ }^{*}$ ABS (SAL*SMU)
FDIGZ1*CON*Z*CAL*CPP
FDIG22CON* * ${ }^{*}$ EPS 1*ABS (CMU)*SAL*SPP

OUTPUT
DFDxFDI-FD
DFDG×FIG-FD
RETURN
END

APPENDIX III

COMPUTATIONS

!SET F: 4/CSCAFE. 284201 C

!SET F: 109/CALC3.284201G
ISET F:110/CALC2. 284201 G

```
!LINK BCSCDOF5,BINGRB.284201G,FVANZB.284201G;SATT.:SYS;TSL.:SYS
    LINKING BCSCDOF5
    LINKING BINORB
    LINKING RVANZB
    LINKING SATT
    LINKING TSL
'F1' ASSOCIATED.
    LINKING SYSTEM LIB
!5
```

PEAD IN O. (OF 1.) TO STOF (OF GO)
?1.
FEAD FNO,F15.5. FN OBTAINED FRGM CALC2 AND CALCS IF FNiO.
? 0 .
FEAD DFNDSS, F 15.5
?.
FEAD DFNDSE,F 15.5
?. 0005
FEAD NSTAFT AND NEND, 213
$? 201040$
FEAD LY AMD LD, I2,I3
?7eOU
FEAS LH, MIN AND ISCA, 3 I2
? 143233
fead ISTEF, I2
350
FEAL FFEOUENCY IN MHZ, 195.5
? 3%

SATFL.ite out of fange without ionoshhefr,
TEJCMETF Y FFFICCTEL, ITEFATIGN FAILFE, OF SAT OUT OF FANGE WITH IONGSHEFE

5ATELSITE SUT OF FANGE WITHOUT TONOSHEFE

$7 t$	$1 t$	20	333	75.4	-6.9 .1	146.2 .4	336.1 .9	0.0	.00273	11.	431.7	431.7	429.7	429.4

$\begin{array}{lllllllllllllll}7 t & \ell & 1 t & 20 & 483 & 09.7 & -80.8 & 1403.8 & 2770.0 & 6.5 & .00128 & 23 . & 329.0 & 329.0 & 32 t .5 \\ 7\end{array}$

$\begin{array}{lllllllllllllllll}7 t & \text { e ft } & 20 & 733 & 53.2 & -102.1 & 1467.0 & 2273.9 & 6.7 & .00053 & 71 . & 27.3 & 27.3 & 27.9 & 22.8 & -.2 & -.9\end{array}$

70	16	20	1183	35.8	-114.8	146.3 .0	3418.4	0.7	.00965	130.	-438.1	-435.1	-435.4	-435.7	2.8
$7 t$	1	16	20	1233	33.2	-115.8	1461.3	3644.5	0.7	.00993	149.	-459.3	-459.3	-457.1	-459.6
2.2	1.3														

 \(\left.\begin{array}{lllllllllllllll}7 t & t & 20 & 1233 & 33.2 & -115.8 & 14 t .1 .3 & 36.44 .5 & 6.7 & .00993 & 149 . & -459.3 & -459.3 & -457.1 & -458.6\end{array}\right) .291 .3\)

SATEILITE OUT OF FANGE WITHOITT IONOSHEFE
SATEILIITE OUT OF FANGE WITHOIT IONOSFHEFE
TEREMET'F FEFLECTEL, ITEFATIGN FALLFL, OF SAT OUT OF FANGE WITH IONOSFHEFE
T
SATELIIITE OUT OF FANGE NITHOUT IONOSH HEFE
telemetfy feflected, tefation falied, of sat out of fange with ionosfhere

FEAD 1N (. (OF 1.) TO STOF (OF GO)
FEA
*STOF" 0
$!$

1. ORIGINATOR: Department of Communications/Communications Research Centre
2. DOCUMENT NO: CRC Report No. 1313
3. DOCUMENT DATE: February 1978
4. DOCUMENT TITLE: Ionospheric Effects on the Doppler Frequency Shift in SARSAT Propagation
5. AUTHOR(s): D.B. Muldrew and H.G. James
6. KEYWORDS: \qquad
(2)
(2) SARSAT
(3) Propagation
7. SUBJECT CATEGORY (FIELD \& GROUP: COSATI)
20 Physics

2014 Wave Propagation

8. ABSTRACT:

The Doppler frequency shift of signals propagating from an Emergency Locator Transmitter (ELT) on a downed aircraft up to a transponder on a search and rescue satellite (SARSAT) and down to a central station is affected by the ionosphere. In this report ionospheric effects are estimated for a proof-of-concept SARSAT experiment using the AMSAT OSCAR-6 satellite. In this case, the down link is at 30 MHz and the daytime ionosphere with no horizontal gradients in electron density can change the Doppler frequency by a few hertz. Horizontal gradients of electron density can have more effect on the Doppler frequency than the vertical distribution of density since the negative vertical density gradient in the topside ionosphere tends to compensate the Doppler effect due to the positive gradient in the bottomside. In the late afternoon, evening and nighttime, large east-west troughs in the density distribution exist which can produce shifts of a few tens of hertz at 30 MHz . The Doppler frequency shift due to the ionosphere varies approximately inversely as the frequency. The results obtained here can be applied to the definition of an operational SARSAT system.

9. CITATION:

MULDREW, D. B.
--Ionospheric effects on the Doppler
frequency shift on SARSAIE propagatior

TK

5102.5

- C673e
\#1313

DATE DUE
DATE DE RETOUR

