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RANGE 	ESTIMATION 	FROM 	WAVE-FRONT 

CURVATURE 

by 

R.V. Webber 

ABSTRACT 

The computation of the range of a signal from its  wave  front  
curvature has been investigated. Some success was obtained by 
fitting a truncated power series to phase data which vvas taken by 
a linear array of antenna. In simulated experiments the effect of 
noise in the data was investigated extensively. For typical data 
obtained with the Communications Research Centre HFDF 1.2 km 
array, one should be able to make useful estimates of range for 
distances up to about 100 kilometers. 

In a field experiment the ground wave was used to estimate 
ranges of up to 111 kilometers. The bias and the rms deviation 
from the mean range were low for the near transmission sites but 
were up to 339f5 and 459i  respectively, for the more remote sites. 
An unsuccessful attempt was made to compute the range of a 
signal which had been reflected by the E layer of the ionosphere. 
In this case the range was about twice the useful limit for the 
present system and the received signal may well have consisted of 
two or more interfering rays. 

Because of distorted wavefronts resulting from wave interference 
the range cannot be computed for a resultant signal which is made 
up of two or more signals which come from almost the same 
direction. 

I. INTRODUCTION 

The question of the ability of a linear antenna array to measure the 
range of a transmitter from the curvature of the wavefront is one that is 
raised periodically. In this study a method will be presented for carrying 
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out such a range calculation. Some of the limits on the technique will be 
investigated theoretically and it will be tested both with simulated data 
and with data which were collected on the CRC HFDF system. 

Rice and Winacott l  have described the HFDF array which has un aperture 
of 1181.1 meters. Phases are measured along the array relative to the phase 
at one end of the array. The expected error due to the instrumentation in 
the measured value of the phase at each antenna is ±3 degrees for all 
frequencies in the bandwidth 2 - 30 MHz. The range at which a transmitter, 
located broadside to the array, produces a 3 degree phase difference between 
the ends and the centre of the array due to wavefront curvature varies from 
140 km at 2 MHz to 1400 km at 20 MHz. Thus, with sufficient signal to noise 
ratio, it would be reasonable to expect to be able to measure up to these 
ranges at the corresponding frequencies. 

A necessary condition is that there be measurable curvature in the 
result when phase, 6, is plotted against distance along the array, x, and the 
higher the curvature the better. Because of this such a method would work 
best for a signal incident from directions near broadside and would not work 
at all for a signal with an endfire direction. This is shown in Figure 1. 
Figure 1(a) shows three possible orientations of an array with respect to 
the transmitter. Figure 1(b) shows representative plots of phase against 
distance along the array. The correspondence between the array positions 
and the plots is indicated by numbers. For positions 1 and 3, both endfire 
positions, there is no curvature in the plot. For position 2, a broadside 
position, the curvature is maximum. Also, as range increases the wavefront 
becomes more planar so the method will become less reliable as range increases 
to large values. 

Figure 1. Diagrams to Show Relationship Betvveen Orientation of Array and the Plot of Radio-Wave 
Phase Against Distance x 
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2. THEORY 

The method which was used to estimate range and direction will be 
explained with the aid of Figure 2. In that figure the point T represents 
the location of a transmitter. The line OP represents a linear array of 
antennas. The line OT represents the range, R, of the transmitter with 
respect to a reference antenna at the end of the array which is represented 
by the point 0, and 0 represents the direction of the transmitter with 
respect to the same antenna and the line through the array. The line xT 
represents the distance, Cx , from the transmitter to an arbitrary antenna at 
x where x is the distance along the array from the reference antenna. 

The phase path different,  C'-R,  was expressed as a function of x, f(x), 
and then expanded in a MacLauren series, i.e. 

f(x) = {R2  + x 2  - 2Rx cos 0)- 1/2- R 	 (1) 

The MacLauren series is 

f"( 0) 2 f(x) = f(0) + f'(0) x + 	x + . . 
2 

where, from equation (1) 

f(0) 	0 

f'(0) = -cos 0 

f"(0) = sin
2  0  

3 cos sin 2 O  rum _ 

Figure 2. Diagram to Show Method of Estimating Range and Direction 

R2 
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It may be noted that f'(0) is a function of 6 only while f"(0) and all 
higher derivations are functions of both 0 and R. Thus to find 0 and R it is 
necessary to determine only f'(0) and f"(0). 

Since the elements of the array are equally spaced we may write 

x
i

= id (7) 

where xi  is the distance from antenna 0 to antenna i, d is the inter-element 
spacing and i is either zero or a positive integer. Series (2) may now be 
written as 

f(x.) = f(0) + f'(0)di + f"(0)  2 2 d i + 
2 	 • • • 

or 

f  (xi ) 	f (0) 
Y. - 	d 	d 	

+ f'(0)i + f"(°)  di2  + • • • 
2 

where y. will be identified with normalized phase path data obtained from 
measurelents along a linear array. Normalization here implies division by 
the antenna spacing. 

To y i  is now fitted, by least squares, the series 

y = a
o 
+ a

l
i + a

2
i 2  + a

3
i 3  + 	+ a i 

If M terms are used, series (10) is fitted to the normalized phase path 
data by solving the equations 

aT + aT + aT + 	+ a T 	=Y 
oo 	11 	22 

 
M M o  

a
o
T
1 
+ a

l
T
2 
+ a

2
T
3 
+ 	+ a

M 
T
M+1 	

= Y1 
 

a
o
T 2 

+ a
l
T
3 
+ a

2
T
4 
+ 	+ aM

TM+2 	
y
2 

a
o
T
M
+a

l
T14

+1 +a2TM+2 + 
	+aT = Y 

M 2M 	M 

where 
N-1 

J T. = 	E 	. 	, 
i=0 

N-1 	.j 
Y= 

E Yi 
1 , 

i=0 

(10) 
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0 
0 is defined as unity and N is the number of antennas in the array. 

These equations are derived in Appendix A. 

The value M = 2 was used in most applications of equation (11). This 
will be justified later when the simulated experiments are described. 

If there are no errors in the data 

a
1 

= -cos 6 

or 

-1 0 = cos (-a ) 1 

and 

sin 2 6 d  
a2 -  2R 

or 

s  
R/d -

in26 
 2a 2  

1 - a 2  
1  

2a2 

Thus 6 may be computed from al  of series (10) and R/d may be computed 
from al  and a2 of that series. 

In the practical case equations (15) and (18) will be only approxima-
tions because of errors in the data and because series (10) is necessarily 
truncated. 

3. SIMULATION EXPERIMENTS TO FIND THE OPTIMUM VALUE OF M 

To find out what value of M is the best to use in series (10), some 
simulation experiments were carried out in which the value of M varied from 
2 to 5. Perfect data were generated by the computer; series (10) was fit to 
these data by least-squares-best-fit and values for 0 and R/d were computed 
by equations (15) and (18). The results for various normalized ranges and 
directions are shown in the fourth column of Table 1. The normalized range 
tended to be computed more accurately for 0 values of 90 °  and for the higher 
order series. The errors in the values computed for 6 were sometimes as much 
as 0.2 degrees for a second order series and for the lowest normalized range 
used. Otherwise the error in direction was not greater than 0.01 degrees. 
The errors tended to be least for the longer ranges. 

In another set of experiments random gaussian errors with a standard 
deviation of 0.01 were incorporated into the normalized data. (This error 
corresponds to a phase error of 2.3 degrees at 5 MHz on the CRC HFDF 
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TABLE 1 

Results of Computations to Find Optimum Order of Series 

Normalized Range Found 

Normalized Range 	 0 (Deg) 	 Order of Series 	 S.D. = 0 	 S.D. = 0.01 

200 	 900 	 2 	 202 	 205 
3 	 199 	 191 
4 	 200 	 204 
5 	 200 	 206 

200 	 30° 	 2 	 160 	 170 
3 	 205 	 175 
4 	 200 	 219 
5 	 200 	 225 

	

2000 	 90° 	 2 	 2.00x  103 	2.36x  103 

3 	 2.00x  103 	1.42x  103 

4 	 2.00x  103 	2.55 x 103 

5 	 2.00x  103 	2.75x  103 

	

2000 	 30° 	 2 	 1.96 x 103 	4.92 x 103 

3 	 2.00 x 103 	7.54 x 103 

4 	 2.00 x 103 1.46 x 104 

5 	 2.00 x 103 neg. 

	

20,000 	 90° 	 2 	 2.00 x 104 neg. 
3 	 2.00 x 104 3.92 x 103 

4 	 2.00x  104 	 neg. 
5 	 2.00 x 104 	 neg. 

	

20,000 	 30° 	 2 	 2.00 x 104 neg. 
3 	 2.00 x 104 	1.14 x .103  
4 	 2.00x  104 	 neg. 
5 	 2.00x  104 	 neg. 

system.) The computed values for the normalized range are in Column V of 
Table 1. The estimates of range are better for the lower ranges than for the 
higher ones. However, the higher order series gave no better estimates of 
range than the second order series. Therefore, unless otherwise stated, the 
value M = 2 was used in all the remaining computations which are reported in 
this paper. 

4. ERROR ANALYSIS FOR GAUSSIAN PHASE ERRORS 

An error analysis will be performed for M = 2 to see what to expect 
from the subsequent data analysis. First it will be shown that the para-
meters a ct , al and a2 are linear functions of the {y i }. This allows the 
calculation of expected values and standard deviations for ao , a l  and a 2 . 



(20)  

(21)  

(22)  

(23)  

T- 
= C.P (25) 

(27) 
= (Y0Y1 • • • 

and P 

For the case M = 2 equations (11) take the form 

a
o
T
o 
+ a

l
T
1 
+ a

2
T
2 
= Y

o 

aoT1 
+  a

1 
T
2
+ a

2
T
3 
= Y1 

aoT2 
+  a

1 
T
3
+ a

3
T4 = Y2 
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Or 

(19) 

QA = 

where 

To  T1  T2  

-1 = T 1  T2  T3 	, 

T
2 

T
3 

T
4 

= (a0  al  a2 ) T 

= (Y0 Y1 Y2 )T  

where the superscript T means transpose and the bar over a symbol (e.g., Q) 
indicates a matrix or a vector. 

Now 
N-1 	. 

J Y. =Liy 
i=0 

and 

(24) 

where 

= (0j  lj 	(N-1) j ) T  , (26) 

But 

ao 
= WlYo 

- W
2
Y 1 + W3

Y2 	
(28) 

where W1 , W2  and W3  are the determinants of minors of divided by the 
determinant of Q. Equation (28) may now be written 
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-T- 	-T- 	-T- 
a
o 
= WC

o
P - W2C1P  + 

1 
	W

3
C
2
P  

-T 	-T 	-T - 
= (W1

C
o 
- W21 

C + W
3
C
2
)P 

The last equation may be written 

a
o 

= (Z
01 

Z
02 

... Z
ON

)P 

where 

Z
o£ 

= W1C 	- W2C 	+ W3C o,Z

where C 	is the 2, th  component of .éj . Hence ao  is a linear function of the 

If it is assumed that the errors in each yi follow the same Gaussian 
distribution which has a mean of zero and a variance of a2 '  then the expected Y 
value of each yi is just that value which it would have if it contained no 
errors. The expected value of ao  is then 

E(a) = (Z
01 

Z
02 ' 	

Z
ON 

) E(P) 	 (33) 

which, in the case of simulated data, may be computed by using the data with-
out adding any noise to it. 

2 
Further from equation (31) the variance of ao , aa  , may be computed 

from the expression. 

2 
aa 	= (Z01

2 
+ Z02

2 
+ ...ZON

2
) a

y
2 

o 

Also, the probability density function of ao , p(a0 ), will be gaussian. 

In a similar way the expected values and the variances of al  and a2  may 
be found so that 

E(a 1
)  = (Z11 Z 12 —Z1N) E(7

)  

22 	2 
a 	= (Z11

2 + Z
12

2 + 	+ Z1N 
) a 

al 	
y 

 

E(a 2 ) = (Z 21 Z 22 ''' Z2N ) E(13)  

22 	2 
a 	= (Z 21

2 
+ Z22

2 
+ 	Z 2N ) ay 

a2 

Also p(al ) and P(a2 ) will both be gaussian probability density functions. 

yi } 

(34) 

(35) 

(36) 

(37) 

(38) 
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It may be noted that, in equations (33) to (38), the Zii  are functions 
of the number of antennas only so that a a 

, a
al 

and a
a2 

are independent of 
either range or direction. 

It will now be shown that E(al) and E(a2 ) are not independent. As 
already noted E(al) and E(a2) are the values which would be obtained for al 
and a2 if there were no errors in the phase measurements. Then for a given 
frequency these parameters are functions only of the orientation of the 
array with respect to the transmitter. Referring again to Figure 1(b) it may 
be seen that for position (1) the curvature is zero for the plot of phase 
against x and that the slope (at antenna zero) is a minimum, i.e., most 
negative. For that position then a2 is zero and al  is a minimum. For posi-
tion (2) the curvature is a maximum and the slope at antenna zero is zero, so 
al  is zero and a2 is a maximum. For position (3) the curvature is again zero 
while the slope is a maximum so a2  is again zero while al is a maximum. Thus 
the values of these two parameters are related and are not independent. 

The errors in al and a2 , which are caused by errors in the phase data 
are not independent either. In Figure 3 let curve (1) be a true plot of y 
against x, i.e., with no errors in the phase data. Errors in the data will 
cause the least-squares-best-fit curve to deviate from the true curve. Let 
curve (2) be such a possible curve. For this curve the curvature is 
increased so that a2 is increased. However, the slope at antenna zero is 
unchanged so al is unchanged. Curve (3) has the same curvature as curve (2). 
Curve (3), however, gives a better least-squares-best-fit to the true curve, 
curve (1), than does curve (2). To get this better fit the slope of the 
curve at antenna zero had to change so that al had to change (in this case al  
decreased). Thus the errors in al and a2 are related and are not independent. 

Figure 3. Diagram to Show that a and a2  are not Statistically Independent 
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It would be desirable to be able to compute an expected value and a 
variance for the computed value of R/d. This, however, is impossible. One 
may write formally 

E()  = f f ( 	
2a2 

) p (a
l' 

a
2

) da
l 

da
2 d 

 

But a2 can be zero in which case the integrand of equation (3) is infinite so 
the integral is infinite. Therefore R/d does not have a finite expected 
value. Similarly R/d does not have a finite variance. 

5. WAVE INTERFERENCE 

It may be seen from equation (18) that the sign on the computed value 
of R/d is the same as the sign on a2. Reference to equation (10), for M = 2, 
shows that if R/d is to be positive then the plot of phase as a function of 
antenna position must curve upward. If the curvature is downward a negative 
value will be obtained for Studies of the phase distribution of two d' 
interferring signals have been made by Haydon 2 . It was shown that the 
curvature of the wavefront over a limited aperture could be either positive 
or negative. Hence, the method devised here for estimating range may fail 
if two (or more) signals are received at the same time. 

6. CHECKING THE ERROR ANALYSIS BY SIMULATION EXPERIMENTS 

Equations (35) to (38) were tested empirically by computer simulation 
experiments. In these experiments data were generated in the computer for a 
given normalized range and direction. Gaussian random errors of a given 
standard deviation were then added. From these data a1 

and a
2 
were computed. 

This was repeated 100 times. For these 100 values of a l  and a2  the mean al , 
a
1M' 

the rms deviation of a1 from its mean, RMSD al , the mean a2 , a2m , and 
tne rms deviation of a2  from its mean, RMSD a2 , were computed. E(a1 ), aa  , 
E(a2 ) and a

a2 
 were computed by equations (35) to (38). The results for 1  

0 = 80 ° , ay  = 0.005 and various values of R/d are given in Table 2. It may 
be noted that E(a 1 ) is independent of range; (it is a function of direction 
only) and that there is agreement to 3 significant figures between E(al ) and 
aim. Also aal ' 

and a, 
2 
 are independent of range as expected. The agreement 

between aal and RMSD a1 is not perfect but it appears to be within acceptable 

limits; it is also small when compared with E(a1 ). There is close to perfect 
agreement between E(a 2 ) and a2m . The agreement between a,

' 
 and RMSD a2  is 
2 

also acceptable. These results confirm that the method of estimating R/d and 
6 is working properly. 

It may be noted that, at least for directions near broadside to the 
array, and for the array configuration used here, the standard deviation of 
the estimated direction-of-arrival 0, is about 3.7 times larger than would 

2 

(39) 
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a2 	RMSD 

a2 

RMSD 	E4 

.1 

TABLE 2 

Sample Print-Out of Simulation Experiments 
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80. 	.0050 	200 	-.174E 00 	-.174E 00 	.372E-03 	.461E-03 	.250E-02 	.250E-02 	.116E-04 	.116E-04 

	

80. 	.0050 	500 	-.174E 00 	-.174E 00 	.372E-03 	.305E-03 	.984E-03 	.985E-03 	.116E-04 	.110E-04 

	

80. 	.0050 	1000 	-.174E 00 	-.174E 00 	.372E-03 	.444E-03 	.489E-03 	.487E-03 	.116E-04 	.103E-04 

	

80. 	.0050 	1500 	-.174E 00 	-.174E 00 	.372E-03 	.453E-03 	.325E-03 	.325E-03 	.116E-04 	.120E-04 

	

80. 	.0050 	2000 	-.174E 00 	-.174E 00 	.372E-03 	.440E-03 	.243E-03 	.242E-03 	.116E-04 	.117E-04 

	

80. 	.0050 	3000 	-.174E 00 	-.174E 00 	.372E-03 	.266E-03 	.162E-03 	.161E-03 	.116E-04 	.116E-04 

	

80. 	.0050 	4000 	-.174E 00 	-.174E 	00 	.372E-03 	.376E-03 	.121E-03 	.121E-03 	.116E-04 	.967E-05 

	

80. 	.0050 	6000 	-.174E 00 	-.174E 00 	.372E-03 	.444E-03 	.809E-04 	.802E-04 	.116E-04 	.104E-04 

	

80. 	.0050 	8000 	-.174E 00 	-.174E 00 	.372E-03 	.386E-03 	.607E-04 	.598E-04 	.116E-04 	.108E-04 

	

80. 	.0050 	10000 	-.174E 00 	-.174E 00 	.372E-03 	.366E-03 	.485E-04 	.488E-04 	.116E-04 	.113E-04 

be expected from the simpler procedure of fitting a straight line to phase 
data under a plane-wave-plus-Gaussian-noise assumption'. The larger standard 
deviation arises in the present case because the procedure used here allows 
more degrees of freedom by estimating both a slope (at the origin) and curva-
ture, rather than just an average slope over all the spatial data. 

7. COMPUTATIONS USING SIMULATED DATA 

The term "percent bias" is used in the next paragraph. It is defined 
as follows. Let S be the sample mean of a quantity, i.e., the average of 
the computed values of that quantity, and let V be the true value of that 
quantity. Then 

Bias = S - V 	 (40) 

bias x 100 percent bias = V 

Figure 4 shows the percent bias on the estimated values of R/d when R/d 
is computed from aim  and a2m . The two curves (ay  = 0.01, 0.003) merge for 
R/d < 500. The smarl but finite % bias for R/d = 200 is due to the use of 
M = 2 (when the value M = 3 was used this % bias decreased). Otherwise the 
two curves appear to vary randomly about zero. The curve for ay  = 0.01 is 
mostly above zero, but this is not believed to be significant. 

Although theoretical values for E(R/d) and aRid  do not exist, 
estimates can be made under certain conditions of a pseudo-E(Id-1) and a 
pseudo-a-Ri d . This is done by computing R/d for a large number of simulated 
cases and Finding the mean R/d, as an estimate of E(*) and the rms deviation 
of R/d from its mean, as an estimate of aR/d . The difficulty is that if a2 
is positive but near zero the resulting value of R/d is very large and if a2 
is negative the resulting value of R/d is negative. This situation may be 
avoided if a2  is kept much larger than zero. That this can be done most of 
the time may be seen in Figure 5. There the gaussian curve represents a 
possible curve for p(a 2 ). Since aa does not depend on range the width of 

2 

and (41) 
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Figure 4. Plot of Percent Bias Against R/d for Computation of R/d from A lm  and a2m  

0 2  

Figure 5. Sketch of p(a 2), the Probability Density Function for a2 
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the curve does not change with range. However, as the range increases to 
infinity the curve moves to the left so that E(a2 ) approaches zero. As range 
decreases the curve moves to the right. For the curve shown in Figure 4 E(a2 ) 
equals 3 times  0a2 . In this case only 0.15% of the distribution falls below 

zero so that a2 would be expected to fall below 
zero only once or twice in a 

thousand cases. If the curve is moved to the right so that E(a2 ) = 4 0a  then 
2 

only about 0.01 percent of the distribution falls below zero. Since E(a2 ) 
and aa  can both be computed theoretically, it is known when the separation 

2 
between zero and E(a 2 ) is within a given multiple of a

a2
. 

Simulated experiments were carried out to estimate values for E(u) and 
aR/ d  by this method. For given values of R/d, 0 and av  one hundred sets of 
data were generated and R/d was estimated for each set: The mean, and the 
rms deviation from the mean, of the estimated values for R/d were then 
computed. When the restriction E(a 2 ) > 3aa  was applied, a2  was sometimes 

2 negative for the longest ranges. When the restriction E(a2  ) > 4a was  — a2  
applied a2 was positive in all cases. In Figure 6 the percent bias is plotted 
as a function of R/d for three values of G. As in Figure 5 all curves merge Y 
for low values of R/d and there is a small but definite percent bias for the 
lowest value of R/d which is due to the use of M = 2 in series (10). For the 
higher values of R/d the three curves separate but all of them are almost 
always positive. In Figure 7 the rms deviation from the mean is given for 
five values of a 	These curves then, Figures 6 and 7, may be used to 

Y .  predict the outcome of an estimate of R/d. Once in a while however, about 
once in ten thousand times, a 9  may be near zero, or negative, in which case 
the estimated value of R/d will be wild. These curves, of course, are valid 
only for a gaussian distribution of errors in the phase measurements. 

10 —, 

003 

1 	 1 
500 	1000 	 5000 	0,00 () 	 20,000 

R/d 

Figure 6. Plot of Percent Bias Against R/d for Various Values of a Mean R/d found from invidivual 
Computations of Rid from a and a2. 
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8. COMPUTATIONS USING REAL GROUND-WAVE DATA 

8.1 THE EXPERIMENT 

The method described in this report of determining range and direction 
was tested under real conditions for ranges up to 111 kilometers. A frequency 
modulated continuous wave (FMCW) system was used which made it possible to 
select the ground wave and to eliminate the sky wave on the basis of their 
respective travel times. Thus the signal which was used was not reflected 
by the ionosphere. The linear antenna array of 27-foot monopoles at the CRC 
HFDF site was used to receive the signals. For this experiment the array 
was made up of 32 elements at 125 feet (38.1 meters) spacing for a total 
length of 3875 feet (1181.1 meters). 

The sites from which the transmissions were sent were chosen to be near 
a line which ran north-east from the center of the antenna array and which 
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was perpendicular to the array. The latitude and the longitude of the sites 
could be estimated, from a large scale map, to about two seconds or about 60 

meters. The ranges and the directions of the sites, with respect to the 
center of the array, were computed by a standard navigation formula. 

Since the method used found range and direction with respect to one end 

of the antenna array, it was necessary to find the actual directions with 
respect to that end of the array as well. This was done by adding a correc-
tion which was computed by the formula, 

Correction to direction - (590.5 x 57.3 ) 
 range 	
degrees 

In this formula 590.5 meters is one half the length of the array and 57.3 is 
the number of degrees in a radian. 

For all sites which were used, the range from the center of the array 
did not differ significantly from the range from the end of the array. There-
fore, no correction was made to the ranges of the sites. 

The ranges and the directions of the transmission sites are given in 
Table 3. 

TABLE 3 

Ranges and Directions of Transmission Sites 

Range 	Direction With Respect to Center of Array 	Direction With Respect to End of Array 
Site 	(km) 	 (Deg.) 	 (Deg.) 

	

1 	13.38 	 90.85 	 93.38 

	

2 	21.69 	 90.78 	 92.32 

	

3 	37.42 	 91.01 	 91.91 

	

4 	56.46 	 90.90 	 91.50 

	

5 	74.15 	 90.53 	 90.99 

	

6 	87.42 	 90.33 	 90.72 

	

7 	111.46 	 90.78 	 91.08 

For each site from 7 to 12 transmissions and recordings were made at 
one minute intervals. For up to .ten of these transmissions the phase of the 
ground wave was plotted as a function of antenna position. Figures 8 and 9 
show the plots for site one (range = 13.38 km) for 3.25 and 10.35 MHz 
respectively. Figures 10 and 11 are similar plots for site seven (range = 
111.46 km). Plots for the intermediate sites showed a uniform transition 
from the plots for site one to the plots for site seven. 

(42) 
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Figure 9. Phase Front Plots for Site 1 
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Figure 11. Phase Front Plots for Site 7 
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Occasionally the value of a phase was bad. An example of this may be 
seen in Figure 10 for time 12:13:05. When this happened the data for that 
wave front was excluded from the calculations. 

Also, occasionally, the phase plot showed marked deviation from a 
smooth curve. This is illustrated in the phase plot for time 11:48:05 in 
Figure 11. It is believed that this phenomenon is due to interference 
between the direct ground wave and a wave that had the same source as the 
ground wave but was reflected from a moving object such as an airplane or a 
moving vehicle. These phase fronts were not excluded from the calculations. 

The signal to noise ratios (SNR) were estimated by two methods. In the 
first method the formula 

SNR = 1/(rms phase error in radians) 

was usedl. The estimated SNR's are given in Table 4. 

TABLE4 

SNR (dB) as Estimated by Equation (43) 

Site 	 3.25 MHz 	 5.25 MHz 	 10.35 MHz 

1 	 25 	 21 	 20 

2 	 24 	 23 	 — 

3 	 23 	 22 	 21 

4 	 22 	 22 	 19 

5 	 22 	 21 	 20 

6 	 20 	 20 	 10 

7 	 22 	 20 	 12 

In the second method the SNR was estimated by comparing, in the Fourier 
transformed data, the amplitudes of the signal components with the amplitudes 
of the components which represented the background noise. Table 5 gives the 
SNR for each site and for each frequency as estimated by this method. Since 
the resolution of the component levels was 3 dB, each entry in Table 5 is 
subject to an error of ± 6 dB. 

TABLE 5 

SNR ± 6 dB as Estimated from Signal Amplitudes and Noise Amplitudes 

Site 	 3.25 MHz 	 5.25 MHz 	 10.35 MHz 

1 	 54 	 54 	 42 

2 	 51 	 51 	 — 

3 	 51 	 51 	 30 

4 	 21 	 36 	 23 

5 	 33 	 30 	 27 

6 	 21 	 24 	 9 

7 	 24 	 27 	 12 

(43) 
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The two methods of estimating SNR gave similar values for the more 
remote sites for which SNR was low. For the nearer sites, however, the 
method which uses signal amplitudes and noise amplitudes gave much higher 
values of SNR. It is likely that this method gives the more accurate estimates 
since the values for SNR which were found by this method vary more or less 
uniformly from a high SNR for the near sites to a low SNR for the site which 
are farthest away. The low values of SNR for the near sites, as predicted 
from the rms  phase  errors, would be due to systematic errors in the measure-
ment of the phase values. 

8.2 RESULTS OF THE EXPERIMENT 

The ranges which were computed for each site by processing the phase 
front data are given in Table 6. Each Figure in that table is the mean of 
all the results for a given site and a given frequency while the figures 
which are expressed as errors are the rms deviations from the means. 

TABLE 6 

Estimations of Ranges 

Mean of Estimated Ranges ± rms Deviation from Mean (km) 
Site 	True Range (km) 	 3.25 MHz 	 5.25 MHz 	 10.35 MHz 

1 	 13.38 	 13.72±  .03 	 11.66±  .01 	 12.95±  .03 

2 	 21.69 	 19.13 ± .08 	 21.18 ± .07 

3 	 37.42 	 30.10 ± .17 	 32.00 ± .17 	 36.71 ± 2.32 

4 	 56.46 	 45.87 -1 14.55 	 45.80 ± 2.26 	 52.73 ± 3.37 , 
5 	 74.15 	 51.89 ± 3.06 	 56.29 ± 4.80 	 63.47 ± 4.48 

6 	 87.42 	 84.58 t 34.11 	 58.59 ± 2.67 	 86.87 1 31.93 

7 	 111.46 	 103.6 t 31.4 	 105.16±  37.49 	 120.4 ± 51.2 

Table 7 shows the percent bias in the estimated ranges plus or minus 
the rms deviation from the mean expressed as a percentage. 

TABLE 7 

Errors in Estimations of Ranges 

Percent Bias Percent rms Deviation from the Mean Range 

Site 	 3.25 MHz 	 5.25 MHz 	 10.35 MHz 

1 	 n 2.5 f 0.22 

2 	 13.0 0.42 

3 	 -19.6 1 0.56 

4 	 -18.8 ± 31.7 

5 	 -30.0 ± 5.9 

6 	 - 3.2 ± 40.3 

3 	 - 7.0 t 30.3 

-12.9 it 0.09 

- 2.3 ± 0.33 

-13.5 ± 0.53 

-18.9 ± 4.93 

-24.0 ± 8.53 

-33.0 ± 4.56 

- 5.6 ± 35.6 

- 3.2  t 0.23 

- 1.9 ± 6.32 

--- 6.6 ± 6.39 

-14.4 ± 7.06 

-- 0.6 ± 36.7 

8.0 ± 42.5 
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From Tables 6 and 7 the following observations may be made: 

i) The mean of the range estimates is almost always less than the 
true range. 

ii) There is considerable spread in the bias (from -33% to + 8%) whiCh 
is interpreted to be statistical variation only; there is no 
obvious trend as the transmission site is moved from the nearer to 
the more remote locations. 

iii) The percent rms deviation from the means of the range estimates 
tends to be smaller for the shorter ranges and larger for the 
longer ranges. 

iv) Among the lower ranges the rms deviations from the means tend to 
be much smaller than the deviation of the mean itself from the 
true range. 

v) The bias is usually negative. This is in contrast to the results 
of the simulated experiments where it was usually positive. 

vi) The bias is quite different for different frequencies and for 
different sites. Thus systematic errors and site errors which 
are constant during continuous operation of the equipment, when 
no adjustments are made, are larger than the minute to minute 
fluctuations in the signal itself. 

For comparison, the ranges were also computed from aim  and a2m , where 
these parameters were computed from the al  and the a 9  of all sets or data for 
a given frequency from a given site. This was done tecause there is better 
theoretical justification for using a im  and a2M 

to compute a range than there 
is for taking the mean of the individual estimates of range. (cf equations 
(35), (37), and (39) and the associated discussion). The results are given 
in Table 8. When the rms deviation from the mean is low in Table 6 the 
estimated ranges in Table 8 are about the same as those in Table 6. When the 
rms deviation from the mean is high the estimated ranges in Table 8 are lower 
than those in Table 6. In this case they deviate more from the true range. 

TABLE 8 

Ranges Estimated from a m  and a2m  

Estimated Ranges (km) 

Site 	 True Range (km) 	 3.25 MHz 	 5.25 MHz 

1 	 13.38 	 13.72 

2 	 21.69 	 19.13 

3 	 37.42 	 30.10 

4 	 56.46 	 49.45  

5 	 74.15 	 51.66 

6 	 87.42 	 75.174 

7 	 111.46 	 98.30 

10.35 MHz 

12.92 

37.49 

52.50 

63.17 

77.72 

105.16 
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The estimated values for the directions of the transmission sites were 
all within 1.1 degrees of the true direction. Table 9 shows the mean of the 
estimates of the direction for each site and for each frequency. Also, the 
rms deviations from the mean are shown in that table. In most cases the 
deviation of the mean of the direction from the true direction is greater than 
the rms deviation from the mean. This shows again that the system errors are 

greater than the minute to minute fluctuations in the signal. 

TABLE 9 

Estimations of Directions With Respect to End of Array 

Site 	 True Direction (Deg.) 

Mean of Estimated Direction ± rms Deviation from Mean (Deg.) 

3.25 MHz 	 5.25 MHz 	 10.35 MHz 

1 	 93.38 

2 	 92.32 

3 	 91.91 

4 	 91.50 

5 	 90.99 

6 	 90.72 

7 	 91.08 

92.92 ± .00 

93.35 ± .01 

92.23 ± .01 

91.67 ± .11 

91.21 ± .05 

90.68 ± .15 

90.95 ± .15 

	

93.45 ± .00 	 93.08 ± .02 

93.38 ± .01 

	

92.29 ± .01 	 92.17 ± .02 

	

91.73 ± .02 	 91.66 ± .04 

	

91.24 2E .02 	 91.18 ± .05 

	

90.91 ± .03 	 90.79 ± .11 

	

91.05 ± .09 	 91.02 ± .13 

8.3 DISCUSSION OF EXPERIMENTAL RESULTS 

In Figures 12 and 13 the curves are the rms deviations from the mean 
ranges as interpolated from the simulated experiments with the use of Figure 
7. For these curves the standard deviation of the phase error was assumed 
to be 3 ° . The crosses are the value from the field experiment. The experi-
mental values are sometimes much greater than the predicted values and some-
times much less. 

These results may be explained as follows. Systematic errors appear to 
be present but to be fairly constant during each ten-minute period in which 
measurements were taken. These errors may produce a substantial range bias 
(up to 33%) regardless of the SNR. For the near sites the signal is much 
higher than either the noise, or any interfering signal, so the results are 
reproducible from minute to minute. This yields a low rms deviation from 
the mean range. For the more remote sites the signal is lower and noise will 
have a greater effect. Sometimes the noise level is high which leads to a 
large rms deviation from the mean range, and sometimes it is low when the rms 
deviation from the mean range is again small. 

8.4 USEFULNESS OF THIS METHOD 

For the conditions under which the field experiment was carried out, 
this method could be used to estimate ranges of up to about 50 km with an 
error of up to 20%. If the interference is low it could be used for ranges 
up to 100 km with an error up to about 33%. Above a range of 100 km the low 
SNR and the sensitivity to interference would make the method of little use. 
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9. COMPUTATIONS USING VERTICAL INCIDENCE DATA 

Computations were carried out using some vertical incidence data which 
were taken at the HFDF facility at CRC. 

For these experiments loop antennas were used with an FMCW signal at a 
mean frequency of 2.55 MHz. On the basis of travel time, the reflection from 
the E-layer was separated from the reflections from the other ionospheric 
layers. On the ionogram the trace of E-layer showed as a clean discrete echo, 
well separated from the traces of the other layers. This layer was at a 
height of about 112 km so the total round trip distance, from transmitter to 
receiver, was about 225 km. 

A total of 48 sets of vertical incidence data were processed which were 
taken at one minute intervals. Of these, 27 sets gave negative values for 
the range. The values scattered between -5500 km and +26000 km with about 
90% falling between -1000 km and +1000 km. 

The randomness in these results may be explained as follows. The E-layer 
has irregularities in it so the surface which reflects a signal of a given 
frequency would be rough rather than smooth. There would, therefore, be 
focusing effects, multiple reflections, and reflections as slightly different 
heights; all of which could cause wave interference at the receiver. For 
example, for two signal rays of 2.55 MHz frequency, a difference in the 
reflection heights of 30 meters would make them 180 °  out of phase at the 
receiver. And since the irregularities in the ionosphere are constantly 
changing, the wave interference pattern at the receiver would be constantly 
changing. It follows that the curvature of the wavefront over the aperature 
would be constantly changing. This results in the range estimates being 
quite random. Thus, wavefront curvature cannot be used to estimate the 
range of a signal which is reflected from the ionosphere. Another factor in 
these experiments is that the round-trip distance of the signal was about 
twice the predicted useful limit of the method. 

10. SUMMARY 

The possibility of computing the range of a signal from its wavefront 
curvature has been investigated. Many simulated experiments were carried 
out. Some success was had by fitting a truncated power series to the data. 
For noisy data only the terms up to and including the second order term were 
used. The use of higher terms gave no improvement. For range estimates the 
percent bias and the percent rms deviation from the sample mean were plotted 
against range. The range estimates are better when the signal is broadside 
to the array than when it is close to endfire. 

In a field experiment the ground wave was used to estimate ranges of 
up to 111 km. A bias of up to 33% was found. It was almost always negative 
and was attributed to system errors. Sometimes the rms deviation from the 
mean range was large, up to 42%. This was attributed to noise. But some-
times the rms deviation from the mean was low, much lower than the bias. 
This was especially true for the shorter ranges. For these cases the signal 
level would be much higher than the level of the noise. 
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An attempt to compute the range of a signal, which had been reflected 
by the E-layer of the ionosphere, was unsuccessful. The range was about 
twice the useful limit of this method and the return signal may well have 
consisted of two or more interfering rays. 
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APPENDIX 	A 

Derivation of Least-Squares-Best-Fit Equations/ Equations (11) in Text 

Let N be the number of antennas in the array and let the phase datum 
for antenna i, i = 0, 1, •.., N-1, be y i . The problem is to fit the series 

a
o 
+ai+ai2  + ...amiM  

1 	2 

to these data by method of least squares; that is, we wish to choose 
(a

o
, a ... am) such that 

1 

N-1 	 N-1 
E(y-y.) 2  = E (a +ai+ai2  + • ..aK

ik  + ...am • M  - y . ) 2  
• - 	0 	1 	2 

(k = 0, ..., M) 	 (A2) 

and 

	

N-1 	 N-1 
E 	\ 2  . 2 E  (a ik+a i l+k 	a ik+k + J i . 

	

k i=0 	 i=0 

.M+k 	.k 
ami 	- yi l ). 	(k = 0, ...,M) 

=0  

where we define 00  to be one. 

The right sides of equations (A3) and (A4) can be written as 

aoTk  + a l T rfk  + a 2T 24.k  + ...akTk+k  + ...amTm+k  = Yk  

y= 

- 1 i=0 	 i=0 

(A3) 

(A4) 
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N-1 
Y
j 

= 
i=0 1 

Letting k = 0, 1, ...,M equation (A5) can be rewritten as the set of equations 

aT+aT+aT+ ...aT = Y 
O 0 	11 	22 	MM  

aoT i  + a 1 T 2  + a 2T 3  + ...amTm+, = Y 

aT2 
+ aT + a T + ...a T 	= y 

o 13 
 

2 4 	M M+2 	2 
(A8) 

aT
M 
+ aT +aT

N+2 
+ ...a T = Y 

o 11 2 
 

M 2M 	M 

(A7) 
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