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A COMPARISON OF THE BURG AND THE ICNOWN-AUTOCORRELATION AUTOGRESSIVE SPECTRAL 

ANALYSIS OF COMPLEX SINUSOIDAL SIGNALS IN ADDITIVE WHITE NOISE 

by 

R.W.  Herring 

ABSTRACT 

Burg's algorithm for Maximum Entropy autoregressive spectral estimation is 
analyzed for the cases of one and two complex sinusoidal signals in additive white 
noise. For the latter  case are found two biases which can account for the line 
splitting and line shifting that occur in simulation studies when the SNR is very 
high. These biases vanish completely if the two complex sinusoids are in phase 
quadrature at the middle of the data record; if there is an integral number of 
half-cycles of difference frequency contained in the data record, then the power 
level of the spectral estimate will be biased although the effects believed to cause 
splitting and shifting will be eliminated. Results of simulation studies to support 
these conjectures are prewnted. 

1. INTRODUCTION 

The Burg algorithm for the autoregressive spectral analysis of time-
series data 1 0 2 9 3 , sometimes referred to as the maximum-entropy method (MEM), 
is known to be inappropriate for the case of sinusoidal signals in additive 
white noise. This inappropriateness had been demonstrated both theoretically4-6  
and in practice". A theoretically correct mode1 4-6  for the generating process 
for an N-pole complex sinusoidal signal in additive white noise is an N-pole, 
N-zero network with identical gain weights in its feedback (pole) and feed-
forward (zero) parts, being excited with a white-noise input (see Figure 1). 
Autogressive analysis models the generating process for the data as an all-pole 
network excited by white noise. Since a zero in the generating process 
network can be simulated exactly only by an infinite number of poles, it is 
clear that when autoregressive analysis is used, in principle an infinite set 
of either autocorrelation or time series data must be used in order to achieve 
correct results. 

1 
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Figure 1. Network for generating N complex sine waves in additive white noise from complex white noise input 
(after Figure 4.1 of Reference 6) 

Fougere 9  has stated that, in the high signal-to-noise ratio (SNR) case, 
the Burg algorithm is overconstrained. In the case of simulation studies, this 
overconstraint causes errors in the estimated frequencies of spectral lines 
and the false splitting of spectral lines known to have been generated by a 
single pole (or a pair of poles, in the case of real signals). Fougere has 
developed an algorithm which avoids this phenomenon, but the algorithm is based 
on a gradient-search technique which lacks the intrinsic efficiency of the 
unmodified Burg algorithm. 

In spite of its known limitations, the Burg algorithm is often used 
because of its computational efficiency. This report explores analytically 
the expected response of the Burg algorithm to time-series data comprising one 
or two complex sinusoids, with and without the presence of additive white 
noise. It is shown that only in very special cases does the Burg algorithm 
lead to the same results as are achieved when the true autocorrelation functions 
of the signals are known. 

2. REVIEW OF AUTOREGRESSIVE SPECTRAL ANALYSIS 

Autoregressive spectral analysis is based on the idea that, if it is 
somehow possible to design a feedforward (all-zero) filter which has as its 
input the data to be analyzed, and has as its output random white noise, then 
the power spectrum of the input data is given by the reciprocal of the power 
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transfer function of the filter. Since this filter accounts for all the 
predictability inherent in the input signal and has as its output only unpre-
dictable random white noise, it is often referred to as a prediction-error 
filter (PEF). 

There are several well-known techniques for estimating the PEF 
corresponding to a given set of data. When only amplitude time-series data 
are available, most of these depend upon estimates of the autocorrelation 
function derived from the time-series data. The Burg algorithm, however, 
attempts to avoid possible biases or inconsistencies in such estimates of the 
autocorrelation function by deriving an estimate of the PEF coefficients 
directly from the data. 

In this report the algorithm for generating the PEE when the true 
autocorrelation function is known is reviewed in Section 2.1 and the Burg 
algorithm is reviewed in Section 2.2. The results from these sections are 
thén used to generate the sets of PEFs corresponding to the cases of one and 
two complex sinusoids in additive white noise, and the properties of these 
sets of PEFs are compared and contrasted. 

2.1 THE KNOWN-AUTOCORRELATION (KA) ALGORITHM 1°,11  

Let it be assumed that N equispaced samples R(n) of the complex auto-
correlation function have been given, for n=0,1,2,...,N-1, where N may be 
finite or infinite. It is assumed that the Nyquist sampling criterion has 
been met. Then the system of equations to be solved is 

- E R(k-m)ct(m,M) = P(M)6(k) 
m=0 

0 k < M 

0 < M < N-1 

where the a(m,M)s for m0,1,2,.. .,M are sets of PEF coefficients, each value 
for M denoting a different set; the P(M)s are called the output error powers 
and are real; and 6(k) = 1 if k=0, 6(k) = 0 otherwise, is the Kroenecker delta 
function. In order to maintain proper scaling, the leading terms of the PEFs, 
a(0,M), M=0,1,...,N-1, are set equal to -1 by definition. 

Since negative indices for R(k-m) occur in the set of equations (1), 
it is necessery to note that R(-n) = R*(n), where the asterisk (*) denotes 
complex conjugation. This last fact allows (1) to be rewritten in the alter-
native form: 

- E R(k4m)(1*(m,M) = P(M)6(k') 
m=0 

-M < k' < 0 

0 < M < N-1 

(1)  

(2) 



P(0) = R(0) (3a) 

(31)) 

(3c) 

(3d) 

(4) 
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Equations (2) imply that the same result is obtained if the complex conjugate 
of a PEF is applied to the time-reversed autocorrelation data. This "reverse-
conjugate" symmetry is used in the derivation of the Burg algorithm. 

If the set of linear equations (1) 
written in matrix form, it can be seen that 
samples [R(k,m)], where R(k,m) = R(k-m), is 
(1) can be solved by applying the algorithm 
and Durbin, otherwise known as the Levinson 
recursive solution to (1) can be written as: 

for a particular value of M is 
the matrix of autocorrelation 
an MxM Toeplitz matrix. Therefore 
developed by Levinson ?  Robinson 
recursion. Following" the 

M-1 
a(M,M) = - E a(m,M-1)R(M-m)/P(M-1) 

m=0 

a(m,M) = a(m,M-1) - a(M,M)a*(M-m,M-1) 

P(M) = (1 - la(M,M)1 2 )P(M-1) 

m = 1,2,...,M-1 

M = 1,2,... 

Note that at each successive stage of the recursion, the introduction of one 
new autocorrelation sample, R(M), generates but one independent value a(M,M) 
for the Mth-order PEF; all other coefficients of the Mth-order PEF are 
determined from linear combinations of the coefficients of the (M-1)th-order 
PEF and their complex conjugates, using a(M,M) as indicated by (3c). 

The a(M,M)s are sometimes referred to as the reflection coefficients, 
because of the analogy of their appearance in (3d) with a similar equation 
which occurs in the theory of a signal propagating through a layered medium 
and being partially reflected at each layer interface. 

In executing the recursion of equations (3a-d) it can occur (at least 
in theory) that, for some particular value of M, say Mo , P(M0) = 0. This 
implies that la(M0 ,140 )1 = 1. This condition can arise only in the case where 
the signal being analyzed can be modelled as Mo  complex sinusoids with no 
additive noise (see Sections 3.1 and 3.2); in general Mo  is not.finite. In 
particular, Mo  cannot be finite when additive white noise is present 4 . 

For each order M of PEF, an estimate of the power spectrum based on 
(4+1) values of the autocorrelation function is given by 

P (M) 

m= 
E a(m,M)exp(-jmw) 

m=0 

XKA"M)  



5 

where w is the normalized angular frequency in radians with -u < w < n, and 
the subscript KA refers to the known-autocorrelation case. As disciissed in 
Section 2.0 and as examination of (1) will indicate, the PEFs are "spiking" 
or whitening filters, since all but one of their output values are zero. The 
power spectrum of such an output signal is independent of frequency, or "white". 
The denominator in the right-hand term of (4) is the power transfer function 
of the PEF, which if multiplied by Xm(w,M), the estimated spectrum of the 
signal, yields the constant, white-noise spectrum P(M). Thus, since both P(M) 
and the power spectrum of the PEF can be calculated, the signal power spectrum 

XKA(w,M) can be estimated from (4) for successively higher orders of PEF. 

2.2 THE BURG ALGORITHM 

The Burg algorithm is a procedure for estimating the reflection 
coefficients directly from a set of time-series amplitude data. It avoids 
the biases introduced into the spectral estimate when the autocorrelation 
is estimated from the data and the known-autocorrelation algorithm is then 
applied; however, as is shown in Sections 4.1 and 4.2, the Burg algorithm 
introduces biases of its own sort. 

Let it be assumed that a set of N time-series amplitude data x(n), 
n=0,1,2,. ..,N-1 have been given, and that <x(n)> = 0, where the brackets < > 
denote expected value. The PEFs are derived sequentially. Each successively 
higher order PEF is applied to the data in both directions simultaneously, and 
the average of its forward and backward output error powers is minimized by 
adjusting only its reflection coefficient. The remaining coefficients of 
each PEF depend on the sequence of reflection coefficients through the 
functional relationship defined by (3c). The motivation for this procedure 
is its analogy with that defined by (1), (2), and (3a-d). 

Following e.g. ,3,11-14 and taking proper note of the occurrences of 
complex conjugation in the complex data case, the Burg algorithm can be 
written in a lattice-filter formulation: 

fm (n) = f 	(n) - UM,M)bM-1 (n-1) M-1  

bm (n) = bM-1  (n-1) -  M-1 

n = M,M+1,...,N-1 

M = 1,2,...,N-1 

and 

f o (n)= x(n) =b0 (n) 	 (5c) 

n = 0,1,2,...,N-1 

(See Figure 2, where z -1 denotes the unit time-delay operator.) The series 
f (n) is the output from the Mth-order PEF applied to the input signal x(n) 

(5a) 

(5b) 



-0*(Mlelir  
-/3(MAIL 

• • • 

• • • 

b0 (n) b 1 (n) b2(n) b eA(n) 

N-1 
2 E h*M-1 (n-1)fM-1 (n) 
n=M 

N-1 
E (lbM 1  (n-1)1 2  + IfM-1  (n)I2) -  n=M 

(3(4,m) - (7) 
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in the forward direction, and is expressed in terms of the output series from 
the ( 4-1)th-stage of the lattice. The series bm (n) is the output from the 
Mth-order PEF, conjugated and applied to the input data in the reverse or 
backward direction, and again is expressed in terms of the output series from 
the (M-1)t-stage  of the lattice. The e(M,M)s are the reflection coefficients. 

fo(n) 	 fi(n) 	 f2(n) 	 fm(n) 

Figure 2. Basic  al/-zero lattice network 
(after Reference 11) 

The sum of the forward and backward output error energies at each 
stage of the lattice is given by 

N-1 
E(M) = E Ofm (n)1 2 + Ibm (n)1 2 ) 

n/rg 
tA  

The formula for computing e(M,M), the Burg estimate of the Mth-order reflection 
coefficient, is derived by substituting eqns. (5a) and (5h) into (6), setting 
DE(M)ae*(M,M)] = 0 and solving for e(M,M). 

(6) 

M = 0,1,2,...,N-1 

Notice the similarity of (7) to a single-lag unwindowed cross-correlation of 
the forward and backward output series. 



(8a) 

(8b)  

(9) 

(11)  

(12) 
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In order to obtain spectral estimates, it is usual to let the output 
error powers u be defined as 

71- (0) = E(0)/(2N) 

and 

n(M) = (1 - I(M,M)1 2 )n(M-l) 

M = 

by analogy with (3a) and (3d) respectively. Then, letting the  13(M,M)s be 
defined by 

(3(m,M) 	(3(m,M-1) - (3(M,M)M(M-m,M-1) 

m = 1,2,...,M-1 

by analogy with (3c), and (3(0,M) = -1 by definition, the Mth-order Burg power 
spectrum estimate XB (w,M) is given by 

(10) 

m= E 8(meexp(-j 
m=0 

by analogy with (4). 

2.3 THE ZEROES OF THE PREDICTION-ERROR FILTERS (PEFS) 

XB (w,N) 1717,E1- 7r  (M) 

w1-2  

By employing standard z-transform techniques, 
PEFs for the KA case and the Burg case can be written 
complex variable z. For the KA case, this polynomial 

the z-transforms of the 
as polynomials in the 
is FKA (zM) where 

F
KA (z,M) = 1 - E a(m,M)z -el  

m=1 

Then (4) can be rewritten as 

21KA"M)  = P(M)/IFKA [exP(J4 e M]12  

where the denominator is the squared magnitude of FKA(z,M) evaluated around 
the unit circle (1z1 = 1). Similarly, for the Burg case, the polynomial is 
FB (z M) 7 where 



(13)  

(14)  

is 

FB (z,M) = 1 - 
E 6(m,M)z -111  

m=1 

and (10) can be rewritten as 

XB (w,M) = n(M)/1F [exp(jw),M]1 2  

It is apparent from (12) and (14) that if any zeroes of FKA (z,M) or 
FB (z,M) lie near or on the unit circle, then the magnitude of the spectral 
estimators KKA (w,M) or KB (w,M) will be large at locations on the unit circle 
In the vicinity of such zeroes. Conversely, zeroes lying close to the origin 
of the complex z-plane will have little influence on the peaks of the spectrum, 
but will affect its magnitude away from the peaks. Thus some insight into the 
character of an autoregressive spectral estimate can be gained by studying the 
locations of the zeroes of its associated PEF. 

3. THE ONE—POLE COMPLEX SINUSOID CASE 

The formula for a complex signal (xl(n)) consisting of a single 
complex sinusoid in the presence of additive white noise is given by 

x1  (n) = 
A
1 
 exp(jnw1  ) + E(n) 

where n is any positive or negative integer, or zero; Al  is the complex 
amplitude of the complex sinusoid; wi is the angular frequency of the complex 
sinusoid, normalized so that -n < wi < n; and e(n) is additive white noise 
having the property 

<E*(n)E(n+k)> = 1E1 2 6(k) 	 (16) 

where 1E1 2  is used to denote the variance of E(n) and 6(k) is again the 
Kroenecker delta function. 

3.1 THE KA ESTIMATE OF THE PEF 

The autocorrelation function Ri(k) of the signal defined by (15) is 

(15) 

given by 

R1  (k) = 1 2  expa 	+ 1E1 2 6(k) kw]. ) 	 (17) 



(18) 

(19) 
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where k is any positive or negative integer, or zero, and in general R(k) is 
defined by 

R(k) = <x*(n)x(n+k)> 

'Substitution of (17) into (3a) gives the result 

D f(1\ = 41 2 i,Y 2  1 1) 

£ 1" 	I  

where 	= 1 A1 12/102 c)1 	 is the signal-to-noise ratio (SNR). If there is no 
noise, i.e. 1E1 2  = 0, then P1(0) = 1A1 1 2 . 

The following general result can be derived from (3b), (3c) and (3d) 
when 1E1 2  * 0 and 1A1 1 2  * 0: 

al (m,M) = Eal/(Ma4+1)1exp(jmy 	 (20a) 

= [1/(M+0-12 )1exP(imw1 ) 	 (20b) 

and 

P1  (M) (M) = 1E1 2  {[(M+1)a 2+1]/[140 2+14  1 

M = 1,2,3,...,oe 

m =  

In the noise-free case (41 2  + 0 and ot -4- co), (20a) or (20b) imply 
that a1(1,1) = exp(jwi) so that 1a1(1,1)1 2  = 1. Then (3d) implies that 
P1 (1) = 0. Thus, for this special case, thesequencesdefined by (20) and (21) 
terminate at M=1. Otherwise for this signal model the sequences are infinite, 
with Pi(M) + le1 2 (1+M-1 ) as Mol + co. 

The z-transform of the KA PEF (cf. (11)) 

F (1) (z,M) = 1 - [al/(Mai+1)] E z -m  exp(jmwl ) KA m=1 

where the superscript 1 denotes a one-pole complex sinusoidal sigal. For 
M=1, 41) (z,l) has a zero at z 0=[al/(e+1)]exp(jw1). For M=2, F )(z,2) has 
zeroes at. 

-2a 2 

zo
a2  + a ,A9a2  + 4 

ex
P 

(iw1 ) 

1 — 1 	1 

(21) 

(22) 

(23) 
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so that for high SNR (1 << 	< co), the zeroes occur at approximately 1.0 
exp(jwi) and -0.5 exp(jwi), and for low SNR (cd «  1), the zeroes occur at 
approximately +el  exp(jw1 ). 

Some algebraic manipulation shows that, for the product  Mo  suffi-
ciently greater than 1, an approximate root z o  of (22) is given by 

z = [1.  2  
(M-1) ma2] exp utol) 

1 	
(24) 

This means that, as Mo  + co, the estimated location of the pole corresponding 
to the single complex sinusoid asymptotically approaches the correct location 
exp(jwi) on the complex z-plane along a radius oriented at an angle correspond-
ing to the true frequency of the signal. This is true even when cd«  1. 

Numerical solutions of (24) show that the other zeroes tend to 
distribute themselves with approximately uniform angular separation and 
approximately constant radius inside the unit circle so as to account for the 
uniform spectrum of the additive white noise. The radius at which the zeroes 
occur varies inversely with the SNR. 

3.2 THE BURG ESTIMATE OF THE PEF 

Let it be assumed that N samples of the signal defined by (15) have 
been given: 

x1(n) = exp(jnwl) + e(n) 	 (25) 

n =  

Substituting (25) into (6) by using (Sc) and then taking the expected value 
of E1(0) yields 

<E1  (0)> = 2N1e1 2 (q.+1) 

It is not so easy to calculate <sl um>, since examination of (7) 
shows that it is necessary to derive the expected value of a quotient of 
correlated random variables. In general, this requires that the statistics 
of the random variables be specified and the problem be solved numerically. 
This will not be done here. 

However, for sufficiently high SNR (e.g., cd > 100 or 20 dB) the 
approximation (1+x) -1  1-x, where x e(n)/Al, can be used to approximate 
the denominator of (7). Then the following approximate result, which is 
independent of the statistical distribution of the white noise e(n), is 
obtained: 

(26) 
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(27) 

(28) 

(29)  

(30) 

= 1./(1+131 (l,N)cr1 -2 ]} exp(iy 

where 

B1 
 (1,N) = (N2 -2)/(N-1) 2  

and 2 > B1(1,N) > 1 for 2 < N < 00 •  Comparison of (27) with (20b) for M=1 
shows i'hat for high SNR 81(1,1) is a biased estimate of a1(1,1). However, 
81(1,1) correctly estimates the angular frequency col of the single complex 
sinusoid, and the bias term B1 (1,N) monotonically approaches unity as N 
becomes large. 

From (26), (27) and (8a) and (8h) it can be shown that 

= 1E1 2 (q+1) 

and, to the saine  degree of approximation as was used to obtain (27) 

<r1 (1)> = 2B1 (1,N)IO 2  

Comparison of (30) with (21) shows that r1(1) is a biased estimator of  
since for al large, P 1 (1) z 21E1 2 . 

The result (30) implies that the lattice-filter outputs fl(n) and 
b1(n) as defined by (5a) and (5b) have low SNR, since their expected power 
is at most only a factor of four greater than the additive white noise power 
1E1 2 . Therefore it would again be necessary to specify the detailed statistics 
of the additive noise before the higher order reflection coefficients could be 
estimated. This will not be done here. 

3.3 DISCUSSION OF THE ONE-POLE COMPLEX SINUSOID CASE 

The results of Sections 3.1 and 3.2 show that, for high SNR (cd.  > 100) 
the first order (M=1) PEF generated by the Burg algorithm is biased as compared 
to the PEF generated by the KA technique. This bias, however, monotonically 
decreases as the number of data N is increased, and both the KA and the Burg 
algorithms correctly estimate the frequency of the complex sinusoid. 

It is impossible to investigate the properties of the Burg PEFs for 
the low SNR case, or for orders higher than M=1 for the high SNR case, without 
specifying the statistical distribution of the additive white noise. This 
problem has not been considered here. 

4. THE TWO-POLE COMPLEX SINUSOID CASE 

The sampled signal x2(n) consisting of two complex sinusoids in the 
presence of additive white noise is given by 
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x2 (n) = Al  exp(jnwl) + A2  exp(jnw2) + E(n) 

where Ak = lAklexP(j(l)k) is the complex amplitude of the k
th sinusoid, (Pk is 

its arbitrary initial phase at n=0, and wk is its angular frequency, normalized 
so that -n < wk < n, for k=1,2. E(n) is additive white noise, as in (15). It 
is apparent that—if A2=4 and w2 = -wi then x2(n) is a sampled real sinusoid 
In additive white (complex) noise. 

Equation (31) can be written in a form which will be subsequently 
more tractable: 

x 2 (n) = Ao exp[j(nw o  +o 4) )] 

X {r exP[j(nAw+Acp)] + r
-1 exp[-j(nAw+4)4 + e(n) 	(32) 

where Ao  = IA1A2r/ is the geometric mean of the magnitudes of the two 
amplitudes; r = [IA11/1A21]1/2 is the square root of the ratio of the magnitudes 
of the amplitudes; 4)0  = (4)1+4)2)/2 is the arithmetic mean of the initial phases; 
4 = (41:11)2)12 is one-half the difference between the twO phases; wo  = (w1+w2 )/2 
is the arithmetic mean of the two angular frequencies; and Aw = (wl-w2)/2 is 
one-half the difference between the two frequencies. 

4.1 THE KA ESTIMATE OF THE PEF 

The autocorrelation function R2(k) of the signal defined by (32) is 
given by 

(k) = A(2) (r 2+T-2 )exp(jkw0)[cos1cAw + jp(r)sinkAw] + 1e1 2 5(k) 	(33) 

where 

p(r) 	(r 2_r-2 )/(r 24.1.-2 )  

and k is any positive or negative integer, or zero. Substitution of (33) into 
(3a) gives the result 

P2( 0) ' 10 2 (q+1 ) 

where q = Ao (r +r 2 2 -2
)/lc12 is the SNR. If there is no noise, then P2(0) = 

4(r 2+r-2 ) is the signal power. 

From (33), (35), (3b) and (3d), the following general results for 
the reflection coefficient and the output error power for M=1 can be derived 
when 1E1 2 	0 and Ao  0 0: 

(31) 

(34) 

(35)  



(40) 

(41) 
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a2 (1,1) = exp(jwo ){[cosàw + jp(r)sinAw]/[1 + a-2 24 	 (36) 

and 

P2(1) = A(r 2+1.2)'r.  ji p2(r)lsin2Ato 	a;2(2+a-2-2)},{1+0.-22} 	(37) 

For high SNR (4 >> 1), the first reflection coefficient is given 
approximately by 

a2 (1,1) = exp(jwo )[cosAw + jp(r)sinAw] 	 (38) 

For r=1, p(r) = 0 and the zero of Fa)(z,l) (see Section 2.3) is located at 
z o  = cosAw exp(jw0), which lies on a radius oriented at the mean angular 
frequency wo • This zero moves towards the limiting values of exp(jwi) as r+00 
and p(r) + 1, or exp(jw2 ) as r+0 and p(r) + -1, and the single complex sinusoid 
case is approached in each case. 

The output error power is, using (38), (35) and (8b), 

P 2 (1) = (2A0  sinLw) 2 /(r 2+r-2 ) 	 (39) 

which is essentially the signal power attenuated by the factor [2sinAw/(r 2+r-2 )] 2  
This factor is unity when r=1 and àw=+n/2, and decreases as r or Lw  deviate 
from these values. 

For low SNR (4 << 1), the reflection coefficient and the output 
error power are given by 

a2 (1,1) = exp(jwo)q,  [cos& + jp(r)sinàw] 

and 

P 2 (1) = 1E1 2  + A2 (r 2+r-2 ) 

Thus the frequency estimated from the location of the zero of the M=1 order 
PEF lies in the range bounded by wo  ± Aw, and the output error power is 
essentially the unattenuated signal plus noise power. 

For 14=2, (33), (36), and (3b) can be combined to yield 

[1-p 2 (r)]sin 2àw - 	[cos2àw + jp(r)sin2dw] (42) 
-exp(j2w0 ) 	  

[1-p 2 (r)]sin 2Aw + G-2 2 [2+0-2 2 ] 

and (37), (42) and (3d) can be combined to yield 
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2[1-p 2 (r)lsin 2 Lw(2 + cos2&) + G-2 (3+a-2 ) 2 	2  
2 2 (2)  = 102  [1-p 2 (01sin 2&w + G-2 2  (24-a-2 2 ) 

For high SNR (1:4 >> 1) and 

-p 2 (r)]sin 2 bm >> Icos2& + jp(r)sin2Awl 

(42) reduces to 

a2 (2,2) = -exp(j2w0 ) 

It can be shown fram (45), (36) and (3c) that 

a2 (1,2) = exp(jwo) 2cos& 

(43)  

(44)  

(45)  

(46)  

so that, in the limit as the left-hand side of (44) approaches inf 
the zeroes of Fa) approach zo  = exp[j(w +&)], the true locations 
poles of the complex sinusoids. In this same limit, 1a2(2,21 2  = 1 
P2(2)=0 and the recursion terminates. 

For the intermediate case, where ol >> 1 but (44) is not 

inity, 
of the 

, so that 

satisfied, 
i.e., 

	

P 2 [1-p 2 (r)]sin& << Icos2& + jp(r)sin2&I 	 (47) 2 

(42) can be reduced to 

a2 (2,2) = exp(j2w0)cosAw[0.5 cos& + jp(r)sinàw] 	 (48) 

and it can be shown from (48), (38) and (3c) that 

	

(1,2) = 0.5 exp(jwd[cos& + jp(r)sinAw] 	 (49) 

so that the zeroes of F 	 & 2) (z,2) occur at [cos + jp(r)sinAw]exp(jwo ) and 
-0.5(cosAw + jp(r)sinAw exp(jw 0 ). Comparison of these results with (23), 
which gives the zero locations of the PEF for a one-pole signal and M=1, 
shows that the intermediate case result for the two-pole signal is very 
similar to that for the one-pole signal at high SNR. Comparison with (38) 
shows that one of the zeroes of Fa)(z,2) remains the saine as that of F4)(z,l) 
at high SNR; i.e., the two poles are estimated as one by the M=2 PEF if 44) 
is not satisfied. 
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For the low SNR case (q. « 1), (42) reduces to 

a2 (2,2) = exp(j2w0)M[cos2Aw + jp(r)sin214 	 (50) 

and P2(2) is the same as P2(1) as given by (41). Since for this case both 
10(.2(2,2)1 and 1a2(1,1)1 are proportional to then from (3c) it is clear 
that, to first order in (I, 

a2 (1,2) = a2 (1,1) 	 (51) 

where a2(1,1) is given by (40). The zeroes of Fg) (z,2) in this case occur 
at approximately z = a21±[cos2Aw + jp(r)sin2Aw] 1/2  + a2[cosàw + jp(r)sinAw)/4 
exp(jw0 ). For r=1 and thus p(r)=0, the zeroes occur at z = a2/±[cos2Ael + 
a2[cosLw]/2/exp(jwo), which lie close to the origin of the complex z-plane, 
on a diameter of the unit circle passing through the point z = exp(jw0). For 
r >>  J.  (p(r) 	1) or r << 1 (p(r) 	-1) the zeroes tend to the locations 
z = a2[±1 + a2/2]exp(jw1) or z = a2[±1 + a2/2]exp(jw2) respectively. Thus it 
is apparent that for low  SNR,  the spectral estimate corresponding to M=2 is 
incapable of resolving the spectral peaks corresponding to the poles of the 
two complex sinusoidal signals. 

There appears to be no straightforward recursion formula for the KA 
PEF coefficients, as in the case of the single sinusoid example of Section 3.1. 
Therefore, following this approach, it is not easy to determine the behavior 
of the KA PEFs in the case of large M and, in particular, whether resolution 
of the two sinusoids is to be expected for the product 1.14 sufficiently large, 
independent of the value of 4 This problem, however, has been solved using 
powerful matrix techniques, by Marple 6 . 

4.2 THE BURG ESTIMATE OF THE PEF 

Let it again be assumed (cf. Section 3.2) that N samples of the signal 
defined by (32) have been given: 

x 2 (n) = Ao  exp[j(nwo  + cp0)]Ir exp(judw+4)1 + r -lexp[-j(nAw+4)11+ e(n) (52) 

n = 0,1,2,...,N-1 

Substituting (52) into (6) and (7), using (Sc), and then applying (8a) and 
taking expected values with respect to the additive white noise only yields 

<112 (0)> = 	2+r-2 )(1 + 2 cosàcpmid  G(N,&)/(r 2-Fr-2)] + 41 2 	(53) 

for the expected signal-plus-noise power. Here 

sin (N&)  G(N,Aw) = N sinAw (54) 
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is the common grating-function frequency response of a normalized, uniformly 
weighted discrete Fourier transform of N data, and 

4mid  = (N-Mw +  24 	 (55) 

is the phase difference between the two complex sinusoidal components, reckoned 
at the middle of the data set. Note that there may or may not be a datum at 
the middle of the data set, according to whether N is an odd or even integer, 
respectively. Also note that àcf) has not been averaged, but rather is assumed 
to be a fixed parameter of the particular set of data being analyzed. This 
assumption corresponds to the usual practical case, where only one set of data 
is available. 

Again, it is not easy to calculate the expected values of the 
reflection coefficients unless the assumption of high SNR is made. In that 
case the same approximations can be made as in the derivation of (26) to get 

= exp(jwo) 
cosàw + jp(r)sinàw + 2 cosborPmid  G(N-1,àw)/(r 2+r-2 ) 

1 1 + 2 cosà(PraidcosAw G(N-1,àw)/(r 2
+r-2 ) 	G-22(1 	B2(1,N)] 

(56) 

where the bias term B2 (1N) is of order (N-1) -1 and is given by eqn. (Al) of 
Appendix A. 

Comparison of (56) and (36) shows that for high SNR (3 2 (1,1) is a 
biased estimate of a2(1,1) unless  N-o. For infinite SNR and finite N, 
however, S2(1,1) becomes an unbiased estimate of (12(1,1) if 

cos4mid  = 0 	 (57) 

or 

G(N-1,&)  = 0 	 (58) 

Similarly, comparison of (53) and (35) shows that 11 2 (0) is a biased estimate 
of P2 (0) unless either (57) is satisfied or 

G(N,Aw) = 0 	 (59) 

It is impossible to satisfy (58) and (59) simultaneously for N finite, but 
when (57) is satisfied the Burg spectral estimate (14) is unbiased for M=1 
and infinite SNR. 

Progressing now to the second stage (M=2) of the Burg algorithm, it 
is found that the algebra becomes all but intractable unless the condition 
of infinite SNR is assumed. For this special case, (56), (52), (5a-c) and 
(7) can be used to derive the following expression for  
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{

82 (2,2) = -exp(j2w0) X {1 - 2 cos4mid  G(N-2,Aw)/(r 2+r-2 ) 

-2 cos4midG(N-1,&) X {cosà(PmidG(N-2,Aw)[co5àw + jp(r)sinàw] 

- 2 cosAW/(r 2+r-2)} 

+ cos 24midG 2 (N-1,A )  x{[cos2àw + jp(r)sin2àw] 

-2cosAtidG(N-2,àw)/(r 2+r-2)} 

ji{{1 - 2cos4midG(N-2,àw)/(r 2+r-2)} 

-2cosAt id  cosàwG(N-1,à0 x c0sOmidG(N-2,à0 - 2/(r 2+r -2)1 

}

+ cos 24midG 2 (N-1,Aw) X 1 - 2cosAcbmid  cos2AwG(N-2,à,w)/(r 2+r-2 )/ 

(60) 

Examination of (60) shows that, even for infinite SNR, the "correct" 
value of -exp(j2w0 ) for the reflection coefficient <82(2,2)> is not realized 
for N finite unless either (57) or (58) is satisfied. Realization of either 
of these conditions for infinite SNR will, as examination of (60) shows, cause 
the magnitude of the reflection coefficient to be unity. Thus it can be 
inferred that, for sufficiently high SNR, the two crucial factors affecting 
the reflection coefficient computed using the Burg algorithm are the phase 
difference between the two complex sinusoids at the middle of the data record, 
Aci)m id, and the number of cycles of difference frequency contained in the 
finite length data record. 

4.3 DISCUSSION OF THE TWO -POLE COMPLEX SINUSOID CASE 

The results of Section 4.1 and 4.2 show that even for infinite SNR, 
the first (M=1) and the second ( M=2) order PEFs generated by the Burg 
algorithm are biased as compared to the PEFs generated by the KA technique. 
It is clear from the appearance of the grating function (54) in the equations 
(56) and (60) for the first and second-order reflection coefficients that the 
magnitude of such biases will have inverse dependence on N, the length of the 
data record. 

The effect of this bias is to reduce the magnitude of the reflection 
coefficient and thus to allow significant levels of uncancelled signal energy 
to propagate beyond the stage M=2 in the Burg algorithm. Then PEFs of 
successively'higher order can be based on this coherent "leakage" signal. 
However, whenever one of the criteria described by (57) or (58) is satisfied, 
no significant coherent leakage signal is propagated beyond the stage M=2. 
It is conjectured that it is the presence or absence of this coherent leakage 
signal beyond the stage M=2 that determine whether or not line splitting will 
occur for PEFs of some higher order. Results both of previously published 7 ' 8  
and new simulation studies support this conjecture, as indicated in Section 5. 
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5. RESULTS OF SOME SIMULATION STUDIES 

In this Section are presented the results of some studies.of the 
performance of the complex Burg algorithm for the analysis of signals known 
to be comprised of two complex'sinusoids in the presence of very weak additive 
complex white noise (q = 77 dB). These studies parallel and extend a set of 
studies performed by Fougere et al. 8  using the real-arithmetic Burg algorithm 
to estimate spectra of a single real sine-wave signal in the presence of very 
weak additive real white noise. 

It will be necessary to make comparisons between complex data of the 
form (52) and real data x 5 (n) of the form 

x(n) = sin(nws + s ) + c(n) 

n = 0,1,...,N-1 

which is comprised of N samples of a real sine wave with initial phase (P s  
plus additive uncorrelated noise samples e

s (n). The 
angular frequency ws  

is given by 

2rfAt 	 (62) 

where Lt is the sampling interval (sec) and f is the signal frequency (Hz). 
Equation (61) can easily be rewritten in the form of (52) by letting Ao  = 0.5, 
r=1, (P o  = 0, 4 = cP s  - r/2, wo  = 0 and Lw = ws . Then the phase difference 
between the two complex components of the sine wave reckoned at the middle of 
the data record is, according to (55), given by 

4mid = (N-1)ws 4s-11. 	
(63) 

The results of Fougere et al. have been extended by allowing the 
value of r 2 , the ratio of the positive frequency to negative frequency signal 
amplitude, to range from 1 to co in a series of six steps. These steps are 
denoted by the letters A-F, and the relevant signal parameters are summarized 
in Table 1. For all steps the total signal power Aâ(r 2+r-2 ) was maintained 
constant and equal to 0.5, the power of a real unit-amplitude sine wave. Also, 
the values of 4)0  = 0 and w0  = 0 were maintained for all the trials. These 
restrictions do not limit the generality of the results obtained. It is clear 
that'an arbitrary phase rotation of the entire data-set will have no effect 
on its power spectrum. It is also clear that since terms of the form exp(jmwo ) 
can be factored out of the a(m,M)s and 8(m,M)s, the effect of non-zero wo  is 
simply to shift the estimated spectrum along the frequency axis (in a circular 
or end-around fashion) by the amount wo . Finally, it should be noted that 
for each set of cases examined, the same set of noise-data samples was used 
with all sets of signal data. 

(61) 
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TABLE 1 
Test-case Signal Parameters 

_ 
CASE 	 r 	 0) 	r2+r-2 

	

. A 	 1 	 0 	 2 

	

B 	 • 	N/2 	 0.6 	 2.5 

	

C 	 N/10 	 0.98 	 101 

	

D 	 vim° 	0.9998 	101101 

	

E 	 N/1000 	0.999998 	1000.001 

	

F 	 «. 	 1 	 . 

5.1 CASE 1 

The signal data for Case 1 consisted of 21 samples of two complex sinu-
soids with angular frequencies wi 2 = ±2n/20, so that Aw = wl . AcPmid was 
stepped from -n to +it in increments of 2e/9 radians, so that in all instances 
cosAcpmid 5,i 0. All spectra were estimated using (14) and a length  20(M19)  
Burg PEF. 

For Case lA (r=1) the situation corresponds closely to that of Fougere 
et al.'s Case 2, where 21 samples of a 1 Hz real sine wave sampled at inter-
vals of At = 0.05 s were analyzed, and (P s  was stepped from 0 to r radians in 
steps of n/9 radian (20 0 ). However, they ysed uncorrelated real noise samples 
uniformly distributed over the range [-10-4 ,10-4 ], thus having a slightly 
higher SNR (82 dB) than that used here (77 dB). Also, they analyzed their 
data using a real-arithmetic implementation of the Burg algorithm. 

The effects of the relaxation of the conjugate symmetry forced on the 
spectrum by the use of real data and real arithmetic analysis are apparent 
as asymmetries in Figure 3, which shows a perspective projection of the set 
of 10 spectra viewed as though looking between two parallel rows of pillars. 
A(pmid  is increasing "into" the page, and w is increasing from left to right 
as indicated. The vertical scale is, of course, distorted by the perspective 
projection; the long and short vertical bars indicate 20 dB variation in 
power spectral density in the first and tenth spectra respectively. 

Figures 4 to 8 show similarly displayed spectra for Cases 1B-F, where 
r is increasing as shown in Table 1. In all cases the signal frequencies 
were accuraeèly estimated by unsplit spikes, although there was some varia-
bility of the magnitude of the spikes, particularly for the larger values of 
r. However, examination of the locations of the zeroes of the PEFs showed 
that in all cases the zeroes of the PEF varied by no more than 2x10-3  radians 
from the known locations of the signal poles. 

The suggestion of Johnson and Andersen15  of computing and examining 
the residues of the poles of the spectral estimator (14) showed that the - 
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Figure 3. Case 1A. Estimated spectral power vs. angular frequency and Ate mid . ca l  = 	= 2e/20. N = 21. 

M = 19. Aikmid  stepped from -IT to rr in increments of 2e/9 radians. r = 1. (Perspective projection.) 
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Figure 5. Case 1C. Estimated spectral power vs. angular frequency and mi 	-- -w2  = 2/r/20. N = 21. 
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Figuit, 6. Case 1D. Estimated spectral power vs. angular frequency and 6.mid. (e l  = -e.o2  = 2/r/20. N = 21. 
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Figure 7. Case 1E. Estimated spectral power vs. angular frequency and dem id• co l  = -ce2  = 27r120. N = 21. 

M = 19. Aiemid stepped from --rr to rr  in increments of 2/r/9 radians. r = V710à0. (Perspective projection.) 
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Figure 8. Case 1F. Estimated spectral power vs. angular frequency and Arkmid. co l  = --co2  = 271120. N 21. 
M 19. AOmid  stepped from --rr to  ii in increments of 27119 radians. r =00. (Perspective projection.) 



(64) 

(65) 

23 

powers of the signal poles were well represented by the real parts of the 
residues calculated at the estimated locations of the signal poles (even when 
the spectra showed gross variability in level, as in Case ID (Figure 5)). 
Further, the residues corresponding to such apparently spurious spikes as are 
located slightly to the right of the signal poles in Figures 3 to 8 were 
negligible (always less than 10-6  of the signal power). 

The absence of line-splitting is fully consistent with the theory of 
Section 4.2 as discussed in Section 4.3, since, for these data, (58) is satis-
fied in all instances: i.e., G(N-1,Aw) = 0 because sin[20x(2n/20)] E 0. 
Therefore at the stage M=2 of the Burg algorithm 8(2,2) was estimated accord-
ing to (60) as -1, and the error output signals being processed at stages of 
the algorithm beyond M=2 were essentially white noise of low power. It 
appears that proceeding beyond the stage M=2 did not corrupt the estimated 
locations of the signal poles, at least when sufficient dynamic range (13 
significant figures; floating-point arithmetic) is maintained in the processor. 

Further examination of the signal powers estimated by the real part of 
the residues of the estimated signal poles revealed that, while the ratio r 2  
of the signal powers was accurately maintained for all cases examined, the 
total signal power showed the modulation by the factor cosi4 mid, and that the 
depth of modulation was inversely proportional to (r 2+r-2), as predicted by 
(53). These observations provide further confirmation of the validity of the 
theoretical results of Section 4.2. 

5.2 CASE 2 

The signal data for Case 2 consisted of 6 samples of two complex sinu-
soids with angular frequencies wi 2 = ±2n/4, so that Aww]. . td>raid was varied 
from -5n/2 to -n/2 inclusive in 91 steps of 2n/90 radians (4 ° ). All spectra 
were estimated using (14) and a length 6 (14=5) PEF. Thus Case 2A (r=1) 
corresponds to Case 3 of Reference 8, where unit-amplitude real sine waves of 
frequency f = 5 Hz were each sampled six times at intervals At = 0.05 s as the 
initial phase 4 61  was stepped between 0 and 180° in increments of 2 ° . 

For this case (N-1)w  = 5x 2e/4 = 5n/2 so that the data record contained 
an odd number of quarter cycles and G(N- 1,)  = 0.2 ¢ 0. Therefore, in light 
of (56) and (60) it would be expected that the Burg PEF would be biased and 
display dependence on cosAcémid. 

Substitution of N=6 and Aw=e/2 into (53) shows that  112(0) is an unbiased 
estimate of the input signal plus noise power, so that fluctuations in the 
estimated signal powers made by the residue method are not expected. For this 
case (56) reduces to 

<82 (1,1)> = 
 

and (60) reduces to 

2
(2,2) = 	- 0.04 cos 2t4mid Ipl + 0.04 cos2A,mid 

r (r) + 0.4 cosAcPmid/(r 2+r-2 ) 
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Consideration of (64) and (65) shows that here the Burg PEF should have 
greatest bias for r=1, when (r 2+r-2 ) has its minimum value of 2, and that the 
bias should vanish for r==, when p(r)=1 and 1<e2 (1,0> 	1-4x1 0-8. For the 
case r = co, (60) and hence (65) are not valid. 

Examination of Figures 9 to 14 supports all these conjectures. These 
figures show orthographic projections of the 91 spectra, with w ranging from 
-n to +n across the page, and A4)mid increasing "into" the page. The labelled 
vertical bar to the left of the spectra indicates a variation of 20 dB in 
power spectral density. It is clear that there is no line—splitting for 
A(Pm id = —51d2, —3n/2 and —n/2, and that the splitting shows a quast—cosInu-
soidal dependence on Acémid as suggested by the form or (64). The splitting 
became less severe as r ?  >0., again as might be inferred from (64), untll for 
Case 2E the weaker signal pole was correctly estimated as a single pole. 
Examination of the zeroes of the PEFs and the residue powers showed measurable 
splitting of the stronger signal poles even for this case. Case 2F of course 
showed no line splitting, since there was then only one signal pole. 

The "banding" effect visible most clearly in Figure 9 (Case 2A) and to 
a decreasing extent in subsequent figures can be explained on the basis that 
when cosA(Pmid = 0, 42 (2,2)1 . 1 so that the output error power was greatly 
reduced in those cases. This caused a shift in the level of the spectrum, as 
can be seen from the dependence through (8b) of the numerator of (14) on this 
quantity. This also explains the obvious drop in spectral level in Figure 14, 
where 1132(1,1)1 = 1 for all values of Acpmid . 

Figure 9. Case 2A. Estimated spectral power vs. angular frequency and Aytimid. ca l  = --ca2  = rr/2. N = 6. M = 5. 
Aybmid  stepped from -5/r/2 to --Yr/2 in increments of 2ff/90 radians. r = 1. (Orthographic projection.) 
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Figure 10. Case 2B. Estimated spectral power vs. angular frequency and A0m id. 	= -co2  =  2. N = 6. M = 5. 
AOrn id stepped from -5/r/2 to -e/2 in increments of 2n/90 radians. r =  Nfi. (Orthographic projection.) 
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Figure 11. Case 2C. Estimated spectral power vs. angular frequency and &timid. col -co2 ir/2. N 6. M - 5. 
L)»mid  stepped from -5n/2 to -n/2 in increments of 2ir/90 radians. r = ./10. (Orthographic projection.) 
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Figure 12. Case 20 . Estimated spectral power vs. angular frequency and Anjbm id. 	-co2 = ir12. N --- 6. M — 5. 
Albmid  stepped from -57r/2 to -7r/2 in increments of 277/90 radians. r = N/100. (Orthographic projection.) 
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Figure 13. Case 2E. Estimated spectral power vs. angular frequency and àternid. col = 	= ir12. N = 6. M =5. 
A0mid  stepped from -57r/2 to -irI2 in increments of 27r/90 radians. r = nfirf-00. (Orthographic projection). 
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Figure 14. Case 2F. Estimated spectral power vs. angular frequency and Atkm id. 	= -0.)2 = IT/2. N = 6. M = 5. 
Atemid  stepped from -57r/2 to -rr/2 in increments of 27r/90 radians. r = 00. (Orthographic projection.) 

Examination of the residue powers showed that, when line-splitting 
occurred, a significant portion of the signal power was accounted for by each 
pole of a split pair; in fact for Case 2A and IcosAcP slidl u 1, 70% of the 
signal powers appeared at the more severely deviated poles, and only 30% at 
less severely deviated poles. That the greater portion of the signal power 
was associated with the more deviated pole appeared for these data to be true 
in general. The present theory makes no prediction as to why this should be 
the case, although in principle the theory for the infinite SNR model could 
be extended to do so. 

5.3 CASE 3 

The signal data for Case 3 consisted or 25 sets of 101 samples of imo 
complex sinusoids with Acpmid ...27r in all cases. Again we0 was chosen, and 
Aw was stepped from 27T x 0.0125 to 2n x 0.4925 inclusive in increments,of 
2n x 0.02. Thus Case 3A parallels Case 4 of Reference 8, where 101 samples 
were taken at intervals At 0.01 s of real unit-amplitude sine waves with 
cp s  - n/4 and fs  stepped from 1.25 Hz to 49.25 Hz inclusive in steps of 2 Hz. 
In all cases, the spectra were estimated using (14) and a  length 25 (14n 24) 
Burg PEF. 

Figures 15 to 20 (Cases 3A •o 3F) show the spectral estimates obtained 
from the data. These figures are again orthographic projections with Aw 
increasing "into" the page. Any comments on the detailed structure of the 
line-splitting shown would necessarily be speculative, but some general 
observations can be made. 
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Figure 15. Case 3A. Estimate spectral power vs. angular frequency. AOmid = 27r. N 101. M -= 24. col = -ce2 
stepped from 27r x 0.0125 to 27r x 0.4925 in increments of 27T x 0.02. r = 1. (Orthographic projection.) 
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Figure 16. Case 3B. Estimate spectral power vs. angular frequency. .14mid =  27T. N = 101. M = 24. col = -co2 
stepped from 277 x 0.0125 to 2ir x 0.4925 in increments of 2.7T 0.02. r =NT (Orthographic projection) 
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Figure 17. Case 3C. Estimate spectral power vs. angular .frequency. /10m id = 2/f. N = 101. M = 24. cal = 
stepped from 2ff x 0.0125 to 21r x 0.4925 in increments of 2fr x 0.02. r =.0-0. (Orthographic projection.) 
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Figuro 18. Case 3D. Estimate spectral power vs. angular frequency. &tim id = 2fr. N = 101. M = 24. col  

stepped from 2fr x 0.0125 to 2fr x 0.4925 in increments of 27t x 0.02. r =NfiltiO. (Orthographic projection.) 
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Figure 19. Case 3E. Estimate spectral power vs. angular frequency. Atemid = 2/r. N 101. M = 24. oh -co2 
stepped from 2/r x 0.0125 to 2/r x 0.4925 in increments of 2/r x 0.02. r = N/1000. (Orthographic projection.) 

Figure 20. Case 3F. Estimate spectral power vs. angular frequency. Aybmid 2n. N 101. M - 24. col 	-co2 
stepped li e n 7n x 0.0125 to 2/r x 0.4925 in inctements  cl  2/r x 0.02. r 	(Orthoglaphic projection.) 

The first remark is that line-splitting appears to become less severe 
as r was increased in value, as examinations of (56) and (60) might suggest, 
and in fact line-splitting vanished for r=oe as discussed in Section 5.2. 

The second remark concerns the possible dependence of the spectral 
level on the values of G(N-1,Aw) and G(N-2,w).  These values are given for 
the plotted spectra in Table 2. It is interesting to note that the minimum 
spectral level occurred at the minimum values for IG(N-1,A01, IG(N-2,) I  
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and IcosAwl, and that higher spectral levels were observed when G(N- 2,&) 
 < 0, or Aw > 2n x 0.25. Examination of (60) Shows that as Aw exceeds the 

value e/2 certain terms change sign in such a manner as to decrease the 
magnitude of 62(2,2) and thus perhaps to increase the magnitude of the numera-
tor of (14) through the relation (8b). 

Finally, for Case 3F it is again observed that the spectral level drops 
as 	and the bias term in (56) vanishes, similar to Case 2F. For Case 3F 
only, the estimated poles accurately reflected the true signal pole locations, 
were unsplit and had correct residue powers. For all other cases, examination 
of the locations of the poles of the Burg spectral estimate showed the 
existence of multiple poles with significant residue power in the vicinity of 
the true locations of the two signal poles. 

TABLE 2 
Values of (Aw/27r) x 100, G(N-1,Aco) and G(N-2,&4)) for Data from Case 3 

(&)/2x) x 100 	G(N-1,A 1.) 	G(N-2,har) coew 

	

1.25 	0.1275 	 0.1823 	 0.9969 

	

325 	 0.0493 	 0.0488 	 0.9792 

	

E25 	 0.0309 	 0.0295 	 0.9461 

	

725 	 0.0227 	 0.0206 	 0.8980 

	

925 	 0.0182 	 0.0125 	 0.8358 

	

11.25 	 0.0154 	 0.0118 	 0.7604 

	

1125 	 0.0135 	 0.0092 	 0.6730 

	

1 5.25 	 0.0122 	 0.0071 	 0.5750 

	

1725 	 (M113 	 0.0053 	 04679 

	

1E25 	 0.0107 	 0.0038 	 0.3535 

	

2125 	 0.0103 	 meet 	02334 

	

2125 	 0.0101 	 0.0011 	 0.1097 

	

25.25 	 0.0100 	 -0.0002 	-M0157 

	

2725 	 0.0101 	 410014 	411409 

	

2E25 	 0.0104 	 -0.0028 	-0.2639 

	

31.25 	 0.0108 	 410042 	413827 

	

3125 	 0.0115 	 430058 	414955 

	

3E25 	 0.0125 	 410076 	416004 

	

3715 	 0.0135 	 410098 	416959 

	

3125 	 0.0160 	410126 	417804 

	

41.25 	 0:0191 	 410165 	418526 

	

4125 	 0.0243 	410224 	419114 

	

45.25 	 0.0340 	 -0.0328 	419558 

	

47.25 	 0.0582 	 410579 	419551 

	

4E25 	 02123 	 412142 	419889 
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6. SUMMARY AND CONCLUSIONS 

The theoretical properties of autoregressive spectral analysis schemes 
have been analyzed when the signal under investigation is known to be compri-
sed of one or two complex sinusoids in additive white noise. This latter case 
includes as a special case data comprising a single real sine wave in additive 
white noise. It has been shown that when the autocorrelation of the signal is 
known, the frequency of a single complex sinusoid can always be extracted, 
independent of the signal-to-noise ratio (SNR), provided enough samples of the 
autocorrelation are available. It was also shown that the Burg algorithm 
correctly extracts the frequency of a single sinusoid in additive white noise 
from the complex amplitude time-series data, provided the SNR is sufficiently 
high. 

The situation when two complex sinusoids are present is much more 
complicated. It was found to be fairly difficult to derive general equations 
describing the spectrum for the known autocorrelation (KA) case, even for a 
two-pole autoregressive model. Nevertheless these equations served as a use-
fui  touchstone for the extremely complicated Burg equations for the analysis 
of time-series amplitude data. Detailed theoretical analysis showed that, 
unlike the KA case, the Burg spectral estimate is expected to be sensitive 
both to the number of cycles of the difference frequency between the two 
components contained in the finite-length data record, and in particular to 
the relative phase difference between the two complex sinusoidal components 
at the middle of the data record. Finally, simulation results were shown to 
be fully compatible with the conjectured basis of line-splitting presented 
here. 
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APPENDIXA 

A Bias Term 

The bias term B2
(1,N) found in the expression for <8

2
(1,1)> is: 

B2
(1,N) -  (N._1)_1{1  + [(N-2)/(N-1)] X 

[cosAw + jp(r)sinAw + cosAcPmidcosAwG(N-2,Aw)/(r 2+r-2)] 

di[cosAw + jp(r)sinAw + 2cosAcpmidcosAwG(N-1,Aw)/(r2+r-2)4 
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